ON THE LINEAR TRANSMISSION PROBLEM FOR THE LAPLACIAN:
ANALYSIS AND A POSTERIORI ERROR ESTIMATES
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1. INTRODUCTION

We continue and extend our studies from [3, 1] to a classical transmission problem for the
Laplacian. Throughout this paper, let 2 C RY be a bounded domain, i.e., an open, connected, and

bounded set, let € := RV \ Q) be its open complement (unbounded domain), and let T := 9 Q = 9
denote their common boundary/interface. We introduce

RN .=RN\T=QUQ.
For the use of weighted Sobolev spaces we define the polynomial weight p := (1 + r2)'/2 where
r(x) = |z| for z € RY. Until otherwise stated explicitly we assume N > 3 and no regularity for T

at all.
For these introductory lines let I' be smooth enough, and let the data

Fel?Q), pfel?®), greHY*I), hreH VD),

and an elliptic © € Lw(Rfv,Ré\yﬂﬁN) be given. In other words, © is a reel, symmetric, bounded,
and uniformly positive definite tensor/matrix field. Here we utilise standard notations for the

Lebesgue and Sobolev spaces. For
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where the ~ = - |5 and = = - |4 notation shall be used throughout the whole paper, we consider
the transmission problem (TP)

—divOvVia=f in 0,

—diveva=f in O,

(1) ulr — ulr = gr on I,
0g, ulr — 0g,, U|r = hr on T,

p~lue L2(RY),
where the Neumann traces are given by
85, Ulr = Ov-Vilr =v-OVilr,
g, Gifr = Ov - Villr =v-0 Vi
with outer unit normal v for I' = 9 Q) which is the inner unit normal for I' = 9.
In future contributions we shall extend or findings also to equations of other Hilbert complexes,
such as the de Rham, the elasticity, or the biharmonic complex. Out techniques are flexible and

general enough to handle those systems as well. A prominent example is a transmission problem
for static Maxwell’s equations, such as

rotOrot E = F in §~2,

rotOrot £ = F in (AZ,
Z/XE|F><V—I/><E'|FXV:GF on I,
l/XéI‘OtE|F—I/XéI'OtE|F:HF on I,

p 1 E € L*(R?).
2. ANALYSIS
We recall the weight p and the geometry KNZ, (AL [, RY from the introduction.

2.1. Preliminaries. Let  C RY be open (bounded or unbounded, connected or not). We intro-
duce the standard Lebesgue and Sobolev spaces L2(Q2), H!(), H(div,Q), and HX(Q), H(div, Q),
where the latter are defined as closures of C°°(Q) (test functions) in the respective graph norms,
as well as the polynomially weighted Sobolev spaces

L3,(Q) == {p € Lp () | p 9 € (D)},

HL(Q) = {p e L2,(Q) | Vo e LX(V)}, HL, (Q) = éoo(Q)Hl‘l(m,
Ho(div, Q) := {® € L*(Q) | div® € L}()}, Ho (div, ) := éoo(Q)HO(div’Q)
Moreover, we shall utilise the standard (inner and outer) scalar and normal traces
tre H1(§~2) N H1/2(F), tr, H(div,ﬁ) — Hfl/z(F),
frg - HL, (Q) — HY2(DD), fr : Ho(div, Q) — HV2(D),

provided that I is regular enough, e.g., Lipschitz. Here we have the convention that tr, uses the
outer normal v and that tr, uses the inner normal —v. At this point, let us also introduce the
duality between H'/2(I") and its dual H=1/2(T") = H'/2(I")’ by

VEe H_l/Q(F) ne HI/Q(F) {n, N = (1, EDnrr2 0y p-1/2(1) -
As RY has the two connected components Q and O we sce
H£1(R1Fv) = {¢ € L31<RN> ‘ 5‘5 Hl@) A <g€ H£1(ﬁ)}7
Ho(div, RY) = {9 € L2(RY) | ¥ € H(div,Q) A ¥ € Ho(div, )},
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and hence we have the broken differential operators
Voo v% 1n§:2 div e = d%v{g 1n§:2
V¢ inQ, divey in Q.
Note that HL | (RY) C HL | (RY) and Ho(div,RY) € Ho(div, RY).
2.2. Transmission Problem. We follow the rationale for “a simple transmission problem” from

the book of Rolf Leis [4, p. 31], see also [9, p. 85, 93, 98]. As pointed out before we are interested
in the transmission problem (1) which reads as

—divOVu=f inRY,
(2) tre — trsi = gr  on T,
tr,O Vi — tArn(:)Vﬁ =hr onT,
with u € L2, (RY), more precisely,
(3) weHL (RY),  ©VueHy(div,RY).
The next remark is well known.

Remark 2.1. Let p € HL | (RY) and ¢ € Ho(div,RY). If T is Lipschitz then:
(i) ¢ € HL,(RYN) if and only if o satisfies the first transmission condition of (2) with gr = 0,
i.e.,
trs @ = fr.
(ii) ¥ € Ho(div,RY) if and only if ¢ satisfies the second transmission condition of (2) with
hr = 0, i.e., _
ﬁ“nw = t/\rnz/)
(iii) ¢ € HL [ (RY) and © V ¢ € Hy(div,RY) if and only if ¢ and © V ¢ satisfy both transmis-
sion conditions of (2) with gr =0 and hr =0, i.e.,
trsp = (1 and tr,OVE={r,0V .
We emphasise that all introduced Lebesgue and Sobolev spaces are Hilbert spaces.

2.3. Weak Formulations. Generally, let
feLi®RY).
W.l.o.g. let us assume that gr and hr are given by
GEN(ivOV,Q) c H(Q), & e H(div,Q),
ie., div(:)ng 0in Q and
&sgzgl“, tNrnh:hl‘,
where N(A) notes the kernel of the maximal L?-realisation of an operator A. g is often called
harmonic or minimal norm extension. The existence of ¢ and h is always guaranteed even if no

regularity of ' is assumed (as we do here), cf. [2]. If T is regular enough, e.g., Lipschitz, then the
existence is well known also by classical techniques. For later purpose we set

g in SN), b h in 627
9= G:=0 in(, T lhi=0 inQ.
Remark 2.2. There is some freedom in the choice of the extensions g and h. For example, we
may also pick
0 inQ, 0 mnQ,
g:=9x. . - hi=q~ A
g inf, h inQ

with § € N(divO V,Q) c H,(Q), he Ho(div, Q) and g = gr, trah = hr, or combinations of
both.
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Now, we seek weak versions of the two Dirichlet and Neumann transmission conditions in (2)
and a weak (variational) formulation for the whole system (2) and (3).

o A weak formulation of the first (Dirichlet) transmission condition is simply given by saying
that u € HL | (RY) is given by

Ug +§ n ﬁ,

Ug in Q

u=
(4) u:uo+g={A
u

with some uo € HL(R") since then, e.g., in case of a Lipschitz interface I', we have by Remark
2.1

(5) tret — trei = trsug — trsuo +treg — trg = gr.
\—,0_/ ~ ,/O

Hence we shall put the first transmission condition as a strong condition included in the solution
space which indeed turns out to be HL; (RY) + {g} € HL | (RY).

o A weak version of the second (Neumann) transmission condition can be implemented as a
weak (natural) condition into a variational formulation. For this we compute, e.g., in case of a
Lipschitz interface T, for all ¢ € HL | (RY)

(hr, trsp)r = (trah, trsphr = (b, V Pz T (div h, )
(tra® Vi — {r,0 V @, trsp))r
(1O V&, trsp)r — (a0 V @, trsp))r
= OV V@) 2 + (VO VT 0)og) + OV V) g + (dvO VT 0).aq,
ey - -f
= <@V%V90>L2(RN) —(f, 50>L2(RN

since tArsgo = trep by Remark 2.1. This computation shows that a weak formulation of the second
transmission condition tr,® V4 — tr,© V4 = hr is given by

(6) Ve Hl—l(RN) <@VU7V<P>L2(RN) = <f7 ‘P>L2(]RN + <ﬁvv@>|_2(ﬁ) + <diV}~lv<P>|_2(§)a

which can be stated without any regularity assumptions on the interface I'.
e Now we search for a variational formulation for u using (6) by the canonical ansatz (4), i.e.,

wi=uo+geH (RY) with  ueH(RY).
Then for all ¢ € H: | (RY) by (6)
(fohe@y) = OV, Ve)z@y) — (b, V@) 2 — (divh,0)» )
= (O Vu, V)z@y) + (OVT —h, V@) o — (divh, 9)1q)-

Thus we are given the bounded bilinear form B : HL [ (RY) x HL;(R") — R and the bounded
linear functional F : H! | (RY) — R defined by

.B(’U,O7 (p) = <® \% Uup, \Y% (p>L2(RN),
F(p) = (f, <P>L2(RN) + (h — @v§7v‘;0>|_2(ﬁ) + (div h7@>|_2(§)~
Remark 2.3. Note that:
(i) C®(RM) is dense in H:;(RY).
(ii) The L2(RN)-inner product induces a canonical duality between L?(RN) and its dual space
L2(RN) = L2, (RN).
Therefore, a term like (f, o) 2@y with f € L3(RY) and ¢ € L2, (RY) is to be understood as

<f790>L2(RN (of,p~ 90>L2 (RN) = («f, >>L2 (RN),L2 (RN) = F(f, odmy

(7)
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Finally, we have peeled out the following variational problem replacing the transmission problem
(2) and (3): Find ug € HL{(RY) such that

(8) Vo e HLL(RY)  B(uo, ) = F(y).

2.4. Solution by Variational Techniques. According to (2), (3), (4), and (6) we introduce
three solution concepts for the transmission problem (TP), a strong, a weak, and a variational
one.

Definition 2.4 (Solutions of the Transmission Problem). Given u let ug := u — g.
e We call u a variational solution of (TP), if ug € HL | (RY) solves (8).
o We call u a weak/strong solution of (TP), if u € HL(RY) with © Vu € Ho(div,RY), cf. (3),
solves
—divOVu=f inRY
together with the two transmission conditions in (2) in the
(w) weak sense, i.c., ug € HL{(RY), cf. (4), and u satisfies (6),
(s) strong sense, i.e., trs@ — trsti = gr holds in HY/2(T) and traO Vi — tArn(:)ViZ = hr holds
in H=Y2(T"), provided that H¥'/2(T") are well defined.

From [4, page 57|, see also [8, 6], we get a Poincaré type estimate in the whole space:

Lemma 2.5 (Poincaré’s estimate in RV). Let cy := N 3 It holds

Vo e HLLRY) ol wy) < en| Volegn).
Theorem 2.6 (V-Solution). There exists a unique variational solution of (TP). The solution

operator mapping F +— ug = u — g is an isometric isomorphism between HL | (RN) and HL | (RYN).

Proof. Lemma 2.5 shows that B is positive/coercive on H! | (R”Y) since © is elliptic. Hence B
defines an inner product for H: | (RY). Riesz’ representation theorem (or Lax-Milgram’s lemma)
yields a unique solution ug € H (RY) of (8) with [uolns  mny = [Flur @vy . The definition
u := ug + g shows the assertion. O

Theorem 2.7 (W-Solution). There exists a unique weak solution of (TP), and this one coincides
with the variational one.

Proof. Let u = ug+g with ug € HL; (RY) be the unique variational solution of (TP) from Theorem
2.6. Then u € HL | (RY) and

U=uy+geH(Q), ad=uyecH ().

We consider different test functions.
o Let p € C(Q2). Then
(O V1o, Vo = Bluo, ) = F(g) = (f, 0120,
ie., éVuo € Ho(div,ﬁ) and fdivC:)Vuo = f Note that & = u = ug in Q.
o Let p € C(Q2). Then
(O Vo, V)12 = Bluo,9) = F(¢) = ([, 0)@ — (OVE V)2
[ ——
0
div h, @)LQ(Q)

+(h,V 80>|_2(ﬁ) +

) —~

Le., OVuy € ~H(div,ﬁ) and —div(:)Vyvo = f. Note that % = u = ug + § in Q and that
OV g e H(div,Q). Hence © Vu € H(div, Q) and
—divOVi=—divOVuy—divOVg=f.
=0
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o Let o € HL(RY). Then (6) holds as
<@ Vu,V @)Lz(RN) = <@ Vug, V <p>|_2(]RN) +<é Vg,V 90>L2(£~2)

= B(uo, p) = F(p)
= <.f7 <P>L2(RN) + <ha v‘P>|_2(ﬁ) + <diV h, <P>|_2(§)-

Thus u is a weak solution of (TP).
Now, let u with ug = u — g € HL;(RY) be a weak solution of (TP). Then for all ¢ € H;(R")

by (6)

B(uo, ¢) = (© Vug, V)2mn)
=(OVu, Volaey — (OV5, V)@,
= (fr@)e@n + (b — év§7v<ﬁ>L2(§) + (div h, P)2@)
= F(p).
Therefore, u is the (unique) variational solution of (TP). O

Theorem 2.8 (S-Solution). Let T' be Lipschitz. Then there exists a unique strong solution of
(TP), and this one coincides with the weak and the variational one.

Proof. Let u = ug + g with ug € H:;(RY) be the unique variational /weak solution of (TP) from
Theorem 2.6 and Theorem 2.7. (5) shows in H'/2(T")

t}sﬂ — ﬁrsﬁ =dJr.

Moreover, using (6) we see for all ¢ € HL | (RY)
(008 VT — 5,0V, S = (1100 V T sy — (1007 0, s
= (OVELY )@ +(OVE V) g,
+ (dive V~ﬁ, Pla@ + (VO VL ©) )

(9) =-f =-f
(OVu, Vo)emyy — (f, 0)L2@my)
= (h, V‘P>L2(§) + (div A, 90>|_2(§)
= <<t~1"nh7 &590»1“ = <<hl“at~rs%0>>l“

as tArsgo = tNrsgo. Hence we have ﬁ"néVﬂ — ﬁ"n(:) Viu = hr in H’1/2(1"). Therefore, u is a strong
solution of (TP).
Now, let u be a strong solution of (TP). We set ug = u — ¢g. Then as in (5)

Tl — trslip = tretl — trst — trsg + trsg = 0,

{

i.e., ug € HL{(RY) by Remark 2.1. For » € HL | (RY) we compute as in (9)
OV U, V)z@v) = (f, 0) 2@y + (f1.0 Vi — 1,0 Vi, trsp))r
= hr = trah
= (f,o)z@y + (1, V@) gy + (divh, o) g

which is (6). Thus u is the unique weak solution of (TP). O
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2.5. Operator Theory. The corresponding linear operator A, i.e.,
A:HL (RY) — HL (RYY
v Av = B(U, ) = <®VU,V : >L2(RN),

for the bilinear form B in (7) is an isometric isomorphism, cf. Theorem 2.6, and the variational
formulation (8) reads

AUO =F.
For some Hibert space H, let
7Q'H ‘H— H/a d) = 7?'H ¢ = <¢7 '>Ha i'e'; 7?'H ¢(SD) = <¢7SD>H7
Zy:H—H, =Ty :=-0, ie., Tn o) = (),

denote the Riesz and the reflexivity isometric isomorphisms. Note that

IH ¢(RH (p) = <<)07 ¢>H
Moreover, let us interpret © as bounded and selfadjoint isomorphism © : L2(RY) — L2(RY).

Remark 2.9 (A as bounded or unbounded linear operator). Note that:
(i) A=Ru @wvyy: HL, (RY) — HL (RN) is actually the Riesz isometry if H=HL (RY) is
equipped with the weighted (half) inner product B = (©OV -,V ) 2gn)y, cf. Lemma 2.5.
(ii) We have A = —divOV : HL | (RY) — HL [ (RN) with
V:HLRY) = LP(RY), o= Ve
VLPRY)Y = HLRYY, = V=9V,

—div = V' Rpz@ny : LX(RY) = HL (RYY, 9 —divd = V' Ry ¥ = (0,V ) 2w,
where V' denotes the Banach space adjoint of the gradient V seen as bounded linear
operator. R(V) and R(V') = R(div) = R(A) are closed by Lemma 2.5 and the closed
range theorem.

(iii) Let 2wy ¢ L2(RY) — HL, (RN) be the bounded embedding defined by

Emyy @ = (o, Dy = (pd, p~ " 2@yy = (&, - J2@y)-
Moreover, let Av = Fj, with Fi, := E 2mny k = (k, - )L2®y) given by some k € L2(RN).

Then by defintion © Vv € Ho(div,RY) and —divO Vv = k.
Let us consider the unbounded but densely defined and closed linear operator

V:HL (RY) € L2, (RY) — L2(RY), 0 Vo
Its Hilbert space adjoint is given by —p?div, i.e.,
—p?div = V* : Ho(div,RY) C L*(RY) — L2, (RY), 9 —p* divd,
—div = p 2 V* : Ho(div,RY) c L2(RY) — L2(RY), ¥ —div,

which are also densely defined and closed linear operators, since for 9 € D(V™)
Vo e HLRY)  (Vp,9)@y) = (0, Vi )iz @v) = (.0 2V Diz@m),
i.e., —div = p~2 V" 9. Hence in this case we have
A=—ELpmdivOV =ELgy)p 2V OV.

As before, R(V) and R(V™), R(div) are closed.
(iv) Alternatively, we may consider the unbounded but densely defined and closed linear oper-
ator

Vo : HL (RY) c L2, (RY) — L& (RY), 0= Vo,

where LL(RY) := L2(RYN) is equipped with the inner product (O -, - ) 2gny). Its Hilbert
space adjoint is given by —p® dive, i.e., by the densely defined and closed linear operators

—p*dive = V§ : Ho(dive,RY) c L(RY) — L2 (RY), ¥ = —p* div 09,
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—dive = p 2 Vg : Ho(dive,RY) c L(RY) — L2(RY), 9+ —div O,
since for ¥ € D(Vg)
Ve H, (RY) (V,00)2@n) = (Vo @, V)12 ®n)
= (o, Vo iz @) = (0, 07> Vo 2@y,

ie., —divOy = p=2 Vg 9. Hence A = —&zwn)dive Ve = €2k p 2V Ve. Again,
R(Ve) and R(V§), R(dive) are closed.

Remark 2.10 (adjoints of A). Let us compute the adjoints of A:

(1)

(ii)

(iii)

We consider the Banach space adjoint A’ : HL | (RN)” — HL [ (RN). For ¢, ¢ € HL [ (RY)
we have by symmetry of the inner product

A'Ty @y () = T mv) (A ¢) = Ad(p),
Ad(p) = —divO V g(p) = V' Rizan) OV 6(p) = Rizen) OV 6(V )
= (6Ve,V <P>L2(RN) = A p(9),
=(©OVep,V ¢>L2(RN)
i.e., the Banach space adjoint of A is given by A’ Iy (rv) = A, meaning that up to the

isometry Tyt (g (reflexivity) A is “selfadjoint”.
Note that p*2 are (Hilbert space) adjoint to each other, this is
p72 L2 RY) = LIRY), P = (p7)"  LIRY) = L2, (RY),
as (P20, B)2yy = (P O)e@y) = (9,002 @y, Ge., (p72)° = p?, and the also
(p2)* = (p=2)** = p~2. We conclude that
—p*diveV =V*0V:D(p*diveVv) c L%, (RY) - L2, (RY)
18 selfadjoint, and that the Hilbert space adjoint of
—diveV: D(dive V) c L%, (RY) — L?(R")
18
(=dive V)" : D((dive V)*) c LIRY) — L%, (RY)
given by
(—dive V) = (p2V*OV) = (V'OV)'(p ) =V'eVp:=—p?diveVp?
We have that
—p*dive Ve = Vg Ve : D(p? dive Ve) C L2 (RY) = L2 (RY)
1s selfadjoint, and that the Hilbert space adjoint of
—dive Ve : D(dive Ve) € L2 (RY) — LI(RY)
18
(—dive Ve)* : D((dive Ve)*) C LI(RY) — L2 (RY)
given by
(—dive Ve)* = (p 2 Vg Ve)* = Vg Ve p* = —p? dive Ve p*.

By Theorem 2.6 there is a unique variational solution u of (TP), i.e., (8), with

u=uy+gecH  (RY), OVueH(div,RY), uy=A"'FeH (RY),

cf. (3), and w coincides with the weak and strong one (if it exists). From Remark 2.9 we known

that

A =Ry @gr)=—divOV:H, (RY) = HL (RYY
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is an isometric isomorphism (Riesz isometry). Our problem (TP) splits linearly into four parts,
namely

Awug(p) = B(uog, ) = F(¢) = (f, 80>L2(]RN) *<év§a V‘P>L2(§) + <E V‘P>L2(§) + <divi~z, 90>|_2(ﬁ)
= Fi(p) = Fygp) = Fp(p) = Fy5(0)
with F, Fy, Fyg, F, Fy. 5 € HL (RY) and
Fr(p) = (f, <P>L2(RN) = (f,p)rr = 5L§(RN) f(p),
Fyg(p) = —(OV g, Vo)aey) =divO Vg(p),
Fr(p) = (h, Vo)2mn) = —divh(p),
Fyi (@) = (div b, @) 2@y = (div h, @))ry = Ez@n) div A(p).
We have f, divh € L3(RY) and
Erz@n) fr Ezmy divh, divO Vg, divh e HL (RV)'.

Let us consider the partial solutions g € HL; (RY) and

uo.p = A"V Fy € HY (RY), u,vgi=A"" Fygz e HL (RY),
uO,divH = A_l Fdivﬁ (S Hl_l(RN), uoﬁ = A_l FE S Hl_l(RN)

Theorem 2.11 (Splitting of Solution). The partial solutions sum up to the unique solution
u=ug+g € HL (RY),
Uo = o, +Uo,v g + U g5 +Up 5 € HL (RY),
and it holds
Aug=F =Fp+Fog+ Fy 5+ F
=Cigy) [ +divOV g+ Ezgnydivh —divh
with
F(p) = <fa <P>L2(RN) - <(§V§,V<p>|_2(§) + <divﬁ, 80>|_2(§) + <}~lvv90>|_2(§)7

cf. (7). Moreover, the partial solutions solve the five transmission problems

—diveVg=0 in RY,

ttJ}sg_t,\rsg:gl‘ on I,
trOVy—tr,0VG=tr,0Vyg onT,

—divO Vug s = f, —divOVu, 7 =divh  in Ry,

&sﬂo,f - t}sao)f = 07 ﬁsﬂo,divﬁ — ﬁsao,divﬁ =0 on F,

t1,© V g,y — {10 Vg 5 = 0, 0O Vi, gy — 1OV, 47 =0 onT,
—divO Vugyg =0, —divOVu,; =—divh inRY,

Ei“sao’vg - ﬁ‘sao’vg = O, 'CNI“Sﬂo W ﬁ"s’aoz =0 on F,

1,0 Vilg,v g — 120 Vilg vy = ~tr,0 Vg, O Vi, — 1O Vi, 7 = hr onT.

For ug. :==ug,vg+g € HL (RY) and up, =1y 5 + Uy 4,7 € HL1 (RY) it holds

U =g, f + Ugr + Unp € HEI(RI]Y)
and
—dive Vugy, =0, —diveVau,, =0 in RY,

trstig, — trstg, = gr, sy, — trslip. =0 onT,



10 DIRK PAULY

ﬁ'néVﬂgF — tArn(:)Vﬁgr = 0, &néVﬂhF - tArn(:)Vﬁhr = hp onI.

2.6. Helmholtz Decomposition. We recall Remark 2.9(iv) and consider the unbounded but
densely defined and closed linear operator Vg together with its Hilbert space adjoint Vg and
—dive = p~2 V. By Lemma 2.5 and the projection theorem we have closed ranges and Helmholtz
type decompositions in the whole space.

Lemma 2.12 (Closed Range of the Gradient). The range
R(Ve) = VHL (RY) = VHL(RN)
is closed in L% (RY).
Lemma 2.13 (Helmholtz Decomposition in RY). The orthogonal decomposition
L&(RY) = R(Ve) &2 &) N(—p® dive) = VHL (RY) @2 rr) N(dive)
holds with corresponding orthonormal projectors
my : LE(RY) — VHL (RY), 7o : LE(RY) — N(dive).

2.7. The Case N=2. For Q) C R? open (bounded or unbounded, connected or not) we introduce
the weighted Sobolev spaces

L20() 1= { € L@ | (B In(e +12) o € L2},

o S HL ()
HL () = {p e L2 ()| Ve e L2(Q)}, HLL(Q) == C=(Q) ",
Ho (div,$2)

Ho(div, Q) == {® € L*(Q) | div® € LE(Q)}, Ho(div, ) := C=(Q)
Note that constants belong to H! | () € L2 | (Q) even is Q is unbounded.

Lemma 2.14 (Poincaré’s estimate in R?). There exists ca > 0 such that
Vo € HL | (R?) leliz | mey < C2(| V olizre) + | {0, 1>L2’_IH(R2)|)-

Proof. From [8, 6] we cite a Poincaré type estimate in the exterior of the unit ball Z := R? \ By

o ¢
(10) Vo eH,(E) |¢‘LEID(E) < ’TIHT’LZ(E)

Let ¢ € HL | (R?) and € € C®(B3) with €|, = 1. Then (1—¢) € C®(Z) with (1—&)|z\p, = 1.
Hence £p € HY(Bs) and (1 — &) € HL | (2). By the standard Friedrichs estimate and (10) we
compute

|§0|Li n (R?) < C|£¢‘L2(Bs) + C|(1 - £)¢|Li NE) < C| v(&p)‘p(BS) + C‘ \Y ((1 - f)@)

< C| \% SO‘L2(R2) + C|§0|L2(suppr)'

< 2|V 9lL2m)-

(11) 12(2)

Now, let us assume that the inequality of the lemma is wrong. Then there exists a sequence
(pn) C HL | (R?) such that lenliz | ®ey = 1 and [V ufi2we) + |<90”’1>L31,](R2)| < 1/n. Rel-
lich’s selection theorem yields a subsequence (again denoted by) (¢,) being a Cauchy sequence in
L2(supp V €). By (11) () is a Cauchy sequence in L? | (R?). Hence ¢, — ¢ in H! | (R?). Thus
Vi =0, ie, pis constant, and (p,1)12 (r2) =0, i.e., ¢ = 0. Finally (11) shows

1=pnlz (&) < ¢l Venlizme) + clenliz@upve) = 0,
a contradiction. O

From now on, in principle, all arguments from Section 2.3 to Section 2.6 carry over from the
case N > 3 just by replacing Lemma 2.5 by Lemma 2.14 and exchanging the respective Sobolev
spaces. There is a slight change. Due to

N(V) =R c H! | (R?),
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where V : H! | (R?) — L%(R?), the non-trivial eigenspace requires Fredholm’s alternative for a
proper solution theory. In this case we have

A=—diveoV:H | (R*) - H. | (R?), v Av:=B(,:):=(0V0,V )gm

with kernel N(A) = R and closed range R(A) since R(V) is closed by Lemma 2.14, cf. Remark
2.9(ii). More precisely, the range is given as annihilator, this is

(12) R(A) = N(AI)O = N<AI|:1i IH(R2))O = (IHlln(R?) R)?,
cf. Remark 2.10(i). Hence for G € H! | (R?)’
G € R(A) & 0="Tuy @v)(H)G=G().
Let f € L? (R?). By Theorem 2.11 we obtain for our special F' € H! | (R?)’ the constraint
FeRA) & 0=F(1)=(f,1)@)—(OVF V1) g + V1) g + (divh1)5ag
= (f, DL2(ze) + (div R, Do)
which reads in the smooth case as

(f, gz + (hr, )r =0,

[+ [m=o

Lemma 2.15 (Solution Operator). For any G € H' | (R?) such that G(1) = 0 there ezists a
unique up € H | (R?) := HL | (R*) N R2 1 solving Auyg = G. The solution operator
"471 : R(A) - Hl—ln,L(RZ)7

cf. (12), is an isometric isomorphism.

and classically, if hr € L%(T),

Proof. Lemma 2.14 shows that B is positive/coercive on H1_1n7J_(R2) since O is elliptic. Hence B
defines an inner product for H™ | | (R?). Riesz’ representation theorem yields a unique solution
up € HL, | (R?) of (8) with [uolnr | g2y = |Glur | (mey for any G € R(A). O

Setting u := uy + g shows:
Theorem 2.16 (V-W-S-Solution). Let f € L2 (R?) and let g, h and F be defined as in Section 2.3.

1n
Moreover, let (f, 1) 2(r2)+(div A, 1>L2(§) = 0. Then there exists a unique variational/weak solution
w of (TP) withu—g € H{ln’L(RQ), and these two coincide. More precisely, the solution operator
A7 mapping F — ug = u — g is an isometric isomorphism, and it holds (ug, 1)12 L (R2) = 0.
IfT is Lipschitz, then there exists a unique strong solution of (TP), and this one coincides with
the weak and the variational one.

All operator theoretical results and remarks from Section 2.5 and Section 2.6 remain true with
obvious modifications.

3. A POSTERIORI ERROR EQUALITIES AND ESTIMATES

Our a posteriori error estimates rely on the pioneering work of Sergey Repin during the last
decades, see, e.g., his books [5, 7].

We introduce the ellipticity constant cg > 0 and the trace constant cpr > 0 for the exterior
domain € such that

V1€ LQ(RN) ‘T|L2(RN) < C@|T|Lé(RN),
Ve Hl—l(Q) |J&590|H1/2(F) < cr V<P||_2(Q)-
Note that |V - |L2(ﬁ) is a norm for H{l(ﬁ) due to Lemma 2.5. Moroever, we set

CN,@ = CNCp, CF,@ = Crcée.



12 DIRK PAULY

Remark 3.1. Again, there is some freedom in the choice of the trace operator and the correspond
trace constant, cf. Remark 2.2. We may also pick

Ve Hl—l(ﬁ) |t~1"s<P|H1/2(F) < CF‘<P|H1(Q) < va1“(| V‘P|L2(ﬁ) + |<% 1>|_2(ﬁ)|)
with different constants cr and cr.
Let us consider generally non-conforming approximations
vel2, (RY), oel}RY)
of the unique exact solution u and its gradient, respectively. We shall call
e:=u—v=uy+g—o, n=Vu—oc=Vuyuy+Vg—o

the scalar error and the gradient error, respectively.
According to Lemma 2.13 we decompose the error term orthogonally into

LS (RY) 5 n = nv @ no, nv € VHL (RY), no € N(dive),
more precisely, nv = V eg with eg € HL;(RY) and 7y € Ho(dive, RY) with divOny = 0.
3.1. Upper Bound. Let ¢ € HL | (RY) and ©7 € Hp(div,RY). We have by orthogonality
(Veo, Volizmyy = (0, V o)z mn)

= <® VUO, V<,0>|_2(RN) +<@V§, V@)Lg(ﬁ) — <U, V(,0>L?_)(RN)

= (f,o)2@y) + (h,V(p),_g(ﬁ) + (div h, <p>|_2(§) — <0’,V(p>|_é(RN)

= <f +div 67—7 80>L2(RN) + <7TV(T - 0)7 VSO>L%_)(]RN)

+ (h— Or, v<p>|_2(]RN) + (divh — div Or, Lp>|_2(RN).

(13)

If T is smooth enough, e.g., Lipschitz, we see (note that trep = trs)
(h —OT1,V ) 2@y + (divh — div OT, 0) L2 (my)
= (h =67,V ) 2 + (div(h = 67), )2 5 = (OF, V@) 20 — (divOF, 9) 2 5
= {(irah — (167, trap)r + (1207, frso))r
= {(hr — (1,67 — £1,67), f159)) .,
and hence by Lemma 2.5

(14)

(Veo, V)iz mv)
=(f+divOT, @) 2@y + <7Tv(T — U)’V¢>L5(RN) + <<hr — (t~rn(:)7~'— tArn(:)?),frsgo»F
<|f +divOr|zey) ¢l @) + |Te(r _U)|L%_)(RN)|VSO‘L%(RN)
———
<en|Volemn
+ [hr = (0007 = 007) |,y oy [TEs@lirnrar)
—_——
< er| VW|L2(§) < er| v§0|L2(1RN)
< M+,V(U,T)|VSO\L§;(RN),
where

) My v(o, 1) :=cneolf+ diV@T|L§(RN) + |7Tv(7' - U)}L%(RN)
(15 o
+ C["@’hr — (tr,O7T — trn@T)|H,1/2(F).
Again by orthogonality we see

no = mon = mo(Vug+Vyg—o0)=m(Vyg—o).
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Setting ¢ = eg we get:

Theorem 3.2 (Upper Bound for Non-Conforming Approximations). Let T' be Lipschitz and let
o € LL(RY) be a non-conforming approximation of the broken gradient V u of the exact solution
u € HL (RY). Then

n=Vu—oc=Vuy+Vg—o=nydn
with ny = mvn = Veg, eg € HL [ (RY) and ny = mon = 1o(V g — o) € N(dive). Moreover,

2 _ 2 2 o .
|77‘|_%(]RN) = |77V||_(29(RN) + |770||_(29(RN), |7IV||_§_)(RN) = QTEHIJ%}iriIV,Rfﬂv)M+7V(U7 T)a

where the upper bound M v is given by (15). The minimum is attained at 7 = V w.
Note that for 1) € N(dive) and ¢ € HL;(RY) we have 7y¢ = 0 and 7y V ¢ = 0. Hence

(16) |7TV(T—G)|L2(;)(RN) < |w+T_U|L(29(RN)’

|770(Vg - U)IL(%(RN) < IVL)O + v.g - 0-|L?_)(]RN) = M+,O(Ua 90)

By mv + m9 = id we obtain:

Theorem 3.3 (Upper Bound for Non-Conforming Approximations). Let I' be Lipschitz. Then

|’/TV(’T — 0)|L2@(RN) = welgl(idrilve) |w +7 - 0|L%:)(]RN)7
|770|L%9(]RN) = |7T0(Vg - 0)||_2@(RN) = ¢€Hr{711r(lRN)M+,O(O—, So)a

where the upper bound My o is given by (16). The minima are attained at ¢ = mo(oc — 7) and
Vo =mny(oc—Vyg), respectively.

3.2. Lower Bound. Our lower bound is given by the simple fact, that in any Hilbert space H it
holds

2 _ 2
|lzlf = ?23.‘ (2<$,y>H - |y|H)

For H= VHL,(RY) resp. H= N(dive) we get

2 — _ 2
79|z ®r) = B T (2<V €0, V)12 (v) |V<P|L;g(RN)),
2 — _ 2
|770||_(29(RN) = we%(%(v@) (2<770a¢>L%_)(RN) |¢|L(29(RN)>~

Recall the situation in Theorem 3.2. For ¢,¢ € HL;(RY) and O7 € Ho(div, RY) we have by
(13) and orthogonality

(v, V)2 @yy = (f +divOT, o) 2 @n) + (v (T — 0),V@>L3(RN)
+ <h — 0T, VQP>L2(]RN) + <d1Vh — div Or, (p>L2(RN),
Mo, )iz @ny = (M V)z vy = (Vo + Vg —0,9) 12 @)
We conclude:

Theorem 3.4 (Lower Bound for Non-Conforming Approximations). Let o € LE(RY) be a non-
conforming approzimation of the broken gradient V u of the exact solution u € HL | (RY). Then

n=Vu—-oc=Vu+Vg—o=nydn
with ny = mvn = Ve € VHL (RY) and ng = mon = mo(V g — o) € N(dive). Moreover,
2 2 2
|77|Lg(RN) = |77V||_g_)(]RN) + |770||_g_)(JRN)
with

2 _ 2 —
|77V|L?_)(]RN) = @GF%E??RN)Mi’V(UNP?T)’ ‘770|L(2_)(]RN) = wegl(%ﬁe)/\/tao(@%@
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for all ©T € Ho(div,RY) and all € H:|(RY), where
. 1
M_v(o,p,7) = 2((f +divOT, o) 2@y + (T — 0 — 3 Vo, Vel ey)

+ <h — Or, V§0>L2(RN) + <dth — div Or, (p>L2(RN)),

M_o(0,6) = 2V 6+ Vg = 0~ . Uiz vy

The minima are attained at ¢ = ey and ¥ = 1.

Remark 3.5 (Lower Bound for Non-Conforming Approximations). If ' is Lipschitz, (14) yields
(h— 1,V ) i2@n) + (divh — divOT, )2y = (hr — (1,07 — {1,07), trsp)) ..

3.3. Two-Sided Bounds. A combination of Theorem 3.2, Theorem 3.3, and Theorem 3.4 reads
a follows:

Corollary 3.6 (Two-Sided Bounds for Non-Conforming Approximations). Let I' be Lipschitz and
leto € L2@ (RN) be a non-conforming approximation of the broken gradient V u of the exact solution
u € HL (RY). Then

Nn=Vu—oc=Vu+Vg—o=nv®dn
with ny = mvn = Veo € VHL (RY) and ng = mon = mo(V g — 0) € N(dive). Moreover,

2 2 2
NItz @) = 119z @y + 70l iz, @)
with
max M_ v(o,¢,09) = |nv|? = min  M? o(o,7),
peHL | (RY) v(2:0.7) MV'L?-)(RN) O7€Ho (div,R{Y) vl
M_ (0,9, 6) = |nolZ = i M2 )
pemax  M-o(0,9,8) = Imolig vy = min | M o(0,8)

for all ©Y € Ho(div,RY) and all ¢ € HL(RY), where M, v, My o are given by (15), (16) and
M_ v, M_ by Theorem 8.4. The minima are attained at 7=V u and V& =nmy(c —Vg), and
the mazima at ¢ = eq and Y = ng. Furthermore, the term ”Nv(T — o)||_2 (M) of My v(o,7) can
be handled by Theorem 3.3. °

We note that the solenoidal part ng = mo(V g — o) of the gradient error  measures the error of
the approximation of the Dirichlet transmission boundary data gr only. On the other hand, the
gradient part nv = V eg of the gradient error n measures the error of the approximation of the
volume data f and the Neumann transmission boundary data hr. To illustrate this we observe
(at least formally, if o is not regular enough)

—divOVey = f 4+ divOo, —divOn, =0 in RY,
‘&SEO - a‘sé\o = 0, on F,
tr,O V ey — tra@ V&g = hr — (1,05 — {1,05), tr, Oy — 1,0 = 0 onT.

More precisely, we have:
Lemma 3.7. Let I be Lipschitz. For the error components 1 = ny + 1o it holds:
(i) If ©c € Ho(div,RY), then
Invl, @y < enveolf + divOo|zgwy)
+ CF,®|hF - (‘a'n@g - t;}n®a)||.|—1/2(r)a
|77V|E§_)(RN) > 2(f + divOo, p)12rr) — |V<P|Eg)(]RN)
+2((hr — (t1,65 — 1,05), trsp))..
for all o € HX (RN). Thus ny is controlled by f + divOc and hr — (1,05 — ‘E\rnéa).
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(ii) If o = Vv withv € HL (RY), then
MolLz vy < r.e|gr — (trsv — &s@”w/z(p),
0l vy > (g — (B8 — ), 5008 — [z )
for all ¢ € N(dive). Thus no is controlled by gr — (trsd — trd).
Here ¢r o denotes the continuity constant of a right inverse
frs : HY2(D) — {¢ e HL (RY) | C e HY(Q) A ( =0}
corresponding to the scalar trace trs : HL { (RY) — HY/2(I") with try¢ = trsC. More precisely,

VA e HY2(T) [ErsA[Fs ) + WtrsML? @ < &el e

Proof. Let ©c € Hy(div,RY). In Corollary 3.6 we choose 7 =9 = ¢ and get for the terms M4y v
estimatting |nv|iz &)

./\/l_hv(O', O') = CN7@|f + diV@O"Lz(RN) + cr @}hr — (&néa — ﬁ‘néa’ |H 1/2(1)
M_ v(o,9,0) =2(f +divOo, <p>|_z (RN — |V<p|L2 ®y) T 2<<h1" — (trn@o — trn@a trscp>>
Let o0 = Vv with some v € HL | (RY). We set
E=v—g+ tvrs(gp — (‘&55— tArsﬁ)) € Hlfl(Rfav).
Then
€ — 1€ = tr,0 — 10 — trsg + gr — (fr0 — {150) = 0
and hence ¢ € HL | (RY) by Remark 2.1(i). We conclude for the terms M g estimatting Im0lL2 (rY)

MJF,O(VU,S) = ’ V(f +9- U)’Lé)(]RN) < \C/F,@’gr - (&55_ t/}S/Z)\)||.|1/2(F)7

- \ V it (gr — (tr.0 — fr.0))

L2 (Q)

M_o(Vv,0,0) =2(V(d+g—v), V)2 ®mv) —|1/J|Lz (RN)*
= {(gr — (trs0 — t1:0), 1,00

Note that ¢ € HL,(RY) and ¢ € N(dive) C Ho(div®,RY) which implies tr,0¢ = {1,0¢ by
Remark 2.1(ii). O

For (unrealistic) conforming approximations we have:

Corollary 3.8 (Two-Sided Bounds for Conforming Approximations). Let I' be Lipschitz and let
v be a conforming approzimation of the exact solution u € HL | (RY), ie., v € HL (RY) with
OV € Ho(div,RY) and v — g € HL | (RY). Then e = u —v € HL | (RN) with Ve = myn =1 and
max M_ v (Vo,p, = min M2 o (Vo, T
et ) vl @, 0) = |77|L2 RN) = OreHo(div.RY) Lol )

for all ©9 € Ho(div, RY), where M v is given by (15) and M_ ¢ by Theorem 3.4. The minimum
is attained at T = Vu and the maximum at ¢ = eg. Moreover, the term ’Wv(T — VU)’L2 ®RN) of
(S]

My v(Vo,T) can be handled by Theorem 3.3.

Proof. Set o := Vv. Weseee =u—v =1uy+g—v € HL(RY) and note n = V(u —v) = Ve.
Hence myn = n and mon = 0. Theorem 3.2 and Theorem 3.3 show the assertions. O
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3.4. Two-Sided Bounds for Hybrid Approximations. A reasonable numerical approxima-
tion, in particular, for BEM-FEM couplings, is a hybrid of conforming and non-conforming ap-
proximations. A realistic scenario features

~ ~

(17) 0=1, f=0
with an approximation v satisfying
(18) veHL (RY), Vi e Hy(div, ).

Hence we may set o := Vv € L (R"Y). Then by Corollary 3.6:

Corollary 3.9 (Two-Sided Bounds for Hybrid Approximations). Let I be Lipschitz and assume
(17). Moreover, let v be a hybrid approzimation of the exact solution w, i.e., (18) holds. Let
o :=Vuv. Then

n=Ve=V(u—-v)=Vu +V(g—v)=nv&n
with ny = myn = Veg € VHL (RY) and ng = mon = mo V(g — v) € N(dive). Moreover,

|77|Eg(RN) = |77V\E(29(RN) + |770\Eg_)(RN)

with
ma; M_v(Vuv,p )= 2, = min M2 o (Vu,T),
<P€H1_1€(RN) a4 #:) |nV|L@(RN) O7€Ho (div,R{Y) 4 g
max M_ o(Vu,y,0) = 2 = min M2 ,(Vv,)= min |V
e of Y, ) |’70|L§_)(RN) cent () $ol £) ceHl_l(RJFV),‘ ClL'é)(]RN)

frC—freC=gr — (frso—frs0)
for all ©Y € Ho(div,RY) and all ¢ € HL | (RY), where My v, M o are given by (15), (16) and
M_ v, M_o by Theorem 3.4. The minima are attained at 7 = Vu and V& = g V(v — g),
¢ = e—egy, and the mazima at p = ey and Y = 1. Furthermore, the term |7rv(7' — VU){LQ ®RYN) of
(S)
My v (Vo,T) can be handled by Theorem 3.3.
(i) Ifdiv? =0, then f +divOr =0 in .
(i) If 7=V, thenT—Vov=0inQ.
(iii) If 7=V 0 and AU =0, then divT = AU = 0 and the assertions of (i) and (ii) hold.
In particular, if (1) and (ii) hold, then

My v(Vo,T)= CN,@’/)(.]?"_ div é?ﬂw(ﬁ) +mo(r = VU)‘L%L)(RN)

+ CF,@’hF - (a'né? - ﬁ'né%\)|Hf1/2(F)7

(T — Vo < _inf [p4+T - VL g,

| V( )‘L?_)(RN) ’LZEN(diVé) |¢ lL%(Q)
since for 1 with 1Z = 0 we have ¢ € N(divg) & 7,; € N(divé), and M_ v and My o can be
modified as well.

Remark 3.10 (Two-Sided Bounds for Hybrid Approximations). While the error bounds My v
and My o reflect the original error bounds of Repin, cf. [7, Chapter 3.2], the upper bound

In(in|v<|L(29(]RN)

for |7]0|L%(RN) corresponds to the new upper bound based on Dirichlet’s principle for harmonic
approzimations presented in [3, (6), Theorem 4], which is particularly suited for BEM. In view
of Lemma 3.7 this term estimates the error of the approximation of the Dirichlet transmission
boundary data gr.
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