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1. Introduction

We continue and extend our studies from [3, 1] to a classical transmission problem for the

Laplacian. Throughout this paper, let Ω̃ ⊂ RN be a bounded domain, i.e., an open, connected, and

bounded set, let pΩ := RN \Ω̃ be its open complement (unbounded domain), and let Γ := ∂ Ω̃ = ∂ pΩ
denote their common boundary/interface. We introduce

RNΓ := RN \ Γ = Ω̃ ∪̇ pΩ.

For the use of weighted Sobolev spaces we define the polynomial weight ρ := (1 + r2)1/2 where
r(x) = |x| for x ∈ RN . Until otherwise stated explicitly we assume N ≥ 3 and no regularity for Γ
at all.

For these introductory lines let Γ be smooth enough, and let the data

f̃ ∈ L2(Ω̃), ρ pf ∈ L2(pΩ), gΓ ∈ H1/2(Γ), hΓ ∈ H−1/2(Γ),

and an elliptic Θ ∈ L∞(RNΓ ,RN×N
sym ) be given. In other words, Θ is a reel, symmetric, bounded,

and uniformly positive definite tensor/matrix field. Here we utilise standard notations for the
Lebesgue and Sobolev spaces. For

u =

{
ũ in Ω̃,

pu in pΩ,
f =

{
f̃ in Ω̃,
pf in pΩ,

Θ =

{
Θ̃ in Ω̃,
pΘ in pΩ,
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where the ·̃ = · |Ω̃ and p· = · |
pΩ notation shall be used throughout the whole paper, we consider

the transmission problem (TP)

−div Θ̃∇ ũ = f̃ in Ω̃,

−div pΘ∇ pu = pf in pΩ,

ũ|Γ − pu|Γ = gΓ on Γ,

∂Θ̃ν ũ|Γ − ∂
pΘν pu|Γ = hΓ on Γ,

ρ−1u ∈ L2(RN ),

(1)

where the Neumann traces are given by

∂Θ̃ν ũ|Γ = Θ̃ν · ∇ ũ|Γ = ν · Θ̃∇ ũ|Γ,

∂
pΘν pu|Γ = pΘν · ∇ pu|Γ = ν · pΘ∇ pu|Γ

with outer unit normal ν for Γ = ∂ Ω̃ which is the inner unit normal for Γ = ∂ pΩ.
In future contributions we shall extend or findings also to equations of other Hilbert complexes,

such as the de Rham, the elasticity, or the biharmonic complex. Out techniques are flexible and
general enough to handle those systems as well. A prominent example is a transmission problem
for static Maxwell’s equations, such as

rot Θ̃ rot Ẽ = F̃ in Ω̃,

rot pΘrot pE = pF in pΩ,

ν × Ẽ|Γ × ν − ν × pE|Γ × ν = GΓ on Γ,

ν × Θ̃ rot Ẽ|Γ − ν × pΘrot pE|Γ = HΓ on Γ,

ρ−1E ∈ L2(R2).

2. Analysis

We recall the weight ρ and the geometry Ω̃, pΩ, Γ, RNΓ from the introduction.

2.1. Preliminaries. Let Ω ⊂ RN be open (bounded or unbounded, connected or not). We intro-

duce the standard Lebesgue and Sobolev spaces L2(Ω), H1(Ω), H(div,Ω), and H̊1(Ω), H̊(div,Ω),

where the latter are defined as closures of C̊∞(Ω) (test functions) in the respective graph norms,
as well as the polynomially weighted Sobolev spaces

L2±1(Ω) :=
{
φ ∈ L2loc(Ω)

∣∣ ρ±1φ ∈ L2(Ω)
}
,

H1
−1(Ω) :=

{
φ ∈ L2−1(Ω)

∣∣ ∇φ ∈ L2(Ω)
}
, H̊1

−1(Ω) := C̊∞(Ω)
H1

−1(Ω)

,

H0(div,Ω) :=
{
Φ ∈ L2(Ω)

∣∣ div Φ ∈ L21(Ω)
}
, H̊0(div,Ω) := C̊∞(Ω)

H0(div,Ω)

.

Moreover, we shall utilise the standard (inner and outer) scalar and normal traces

t̃rs : H
1(Ω̃) → H1/2(Γ), t̃rn : H(div, Ω̃) → H−1/2(Γ),

ptrs : H
1
−1(

pΩ) → H1/2(Γ), ptrn : H0(div, pΩ) → H−1/2(Γ),

provided that Γ is regular enough, e.g., Lipschitz. Here we have the convention that t̃rn uses the
outer normal ν and that ptrn uses the inner normal −ν. At this point, let us also introduce the
duality between H1/2(Γ) and its dual H−1/2(Γ) = H1/2(Γ)′ by

∀ ξ ∈ H−1/2(Γ) η ∈ H1/2(Γ) ⟨⟨η, ξ⟩⟩Γ := ⟨⟨η, ξ⟩⟩H1/2(Γ),H−1/2(Γ).

As RNΓ has the two connected components Ω̃ and pΩ we see

H1
−1(RNΓ ) =

{
ϕ ∈ L2−1(RN )

∣∣ ϕ̃ ∈ H1(Ω̃) ∧ pϕ ∈ H1
−1(

pΩ)
}
,

H0(div,RNΓ ) =
{
ψ ∈ L2(RN )

∣∣ ψ̃ ∈ H(div, Ω̃) ∧ pψ ∈ H0(div, pΩ)
}
,
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and hence we have the broken differential operators

∇ϕ =

{
∇ ϕ̃ in Ω̃,

∇ pϕ in pΩ,
divψ =

{
div ψ̃ in Ω̃,

div pψ in pΩ.

Note that H1
−1(RN ) ⊊ H1

−1(RNΓ ) and H0(div,RN ) ⊊ H0(div,RNΓ ).

2.2. Transmission Problem. We follow the rationale for “a simple transmission problem” from
the book of Rolf Leis [4, p. 31], see also [9, p. 85, 93, 98]. As pointed out before we are interested
in the transmission problem (1) which reads as

−divΘ∇u = f in RNΓ ,

t̃rsũ− ptrspu = gΓ on Γ,

t̃rnΘ̃∇ ũ− ptrn pΘ∇ pu = hΓ on Γ,

(2)

with u ∈ L2−1(RN ), more precisely,

u ∈ H1
−1(RNΓ ), Θ∇u ∈ H0(div,RNΓ ).(3)

The next remark is well known.

Remark 2.1. Let φ ∈ H1
−1(RNΓ ) and ψ ∈ H0(div,RNΓ ). If Γ is Lipschitz then:

(i) φ ∈ H1
−1(RN ) if and only if φ satisfies the first transmission condition of (2) with gΓ = 0,

i.e.,

t̃rsφ̃ = ptrs pφ.

(ii) ψ ∈ H0(div,RN ) if and only if ψ satisfies the second transmission condition of (2) with
hΓ = 0, i.e.,

t̃rnψ̃ = ptrn pψ.

(iii) φ ∈ H1
−1(RN ) and Θ∇φ ∈ H0(div,RN ) if and only if φ and Θ∇φ satisfy both transmis-

sion conditions of (2) with gΓ = 0 and hΓ = 0, i.e.,

t̃rsφ̃ = ptrs pφ and t̃rnΘ̃∇ φ̃ = ptrn pΘ∇ pφ.

We emphasise that all introduced Lebesgue and Sobolev spaces are Hilbert spaces.

2.3. Weak Formulations. Generally, let

f ∈ L21(RN ).

W.l.o.g. let us assume that gΓ and hΓ are given by

g̃ ∈ N(div Θ̃∇, Ω̃) ⊂ H1(Ω̃), h̃ ∈ H(div, Ω̃),

i.e., div Θ̃∇ g̃ = 0 in Ω̃ and

t̃rsg̃ = gΓ, t̃rnh̃ = hΓ,

where N(A) notes the kernel of the maximal L2-realisation of an operator A. g̃ is often called

harmonic or minimal norm extension. The existence of g̃ and h̃ is always guaranteed even if no
regularity of Γ is assumed (as we do here), cf. [2]. If Γ is regular enough, e.g., Lipschitz, then the
existence is well known also by classical techniques. For later purpose we set

g :=

{
g̃ in Ω̃,

pg := 0 in pΩ,
h :=

{
h̃ in Ω̃,
ph := 0 in pΩ.

Remark 2.2. There is some freedom in the choice of the extensions g and h. For example, we
may also pick

g :=

{
0 in Ω̃,

pg in pΩ,
h :=

{
0 in Ω̃,
ph in pΩ

with pg ∈ N(div pΘ∇, pΩ) ⊂ H1
−1(

pΩ), ph ∈ H0(div, pΩ) and ptrspg = gΓ, ptrnph = hΓ, or combinations of
both.
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Now, we seek weak versions of the two Dirichlet and Neumann transmission conditions in (2)
and a weak (variational) formulation for the whole system (2) and (3).

• A weak formulation of the first (Dirichlet) transmission condition is simply given by saying
that u ∈ H1

−1(RNΓ ) is given by

u = u0 + g =

{
ũ = u0 + g̃ in Ω̃,

pu = u0 in pΩ
(4)

with some u0 ∈ H1
−1(RN ) since then, e.g., in case of a Lipschitz interface Γ, we have by Remark

2.1

t̃rsũ− ptrspu = t̃rsu0 − ptrsu0︸ ︷︷ ︸
= 0

+t̃rsg̃ − ptrspg︸︷︷︸
= 0

= gΓ.(5)

Hence we shall put the first transmission condition as a strong condition included in the solution
space which indeed turns out to be H1

−1(RN ) + {g} ⊂ H1
−1(RNΓ ).

• A weak version of the second (Neumann) transmission condition can be implemented as a
weak (natural) condition into a variational formulation. For this we compute, e.g., in case of a
Lipschitz interface Γ, for all φ ∈ H1

−1(RN )

⟨⟨hΓ, t̃rsφ⟩⟩Γ = ⟨⟨t̃rnh̃, t̃rsφ⟩⟩Γ = ⟨h̃,∇φ⟩L2(Ω̃) + ⟨div h̃, φ⟩L2(Ω̃)

= ⟨⟨t̃rnΘ̃∇ ũ− ptrn pΘ∇ pu, t̃rsφ⟩⟩Γ
= ⟨⟨t̃rnΘ̃∇ ũ, t̃rsφ⟩⟩Γ − ⟨⟨ptrn pΘ∇ pu, ptrsφ⟩⟩Γ
= ⟨Θ̃∇ ũ,∇φ⟩L2(Ω̃) + ⟨div Θ̃∇ ũ︸ ︷︷ ︸

= −f̃

, φ⟩L2(Ω̃) + ⟨pΘ∇ pu,∇φ⟩L2(pΩ) + ⟨div pΘ∇ pu︸ ︷︷ ︸
= − pf

, φ⟩L2(pΩ)

= ⟨Θ∇u,∇φ⟩L2(RN ) − ⟨f, φ⟩L2(RN

since ptrsφ = t̃rsφ by Remark 2.1. This computation shows that a weak formulation of the second

transmission condition t̃rnΘ̃∇ ũ− ptrn pΘ∇ pu = hΓ is given by

∀φ ∈ H1
−1(RN ) ⟨Θ∇u,∇φ⟩L2(RN ) = ⟨f, φ⟩L2(RN + ⟨h̃,∇φ⟩L2(Ω̃) + ⟨div h̃, φ⟩L2(Ω̃),(6)

which can be stated without any regularity assumptions on the interface Γ.
• Now we search for a variational formulation for u using (6) by the canonical ansatz (4), i.e.,

u := u0 + g ∈ H1
−1(RNΓ ) with u0 ∈ H1

−1(RN ).

Then for all φ ∈ H1
−1(RN ) by (6)

⟨f, φ⟩L2(RN ) = ⟨Θ∇u,∇φ⟩L2(RN ) − ⟨h̃,∇φ⟩L2(Ω̃) − ⟨div h̃, φ⟩L2(Ω̃)

= ⟨Θ∇u0,∇φ⟩L2(RN ) + ⟨Θ̃∇ g̃ − h̃,∇φ⟩L2(Ω̃) − ⟨div h̃, φ⟩L2(Ω̃).

Thus we are given the bounded bilinear form B : H1
−1(RN ) × H1

−1(RN ) → R and the bounded

linear functional F : H1
−1(RN ) → R defined by

B(u0, φ) := ⟨Θ∇u0,∇φ⟩L2(RN ),

F (φ) := ⟨f, φ⟩L2(RN ) + ⟨h̃− Θ̃∇ g̃,∇φ⟩L2(Ω̃) + ⟨div h̃, φ⟩L2(Ω̃).
(7)

Remark 2.3. Note that:

(i) C̊∞(RN ) is dense in H1
−1(RN ).

(ii) The L2(RN )-inner product induces a canonical duality between L21(RN ) and its dual space
L21(RN )′ ∼= L2−1(RN ).

Therefore, a term like ⟨f, φ⟩L2(RN ) with f ∈ L21(RN ) and φ ∈ L2−1(RN ) is to be understood as

⟨f, φ⟩L2(RN ) = ⟨ρf, ρ−1φ⟩L2(RN ) = ⟨⟨f, φ⟩⟩L2
1(RN ),L2

−1(RN ) =: ⟨⟨f, φ⟩⟩RN .
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Finally, we have peeled out the following variational problem replacing the transmission problem
(2) and (3): Find u0 ∈ H1

−1(RN ) such that

∀φ ∈ H1
−1(RN ) B(u0, φ) = F (φ).(8)

2.4. Solution by Variational Techniques. According to (2), (3), (4), and (6) we introduce
three solution concepts for the transmission problem (TP), a strong, a weak, and a variational
one.

Definition 2.4 (Solutions of the Transmission Problem). Given u let u0 := u− g.
• We call u a variational solution of (TP), if u0 ∈ H1

−1(RN ) solves (8).

• We call u a weak/strong solution of (TP), if u ∈ H1
−1(RNΓ ) with Θ∇u ∈ H0(div,RNΓ ), cf. (3),

solves
− divΘ∇u = f in RNΓ

together with the two transmission conditions in (2) in the

(w) weak sense, i.e., u0 ∈ H1
−1(RN ), cf. (4), and u satisfies (6),

(s) strong sense, i.e., t̃rsũ − ptrspu = gΓ holds in H1/2(Γ) and t̃rnΘ̃∇ ũ − ptrn pΘ∇ pu = hΓ holds
in H−1/2(Γ), provided that H±1/2(Γ) are well defined.

From [4, page 57], see also [8, 6], we get a Poincaré type estimate in the whole space:

Lemma 2.5 (Poincaré’s estimate in RN ). Let cN :=
2

N − 2
. It holds

∀φ ∈ H1
−1(RN ) |φ|L2

−1(RN ) ≤ cN | ∇φ|L2(RN ).

Theorem 2.6 (V-Solution). There exists a unique variational solution of (TP). The solution
operator mapping F 7→ u0 = u− g is an isometric isomorphism between H1

−1(RN )′ and H1
−1(RN ).

Proof. Lemma 2.5 shows that B is positive/coercive on H1
−1(RN ) since Θ is elliptic. Hence B

defines an inner product for H1
−1(RN ). Riesz’ representation theorem (or Lax-Milgram’s lemma)

yields a unique solution u0 ∈ H1
−1(RN ) of (8) with |u0|H1

−1(RN ) = |F |H1
−1(RN )′ . The definition

u := u0 + g shows the assertion. □

Theorem 2.7 (W-Solution). There exists a unique weak solution of (TP), and this one coincides
with the variational one.

Proof. Let u = u0+g with u0 ∈ H1
−1(RN ) be the unique variational solution of (TP) from Theorem

2.6. Then u ∈ H1
−1(RNΓ ) and

ũ = u0 + g̃ ∈ H1(Ω̃), pu = u0 ∈ H1
−1(

pΩ).

We consider different test functions.
• Let φ ∈ C̊∞(pΩ). Then

⟨pΘ∇u0,∇φ⟩L2(pΩ) = B(u0, φ) = F (φ) = ⟨ pf, φ⟩L2(pΩ),

i.e., pΘ∇u0 ∈ H0(div, pΩ) and −div pΘ∇u0 = pf . Note that pu = u = u0 in pΩ.

• Let φ ∈ C̊∞(Ω̃). Then

⟨Θ̃∇u0,∇φ⟩L2(Ω̃) = B(u0, φ) = F (φ) = ⟨f̃ , φ⟩L2(Ω̃) − ⟨Θ̃∇ g̃,∇φ⟩L2(Ω̃)︸ ︷︷ ︸
= 0

+ ⟨h̃,∇φ⟩L2(Ω̃) + ⟨div h̃, φ⟩L2(Ω̃)︸ ︷︷ ︸
= 0

i.e., Θ̃∇u0 ∈ H(div, Ω̃) and −div Θ̃∇u0 = f̃ . Note that ũ = u = u0 + g̃ in Ω̃ and that

Θ̃∇ g̃ ∈ H(div, Ω̃). Hence Θ̃∇ ũ ∈ H(div, Ω̃) and

−div Θ̃∇ ũ = − div Θ̃∇u0 − div Θ̃∇ g̃︸ ︷︷ ︸
= 0

= f̃ .
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• Let φ ∈ H1
−1(RN ). Then (6) holds as

⟨Θ∇u,∇φ⟩L2(RN ) = ⟨Θ∇u0,∇φ⟩L2(RN )︸ ︷︷ ︸
= B(u0, φ) = F (φ)

+⟨Θ̃∇ g̃,∇φ⟩L2(Ω̃)

= ⟨f, φ⟩L2(RN ) + ⟨h̃,∇φ⟩L2(Ω̃) + ⟨div h̃, φ⟩L2(Ω̃).

Thus u is a weak solution of (TP).
Now, let u with u0 = u− g ∈ H1

−1(RN ) be a weak solution of (TP). Then for all φ ∈ H1
−1(RN )

by (6)

B(u0, φ) = ⟨Θ∇u0,∇φ⟩L2(RN )

= ⟨Θ∇u,∇φ⟩L2(RN ) − ⟨Θ̃∇ g̃,∇φ⟩L2(Ω̃)

= ⟨f, φ⟩L2(RN + ⟨h̃− Θ̃∇ g̃,∇φ⟩L2(Ω̃) + ⟨div h̃, φ⟩L2(Ω̃)

= F (φ).

Therefore, u is the (unique) variational solution of (TP). □

Theorem 2.8 (S-Solution). Let Γ be Lipschitz. Then there exists a unique strong solution of
(TP), and this one coincides with the weak and the variational one.

Proof. Let u = u0 + g with u0 ∈ H1
−1(RN ) be the unique variational/weak solution of (TP) from

Theorem 2.6 and Theorem 2.7. (5) shows in H1/2(Γ)

t̃rsũ− ptrspu = gΓ.

Moreover, using (6) we see for all φ ∈ H1
−1(RN )

⟨⟨t̃rnΘ̃∇ ũ− ptrn pΘ∇ pu, t̃rsφ⟩⟩Γ = ⟨⟨t̃rnΘ̃∇ ũ, t̃rsφ⟩⟩Γ − ⟨⟨ptrn pΘ∇ pu, ptrsφ⟩⟩Γ
= ⟨Θ̃∇ ũ,∇φ⟩L2(Ω̃) + ⟨pΘ∇ pu,∇φ⟩L2(pΩ)

+ ⟨div Θ̃∇ ũ︸ ︷︷ ︸
= −f̃

, φ⟩L2(Ω̃) + ⟨div pΘ∇ pu︸ ︷︷ ︸
= − pf

, φ⟩L2(pΩ)

= ⟨Θ∇u,∇φ⟩L2(RN ) − ⟨f, φ⟩L2(RN )

= ⟨h̃,∇φ⟩L2(Ω̃) + ⟨div h̃, φ⟩L2(Ω̃)

= ⟨⟨t̃rnh̃, t̃rsφ⟩⟩Γ = ⟨⟨hΓ, t̃rsφ⟩⟩Γ

(9)

as ptrsφ = t̃rsφ. Hence we have t̃rnΘ̃∇ ũ − ptrn pΘ∇ pu = hΓ in H−1/2(Γ). Therefore, u is a strong
solution of (TP).

Now, let u be a strong solution of (TP). We set u0 = u− g. Then as in (5)

t̃rsũ0 − ptrspu0 = t̃rsũ− ptrspu︸ ︷︷ ︸
= gΓ

− t̃rsg̃︸︷︷︸
= gΓ

+ ptrspg︸︷︷︸
= 0

= 0,

i.e., u0 ∈ H1
−1(RN ) by Remark 2.1. For φ ∈ H1

−1(RN ) we compute as in (9)

⟨Θ∇u,∇φ⟩L2(RN ) = ⟨f, φ⟩L2(RN + ⟨⟨t̃rnΘ̃∇ ũ− ptrn pΘ∇ pu︸ ︷︷ ︸
= hΓ = t̃rnh̃

, t̃rsφ⟩⟩Γ

= ⟨f, φ⟩L2(RN + ⟨h̃,∇φ⟩L2(Ω̃) + ⟨div h̃, φ⟩L2(Ω̃),

which is (6). Thus u is the unique weak solution of (TP). □
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2.5. Operator Theory. The corresponding linear operator A, i.e.,

A : H1
−1(RN ) → H1

−1(RN )′

v 7→ A v := B(v, · ) := ⟨Θ∇ v,∇ · ⟩L2(RN ),

for the bilinear form B in (7) is an isometric isomorphism, cf. Theorem 2.6, and the variational
formulation (8) reads

Au0 = F.

For some Hibert space H, let

RH : H → H′, ϕ 7→ RH ϕ := ⟨ϕ, · ⟩H, i.e., RH ϕ(φ) = ⟨ϕ, φ⟩H,
IH : H → H′′, ϕ 7→ IH ϕ := ·ϕ, i.e., IH ϕ(ψ) = ψ(ϕ),

denote the Riesz and the reflexivity isometric isomorphisms. Note that

IH ϕ(RH φ) = ⟨φ, ϕ⟩H.
Moreover, let us interpret Θ as bounded and selfadjoint isomorphism Θ : L2(RN ) → L2(RN ).

Remark 2.9 (A as bounded or unbounded linear operator). Note that:

(i) A = RH1
−1(RN ) : H

1
−1(RN ) → H1

−1(RN )′ is actually the Riesz isometry if H = H1
−1(RN ) is

equipped with the weighted (half) inner product B = ⟨Θ∇ · ,∇ · ⟩L2(RN ), cf. Lemma 2.5.

(ii) We have A = −divΘ∇ : H1
−1(RN ) → H1

−1(RN )′ with

∇ : H1
−1(RN ) → L2(RN ), φ 7→ ∇φ

∇′ : L2(RN )′ → H1
−1(RN )′, ψ 7→ ∇′ ψ := ψ∇,

−div := ∇′ RL2(RN ) : L
2(RN ) → H1

−1(RN )′, ϑ 7→ −div ϑ = ∇′ RL2(RN ) ϑ = ⟨ϑ,∇ · ⟩L2(RN ),

where ∇′ denotes the Banach space adjoint of the gradient ∇ seen as bounded linear
operator. R(∇) and R(∇′) = R(div) = R(A) are closed by Lemma 2.5 and the closed
range theorem.

(iii) Let EL2
1(RN ) : L

2
1(RN ) → H1

−1(RN )′ be the bounded embedding defined by

EL2
1(RN ) ϕ := ⟨⟨ϕ, · ⟩⟩RN = ⟨ρϕ, ρ−1 · ⟩L2(RN ) = ⟨ϕ, · ⟩L2(RN ).

Moreover, let A v = Fk with Fk := EL2
1(RN ) k = ⟨k, · ⟩L2(RN ) given by some k ∈ L21(RN ).

Then by defintion Θ∇ v ∈ H0(div,RN ) and −divΘ∇ v = k.
Let us consider the unbounded but densely defined and closed linear operator

∇ : H1
−1(RN ) ⊂ L2−1(RN ) → L2(RN ), φ 7→ ∇φ.

Its Hilbert space adjoint is given by −ρ2 div, i.e.,
−ρ2 div = ∇∗ : H0(div,RN ) ⊂ L2(RN ) → L2−1(RN ), ϑ 7→ −ρ2 div ϑ,

− div = ρ−2 ∇∗ : H0(div,RN ) ⊂ L2(RN ) → L21(RN ), ϑ 7→ −div ϑ,

which are also densely defined and closed linear operators, since for ϑ ∈ D(∇∗)

∀φ ∈ H1
−1(RN ) ⟨∇φ, ϑ⟩L2(RN ) = ⟨φ,∇∗ ϑ⟩L2

−1(RN ) = ⟨φ, ρ−2 ∇∗ ϑ⟩L2(RN ),

i.e., −div ϑ = ρ−2 ∇∗ ϑ. Hence in this case we have

A = −EL2
1(RN ) divΘ∇ = EL2

1(RN ) ρ
−2 ∇∗ Θ∇ .

As before, R(∇) and R(∇∗), R(div) are closed.
(iv) Alternatively, we may consider the unbounded but densely defined and closed linear oper-

ator

∇Θ : H1
−1(RN ) ⊂ L2−1(RN ) → L2Θ(RN ), φ 7→ ∇φ,

where L2Θ(RN ) := L2(RN ) is equipped with the inner product ⟨Θ · , · ⟩L2(RN ). Its Hilbert

space adjoint is given by −ρ2 divΘ, i.e., by the densely defined and closed linear operators

−ρ2 divΘ = ∇∗
Θ : H0(divΘ,RN ) ⊂ L2Θ(RN ) → L2−1(RN ), ϑ 7→ −ρ2 divΘϑ,
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− divΘ = ρ−2 ∇∗
Θ : H0(divΘ,RN ) ⊂ L2Θ(RN ) → L21(RN ), ϑ 7→ −divΘϑ,

since for ϑ ∈ D(∇∗
Θ)

∀φ ∈ H1
−1(RN ) ⟨∇φ,Θϑ⟩L2(RN ) = ⟨∇Θ φ, ϑ⟩L2

Θ(RN )

= ⟨φ,∇∗
Θ ϑ⟩L2

−1(RN ) = ⟨φ, ρ−2 ∇∗
Θ ϑ⟩L2(RN ),

i.e., −divΘϑ = ρ−2 ∇∗
Θ ϑ. Hence A = −EL2

1(RN ) divΘ ∇Θ = EL2
1(RN ) ρ

−2 ∇∗
Θ ∇Θ. Again,

R(∇Θ) and R(∇∗
Θ), R(divΘ) are closed.

Remark 2.10 (adjoints of A). Let us compute the adjoints of A:

(i) We consider the Banach space adjoint A′ : H1
−1(RN )′′ → H1

−1(RN )′. For φ, ϕ ∈ H1
−1(RN )

we have by symmetry of the inner product

A′ IH1
−1(RN ) φ(ϕ) = IH1

−1(RN ) φ(Aϕ) = Aϕ(φ),

Aϕ(φ) = −divΘ∇ϕ(φ) = ∇′ RL2(RN ) Θ∇ϕ(φ) = RL2(RN ) Θ∇ϕ(∇φ)

= ⟨Θ∇ϕ,∇φ⟩L2(RN )︸ ︷︷ ︸
= ⟨Θ∇φ,∇ϕ⟩L2(RN )

= Aφ(ϕ),

i.e., the Banach space adjoint of A is given by A′ IH1
−1(RN ) = A, meaning that up to the

isometry IH1
−1(RN ) (reflexivity) A is “selfadjoint”.

(ii) Note that ρ±2 are (Hilbert space) adjoint to each other, this is

ρ−2 : L2−1(RN ) → L21(RN ), ρ2 = (ρ−2)∗ : L21(RN ) → L2−1(RN ),

as ⟨ρ−2φ, ϕ⟩L2
1(RN ) = ⟨φ, ϕ⟩L2(RN ) = ⟨φ, ρ2ϕ⟩L2

−1(RN ), i.e., (ρ−2)∗ = ρ2, and the also

(ρ2)∗ = (ρ−2)∗∗ = ρ−2. We conclude that

−ρ2 divΘ∇ = ∇∗ Θ∇ : D(ρ2 divΘ∇) ⊂ L2−1(RN ) → L2−1(RN )

is selfadjoint, and that the Hilbert space adjoint of

−divΘ∇ : D(divΘ∇) ⊂ L2−1(RN ) → L21(RN )

is

(−divΘ∇)∗ : D
(
(divΘ∇)∗

)
⊂ L21(RN ) → L2−1(RN )

given by

(−divΘ∇)∗ = (ρ−2 ∇∗ Θ∇)∗ = (∇∗ Θ∇)∗(ρ−2)∗ = ∇∗ Θ∇ ρ2 = −ρ2 divΘ∇ ρ2.

(iii) We have that

−ρ2 divΘ ∇Θ = ∇∗
Θ ∇Θ : D(ρ2 divΘ ∇Θ) ⊂ L2−1(RN ) → L2−1(RN )

is selfadjoint, and that the Hilbert space adjoint of

−divΘ ∇Θ : D(divΘ ∇Θ) ⊂ L2−1(RN ) → L21(RN )

is

(−divΘ ∇Θ)
∗ : D

(
(divΘ ∇Θ)

∗) ⊂ L21(RN ) → L2−1(RN )

given by

(−divΘ ∇Θ)
∗ = (ρ−2 ∇∗

Θ ∇Θ)
∗ = ∇∗

Θ ∇Θ ρ
2 = −ρ2 divΘ ∇Θ ρ

2.

By Theorem 2.6 there is a unique variational solution u of (TP), i.e., (8), with

u = u0 + g ∈ H1
−1(RNΓ ), Θ∇u ∈ H0(div,RNΓ ), u0 = A−1 F ∈ H1

−1(RN ),

cf. (3), and u coincides with the weak and strong one (if it exists). From Remark 2.9 we known
that

A = RH1
−1(RN ) = −divΘ∇ : H1

−1(RN ) → H1
−1(RN )′
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is an isometric isomorphism (Riesz isometry). Our problem (TP) splits linearly into four parts,
namely

Au0(φ) = B(u0, φ) = F (φ) = ⟨f, φ⟩L2(RN )︸ ︷︷ ︸
=: Ff (φ)

−⟨Θ̃∇ g̃,∇φ⟩L2(Ω̃)︸ ︷︷ ︸
=: F∇ g̃(φ)

+ ⟨h̃,∇φ⟩L2(Ω̃)︸ ︷︷ ︸
=: Fh̃(φ)

+ ⟨div h̃, φ⟩L2(Ω̃)︸ ︷︷ ︸
=: Fdiv h̃(φ)

with F, Ff , F∇ g̃, Fh̃, Fdiv h̃ ∈ H1
−1(RN )′ and

Ff (φ) = ⟨f, φ⟩L2(RN ) = ⟨⟨f, φ⟩⟩RN = EL2
1(RN ) f(φ),

F∇ g̃(φ) = −⟨Θ∇ g,∇φ⟩L2(RN ) = divΘ∇ g(φ),

Fh̃(φ) = ⟨h,∇φ⟩L2(RN ) = −div h(φ),

Fdiv h̃(φ) = ⟨div h, φ⟩L2(RN ) = ⟨⟨div h, φ⟩⟩RN = EL2
1(RN ) div h(φ).

We have f, div h ∈ L21(RN ) and

EL2
1(RN ) f, EL2

1(RN ) div h, divΘ∇ g, div h ∈ H1
−1(RN )′.

Let us consider the partial solutions g ∈ H1
−1(RNΓ ) and

u0,f := A−1 Ff ∈ H1
−1(RN ), u0,∇ g̃ := A−1 F∇ g̃ ∈ H1

−1(RN ),

u0,div h̃ := A−1 Fdiv h̃ ∈ H1
−1(RN ), u0,h̃ := A−1 Fh̃ ∈ H1

−1(RN ).

Theorem 2.11 (Splitting of Solution). The partial solutions sum up to the unique solution

u = u0 + g ∈ H1
−1(RNΓ ),

u0 = u0,f + u0,∇ g̃ + u0,div h̃ + u0,h̃ ∈ H1
−1(RN ),

and it holds

Au0 = F = Ff + F∇ g̃ + Fdiv h̃ + Fh̃
= EL2

1(RN ) f + divΘ∇ g + EL2
1(RN ) div h− div h

with

F (φ) = ⟨f, φ⟩L2(RN ) − ⟨Θ̃∇ g̃,∇φ⟩L2(Ω̃) + ⟨div h̃, φ⟩L2(Ω̃) + ⟨h̃,∇φ⟩L2(Ω̃),

cf. (7). Moreover, the partial solutions solve the five transmission problems

−divΘ∇ g = 0 in RNΓ ,

t̃rsg̃ − ptrspg = gΓ on Γ,

t̃rnΘ̃∇ g̃ − ptrn pΘ∇ pg = t̃rnΘ̃∇ g̃ on Γ,

−divΘ∇u0,f = f, −divΘ∇u0,div h̃ = div h in RNΓ ,

t̃rsũ0,f − ptrspu0,f = 0, t̃rsũ0,div h̃ − ptrspu0,div h̃ = 0 on Γ,

t̃rnΘ̃∇ ũ0,f − ptrn pΘ∇ pu0,f = 0, t̃rnΘ̃∇ ũ0,div h̃ − ptrn pΘ∇ pu0,div h̃ = 0 on Γ,

−divΘ∇u0,∇ g̃ = 0, −divΘ∇u0,h̃ = −div h in RNΓ ,

t̃rsũ0,∇ g̃ − ptrspu0,∇ g̃ = 0, t̃rsũ0,h̃ − ptrspu0,h̃ = 0 on Γ,

t̃rnΘ̃∇ ũ0,∇ g̃ − ptrn pΘ∇ pu0,∇ g̃ = −t̃rnΘ̃∇ g̃, t̃rnΘ̃∇ ũ0,h̃ − ptrn pΘ∇ pu0,h̃ = hΓ on Γ.

For ugΓ := u0,∇ g̃ + g ∈ H1
−1(RNΓ ) and uhΓ := u0,h̃ + u0,div h̃ ∈ H1

−1(RN ) it holds

u = u0,f + ugΓ + uhΓ ∈ H1
−1(RNΓ )

and

−divΘ∇ugΓ = 0, −divΘ∇uhΓ = 0 in RNΓ ,

t̃rsũgΓ − ptrspugΓ = gΓ, t̃rsũhΓ
− ptrspuhΓ

= 0 on Γ,
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t̃rnΘ̃∇ ũgΓ − ptrn pΘ∇ pugΓ = 0, t̃rnΘ̃∇ ũhΓ − ptrn pΘ∇ puhΓ = hΓ on Γ.

2.6. Helmholtz Decomposition. We recall Remark 2.9(iv) and consider the unbounded but
densely defined and closed linear operator ∇Θ together with its Hilbert space adjoint ∇∗

Θ and
−divΘ = ρ−2 ∇∗

Θ. By Lemma 2.5 and the projection theorem we have closed ranges and Helmholtz
type decompositions in the whole space.

Lemma 2.12 (Closed Range of the Gradient). The range

R(∇Θ) = ∇H1
−1(RN ) = ∇H1(RN )

is closed in L2Θ(RN ).

Lemma 2.13 (Helmholtz Decomposition in RN ). The orthogonal decomposition

L2Θ(RN ) = R(∇Θ)⊕L2
Θ(RN ) N(−ρ2 divΘ) = ∇H1

−1(RN )⊕L2
Θ(RN ) N(divΘ)

holds with corresponding orthonormal projectors

π∇ : L2Θ(RN ) → ∇H1
−1(RN ), π0 : L2Θ(RN ) → N(divΘ).

2.7. The Case N=2. For Ω ⊂ R2 open (bounded or unbounded, connected or not) we introduce
the weighted Sobolev spaces

L2± ln(Ω) :=
{
φ ∈ L2loc(Ω)

∣∣∣ (ρ
2
ln(e+ r2)

)±1
φ ∈ L2(Ω)

}
,

H1
− ln(Ω) :=

{
φ ∈ L2− ln(Ω)

∣∣ ∇φ ∈ L2(Ω)
}
, H̊1

− ln(Ω) := C̊∞(Ω)
H1

− ln(Ω)

,

H0(div,Ω) :=
{
Φ ∈ L2(Ω)

∣∣ div Φ ∈ L2ln(Ω)
}
, H̊0(div,Ω) := C̊∞(Ω)

H0(div,Ω)

.

Note that constants belong to H1
− ln(Ω) ⊂ L2− ln(Ω) even is Ω is unbounded.

Lemma 2.14 (Poincaré’s estimate in R2). There exists c2 > 0 such that

∀φ ∈ H1
− ln(R2) |φ|L2

− ln(R2) ≤ c2

(
| ∇φ|L2(R2) +

∣∣⟨φ, 1⟩L2
− ln(R2)

∣∣).
Proof. From [8, 6] we cite a Poincaré type estimate in the exterior of the unit ball Ξ := R2 \B1

∀ϕ ∈ H̊1
− ln(Ξ) |ϕ|L2

− ln(Ξ) ≤
∣∣ ϕ

r ln r

∣∣
L2(Ξ)

≤ 2| ∇ϕ|L2(Ξ).(10)

Let φ ∈ H1
− ln(R2) and ξ ∈ C̊∞(B3) with ξ|B2 = 1. Then (1− ξ) ∈ C̊∞(Ξ) with (1− ξ)|Ξ\B3

= 1.

Hence ξφ ∈ H̊1(B3) and (1 − ξ)φ ∈ H̊1
− ln(Ξ). By the standard Friedrichs estimate and (10) we

compute

|φ|L2
− ln(R2) ≤ c|ξφ|L2(B3) + c

∣∣(1− ξ)φ
∣∣
L2
− ln(Ξ)

≤ c
∣∣∇(ξφ)

∣∣
L2(B3)

+ c
∣∣∣∇ (

(1− ξ)φ
)∣∣∣

L2(Ξ)

≤ c| ∇φ|L2(R2) + c|φ|L2(supp∇ ξ).
(11)

Now, let us assume that the inequality of the lemma is wrong. Then there exists a sequence
(φn) ⊂ H1

− ln(R2) such that |φn|L2
− ln(R2) = 1 and | ∇φn|L2(R2) +

∣∣⟨φn, 1⟩L2
− ln(R2)

∣∣ < 1/n. Rel-

lich’s selection theorem yields a subsequence (again denoted by) (φn) being a Cauchy sequence in
L2(supp∇ ξ). By (11) (φn) is a Cauchy sequence in L2− ln(R2). Hence φn → φ in H1

− ln(R2). Thus
∇φ = 0, i.e., φ is constant, and ⟨φ, 1⟩L2

− ln(R2) = 0, i.e., φ = 0. Finally (11) shows

1 = |φn|L2
− ln(R2) ≤ c| ∇φn|L2(R2) + c|φn|L2(supp∇ ξ) → 0,

a contradiction. □

From now on, in principle, all arguments from Section 2.3 to Section 2.6 carry over from the
case N ≥ 3 just by replacing Lemma 2.5 by Lemma 2.14 and exchanging the respective Sobolev
spaces. There is a slight change. Due to

N(∇) = R ⊂ H1
− ln(R2),
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where ∇ : H1
− ln(R2) → L2(R2), the non-trivial eigenspace requires Fredholm’s alternative for a

proper solution theory. In this case we have

A = − divΘ∇ : H1
− ln(R2) → H1

− ln(R2)′, v 7→ A v := B(v, · ) := ⟨Θ∇ v,∇ · ⟩L2(RN )

with kernel N(A) = R and closed range R(A) since R(∇) is closed by Lemma 2.14, cf. Remark
2.9(ii). More precisely, the range is given as annihilator, this is

R(A) = N(A′)◦ = N(A I−1
H1

− ln(R2)
)◦ = (IH1

− ln(R2) R)◦,(12)

cf. Remark 2.10(i). Hence for G ∈ H1
− ln(R2)′

G ∈ R(A) ⇔ 0 = IH1
−1(RN )(1)G = G(1).

Let f ∈ L2ln(R2). By Theorem 2.11 we obtain for our special F ∈ H1
− ln(R2)′ the constraint

F ∈ R(A) ⇔ 0 = F (1) = ⟨f, 1⟩L2(R2) − ⟨Θ̃∇ g̃,∇ 1⟩L2(Ω̃) + ⟨h̃,∇ 1⟩L2(Ω̃) + ⟨div h̃, 1⟩L2(Ω̃)

= ⟨f, 1⟩L2(R2) + ⟨div h̃, 1⟩L2(Ω̃),

which reads in the smooth case as

⟨⟨f, 1⟩⟩R2 + ⟨⟨hΓ, 1⟩⟩Γ = 0,

and classically, if hΓ ∈ L2(Γ), ∫
R2

f +

∫
Γ

hΓ = 0.

Lemma 2.15 (Solution Operator). For any G ∈ H1
− ln(R2)′ such that G(1) = 0 there exists a

unique u0 ∈ H1
− ln,⊥(R2) := H1

− ln(R2) ∩ R
⊥

L2− ln
(R2) solving Au0 = G. The solution operator

A−1 : R(A) → H1
− ln,⊥(R2),

cf. (12), is an isometric isomorphism.

Proof. Lemma 2.14 shows that B is positive/coercive on H1
− ln,⊥(R2) since Θ is elliptic. Hence B

defines an inner product for H1
− ln,⊥(R2). Riesz’ representation theorem yields a unique solution

u0 ∈ H1
− ln,⊥(R2) of (8) with |u0|H1

− ln(R2) = |G|H1
− ln(R2)′ for any G ∈ R(A). □

Setting u := u0 + g shows:

Theorem 2.16 (V-W-S-Solution). Let f ∈ L2ln(R2) and let g, h and F be defined as in Section 2.3.

Moreover, let ⟨f, 1⟩L2(R2)+⟨div h̃, 1⟩L2(Ω̃) = 0. Then there exists a unique variational/weak solution

u of (TP) with u− g ∈ H1
− ln,⊥(R2), and these two coincide. More precisely, the solution operator

A−1 mapping F 7→ u0 = u− g is an isometric isomorphism, and it holds ⟨u0, 1⟩L2
− ln(R2) = 0.

If Γ is Lipschitz, then there exists a unique strong solution of (TP), and this one coincides with
the weak and the variational one.

All operator theoretical results and remarks from Section 2.5 and Section 2.6 remain true with
obvious modifications.

3. A Posteriori Error Equalities and Estimates

Our a posteriori error estimates rely on the pioneering work of Sergey Repin during the last
decades, see, e.g., his books [5, 7].

We introduce the ellipticity constant cΘ > 0 and the trace constant cΓ > 0 for the exterior

domain pΩ such that

∀ τ ∈ L2(RN ) |τ |L2(RN ) ≤ cΘ|τ |L2
Θ(RN ),

∀φ ∈ H1
−1(

pΩ) |ptrsφ|H1/2(Γ) ≤ cΓ| ∇φ|L2(pΩ).

Note that | ∇ · |L2(pΩ) is a norm for H1
−1(

pΩ) due to Lemma 2.5. Moroever, we set

cN,Θ := cNcΘ, cΓ,Θ := cΓcΘ.
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Remark 3.1. Again, there is some freedom in the choice of the trace operator and the correspond
trace constant, cf. Remark 2.2. We may also pick

∀φ ∈ H1
−1(Ω̃) |t̃rsφ|H1/2(Γ) ≤ cΓ|φ|H1(Ω̃) ≤ c̃Γ

(
| ∇φ|L2(Ω̃) +

∣∣⟨φ, 1⟩L2(Ω̃)

∣∣)
with different constants cΓ and c̃Γ.

Let us consider generally non-conforming approximations

v ∈ L2−1(RN ), σ ∈ L2Θ(RN )

of the unique exact solution u and its gradient, respectively. We shall call

e := u− v = u0 + g − v, η := ∇u− σ = ∇u0 +∇ g − σ

the scalar error and the gradient error, respectively.
According to Lemma 2.13 we decompose the error term orthogonally into

L2Θ(RN ) ∋ η = η∇ ⊕ η0, η∇ ∈ ∇H1
−1(RN ), η0 ∈ N(divΘ),

more precisely, η∇ = ∇ e0 with e0 ∈ H1
−1(RN ) and η0 ∈ H0(divΘ,RN ) with divΘη0 = 0.

3.1. Upper Bound. Let φ ∈ H1
−1(RN ) and Θτ ∈ H0(div,RNΓ ). We have by orthogonality

⟨∇ e0,∇φ⟩L2
Θ(RN ) = ⟨η,∇φ⟩L2

Θ(RN )

= ⟨Θ∇u0,∇φ⟩L2(RN )︸ ︷︷ ︸
B(u0, φ) = F (φ)

+⟨Θ̃∇ g̃,∇φ⟩L2(Ω̃) − ⟨σ,∇φ⟩L2
Θ(RN )

= ⟨f, φ⟩L2(RN ) + ⟨h̃,∇φ⟩L2(Ω̃) + ⟨div h̃, φ⟩L2(Ω̃) − ⟨σ,∇φ⟩L2
Θ(RN )

= ⟨f + divΘτ, φ⟩L2(RN ) +
〈
π∇(τ − σ),∇φ

〉
L2
Θ(RN )

+ ⟨h−Θτ,∇φ⟩L2(RN ) + ⟨div h− divΘτ, φ⟩L2(RN ).

(13)

If Γ is smooth enough, e.g., Lipschitz, we see (note that ptrsφ = t̃rsφ)

⟨h−Θτ,∇φ⟩L2(RN ) + ⟨div h− divΘτ, φ⟩L2(RN )

= ⟨h̃− Θ̃τ̃ ,∇φ⟩L2(Ω̃) +
〈
div(h̃− Θ̃τ̃), φ

〉
L2(Ω̃)

− ⟨pΘpτ ,∇φ⟩L2(pΩ) − ⟨div pΘpτ , φ⟩L2(pΩ)

= ⟨⟨t̃rnh̃− t̃rnΘ̃τ̃ , t̃rsφ⟩⟩Γ + ⟨⟨ptrn pΘpτ , ptrsφ⟩⟩Γ
=

〈〈
hΓ − (t̃rnΘ̃τ̃ − ptrn pΘpτ), t̃rsφ

〉〉
Γ
,

(14)

and hence by Lemma 2.5

⟨∇ e0,∇φ⟩L2
Θ(RN )

= ⟨f + divΘτ, φ⟩L2(RN ) +
〈
π∇(τ − σ),∇φ

〉
L2
Θ(RN )

+
〈〈
hΓ − (t̃rnΘ̃τ̃ − ptrn pΘpτ), t̃rsφ

〉〉
Γ

≤ |f + divΘτ |L2
1(RN ) |φ|L2

−1(RN )︸ ︷︷ ︸
≤ cN | ∇φ|L2(RN )

+
∣∣π∇(τ − σ)

∣∣
L2
Θ(RN )

| ∇φ|L2
Θ(RN )

+
∣∣hΓ − (t̃rnΘ̃τ̃ − ptrn pΘpτ)

∣∣
H−1/2(Γ)

|ptrsφ|H1/2(Γ)︸ ︷︷ ︸
≤ cΓ| ∇φ|L2(pΩ) ≤ cΓ| ∇φ|L2(RN )

≤ M+,∇(σ, τ) | ∇φ|L2
Θ(RN ),

where

M+,∇(σ, τ) := cN,Θ|f + divΘτ |L2
1(RN ) +

∣∣π∇(τ − σ)
∣∣
L2
Θ(RN )

+ cΓ,Θ
∣∣hΓ − (t̃rnΘ̃τ̃ − ptrn pΘpτ)

∣∣
H−1/2(Γ)

.
(15)

Again by orthogonality we see

η0 = π0η = π0(∇u0 +∇ g − σ) = π0(∇ g − σ).
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Setting φ = e0 we get:

Theorem 3.2 (Upper Bound for Non-Conforming Approximations). Let Γ be Lipschitz and let
σ ∈ L2Θ(RN ) be a non-conforming approximation of the broken gradient ∇u of the exact solution
u ∈ H1

−1(RNΓ ). Then

η = ∇u− σ = ∇u0 +∇ g − σ = η∇ ⊕ η0

with η∇ = π∇η = ∇ e0, e0 ∈ H1
−1(RN ) and η0 = π0η = π0(∇ g − σ) ∈ N(divΘ). Moreover,

|η|2L2
Θ(RN ) = |η∇|2L2

Θ(RN ) + |η0|2L2
Θ(RN ), |η∇|L2

Θ(RN ) = min
Θτ∈H0(div,RN

Γ )
M+,∇(σ, τ),

where the upper bound M+,∇ is given by (15). The minimum is attained at τ = ∇u.

Note that for ψ ∈ N(divΘ) and φ ∈ H1
−1(RN ) we have π∇ψ = 0 and π0 ∇φ = 0. Hence∣∣π∇(τ − σ)

∣∣
L2
Θ(RN )

≤
∣∣ψ + τ − σ

∣∣
L2
Θ(RN )

,∣∣π0(∇ g − σ)
∣∣
L2
Θ(RN )

≤ |∇φ+∇ g − σ|L2
Θ(RN ) =: M+,0(σ, φ).

(16)

By π∇ + π0 = id we obtain:

Theorem 3.3 (Upper Bound for Non-Conforming Approximations). Let Γ be Lipschitz. Then∣∣π∇(τ − σ)
∣∣
L2
Θ(RN )

= min
ψ∈N(divΘ)

∣∣ψ + τ − σ
∣∣
L2
Θ(RN )

,

|η0|L2
Θ(RN ) =

∣∣π0(∇ g − σ)
∣∣
L2
Θ(RN )

= min
φ∈H1

−1(RN )
M+,0(σ, φ),

where the upper bound M+,0 is given by (16). The minima are attained at ψ = π0(σ − τ) and
∇φ = π∇(σ −∇ g), respectively.

3.2. Lower Bound. Our lower bound is given by the simple fact, that in any Hilbert space H it
holds

|x|2H = max
y∈H

(
2⟨x, y⟩H − |y|2H

)
.

For H = ∇H1
−1(RN ) resp. H = N(divΘ) we get

|η∇|2L2
Θ(RN ) = max

φ∈H1
−1(RN )

(
2⟨∇ e0,∇φ⟩L2

Θ(RN ) − |∇φ|2L2
Θ(RN )

)
,

|η0|2L2
Θ(RN ) = max

ψ∈N(divΘ)

(
2⟨η0, ψ⟩L2

Θ(RN ) − |ψ|2L2
Θ(RN )

)
.

Recall the situation in Theorem 3.2. For φ, ϕ ∈ H1
−1(RN ) and Θτ ∈ H0(div,RNΓ ) we have by

(13) and orthogonality

⟨η∇,∇φ⟩L2
Θ(RN ) = ⟨f + divΘτ, φ⟩L2(RN ) +

〈
π∇(τ − σ),∇φ

〉
L2
Θ(RN )

+ ⟨h−Θτ,∇φ⟩L2(RN ) + ⟨div h− divΘτ, φ⟩L2(RN ),

⟨η0, ψ⟩L2
Θ(RN ) = ⟨η, ψ⟩L2

Θ(RN ) = ⟨∇ϕ+∇ g − σ, ψ⟩L2
Θ(RN ).

We conclude:

Theorem 3.4 (Lower Bound for Non-Conforming Approximations). Let σ ∈ L2Θ(RN ) be a non-
conforming approximation of the broken gradient ∇u of the exact solution u ∈ H1

−1(RNΓ ). Then

η = ∇u− σ = ∇u0 +∇ g − σ = η∇ ⊕ η0

with η∇ = π∇η = ∇ e0 ∈ ∇H1
−1(RN ) and η0 = π0η = π0(∇ g − σ) ∈ N(divΘ). Moreover,

|η|2L2
Θ(RN ) = |η∇|2L2

Θ(RN ) + |η0|2L2
Θ(RN )

with

|η∇|2L2
Θ(RN ) = max

φ∈H1
−1(RN )

M−,∇(σ, φ, τ), |η0|2L2
Θ(RN ) = max

ψ∈N(divΘ)
M−,0(σ, ψ, ϕ)



14 DIRK PAULY

for all Θτ ∈ H0(div,RNΓ ) and all ϕ ∈ H1
−1(RN ), where

M−,∇(σ, φ, τ) := 2
(
⟨f + divΘτ, φ⟩L2(RN ) + ⟨τ − σ − 1

2
∇φ,∇φ⟩L2

Θ(RN )

+ ⟨h−Θτ,∇φ⟩L2(RN ) + ⟨div h− divΘτ, φ⟩L2(RN )

)
,

M−,0(σ, ψ, ϕ) := 2⟨∇ϕ+∇ g − σ − 1

2
ψ,ψ⟩L2

Θ(RN ).

The minima are attained at φ = e0 and ψ = η0.

Remark 3.5 (Lower Bound for Non-Conforming Approximations). If Γ is Lipschitz, (14) yields

⟨h−Θτ,∇φ⟩L2(RN ) + ⟨div h− divΘτ, φ⟩L2(RN ) =
〈〈
hΓ − (t̃rnΘ̃τ̃ − ptrn pΘpτ), t̃rsφ

〉〉
Γ
.

3.3. Two-Sided Bounds. A combination of Theorem 3.2, Theorem 3.3, and Theorem 3.4 reads
a follows:

Corollary 3.6 (Two-Sided Bounds for Non-Conforming Approximations). Let Γ be Lipschitz and
let σ ∈ L2Θ(RN ) be a non-conforming approximation of the broken gradient ∇u of the exact solution
u ∈ H1

−1(RNΓ ). Then

η = ∇u− σ = ∇u0 +∇ g − σ = η∇ ⊕ η0

with η∇ = π∇η = ∇ e0 ∈ ∇H1
−1(RN ) and η0 = π0η = π0(∇ g − σ) ∈ N(divΘ). Moreover,

|η|2L2
Θ(RN ) = |η∇|2L2

Θ(RN ) + |η0|2L2
Θ(RN )

with

max
φ∈H1

−1(RN )
M−,∇(σ, φ, ϑ) = |η∇|2L2

Θ(RN ) = min
Θτ∈H0(div,RN

Γ )
M2

+,∇(σ, τ),

max
ψ∈N(divΘ)

M−,0(σ, ψ, ϕ) = |η0|2L2
Θ(RN ) = min

ξ∈H1
−1(RN )

M2
+,0(σ, ξ)

for all Θϑ ∈ H0(div,RNΓ ) and all ϕ ∈ H1
−1(RN ), where M+,∇, M+,0 are given by (15), (16) and

M−,∇, M−,0 by Theorem 3.4. The minima are attained at τ = ∇u and ∇ ξ = π∇(σ −∇ g), and
the maxima at φ = e0 and ψ = η0. Furthermore, the term

∣∣π∇(τ − σ)
∣∣
L2
Θ(RN )

of M+,∇(σ, τ) can

be handled by Theorem 3.3.

We note that the solenoidal part η0 = π0(∇ g−σ) of the gradient error η measures the error of
the approximation of the Dirichlet transmission boundary data gΓ only. On the other hand, the
gradient part η∇ = ∇ e0 of the gradient error η measures the error of the approximation of the
volume data f and the Neumann transmission boundary data hΓ. To illustrate this we observe
(at least formally, if σ is not regular enough)

−divΘ∇ e0 = f + divΘσ, −divΘη0 = 0 in RNΓ ,

t̃rsẽ0 − ptrspe0 = 0, on Γ,

t̃rnΘ̃∇ ẽ0 − ptrn pΘ∇ pe0 = hΓ − (t̃rnΘ̃σ̃ − ptrn pΘpσ), t̃rnΘ̃η̃0 − ptrn pΘpη0 = 0 on Γ.

More precisely, we have:

Lemma 3.7. Let Γ be Lipschitz. For the error components η = η∇ + η0 it holds:

(i) If Θσ ∈ H0(div,RNΓ ), then

|η∇|L2
Θ(RN ) ≤ cN,Θ|f + divΘσ|L2

1(RN )

+ cΓ,Θ
∣∣hΓ − (t̃rnΘ̃σ̃ − ptrn pΘpσ)

∣∣
H−1/2(Γ)

,

|η∇|2L2
Θ(RN ) ≥ 2⟨f + divΘσ, φ⟩L2(RN ) − |∇φ|2L2

Θ(RN )

+ 2
〈〈
hΓ − (t̃rnΘ̃σ̃ − ptrn pΘpσ), t̃rsφ

〉〉
Γ

for all φ ∈ H1
−1(RN ). Thus η∇ is controlled by f + divΘσ and hΓ − (t̃rnΘ̃σ̃ − ptrn pΘpσ).
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(ii) If σ = ∇ v with v ∈ H1
−1(RNΓ ), then

|η0|L2
Θ(RN ) ≤ qcΓ,Θ

∣∣gΓ − (t̃rsṽ − ptrspv)
∣∣
H1/2(Γ)

,

|η0|2L2
Θ(RN ) ≥

〈〈
gΓ − (t̃rsṽ − ptrspv), t̃rnΘ̃ψ̃

〉〉
Γ
− |ψ|2L2

Θ(RN )

for all ψ ∈ N(divΘ). Thus η0 is controlled by gΓ − (t̃rsṽ − ptrspv).

Here qcΓ,Θ denotes the continuity constant of a right inverse

qtrs : H
1/2(Γ) →

{
ζ ∈ H1

−1(RNΓ )
∣∣ ζ̃ ∈ H1(Ω̃) ∧ pζ = 0

}
corresponding to the scalar trace trs : H

1
−1(RNΓ ) → H1/2(Γ) with trs ζ = t̃rsζ̃. More precisely,

∀λ ∈ H1/2(Γ) |qtrsλ|2L2(Ω̃)
+ | ∇ qtrsλ|2L2

Θ̃
(Ω̃)

≤ qc2Γ,Θ|λ|2H1/2(Γ).

Proof. Let Θσ ∈ H0(div,RNΓ ). In Corollary 3.6 we choose τ = ϑ = σ and get for the terms M±,∇
estimatting |η∇|L2

Θ(RN )

M+,∇(σ, σ) = cN,Θ|f + divΘσ|L2
1(RN ) + cΓ,Θ

∣∣hΓ − (t̃rnΘ̃σ̃ − ptrn pΘpσ)
∣∣
H−1/2(Γ)

,

M−,∇(σ, φ, σ) = 2⟨f + divΘσ, φ⟩L2(RN ) − |∇φ|2L2
Θ(RN ) + 2

〈〈
hΓ − (t̃rnΘ̃σ̃ − ptrn pΘpσ), t̃rsφ

〉〉
Γ
.

Let σ = ∇ v with some v ∈ H1
−1(RNΓ ). We set

ξ := v − g + qtrs(gΓ −
(
t̃rsṽ − ptrspv)

)
∈ H1

−1(RNΓ ).

Then

t̃rsξ̃ − ptrspξ = t̃rsṽ − ptrspv − t̃rsg̃ + gΓ − (t̃rsṽ − ptrspv) = 0

and hence ξ ∈ H1
−1(RN ) by Remark 2.1(i). We conclude for the terms M±,0 estimatting |η0|L2

Θ(RN )

M+,0(∇ v, ξ) =
∣∣∇(ξ + g − v)

∣∣
L2
Θ(RN )︸ ︷︷ ︸

=
∣∣∣∇ qtrs

(
gΓ − (t̃rsṽ − ptrspv)

)∣∣∣
L2
Θ̃
(Ω̃)

≤ qcΓ,Θ
∣∣gΓ − (t̃rsṽ − ptrspv)

∣∣
H1/2(Γ)

,

M−,0(∇ v, ψ, ϕ) = 2 ⟨∇(ϕ+ g − v), ψ⟩L2
Θ(RN )︸ ︷︷ ︸

=
〈〈
gΓ − (t̃rsṽ − ptrspv), t̃rnΘ̃ψ̃

〉〉
Γ

−|ψ|2L2
Θ(RN ).

Note that ϕ ∈ H1
−1(RN ) and ψ ∈ N(divΘ) ⊂ H0(divΘ,RN ) which implies t̃rnΘ̃ψ̃ = ptrn pΘ pψ by

Remark 2.1(ii). □

For (unrealistic) conforming approximations we have:

Corollary 3.8 (Two-Sided Bounds for Conforming Approximations). Let Γ be Lipschitz and let
v be a conforming approximation of the exact solution u ∈ H1

−1(RNΓ ), i.e., v ∈ H1
−1(RNΓ ) with

Θ∇ v ∈ H0(div,RNΓ ) and v − g ∈ H1
−1(RN ). Then e = u− v ∈ H1

−1(RN ) with ∇ e = π∇η = η and

max
φ∈H1

−1(RN )
M−,∇(∇ v, φ, ϑ) = |η|2L2

Θ(RN ) = min
Θτ∈H0(div,RN

Γ )
M2

+,∇(∇ v, τ)

for all Θϑ ∈ H0(div,RNΓ ), where M+,∇ is given by (15) and M−,∇ by Theorem 3.4. The minimum
is attained at τ = ∇u and the maximum at φ = e0. Moreover, the term

∣∣π∇(τ − ∇ v)
∣∣
L2
Θ(RN )

of

M+,∇(∇ v, τ) can be handled by Theorem 3.3.

Proof. Set σ := ∇ v. We see e = u − v = u0 + g − v ∈ H1
−1(RN ) and note η = ∇(u − v) = ∇ e.

Hence π∇η = η and π0η = 0. Theorem 3.2 and Theorem 3.3 show the assertions. □



16 DIRK PAULY

3.4. Two-Sided Bounds for Hybrid Approximations. A reasonable numerical approxima-
tion, in particular, for BEM-FEM couplings, is a hybrid of conforming and non-conforming ap-
proximations. A realistic scenario features

pΘ = 1, pf = 0(17)

with an approximation v satisfying

v ∈ H1
−1(RNΓ ), ∇ pv ∈ H0(div, pΩ).(18)

Hence we may set σ := ∇ v ∈ L2Θ(RN ). Then by Corollary 3.6:

Corollary 3.9 (Two-Sided Bounds for Hybrid Approximations). Let Γ be Lipschitz and assume
(17). Moreover, let v be a hybrid approximation of the exact solution u, i.e., (18) holds. Let
σ := ∇ v. Then

η = ∇ e = ∇(u− v) = ∇u0 +∇(g − v) = η∇ ⊕ η0

with η∇ = π∇η = ∇ e0 ∈ ∇H1
−1(RN ) and η0 = π0η = π0 ∇(g − v) ∈ N(divΘ). Moreover,

|η|2L2
Θ(RN ) = |η∇|2L2

Θ(RN ) + |η0|2L2
Θ(RN )

with

max
φ∈H1

−1(RN )
M−,∇(∇ v, φ, ϑ) = |η∇|2L2

Θ(RN ) = min
Θτ∈H0(div,RN

Γ )
M2

+,∇(∇ v, τ),

max
ψ∈N(divΘ)

M−,0(∇ v, ψ, ϕ) = |η0|2L2
Θ(RN ) = min

ξ∈H1
−1(RN )

M2
+,0(∇ v, ξ) = min

ζ∈H1
−1(R

N
Γ ),

t̃rsζ̃− ptrs pζ=gΓ−(t̃rsṽ− ptrspv)

| ∇ ζ|2L2
Θ(RN )

for all Θϑ ∈ H0(div,RNΓ ) and all ϕ ∈ H1
−1(RN ), where M+,∇, M+,0 are given by (15), (16) and

M−,∇, M−,0 by Theorem 3.4. The minima are attained at τ = ∇u and ∇ ξ = π∇ ∇(v − g),
ζ = e− e0, and the maxima at φ = e0 and ψ = η0. Furthermore, the term

∣∣π∇(τ −∇ v)
∣∣
L2
Θ(RN )

of

M+,∇(∇ v, τ) can be handled by Theorem 3.3.

(i) If div pτ = 0, then f + divΘτ = 0 in pΩ.

(ii) If pτ = ∇ pv, then τ −∇ v = 0 in pΩ.
(iii) If pτ = ∇ pv and ∆pv = 0, then div pτ = ∆pv = 0 and the assertions of (i) and (ii) hold.

In particular, if (i) and (ii) hold, then

M+,∇(∇ v, τ) = cN,Θ
∣∣ρ(f̃ + div Θ̃τ̃)

∣∣
L2(Ω̃)

+
∣∣π∇(τ −∇ v)

∣∣
L2
Θ(RN )

+ cΓ,Θ
∣∣hΓ − (t̃rnΘ̃τ̃ − ptrn pΘpτ)

∣∣
H−1/2(Γ)

,∣∣π∇(τ −∇ v)
∣∣
L2
Θ(RN )

≤ inf
ψ̃∈N(d̊ivΘ̃)

|ψ̃ + τ̃ −∇ ṽ|L2
Θ̃
(Ω̃),

since for ψ with pψ = 0 we have ψ ∈ N(divΘ) ⇔ ψ̃ ∈ N(d̊ivΘ̃), and M−,∇ and M±,0 can be
modified as well.

Remark 3.10 (Two-Sided Bounds for Hybrid Approximations). While the error bounds M±,∇
and M±,0 reflect the original error bounds of Repin, cf. [7, Chapter 3.2], the upper bound

min
ζ

| ∇ ζ|L2
Θ(RN )

for |η0|L2
Θ(RN ) corresponds to the new upper bound based on Dirichlet’s principle for harmonic

approximations presented in [3, (6), Theorem 4], which is particularly suited for BEM. In view
of Lemma 3.7 this term estimates the error of the approximation of the Dirichlet transmission
boundary data gΓ.
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[5] P. Neittaanmäki and S. Repin. Reliable methods for computer simulation, error control and a posteriori esti-
mates. Elsevier, New York, 2004.

[6] D. Pauly and S. Repin. Functional a posteriori error estimates for elliptic problems in exterior domains. J. Math.

Sci. (N.Y.), 162(3):393–406, 2009.
[7] S. Repin. A posteriori estimates for partial differential equations. Walter de Gruyter (Radon Series Comp. Appl.

Math.), Berlin, 2008.

[8] J. Saranen and K.-J. Witsch. Exterior boundary value problems for elliptic equations. Ann. Acad. Sci. Fenn.
Math., 8(1):3–42, 1983.

[9] S.A. Sauter and C. Schwab. Boundary element methods, volume 39 of Springer Ser. Comput. Math. Berlin:

Springer, 2011.

Institut für Analysis, Technische Universität Dresden, Germany

Email address, Dirk Pauly: dirk.pauly@tu-dresden.de


