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Abstract. We prove Friedrichs/Gaffney/Maxwell/Poincaré estimates and related results in

partially bounded domains Ω for ∇, rot, and div, cf. Theorem 3.17. Our main finding is that

rot : H(rot,Ω) ⊂ L2(Ω) → L2(Ω), r̊ot : H̊(rot,Ω) ⊂ L2(Ω) → L2(Ω)

have closed range for any domain Ω ⊂ R3 being Lipschitz diffeomorphic to the unbounded

cylinder (bounded in two directions)

Ω2 = R× (0, d)2.

Remarkably (bigger domain and apparently weaker boundary condition), even for Ω being Lip-
schitz diffeomorphic to (bounded in just one direction)

Ω1 = R2 × (0, d)

we obtain a result for mixed boundary conditions, namely that rot has closed range if the
tangential boundary condition is prescribed on just one part corresponding to, e.g., R2 × {0}.
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1. Introduction

Throughout this paper let Ω ⊂ R3 be a domain (connected and open set).
With standard notation we introduce the densely defined and closed (unbounded) linear oper-

ators

r̊ot : D(r̊ot) ⊂ L2(Ω) → L2(Ω), D(r̊ot) := H̊(rot,Ω) := C̊∞(Ω)
H(rot,Ω)

,

rot = r̊ot
∗
: D(rot) ⊂ L2(Ω) → L2(Ω), D(rot) := H(rot,Ω).

We denote the domain of definition, kernel, and range of a linear operator A by D(A), N(A), and
R(A), respectively. Moreover, let

H := L2(Ω)× L2(Ω), D(M) := D(r̊ot)×D(rot).

It is well known that the Maxwell operator

M := i

[
0 − rot
r̊ot 0

]
: D(M) ⊂ H → H

is selfadjoint with 0 ∈ σ(M) ⊂ R. Moreover, we have

σ(M) =

{
R if Ω = R3,

{0,±λ1/21 ,±λ1/22 , . . . } if Ω bounded, (weakly) Lipschitz.

Here σ(M) = σp(M) ∪̇σc(M) with σp(M) = {0} and σc(M) = R \ {0} if Ω = R3 which follows
by considering, e.g., the vector field E(x) = exp(λx1)[0 1 0]⊤, and a cutting technique together
with Rellich’s estimate and the principle of unique continuation. In this case, the ranges R(r̊ot),
R(rot), and R(M) are not closed.

If Ω is a bounded (weakly) Lipschitz domain then the spectrum is a pure point spectrum given
by the strictly monotone increasing sequence

0 = λ0 < λ1 < λ2 < · · · < λn → ∞

being the pure point spectrum of the nonnegative operator rot r̊ot resp. r̊ot rot, cf. [8]. The pure
point spectrum σ(M) = σp(M) for Ω being bounded and Lipschitz is due to the spectral theorem
for compact operators which is applicable by the compact embeddings

H̊(rot,Ω) ∩ H(div,Ω) ↪→ L2(Ω), H(rot,Ω) ∩ H̊(div,Ω) ↪→ L2(Ω),(1)

cf. [8] and [33, 32, 28, 6, 34, 7, 29] as well as [4, 5, 22]. In this case, the ranges R(r̊ot), R(rot), and
R(M) are closed. Note that the orthogonal Helmholtz type decomposition

H = R(M)⊕N(M)

reduces M and that

R(M) ⊂ N(div)×N(d̊iv),

which shows that D(M) ∩R(M) ↪→ H is compact by (1). See (10) for the underlying structure of
the de Rham complex suited for Maxwell’s equations.

It is well known that the gradient ∇̊ with homogeneous Dirichlet boundary conditions has
still closed range if the domain is bounded in at least one direction. To the best of the authors
knowledge such results for rot were unknown. Recently, the authors noticed a result from [1,
Example 10], namely, that the Maxwell operator M has closed range R(M) and that a punctured
neighbourhood of the origin belongs to the resolvent set of M even for some unbounded domains
(cylinders). Note that a cylinder could be seen as in between the latter two examples of a bounded
domain and the whole space. While for a bounded Lipschitz domain the compact embedding (1)
holds, it fails for the unbounded cylinder and the whole space. On the other hand, in case of the
whole space, the continuous spectrum of M consists of the whole reals axis, while for a bounded
Lipschitz domain and the unbounded cylinder a punctured neighbourhood of the origin belongs
to the resolvent set of M.
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Impressed by this, we present a different and more general result and proof of [1, Example
10] avoiding explicit calculations using Fourier transformations and eigenfunction expansions but
using just simple estimates and some basic functional analysis instead.

Let us fix a general notation. Let d > 0 and let Ωℓ ⊂ R3, ℓ = 0, . . . 3, be defined by

Ω0 := R3, Ω1 := R2 × (0, d), Ω2 := R× (0, d)2, Ω3 := (0, d)3.

Ωℓ shall be called (generalised) cylinders.

2. Preliminaries

2.1. Tiny FA-ToolBox. We recall parts of the FA-ToolBox from, e.g., [15, 17], cf. [14, 16, 22,
25, 26].

2.1.1. FA-ToolBox I. Let us consider a densely defined and closed linear operator

A : D(A) ⊂ H0 → H1

between two Hilbert spaces H0 and H1 together with its (densely defined and closed) Hilbert space
adjoint

A∗ : D(A∗) ⊂ H1 → H0.

Since A∗∗ = A we call (A,A∗) a dual pair. Note that R(A) is closed if and only if R(A∗) is closed by
the closed range theorem. Moreover, the projection theorem yields the orthogonal decompositions
(Helmholtz type decompositions)

H0 = R(A∗)⊕H0
N(A), H1 = R(A)⊕H1

N(A∗),(2)

which suggest to investigate the injective restrictions Â = A |N(A)⊥ and Â
∗
= A∗ |N(A∗)⊥ , more

precisely, the injective reduced operators (restricted to / projected onto the respective orthogonal
complements)

Â := ι∗N(A∗)⊥ A ιN(A)⊥ : D(Â) ⊂ N(A)⊥ → R(A) = N(A∗)⊥, D(Â) := D(A) ∩N(A)⊥,

Â
∗
:= ι∗N(A)⊥ A∗ ιN(A∗)⊥ : D(Â

∗
) ⊂ N(A∗)⊥ → R(A∗) = N(A)⊥, D(Â

∗
) := D(A∗) ∩N(A∗)⊥.

(Â, Â
∗
) are also densely defined and closed forming another dual pair with dense ranges. Moreover,

by (2) we have

D(A) = D(Â)⊕H0 N(A), D(A∗) = D(Â
∗
)⊕H1 N(A∗),

R(A) = R(Â), R(A∗) = R(Â
∗
).

(3)

Here we have used the symbols · , ⊕, ⊥, and ι for the closure, the orthogonal sum, the orthogonal
complement, and the bounded embedding, respectively.

From [15, Lemma 4.1, Remark 4.2], see also [17, Lemma 2.1, Lemma 2.2] or [23, Lemma 2.1,
Lemma 2.4], we cite the following elementary result.

Lemma 2.1 (fundamental FA-ToolBox lemma). The following assertions are equivalent:

(i) ∃ cA > 0 ∀x ∈ D(Â) |x|H0
≤ cA|Ax|H1

(i∗) ∃ cA∗ > 0 ∀ y ∈ D(Â
∗
) |y|H1

≤ cA∗ |A∗ y|H0

(ii) R(A) is closed.
(ii∗) R(A∗) is closed.

(iii) Â
−1

: R(A) → D(Â) is bounded.

(iii∗) (Â
∗
)−1 : R(A∗) → D(Â

∗
) is bounded.

Moreover, if (i) holds with cA then (ii) holds with cA∗ ≤ cA and vice versa. For the best constants

it holds
∣∣Â−1∣∣

R(A)→R(A∗)
= cA = cA∗ =

∣∣(Â∗
)−1

∣∣
R(A∗)→R(A)

.
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2.1.2. FA-ToolBox II. Let H2 be another Hilbert space and let

(4) · · · H0 H1 H2 · · ····
···

A0

A∗
0

A1

A∗
1

···
···

be a primal and dual Hilbert complex, i.e.,

A0 : D(A0) ⊂ H0 → H1, A1 : D(A1) ⊂ H1 → H2,

A∗
0 : D(A∗

0) ⊂ H1 → H0, A∗
1 : D(A∗

1) ⊂ H2 → H1

are densely defined and closed linear operators satisfying the complex property

A1 A0 ⊂ 0.(5)

Note that (5) is equivalent to R(A0) ⊂ N(A1) which is equivalent to R(A∗
1) ⊂ N(A∗

0) (dual

complex property) as R(A∗
1) ⊂ R(A∗

1) = N(A1)
⊥H1 ⊂ R(A0)

⊥H1 = N(A∗
0) and vice versa.

Defining the cohomology group

N0,1 := N(A1) ∩N(A∗
0)

we get the following orthogonal Helmholtz-type decompositions, cf. (2).

Lemma 2.2 (Helmholtz decomposition). The orthogonal Helmholtz-type decompositions

H1 = R(A0)⊕H1
N(A∗

0), H1 = N(A1)⊕H1
R(A∗

1),

N(A1) = R(A0)⊕H1
N0,1, N(A∗

0) = N0,1 ⊕H1
R(A∗

1),

D(A1) = R(A0)⊕H1

(
D(A1) ∩N(A∗

0)
)
, D(A∗

0) =
(
N(A1) ∩D(A∗

0)
)
⊕H1

R(A∗
1),

D(A∗
0) = D(Â

∗
0)⊕H1

N(A∗
0), D(A1) = N(A1)⊕H1

D(Â1),

(6)

as well as R(Â
∗
0) = R(A∗

0) and R(Â1) = R(A1) hold. Moreover,

H1 = R(A0)⊕H1 N0,1 ⊕H1 R(A
∗
1),

D(A∗
0) = D(Â

∗
0)⊕H1

N0,1 ⊕H1
R(A∗

1),

D(A1) = R(A0)⊕H1
N0,1 ⊕H1

D(Â1),

D(A1) ∩D(A∗
0) = D(Â

∗
0)⊕H1

N0,1 ⊕H1
D(Â1).

(7)

Summarising the latter results we get the following theorem.

Theorem 2.3 (mini FA-ToolBox). Let R(A0) and R(A1) be closed. Then:

(i) R(A∗
0) and R(A

∗
1) are closed.

(ii) The inverse operators (Â0)
−1, (Â

∗
0)

−1 and (Â1)
−1, (Â

∗
1)

−1 are bounded.
(iii) The orthogonal Helmholtz-type decompositions (6) and (7) hold, in particular,

H1 = R(A0)⊕H1 N0,1 ⊕H1 R(A
∗
1).

(iv) There exist cA0
, cA1

> 0 such that

∀x ∈ D(Â0) = D(A0) ∩N(A0)
⊥H0 = D(A0) ∩R(A∗

0) |x|H0
≤ cA0

|A0 x|H1
,

∀ y ∈ D(Â
∗
0) = D(A∗

0) ∩N(A∗
0)

⊥H1 = D(A∗
0) ∩R(A0) |y|H1

≤ cA0
|A∗

0 y|H0
,

∀ y ∈ D(Â1) = D(A1) ∩N(A1)
⊥H1 = D(A1) ∩R(A∗

1) |y|H1
≤ cA1

|A1 y|H2
,

∀ z ∈ D(Â
∗
1) = D(A∗

1) ∩N(A∗
1)

⊥H2 = D(A∗
1) ∩R(A1) |z|H2 ≤ cA1 |A

∗
1 z|H1 .

(v) With cA0 and cA1 from (v) it holds

∀ y ∈ D(A1) ∩D(A∗
0) ∩N

⊥H1
0,1 |y|2H1

≤ c2A0
|A∗

0 y|2H0
+ c2A1

|A1 y|2H2
.
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2.1.3. FA-ToolBox III. In the following let H be an Hilbert space and let λ ∈ C. Moreover, let

T : D(T) ⊂ H → H

be selfadjoint (or skew-selfadjoint) with selfadjoint (or skew-selfadjoint) reduced operator

T̂ : D(T̂) ⊂ N(T)⊥ → R(T) = N(T)⊥.

Remark 2.4 ((skew-)selfadjoint operators). Typical examples in our mind are the following:

Let A be densely defined and closed. Then T := A∗ A and T :=

[
0 A∗

A 0

]
are selfadjoint and

S :=

[
0 −A∗

A 0

]
is skew-selfadjoint. Note that i S is also selfadjoint.

If R(T) is closed then by Lemma 2.1

T̂
−1

: R(T) → D(T̂)

is bounded. Thus 0 ∈ ρ(T̂) (resolvent set). Hence there is an open neighbourhood U of 0 such
that

(T̂− λ)−1 : R(T) → D(T̂)

is bounded for all λ ∈ U . We may choose U := B(0, 1/cT). More precisely, we have the following
result for solving the equation

(T̂− λ)x = f ∈ R(T).

Lemma 2.5 (spectrum around the origin for the reduced operator). Let R(T) be closed and let

|λ| < 1/cT with cT :=
∣∣T̂−1∣∣

R(T)→R(T)
. Then

∀x ∈ D(T̂) |x|H ≤ ĉT,λ

∣∣(T−λ)x
∣∣
H
, ĉT,λ :=

cT
1− cT|λ|

,

and
N(T̂− λ) = {0}, R(T̂− λ) = R(T),

in particular, R(T̂−λ) is closed. Moreover, the inverse (T̂−λ)−1 : R(T) → D(T̂) is bounded with∣∣(T̂− λ)−1
∣∣
R(T)→R(T)

≤ ĉT,λ. In other words B(0, 1/cT) ⊂ ρ(T̂).

Proof. For convenience we point out the short argument. As mentioned above by Lemma 2.1 we

have that T̂
−1

: R(T) → D(T̂) is bounded and that for x ∈ D(T̂) it holds

|x|H ≤ cT|Tx|H ≤ cT
∣∣(T−λ)x

∣∣
H
+ cT|λ||x|H,

showing the estimate for all |λ| < 1/cT. Hence N(T̂− λ) = {0} and R(T̂− λ) is closed with

R(T̂− λ) = N(T̂
∗
− λ)⊥R(T) = N(T̂− λ)⊥R(T) = R(T).

Thus
̂
(T̂− λ) = T̂− λ by Lemma 2.1 applied to A := T̂− λ. Therefore,

̂
(T̂− λ)

−1

= (T̂− λ)−1 : R(
̂̂
T− λ) = R(T̂− λ) = R(T) → D(

̂̂
T− λ) = D(T̂− λ) = D(T̂)

is bounded by the latter estimate and Lemma 2.1. □

Next we want to solve the equation

(T−λ)x = f ∈ H.

Lemma 2.6 (spectrum around the origin). Let R(T) be closed and let 0 < |λ| < 1/cT. Then
N(T−λ) = 0 and R(T−λ) = H. Moreover,

(T−λ)−1 : H → D(T)

is bounded with
∣∣(T−λ)−1

∣∣
H→H

≤ cT,λ, where cT,λ :=
√
ĉ2T,λ + |λ|−2. In particular,

∀x ∈ D(T) |x|H ≤ cT,λ

∣∣(T−λ)x
∣∣
H
.

In other words B(0, 1/cT) \ {0} ⊂ ρ(T).
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Proof. Let x ∈ D(T) with (T−λ)x = f ∈ H. According to (2) and (3) we decompose

D(T) ∋ x = xR + xN ∈ D(T̂)⊕H N(T), D(T̂) = D(T) ∩R(T),
H ∋ f = fR + fN ∈ R(T)⊕H N(T),

and obtain the equation (T−λ)xR − λxN = fR + fN , which separates into the two equations

(T̂− λ)xR = fR ∈ R(T), −λxN = fN ∈ N(T)

by orthogonality. Lemma 2.5 yields

xR = (T̂− λ)−1fR, xN = − 1

λ
fN

and thus |x|2H = |xR|2H + |xN |2H ≤ ĉ2T,λ|fR|2H + |λ|−2|fN |2H ≤ c2T,λ|f |2H. We conclude1 N(T−λ) = 0

and T̂−λ = T−λ. Lemma 2.1 shows R(T−λ) = H and that (T−λ)−1 : H → D(T) is bounded

with
∣∣(T−λ)−1

∣∣
H→H

≤ cT,λ. We emphasise that indeed x := xR + xN = (T̂− λ)−1fR − 1
λfN for

f ∈ H solves (T−λ)x = fR + fN = f . □

Remark 2.7. The latter proof shows

(T−λ)−1 = (T̂− λ)−1πR(T) −
1

λ
πN(T)

with orthogonal projectors πR(T) and πN(T) onto the range and kernel of T, respectively.

Lemma 2.8 (low frequency asymptotics). Let R(T) be closed and let 0 < |λ| < 1/cT. Then

(T−λ)−1 = (T̂− λ)−1πR(T) −
1

λ
πN(T) =

∞∑
n=0

λnT̂
−n−1

πR(T) −
1

λ
πN(T)

=

k−1∑
n=0

λnT̂
−n−1

πR(T) + λkT̂
−k−1

∞∑
n=0

λnT̂
−n
πR(T) −

1

λ
πN(T)

and ∣∣(T−λ)−1 −
k−1∑
n=0

λnT̂
−n−1

πR(T) +
1

λ
πN(T)

∣∣
H→H

≤ ĉT,λc
k
T|λ|k = O(λk) (for λ→ 0).

Proof. We observe (T̂−λ) = T̂
(
1−λT̂

−1)
and |λT̂

−1
|R(T)→R(T) = |λ|cT < 1. Thus by Neumann’s

series

(T̂− λ)−1 =
(
1− λT̂

−1)−1
T̂

−1
=

∞∑
n=0

λnT̂
−n−1

=

k−1∑
n=0

λnT̂
−n−1

+ λkT̂
−k−1

∞∑
n=0

λnT̂
−n
,

which shows together with Remark 2.7 the equations. Moreover,∣∣T̂−k−1
∞∑

n=0

λnT̂
−n
πR(T)

∣∣
H→H

≤ ck+1
T

∣∣ ∞∑
n=0

λnT̂
−n∣∣

R(T)→R(T)
≤

ck+1
T

1− λ|cT
= ĉT,λc

k
T,

concluding the proof. □

2.2. Friedrichs and Gaffney Type Estimates.

Lemma 2.9 (Friedrichs estimate). Let u ∈ H1(Ω1) be such that u|R2×{0} = 0. Then

|u|L2(Ω1) ≤ cd| ∇u|L2(Ω1), cd :=
d√
2
.

1Note that for λ ̸= 0 we always have N(T−λ) = N(T̂− λ).
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Proof. There exists a sequence (ϕn) ⊂ C∞
0

(
R2 × (0,∞)

)
such that ϕn → u in H1(Ω1). Then we

have for all x1, x2 ∈ R and for all x3 ∈ (0, d)

ϕn(x1, x2, x3) =

∫ x3

0

∂3 ϕn(x1, x2, · )

and thus
∣∣ϕn(x1, x2, x3)∣∣2 ≤ x3

∫ d

0

∣∣ ∂3 ϕn(x1, x2, · )∣∣2, which implies∫ d

0

∣∣ϕn(x1, x2, · )∣∣2 ≤ d2

2

∫ d

0

∣∣ ∂3 ϕn(x1, x2, · )∣∣2.(8)

Integration over R2 shows |ϕn|2L2(Ω1)
≤ c2d| ∂3 ϕn|2L2(Ω1)

which yields the assertion for n→ ∞. □

Remark 2.10 (best Friedrichs constant). The best Friedrichs constant cF in Lemma 2.9 is given
by

1

cF
= λ := min

0̸=u∈H1(Ω1),
u|R2×{0}=0

| ∇u|L2(Ω1)

|u|L2(Ω1)
,

which is the square root of the first positive eigenvalue of the mixed Dirichlet/Neumann negative
Laplacian

−∆u = λu in Ω1, u|R2×{0} = 0, n×∇u|R2×{d} = 0 at ∂ Ω1.

To get a better constant than cd we note that the best Friedrichs constant cf in (8) is given by

1

cf
= λ := min

0̸=u∈H1(I),
u(0)=0

|u′|L2(I)

|u|L2(I)
, I := (0, d),

which is the square root of the first positive eigenvalue of the mixed Dirichlet/Neumann negative
1D-Laplacian

−u′′ = λu in I, u(0) = 0, u′(d) = 0.

Hence cd can be replaced by the (slightly) better constant2 cf with

cf
d

=
2

π
< 0.637 < 0.707 <

1√
2
=
cd
d
.

Note that for full Dirichlet boundary conditions, i.e., u|∂ Ω1 = 0 resp. u(0) = u(d) = 0, or full
Neumann boundary conditions, i.e., n × ∇u|∂ Ω1 = 0 resp. u′(0) = u′(d) = 0, we get the well
known Friedrichs/Poincaré constant3 cf = d/π, cf. [27].

Remark 2.11 (Friedrichs estimate). The same proof works also for Ω2 and u|R×(0,d)×{0} = 0 and
for Ω3 and u|(0,d)2×{0} = 0. Hence Lemma 2.9 holds also in those cases.

Remark 2.12 (Friedrichs estimate in Ω0 = R3). In case of the whole space we have polynomially
weighted versions of the Friedrichs estimates. For example, for all u ∈ H1

−1(Ω0), i.e., u ∈ H1
loc(Ω0)

such that (1 + | · |2)−1/2u ∈ L2(Ω0) and ∇u ∈ L2(Ω0), it holds∣∣u∣∣
L2
−1(Ω0)

=
∣∣(1 + | · |2)−1/2u

∣∣
L2(Ω0)

≤ 2| ∇u|L2(Ω0),

cf. [8, p. 57] or [31], [20, 21]. Moreover,

∇H1(Ω0) = ∇H1
−1(Ω0).

Similar estimates hold also for rot and div and extend to exterior domains, i.e., domains with
compact complement, as well as to mixed boundary conditions, cf. [9, 10, 12, 11, 13, 18, 19].

From [30] and [2, Theorem 2.17], see also [16, Lemma 3.2 and Appendix A] for a proof, we cite
the following result.

2The eigenfunction is sin(λ · ).
3The eigenfunctions are sin(λ · ) resp. cos(λ · ).



8 DIRK PAULY

Lemma 2.13 (Gaffney estimate for bounded convex domains). Let Ω ⊂ R3 be a bounded and

convex domain and let either E ∈ H̊(rot,Ω) ∩ H(div,Ω) or E ∈ H(rot,Ω) ∩ H̊(div,Ω). Then
E ∈ H1(Ω) and

| ∇E|2L2(Ω) ≤ | rotE|2L2(Ω) + |divE|2L2(Ω).

We can skip the boundedness of the domain.

Lemma 2.14 (Gaffney estimate for convex domains). Let Ω be a convex domain and let either

E ∈ H̊(rot,Ω) ∩ H(div,Ω) or E ∈ H(rot,Ω) ∩ H̊(div,Ω). Then E ∈ H1(Ω) and

| ∇E|2L2(Ω) ≤ | rotE|2L2(Ω) + |divE|2L2(Ω).

If Ω = Ωn for n ∈ {0, 1, 2, 3}, then even | ∇E|2L2(Ω) = | rotE|2L2(Ω) + |divE|2L2(Ω).

Proof. Assume that Ω is unbounded. Let φ ∈ C∞(
R, [0, 1]

)
be a cut-off-function such that

φ|(−∞,1) = 1 and φ|(2,∞) = 0 and define φr ∈ C∞
0 (R3) for r > 0 by φr(x) := φ

(
|x|/r

)
. Then

φr|B(0,r) = 1 and φr|R3\B(0,2r) = 0. Note that supp∇φr ⊂ B(0, 2r) \ B(0, r) and | ∇φr| ≤ c/r.
Let Ωr := Ω ∩B(0, r). As

∂j(φrE) = φr ∂j E + (∂j φr)E, j = 1, 2, 3,

rot(φrE) = φr rotE + (∇φr)× E,

div(φrE) = φr divE + (∇φr) · E

we have φrE ∈ H̊(rot,Ω2r) ∩ H(div,Ω2r) or φrE ∈ H(rot,Ω2r) ∩ H̊(div,Ω2r). Thus Lemma 2.13
shows φrE ∈ H1(Ω2r) with∣∣∇(φrE)

∣∣2
L2(Ω)

≤
∣∣ rot(φrE)

∣∣2
L2(Ω)

+
∣∣div(φrE)

∣∣2
L2(Ω)

.(9)

By Lebesgue’s dominated convergence theorem we have

φrE
r→∞−−−→ E, φr rotE

r→∞−−−→ rotE, φr divE
r→∞−−−→ divE, (∂j φr)E

r→∞−−−→ 0

with convergence in L2(Ω). Moreover, (9) yields

|φr ∇E|L2(Ω) ≤ c
(∣∣∇(φrE)

∣∣
L2(Ω)

+

3∑
j=1

∣∣(∂j φr)E
∣∣
L2(Ω)

)

≤ c
(∣∣ rot(φrE)

∣∣
L2(Ω)

+
∣∣div(φrE)

∣∣
L2(Ω)

+

3∑
j=1

∣∣(∂j φr)E
∣∣
L2(Ω)

)

≤ c
(∣∣ rotE)

∣∣
L2(Ω)

+
∣∣divE)

∣∣
L2(Ω)

+

3∑
j=1

∣∣(∂j φr)E
∣∣
L2(Ω)

)
.

Hence using the monotone convergence theorem we conclude E ∈ H1(Ω) for r → ∞. Therefore,

∇(φrE)
r→∞−−−→ ∇E, rot(φrE)

r→∞−−−→ rotE, div(φrE)
r→∞−−−→ divE

by Lebesgue’s dominated convergence theorem and (9) gives the asserted estimate for r → ∞.
Now let Ω = Ωn for n ∈ {0, 1, 2}. [3, Lemma 13], cf. [2], shows that (9) holds even with equality

since we can interpret the integration over Ω̃2r := Ω ∩ (−2r, 2r)3 instead over Ω2r and since the

normal vector at ∂ Ω̃2r is constant almost everywhere (flat boundary parts). Lebesgue’s dominated
convergence theorem proves the assertion. For Ω = Ω3 the proof even simplifies as we need no
cutting. □

The latter proof, in particular, [3, Lemma 13], shows the following result.

Lemma 2.15 (Gaffney estimate for convex flat domains). Let Ω be convex and piecewise flat, and

let either E ∈ H̊(rot,Ω) ∩ H(div,Ω) or E ∈ H(rot,Ω) ∩ H̊(div,Ω). Then E ∈ H1(Ω) and

| ∇E|2L2(Ω) = | rotE|2L2(Ω) + |divE|2L2(Ω).
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2.3. The De Rham Complex. We intend to apply the latter results to ∇, rot, and div, i.e., to
the classical de Rham complex

(10) L2(Ω) L2(Ω) L2(Ω) L2(Ω).
∇̊

− div

r̊ot

rot

d̊iv

−∇

We consider the following dual pairs

(r̊ot, rot), (∇̊,−div), (d̊iv,−∇)

together with their reduced versions, more precisely: We introduce the densely defined and closed
dual pairs

• ∇̊ : D(∇̊) ⊂ L2(Ω) → L2(Ω), D(∇̊) := H̊1(Ω) := C̊∞(Ω)
H1(Ω)

,

−div = ∇̊
∗
: D(div) ⊂ L2(Ω) → L2(Ω), D(div) = H(div,Ω),

• r̊ot : D(r̊ot) ⊂ L2(Ω) → L2(Ω), D(r̊ot) := H̊(rot,Ω) := C̊∞(Ω)
H(rot,Ω)

,

rot = r̊ot
∗
: D(rot) ⊂ L2(Ω) → L2(Ω), D(rot) = H(rot,Ω),

• d̊iv : D(d̊iv) ⊂ L2(Ω) → L2(Ω), D(d̊iv) := H̊(div,Ω) := C̊∞(Ω)
H(div,Ω)

,

−∇ = d̊iv
∗
: D(∇) ⊂ L2(Ω) → L2(Ω), D(∇) = H1(Ω).

The densely defined and closed reduced dual pairs are then given by

• ̂̊∇ = ι∗N(div)⊥ ∇̊ ιN(∇̊)⊥ : D(
̂̊∇) ⊂ N(∇̊)⊥ → R(∇̊) = N(div)⊥,

−d̂iv = −ι∗
N(∇̊)⊥

div ιN(div)⊥ : D(d̂iv) ⊂ N(div)⊥ → R(div) = N(∇̊)⊥,

• ̂̊rot = ι∗N(rot)⊥ r̊ot ιN(r̊ot)⊥ : D(̂̊rot) ⊂ N(r̊ot)⊥ → R(r̊ot) = N(rot)⊥,

r̂ot = ι∗
N(r̊ot)⊥

rot ιN(rot)⊥ : D(r̂ot) ⊂ N(rot)⊥ → R(rot) = N(r̊ot)⊥,

• ̂̊
div = ι∗N(∇)⊥ d̊iv ιN(d̊iv)⊥ : D(

̂̊
div) ⊂ N(d̊iv)⊥ → R(d̊iv) = N(∇)⊥,

−∇̂ = −ι∗
N(d̊iv)⊥

∇ ιN(∇)⊥ : D(∇̂) ⊂ N(∇)⊥ → R(∇) = N(d̊iv)⊥

with

D(
̂̊∇) = D(∇̊) ∩N(∇̊)⊥, D(d̂iv) = D(div) ∩N(div)⊥,

D(̂̊rot) = D(r̊ot) ∩N(r̊ot)⊥, D(r̂ot) = D(rot) ∩N(rot)⊥,

D(
̂̊
div) = D(d̊iv) ∩N(d̊iv)⊥, D(∇̂) = D(∇) ∩N(∇)⊥.

Note that always N(∇̊) = {0} and R(div) = N(∇̊)⊥ = L2(Ω). Moreover, for Ω with finite volume

we haveN(∇) = R and R(d̊iv) = N(∇)⊥ = L2(Ω)∩R⊥, but for Ω with infinite volumeN(∇) = {0}
and R(d̊iv) = N(∇)⊥ = L2(Ω).

Let us emphasise that

−div ∇̊, −∇̊ div, rot r̊ot, r̊ot rot, − d̊iv∇, −∇ d̊iv, rot r̊ot−∇̊div, r̊ot rot−∇ d̊iv

are selfadjoint and non-negative and that[
0 div

∇̊ 0

]
,

[
0 − rot
r̊ot 0

]
,

[
0 d̊iv
∇ 0

]
are skew-selfadjoint.
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2.4. The Transformation Theorem. Let Ξ ⊂ R3 be another domain and let Φ ∈ C0,1(R3,R3)
be such that its restriction to Ξ, still denoted by

Φ : Ξ → Φ(Ξ) = Ω,

is bi-Lipschitz, bounded, and regular, i.e., Φ ∈ C0,1
bd (Ξ,Ω) and Φ−1 ∈ C0,1

bd (Ω,Ξ) with

JΦ = Φ′ = (∇Φ)⊤, det JΦ > 0.

Such regular bi-Lipschitz transformations Φ will be called admissible. For admissible Φ the inverse
and adjunct matrix of JΦ shall be denoted by

J−1
Φ , adj JΦ := (det JΦ)J

−1
Φ ,

respectively. We denote the composition with Φ by tilde, i.e., for any tensor field ψ we define

ψ̃ := ψ ◦ Φ.

We introduce a new notation

Ḣ = H̊ or Ḣ = H

to handle spaces with and without boundary conditions simultaneously.
In the following, let Φ be admissible.

Theorem 2.16 (transformation theorem). Let u ∈ Ḣ1(Ω), E ∈ Ḣ(rot,Ω), and H ∈ Ḣ(div,Ω).
Then

τ0Φu := ũ ∈ Ḣ1(Ξ) and ∇ τ0Φu = τ1Φ ∇u,

τ1ΦE := J⊤
Φ Ẽ ∈ Ḣ(rot,Ξ) and rot τ1ΦE = τ2Φ rotE,

τ2ΦH := (adj JΦ)H̃ ∈ Ḣ(div,Ξ) and div τ2ΦH = τ3Φ divH

with τ3Φf := (det JΦ)f̃ = (det JΦ)τ
0
Φf ∈ L2(Ξ) for f ∈ L2(Ω). Moroever,

τ0Φ : Ḣ1(Ω) → Ḣ1(Ξ), τ1Φ : Ḣ(rot,Ω) → Ḣ(rot,Ξ),

τ3Φ : L2(Ω) → L2(Ξ), τ2Φ : Ḣ(div,Ω) → Ḣ(div,Ξ)

are topological isomorphisms with norms depending on Ξ and JΦ. The inverse operators and the
L2-adjoints, i.e., the Hilbert space adjoints of τ qΦ : L2(Ω) → L2(Ξ), q ∈ {0, 1, 2, 3}, are given by

(τ qΦ)
−1 = τ qΦ−1 , (τ qΦ)

∗ = τN−q
Φ−1 .

A proof for differential forms can be found in the appendix of [5].

Proof. Recall Rademacher’s theorem on Lipschitz functions.
• For u ∈ Ċ0,1(Ω) we have by Rademacher’s theorem ũ ∈ Ċ0,1(Ξ) and the standard chain rule

(ũ)′ = ũ′Φ′ holds, i.e.,

∇ ũ = ∇Φ∇̃u = J⊤
Φ ∇̃u.(11)

For u ∈ Ḣ1(Ω) we pick a sequence (uℓ) ⊂ Ċ0,1(Ω) such that uℓ → E in Ḣ1(Ω). Then ũℓ → Ẽ and

∇̃uℓ → ∇̃u in L2(Ξ) by the standard transformation theorem. We have ũℓ ∈ Ċ0,1(Ξ) ⊂ Ḣ1(Ξ) by
(11) with

ũℓ → ũ, ∇ ũℓ = J⊤
Φ ∇̃uℓ → J⊤

Φ ∇̃u in L2(Ξ).

Since ∇̇ : Ḣ1(Ξ) ⊂ L2(Ξ) → L2(Ξ) is closed, we conclude ũ ∈ Ḣ1(Ξ) and

∇ ũ = J⊤
Φ ∇̃u.

• Let E ∈ Ċ0,1(Ω). Then Ẽ ∈ Ċ0,1(Ξ) and

J⊤
Φ Ẽ = ∇ΦẼ = [∇Φ1 ∇Φ2 ∇Φ3]Ẽ =

∑
n

Ẽn ∇Φn.
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As ∇Φn ∈ R(∇) ⊂ N(rot) ⊂ H(rot,Ξ) we conclude J⊤
Φ Ẽ ∈ H(rot,Ξ) and also J⊤

Φ Ẽ ∈ Ḣ(rot,Ξ)
by mollification as well as

rot(J⊤
Φ Ẽ) =

∑
n

∇ Ẽn ×∇Φn =
∑
n

(J⊤
Φ ∇̃En)×∇Φn

=
∑
n

(
[∇Φ1 ∇Φ2 ∇Φ3] ∇̃En

)
×∇Φn(12)

=
∑
n,m

∂̃mEn ∇Φm ×∇Φn =
∑
n<m

(∂̃mEn − ∂̃nEm)∇Φm ×∇Φn

= [∇Φ2 ×∇Φ3 ∇Φ3 ×∇Φ1 ∇Φ1 ×∇Φ2] r̃otE = (adjJΦ) r̃otE.

For E ∈ Ḣ(rot,Ω) we pick a sequence (Eℓ) ⊂ Ċ0,1(Ω) such that Eℓ → E in H(rot,Ω). Then

Ẽℓ → Ẽ and r̃otEℓ → r̃otE in L2(Ξ). Hence by (12) J⊤
Φ Ẽ

ℓ ∈ Ḣ(rot,Ξ) with

J⊤
Φ Ẽ

ℓ → J⊤
Φ Ẽ, rot(J⊤

Φ Ẽ
ℓ) = (adj JΦ) r̃otEℓ → (adj JΦ) r̃otE in L2(Ξ).

Since ˙rot : Ḣ(rot,Ξ) ⊂ L2(Ξ) → L2(Ξ) is closed, we conclude J⊤
Φ Ẽ ∈ Ḣ(rot,Ξ) and

rot(J⊤
Φ Ẽ) = (adjJΦ) r̃otE.

• Let H ∈ Ċ0,1(Ω). Then H̃ ∈ Ċ0,1(Ξ) and

(adj JΦ)H̃ = [∇Φ2 ×∇Φ3 ∇Φ3 ×∇Φ1 ∇Φ1 ×∇Φ2]H̃ =
∑

(n,m,l)

H̃n ∇Φm ×∇Φl,

cf. (12), where the summation is over the three even permutations (n,m, l) of (1, 2, 3). As we have

∇Φm ×∇Φl = rot(Φm ∇Φl) ∈ R(rot) ⊂ N(div) ⊂ H(div,Ξ) we conclude (adj JΦ)H̃ ∈ H(div,Ξ)

and thus also (adj JΦ)H̃ ∈ Ḣ(div,Ξ) by mollification as well as

div
(
(adj JΦ)H̃

)
=

∑
(n,m,l)

∇ H̃n · (∇Φm ×∇Φl) =
∑

(n,m,l)

(J⊤
Φ ∇̃Hn) · (∇Φm ×∇Φl)

=
∑

(n,m,l)

(
[∇Φ1 ∇Φ2 ∇Φ3] ∇̃Hn

)
· (∇Φm ×∇Φl)(13)

=
∑

(n,m,l),k

∂̃kHn ∇Φk · (∇Φm ×∇Φl)

k=n
= (det∇Φ) d̃ivH = (det JΦ) d̃ivH.

For H ∈ Ḣ(div,Ω) we pick a sequence (Hℓ) ⊂ Ċ0,1(Ω) such that Hℓ → H in H(div,Ω). Then

H̃ℓ → H̃ and d̃ivHℓ → d̃ivH in L2(Ξ). By (13) we get (adj JΦ)H̃ℓ ∈ Ḣ(div,Ξ) and also

(adj JΦ)H̃ℓ → (adj JΦ)H̃ and div
(
(adj JΦ)H̃ℓ

)
= (det JΦ)d̃ivHℓ → (det JΦ)d̃ivH in L2(Ξ). Since

˙div : Ḣ(div,Ξ) ⊂ L2(Ξ) → L2(Ξ) is closed, we conclude that it holds (adj JΦ)H̃ ∈ Ḣ(div,Ξ) and

div
(
(adj JΦ)H̃

)
= (det JΦ)d̃ivH.

• Concerning the inverse operators and L2-adjoints we consider, e.g., q = 1. Then using
JΦ−1 = J−1

Φ ◦ Φ−1 we compute

τ1Φ−1τ1ΦE = τ1Φ−1J⊤
Φ Ẽ = J⊤

Φ−1

(
(J⊤

Φ Ẽ) ◦ Φ−1
)
=

(
J−⊤
Φ J⊤

Φ Ẽ) ◦ Φ−1 = E,

i.e., (τ1Φ)
−1 = τ1Φ−1 , and

⟨τ1ΦE,Ψ⟩L2(Ξ) = ⟨J⊤
Φ Ẽ,Ψ⟩L2(Ξ) =

〈
E, (det JΦ−1)(JΦΨ) ◦ Φ−1

〉
L2(Ω)

=
〈
E, (det JΦ−1)J−1

Φ−1(Ψ ◦ Φ−1)
〉
L2(Ω)

=
〈
E, (adj JΦ−1)(Ψ ◦ Φ−1)

〉
L2(Ω)

= ⟨E, τ2Φ−1Ψ⟩L2(Ω),

i.e., (τ1Φ)
∗ = τ2Φ−1 . □
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Remark 2.17 (transformation theorem). For the divergence there is also a duality argument

leading to the result of Theorem 2.16. For this, let H ∈ H(div,Ω) and pick some ψ ∈ C̊0,1(Ξ).

Then ϕ := ψ ◦ Φ−1 ∈ C̊0,1(Ω) and ϕ̃ = ψ. By (11) we compute

⟨H,∇ϕ⟩L2(Ω) = −⟨divH,ϕ⟩L2(Ω) = −
〈
(det JΦ)d̃ivH,ψ

〉
L2(Ξ)

=
〈
(det JΦ)H̃, ∇̃ϕ

〉
L2(Ξ)

=
〈
(det JΦ)H̃, J

−⊤
Φ ∇ ϕ̃

〉
L2(Ξ)

=
〈
(adj JΦ)H̃,∇ψ

〉
L2(Ξ)

.

Hence, (adj JΦ)H̃ ∈ H(div,Ξ) and div
(
(adj JΦ)H̃

)
= (det JΦ)d̃ivH.

2.4.1. Transformation Theorem for Maxwell Operators. Often material properties/constitutive
laws (dielectricity and permeability) enter Maxwell’s equations. Hence we introduce tensor fields
ε, µ ∈ L∞(Ω,R3×3) which are symmetric and positive with respect to the L2(Ω)-inner product.
Such matrix fields ε, µ shall be called admissible. A positive function ν ∈ L∞(Ω,R3) is also called
admissible.

In Section 2.3 we introduced the primal and dual vector de Rham Hilbert complex (10). This
complex can easily be modified by inserting material properties, i.e., admissible tensor-valued
fields ε, µ, ν, θ. Then we arrive at the primal and dual vector de Rham Hilbert complex

(14) L2ν(Ω) L2ε(Ω) L2µ(Ω) L2θ(Ω),
∇̊

−ν−1 div ε

µ−1 r̊ot

ε−1 rot

θ−1 d̊iv µ

−∇

consisting again of densely defined and closed linear operators and their adjoints.

Corollary 2.18 (transformation theorem for Maxwell operators). Let ε be admissible and let

E ∈ H̊(rot,Ω) ∩ ε−1H(div,Ω) resp. E ∈ H(rot,Ω) ∩ ε−1H̊(div,Ω). Then

τ1ΦE ∈ H̊(rot,Ξ) ∩ ε−1
Φ H(div,Ξ) resp. τ1ΦE ∈ H(rot,Ξ) ∩ ε−1

Φ H̊(div,Ξ)

and it holds

rot τ1ΦE = τ2Φ rotE, div εΦτ
1
ΦE = τ3Φ div εE, εΦτ

1
Φ = τ2Φε

with εΦ := τ2Φετ
1
Φ−1 = (det JΦ)J

−1
Φ ε̃J−⊤

Φ = (adjJΦ)ε̃J
−⊤
Φ . Moreover,

τ1Φ : H̊(rot,Ω) ∩ ε−1H(div,Ω) → H̊(rot,Ξ) ∩ ε−1
Φ H(div,Ξ)

resp. τ1Φ : H(rot,Ω) ∩ ε−1H̊(div,Ω) → H(rot,Ξ) ∩ ε−1
Φ H̊(div,Ξ)

is a topological isomorphism with norm depending on Ξ, ε, and JΦ. Its inverse is given by τ1Φ−1 .

Proof. Using Theorem 2.16 we compute for εE ∈ Ḣ(div,Ω)

τ3Φ div εE = div τ2ΦεE = div τ2Φετ
1
Φ−1τ1ΦE = div εΦτ

1
ΦE

with εΦ = τ2Φετ
1
Φ−1 = (adjJΦ)ε̃τ1Φ−1 = (adjJΦ)ε̃J

−⊤
Φ = (det JΦ)J

−1
Φ ε̃J−⊤

Φ . □

Remark 2.19 (transformation theorem). More explicitly, in Theorem 2.16 and Corollary 2.18 it
holds

∀u ∈ Ḣ1(Ω) ∇ ũ = J⊤
Φ ∇̃u,

∀E ∈ Ḣ(rot,Ω) rot(J⊤
Φ Ẽ) = (adjJΦ) r̃otE,

∀H ∈ Ḣ(div,Ω) div
(
(adj JΦ) H̃

)
= (det JΦ) d̃ivH,

∀E ∈ ε−1Ḣ(div,Ω) div(εΦJ
⊤
Φ Ẽ) = (detJΦ) d̃iv εE.
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2.4.2. Transformation Theorem for Laplacians.

Corollary 2.20 (transformation theorem for Laplacians). Let ε and ν be admissible. Moreover,

let u ∈ D(divΩ ε ∇̊Ω) resp. u ∈ D(d̊ivΩ ε∇Ω), i.e.,

u ∈ H̊1(Ω), ε∇u ∈ H(div,Ω) resp. u ∈ H1(Ω), ε∇u ∈ H̊(div,Ω).

Then τ0Φu ∈ D(divΞ εΦ ∇̊Ξ) resp. τ
0
Φu ∈ D(d̊ivΞ εΦ ∇Ξ), i.e.,

τ0Φu ∈ H̊1(Ξ), εΦ ∇ τ0Φu ∈ H(div,Ξ) resp. τ0Φu ∈ H1(Ξ), εΦ ∇ τ0Φu ∈ H̊(div,Ξ),

and ν−1
Φ div εΦ ∇ τ0Φu = τ0Φν

−1 div ε∇u with νΦ := τ3Φντ
0
Φ−1 = (det JΦ)ν̃. Moreover,

τ0Φ : D(divΩ ε ∇̊Ω) → D(divΞ εΦ ∇̊Ξ)

resp. τ0Φ : D(d̊ivΩ ε∇Ω) → D(d̊ivΞ εΦ ∇Ξ)

is a topological isomorphism with norm depending on Ξ, ε, and JΦ. Its inverse is given by τ0Φ−1 .

Proof. Let E := ∇u. Then E ∈ H̊(rot,Ω) ∩ ε−1H(div,Ω) resp. E ∈ H(rot,Ω) ∩ ε−1H̊(div,Ω).

Theorem 2.16 and Corollary 2.18 show τ0Φu ∈ H̊1(Ξ) resp. τ0Φu ∈ H1(Ξ) with τ1Φ ∇u = ∇ τ0Φu and

τ1ΦE ∈ H̊(rot,Ξ) ∩ ε−1
Φ H(div,Ξ) resp. τ1ΦE ∈ H(rot,Ξ) ∩ ε−1

Φ H̊(div,Ξ)

with τ0Φν
−1 div ε∇u = ν−1

Φ τ3Φ div ε∇u = ν−1
Φ div εΦτ

1
Φ ∇u = ν−1

Φ div εΦ ∇ τ0Φu. □

2.4.3. Transformation Theorems for Vector Laplacians.

Corollary 2.21 (transformation theorem for vector Laplacians). Let ε and µ be admissible. More-
over, let E ∈ D(rotΩ ε

−1 r̊otΩ) resp. E ∈ D(r̊otΩ ε
−1 rotΩ), i.e.,

E ∈ H̊(rot,Ω), ε−1 rotE ∈ H(rot,Ω) resp. E ∈ H(rot,Ω), ε−1 rotE ∈ H̊(rot,Ω).

Then τ1ΦE ∈ D(rotΞ ε
−1
Φ r̊otΞ) resp. τ

1
ΦE ∈ D(r̊otΞ ε

−1
Φ rotΞ), i.e.,

τ1ΦE ∈ H̊(rot,Ξ), ε−1
Φ rot τ1ΦE ∈ H(rot,Ξ) resp. τ1ΦE ∈ H(rot,Ξ), ε−1

Φ rot τ1ΦE ∈ H̊(rot,Ξ),

and µ−1
Φ rot ε−1

Φ rot τ1ΦE = τ1Φµ
−1 rot ε−1 rotE Moreover,

τ1Φ : D(rotΩ ε
−1 r̊otΩ) → D(rotΞ ε

−1
Φ r̊otΞ)

resp. τ1Φ : D(r̊otΩ ε
−1 rotΩ) → D(r̊otΞ ε

−1
Φ rotΞ)

is a topological isomorphism with norm depending on Ξ, ε, and JΦ. Its inverse is given by τ1Φ−1 .

Proof. Let H := ε−1 rotE. Then H ∈ ε−1H̊(div,Ω)∩H(rot,Ω) resp. H ∈ ε−1H(div,Ω)∩H̊(rot,Ω).
Theorem 2.16 shows τ1ΦE ∈ H̊(rot,Ξ) resp. τ1ΦE ∈ H(rot,Ξ) with τ2Φ rotE = rot τ1ΦE and Corollary
2.18 yields

τ1ΦH ∈ ε−1
Φ H̊(div,Ξ) ∩ H(rot,Ξ) resp. τ1ΦH ∈ ε−1

Φ H(div,Ξ) ∩ H̊(rot,Ξ)

with τ1Φµ
−1 rot ε−1 rotE = µ−1

Φ τ2Φ rot ε−1 rotE = µ−1
Φ rot τ1Φε

−1τ2Φ−1τ2Φ rotE = µ−1
Φ rot ε−1

Φ rot τ1ΦE

as ε−1
Φ = τ1Φε

−1τ2Φ−1 . Note that τ1ΦH = τ1Φε
−1 rotE = ε−1

Φ τ2Φ rotE = ε−1
Φ rot τ1ΦE. □

Corollary 2.22 (transformation theorem for vector Laplacians). Let ε and ν−1 be admissible.

Moreover, let E ∈ D(∇Ω ν
−1 d̊ivΩ ε) resp. E ∈ D(∇̊Ω ν

−1 divΩ ε), i.e.,

εE ∈ H̊(div,Ω), ν−1 div εE ∈ H1(Ω) resp. εE ∈ H(div,Ω), ν−1 div εE ∈ H̊1(Ω).

Then τ1ΦE ∈ D(∇Ξ ν
−1
Φ d̊ivΞ εΦ) resp. τ

1
ΦE ∈ D(∇̊Ξ ν

−1
Φ divΞ εΦ), i.e.,

εΦτ
1
ΦE ∈ H̊(div,Ξ), ν−1

Φ div εΦτ
1
ΦE ∈ H1(Ξ)

resp. εΦτ
1
ΦE ∈ H(div,Ξ), ν−1

Φ div εΦτ
1
ΦE ∈ H̊1(Ξ),

and ∇ ν−1
Φ div εΦτ

1
ΦE = τ1Φ ∇ ν−1 div εE. Moreover,

τ1Φ : D(∇Ω ν
−1 d̊ivΩ ε) → D(∇Ξ ν

−1
Φ d̊ivΞ εΦ)

resp. τ1Φ : D(∇̊Ω ν
−1 divΩ ε) → D(∇̊Ξ ν

−1
Φ divΞ εΦ)



14 DIRK PAULY

is a topological isomorphism with norm depending on Ξ, ε, ν−1, and JΦ. Its inverse is given by
τ1Φ−1 .

Proof. Let u := ν−1 div εE. Then u ∈ H1(Ω) resp. u ∈ H̊1(Ω). Theorem 2.16 and Corollary 2.18

show τ0Φu ∈ H̊1(Ξ) resp. τ0Φu ∈ H1(Ξ) with τ1Φ ∇u = ∇ τ0Φu and

εΦτ
1
ΦE ∈ H̊(div,Ξ) resp. εΦτ

1
ΦE ∈ H(div,Ξ)

with τ1Φ ∇ ν−1 div εE = ∇ τ0Φν
−1 div εE = ∇ ν−1

Φ τ3Φ div εE = ∇ ν−1
Φ div εΦτ

1
ΦE. □

Corollary 2.23 (transformation theorem for vector Laplacians). Let ε, µ, and ν−1 be admissible.
Moreover, let

E ∈ D(ε−1 rotΩ µ
−1 r̊otΩ −∇̊Ω ν

−1 divΩ ε)

resp. H ∈ D(µ−1 r̊otΩ ε
−1 rotΩ −∇Ω ν

−1 d̊ivΩ µ),

i.e., E ∈ H̊(rot,Ω) ∩ ε−1H(div,Ω) and µ−1 rotE ∈ H(rot,Ω), ν−1 div εE ∈ H̊1(Ω)

resp. H ∈ H(rot,Ω) ∩ µ−1H̊(div,Ω) and ε−1 rotH ∈ H̊(rot,Ω), ν−1 divµH ∈ H1(Ω). Then

τ1ΦE ∈ D(ε−1
Φ rotΞ µ

−1
Φ r̊otΞ −∇̊Ξ ν

−1
Φ divΞ εΦ)

resp. τ1ΦH ∈ D(µ−1
Φ r̊otΞ ε

−1
Φ rotΞ −∇Ξ ν

−1
Φ d̊ivΞ µΦ),

i.e., τ1ΦE ∈ H̊(rot,Ξ) ∩ ε−1
Φ H(div,Ξ) and µ−1

Φ rot τ1ΦE ∈ H(rot,Ξ), ν−1
Φ div εΦτ

1
ΦE ∈ H̊1(Ξ) resp.

τ1ΦH ∈ H(rot,Ξ) ∩ µ−1
Φ H̊(div,Ξ) and ε−1

Φ rot τ1ΦH ∈ H̊(rot,Ξ), ν−1
Φ div εΦτ

1
ΦH ∈ H1(Ξ) as well as

(ε−1
Φ rotµ−1

Φ rot−∇ ν−1
Φ div εΦ)τ

1
Φ = τ1Φ(ε

−1 rotµ−1 rot−∇ ν−1 div ε).

Moreover,

τ1Φ : D(ε−1 rotΩ µ
−1 r̊otΩ −∇̊Ω ν

−1 divΩ ε) → D(ε−1
Φ rotΞ µ

−1
Φ r̊otΞ −∇̊Ξ ν

−1
Φ divΞ εΦ)

resp. τ1Φ : D(µ−1 r̊otΩ ε
−1 rotΩ −∇Ω ν

−1 d̊ivΩ µ) → D(µ−1
Φ r̊otΞ ε

−1
Φ rotΞ −∇Ξ ν

−1
Φ d̊ivΞ µΦ)

is a topological isomorphism with norm depending on Ξ, ε, µ, ν−1, and JΦ with inverse τ1Φ−1 .

Proof. Corollary 2.21 and Corollary 2.22 yield the results. □

2.5. The De Rham Complex under Lipschitz Transformations.

2.5.1. Closed Ranges under Lipschitz Transformations. Recall Section 2.4 and suppose that we
have an admissible bi-Lipschitz transformation Φ : Ξ → Φ(Ξ) = Ω. We consider, e.g.,

rotΩ : D(rotΩ) ⊂ L2(Ω) → L2(Ω), rotΞ : D(rotΞ) ⊂ L2(Ξ) → L2(Ξ).

Lemma 2.24 (range invariance). R(rotΩ) is closed if and only if R(rotΞ) is closed. The same

holds for R(∇Ω), R(divΩ), and R(∇̊Ω), R(r̊otΩ), R(d̊ivΩ).

Proof. Assume that R(rotΞ) is closed and let En ∈ D(rotΩ) = H(rot,Ω) be a sequence such that
rotEn → F in L2(Ω). By Theorem 2.16 τ1ΦEn ∈ H(rot,Ξ) and rot τ1ΦEn = τ2Φ rotEn → τ2ΦF
in L2(Ξ). As R(rotΞ) is closed we get τ2ΦF = rotH ∈ R(rotΞ) with H ∈ D(rotΞ) = H(rot,Ξ).
Then τ1Φ−1H ∈ H(rot,Ω) = D(rotΩ) and rot τ1Φ−1H = τ2Φ−1 rotH = F by Theorem 2.16 and thus
F ∈ R(rotΩ).

Similarly, we see the corresponding results for R(∇Ω) and R(divΩ). Duality (Lemma 2.1) yields

the assertions for R(∇̊Ω), R(r̊otΩ), R(d̊ivΩ). □

2.5.2. Dirichlet/Neumann fields under Lipschitz Transformations. In Section 2.3 and Section 2.4.1
we introduced the primal and dual vector de Rham Hilbert complexes (10) and (14). According
to this we define the Dirichlet and Neumann fields (cohomology groups) by

HD,ε(Ω) = N(r̊ot) ∩N(div ε), HN,µ(Ω) = N(rot) ∩N(d̊ivµ).

Lemma 2.25 (dimension invariance of Dirichlet/Neumann fields). The dimension of the Dirich-
let/Neumann fields is independent

• of the material properties
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• and under bi-Lipschitz transformations of the domain.

More precisely: Let Φ : Ξ → Φ(Ξ) = Ω be an admissible bi-Lipschitz transformation and let ε and
µ be admissible. Then

dimHD/N,ε(Ω) = dimHD/N,id(Ω) = dimHD/N,id(Ξ) = dimHD/N,µ(Ξ).

Proof. Independence of ε is well known, cf. [24, Lemma 5.1, Remark 6.11] for a general proof. For
convenience and as an example we give here a particular proof of

dimHD,µ(Ω) = dimHD,ε(Ω).

For A := ∇̊ and A∗ = −div the Helmholtz type decomposition (2) reads

L2ε(Ω) = R(∇̊)⊕L2
ε(Ω) N(div ε).

By the complex property R(∇̊) ⊂ N(r̊ot) we have the refinement

N(r̊ot) = R(∇̊)⊕L2
ε(Ω) HD,ε(Ω).(15)

cf. (6). Let us denote the orthogonal projector onto N(div ε) resp. HD,ε(Ω) by π. Then

πH : HD,µ(Ω) → HD,ε(Ω); H → πH

is well defined and injective as ⟨µH,H⟩L2(Ω) = 0 for H ∈ HD,µ(Ω) ⊂ N(divµ) with πH = 0, i.e.,

H ∈ R(∇̊). Hence dimHD,µ(Ω) ≤ dimHD,ε(Ω) and by symmetry dimHD,µ(Ω) = dimHD,ε(Ω).
Now we show the independence under Lipschitz transformations. Let E ∈ HD,ε(Ω). Corollary

2.18 yields

τ1ΦE ∈ N(r̊ot) ∩N(div εΦ) = HD,εΦ(Ξ).

Thus

τ1Φ : HD,ε(Ω) → HD,εΦ(Ξ)

is well defined and injective. Hence dimHD,ε(Ω) ≤ HD,εΦ(Ξ) = HD,µ(Ξ) by the previous indepen-
dence on µ. Symmetry yields dimHD,ε(Ω) = HD,µ(Ξ).

The same (similar) proofs work for the Neumann fields as well. □

Lemma 2.26 (trivial Dirichlet/Neumann fields). Let Ω be convex and either bounded or of infinite
volume. Then HD,id(Ω) = HN,id(Ω) = {0}

Note that the result is well known for bounded Ω.

Proof. Let E ∈ HD,id(Ω)∪HN,id(Ω). Lemma 2.14 yields that E ∈ H1(Ω) is constant. Hence E = 0
due to the boundary conditions in case Ω is bounded and E = 0 due to integrability in case Ω is
unbounded. □

3. Main Results

3.1. Friedrichs/Gaffney Type Estimates and Closed Ranges for Cylinders.

3.1.1. Friedrichs/Gaffney Type Estimates.

Lemma 3.1 (tangential Friedrichs/Gaffney estimate for rot and div). Let Ω2 be as above and let

E ∈ H̊(rot,Ω2) ∩ H(div,Ω2). Then E ∈ H1(Ω2) and

|E|2L2(Ω2)
≤ c2d| ∇E|2L2(Ω2)

= c2d
(
| rotE|2L2(Ω2)

+ |divE|2L2(Ω2)

)
.

Ω2 can be replaced by Ω3.

Proof. As Ω2 is convex Lemma 2.14 yields E ∈ H1(Ω2) and

| ∇E|2L2(Ω2)
= | rotE|2L2(Ω2)

+ |divE|2L2(Ω2)
.

The tangential boundary condition implies E1 = E3 = 0 at R×{0, d}× (0, d) and E1 = E2 = 0 at
R× (0, d)× {0, d}, in particular, E1 = E3 = 0 at R× {0} × (0, d) and E2 = 0 at R× (0, d)× {0}.
Hence Friedrichs’ estimate (Lemma 2.9 and Remark 2.11) shows the assertion. □
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Lemma 3.2 (normal Friedrichs/Gaffney estimate for rot and div). Let Ω3 be as above and let

E ∈ H(rot,Ω3) ∩ H̊(div,Ω3). Then E ∈ H1(Ω3) and

|E|2L2(Ω3)
≤ c2d| ∇E|2L2(Ω3)

= c2d
(
| rotE|2L2(Ω3)

+ |divE|2L2(Ω3)

)
.

Proof. We copy the proof of Lemma 3.1 with the only difference that now the normal boundary
condition implies E1 = 0 at {0, d} × (0, d)2 and E2 = 0 at (0, d) × {0, d} × (0, d) and E3 = 0 at
(0, d)2 × {0, d}. □

Lemma 2.9, Lemma 3.1, and Lemma 3.2 show that the number of bounded directions of the
domain for which the L2-Friedrichs/Gaffney type estimates for∇, rot, and div remain valid depends
essentially on the boundary conditions. Let us summarise.

Theorem 3.3 (Friedrichs/Gaffney estimates for ∇, rot, and div). Let u ∈ H1(Ω1) with boundary

condition u|R2×{0} = 0 and let E ∈ H̊(rot,Ω2)∩H(div,Ω2) and H ∈ H(rot,Ω3)∩ H̊(div,Ω3). Then

E ∈ H1(Ω2) and H ∈ H1(Ω3) and it holds:

• |u|L2(Ω1) ≤ cd| ∇u|L2(Ω1) (Ω1 bd in one dir)

• |E|L2(Ω2) ≤ cd| ∇E|L2(Ω2) = cd
(
| rotE|2L2(Ω2)

+ |divE|2L2(Ω2)

)1/2
(Ω2 bd in two dir)

• |H|L2(Ω3) ≤ cd| ∇H|L2(Ω3) = cd
(
| rotH|2L2(Ω3)

+ |divH|2L2(Ω3)

)1/2
(Ω3 bd in all dir)

Ω1 can be replaced by Ω2 or Ω3, and Ω2 can be replaced by Ω3.

3.1.2. Rotation in Ω2.

Theorem 3.4 (Friedrichs estimate for rot). Let the dual pair (r̊ot, rot) be considered in Ω2 and

let E ∈ D(̂̊rot) ∪D(r̂ot). Then E ∈ H1(Ω2) and

|E|L2(Ω2) ≤ cd| rotE|L2(Ω2), | rotE|L2(Ω2) = | ∇E|L2(Ω2).

Ω2 can be replaced by Ω3.

Proof. Recall D(̂̊rot) = D(r̊ot) ∩ R(rot) ⊂ D(r̊ot) ∩ N(div) ⊂ H̊(rot,Ω2) ∩ H(div,Ω2) and apply

Lemma 3.1 to E ∈ D(̂̊rot). Moreover, Lemma 2.1 shows the result4 for E ∈ D(r̂ot) with the same
constant. □

Theorem 3.5 (closed range of rot). Let the dual pair (r̊ot, rot) be considered in Ω2. Then R(r̊ot)
and R(rot) are closed. Moreover,

̂̊rot−1

: R(r̊ot) → D(̂̊rot), r̂ot
−1

: R(rot) → D(r̂ot)

are bounded. Ω2 can be replaced by Ω3.

Proof. Theorem 3.4 and Lemma 2.1 yield the assertions. □

3.1.3. Gradient and Divergence in Ω1.

Theorem 3.6 (Friedrichs estimate for ∇ and div). Let the dual pair (∇̊,− div) be considered in

Ω1 and let u ∈ D(
̂̊∇) and H ∈ D(d̂iv). Then H ∈ H1(Ω1) and

|u|L2(Ω1) ≤ cd| ∇u|L2(Ω1), |H|L2(Ω1) ≤ cd|divH|L2(Ω1).

Ω1 can be replaced by Ω2 or Ω3.

Proof. Recall D(
̂̊∇) = D(∇̊) ∩ R(div) = H̊1(Ω1) and apply Lemma 2.9 to u ∈ D(

̂̊∇). Lemma 2.1

shows the result5 for H ∈ D(d̂iv) with the same constant. □

4For completeness we note that D(r̂ot) = D(rot) ∩R(r̊ot) ⊂ D(rot) ∩N(d̊iv) ⊂ H(rot,Ω2) ∩ H̊(div,Ω2).
5For completeness we note that D(d̂iv) = D(div) ∩R(∇̊) ⊂ D(div) ∩N(r̊ot) ⊂ H(div,Ω1) ∩ H̊(rot,Ω1).
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Theorem 3.7 (closed range of ∇ and div). Let the dual pair (∇̊,−div) be considered in Ω1. Then

R(∇̊) and R(div) are closed. Moreover,̂̊∇−1

: R(∇̊) → D(
̂̊∇), d̂iv

−1
: R(div) → D(d̂iv)

are bounded. Ω1 can be replaced by Ω2 or Ω3.

Proof. Apply Theorem 3.6 and Lemma 2.1. □

3.1.4. Gradient and Divergence in Ω3.

Theorem 3.8 (Friedrichs estimate for ∇ and div). Let the dual pair (d̊iv,−∇) be considered in

Ω3 and let H ∈ D(
̂̊
div) and u ∈ D(∇̂). Then H ∈ H1(Ω3) and

|H|L2(Ω3) ≤ cd|divH|L2(Ω3), |u|L2(Ω3) ≤ cd| ∇u|L2(Ω3).

Proof. Recall D(
̂̊
div) = D(d̊iv) ∩ R(∇) ⊂ D(d̊iv) ∩ N(rot) ⊂ H̊(div,Ω3) ∩ H(rot,Ω3) and apply

Lemma 3.2 toH ∈ D(
̂̊
div). Lemma 2.1 shows the result6 for u ∈ D(∇̂) with the same constant. □

Remark 3.9 (Friedrichs/Poincaré estimate for ∇). Theorem 3.8 gives for u the well-known
Poincaré estimate for bounded convex domains, cf. [27].

Theorem 3.10 (closed range of ∇ and div). Let the dual pair (d̊iv,−∇) be considered in Ω3.

Then R(d̊iv) and R(∇) are closed. Moreover,̂̊
div

−1

: R(d̊iv) → D(
̂̊
div), ∇̂

−1
: R(∇) → D(∇̂)

are bounded.

Proof. Use Theorem 3.8 and Lemma 2.1. □

3.1.5. Summing Up the Friedrichs/Gaffney Estimates.

Corollary 3.11 (Friedrichs/Gaffney estimates for ∇, rot, and div). Let

u ∈ H̊1(Ω1), B ∈ H̊(rot,Ω1) ∩ H(div,Ω1),

E ∈ H̊(rot,Ω2) ∩ H(div,Ω2), D ∈ H(rot,Ω2) ∩ H̊(div,Ω2),

H ∈ H(rot,Ω3) ∩ H̊(div,Ω3), v ∈ H1(Ω3) ∩ R⊥

with divE = divD = 0 and rotH = rotB = 0. Then B ∈ H1(Ω1), E,D ∈ H1(Ω2), and
H ∈ H1(Ω3) and it holds:

• |u|L2(Ω1) ≤ cd| ∇u|L2(Ω1) (Ω1 bd in one dir)

• |B|L2(Ω1) ≤ cd| ∇B|L2(Ω1) = cd|divB|L2(Ω1) (Ω1 bd in one dir)

• |E|L2(Ω2) ≤ cd| ∇E|L2(Ω2) = cd| rotE|L2(Ω2) (Ω2 bd in two dir)

• |D|L2(Ω2) ≤ cd| ∇D|L2(Ω2) = cd| rotD|L2(Ω2) (Ω2 bd in two dir)

• |H|L2(Ω3) ≤ cd| ∇H|L2(Ω3) = cd|divH|L2(Ω3) (Ω3 bd in all dir)

• |v|L2(Ω3) ≤ cd| ∇ v|L2(Ω3) (Ω3 bd in all dir)

All respective ranges are closed. Ω1 can be replaced by Ω2 or Ω3, and Ω2 can be replaced by Ω3.

Proof. The assertions for u, v, E, and H follow by Theorem 3.3 and Theorem 3.8.
For B we have by Lemma 2.14 B ∈ H1(Ω1) and | ∇B|L2(Ω1) = |divB|L2(Ω1). Moreover, by (15),

Theorem 3.7, and Lemma 2.26

B ∈ D(divΩ1
) ∩N(r̊otΩ1

) = D(divΩ1
) ∩

(
R(∇̊Ω1)⊕L2(Ω) HD,id(Ω1)

)
= D(divΩ1

) ∩R(∇̊Ω1
) = D(d̂ivΩ1

),

6For completeness we note that D(∇̂) = D(∇) ∩R(d̊iv) = H1(Ω3) ∩ R⊥.
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and thus by Theorem 3.6 |B|L2(Ω1) ≤ cd|divB|L2(Ω1).

For D we have by Lemma 2.14 D ∈ H1(Ω2) and | ∇D|L2(Ω2) = | rotD|L2(Ω2). Moreover, simliar
to (15), and by Theorem 3.5 and Lemma 2.26

D ∈ D(rotΩ2
) ∩N(d̊ivΩ2

) = D(rotΩ2
) ∩

(
R(r̊otΩ2

)⊕L2(Ω) HN,id(Ω2)
)

= D(rotΩ2
) ∩R(r̊otΩ2

) = D(r̂otΩ2
),

and thus by Theorem 3.4 |D|L2(Ω2) ≤ cd| rotD|L2(Ω2). □

3.1.6. Spectrum Around the Origin. Recall Section 2.3 and Remark 2.4.

• In Ω1, Ω2 or Ω3 we consider the selfadjoint and non-negative operators

T1,D := −div ∇̊, T1,N := −∇̊div,

and the skew-selfadjoint operator S1 :=

[
0 div

∇̊ 0

]
.

• In Ω2 or Ω3 we consider the selfadjoint and non-negative operators

T2,D := rot r̊ot, T2,N := r̊ot rot, T2 := rot r̊ot−∇̊div,

and the skew-selfadjoint operator S2 :=

[
0 − rot
r̊ot 0

]
.

• In Ω3 we consider the selfadjoint and non-negative operators

T3,D := − d̊iv∇, T3,N := −∇ d̊iv, T3 := r̊ot rot−∇ d̊iv,

and the skew-selfadjoint operator S3 :=

[
0 d̊iv
∇ 0

]
.

Let

T ∈ {T1,D,T1,N ,T2,D,T2,N ,T2,T3,D,T3,N ,T3,S1,S2,S3}.
By the latter results, cf. Corollary 3.11, the range R(T) is closed. Hence we have the following
results about the spectrum of T.

Corollary 3.12. Lemma 2.5, Lemma 2.6, and Lemma 2.8 hold with cT = cd

3.2. The Maxwell Operator in Lipschitz Cylinders. From now on let ε, µ, and ν, θ be
admissible. We recall the de Rham complex (14). Picking Ξ ∈ {Ω1,Ω2,Ω3} we obtain the following
result for Lipschitz cylinders.

3.2.1. Closed Ranges.

Theorem 3.13 (closed range of ∇ and div). Let Ω allow for an admissible bi-Lipschitz transfor-

mation Φ : Ω1 → Φ(Ω1) = Ω and consider the dual pair (∇̊Ω,−divΩ) in Ω. Then R(∇̊Ω) and
R(divΩ) are closed. Moreover,

̂̊∇−1

Ω : R(∇̊Ω) → D(
̂̊∇Ω), d̂iv

−1

Ω : R(divΩ) → D(d̂ivΩ)

are bounded. Ω1 can be replaced by Ω2 or Ω3.

Proof. Combine Lemma 2.24, Theorem 3.7, and Lemma 2.1. □

Theorem 3.14 (closed range of rot). Let Ω allow for an admissible bi-Lipschitz transformation
Φ : Ω2 → Φ(Ω2) = Ω and consider the dual pair (r̊otΩ, rotΩ) in Ω. Then R(r̊otΩ) and R(rotΩ) are
closed. Moreover, ̂̊rot−1

Ω : R(r̊otΩ) → D(̂̊rotΩ), r̂ot
−1

Ω : R(rotΩ) → D(r̂otΩ)

are bounded. Ω2 can be replaced by Ω3.

Proof. Combine Lemma 2.24, Theorem 3.5, and Lemma 2.1. □
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Theorem 3.15 (closed range of ∇ and div). Let Ω allow for an admissible bi-Lipschitz transfor-

mation Φ : Ω3 → Φ(Ω3) = Ω and consider the dual pair (d̊ivΩ,−∇Ω) in Ω. Then R(d̊ivΩ) and
R(∇Ω) are closed. Moreover,̂̊

div
−1

Ω : R(d̊ivΩ) → D(
̂̊
divΩ), ∇̂

−1

Ω : R(∇Ω) → D(∇̂Ω)

are bounded.

Proof. Combine Lemma 2.24, Theorem 3.10, and Lemma 2.1. □

3.2.2. The Static Maxwell Operator.

Lemma 3.16 (trivial Dirichlet/Neumann fields). Let n ∈ {0, 1, 2, 3} and let Ξ be convex and either
bounded or of infinite volume. Moreover, let Ω allow for an admissible bi-Lipschitz transformation

• Φ : Ωn → Φ(Ωn) = Ω
• or Φ : Ξ → Φ(Ξ) = Ω.

Then HD,ε(Ω) = HN,µ(Ω) = {0}.

Proof. Apply Lemm 2.25 and Lemm 2.26. □

The latter results, in particular, Lemma 3.16, together with Theorem 2.3 and Lemma 2.2 show:

Theorem 3.17 (mini FA-ToolBox). Let n ∈ {2, 3}. Moreover, let Ω allow for an admissible

bi-Lipschitz transformation Φ : Ωn → Φ(Ωn) = Ω and consider the dual pairs (∇̊Ω,−ν−1 divΩ ε),

(µ−1 r̊otΩ, ε
−1 rotΩ), and (θ−1 d̊ivΩ µ,−∇Ω) in Ω. Then:

(i) The ranges R(∇̊Ω), R(ν
−1 divΩ ε) = L2ν(Ω), and R(µ

−1 r̊otΩ), R(ε
−1 rotΩ) are closed.

(ii) The inverse operators
̂̊∇−1

Ω , ̂ν−1 divΩ ε
−1

, and ̂µ−1 r̊otΩ
−1

, ̂ε−1 rotΩ
−1

are bounded.
(iii) The orthogonal Helmholtz decompositions

L2ε(Ω) = N(r̊otΩ)⊕L2
ε(Ω) N(divΩ ε),

L2µ(Ω) = N(rotΩ)⊕L2
µ(Ω) N(d̊ivΩ µ)

hold, where

N(r̊otΩ) = R(∇̊Ω), N(divΩ ε) = ε−1R(rotΩ),

N(rotΩ) = R(∇Ω), N(d̊ivΩ µ) = µ−1R(r̊otΩ).

Moreover, R(θ−1 d̊ivΩ µ) = L2θ(Ω) ∩ R⊥θ , i.e., R(d̊ivΩ µ) = L2(Ω) ∩ R⊥.
(iv) There are c1 := c∇̊ and c2 := cr̊ot > 0 such that for all

u ∈ D(∇̊Ω) = H̊1(Ω),

B ∈ D( ̂ν−1 divΩ ε) = D(divΩ ε) ∩N(r̊otΩ),

E ∈ D( ̂µ−1 r̊otΩ) = D(r̊otΩ) ∩N(divΩ ε),

D ∈ D( ̂ε−1 rotΩ) = D(rotΩ) ∩N(d̊ivΩ µ)

it holds

|u|L2
ν(Ω) ≤ c1| ∇u|L2

ε(Ω), |B|L2
ε(Ω) ≤ c1|ν−1 div εB|L2

ν(Ω),

|E|L2
ε(Ω) ≤ c2|µ−1 rotE|L2

µ(Ω), |D|L2
µ(Ω) ≤ c2|ε−1 rotD|L2

ε(Ω).

(v) For all E ∈ D(µ−1 r̊otΩ) ∩D(ν−1 divΩ ε) = H̊(rot,Ω) ∩ ε−1H(div,Ω) it holds

|E|2L2
ε(Ω) ≤ c22|µ−1 rotE|2L2

µ(Ω) + c21|ν−1 div εE|2L2
ν(Ω).

In case n = 3 we have additionally:

(i’) The ranges R(d̊ivΩ µ) = L2(Ω) ∩ R⊥ and R(∇Ω) are closed.

(ii’) The inverse operators ̂θ−1 d̊ivΩ µ
−1

and ∇̂
−1

Ω are bounded.
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(iv’) There is c3 := cd̊iv > 0 such that for all

H ∈ D( ̂θ−1 d̊ivΩ µ) = D(d̊ivΩ µ) ∩N(rotΩ), v ∈ D(∇̂Ω) = H1(Ω) ∩ R⊥

it holds

|H|L2
µ(Ω) ≤ c3|θ−1 divµH|L2

θ(Ω), |v|L2
θ(Ω) ≤ c3| ∇ v|L2

µ(Ω).

(v’) For all H ∈ D(ε−1 rotΩ) ∩D(θ−1 d̊ivΩ µ) = H(rot,Ω) ∩ µ−1H̊(div,Ω)

|H|2L2
µ(Ω) ≤ c22|ε−1 rotH|2L2

ε(Ω) + c23|θ−1 divµH|2L2
θ(Ω).

3.2.3. Spectrum Around the Origin. We recall the selfadjoint and skew-selfadjoint operators T...

and S... from Section 3.1.6 acting on Ω1,Ω2,Ω3 and redefined those by including inhomogeneities.
Next we show that the results about the spectrum, cf. Corollary 3.12, hold also in the following

general situations.

Corollary 3.18.

• Let us pick n ∈ {1, 2, 3} and let Ω allow for an admissible bi-Lipschitz transformation
Φ : Ωn → Φ(Ωn) = Ω. In Ω we consider the selfadjoint and non-negative operators

T1,D := −ν−1 div ε ∇̊, T1,N := −∇̊ ν−1 div ε,

and the skew-selfadjoint operator S1 :=

[
0 ν−1 div ε

∇̊ 0

]
.

Let T ∈ {T1,D,T1,N ,S1}. Then Lemma 2.5, Lemma 2.6, and Lemma 2.8 hold with
with cT = c1.

• Let us choose n ∈ {2, 3} and let Ω allow for an admissible bi-Lipschitz transformation
Φ : Ωn → Φ(Ωn) = Ω. In Ω we consider the selfadjoint and non-negative operators

T2,D := ε−1 rotµ−1 r̊ot, T2,N := µ−1 r̊ot ε−1 rot, T2 := ε−1 rotµ−1 r̊ot−∇̊ ν−1 div ε,

and the skew-selfadjoint operator S2 :=

[
0 −ε−1 r̊ot

µ−1 r̊ot 0

]
.

Let T ∈ {T2,D,T2,N ,T2,S2}. Then Lemma 2.5, Lemma 2.6, and Lemma 2.8 hold with
with cT = c2 resp. cT = max{c1, c2} for T = T2.

• Let Ω allow for an admissible bi-Lipschitz transformation Φ : Ω3 → Φ(Ω3) = Ω. In Ω we
consider the selfadjoint and non-negative operators

T3,D := −θ−1 d̊ivµ∇, T3,N := −∇ θ−1 d̊ivµ, T3 := µ−1 r̊ot ε−1 rot−∇ θ−1 d̊ivµ,

and the skew-selfadjoint operator S3 :=

[
0 θ−1 d̊ivµ
∇ 0

]
.

Let T ∈ {T3,D,T3,N ,T3,S3}. Then Lemma 2.5, Lemma 2.6, and Lemma 2.8 hold with
with cT = c3 resp. cT = max{c2, c3} for T = T3.

Proof. The latter results follow by Theorem 3.13 and Theorem 3.17 as R(T) is closed. □

4. Additional Results for Mixed Boundary Conditions

We recall Lemma 3.1 and extend a modified version even to

Ω1 = R2 × (0, d)

with, e.g.7,

Γ := R2 × {0}, Γ̃ := R2 × {d}, Γ ∪̇ Γ̃ = ∂ Ω1 = R2 × {0, d}.
For full (or equivalently empty) boundary conditions the proof of Lemma 3.1 fails as even for

E ∈ H̊(rot,Ω1)∩H1(Ω1) the tangential boundary condition just implies E1 = E2 = 0 at ∂ Ω1, i.e.,
a boundary condition for E3 is missing.

7Γ and Γ̃ may be interchanged.
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For trying mixed boundary conditions we introduce the Sobolev spaces8

H̊1
Γ(Ω1), H̊Γ(rot,Ω1), H̊Γ(div,Ω1)

as closures in H1(Ω1), H(rot,Ω1), resp. H(div,Ω1) of (restrictions to Ω of) test spaces C̊∞(R3)
vanishing in a neighbourhood of Γ.

Recall from Section 2.3 and Section 2.4.1 the primal and dual vector de Rham Hilbert complexes
(10) and (14). Here we have the primal and dual vector de Rham Hilbert complex

(16) L2(Ω1) L2(Ω1) L2(Ω1) L2(Ω1),
∇̊Γ

− divΓ̃

r̊otΓ

rotΓ̃

d̊ivΓ

−∇Γ̃

where we consider the densely defined and closed linear realisations of ∇, rot, and div, cf. [4, 22],

∇̊Γ : H̊1
Γ(Ω1) ⊂ L2(Ω1) → L2(Ω1), − d̊ivΓ̃ = ∇̊

∗
Γ : H̊Γ̃(div,Ω1) ⊂ L2(Ω1) → L2(Ω1),

r̊otΓ : H̊Γ(rot,Ω1) ⊂ L2(Ω1) → L2(Ω1), r̊otΓ̃ = r̊ot
∗
Γ : H̊Γ̃(rot,Ω1) ⊂ L2(Ω1) → L2(Ω1),

d̊ivΓ : H̊Γ(div,Ω1) ⊂ L2(Ω1) → L2(Ω1), −∇̊Γ̃ = ∇̊
∗
Γ : H̊1

Γ̃
(Ω1) ⊂ L2(Ω1) → L2(Ω1).

The extension including ε, µ, ν, and θ is straight forward and may be omitted here.

Lemma 4.1 (tangential/normal Friedrichs/Gaffney estimate for rot and div). We consider Ω1.

Let E ∈ H̊Γ(rot,Ω1) ∩ H̊Γ̃(div,Ω1). Then E ∈ H1(Ω1) and

|E|L2(Ω1) ≤ cd| ∇E|L2(Ω1) = cd
√
| rotE|2L2(Ω1)

+ |divE|2L2(Ω1)
.

Proof. We follow the proof of Lemma 3.1 and recall the proof of Lemma 2.14, in particular, the

cut-off function φr and Ω̃r := Ω ∩ (−r, r)3.
Let ϕ ∈ C∞(

R3, [0, 1]
)
with ϕ = 1 near Γ and ϕ = 0 near Γ̃. Then E = ϕE + (1− ϕ)E as well

as (by mollification) ϕE ∈ H̊(rot,Ω1) ∩ H(div,Ω1) and (1− ϕ)E ∈ H(rot,Ω1) ∩ H̊(div,Ω1). As Ω1

is convex Lemma 2.14 yields ϕE, (1− ϕ)E ∈ H1(Ω1), i.e., E ∈ H1(Ω1).
[3, Lemma 13], cf. [2], shows that (9), i.e.,∣∣∇(φrE)

∣∣2
L2(Ω1)

=
∣∣ rot(φrE)

∣∣2
L2(Ω1)

+
∣∣div(φrE)

∣∣2
L2(Ω1)

(integration just over Ω̃2r, flat boundaries, and mixed boundary conditions), holds. Lebesgue’s
dominated convergence theorem yields for r → ∞

|∇E|2L2(Ω1)
= | rotE|2L2(Ω1)

+ |divE|2L2(Ω1)
.

The tangential boundary condition implies E1 = E2 = 0 at Γ and the normal boundary

condition shows E3 = 0 at Γ̃. Hence Friedrichs’ estimate (Lemma 2.9) shows the assertion. □

Theorem 4.2 (Friedrichs estimate for rot). Let the dual pair (r̊otΓ, r̊otΓ̃) be considered in Ω1.

(i) E ∈ D(̂̊rotΓ) implies E ∈ H1(Ω1) and

|E|L2(Ω1) ≤ cd| rotE|L2(Ω1), | rotE|L2(Ω1) = | ∇E|L2(Ω1).

(ii) R(r̊otΓ) is closed and ̂̊rot−1

Γ : R(r̊otΓ) → D(̂̊rotΓ) is bounded.

Proof. Note D(̂̊rotΓ) = D(r̊otΓ) ∩ R(r̊otΓ̃) ⊂ D(r̊otΓ) ∩N(d̊ivΓ̃) ⊂ H̊Γ(rot,Ω1) ∩ H̊Γ̃(div,Ω1) and

apply Lemma 4.1 to E ∈ D(̂̊rotΓ). Lemma 2.1 concludes the proof. □

Theorem 4.3 (Friedrichs estimate for ∇ and div). Let the dual pair (∇̊Γ,− d̊ivΓ̃) be considered
in Ω1.

(i) Let u ∈ D(
̂̊∇Γ) and H ∈ D(

̂̊
divΓ̃). Then H ∈ H1(Ω1) and

|u|L2(Ω1) ≤ cd| ∇u|L2(Ω1), |H|L2(Ω1) ≤ cd|divH|L2(Ω1), |divH|L2(Ω1) = | ∇H|L2(Ω1).

8Same for Γ̃.
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(ii) R(∇̊Γ) is closed and
̂̊∇−1

Γ : R(∇̊Γ) → D(
̂̊∇Γ) is bounded.

(iii) R(d̊ivΓ̃) is closed and
̂̊
div

−1

Γ̃ : R(d̊ivΓ̃) → D(
̂̊
divΓ̃) is bounded.

Proof. Apply Lemma 2.9 and Lemma 2.1. □

As before we define the Dirichlet and Neumann fields by

HD,Γ,id(Ω1) := N(r̊otΓ) ∩N(d̊ivΓ̃), HN,Γ̃,id(Ω1) := N(r̊otΓ̃) ∩N(d̊ivΓ) = HD,Γ̃,id(Ω1).

Lemma 4.4 (trivial Dirichlet/Neumann fields). HD,Γ,id(Ω1) = {0}

Proof. Let E ∈ HD,Γ,id(Ω1). Lemma 4.1 yields that E ∈ H1(Ω) is constant. Hence E = 0. □

Recall Section 3.1.6. We introduce T as one of the following operators in Ω1:

− d̊ivΓ̃ ∇̊Γ, −∇̊Γ d̊ivΓ̃, r̊otΓ̃ r̊otΓ, r̊otΓ̃ r̊otΓ −∇̊Γ d̊ivΓ̃,

[
0 d̊ivΓ̃

d̊ivΓ 0

]
,

[
0 − r̊otΓ̃

r̊otΓ 0

]
Corollary 4.5. Lemma 2.5, Lemma 2.6, and Lemma 2.8 hold with cT = cd

Proof. By the latter results R(T) is closed. □

It is now clear, that all results of Section 3.2 carry over to the case that

• Ω allows for an admissible bi-Lipschitz transformation

Φ : Ω1 → Φ(Ω1) = Ω

with γ := Φ(Γ) and γ̃ := Φ(Γ̃),

• H̊1
γ(Ω), H̊γ(rot,Ω), and H̊γ̃(div,Ω),

• L2ν(Ω) L2ε(Ω) L2µ(Ω) L2θ(Ω).
∇̊γ

−ν−1 divγ̃ ε

µ−1 r̊otγ

ε−1 rotγ̃

θ−1 d̊ivγ µ

−∇γ̃

In particular, respective versions of Lemma 3.16, Theorem 3.17, and Corollary 3.18 hold.
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