
BIHARMONIC EQUATIONS

DIRK PAULY AND ALBERTO VALLI

Abstract. In this note we devise and analyse well-posed variational formulations and operator

theoretical methods for boundary value problems associated to the biharmonic operator ∆2. Of

particular interest are Neumann type and over-/underdetermined (maximal/minimal) boundary
value problems.
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1. Introduction

Recently, in the new edition of the book of Valli [23], the second author discussed a Neumann
boundary value problem for the biharmonic equation and presented proofs for the well-posedness of
related variational formulations under very strong regularity assumptions (C4-boundary), cf. [23,
Section 5.6].

In this context some interesting questions arose which we will answer in this contribution using
basic methods from functional analysis, cf. Section 2.1. In particular, we can reduce the regularity
to Lipschitz boundaries and even beyond. More precisely, we shall show that even under very
weak regularity and boundedness assumptions on the underlying domain (admissible domains,
cf. Defintion 2.6 and Remark 2.7) we can answer the latter questions and extend the results to a
whole zoo of biharmonic operators, including, among others, the Neumann case.

For simplicity and readability we restrict our analysis to homogeneous boundary conditions.
Note that as soon as proper trace and extension operators are available, the inhomogeneous
boundary value problems can be easily formulated as homogeneous ones. A very general trace
theory, meeting our needs, has been developed recently by the first author and his collaborators
in [7].

Throughout this paper – unless otherwise stated – let Ω ⊂ RN , N ∈ N, be a domain (connected
and open set) with boundary Γ := ∂ Ω.

1.1. Historical Remarks. Let us consider a Neumann boundary value problems for the bihar-
monic operator, that is

∆2u = f in Ω and ∆u = 0, n · ∇∆u = 0 on Γ,

more closely. Later, the corresponding proper Neumann biharmonic operator will be denoted by

BN = B◦,· = L̊ L,

see Section 2.2.7. From the physical point of view this problem is not the most interesting, as
the model which describes the equilibrium position of an elastic thin plate, unconstrained on the
boundary, involves other second order and third order boundary operators, in which the Poisson
ratio also has a role (see Courant and Hilbert [5, p. 250] and more recently, e.g., Verchota [24],
Provenzano [21]; the original physical model even dates back to Kirchhoff and Kelvin).

Instead of

∆2 = ∆∆,

the bi-Laplacian can also be factorised by means of

∆2 = divDiv∇∇,

cf. [18, 16], with different Neumann boundary conditions and hence different physical interpreta-
tions. We shall come back later to this alternative, cf. Section 1.3 and Section 2.3.

However, despite these remarks, we think that the Neumann problem for the biharmonic op-
erator has a nice and simple mathematical structure, similar to that of other classical problems,
and we find it interesting from the mathematical point of view. Moreover, it is the limiting case,
for the Poisson ratio going to 1 of suitable physical models.

Let us first compare a bit the Neumann problems for −∆ and ∆2. As it is well-known, the
Neumann boundary value problems for the negative Laplacian −∆ and what we call the bi-
Laplacian/biharmonic operator ∆2, i.e.,

−∆v = g, ∆2u = f in Ω,

n · ∇ v = 0, ∆u = 0 on Γ,

n · ∇∆u = 0, on Γ,

have similarities and differences. In particular, for both of them the solution is not unique: adding
to v a constant c ∈ R resp. to u a harmonic function h ∈ H, where

H =
{
φ ∈ L2(Ω) : ∆φ = 0

}
,
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gives another solution. Moreover, for both of them the data have to satisfy a compatibility
condition (Fredholm alternative): we have

g⊥R for −∆

and

f⊥H for ∆2,

where ⊥ denotes orthogonality in L2(Ω). Note that in the smooth case we have

⟨g, 1⟩L2(Ω) = −
∫
Ω

div∇ v = −
∫
Γ

n · ∇ v = 0,

⟨f, h⟩L2(Ω) =

∫
Ω

(∆2u)h =

∫
Γ

(n · ∇∆u)h−
∫
Γ

∆u (n · ∇h) = 0.

A first difference concerns the type of the boundary conditions: the Neumann boundary condi-
tion for −∆ satisfies the so-called complementing condition of Agmon, Douglis, and Nirenberg [1],
that in the present situation simply says that the polynomial t is not divisible by t− i. This is not
true for the Neumann boundary condition for ∆2: the complementing condition would require that
the polynomials 1 + t2 and t+ t3 were linearly independent modulo (t− i)2, and it is well-known
that this is not the case. For the ease of the reader, let us readily show this last statement: we
have

1 + t2

(t− i)2
= 1 +

2(1 + it)

(t− i)2
,

t+ t3

(t− i)2
= t+ 2i+

2(i− t)

(t− i)2
,

and the second remainder 2(i − t) is proportional to the first remainder 2(1 + it) by a factor
i. Note that the difference between the two Neumann problems still shows up when considering
the so-called Lopatinskĭı–Šapiro condition (see Wloka [25, Examples 11.2 and 11.8]); in fact, it
is known that the complementing condition and the Lopatinskĭı–Šapiro condition are equivalent
(see, e.g., Negrón-Marrero and Montes-Pizarro [9, Appendix A]).

Another difference seems to be related to well-posedness: in fact, the Neumann boundary value
problem associated to −∆ is well-posed in a suitable space where uniqueness is recovered and
for data which satisfy the necessary compatibility condition (Fredholm alternative). This well-
known result is an easy consequence of the Poincaré inequality, cf. Definition 2.6, and the Riesz
representation theorem, or of more elaborate arguments using linear functional analysis, cf. the
discussion of the Neumann Laplacian LN from Section 2.2.4. On the contrary, well-posedness for
the Neumann boundary value problem associated to the ∆2 operator seemed to be questionable so
far (see, e.g., what is explicitly reported in Verchota [24, p. 217 and Sc. 21], and in a more indirect
way in Renardy and Rogers [22, Sc. 9.4.2 and Example 9.30], Gazzola, Grunau and Sweers [6,
Sc. 2.3], Provenzano [21, p. 1006]). In addition to this, it can be noted that Begehr [4] presents a
long list of twelve boundary value problems for the biharmonic operator that are either well-posed
or solvable under suitable compatibility conditions, and in that list the Neumann problem is not
included.

Going a little bit more in depth, in Renardy and Rogers [22], Gazzola, Grunau and Sweers [6],
and Provenzano [21] the comments about the fact that the Neumann problem for the biharmonic
operator ∆2 is possibly not well-posed are related to the fact that the complementing condition
is not satisfied (in particular, this condition is assumed in the existence and uniqueness Theorems
2.16 and 2.20 in [6]; there see also Remark 2.17). This is apparently to be meaningful, as in
Agmon, Douglis and Nirenberg [1, Sc. 10] it is explicitly proved that the complementing condition
is necessary for obtaining higher order a-priori estimates in Hölder and Lp spaces (in this respect,
see also Lions and Magenes [8, Chap. 2, Sc. 8.3 and Remark 9.8]).

However, rather surprisingly, it turns out that this condition is not necessary for well-posedness
in suitable Hilbert spaces, as the following example shows: Consider the operator

∆2 + 1.

Since the complementing condition only depends on the principal parts of the spatial and boundary
operators, we are in the same situation of the Neumann problem for the biharmonic operator;
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therefore the complementing condition is also not satisfied. However, the weak formulation of the
problem (with homogeneous boundary data) reads: For f ∈ L2(Ω) find

u ∈ V := H(∆,Ω) :=
{
φ ∈ L2(Ω) : ∆φ ∈ L2(Ω)

}
(1)

such that

∀φ ∈ V ⟨∆u,∆φ⟩L2(Ω) + ⟨u, φ⟩L2(Ω) = ⟨f, φ⟩L2(Ω),

which is uniquely solvable by Riesz’ representation theorem with stability estimate |u|V ≤ |f |L2(Ω).
Being now evident that the complementing condition is not necessary for well-posedness in

a suitable Hilbert space, in this paper we shall show that indeed, among others, the Neumann
boundary value problem for the biharmonic operator is well-posed.

1.2. Approach by Bi-Laplacians. The approach in [23, Section 5.6] is based on the represen-
tation of the biharmonic operator as bi-Laplacian ∆2 with Dirichlet/Neumann type and over-
/underdetermined boundary conditions.

The story begins with the (full, not mixed) Dirichlet and Neumann boundary conditions for
the negative Laplacian −∆. These are the two reasonable boundary conditions for

−∆ = −div∇,

resulting in the apparently four “reasonable” (full) boundary conditions for the biharmonic oper-
ator interpreted as bi-Laplacian. More precisely: For a possible solution u of

∆2u = f in Ω

we may impose a couple of the boundary conditions

u = 0 on Γ,
(
Dirichlet on u, i.e., u ∈ H̊1(Ω)

)
(2)

n · ∇u = 0 on Γ,
(
Neumann on u, i.e., ∇u ∈ H̊(div,Ω)

)
(3)

∆u = 0 on Γ,
(
Dirichlet on ∆u, i.e., ∆u ∈ H̊1(Ω)

)
(4)

n · ∇∆u = 0 on Γ,
(
Neumann on ∆u, i.e., ∇∆u ∈ H̊(div,Ω)

)
(5)

as presented in the equations [23, (5.14)-(5.27)]. Some of these six pairs have prominent names:

Dirichlet: (2) ∧ (3) Navier: (2) ∧ (4)

Neumann: (4) ∧ (5) Riquier: (3) ∧ (5)

As we will see later, cf. Section 2.2.7, the latter four pairs as well as (2) ∧ (5), then denoted by

L L̊, L̊ L, LD LD, LN LN, LN LD,

make ∆2 well-posed, while (3) ∧ (4), then denoted by LD LN, does not, at least without further
restrictions on the domain of definition. The second author proposes variational formulations for
the Dirichlet, Neumann, Navier, and Riquier biharmonic problems, but notices that for (2) ∧ (5)
and (3) ∧ (4) no well-posed variational formulations are at hand.

[23, Section 5.6.1] is then specifically devoted to the Neumann problem for the biharmonic

equation (4)∧ (5) (L̊ L). The natural Sobolev spaces for the variational method are then given by
V from (1) as well as V# = H(∆,Ω)∩H⊥ and L2#(Ω) = L2(Ω)∩H⊥. For f ∈ L2#(Ω) the variational
formulation is then to find u ∈ V# such that

∀φ ∈ V (or V#) ⟨∆u,∆φ⟩L2(Ω) = ⟨f, φ⟩L2(Ω),

cf. (25) in Section 2.2.6. It has been emphasised that the problem is well-posed if the Poincaré
type estimate

∃ c > 0 ∀φ ∈ V# |φ|L2(Ω) ≤ c|∆φ|L2(Ω)(6)

holds, which follows if the embedding

V# ↪→ L2(Ω)(7)
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is compact. The second author could show by regularity and Rellich’s selection theorem that
this is indeed true if Ω is bounded and of class C4, since then the embedding V# ↪→ H2(Ω) is
continuous, more precisely,

V# = ∆
(
H4(Ω) ∩ H̊2(Ω)

)
= H2(Ω) ∩H⊥ = H2

#(Ω)(8)

with equivalent norms. It has also been noted that V ↪→ L2(Ω) is in general not compact even

for the unit ball and N = 2. The space ∆
(
H4(Ω) ∩ H̊2(Ω)

)
(of high regularity) has already been

proposed by Provenzano [21] for studying an eigenvalue problem for the Neumann biharmonic
operator.

A theory relying on C4-boundaries is unsatisfying. In this contribution we shall present a
solution theory for quite a zoo of biharmonic problems – including the Neumann type – which
works fine with bounded Lipschitz domains Ω or even beyond, cf. the notion of admissible domains
in Defintion 2.6 and Remark 2.7, which need neither to be bounded nor smooth (Lipschitz).

1.2.1. Sketch of Basic Ideas and Concepts. We promote a more operator theoretical method using
basic functional analysis. For simplicity, in this introduction, let us assume that Ω is a bounded
Lipschitz domain.

We consider the two gradients (minimal and maximal)

∇Γ : H̊1(Ω) ⊂ L2(Ω) → L2(Ω); ϕ 7→ ∇ϕ,

∇∅ : H1(Ω) ⊂ L2(Ω) → L2(Ω),

cf. Section 2.2.4 and [14] for more details and results on the de Rham complex. Note that we have
the Friedrichs’ and Poincaré’s estimates

∃ cf > 0 ∀φ ∈ H̊1(Ω) |φ|L2(Ω) ≤ cf | ∇φ|L2(Ω),

∀φ ∈ H̊2(Ω) |φ|L2(Ω) ≤ c2f |∆φ|L2(Ω),

∃ cp > 0 ∀φ ∈ pH1(Ω) = H1(Ω) ∩ R⊥ |φ|L2(Ω) ≤ cp| ∇φ|L2(Ω).

(9)

With (9) ∇Γ and ∇∅ are well-defined, i.e., densely defined and closed linear operators, with closed
ranges, and so are their Hilbert space adjoints (maximal and minimal divergence)

−div∅ = (∇Γ)
∗ : H(div,Ω) ⊂ L2(Ω) → L2(Ω); Φ 7→ div Φ,

−divΓ = (∇∅)
∗ : H̊(div,Ω) ⊂ L2(Ω) → L2(Ω).

Then the Dirichlet and Neumann negative Laplacians

LD = ∇Γ
∗ ∇Γ = −div∅ ∇Γ : D(LD) ⊂ L2(Ω) → L2(Ω); ϕ 7→ −div∇ϕ,

LN = ∇∅
∗ ∇∅ = −divΓ ∇∅ : D(LN) ⊂ L2(Ω) → L2(Ω),

are selfadjoint and non-negative with kernels N(LD) = {0} and N(LN) = R. With the closed
ranges we have the Fredholm alternatives

R(LD) = N(LD)
⊥ = L2(Ω), R(LN) = N(LN)

⊥ = L2(Ω) ∩ R⊥ = pL2(Ω).

Therefore, LD and LN = LN |R⊥ are bijective and the inverse operators

L−1
D : L2(Ω) → D(LD), L−1

N : pL2(Ω) → D(LN) ∩ R⊥ = D(LN)

are bounded by (9).

We may also consider over- and underdetermined negative Laplacians L̊ and L, respectively,
cf. Section 2.2.5. Now (9), cf. Lemma 2.9 and Lemma 2.1, yields that

L̊ : H̊2(Ω) ⊂ L2(Ω) → L2(Ω); φ 7→ −∆φ,

L := L̊
∗
: H(∆,Ω) ⊂ L2(Ω) → L2(Ω)

are densely defined and closed with kernels N (̊L) = {0} and N(L) = H and closed ranges

R(̊L) = N(L)⊥ = L2(Ω) ∩H⊥ = L̃2(Ω), R(L) = N (̊L)⊥ = L2(Ω).
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Thus L̊ and L = L |H⊥ are bijective and the inverse operators

L̊−1 : L̃2(Ω) → D(̊L), L−1 : L2(Ω) → D(L) ∩H⊥ = D(L)
are bounded by (9).

One could say that the dual (adjoint) pair L̊ and L defines the minimal and the maximal
L2(Ω)-realisations of the negative Laplacian, in the sense

L̊ ⊂ LD,LN ⊂ L

with the two selfadjoint realisations LD and LN in-between.

Let f ∈ L2(Ω), pf ∈ pL2(Ω), and f̃ ∈ L̃2(Ω). Then:

• uD = L−1
D f ∈ D(LD) is the unique solution of the Dirichlet negative Laplace boundary

value problem LD uD = f .
• u = L−1 f ∈ D(L) is the unique solution of the underdetermined negative Laplace bound-
ary value problem Lu = f .

• uN = L−1
N

pf ∈ D(LN) is the unique solution of the Neumann negative Laplace boundary

value problem LN uN = pf .

• ů = L̊−1f̃ ∈ D(̊L) is the unique solution of the overdetermined negative Laplace boundary

value problem L̊ů = f̃ .

In classical terms we have

−∆ů = f̃ , −∆uD = f, −∆uN = pf, −∆u = f in Ω,

ů = 0, uD = 0 on Γ,

n · ∇ ů = 0, n · ∇uN = 0 on Γ,

uN ⊥ R, u ⊥ H.

To find uD ∈ D(LD) ⊂ H̊1(Ω) and uN ∈ D(LN) ⊂ pH1(Ω) by variational methods one may consider
the well-known text book formulations

∀φ ∈ H̊1(Ω) ⟨∇uD,∇φ⟩L2(Ω) = ⟨f, φ⟩L2(Ω),

∀ψ ∈ H1(Ω)
(
or pH1(Ω)

)
⟨∇uN,∇ψ⟩L2(Ω) = ⟨ pf, ψ⟩L2(Ω).

In Remark 2.14 we suggest variational methods to find the two solutions ů ∈ D(̊L) = H̊2(Ω) and
u ∈ D(L) = H(∆,Ω) ∩H⊥.

Let us go back to the different biharmonic operators from the beginning of Section 1.2, cf. Section
2.2.6 and Section 2.2.7. From our operator theoretical point of view, these six different boundary
value problems for the biharmonic equation, are given by the following table:

Dirichlet: (2) ∧ (3) given by BD = L L̊ with bd right inverse B−1
D = L̊−1 L−1

Neumann: (4) ∧ (5) given by BN = L̊L with bd right inverse B−1
N = L−1 L̊−1

Navier: (2) ∧ (4) given by BD,D = LD LD with bd right inverse B−1
D,D = L−1

D L−1
D

Riquier: (3) ∧ (5) given by BN,N = LN LN with bd right inverse B−1
N,N = L−1

N L−1
N

N-D: (2) ∧ (5) given by BN,D = LN LD with bd right inverse B−1
N,D = L−1

D L−1
N

D-N: (3) ∧ (4) given by BD,N = LD LN

By our theory the inverses of the first five biharmonic operators are well-defined, while the last
inverse of the biharmonic operator BD,N is not in terms of L−1

N L−1
D . Since

L̊∗ = L, L∗ = L̊, L∗
D = LD, L∗

N = LN,

we see that the operators corresponding to the Dirichlet, Neumann, Navier, and Riquier bihar-
monic problems are selfadjoint (and non-negative), while the others are not.

Let f ∈ L2(Ω), pf ∈ pL2(Ω), and f̃ ∈ L̃2(Ω). Then:

• uD = B−1
D = L̊

−1
L−1 f ∈ D(BD) is the unique solution of the Dirichlet biharmonic bound-

ary value problem BD uD = f .
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• uDD = B−1
D,D = L−1

D L−1
D f ∈ D(BD,D) is the unique solution of the Navier biharmonic bound-

ary value problem BD,D uDD = f .

• uN = B−1
N = L−1 L̊

−1
f̃ ∈ D(BN) is the unique solution of the Neumann biharmonic

boundary value problem BN uN = f̃ .

• uNN = B−1
N,N = L−1

N L−1
N

pf ∈ D(BN,N) is the unique solution of the Riquier biharmonic

boundary value problem BN,N uNN = pf .

• uND = B−1
N,D = L−1

D L−1
N

pf ∈ D(BN,D) is the unique solution of the N-D biharmonic boundary

value problem BN,D uND = pf .

In classical terms we have

∆2uD = f, ∆2uDD = f, ∆2uN = f̃ , ∆2uNN = pf, ∆2uND = pf in Ω,

uD = 0, uDD = 0, uND = 0 on Γ,

n · ∇uD = 0, n · ∇uNN = 0 on Γ,

∆uDD = 0, ∆uN = 0 on Γ,

n · ∇∆uN = 0, n · ∇∆uNN = 0, n · ∇∆uND = 0 on Γ,

uN ⊥ H, uNN ⊥ R,
∆uNN ⊥ R, ∆uND ⊥ R.

In fact, in Section 2.2.7 and Section 2.2.8 we present eighteen different biharmonic operators,
and it turns out that thirteen of those are well defined and lead to uniquely solvable boundary
value problems for the bi-Laplacian. Our general theory extends also to mixed boundary conditions
giving even more well defined bi-Laplacians, cf. Section 2.2.9.

Remark 1.1. Concerning (6), (7), and (8) we can show remarkable results for all bounded do-
mains Ω. Note that no(!) regularity assumptions on Ω are needed at all.

(i) In Theorem 2.13 we prove that indeed

D(L) = H(∆,Ω) ∩H⊥ = V# ↪→ L2(Ω)

is compact.

(ii) Moreover, for all φ ∈ D(̊L) = H̊2(Ω) and all φ ∈ D(L) we have

|φ|L2(Ω) ≤ c2f |∆φ|L2(Ω),

cf. Remark 2.10.
(iii) For the variational space we see

V# = L̊L̊−1V# = ∆
{
φ ∈ H̊2(Ω) : ∆φ ∈ D(L)

}
= ∆

{
φ ∈ H̊2(Ω) : ∆2φ ∈ L2(Ω)

}
,

which – in case of a C4-boundary Γ – equals by standard regularity theory for the Dirichlet

bi-Laplacian ∆
(
H4(Ω) ∩ H̊2(Ω)

)
.

Remark 1.2. Analogously we have:

(i) Analogously, Theorem 2.17 shows that

D(B) = H(∆2,Ω) ∩ BH⊥ ↪→ L2(Ω)

is compact.

(ii) For all φ ∈ D(B̊) = H̊4(Ω) and all φ ∈ D(B) we have

|φ|L2(Ω) ≤ c4f |∆2φ|L2(Ω).

(iii) For the variational space we have

D(B) = B̊B̊−1D(B) = ∆2
{
φ ∈ H̊4(Ω) : ∆2φ ∈ D(B)

}
= ∆2

{
φ ∈ H̊4(Ω) : ∆4φ ∈ L2(Ω)

}
,

which – in case of a C8-boundary Γ – equals by standard regularity theory for higher order

elliptic Dirichlet problems ∆2
(
H8(Ω) ∩ H̊4(Ω)

)
.
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1.2.2. Shifting Boundary Conditions by Laplacians. Using the latter four different Laplacians,
cf. (26), we can solve the Neumann biharmonic problem by the Dirichlet biharmonic problem and
vice versa. For example,

B−1
N = L̊L̊−1 L−1 L̊−1 = L̊ B−1

D L̊−1,

i.e., the solution u = B−1
N f of the Neumann biharmonic problem can be found by solving for the

overdetermined Laplacian L̊−1f , then for the Dirichlet biharmonic problem v = B−1
D L̊−1f , and

finally taking u = ∆v. Analogously, we have

B−1
D = LL−1 L̊−1 L−1 = LB−1

N L̊−1.

This “trick” can extended to a lot more “allowed” combinations, such as

B−1
N,D = LD L−1

D L−1
D L−1

N = LD B−1
D,D L

−1
N ,

just to mention one of many options.

1.3. Alternative Approach by the Hessian Complex. For ϕ ∈ C∞(R3) we have point-wise

∆2ϕ =
∑
i,j

∂2i ∂
2
j ϕ =

∑
i,j

∂i ∂j ∂i ∂j ϕ = divDiv∇∇ϕ,(10)

which then extends also to distributions ϕ. Here, ∇∇ϕ denotes the Hessian of ϕ and Div acts as
row-wise incarnation of div. Note that divDiv is the formal adjoint of ∇∇. In the following we
use again the basic concepts of functional analysis, cf. Section 2.1.

By (10) another way to look at the biharmonic equation, which respects more the underlin-
ing geometry (Hessian Hilbert complex) of the problem and the corresponding operators, is to
investigate the two Hessian operators

∇∇Γ : H̊2(Ω) ⊂ L2(Ω) → L2(Ω); ϕ 7→ ∇∇ϕ,

∇∇∅ : H2(Ω) ⊂ L2(Ω) → L2(Ω),

cf. Section 2.3 and [18, 2, 16] for more details and results on the Hessian complex. Note that
Friedrichs’ estimate (9) shows

∃ cf > 0 ∀φ ∈ H̊2(Ω) |φ|L2(Ω) ≤ cf | ∇φ|L2(Ω) ≤ c2f | ∇∇φ|L2(Ω).(11)

Moreover, φ ∈ L2(Ω) with ∇∇φ ∈ L2(Ω) implies φ ∈ H2(Ω) by the Nečas/Lions lemma, and we
have Poincaré’s estimate

∃ cp > 0 ∀φ ∈ p

pH2(Ω) = H2(Ω) ∩ P⊥
1 |φ|L2(Ω) ≤ cp| ∇φ|L2(Ω) ≤ c2p| ∇∇φ|L2(Ω),(12)

where P1 denotes the first order polynomials. With (11), Nečas’ lemma, and (12) ∇∇Γ and ∇∇∅
are well-defined, i.e., densely defined and closed linear operators. Their Hilbert space adjoints are
given by

divDiv∅ = (∇∇Γ)
∗ : H(divDiv,Ω) ⊂ L2(Ω) → L2(Ω); Φ 7→ divDivΦ,

divDivΓ = (∇∇∅)
∗ : H̊(divDiv,Ω) ⊂ L2(Ω) → L2(Ω).

We can then investigate the biharmonic operators

BΓ = ∇∇Γ
∗ ∇∇Γ = divDiv∅ ∇∇Γ : D(BΓ) ⊂ L2(Ω) → L2(Ω); ϕ 7→ divDiv∇∇ϕ,

B∅ = ∇∇∅
∗ ∇∇∅ = divDivΓ ∇∇∅ : D(B∅) ⊂ L2(Ω) → L2(Ω),

which may be called Dirichlet resp. Neumann biharmonic operator as well. Note that indeed by
Remark 2.11 the “new” Dirichlet biharmonic operator equals the “old” one from above, i.e.,

BΓ = BD = L L̊,

but the “new” Neumann biharmonic operator B∅ is not a biharmonic operator with any combi-

nation of the boundary conditions (2)-(5). In fact, while the boundary conditions of BN = L̊L are
imposed on the scalar ∆u, the boundary conditions of B∅ are imposed on the symmetric tensor
S = ∇∇u.
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BΓ and B∅ are selfadjoint and non-negative with kernels N(BΓ) = {0} and N(B∅) = P1. By
(11) and (12) the ranges are closed and we have the Fredholm alternatives

R(BΓ) = N(BΓ)
⊥ = L2(Ω), R(B∅) = N(B∅)

⊥ = L2(Ω) ∩ P⊥
1 =

p

pL2(Ω).

Therefore, BΓ and B∅ = B∅ |P⊥
1
are bijective and the inverse operators

B−1
Γ : L2(Ω) → D(BΓ), B−1

∅ :
p

pL2(Ω) → D(B∅) ∩ P⊥
1 = D(B∅)

are bounded, i.e., |B−1
Γ | ≤ c4f and | B−1

∅ | ≤ c4p.

Let f ∈ L2(Ω) and f1 ∈ p

pL2(Ω). Then uΓ = B−1
Γ f ∈ D(BΓ) is the unique solution of the

Dirichlet biharmonic boundary value problem BΓ uΓ = f , and u∅ = B−1
∅ f1 ∈ D(B∅) is the unique

solution of the Neumann biharmonic boundary value problem B∅ u∅ = f1. In classical terms we
have

divDiv∇∇uΓ = f, divDiv∇∇u∅ = f1 in Ω,

uΓ = 0, (∇∇u∅)n = 0 on Γ,

∇uΓ = 0,
(
(∇∇u∅)n

)
· n = 0 on Γ,

u∅ ⊥ P1.

To find u ∈ D(BΓ) ⊂ H̊2(Ω) and v ∈ D(B∅) ⊂
p

pH2(Ω) by variational methods one may consider

∀φ ∈ H̊2(Ω) ⟨∇∇u,∇∇φ⟩L2(Ω) = ⟨f, φ⟩L2(Ω),

∀ψ ∈ H2(Ω)
(
or

p

pH2(Ω)
)

⟨∇∇ v,∇∇ψ⟩L2(Ω) = ⟨g, ψ⟩L2(Ω).

It is worth noting that the results in [18, Section 4] show that the Dirichlet biharmonic problem

BΓ u = divDivS,∅ ∇∇Γ u = f

splits up into a sequence of three second order (elliptic) boundary value problems indicated by the
matrix representation LD tr symRotT,∅ 3

0 RotS,Γ symRotT,∅ RotS,Γ tr
∗

0 0 LD

uE
v

 =

00
f

 ,
cf. Section 2.3 for definitions. The matrix has the structurea∗a c 3

0 b∗b c∗

0 0 a∗a


with a = A0 = ∇̊ taken from the de Rham complex (21), and b = A∗

1 = symRotT,∅ and c = tr b
from the Hessian complex (33).

2. Operator Theory for Biharmonic Equations

Let us begin with some abstract basics.

2.1. Tiny FA-ToolBox. We recall a few results from linear functional analysis. In particular,
we use fundamental results from the so-called FA-ToolBox, see, e.g., [12, 13], cf. [10, 11, 14, 15,
16, 18, 19].
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2.1.1. Single Operators. Let us consider a densely defined and closed linear operator A between
two Hilbert spaces H0 and H1 together with its (densely defined and closed) Hilbert space adjoint
A∗, that is

A : D(A) ⊂ H0 → H1, A∗ : D(A∗) ⊂ H1 → H0.

In general, A and A∗ are unbounded and characterised by

∀x ∈ D(A) ∀ y ∈ D(A∗) ⟨Ax, y⟩H1 = ⟨x,A∗ y⟩H0 .

Since A∗∗ = A we call (A,A∗) a dual pair. Note that R(A) is closed if and only if R(A∗) is closed by
the closed range theorem. Moreover, the projection theorem yields the orthogonal decompositions
(Helmholtz type decompositions)

H0 = R(A∗)⊕H0 N(A), H1 = R(A)⊕H1 N(A∗),(13)

which suggest to investigate the injective restrictions, also called reduced operators and denoted
by calligraphical letters,

A := A |N(A)⊥ , A∗ := A∗ |N(A∗)⊥ ,

more precisely,

A : D(A) ⊂ N(A)⊥ → R(A) = N(A∗)⊥, D(A) := D(A) ∩N(A)⊥,

A∗ : D(A∗) ⊂ N(A∗)⊥ → R(A∗) = N(A)⊥, D(A∗) := D(A∗) ∩N(A∗)⊥.

(A,A∗) are also densely defined and closed forming another dual pair with dense ranges. Moreover,
by (13) we have

D(A) = D(A)⊕H0
N(A), D(A∗) = D(A∗)⊕H1

N(A∗),

R(A) = R(A), R(A∗) = R(A∗).
(14)

Here we have used the symbols · , ⊕, and ⊥ for the closure, the orthogonal sum, and the orthogonal
complement, respectively.

From [11, Lemma 4.1, Remark 4.2], see also [13, Lemma 2.1, Lemma 2.2] or [17, Lemma 2.1,
Lemma 2.4], we cite the following elementary result.

Lemma 2.1 (fundamental FA-ToolBox lemma 1). The following assertions are equivalent:

(i) ∃ cA > 0 ∀x ∈ D(A) |x|H0 ≤ cA|Ax|H1

(i∗) ∃ cA∗ > 0 ∀ y ∈ D(A∗) |y|H1
≤ cA∗ |A∗ y|H0

(ii) R(A) is closed.
(ii∗) R(A∗) is closed.
(iii) A−1 : R(A) → D(A) is bounded.
(iii∗) (A∗)−1 : R(A∗) → D(A∗) is bounded.

The latter assertions hold, if the embedding D(A) ↪→ H0 is compact.

(iv) D(A) ↪→ H0 is compact, if and only if D(A∗) ↪→ H1 is compact.

Remark 2.2 (fundamental FA-ToolBox lemma 1). If the estimate in (i) holds with cA then (ii)
holds with cA∗ = cA, and vice versa. For the best constants we have∣∣A−1

∣∣
R(A)→H0

= cA = cA∗ =
∣∣(A∗)−1

∣∣
R(A∗)→H1

.

Lemma 2.1 shows that the key point to a proper solution theory in the sense of Hadamard is a
close range (ii) or, equivalently, a Friedrichs/Poincaré type estimate (i).

Lemma 2.3 (automatic regularity). A∗ A, AA∗ and A∗ A, AA∗ are selfadjoint and nonnegative.
A∗ A = A∗ A and AA∗ = AA∗ are positive (and hence injective) with dense ranges. Moreover,
the automatic regularity (14) extends to

. . . = R(AA∗ A . . . ) = R(AA∗) = R(A) = R(A) = R(AA∗) = R(AA∗ A . . . ) = . . . ,

. . . = R(A∗ AA∗ . . . ) = R(A∗ A) = R(A∗) = R(A∗) = R(A∗ A) = R(A∗ AA∗ . . . ) = . . .

and it holds

N(A) = N(A∗ A) = N(AA∗ A) = . . . , N(A∗) = N(AA∗) = N(A∗ AA∗) = . . . .
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Lemma 2.4 (fundamental FA-ToolBox lemma 2). Let R(A) be closed.

(i) A∗ A : D(A∗ A) ⊂ N(A)⊥ → R(A∗) = N(A)⊥ is bijective with bounded inverse

(A∗ A)−1 = A−1(A∗)−1 : R(A∗) → D(A∗ A),
∣∣(A∗ A)−1

∣∣
R(A∗)→H0

= c2A.

For x ∈ D(A∗ A) it holds

|x|H0
≤ cA|Ax|H1

≤ c2A|A
∗ Ax|H0

.(15)

Moreover, A∗ A = A∗ A.
(i∗) Interchanging A and A∗ we get a similar results for A∗ A.

Solving A∗ Ax = f :

(ii) For f ∈ R(A∗) the unique solution x := (A∗ A)−1f ∈ D(A∗ A) of A∗ Ax = f can be
found by the variational formulation

∀ϕ ∈ D(A) ⟨Ax,Aϕ⟩H1
= ⟨f, ϕ⟩H0

,

which holds also for all ϕ ∈ D(A) as

⟨Ax,Aϕ⟩H1
= ⟨Ax,AπA∗ϕ⟩H1

= ⟨f, πA∗ϕ⟩H0
,= ⟨πA∗f, ϕ⟩H0

,= ⟨f, ϕ⟩H0
,(16)

where πA∗ denotes the orthogonal projector onto N(A)⊥ = R(A∗), which implies also
πA∗ : D(A) → D(A).

(ii∗) Interchanging A and A∗ we get a similar variational formulation for AA∗ y = g.

Solving Ax = g:

(iii) For g ∈ R(A) the unique solution x := A−1 g ∈ D(A) of Ax = g can be found by the
variational formulation

∀ϕ ∈ D(A) ⟨Ax,Aϕ⟩H1
= ⟨g,Aϕ⟩H1

,

which holds also for all ϕ ∈ D(A) since R(A) = R(A). Note that Ax− g ∈ R(A) belongs
to N(A∗) = {0}.

Another way is to use a potential y with A∗ y = x, i.e., to compute the unique potential
y := (A∗)−1x = (A∗)−1 A−1 g ∈ D(AA∗) which satisfies AA∗ y = g. By (ii) we can find
y ∈ D(A∗) by the variational formation

∀ψ ∈ D(A∗) ⟨A∗ y,A∗ ψ⟩H0
= ⟨g, ψ⟩H1

.

(iii∗) Interchanging A and A∗ we get similar variational formulations for A∗ y = f .
(iv) Solving the latter variational formulations leads to saddle point problems which are tricky

to handle. A comprehensive theory can be found in [13].

2.1.2. Helmholtz Projections. The projections in (13) and (14) can be computed as follows:
Let R(A) be closed and let us consider, e.g., H1 = R(A)⊕H1 N(A∗).
For g ∈ H1 the variational formulation in Lemma 2.4(iii) computes the orthogonal projections

πAg onto R(A) and (1− πA)g onto N(A∗) = R(A)⊥. More precisely, x ∈ D(A) such that

∀ϕ ∈ D(A) ⟨Ax,Aϕ⟩H1
= ⟨g,Aϕ⟩H1

(17)

implies Ax− g ∈ N(A∗) and thus we get (13), i.e., with πAg = Ax

g = Ax−Ax+ g = πAg + (1− πA)g ∈ R(A)⊕H1 N(A∗).

Note that Ax− g ∈ N(A∗) = {0} if and only if g ∈ R(A).
Now let us consider the bounded linear operator A : D(A) → H1 and its Banach space adjoint

A′. Using the Riesz isometry RH1
: H1 → H′

1 we introduce the modified adjoint

A⊤ := A′ RH1 : H1 → D(A)′; y 7→ A′ RH1y( · ) = RH1y(A · ) = ⟨A · , y⟩H1 .

Then A′ and A⊤ are bounded linear operators with |A⊤ | = |A′ | = |A | and A⊤ is an extension

of A∗. Moreover, N(A⊤) = R(A)⊥ = N(A∗) and R(A⊤) = R(A′) is closed by the closed range

theorem. Therefore, A⊤ |R(A) is boundedly invertible on R(A′) by the bounded inverse theorem,
i.e.,

A⊤ := A⊤ |R(A) : R(A) → R(A′); y 7→ A⊤ y
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is a topological isomorphism.
(17) translates equivalently to

A⊤ g = A⊤ Ax = A⊤ Ax.

Hence

πAg = Ax = (A⊤)−1 A⊤ g = AA−1(A⊤)−1 A⊤ g = A(A⊤ A)−1 A⊤ g.

Note that we have indeed π2
A = A(A⊤ A)−1 A⊤ A(A⊤ A)−1 A⊤ = A(A⊤ A)−1 A⊤ = πA and that

for g ∈ R(A) it holds πAg = (A⊤)−1 A⊤ g = (A⊤)−1 A⊤ g = g. Finally,

πA = A(A⊤ A)−1 A⊤ = (A⊤)−1 A⊤ : H1 → R(A),

where A† := (A⊤ A)−1 A⊤ is often called Moore/Penrose inverse of A. Note that A† is a bounded
right inverse of A, i.e.,

AA† = (A⊤)−1 A⊤, AA† ∣∣
R(A)

= (A⊤)−1 A⊤ = idR(A) .

2.1.3. Operator Complexes. Let H2 be another Hilbert space and let

(18) · · · H0 H1 H2 · · ····
···

A0

A∗
0

A1

A∗
1

···
···

be a primal and dual Hilbert complex, i.e.,

A0 : D(A0) ⊂ H0 → H1, A1 : D(A1) ⊂ H1 → H2,

A∗
0 : D(A∗

0) ⊂ H1 → H0, A∗
1 : D(A∗

1) ⊂ H2 → H1

are densely defined and closed linear operators satisfying the complex property

A1 A0 ⊂ 0.(19)

Note that (19) is equivalent to R(A0) ⊂ N(A1) which is equivalent to R(A∗
1) ⊂ N(A∗

0) (dual

complex property) as R(A∗
1) ⊂ R(A∗

1) = N(A1)
⊥H1 ⊂ R(A0)

⊥H1 = N(A∗
0) and vice versa.

Defining the cohomology group

N0,1 := N(A1) ∩N(A∗
0)

we get the following orthogonal Helmholtz-type decompositions, cf. (13).

Lemma 2.5 (Helmholtz decomposition). The orthogonal Helmholtz-type decompositions

H1 = R(A0)⊕H1
N(A∗

0), H1 = N(A1)⊕H1
R(A∗

1),

N(A1) = R(A0)⊕H1 N0,1, N(A∗
0) = N0,1 ⊕H1 R(A

∗
1),

D(A1) = R(A0)⊕H1

(
D(A1) ∩N(A∗

0)
)
, D(A∗

0) =
(
N(A1) ∩D(A∗

0)
)
⊕H1 R(A

∗
1),

D(A∗
0) = D(A∗

0)⊕H1
N(A∗

0), D(A1) = N(A1)⊕H1
D(A1),

(20)

as well as R(A∗
0) = R(A∗

0) and R(A1) = R(A1) hold. Moreover,

H1 = R(A0)⊕H1
N0,1 ⊕H1

R(A∗
1),

D(A∗
0) = D(A∗

0)⊕H1
N0,1 ⊕H1

R(A∗
1),

D(A1) = R(A0)⊕H1
N0,1 ⊕H1

D(A1),

D(A1) ∩D(A∗
0) = D(A∗

0)⊕H1 N0,1 ⊕H1 D(A1).

2.2. Applications to the De Rham Complex. For Lebesgue and Sobolev spaces we use stan-
dard notations L2(Ω), Hk(Ω), k ∈ N, and H(rot,Ω), H(div,Ω), repsectively, and introduce homo-
geneous boundary conditions by

H̊k(Ω) := C̊∞(Ω)
Hk(Ω)

, H̊(rot,Ω) := C̊∞(Ω)
H(rot,Ω)

, H̊(div,Ω) := C̊∞(Ω)
H(div,Ω)

.
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2.2.1. Domains.

Definition 2.6 (admissible domains). Ω is called

(i) ‘Friedrichs admissible’ if Friedrichs’ estimate

∃ cf > 0 ∀φ ∈ H̊1(Ω) |φ|L2(Ω) ≤ cf | ∇φ|L2(Ω)

(ii) ‘Poincaré admissible’ if Ω is bounded and Poincaré’s estimate

∃ cp > 0 ∀φ ∈ pH1(Ω) |φ|L2(Ω) ≤ cp| ∇φ|L2(Ω)

holds. Here pH1(Ω) := H1(Ω) ∩ R⊥ and ⊥ denotes orthogonality in L2(Ω).

From now on, let cf and cp denote the best possible constants in Defintion 2.6, cf. (9).

Remark 2.7 (admissible domains). We note:

(i) Any Ω being bounded in at least one direction with diameter d > 0 is Friedrichs admissible.
Moreover, we emphasise that no regularity of Γ is needed. It holds

1

cf
= min

0̸=u∈H̊1(Ω)

| ∇u|L2(Ω)

|u|L2(Ω)
,

which means that 1/cf is the square root of the first eigenvalue of the negative Dirichlet
Laplacian.

(ii) Any bounded (weak) Lipschitz domain Ω with diameter d > 0 is Poincaré admissible. We
have

1

cp
= min

0̸=u∈pH1(Ω)

| ∇u|L2(Ω)

|u|L2(Ω)
,

which means that 1/cp is the square root of the first positive eigenvalue of the negative
Neumann Laplacian.

In both cases we have cf , cp ≤ d/π, cf. [20].

2.2.2. De Rham Complex. In the following we shall apply the latter abstract results with different
choices of A for various operators from the de Rham complex

(21) L2(Ω) L2(Ω) L2(Ω) L2(Ω),
A0=∇̊

A∗
0=− div

A1=r̊ot

A∗
1=rot

A2=d̊iv

A∗
2=−∇

cf. (18), with the densely defined and closed linear operators from vector calculus

∇̊ : H̊1(Ω) ⊂ L2(Ω) → L2(Ω), ∇ : H1(Ω) ⊂ L2(Ω) → L2(Ω); ϕ 7→ ∇ϕ,

r̊ot : H̊(rot,Ω) ⊂ L2(Ω) → L2(Ω), rot : H(rot,Ω) ⊂ L2(Ω) → L2(Ω); Φ 7→ rotΦ,

d̊iv : H̊(div,Ω) ⊂ L2(Ω) → L2(Ω), div : H(div,Ω) ⊂ L2(Ω) → L2(Ω); Φ 7→ div Φ.

2.2.3. Gradients and Divergences. Let us start with ∇ and div.

• Let Ω be Friedrichs admissible. We consider

A := A0 = ∇̊, A∗ = − div .

By Friedrichs’ estimate and Lemma 2.1 R(A) and R(A∗) are closed. Moreover,

N(∇̊) = N(A) = {0}, R(div) = R(A∗) = N(A)⊥ = L2(Ω)

and

A : H̊1(Ω) ⊂ L2(Ω) → R(A),

A∗ : H(div,Ω) ∩R(A) ⊂ R(A) → L2(Ω).

Note that by (20)

N(A∗) = N(div) =
{
Φ ∈ H(div,Ω) : div Φ = 0

}
,

R(A) = R(∇̊) = N(r̊ot) ∩HD(Ω)
⊥ =

{
Φ ∈ H̊(rot,Ω) : rotΦ = 0 ∧ Φ⊥HD(Ω)

}
,
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where we denote the harmonic Dirichlet fields (cohomology group) by

HD(Ω) := N(r̊ot) ∩N(div) =
{
Φ ∈ H̊(rot,Ω) ∩ H(div,Ω) : rotΦ = 0 ∧ div Φ = 0

}
.

A and A∗ are bijective with bounded inverses

A−1 : R(A) → D(A), | A−1 |R(A)→L2(Ω) = cf ,

(A∗)−1 : R(A∗) → D(A∗),
∣∣(A∗)−1

∣∣
R(A∗)→L2(Ω)

= cf .

Let f ∈ L2(Ω) and G ∈ R(∇̊). Then

u := A−1G ∈ D(A) = H̊1(Ω), E := (A∗)−1f ∈ D(A∗) = H(div,Ω) ∩R(∇̊)

are the unique solutions of the boundary value problems ∇̊u = G and −div |R(∇̊)E = f ,

i.e.,

∇u = G, −divE = f in Ω,

rotE = 0 in Ω,

u = 0, n× E = 0 on Γ,

E ⊥ HD(Ω).

Extensions to right hand sides f ∈ H−1(Ω) := H̊1(Ω)′ and G ∈ H(div,Ω)′ are straight
forward using Banach space adjoints.

• Let Ω be Poincaré admissible. We consider

A := −A∗
2 = ∇, A∗ = − d̊iv .

Note that N(∇) = N(A) = R and A = A |R⊥ . By Poincaré’s estimate and Lemma 2.1
R(A) = R(A) and R(A∗) are closed. Moreover,

R(d̊iv) = R(A∗) = N(A)⊥ = L2(Ω) ∩ R⊥ =: pL2(Ω)

and

A : pH1(Ω) ⊂ pL2(Ω) → R(A), pH1(Ω) = H1(Ω) ∩ R⊥

A∗ : H̊(div,Ω) ∩R(A) ⊂ R(A) → pL2(Ω).

By (20)

N(A∗) = N(d̊iv) =
{
Φ ∈ H̊(div,Ω) : div Φ = 0

}
,

R(A) = R(∇) = N(rot) ∩HN(Ω)
⊥ =

{
Φ ∈ H(rot,Ω) : rotΦ = 0 ∧ Φ⊥HN(Ω)

}
,

where we denote the harmonic Neumann fields (cohomology group) by

HN(Ω) := N(rot) ∩N(d̊iv) =
{
Φ ∈ H(rot,Ω) ∩ H̊(div,Ω) : rotΦ = 0 ∧ div Φ = 0

}
.

A and A∗ are bijective with bounded inverses

A−1 : R(A) → D(A), | A−1 |R(A)→L2(Ω) = cp,

(A∗)−1 : R(A∗) → D(A∗),
∣∣(A∗)−1

∣∣
R(A∗)→L2(Ω)

= cp.

Let f ∈ pL2(Ω) and G ∈ R(∇). Then

u := A−1G ∈ D(A) = pH1(Ω), E := (A∗)−1f ∈ D(A∗) = H(d̊iv,Ω) ∩R(∇)

are the unique solutions of ∇ |
pL2(Ω)u = G and − d̊iv |R(∇)E = f , i.e.,

∇u = G, −divE = f in Ω,

rotE = 0 in Ω,

n · E = 0 on Γ,

u ⊥ R, E ⊥ HN(Ω).

Extensions to right hand sides f ∈ H̊−1(Ω) := H1(Ω)′ and G ∈ H(d̊iv,Ω)′ are straight
forward using Banach space adjoints.
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Remark 2.8 (duals). Note that in [7] it has been shown

H(d̊iv,Ω)′ =
{
Φ ∈ H−1 : rotΦ ∈ H−1

}
, H−k(Ω) := H̊k(Ω)′,

H(r̊ot,Ω)′ =
{
Φ ∈ H−1 : div Φ ∈ H−1

}
,

H(div,Ω)′ =
{
Φ ∈ H̊−1 : rotΦ ∈ H̊−1

}
, H̊−k(Ω) := Hk(Ω)′,

H(rot,Ω)′ =
{
Φ ∈ H̊−1 : div Φ ∈ H̊−1

}
.

2.2.4. Dirichlet/Neumann Laplacians. We use the latter results.

• Let Ω be Friedrichs admissible and let A := A0 = ∇̊. We introduce the negative Dirichlet
Laplacian

LD := A∗ A = −div ∇̊ : D(LD) ⊂ L2(Ω) → L2(Ω); φ 7→ −∆φ,

where

D(LD) =
{
φ ∈ H̊1(Ω) : ∇φ ∈ H(div,Ω)

}
=

{
φ ∈ H̊1(Ω) : ∆φ ∈ L2(Ω)

}
.

Note that LD = A∗ A = A∗ A = A∗ A = LD with closed range R(LD) = R(A∗) = L2(Ω). LD

is selfadjoint, positive, and bijective with bounded inverse

L−1
D = A−1(A∗)−1 : L2(Ω) → D(LD), |L−1

D |L2(Ω)→L2(Ω) = c2f .

(15) reads

∀φ ∈ D(LD) |φ|L2(Ω) ≤ cf | ∇φ|L2(Ω) ≤ c2f |∆φ|L2(Ω).(22)

Let f ∈ L2(Ω). Then u := L−1
D f ∈ D(LD) is the unique solution of the Dirichlet Laplace

boundary value problem LD u = f , i.e.,

−∆u = f in Ω,

u = 0 on Γ.

Note that

u = A−1(A∗)−1f = −∇̊
−1

div |−1

R(∇̊)
f,

cf. Section 2.2.3. To find u ∈ H̊1(Ω) by variational methods we may consider (16), i.e.,

∀φ ∈ H̊1(Ω) ⟨∇u,∇φ⟩L2(Ω) = ⟨f, φ⟩L2(Ω).

Extensions to right hand sides f ∈ H−1(Ω) are straight forward using Banach space
adjoints.

• Let Ω be Poincaré admissible and let A := −A∗
2 = ∇. We introduce the negative Neumann

Laplacian and its reduced version

LN := A∗ A = − d̊iv ∇ : D(LN) ⊂ L2(Ω) → L2(Ω); φ 7→ −∆φ,

LN = A∗ A = A∗ A = − d̊iv ∇ |
pL2(Ω) : D(LN) ⊂ pL2(Ω) → pL2(Ω),

where

D(LN) =
{
φ ∈ H1(Ω) : ∇φ ∈ H̊(div,Ω)

}
,

D(LN) =
{
φ ∈ pH1(Ω) : ∇φ ∈ H̊(div,Ω)

}
.

LN is selfadjoint, positive, and bijective with closed range R(LN) = R(A∗) = pL2(Ω) and
bounded inverse

L−1
N = A−1(A∗)−1 : pL2(Ω) → D(LN), | L−1

N |
pL2(Ω)→L2(Ω) = c2p.

(15) reads

∀φ ∈ D(LN) |φ|L2(Ω) ≤ cp| ∇φ|L2(Ω) ≤ c2p|∆φ|L2(Ω).

Let f ∈ pL2(Ω). Then u := L−1
N f ∈ D(LN) is the unique solution of the Neumann

Laplace boundary value problem LN u = f , i.e.,

−∆u = f in Ω,
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n · ∇u = 0 on Γ,

u ⊥ R.

Note that

u = A−1(A∗)−1f = −∇ |−1
pL2(Ω)

d̊iv |−1
R(∇)f,

cf. Section 2.2.3. To find u ∈ pH1(Ω) by variational methods we may consider (16), i.e.,

∀φ ∈ H1(Ω) ⟨∇u,∇φ⟩L2(Ω) = ⟨f, φ⟩L2(Ω).

Extensions to right hand sides f ∈ H̊−1(Ω) are straight forward using Banach space
adjoints.

2.2.5. Over- and Underdetermined Laplacians. Let Ω be Friedrichs admissible.

Lemma 2.9. On H̊2(Ω) the norms | · |H2(Ω) and |∆ · |L2(Ω) are equivalent. More precisely,

∀φ ∈ H̊2(Ω) |φ|H2(Ω) ≤ c∆|∆φ|L2(Ω),

where c∆ :=
√
1 + c2f + c4f .

Proof. By (22)

∀φ ∈ D(LD) |φ|2L2(Ω) + | ∇φ|2L2(Ω) + |∆φ|2L2(Ω) ≤ c2∆|∆φ|2L2(Ω).

For φ ∈ C̊∞(Ω) we observe∑
i,j

⟨∂i ∂j φ, ∂i ∂j φ⟩L2(Ω) =
∑
i,j

⟨∂2i φ, ∂
2
j φ⟩L2(Ω) = |∆φ|2L2(Ω),

which extends to φ ∈ H̊2(Ω) by continuity and shows the stated estimate. □

Let

H(∆,Ω) :=
{
φ ∈ L2(Ω) : ∆φ ∈ L2(Ω)

}
, H :=

{
φ ∈ L2(Ω) : ∆φ = 0

}
,

where the latter denotes the harmonic functions.
Lemma 2.9 and Lemma 2.1 yield that the over- and underdetermined Laplacians

L̊ : H̊2(Ω) ⊂ L2(Ω) → L2(Ω); φ 7→ −∆φ,

L := L̊
∗
: H(∆,Ω) ⊂ L2(Ω) → L2(Ω)

are densely defined and closed with closed ranges R(̊L) and R(L). Moreover,

N (̊L) = {0}, R(̊L) = N(L)⊥ = L2(Ω) ∩H⊥ =: L̃2(Ω),

N(L) = H, R(L) = N (̊L)⊥ = L2(Ω).
(23)

The reduced operators

L̊ : H̊2(Ω) ⊂ L2(Ω) → L̃2(Ω),

L : H̃(∆,Ω) ⊂ L̃2(Ω) → L2(Ω), H̃(∆,Ω) := H(∆,Ω) ∩H⊥

are bijective with bounded inverse operators

L̊−1 : L̃2(Ω) → D(̊L) = H̊2(Ω),

L−1 : L2(Ω) → D(L) = H̃(∆,Ω), |L̊−1|L̃2(Ω)→L2(Ω) = | L−1 |L2(Ω)→L2(Ω) ≤ c2f ,

cf. (22).

Remark 2.10. In particular, we have for all φ ∈ D(L̊) = H̊2(Ω) and all φ ∈ D(L) = H̃(∆,Ω)

|φ|L2(Ω) ≤ c2f |∆φ|L2(Ω).
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Let f ∈ L̃2(Ω). Then u := L̊−1f ∈ D(̊L) = H̊2(Ω) is the unique solution of the overdetermined

negative Laplace boundary value problem L̊u = f , i.e.,

−∆u = f in Ω,

u = 0 on Γ,

n · ∇u = 0 on Γ.

Remark 2.11. Note that u|Γ = 0 implies n ×∇u|Γ = 0. Hence, together with n · ∇u|Γ = 0 we

see ∇u|Γ = 0. In other words, for u ∈ H̊1(Ω) it holds

u ∈ H̊2(Ω) ⇔ ∇u ∈ H̊(div,Ω) ∩ H1(Ω).

Let f ∈ L2(Ω). Then u := L−1 f ∈ D(L) = H̃(∆,Ω) is the unique solution of the underdeter-
mined negative Laplace boundary value problem Lu = f , i.e.,

−∆u = f in Ω,

u ⊥ H.

Remark 2.12. Note that for the different negative Laplacians we have L̊ ⊂ LD,LN ⊂ L, that is

L̊ ⊂ LD = −div ∇̊ ⊂ L, L̊ ⊂ LN = − d̊iv∇ ⊂ L .

In this sense, L̊ and L are minimal and maximal L2(Ω)-realisations of the negative Laplacian,
respectively.

Theorem 2.13. Let Ω be bounded. Then D(L) = H̃(∆,Ω) ↪→ L2(Ω) is compact.

Proof. By Lemma 2.1 we have that the embedding D(L̊) = D(̊L) = H̊2(Ω) ↪→ L2(Ω) is compact if

and only if the embedding D(L) = H̃(∆,Ω) ↪→ L2(Ω) is compact. Hence the latter embedding is

compact by Rellich’s selection theorem for, e.g., H̊1(Ω). □

2.2.6. Bi-Laplacians and Biharmonic Operators. Let Ω be Friedrichs admissible and let us consider
A = L̊ with A∗ = L from the latter section.

• We introduce the Dirichlet bi-Laplacian (Dirichlet biharmonic operator)

BD := A∗ A = L L̊ : D(BD) → L2(Ω); φ 7→ ∆2φ,

where

D(BD) =
{
u ∈ H̊2(Ω) : ∆u ∈ H(∆,Ω)

}
=

{
u ∈ H̊2(Ω) : ∆2u ∈ L2(Ω)

}
.

Then BD = A∗ A = L L̊ = L L̊ = L L̊ = BD with closed range R(BD) = R(L) = L2(Ω). BD

is selfadjoint, positive, and bijective with bounded inverse

B−1
D := A−1(A∗)−1 = L̊−1 L−1 : L2(Ω) → D(BD), |B−1

D |L2(Ω)→L2(Ω) ≤ c4f .

(15) reads

∀φ ∈ D(BD) |φ|L2(Ω) ≤ c2f |∆φ|L2(Ω) ≤ c4f |∆2φ|L2(Ω).

Let f ∈ L2(Ω). Then u := B−1
D f ∈ D(BD) is the unique solution of the Dirichlet

boundary value problem for the bi-Laplacian BD u = f , i.e.,

∆2u = f in Ω,

u = 0 on Γ,

n · ∇u = 0 on Γ.

Note that u = L̊−1 L−1 f . To find u ∈ H̊2(Ω) by variational methods we may consider
(16), i.e.,

∀φ ∈ H̊2(Ω) ⟨∆u,∆φ⟩L2(Ω) = ⟨f, φ⟩L2(Ω).(24)

Extensions to right hand sides f ∈ H−2(Ω) are straight forward using Banach space
adjoints.
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• Analogously, we may consider the Neumann bi-Laplacian (Neumann biharmonic operator)
and its reduced version

BN := AA∗ = L̊L : D(BN) → L2(Ω),

BN := AA∗ = L̊ L : D(BN) → R(̊L) = L̃2(Ω),

where we recall (23) and

D(BN) =
{
u ∈ H(∆,Ω) : ∆u ∈ H̊2(Ω)

}
,

D(BN) =
{
u ∈ H̃(∆,Ω) : ∆u ∈ H̊2(Ω)

}
.

BN and BN have closed range R(BN) = R(̊L) = L̃2(Ω). BN is selfadjoint, positive, and
bijective with bounded inverse

B−1
N := (A∗)−1 A−1 = L−1 L̊−1 : L̃2(Ω) → D(BN), | B−1

N |L̃2(Ω)→L2(Ω) = c4f .

(15) reads

∀φ ∈ D(BN) |φ|L2(Ω) ≤ c2f |∆φ|L2(Ω) ≤ c4f |∆2φ|L2(Ω).

Let f ∈ L̃2(Ω). Then u := B−1
N f ∈ D(BN) is the unique solution of the Neumann

boundary value problem for the bi-Laplacian BN u = f , i.e.,

∆2u = f in Ω,

∆u = 0 on Γ,

n · ∇∆u = 0 on Γ,

u ⊥ H.

As in Remark 2.11 we have ∇∆u|Γ = 0. Note that u = L−1 L̊−1f . To find u ∈ H̃(∆,Ω)
by variational methods we may consider (16), i.e.,

∀φ ∈ H(∆,Ω) ⟨∆u,∆φ⟩L2(Ω) = ⟨f, φ⟩L2(Ω).(25)

Extensions to right hand sides f ∈ H(∆,Ω)′ are straight forward using Banach space
adjoints.

Remark 2.14 (over- and underdetermined Laplacians). Recall Section 2.2.5.

• For u := B−1
D f = L̊−1 L−1 f we get that ũ := ∆u = L−1 f is the unique solution of

the underdetermined Laplace problem. Hence we may solve the underdetermined Laplace
problem using a variational formulation for the Dirichlet bi-Laplace problem (24). In fact,

we compute a potential u and set ũ := L̊u = ∆u, cf. Lemma 2.4(iii).

• For u := B−1
N f = L−1 L̊−1f we get that ũ := ∆v = L̊−1f is the unique solution of

the overdetermined Laplace problem. Thus we can solve the overdetermined Laplace prob-
lem using a variational formulation for the Neumann bi-Laplace problem (25). Here, we
compute a potential u and set ũ := Lu = ∆u, cf. Lemma 2.4(iii).

2.2.7. A Zoo of Biharmonic Operators. Let Ω be Poincaré admissible. Note that R ⊂ H and hence

L̃2(Ω) ⊂ pL2(Ω).

Let us recall the different reduced negative Laplacians

L̊, LD = LD = −div ∇̊, LN = − d̊iv∇
pL2(Ω), L

with domains of definition

D(L̊) = H̊2(Ω), D(LD) =
{
φ ∈ H̊1(Ω) : ∆φ ∈ L2(Ω)

}
,

D(L) = H̃(∆,Ω), D(LN) =
{
φ ∈ pH1(Ω) : ∇φ ∈ H̊(div,Ω)

}
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and their respective bounded inverse operators

L̊−1 : L̃2(Ω) → D(L̊) ⊂ L2(Ω), L−1
D : L2(Ω) → D(LD) ⊂ L2(Ω),

L−1 : L2(Ω) → D(L) ⊂ L̃2(Ω), L−1
N : pL2(Ω) → D(LN) ⊂ pL2(Ω).

(26)

In Section 2.2.6 we already discussed the Dirichlet and Neumann biharmonic operators

B·,◦ := BD = L L̊ = L L̊ = BD, B◦,· := BN = L̊ L,
being selfadjoint, positive, bijective and boundedly invertible with the well posed (well defined

and uniquely solvable) inverse operators L̊−1 L−1 and L−1 L̊−1.
Combining the four different Laplacians we obtain a whole zoo of formally sixteen biharmonic

operators. Due to the restrictions of pL2(Ω) and L̃2(Ω) some combinations are – even formally –
not possible (without further restrictions), those are the five combinations

L̊−1L̊−1, L̊−1 L−1
D , L̊−1 L−1

N , L−1
N L̊−1, L−1

N L−1
D ,

corresponding to L̊L̊, LD L̊, LN L̊, L̊ LN, LD LN, respectively. One has to consider different operators
to realise even stronger or weaker boundary conditions. We come back to this later.

We end up with only nine more well posed biharmonic operators, namely

B·,· := LL, BD,· := LD L, BN,· := LN L, B·,N := LLN, BN,N := LN LN,

B◦,D := L̊ LD, B·,D := LLD, BD,D := LD LD, BN,D := LN LD .

All eleven biharmonic operators are bijective and boundedly invertible, more precisely

B−1
·,◦ = L̊−1 L−1 : L2(Ω) → L2(Ω), B−1

◦,· = L−1 L̊−1 : L̃2(Ω) → L̃2(Ω),

B−1
·,· = L−1 L−1 : L2(Ω) → L̃2(Ω), B−1

D,· = L−1 L−1
D : L2(Ω) → L̃2(Ω),

B−1
N,· = L−1 L−1

N : pL2(Ω) → L̃2(Ω), B−1
·,N = L−1

N L−1 : L2(Ω) → pL2(Ω),

B−1
N,N = L−1

N L−1
N : pL2(Ω) → pL2(Ω), B−1

◦,D = L−1
D L̊−1 : L̃2(Ω) → L2(Ω),

B−1
·,D = L−1

D L−1 : L2(Ω) → L2(Ω), B−1
D,D = L−1

D L−1
D : L2(Ω) → L2(Ω),

B−1
N,D = L−1

D L−1
N : pL2(Ω) → L2(Ω).

Let us write down the classical formulations of the latter eleven (some apparently over- and
underdetermined) biharmonic operators as uniquely solvable boundary value problems for the
bi-Laplacian:

(i) B−1
·,◦ = L̊−1 L−1 : L2(Ω) →

{
u ∈ D(L̊) = H̊2(Ω) : ∆u ∈ D(L) = H̃(∆,Ω)

}
yields the unique solution u of (The last condition is redundant.)

∆2u = f ∈ L2(Ω) in Ω,

u = 0 on Γ,

n · ∇u = 0 on Γ,

∆u ⊥ H.

(ii) B−1
◦,· = L−1 L̊−1 : L̃2(Ω) →

{
u ∈ D(L) = H̃(∆,Ω) : ∆u ∈ D(L̊) = H̊2(Ω)

}
yields the unique solution u of

∆2u = f ∈ L̃2(Ω) in Ω,

∆u = 0 on Γ,

n · ∇∆u = 0 on Γ,

u ⊥ H.

(iii) B−1
·,· = L−1 L−1 : L2(Ω) →

{
u ∈ D(L) = H̃(∆,Ω) : ∆u ∈ D(L) = H̃(∆,Ω)

}
yields the unique solution u of

∆2u = f ∈ L2(Ω) in Ω,

u ⊥ H,
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∆u ⊥ H.

(iv) B−1
D,· = L−1 L−1

D : L2(Ω) →
{
u ∈ D(L) = H̃(∆,Ω) : ∆u ∈ D(LD)

}
yields the unique solution u of

∆2u = f ∈ L2(Ω) in Ω,

∆u = 0 on Γ,

u ⊥ H.

(v) B−1
N,· = L−1 L−1

N : pL2(Ω) →
{
u ∈ D(L) = H̃(∆,Ω) : ∆u ∈ D(LN)

}
yields the unique solution u of

∆2u = f ∈ pL2(Ω) in Ω,

n · ∇∆u = 0 on Γ,

u ⊥ H,
∆u ⊥ R.

(vi) B−1
·,N = L−1

N L−1 : L2(Ω) →
{
u ∈ D(LN) : ∆u ∈ D(L) = H̃(∆,Ω)

}
yields the unique solution u of

∆2u = f ∈ L2(Ω) in Ω,

n · ∇u = 0 on Γ,

u ⊥ R,
∆u ⊥ H.

(vii) B−1
N,N = L−1

N L−1
N : pL2(Ω) →

{
u ∈ D(LN) : ∆u ∈ D(LN)

}
yields the unique solution u of

∆2u = f ∈ pL2(Ω) in Ω,

n · ∇u = 0 on Γ,

n · ∇∆u = 0 on Γ,

u ⊥ R,
∆u ⊥ R.

(viii) B−1
◦,D = L−1

D L̊−1 : L̃2(Ω) →
{
u ∈ D(LD) : ∆u ∈ D(L̊) = H̊2(Ω)

}
yields the unique solution u of

∆2u = f ∈ L̃2(Ω) in Ω,

u = 0 on Γ,

∆u = 0 on Γ,

n · ∇∆u = 0 on Γ.

(ix) B−1
·,D = L−1

D L−1 : L2(Ω) →
{
u ∈ D(LD) : ∆u ∈ D(L) = H̃(∆,Ω)

}
yields the unique solution u of

∆2u = f ∈ L2(Ω) in Ω,

u = 0 on Γ,

∆u ⊥ H.

(x) B−1
D,D = L−1

D L−1
D : L2(Ω) →

{
u ∈ D(LD) : ∆u ∈ D(LD)

}
yields the unique solution u of

∆2u = f ∈ L2(Ω) in Ω,

u = 0 on Γ,

∆u = 0 on Γ.
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(xi) B−1
N,D = L−1

D L−1
N : pL2(Ω) →

{
u ∈ D(LD) : ∆u ∈ D(LN)

}
yields the unique solution u of

∆2u = f ∈ pL2(Ω) in Ω,

u = 0 on Γ,

n · ∇∆u = 0 on Γ,

∆u ⊥ R.

2.2.8. Over- and Underdetermined Biharmonic Operators. Let Ω be Friedrichs admissible. We
shall follow the rationale from Section 2.2.5. Note that (22) shows

∀φ ∈ H̊4(Ω) |φ|L2(Ω) ≤ cf | ∇φ|L2(Ω) ≤ c2f |∆φ|L2(Ω) ≤ c3f |∆∇φ|L2(Ω) ≤ c4f |∆2φ|L2(Ω),(27)

which holds also for all φ ∈ H̊3(Ω) with ∆2φ ∈ L2(Ω).

Lemma 2.15. On H̊4(Ω) the norms | · |H4(Ω) and |∆2 · |L2(Ω) are equivalent. More precisely,

∀φ ∈ H̊4(Ω) |φ|H4(Ω) ≤ c∆2 |∆2φ|L2(Ω),

where c∆2 := c∆
√
1 + c4f =

√
1 + c2f + 2c4f + c6f + c8f .

Proof. Note that φ ∈ H̊4(Ω) implies φ, ∂i ∂j φ ∈ H̊2(Ω). Lemma 2.9, its proof, and (22) show

|φ|2H4(Ω) = |φ|2H2(Ω) +
∑
i,j

| ∂i ∂j φ|2H2(Ω) ≤ c2∆

(
|∆φ|2L2(Ω)︸ ︷︷ ︸

≤ c4f |∆2φ|2L2(Ω)

+
∑
i,j

| ∂i ∂j ∆φ|2L2(Ω)︸ ︷︷ ︸
= |∆2φ|2L2(Ω)

)
,

completing the proof. □

Let

H(∆2,Ω) :=
{
φ ∈ L2(Ω) : ∆2φ ∈ L2(Ω)

}
, BH :=

{
φ ∈ L2(Ω) : ∆2φ = 0

}
,

where the latter denotes the biharmonic functions.
Lemma 2.15 and Lemma 2.1 show that the over- and underdetermined biharmonic operators

(bi-Laplacians)

B̊ : H̊4(Ω) ⊂ L2(Ω) → L2(Ω); φ 7→ ∆2φ,

B := B̊
∗
: H(∆2,Ω) ⊂ L2(Ω) → L2(Ω)

are densely defined and closed with closed ranges R(B̊) and R(B). Moreover,

N(B̊) = {0}, R(B̊) = N(B)⊥ = L2(Ω) ∩ BH⊥ =: qL2(Ω),

N(B) = BH, R(B) = N(B̊)⊥ = L2(Ω).
(28)

The reduced operators

B̊ : H̊4(Ω) ⊂ L2(Ω) → qL2(Ω),

B : qH(∆2,Ω) ⊂ qL2(Ω) → L2(Ω), qH(∆2,Ω) := H(∆2,Ω) ∩ BH⊥

are bijective with bounded inverse operators

B̊−1 : qL2(Ω) → D(B̊) = H̊4(Ω),

B−1 : L2(Ω) → D(B) = qH(∆2,Ω), |B̊−1|
qL2(Ω)→L2(Ω) = | B−1 |L2(Ω)→L2(Ω) ≤ c4f ,

cf. (27).

Let f ∈ qL2(Ω). Then u := B̊−1f ∈ D(B̊) = H̊4(Ω) is the unique solution of the overdetermined

biharmonic boundary value problem B̊u = f , i.e.,

∆2u = f in Ω,

∀ |α| ≤ 3 ∂α v = 0 on Γ.
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Let f ∈ L2(Ω). Then u := B−1 f ∈ D(B) = qH(∆,Ω) is the unique solution of the underdeter-
mined biharmonic boundary value problem B u = f , i.e.,

∆2u = f in Ω,

u ⊥ BH.

Note that the latter two boundary value problems for ∆2 are the numbers (xii) and (xiii) on
the list from Section 2.2.7.

Remark 2.16. Note that for the different biharmonic operators we have B̊ ⊂ BD,BN ⊂ B, that is

B̊ ⊂ BD = L L̊ ⊂ B, B̊ ⊂ BN = L̊L ⊂ B .

In this sense, B̊ and B are minimal and maximal L2(Ω)-realisations of the biharmonic operator,
respectively.

Recall Theorem 2.13.

Theorem 2.17. Let Ω be bounded. Then D(B) = qH(∆2,Ω) ↪→ L2(Ω) is compact.

Proof. By Lemma 2.1 we have that the embedding D(B̊) = D(B̊) = H̊4(Ω) ↪→ L2(Ω) is compact if

and only if the embedding D(B) = qH(∆2,Ω) ↪→ L2(Ω) is compact. Hence the latter embedding is

compact by Rellich’s selection theorem for, e.g., H̊1(Ω). □

2.2.9. Biharmonic Operators with Mixed Boundary Conditions. In principle, everything works also
with mixed boundary conditions. For example, let us consider a division of Γ into two relatively

open parts Γt ̸= ∅ and Γn := Γ \ Γt. We introduce H1
Γt
(Ω) as closure of C̊∞

Γt
(R3) (the compact

support does not touch Γt) in H1(Ω). Analogously we define HΓn(div,Ω).
Let Ω be such that the embedding

H1(Ω) ↪→ L2(Ω)(29)

is compact, which holds, e.g., for bounded Lipschitz domains Ω.
By the compact embedding (29) we obtain the Friedrichs/Poincaré estimate

∃ cfp > 0 ∀φ ∈ H1
Γt
(Ω) |φ|L2(Ω) ≤ cfp| ∇φ|L2(Ω),(30)

cf. Defintion 2.6. As before, we assume cfp to be the best possible constant.
Then

A := ∇Γt : H
1
Γt
(Ω) ⊂ L2(Ω) → L2(Ω)

is densely defined and closed with adjoint

A∗ = ∇∗
Γt

= −divΓn : HΓn(div,Ω) ⊂ L2(Ω) → L2(Ω),

cf. [3, 14]. Note that the cases Γt = Γ and Γt = ∅ have already been discussed by ∇̊ = ∇Γ and
∇ = ∇∅, respectively. By (30) and Lemma 2.1 R(A) and R(A∗) are closed and we have

N(∇Γt) = N(A) = {0}, R(divΓn) = R(A∗) = N(A)⊥ = L2(Ω).

The full de Rham complex reads, cf. (18) and (21),

(31) L2(Ω) L2(Ω) L2(Ω) L2(Ω).
A0=∇Γt

A∗
0=− divΓn

A1=rotΓt

A∗
1=rotΓn

A2=divΓt

A∗
2=−∇Γn

The negative Dirichlet-Neumann-Laplacian

−∆Γt := A∗ A = A∗ A = −divΓn ∇Γt : D(∆Γt) ⊂ L2(Ω) → L2(Ω),

where
D(∆Γt) =

{
φ ∈ H1

Γt
(Ω) : ∇φ ∈ HΓn(div,Ω)

}
,

is selfadjoint, positive, and bijective with bounded inverse

−∆−1
Γt

= A−1(A∗)−1 : L2(Ω) → D(∆Γt),
∣∣∆−1

Γt

∣∣
L2(Ω)→L2(Ω)

= c2fp.

(15) reads

∀φ ∈ D(∆Γt) |φ|L2(Ω) ≤ cfp| ∇φ|L2(Ω) ≤ c2fp|∆φ|L2(Ω).(32)
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Let f ∈ L2(Ω). Then u := −∆−1
Γt
f ∈ D(∆Γt) is the unique solution of the Dirichlet-Neumann

Laplace boundary value problem −∆Γtu = f , i.e.,

∆u = f in Ω,

u = 0 on Γt,

n · ∇u = 0 on Γn.

To find u ∈ H1
Γt
(Ω) by variational methods we may consider (16), i.e.,

∀φ ∈ H1
Γt
(Ω) ⟨∇u,∇φ⟩L2(Ω) = ⟨f, φ⟩L2(Ω).

Moreover, v := ∆−1
Γt

∆−1
γt
f ∈ D(∆γt∆Γt) for some other boundary pair γt ̸= ∅ and γn := Γ \ γt is

the unique solution of the Dirichlet-Neumann biharmonic boundary value problem ∆γt∆Γtv = f ,
i.e.,

∆v2 = f in Ω,

v = 0 on Γt,

n · ∇ v = 0 on Γn,

∆v = 0 on γt,

n · ∇∆v = 0 on γn.

2.3. Applications to the Hessian Complex. Let Ω be a bounded Lipschitz domain, and recall
the boundary parts Γt and Γn and the definition of the Sobolev spaces als closures of test fields
from the latter section. In the following we shall apply our theory to the Hessian complex (complex
of the biharmonic equation and general relativity)

(33) L2(Ω) L2S(Ω) L2T(Ω) L2(Ω),
A0=∇∇Γt

A∗
0=divDivS,Γn

A1=RotS,Γt

A∗
1=symRotT,Γn

A2=DivT,Γt

A∗
2=− dev∇Γn

cf. (18) and (21), with the densely defined and closed linear operators (acting row-wise on tensors)

∇∇Γt : H
2
Γt
(Ω) ⊂ L2(Ω) → L2S(Ω); ϕ 7→ ∇∇ϕ,

RotS,Γt : HS,Γt(Rot,Ω) ⊂ L2S(Ω) → L2T(Ω); Φ 7→ RotΦ,

DivT,Γt : HT,Γt(Div,Ω) ⊂ L2T(Ω) → L2(Ω); Ψ 7→ DivΨ,

divDivS,Γn : HS,Γn(divDiv,Ω) ⊂ L2S(Ω) → L2(Ω); Φ 7→ divDivΦ,

symRotT,Γn
: HT,Γn(symRot,Ω) ⊂ L2T(Ω) → L2S(Ω); Ψ 7→ RotΨ,

dev∇Γn : H
1
Γn
(Ω) ⊂ L2(Ω) → L2T(Ω); ψ 7→ ∇∇ψ,

cf. [16, 18] for well-posedness.
Recall the identity (10). Hence, another way to look at the biharmonic equation – underlin-

ing more the geometry (complex property) of the underlying operators – is to investigate the
biharmonic operator

BΓt := A∗
0 A0 = divDivS,Γn ∇∇Γt : D(A∗

0 A0) ⊂ L2(Ω) → L2(Ω); Φ 7→ divDiv∇∇Φ,

where

D(BΓt) =
{
φ ∈ H2

Γt
(Ω) : ∇∇φ ∈ HS,Γn(divDiv,Ω)

}
.

For Γt = Γ we get back the Dirichlet biharmonic operator, i.e., BΓ = BD. But if Γt ̸= Γ we obtain
a different operator due to the boundary conditions being imposed on the scalars u and ∆u for
∆2, and on the other hand on the scalar u and the symmetric tensor S := ∇∇u for BΓt .

For simplicity, let us assume ∅ ≠ Γt ̸= Γ. The Friedrichs/Poincaré estimate (30) yields

∀φ ∈ H2
Γt
(Ω) |φ|L2(Ω) ≤ cfp| ∇φ|L2(Ω) ≤ c2fp| ∇∇φ|L2(Ω).(34)

By (34) and Lemma 2.1 R(A0) and R(BΓt) = R(A∗
0) are closed and

N(BΓt) = N(A0) = {0}, R(BΓt) = R(A∗
0) = N(A0)

⊥ = L2(Ω),
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which shows BΓt = BΓt . BΓt is selfadjoint, positive, and bijective with bounded inverse

B−1
Γt

= A−1
0 (A∗

0)
−1 : L2(Ω) → D(BΓt), |B−1

Γt
|L2(Ω)→L2(Ω) ≤ c4fp.

(15) reads

∀φ ∈ D(BΓt) |φ|L2(Ω) ≤ c2fp| ∇∇φ|L2(Ω) ≤ c4fp|divDiv∇∇φ|L2(Ω) = c4fp|∆2φ|L2(Ω).

Let f ∈ L2(Ω). Then u := B−1
Γt
f ∈ D(BΓt) is the unique solution of the Dirichlet/Neumann

biharmonic boundary value problem BΓt u = f , i.e.,

divDiv∇∇u = ∆2u = f in Ω,

u = 0 on Γt,

∇u = 0 on Γt,

(∇∇u)n = 0 on Γn,(
(∇∇u)n

)
· n = 0 on Γn.

To find u ∈ H2
Γt
(Ω) by variational methods we may consider (16), i.e.,

∀φ ∈ H2
Γt
(Ω) ⟨∇∇u,∇∇φ⟩L2(Ω) = ⟨f, φ⟩L2(Ω).

Extensions to right hand sides f ∈ H−2
Γn

(Ω) are straight forward using Banach space adjoints.
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