A Global div-curl-Lemma for Mixed Boundary Conditions in Weak Lipschitz Domains and a Corresponding Generalized A₀^{*}-A₁-Lemma in Hilbert Spaces

> Dirk Pauly Fakultät für Mathematik

UNIVERSITÄT DUISBURG ESSEN

Open-Minded ;-)

July 23, 2018

Conference on Mathematics of Wave Phenomena Karlsruhe, July 23-27, 2018

classical div-curl-lemma

Let $\Omega \subset \mathbb{R}^3$ be open.

Lemma (classical div-curl-lemma)

Assumptions:

- (i) $(E_n), (H_n)$ bounded in $L^2(\Omega)$
- (ii) (rot E_n) bounded in $L^2(\Omega)$
- (iii) (div H_n) bounded in $L^2(\Omega)$

 $\Rightarrow \exists E, H \text{ and subseq st } E_n \rightarrow E, \text{ rot } E_n \rightarrow \text{rot } E \text{ and } H_n \rightarrow H, \text{ div } H_n \rightarrow \text{div } H \text{ and}$

$$\forall \varphi \in \mathring{\mathsf{C}}^{\infty}(\Omega) \qquad \qquad \int_{\Omega} \varphi(E_n \cdot H_n) \to \int_{\Omega} \varphi(E \cdot H)$$

classical div-curl-lemma is local!

div-curl-lemma

We shall prove:

Let $\Omega \subset \mathbb{R}^3$ be a bounded weak Lipschitz domain with boundary Γ and weak Lipschitz boundary parts Γ_t and $\Gamma_n = \Gamma \setminus \overline{\Gamma_t}$.

Lemma (div-curl-lemma (global version))

Assumptions:

- (i) $(E_n), (H_n)$ bounded in $L^2(\Omega)$
- (ii) (rot E_n) bounded in $L^2(\Omega)$
- (iii) (div H_n) bounded in $L^2(\Omega)$
- (iii) $\nu \times E_n = 0$ on Γ_t
- (iii') $\nu \cdot H_n = 0$ on Γ_n

 $\Rightarrow \exists E, H \text{ and subseq st } E_n \rightarrow E, \text{ rot } E_n \rightarrow \text{rot } E \text{ and } H_n \rightarrow H, \text{ div } H_n \rightarrow \text{div } H \text{ and}$

$$\int_{\Omega} E_n \cdot H_n \to \int_{\Omega} E \cdot H$$

Proof.

- generalize and fa-toolbox
- crucial points: complex property and compact embedding

literature

original papers (local div-curl-lemma):

- Murat, F.: Compacité par compensation, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 1978
- Tartar, L.: Compensated compactness and applications to partial differential equations, Nonlinear analysis and mechanics. Heriot-Watt symposium. 1979

recent papers (global div-curl-lemma, unfortunately H¹-detour):

- Gloria, A., Neukamm, S., Otto, F.: Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics, (IM) Invent. Math., 2015
- Kozono, H., Yanagisawa, T.: Global compensated compactness theorem for general differential operators of first order, (ARMA) Arch. Ration. Mech. Anal., 2013
- Schweizer, B.: On Friedrichs inequality, Helmholtz decomposition, vector potentials, and the div-curl lemma, accepted preprint, 2018

fa-toolbox for linear problems/systems

idea: solve problem with general and simple linear functional analysis (\Rightarrow fa-toolbox) ...

literature: probably very well known for ages, but hard to find ...

Friedrichs, Weyl, Hörmander, Fredholm, von Neumann, Riesz, Banach, ... ?

Why not rediscover, modify, and extend?

setting:

$$A_0: D(A_0) \subset H_0 \to H_1$$
$$A_1: D(A_1) \subset H_1 \to H_2$$

two densely defined and closed linear operators on three Hilbert spaces H_0 , H_1 , H_2 (possibly and generally unbounded)

Hilbert space adjoints

$$A_0^*: D(A_0^*) \subset H_1 \to H_0$$
$$A_1^*: D(A_1^*) \subset H_2 \to H_1$$

Moreover, complex property

$$\begin{array}{c} \boxed{A_1 A_0 = 0} \\ & \Leftrightarrow \\ & A_0^* A_1^* = 0 \\ & \uparrow \\ & R(A_0) \subset N(A_1) \\ \Leftrightarrow \\ & R(A_1^*) \subset N(A_0^*) \end{array}$$

A₀^{*}-A₁-lemma (generalized global div-curl-lemma)

We shall prove:

Let $A_0: D(A_0) \subset H_0 \rightarrow H_1$, $A_1: D(A_1) \subset H_1 \rightarrow H_2$ (possibly and generally unbounded) be two densely defined and closed linear operators on three Hilbert spaces H_0 , H_1 , H_2 with Hilbert space adjoints $A_0^*: D(A_0^*) \subset H_1 \rightarrow H_0$, $A_1^*: D(A_1^*) \subset H_2 \rightarrow H_1$. Moreover, let $A_1A_0 = 0$, i.e. $R(A_0) \subset N(A_1)$. (complex property)

Lemma $(A_0^* - A_1 - \text{lemma})$

Let $D(A_1) \cap D(A_0^*) \hookrightarrow H_1$ be compact, and (i) (x_n) bounded in $D(A_1)$, (ii) (y_n) bounded in $D(A_0^*)$. $\Rightarrow \exists x \in D(A_1), y \in D(A_0^*)$ and subseq st $x_n \rightarrow x$ in $D(A_1)$ and $y_n \rightarrow y$ in $D(A_0^*)$ and $\langle x_n, y_n \rangle_{H_1} \rightarrow \langle x, y \rangle_{H_1}$.

Proof.

... blackboard ... or ... next slides ...

 $\nabla_{\Gamma_{+}}: D(\nabla_{\Gamma_{+}}) \subset L^{2}(\Omega) \to L^{2}(\Omega)$

 $\operatorname{rot}_{\Gamma_{\star}}: D(\operatorname{rot}_{\Gamma_{\star}}) \subset L^{2}(\Omega) \to L^{2}(\Omega)$

 $\operatorname{rot}_{\Gamma} : D(\operatorname{rot}_{\Gamma}) \subset L^{2}(\Omega) \to L^{2}(\Omega)$

 $-\operatorname{div}_{\Gamma_n}: D(\operatorname{div}_{\Gamma_n}) \subset L^2(\Omega) \to L^2(\Omega)$

div-curl-lemma

A₀^{*}-A₁-lemma (generalized global div-curl-lemma)

app to classical general global case

- $\mathsf{A}_0: D(\mathsf{A}_0) \subset \mathsf{H}_0 \to \mathsf{H}_1 \qquad := \qquad$
- $\mathsf{A}_1: D(\mathsf{A}_1) \subset \mathsf{H}_1 \to \mathsf{H}_2 \qquad := \qquad$
- $\mathsf{A}_0^*: D(\mathsf{A}_0^*) \subset \mathsf{H}_1 \to \mathsf{H}_0 \qquad = \qquad$
- $\mathsf{A}_1^*: D(\mathsf{A}_1^*) \subset \mathsf{H}_2 \to \mathsf{H}_1 \qquad = \qquad$

complex property: $rot_{\Gamma_t} \nabla_{\Gamma_t} = 0$

compact embedding

$$D(A_1) \cap D(A_0^*) \hookrightarrow H_1$$

in global div-curl-lemma reads:

$$\begin{split} &D(\operatorname{rot}_{\Gamma_t}) \cap D(\operatorname{div}_{\Gamma_n}) \\ &= \mathsf{H}_{\Gamma_t}(\operatorname{rot},\Omega) \cap \mathsf{H}_{\Gamma_n}(\operatorname{div},\Omega) \\ &= \{E \in \mathsf{L}^2(\Omega) : \operatorname{rot} E \in \mathsf{L}^2(\Omega), \operatorname{div} E \in \mathsf{L}^2(\Omega), \nu \times E = 0 \text{ on } \Gamma_t, \nu \cdot E = 0 \text{ on } \Gamma_n\} \hookrightarrow \mathsf{L}^2(\Omega) \end{split}$$

is compact

Weck's selection theorem, '72/'74

also Bauer, Costabel, Kuhn, Jochmann, Osterbrink, Py, <u>Picard</u>, Schomburg, Weber, Witsch

div-curl-lemma

A₀^{*}-A₁-lemma (generalized global div-curl-lemma)

slight generalization

Corollary $(A_0^*-A_1-\text{lemma})$

Let $R(A_0)$ and $R(A_1)$ be closed and let $N(A_1) \cap N(A_0^*)$ be finite dimensional, and (i) let $(x_n) \in D(A_1)$ be bounded in H_1 with (A_1x_n) rel. compact in $D(\mathcal{A}_1^*)'$, (ii) let $(y_n) \in D(A_0^*)$ be bounded in H_1 with $(A_0^*y_n)$ rel. compact in $D(\mathcal{A}_0)'$. $\Rightarrow \exists x, y \in H_1$ and subseq st $x_n \rightarrow x$ and $y_n \rightarrow y$ in H_1 and

$$\langle x_n,y_n\rangle_{\mathsf{H}_1}\to \langle x,y\rangle_{\mathsf{H}_1}.$$

Proof.

... very similar ...

Remark

homogen app: often, e.g., $x_n = \nabla u_n$ bd with some $u_n \in H^1(\Omega) + bc$ as well as rot $x_n = 0$ and div $y_n = f \in H^{-1}(\Omega)$, even const

A_0^* - A_1 -lemma (proof using fa-toolbox)

Proof.

use fa-toolbox

• w.l.o.g. (subsequences)
$$x_n \rightarrow x$$
 in $D(A_1)$ and $y_n \rightarrow y$ in $D(A_0^*)$

• ortho Helm type deco $\Rightarrow D(A_1) = R(\mathcal{A}_0) \cap (D(A_1) \cap N(A_0^*))$ (complex) $D(A_1) \Rightarrow x_n = A_0 z_n + \tilde{x}_n, \quad z_n \in D(\mathcal{A}_0), \quad \tilde{x}_n \in D(A_1) \cap N(A_0^*)$ • $\Rightarrow (z_n)$ is bd in $D(\mathcal{A}_0)$ by ortho and Friedrichs/Poincaré type est, i.e., $\exists c_{A_0} > 0 \quad \forall z \in D(\mathcal{A}_0) \quad |z|_{H_0} \le c_{A_0}|A_0z|_{H_1}$ • $\Rightarrow (\tilde{x}_n)$ is bd in $D(A_1) \cap N(A_0^*)$ by ortho and $A_1\tilde{x}_n = A_1x_n$ (complex) • $D(A_1) \cap D(A_0^*) \Rightarrow H_1$ cpt $\Rightarrow D(\mathcal{A}_0) \Rightarrow H_0$ cpt • $\Rightarrow \exists z \in D(\mathcal{A}_0) \quad \text{and} \quad \tilde{x} \in D(A_1) \cap N(A_0^*)$ st (extract subsequences) $z_n \to z$ in $D(A_0) \quad \text{and} \quad \tilde{x}_n \to \tilde{x}$ in H_1 • $x = A_0z + \tilde{x}$ (ortho Helm type deco for x)

• Finally
$$\langle x_n, y_n \rangle_{H_1} = \langle A_0 z_n, y_n \rangle_{H_1} + \langle \tilde{x}_n, y_n \rangle_{H_1} = \langle z_n, A_0^* y_n \rangle_{H_0} + \langle \tilde{x}_n, y_n \rangle_{H_1}$$

 $\rightarrow \langle z, A_0^* y \rangle_{H_0} + \langle \tilde{x}, y \rangle_{H_1} = \langle A_0 z, y \rangle_{H_1} + \langle \tilde{x}, y \rangle_{H_1} = \langle x, y \rangle_{H_1}$
• g.e.d.

 $fa-foolbox \Rightarrow red stuff$

Conference on Mathematics of Wave Phenomena

div-curl-lemma

 A_0^* - A_1 -lemma (fa-toolbox, some fundamental results)

\begin{fundamental part of fa-toolbox}

$$\begin{split} A:D(A) \subset H_0 \to H_1 \mbox{ lddc}, \quad A^*:D(A^*) \subset H_1 \to H_0 \mbox{ Hilbert space adjoint} \\ (A,A^*) \mbox{ dual pair as } (A^*)^* = \overline{A} = A \end{split}$$

A, A* may not be inj

Helmholtz/Hodge/Weyl decompositions (projection theorem)

$$\mathsf{H}_1 = \mathsf{N}(\mathsf{A}^*) \oplus \overline{\mathsf{R}(\mathsf{A})} \qquad \mathsf{H}_0 = \mathsf{N}(\mathsf{A}) \oplus \overline{\mathsf{R}(\mathsf{A}^*)}$$

reduced operators restr to $N(A)^{\perp}$ and $N(A^*)^{\perp}$

$$\begin{split} \mathcal{A} &\coloneqq \mathsf{A}|_{N(\mathsf{A})^{\perp}} = \mathsf{A}|_{\overline{R(\mathsf{A}^*)}} \qquad \mathcal{A}^* \coloneqq \mathsf{A}^*|_{N(\mathsf{A}^*)^{\perp}} = \mathsf{A}^*|_{\overline{R(\mathsf{A})}} \\ \mathcal{A}^* \text{ inj } &\Rightarrow \quad \mathcal{A}^{-1}, \ (\mathcal{A}^*)^{-1} \text{ ex} \end{split}$$

 \mathcal{A} .

$$\mathsf{A}: D(\mathsf{A}) \subset \mathsf{H}_0 \to \mathsf{H}_1, \quad \mathsf{A}^*: D(\mathsf{A}^*) \subset \mathsf{H}_1 \to \mathsf{H}_0 \ \mathsf{Iddc} \qquad (\mathsf{A}, \mathsf{A}^*) \ \mathsf{dual} \ \mathsf{pair}$$

$$\mathsf{H}_1 = N(\mathsf{A}^*) \oplus \overline{R(\mathsf{A})} \qquad \mathsf{H}_0 = N(\mathsf{A}) \oplus \overline{R(\mathsf{A}^*)}$$

more precisely

$$\mathcal{A} := A|_{\overline{R(A^*)}} : D(\mathcal{A}) \subset \overline{R(A^*)} \to \overline{R(A)}, \qquad D(\mathcal{A}) := D(A) \cap N(A)^{\perp} = D(A) \cap \overline{R(A^*)}$$
$$\mathcal{A}^* := A^*|_{\overline{R(A)}} : D(\mathcal{A}^*) \subset \overline{R(A)} \to \overline{R(A^*)}, \qquad D(\mathcal{A}^*) := D(A^*) \cap N(A^*)^{\perp} = D(A^*) \cap \overline{R(A)}$$
$$(\mathcal{A}, \mathcal{A}^*) \text{ dual pair and } \mathcal{A}, \ \mathcal{A}^* \text{ inj } \Rightarrow$$
inverse ops exist (and bij)

$$\mathcal{A}^{-1}: R(A) \to D(\mathcal{A}) \qquad (\mathcal{A}^*)^{-1}: R(A^*) \to D(\mathcal{A}^*)$$

refined decompositions

$$D(A) = N(A) \oplus D(A)$$
 $D(A^*) = N(A^*) \oplus D(A^*)$

 \Rightarrow

$$R(A) = R(A)$$
 $R(A^*) = R(A^*)$

closed range theorem ~~&~~ closed graph theorem $~~\Rightarrow~~$

Lemma (Friedrichs-Poincaré type est/cl range/cont inv)

The following assertions are equivalent:

(i) $\exists c_A \in (0,\infty)$ $\forall x \in D(\mathcal{A})$ $|x|_{H_0} \leq c_A |Ax|_{H_1}$

(i*) $\exists c_{A^*} \in (0,\infty)$ $\forall y \in D(\mathcal{A}^*)$ $|y|_{H_1} \le c_{A^*}|A^*y|_{H_0}$

(ii)
$$R(A) = R(A)$$
 is closed in H_1 .

(ii^{*})
$$R(A^*) = R(A^*)$$
 is closed in H_0 .

(iii) $\mathcal{A}^{-1}: R(A) \to D(\mathcal{A})$ is continuous and bijective.

(iii^{*}) $(\mathcal{A}^*)^{-1} : R(\mathcal{A}^*) \to D(\mathcal{A}^*)$ is continuous and bijective.

In case that one of the latter assertions is true, e.g., (ii), R(A) is closed, we have

 $\begin{aligned} &H_0 = N(A) \oplus R(A^*) &H_1 = N(A^*) \oplus R(A) \\ &D(A) = N(A) \oplus D(\mathcal{A}) &D(A^*) = N(A^*) \oplus D(\mathcal{A}^*) \\ &D(\mathcal{A}) = D(A) \cap R(A^*) &D(\mathcal{A}^*) = D(A^*) \cap R(A) \end{aligned}$

 $\textit{and} \quad \mathcal{A}: D(\mathcal{A}) \subset R(\mathsf{A}^*) \to R(\mathsf{A}), \quad \mathcal{A}^*: D(\mathcal{A}^*) \subset R(\mathsf{A}) \to R(\mathsf{A}^*).$

recall

div-curl-lemma

(i) $\exists c_A \in (0,\infty)$ $\forall x \in D(\mathcal{A})$ $|x|_{H_0} \le c_A |Ax|_{H_1}$ (i*) $\exists c_{A^*} \in (0,\infty)$ $\forall y \in D(\mathcal{A}^*)$ $|y|_{H_1} \le c_{A^*} |A^*y|_{H_0}$

'best' consts in (i) and (i^*) equal norms of the inv ops and Rayleigh quotients

$$c_{A} = |\mathcal{A}^{-1}|_{R(A),R(A^{*})} \qquad c_{A^{*}} = |(\mathcal{A}^{*})^{-1}|_{R(A^{*}),R(A)}$$
$$\frac{1}{c_{A}} = \inf_{0 \neq y \in D(\mathcal{A})} \frac{|A^{*}y|_{H_{1}}}{|x|_{H_{0}}} \qquad \frac{1}{c_{A^{*}}} = \inf_{0 \neq y \in D(\mathcal{A}^{*})} \frac{|A^{*}y|_{H_{1}}}{|y|_{H_{1}}}$$

Lemma (Friedrichs-Poincaré type const)

 $c_A = c_{A^*}$

div-curl-lemma

$A_0^*-A_1$ -lemma (fa-toolbox, some fundamental results)

Lemma (cpt emb/cpt inv)

The following assertions are equivalent:

- (i) $D(\mathcal{A}) \xrightarrow{u} H_0$ is compact.
- (i*) $D(\mathcal{A}^*) \twoheadrightarrow H_1$ is compact.
- (ii) $\mathcal{A}^{-1}: R(A) \to R(A^*)$ is compact.
- (ii^{*}) $(\mathcal{A}^*)^{-1} : R(\mathcal{A}^*) \to R(\mathcal{A})$ is compact.

Lemma (Friedrichs-Poincaré type est/cl range/cont inv)

$$\downarrow \quad D(\mathcal{A}) \twoheadrightarrow \mathsf{H}_0 \ compact$$

(i)
$$\exists c_A \in (0,\infty)$$
 $\forall x \in D(\mathcal{A})$ $|x|_{H_0} \leq c_A |Ax|_{H_1}$

(i*)
$$\exists c_{\mathsf{A}^*} \in (0,\infty)$$
 $\forall y \in D(\mathcal{A}^*)$ $|y|_{\mathsf{H}_1} \le c_{\mathsf{A}^*} |\mathsf{A}^* y|_{\mathsf{H}_0}$

(ii) R(A) = R(A) is closed in H_1 .

(ii^{*})
$$R(A^*) = R(A^*)$$
 is closed in H₀.

(iii)
$$\mathcal{A}^{-1}: R(A) \to D(\mathcal{A})$$
 is continuous and bijective.

(iii^{*}) $(\mathcal{A}^*)^{-1} : R(\mathcal{A}^*) \to D(\mathcal{A}^*)$ is continuous and bijective.

(i)-(iii*) equi & the resp Helm deco hold & $|\mathcal{A}^{-1}| = c_A = c_{A^*} = |(\mathcal{A}^*)^{-1}|$

So far no complex...

$$\begin{split} &\mathsf{A}_0: D(\mathsf{A}_0) \subset \mathsf{H}_0 \to \mathsf{H}_1, \quad \mathsf{A}_1: D(\mathsf{A}_1) \subset \mathsf{H}_1 \to \mathsf{H}_2 \ (\mathsf{Iddc}) \\ &\mathsf{A}_0^*: D(\mathsf{A}_0^*) \subset \mathsf{H}_1 \to \mathsf{H}_0, \quad \mathsf{A}_1^*: D(\mathsf{A}_1^*) \subset \mathsf{H}_2 \to \mathsf{H}_1 \ (\mathsf{Iddc}) \end{split}$$

general complex $(A_1A_0 = 0, i.e., R(A_0) \subset N(A_1) \text{ and } R(A_1^*) \subset N(A_0^*))$

recall Helmholtz deco

⇒ refined Helmholtz deco

$$\mathsf{H}_1 = \overline{R(\mathsf{A}_0)} \oplus K_1 \oplus \overline{R(\mathsf{A}_1^*)}$$

recall

$$D(A_1) = D(\mathcal{A}_1) \cap \overline{R(A_1^*)} \qquad R(A_1) = R(\mathcal{A}_1) \qquad R(A_1^*) = R(\mathcal{A}_1^*)$$
$$D(A_0^*) = D(\mathcal{A}_0^*) \cap \overline{R(A_0)} \qquad R(A_0^*) = R(\mathcal{A}_0^*) \qquad R(A_0) = R(\mathcal{A}_0)$$

cohomology group $K_1 = N(A_1) \cap N(A_0^*)$

Lemma (Helmholtz deco I)	
$H_1 = \overline{R(A_0)} \oplus N(A_0^*)$	$H_1 = \overline{R(A_1^*)} \oplus N(A_1)$
$D(A_0^*) = D(\mathcal{A}_0^*) \oplus N(A_0^*)$	$D(A_1) = D(\mathcal{A}_1) \oplus N(A_1)$
$N(A_1) = D(\mathcal{A}_0^*) \oplus \mathcal{K}_1$	$N(A_0^*) = D(\mathcal{A}_1) \oplus \mathcal{K}_1$
$D(A_1) = \overline{R(A_0)} \oplus \left(D(A_1) \cap N(A_0^*)\right)$	$D(A_0^*) = \overline{R(A_1^*)} \oplus \left(D(A_0^*) \cap N(A_1) \right)$

Lemma (Helmholtz deco II)

$$H_{1} = \overline{R(A_{0})} \oplus K_{1} \oplus \overline{R(A_{1}^{*})}$$
$$D(A_{1}) = \overline{R(A_{0})} \oplus K_{1} \oplus D(A_{1})$$
$$D(A_{0}^{*}) = D(A_{0}^{*}) \oplus K_{1} \oplus \overline{R(A_{1}^{*})}$$
$$D(A_{1}) \cap D(A_{0}^{*}) = D(A_{0}^{*}) \oplus K_{1} \oplus D(A_{1})$$

div-curl-lemma

$A_0^*-A_1$ -lemma (fa-toolbox, some fundamental results)

$$K_1 = N(\mathsf{A}_1) \cap N(\mathsf{A}_0^*) \qquad D(\mathsf{A}_1) = D(\mathcal{A}_1) \cap \overline{R(\mathsf{A}_1^*)} \qquad D(\mathsf{A}_0^*) = D(\mathcal{A}_0^*) \cap \overline{R(\mathsf{A}_0)}$$

Lemma (cpt emb II)

The following assertions are equivalent: (i) $D(\mathcal{A}_0) \hookrightarrow H_0$, $D(\mathcal{A}_1) \hookrightarrow H_1$, and $K_1 \hookrightarrow H_1$ are compact. (ii) $D(A_1) \cap D(A_0^*) \hookrightarrow H_1$ is compact. In this case $K_1 < \infty$.

Theorem (fa-toolbox I)

- $\downarrow \quad \left| D(A_1) \cap D(A_0^*) \stackrel{\text{\tiny compact}}{\to} H_1 \text{ compact} \right.$
- (i) all emb cpt, i.e., $D(\mathcal{A}_0) \stackrel{\text{\tiny cw}}{\longrightarrow} H_0$, $D(\mathcal{A}_1) \stackrel{\text{\tiny cw}}{\longrightarrow} H_1$, $D(\mathcal{A}_0^*) \stackrel{\text{\tiny cw}}{\longrightarrow} H_1$, $D(\mathcal{A}_1^*) \stackrel{\text{\tiny cw}}{\longrightarrow} H_2$ cpt

(ii) cohomology group K_1 finite dim

- (iii) all ranges closed, i.e., $R(A_0) = R(A_0)$, $R(A_0^*) = R(A_0^*)$ cl, $R(A_1) = R(A_1)$, $R(A_1^*) = R(A_1^*)$ cl
- (iv) all Friedrichs-Poincaré type est hold
- (v) all Hodge-Helmholtz-Weyl type deco I & II hold with closed ranges

div-curl-lemma

$A_0^*-A_1$ -lemma (fa-toolbox, some fundamental results)

Theorem (fa-toolbox I (Friedrichs-Poincaré type est))

₽	$D(A_1) \cap D(A_0^*) \stackrel{\text{\tiny cond}}{\longrightarrow} H_1 \ cond here = 0$	$\begin{array}{ll} \begin{array}{l} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \Rightarrow & \exists & \mathcal{A}_i^{-1} = c_{A_i} = c_{A_i^*} = (\mathcal{A}_i^*)^{-1} \in (0,\infty) \end{array} \end{array}$
(i)	$\forall x \in D(\mathcal{A}_0)$	$ x _{H_0} \leq c_{A_0} A_0 x _{H_1}$
(i*)	$\forall y \in D(\mathcal{A}_0^*)$	$ y _{H_1} \le c_{A_0} A_0^* y _{H_0}$
(ii)	$\forall y \in D(\mathcal{A}_1)$	$ y _{H_1} \leq c_{A_1} A_1 y _{H_2}$
(ii*)	$\forall z \in D(\mathcal{A}_1^*)$	$ z _{H_2} \leq c_{A_1} A_1^* z _{H_1}$
(iii)	$\forall y \in D(A_1) \cap D(A_0^*)$	$ (1 - \pi_{K_1})y _{H_1} \le c_{A_1} A_1y _{H_2} + c_{A_0} A_0^*y _{H_0}$

note $\pi_{K_1} y \in K_1$ and $(1 - \pi_{K_1}) y \in K_1^{\perp}$

Remark

enough $R(A_0)$ and $R(A_1)$ cl

Conference on Mathematics of Wave Phenomena

KIT, July 23-27, 2018

A₀^{*}-A₁-lemma (fa-toolbox, some fundamental results)

$$\begin{array}{cccc} \text{complex} & \cdots & \stackrel{\cdots}{\rightleftharpoons} & H_0 & \stackrel{A_0}{\underset{A_0}{\Rightarrow}} & H_1 & \stackrel{A_1}{\underset{A_1}{\Rightarrow}} & H_2 & \stackrel{\cdots}{\underset{\cdots}{\Rightarrow}} & \cdots \end{array} \\ \end{array}$$

Theorem (fa-toolbox I (Helmholtz deco))

 $\Downarrow D(A_1) \cap D(A_0^*) \twoheadrightarrow H_1 \text{ compact}$

$$\begin{split} H_1 &= R(A_0) \, \oplus \, N(A_0^*) & H_1 = R(A_1^*) \, \oplus \, N(A_1) \\ A_0^*) &= D(\mathcal{A}_0^*) \, \oplus \, N(A_0^*) & D(A_1) = D(\mathcal{A}_1) \, \oplus \, N(A_1) \\ A_1) &= D(\mathcal{A}_0^*) \, \oplus \, K_1 & N(A_0^*) = D(\mathcal{A}_1) \, \oplus \, K_1 \\ A_1) &= R(A_0) \, \oplus \, \left(D(A_1) \cap \, N(A_0^*) \right) & D(A_0^*) = R(A_1^*) \, \oplus \left(D(A_0^*) \cap \, N(A_1) \right) \\ & H_1 = R(A_0) \, \oplus \, K_1 \oplus \, R(A_1^*) \\ & D(A_1) = R(A_0) \, \oplus \, K_1 \oplus \, D(\mathcal{A}_1) \\ & D(A_0^*) = D(\mathcal{A}_0^*) \oplus \, K_1 \oplus \, R(A_1^*) \end{split}$$

$$D(A_1) \cap D(A_0^*) = D(\mathcal{A}_0^*) \oplus K_1 \oplus D(\mathcal{A}_1)$$

Remark

D(N(D(

enough $R(\mathsf{A}_0)$ and $R(\mathsf{A}_1)$ cl

Conference on Mathematics of Wave Phenomena

div-curl-lemma

 A_0^* - A_1 -lemma (fa-toolbox, some fundamental results)

\end{fundamental part of fa-toolbox}

classical de Rham complex in 3D (∇ -rot-div-complex)

 $\Omega \subset \mathbb{R}^3$ bounded weak Lipschitz domain, $\partial \, \Omega = \Gamma = \overline{\Gamma_t \, \dot{\cup} \, \Gamma_n}$

(electro-magneto dynamics, Maxwell's equations)

$$\{0\} \begin{array}{c} {}^{\iota}{}^{(0)}_{0} \\ \overrightarrow{\epsilon^{2}} \\ {}^{\pi}{}^{(0)}_{(0)} \\ -\overset{-\operatorname{div}}{\operatorname{div}} \\ \end{array} \begin{array}{c} L^{2} \\ \overrightarrow{\epsilon^{2}} \\ \operatorname{rot} \\ -\nabla \end{array} \begin{array}{c} L^{2} \\ \overrightarrow{\epsilon^{2}} \\ \overrightarrow{\epsilon^{2}} \\ -\nabla \end{array} \\ {}^{\pi}{}^{\mathbb{R}} \\ {}^{\mathbb{R}} \\ {}^{\mathbb{R}} \end{array}$$

mixed boundary conditions and inhomogeneous and anisotropic media

$$\{0\} \text{ or } \mathbb{R} \stackrel{\iota}{\underset{\pi}{\overset{\iota}{\leftrightarrow}}} L^2 \stackrel{\nabla_{\Gamma_t}{\underset{-\operatorname{div}_{\Gamma_n}}{\overset{\varepsilon}{\approx}}} L^2_{\varepsilon} \stackrel{\operatorname{rot}_{\Gamma_t}}{\underset{\varepsilon^{-1}\operatorname{rot}_{\Gamma_n}}{\overset{\varepsilon}{\approx}} L^2 \stackrel{\operatorname{div}_{\Gamma_t}}{\underset{-\nabla_{\Gamma_n}}{\overset{\varepsilon}{\approx}}} L^2 \stackrel{\pi}{\underset{\iota}{\overset{\varepsilon}{\approx}}} \mathbb{R} \text{ or } \{0\}$$

classical de Rham complex in 3D (∇ -rot-div-complex)

 $\Omega \subset \mathbb{R}^3 \text{ bounded weak Lipschitz domain, } \partial \Omega = \Gamma = \overline{\Gamma_t \dot{\cup} \Gamma_n}$

(electro-magneto dynamics, Maxwell's equations with mixed boundary conditions)

$$\{0\} \text{ or } \mathbb{R} \stackrel{\iota}{\underset{\pi}{\stackrel{\iota}{\leftrightarrow}}} L^2 \stackrel{\nabla_{\Gamma_t}{\underset{\ell}{\stackrel{\star}{\approx}}} L^2_{\varepsilon} \stackrel{\operatorname{rot}_{\Gamma_t}}{\underset{\varepsilon^{-1}\operatorname{rot}_{\Gamma_n}}{\stackrel{\star}{\approx}} L^2 \stackrel{\operatorname{div}_{\Gamma_t}}{\underset{\varepsilon^{-1}\operatorname{rot}_{\Gamma_n}}{\stackrel{\star}{\approx}} L^2 \stackrel{\operatorname{div}_{\Gamma_t}}{\underset{\iota}{\stackrel{\star}{\approx}}} L^2 \stackrel{\pi}{\underset{\iota}{\stackrel{\star}{\approx}}} \mathbb{R} \text{ or } \{0\}$$

related fos

$$\nabla_{\Gamma_t} u = A \quad \text{in } \Omega \quad | \quad \operatorname{rot}_{\Gamma_t} E = J \quad \text{in } \Omega \quad | \quad \operatorname{div}_{\Gamma_t} H = k \quad \text{in } \Omega \quad | \quad \pi v = b \quad \text{in } \Omega \\ \pi u = a \quad \text{in } \Omega \quad | \quad -\operatorname{div}_{\Gamma_n} \varepsilon E = j \quad \text{in } \Omega \quad | \quad \varepsilon^{-1} \operatorname{rot}_{\Gamma_n} H = K \quad \text{in } \Omega \quad | \quad -\nabla_{\Gamma_n} v = B \quad \text{in } \Omega$$

related sos

$$\begin{aligned} -\operatorname{div}_{\Gamma_n} \varepsilon \nabla_{\Gamma_t} u &= j & \text{in } \Omega & | & \varepsilon^{-1} \operatorname{rot}_{\Gamma_n} \operatorname{rot}_{\Gamma_t} E = K & \text{in } \Omega & | & -\nabla_{\Gamma_n} \operatorname{div}_{\Gamma_t} H = B & \text{in } \Omega \\ \pi u &= a & \text{in } \Omega & | & -\operatorname{div}_{\Gamma_n} \varepsilon E = j & \text{in } \Omega & | & \varepsilon^{-1} \operatorname{rot}_{\Gamma_n} H = K & \text{in } \Omega \end{aligned}$$

corresponding compact embeddings:

$$\begin{split} D(\nabla_{\Gamma_t}) \cap D(\pi) &= D(\nabla_{\Gamma_t}) = H_{\Gamma_t}^1 \hookrightarrow L^2 \qquad (\text{Rellich's selection theorem}) \\ D(\operatorname{rot}_{\Gamma_t}) \cap D(-\operatorname{div}_{\Gamma_n} \varepsilon) &= R_{\Gamma_t} \cap \varepsilon^{-1} D_{\Gamma_n} \hookrightarrow L_{\varepsilon}^2 \qquad (\text{Weck's selection theorem, '72/'74}) \\ D(\operatorname{div}_{\Gamma_t}) \cap D(\varepsilon^{-1} \operatorname{rot}_{\Gamma_n}) &= D_{\Gamma_t} \cap R_{\Gamma_n} \hookrightarrow L^2 \qquad (\text{Weck's selection theorem, '72/'74}) \\ D(\nabla_{\Gamma_n}) \cap D(\pi) &= D(\nabla_{\Gamma_n}) = H_{\Gamma_n}^1 \hookrightarrow L^2 \qquad (\text{Rellich's selection theorem}) \end{split}$$

Weck's selection theorem for weak Lip. dom. and mixed bc: Bauer/Py/Schomburg ('16)

de Rham complex in ND or on Riemannian manifolds (d-complex)

 $\Omega \subset \mathbb{R}^N$ bd w. Lip. dom. or Ω Riemannian manifold with cpt cl. and Lip. boundary Γ (generalized Maxwell equations)

$$\{0\} \begin{array}{cccc} \overset{\iota_{\{0\}}}{\underset{\pi_{\{0\}}}{\leftarrow}} & \mathsf{L}^{2,0} & \overset{\mathrm{d}}{\underset{\tau}{\overleftarrow{\diamond}}} & \mathsf{L}^{2,1} & \overset{\mathrm{d}}{\underset{\tau}{\overleftarrow{\diamond}}} & \dots & \mathsf{L}^{2,q} & \overset{\mathrm{d}}{\underset{\tau}{\overleftarrow{\diamond}}} & \mathsf{L}^{2,q+1} \dots \mathsf{L}^{2,N-1} & \overset{\mathrm{d}}{\underset{\tau}{\overleftarrow{\diamond}}} & \mathsf{L}^{2,N} & \overset{\pi_{\mathbb{R}}}{\underset{\tau}{\overleftarrow{\diamond}}} & \mathbb{R} \end{array}$$

de Rham complex in ND or on Riemannian manifolds (d-complex)

 $\Omega \subset \mathbb{R}^N$ bd w. Lip. dom. or Ω Riemannian manifold with cpt cl. and Lip. boundary Γ (generalized Maxwell equations)

$$\{0\} \text{ or } \mathbb{R} \quad \stackrel{\iota}{\underset{\pi}{\overset{}{\leftarrow}}} \quad L^{2,0} \quad \stackrel{d^{0}_{\Gamma_{t}}}{\underset{\pi}{\overset{}{\leftarrow}}} \quad L^{2,1} \quad \stackrel{d^{1}_{\Gamma_{t}}}{\underset{\pi}{\overset{}{\leftarrow}}} \quad \dots \quad L^{2,q} \quad \stackrel{d^{q}_{\Gamma_{t}}}{\underset{\pi}{\overset{}{\leftarrow}}} \quad L^{2,q+1} \dots \quad L^{2,N-1} \quad \stackrel{d^{N-1}_{\Gamma_{t}}}{\underset{\pi}{\overset{}{\leftarrow}}} \quad L^{2,N} \quad \stackrel{\pi}{\underset{\tau}{\overset{}{\leftarrow}}} \quad \mathbb{R} \text{ or } \{0\}$$

related fos

$$\begin{split} \mathrm{d}_{\Gamma_t}^q E &= F & \qquad \text{in } \Omega \\ -\delta_{\Gamma_n}^q E &= G & \qquad \text{in } \Omega \end{split}$$

related sos

$$\begin{split} &-\delta_{\Gamma_n}^{q+1} d_{\Gamma_t}^q E = F & \text{in } \Omega \\ &-\delta_{\Gamma_n}^q E = G & \text{in } \Omega \end{split}$$

includes: EMS rot / div, Laplacian, rot rot, and more... corresponding compact embeddings:

$$D(d^{q}_{\Gamma_{t}}) \cap D(\delta^{q}_{\Gamma_{n}}) \hookrightarrow L^{2,q}$$
 (Weck's selection theorems, '72/'74)

Weck's selection theorem for Lip. manifolds and mixed bc: Bauer/Py/Schomburg ('17)

elasticity complex in 3D (sym ∇ -Rot Rot^T_S-Div_S-complex)

 $\Omega \subset \mathbb{R}^3$ bounded strong Lipschitz domain

elasticity complex in 3D (sym ∇ -Rot Rot^T_S-Div_S-complex)

 $\Omega \subset \mathbb{R}^3$ bounded strong Lipschitz domain

$$\{0\} \begin{array}{ccc} {}^{\iota_{\{0\}}} \\ \overrightarrow{\leftarrow} \\ \pi_{\{0\}} \end{array} \begin{array}{cccc} L^2 & sym \nabla \\ \overrightarrow{\leftarrow} \\ \pi_{\mathbb{R}} \end{array} \begin{array}{ccccc} Rot \overset{\mathsf{Rot} \overset{\mathsf{T}}{\mathsf{ROt}}^\mathsf{T}}_{\mathbb{S}} \\ Rot \operatorname{Rot}^\mathsf{T}_{\mathbb{S}} \\ \operatorname{Rot} \operatorname{Rot}^\mathsf{T}_{\mathbb{S}} \end{array} \begin{array}{ccccc} L^2 \\ \overrightarrow{\leftarrow} \\ -sym \nabla \end{array} \begin{array}{ccccc} \pi_{\mathsf{RM}} \\ \overrightarrow{\leftarrow} \\ \pi_{\mathsf{RM}} \end{array} \begin{array}{ccccccc} \mathsf{RM} \end{array}$$

related fos (Rot $\mathsf{Rot}_{\mathfrak{S},\Gamma}^{\mathsf{T}}$, $\mathsf{Rot} \mathsf{Rot}_{\mathfrak{S}}^{\mathsf{T}}$ first order operators!)

$$\begin{split} \operatorname{sym} \nabla_{\Gamma} v &= M \quad \text{in } \Omega \quad | \quad \operatorname{Rot} \operatorname{Rot}_{\mathbb{S},\Gamma}^{^{\mathsf{T}}} M = F \quad \text{in } \Omega \quad | \quad \operatorname{Div}_{\mathbb{S},\Gamma} N = g \quad \text{in } \Omega \quad | \quad \pi v = r \quad \text{in } \Omega \\ \pi v &= 0 \quad \text{in } \Omega \quad | \quad -\operatorname{Div}_{\mathbb{S}} M = f \quad \text{in } \Omega \quad | \quad \operatorname{Rot} \operatorname{Rot}_{\mathbb{S}}^{^{\mathsf{T}}} N = G \quad \text{in } \Omega \quad | \quad -\operatorname{sym} \nabla v = M \quad \text{in } \Omega \\ \operatorname{related} \operatorname{sos} \left(\operatorname{Rot} \operatorname{Rot}_{\mathbb{S},\Gamma}^{^{\mathsf{T}}} \operatorname{Rot} \operatorname{Rot}_{\mathbb{S},\Gamma}^{^{\mathsf{T}}} \operatorname{second} \text{ order operator!} \right) \end{split}$$

$$\begin{split} -\operatorname{Div}_{\mathbb{S}}\operatorname{sym}\nabla_{\Gamma} v &= f \quad \text{ in } \Omega \quad | \quad \operatorname{Rot}\operatorname{Rot}_{\mathbb{S}}^{\mathsf{T}}\operatorname{Rot}\operatorname{Rot}_{\mathbb{S},\Gamma}^{\mathsf{T}} M &= G \quad \text{ in } \Omega \quad | \quad -\operatorname{sym}\nabla\operatorname{Div}_{\mathbb{S},\Gamma} N &= M \quad \text{ in } \Omega \\ \pi v &= 0 \quad \text{ in } \Omega \quad | \quad -\operatorname{Div}_{\mathbb{S}} M &= f \quad \text{ in } \Omega \quad | \quad \operatorname{Rot}\operatorname{Rot}_{\mathbb{S}}^{\mathsf{T}} N &= G \quad \text{ in } \Omega \end{split}$$

corresponding compact embeddings:

$$\begin{split} D(\operatorname{sym} \nabla_{\Gamma}) \cap D(\pi) &= D(\nabla_{\Gamma}) = \operatorname{H}_{\Gamma}^{-} \hookrightarrow \operatorname{L}^{2} & (\operatorname{Rellich's selection theorem and Korn ineq.}) \\ D(\operatorname{Rot} \operatorname{Rot}_{\mathbb{S},\Gamma}^{\mathsf{T}}) \cap D(\operatorname{Div}_{\mathbb{S}}) \hookrightarrow \operatorname{L}_{\mathbb{S}}^{2} & (\operatorname{new selection theorem}) \\ D(\operatorname{Div}_{\mathbb{S},\Gamma}) \cap D(\operatorname{Rot} \operatorname{Rot}_{\mathbb{S}}^{\mathsf{T}}) \hookrightarrow \operatorname{L}_{\mathbb{S}}^{2} & (\operatorname{new selection theorem}) \\ D(\pi) \cap D(\operatorname{sym} \nabla) &= D(\nabla) = \operatorname{H}^{1} \hookrightarrow \operatorname{L}^{2} & (\operatorname{Rellich's selection theorem and Korn ineq.}) \end{split}$$

two new selection theorems for strong Lip. dom.: Py/Schomburg/Zulehner ('18)

biharmonic / general relativity complex in 3D ($\nabla \nabla$ -Rot_S-Div_T-complex)

 $\Omega \subset \mathbb{R}^3$ bounded strong Lipschitz domain

$$\{0\} \begin{array}{ccc} \overset{\iota_{\{0\}}}{\not\leftarrow} & L^2 & \overset{\nabla\nabla}{\not\leftarrow} & L^2_{\mathbb{S}} & \overset{Rot_{\mathbb{S}}}{\not\leftarrow} & L^2_{\mathbb{T}} & \overset{Div_{\mathbb{T}}}{\not\leftarrow} & L^2 & \overset{\pi_{\mathsf{RT}}}{\not\leftarrow} & \mathsf{RT} \\ \pi_{\{0\}} & \overset{div\,Div_{\mathbb{S}}}{\to} & \overset{div\,Div_{\mathbb{S}}}{\to} & \overset{sym \, \mathsf{Rot}_{\mathbb{T}}}{\to} & -\operatorname{dev} \nabla & \iota_{\mathsf{RT}} \end{array}$$

biharmonic / general relativity complex in 3D ($\nabla \nabla$ -Rot_S-Div_T-complex)

 $\Omega \subset \mathbb{R}^3$ bounded strong Lipschitz domain

$$\{0\} \begin{array}{ccc} {}^{\iota_{\{0\}}}_{\mathcal{Z}} & L^2 & \stackrel{\nabla\nabla}{\mathcal{Z}} & L^2_{\mathbb{S}} & \stackrel{Rot_{\mathbb{S}}}{\mathcal{Z}} & L^{2}_{\mathbb{T}} & \stackrel{Div_{\mathbb{T}}}{\mathcal{Z}} & L^2 & \stackrel{\pi_{RT}}{\mathcal{Z}} & RT \\ {}^{\tau_{\{0\}}}_{\ell_{0}} & \stackrel{div Div_{\mathbb{S}}}{\overset{div Div_{\mathbb{S}}}{\overset{sym Rot_{\mathbb{T}}}{\overset{sym Rot_{\mathbb{T}}}{\overset{-dev \nabla}{\overset{-dev \nabla}{\overset{\ell_{RT}}}}} } \\ \end{array} \right.$$

related fos ($\nabla \nabla_{\Gamma}$, div Div_S first order operators!)

 $\nabla \nabla_{\Gamma} u = M \quad \text{in } \Omega \quad | \quad \operatorname{Rot}_{\mathbb{S},\Gamma} M = F \quad \text{in } \Omega \quad | \quad \operatorname{Div}_{\mathbb{T},\Gamma} N = g \quad \text{in } \Omega \quad | \quad \pi v = r \quad \text{in } \Omega$ $\pi u = 0 \quad \text{in } \Omega \quad | \quad \operatorname{div } \operatorname{Div}_{\mathbb{S}} M = f \quad \text{in } \Omega \quad | \quad \operatorname{sym} \operatorname{Rot}_{\mathbb{T}} N = G \quad \text{in } \Omega \quad | \quad -\operatorname{dev} \nabla v = T \quad \text{in } \Omega$

related sos (div Div_® $\nabla \nabla_{\Gamma} = \Delta_{\Gamma}^2$ second order operator!)

corresponding compact embeddings:

$$\begin{split} D(\nabla\nabla\Gamma) \cap D(\pi) &= D(\nabla\nabla\Gamma) = \mathsf{H}_{\Gamma}^{2} \hookrightarrow \mathsf{L}^{2} \qquad (\text{Relich's selection theorem}) \\ D(\operatorname{Rot}_{\mathbb{S},\Gamma}) \cap D(\operatorname{div}\operatorname{Div}_{\mathbb{S}}) \hookrightarrow \mathsf{L}_{\mathbb{S}}^{2} \qquad (\text{new selection theorem}) \\ D(\operatorname{Div}_{\mathbb{T},\Gamma}) \cap D(\operatorname{sym}\operatorname{Rot}_{\mathbb{T}}) \hookrightarrow \mathsf{L}_{\mathbb{T}}^{2} \qquad (\text{new selection theorem}) \\ D(\pi) \cap D(\operatorname{dev}\nabla) &= D(\operatorname{dev}\nabla) = D(\nabla) = \mathsf{H}^{1} \hookrightarrow \mathsf{L}^{2} \qquad (\text{Relich's selection theorem and Korn type ineq.}) \end{split}$$

two new selection theorems for strong Lip. dom. and Korn Type ineq.: Py/Zulehner ('16)

literature

results of this talk (gen global div-curl-lemma, A_0^* - A_1 -lemma, fa-toolbox, cpt emb):

- Bauer, S., Py, Schomburg, M.: The Maxwell Compactness Property in Bounded Weak Lipschitz Domains with Mixed Boundary Conditions, (SIMA) SIAM Journal on Mathematical Analysis, 2016
- Py: Solution Theory and Functional A Posteriori Error Estimates for General First Order Systems with Applications to Electro-Magneto-Statics, (NFAO) Numerical Functional Analysis and Optimization, 2018
- Py: A Global div-curl-Lemma for Mixed Boundary Conditions in Weak Lipschitz Domains and a Corresponding Generalized A^{*}₀-A₁-Lemma in Hilbert Spaces, (ANA) Analysis (Munich), 2018

recent papers (global gen div-curl-lemma, similar results):

• Waurick, M.: A Functional Analytic Perspective to the div-curl Lemma, (JOP) J. Operator Theory, 2018

(parts of) fa-toolbox used for numerical purposes by:

- Arnold, D., Falk, R., Winther, R.
- Hiptmair, R.
- Kettunen, L.
- Schöberl, J.

literature

some more results of this talk:

- Py: On Maxwell's and Poincare's Constants, (DCDS) Discrete and Continuous Dynamical Systems - Series S, 2015
- Zulehner, W., Py: On Closed and Exact Grad grad- and div Div-Complexes, Corresponding Compact Embeddings for Tensor Rotations, and a Related Decomposition Result for Biharmonic Problems in 3D, submitted, 2016

upcoming books:

- Langer, U., Py, Repin, S. (Eds): *Maxwell's equations. Analysis and numerics*, Radon Series on Applied Mathematics, De Gruyter, 2018
- Py: Maxwell's Equations: Hilbert Space Methods for the Theory of Electromagnetism, Radon Series on Applied Mathematics, De Gruyter, ≈ 2020

(last book: contains all results of this talk and more...)

... the world is full of complexes ...;)

⇒ relaxing at ...

AANMPDE 11

11th Workshop on Analysis and Advanced Numerical Methods for Partial Differential Equations (not only) for Junior Scientists

https://www.uni-due.de/mathematik/ag-pauly
http://www.mit.jyu.fi/scoma/AANMPDE11
https://www.uni-due.de/maxwell

August 6-10 2018, Särkisaari, Finland

organizers: Ulrich Langer, Py, Sergey Repin

