A Global div-curl-Lemma for Mixed Boundary Conditions in Weak Lipschitz Domains and a Corresponding Generalized A_{0}^{*} - A_{1}-Lemma in Hilbert Spaces

Dirk Pauly

Fakultät für Mathematik

UNIVERSITĂT
 DES USSEBN R R G

Open-Minded ;-)
July 23, 2018
Conference on Mathematics of Wave Phenomena Karlsruhe, July 23-27, 2018

classical div-curl-lemma

Let $\Omega \subset \mathbb{R}^{3}$ be open.

Lemma (classical div-curl-lemma)

Assumptions:

(i) $\left(E_{n}\right),\left(H_{n}\right)$ bounded in $\mathrm{L}^{2}(\Omega)$
(ii) $\left(\operatorname{rot} E_{n}\right)$ bounded in $\mathrm{L}^{2}(\Omega)$
(ii') ($\operatorname{div} H_{n}$) bounded in $\mathrm{L}^{2}(\Omega)$
$\Rightarrow \exists E, H$ and subseq st $E_{n} \rightharpoonup E, \operatorname{rot} E_{n} \rightarrow \operatorname{rot} E$ and $H_{n} \rightharpoonup H, \operatorname{div} H_{n} \rightarrow \operatorname{div} H$ and

$$
\forall \varphi \in \dot{C}^{\infty}(\Omega) \quad \int_{\Omega} \varphi\left(E_{n} \cdot H_{n}\right) \rightarrow \int_{\Omega} \varphi(E \cdot H)
$$

classical div-curl-lemma is local!

div-curl-lemma

We shall prove:
Let $\Omega \subset \mathbb{R}^{3}$ be a bounded weak Lipschitz domain with boundary Γ and weak Lipschitz boundary parts Γ_{t} and $\Gamma_{n}=\Gamma \backslash \overline{\Gamma_{t}}$.

Lemma (div-curl-lemma (global version))

Assumptions:

(i) $\left(E_{n}\right),\left(H_{n}\right)$ bounded in $\mathrm{L}^{2}(\Omega)$
(ii) $\left(\operatorname{rot} E_{n}\right)$ bounded in $\mathrm{L}^{2}(\Omega)$
(ii') ($\operatorname{div} H_{n}$) bounded in $\mathrm{L}^{2}(\Omega)$
(iii) $\nu \times E_{n}=0$ on Γ_{t}
(iii') $\nu \cdot H_{n}=0$ on Γ_{n}
$\Rightarrow \exists E, H$ and subseq st $E_{n} \rightharpoonup E, \operatorname{rot} E_{n} \rightarrow \operatorname{rot} E$ and $H_{n} \rightharpoonup H, \operatorname{div} H_{n} \rightarrow \operatorname{div} H$ and

$$
\int_{\Omega} E_{n} \cdot H_{n} \rightarrow \int_{\Omega} E \cdot H
$$

Proof.

- generalize and fa-toolbox
- crucial points: complex property and compact embedding

literature

original papers (local div-curl-lemma):

- Murat, F.: Compacité par compensation, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 1978
- Tartar, L.: Compensated compactness and applications to partial differential equations,
Nonlinear analysis and mechanics, Heriot-Watt symposium, 1979
recent papers (global div-curl-lemma, unfortunately H^{1}-detour):
- Gloria, A., Neukamm, S., Otto, F.: Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics, (IM) Invent. Math., 2015
- Kozono, H., Yanagisawa, T.: Global compensated compactness theorem for general differential operators of first order, (ARMA) Arch. Ration. Mech. Anal., 2013
- Schweizer, B.: On Friedrichs inequality, Helmholtz decomposition, vector potentials, and the div-curl lemma, accepted preprint, 2018

fa-toolbox for linear problems/systems

idea: solve problem with general and simple linear functional analysis (\Rightarrow fa-toolbox) ...
literature: probably very well known for ages, but hard to find ...

Friedrichs, Weyl, Hörmander, Fredholm, von Neumann, Riesz, Banach, ... ?

Why not rediscover, modify, and extend?

A_{0}^{*} - A_{1}-lemma (generalized global div-curl-lemma)

setting:

$$
\begin{aligned}
& \mathrm{A}_{0}: D\left(\mathrm{~A}_{0}\right) \subset \mathrm{H}_{0} \rightarrow \mathrm{H}_{1} \\
& \mathrm{~A}_{1}: D\left(\mathrm{~A}_{1}\right) \subset \mathrm{H}_{1} \rightarrow \mathrm{H}_{2}
\end{aligned}
$$

two densely defined and closed linear operators on three Hilbert spaces $\mathrm{H}_{0}, \mathrm{H}_{1}, \mathrm{H}_{2}$ (possibly and generally unbounded)

Hilbert space adjoints

$$
\begin{aligned}
& \mathrm{A}_{0}^{*}: D\left(\mathrm{~A}_{0}^{*}\right) \subset \mathrm{H}_{1} \rightarrow \mathrm{H}_{0} \\
& \mathrm{~A}_{1}^{*}: D\left(\mathrm{~A}_{1}^{*}\right) \subset \mathrm{H}_{2} \rightarrow \mathrm{H}_{1}
\end{aligned}
$$

Moreover, complex property

$$
\begin{array}{ccc}
\hline \mathrm{A}_{1} \mathrm{~A}_{0}=0 & \Leftrightarrow & \mathrm{~A}_{0}^{*} \mathrm{~A}_{1}^{*}=0 \\
\hat{\imath} & & \hat{\imath} \\
R\left(\mathrm{~A}_{0}\right) \subset N\left(\mathrm{~A}_{1}\right) & \Leftrightarrow & R\left(\mathrm{~A}_{1}^{*}\right) \subset N\left(\mathrm{~A}_{0}^{*}\right)
\end{array}
$$

A_{0}^{*} - A_{1}-lemma (generalized global div-curl-lemma)

We shall prove:
Let $\mathrm{A}_{0}: D\left(\mathrm{~A}_{0}\right) \subset \mathrm{H}_{0} \rightarrow \mathrm{H}_{1}, \mathrm{~A}_{1}: D\left(\mathrm{~A}_{1}\right) \subset \mathrm{H}_{1} \rightarrow \mathrm{H}_{2}$ (possibly and generally unbounded) be two densely defined and closed linear operators on three Hilbert spaces $\mathrm{H}_{0}, \mathrm{H}_{1}, \mathrm{H}_{2}$ with Hilbert space adjoints $\mathrm{A}_{0}^{*}: D\left(\mathrm{~A}_{0}^{*}\right) \subset \mathrm{H}_{1} \rightarrow \mathrm{H}_{0}, \mathrm{~A}_{1}^{*}: D\left(\mathrm{~A}_{1}^{*}\right) \subset \mathrm{H}_{2} \rightarrow \mathrm{H}_{1}$.
Moreover, let $\mathrm{A}_{1} \mathrm{~A}_{0}=0$, i.e. $R\left(\mathrm{~A}_{0}\right) \subset N\left(\mathrm{~A}_{1}\right)$. (complex property)

Lemma (A_{0}^{*} - A_{1}-lemma)

Let $D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \leftrightarrow \mathrm{H}_{1}$ be compact, and
(i) $\left(x_{n}\right)$ bounded in $D\left(\mathrm{~A}_{1}\right)$,
(ii) $\left(y_{n}\right)$ bounded in $D\left(\mathrm{~A}_{0}^{*}\right)$.
$\Rightarrow \exists x \in D\left(\mathrm{~A}_{1}\right), y \in D\left(\mathrm{~A}_{0}^{*}\right)$ and subseq st $x_{n} \rightharpoonup x$ in $D\left(\mathrm{~A}_{1}\right)$ and $y_{n} \rightharpoonup y$ in $D\left(\mathrm{~A}_{0}^{*}\right)$ and

$$
\left\langle x_{n}, y_{n}\right\rangle_{\mathrm{H}_{1}} \rightarrow\langle x, y\rangle_{\mathrm{H}_{1}} .
$$

Proof.

... blackboard ... or ... next slides ...

div-curl-lemma

A_{0}^{*} - A_{1}-lemma (generalized global div-curl-lemma)

app to classical general global case

$$
\begin{array}{llrr}
\mathrm{A}_{0}: D\left(\mathrm{~A}_{0}\right) \subset \mathrm{H}_{0} \rightarrow \mathrm{H}_{1} & := & \nabla{\Gamma_{t}}: D\left(\nabla \Gamma_{\Gamma_{t}}\right) \subset \mathrm{L}^{2}(\Omega) \rightarrow \mathrm{L}^{2}(\Omega) \\
\mathrm{A}_{1}: D\left(\mathrm{~A}_{1}\right) \subset \mathrm{H}_{1} \rightarrow \mathrm{H}_{2} & := & \operatorname{rot}_{\Gamma_{t}}: D\left(\operatorname{rot}_{\Gamma_{t}}\right) \subset \mathrm{L}^{2}(\Omega) \rightarrow \mathrm{L}^{2}(\Omega) \\
\mathrm{A}_{0}^{*}: D\left(\mathrm{~A}_{0}^{*}\right) \subset \mathrm{H}_{1} \rightarrow \mathrm{H}_{0} & = & -\operatorname{div}_{\Gamma_{n}}: D\left(\operatorname{div}_{\Gamma_{n}}\right) \subset \mathrm{L}^{2}(\Omega) \rightarrow \mathrm{L}^{2}(\Omega) \\
\mathrm{A}_{1}^{*}: D\left(\mathrm{~A}_{1}^{*}\right) \subset \mathrm{H}_{2} \rightarrow \mathrm{H}_{1} & = & \operatorname{rot}_{\Gamma_{n}}: D\left(\operatorname{rot}_{\Gamma_{n}}\right) \subset \mathrm{L}^{2}(\Omega) \rightarrow \mathrm{L}^{2}(\Omega)
\end{array}
$$

complex property: $\operatorname{rot}_{\Gamma_{t}} \nabla \Gamma_{t}=0$
compact embedding

$$
D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \leftrightarrow \mathrm{H}_{1}
$$

in global div-curl-lemma reads:

```
\(D\left(\operatorname{rot}_{\Gamma_{t}}\right) \cap D\left(\operatorname{div}_{\Gamma_{n}}\right)\)
\(=\mathrm{H}_{\Gamma_{t}}(\operatorname{rot}, \Omega) \cap \mathrm{H}_{\Gamma_{n}}(\operatorname{div}, \Omega)\)
\(=\left\{E \in \mathrm{~L}^{2}(\Omega): \operatorname{rot} E \in \mathrm{~L}^{2}(\Omega)\right.\), \(\operatorname{div} E \in \mathrm{~L}^{2}(\Omega), \nu \times E=0\) on \(\Gamma_{t}, \nu \cdot E=0\) on \(\left.\Gamma_{n}\right\} \rightarrow \mathrm{L}^{2}(\Omega)\)
```

is compact
Weck's selection theorem, '72/'74
also Bauer, Costabel, Kuhn, Jochmann, Osterbrink, Py, Picard, Schomburg, Weber, Witsch

A_{0}^{*} - A_{1}-lemma (generalized global div-curl-lemma)

slight generalization

Corollary ($\mathrm{A}_{0}^{*}-\mathrm{A}_{1}$-lemma)

Let $R\left(\mathrm{~A}_{0}\right)$ and $R\left(\mathrm{~A}_{1}\right)$ be closed and let $N\left(\mathrm{~A}_{1}\right) \cap N\left(\mathrm{~A}_{0}^{*}\right)$ be finite dimensional, and
(i) let $\left(x_{n}\right) \subset D\left(\mathrm{~A}_{1}\right)$ be bounded in H_{1} with $\left(\mathrm{A}_{1} x_{n}\right)$ rel. compact in $D\left(\mathcal{A}_{1}^{*}\right)^{\prime}$,
(ii) let $\left(y_{n}\right) \subset D\left(\mathrm{~A}_{0}^{*}\right)$ be bounded in H_{1} with $\left(\mathrm{A}_{0}^{*} y_{n}\right)$ rel. compact in $D\left(\mathcal{A}_{0}\right)^{\prime}$.
$\Rightarrow \exists x, y \in \mathrm{H}_{1}$ and subseq st $x_{n} \rightharpoonup x$ and $y_{n} \rightharpoonup y$ in H_{1} and

$$
\left\langle x_{n}, y_{n}\right\rangle_{\mathrm{H}_{1}} \rightarrow\langle x, y\rangle_{\mathrm{H}_{1}} .
$$

Proof.

... very similar ...

Remark

homogen app: often, e.g., $x_{n}=\nabla u_{n} b d$ with some $u_{n} \in \mathrm{H}^{1}(\Omega)+b c$ as well as $\operatorname{rot} x_{n}=0$ and $\operatorname{div} y_{n}=f \in \mathrm{H}^{-1}(\Omega)$, even const

A_{0}^{*} - A_{1}-lemma (proof using fa-toolbox)

Proof.

- use fa-toolbox
- w.l.o.g. (subsequences) $\quad x_{n} \rightharpoonup x$ in $D\left(\mathrm{~A}_{1}\right)$ and $y_{n} \rightarrow y$ in $D\left(\mathrm{~A}_{0}^{*}\right)$
- ortho Helm type deco $\Rightarrow D\left(\mathrm{~A}_{1}\right)=R\left(\mathcal{A}_{0}\right) \cap\left(D\left(\mathrm{~A}_{1}\right) \cap N\left(\mathrm{~A}_{0}^{*}\right)\right) \quad$ (complex)

$$
D\left(\mathrm{~A}_{1}\right) \ni x_{n}=\mathrm{A}_{0} z_{n}+\tilde{x}_{n}, \quad z_{n} \in D\left(\mathcal{A}_{0}\right), \quad \tilde{x}_{n} \in D\left(\mathrm{~A}_{1}\right) \cap N\left(\mathrm{~A}_{0}^{*}\right)
$$

- $\Rightarrow \quad\left(z_{n}\right)$ is bd in $D\left(\mathcal{A}_{0}\right) \quad$ by ortho and Friedrichs/Poincaré type est, i.e.,

$$
\exists c_{A_{0}}>0 \quad \forall z \in D\left(\mathcal{A}_{0}\right) \quad|z|_{\mathrm{H}_{0}} \leq c_{\mathrm{A}_{0}}\left|\mathrm{~A}_{0} z\right|_{\mathrm{H}_{1}}
$$

- $\Rightarrow \quad\left(\tilde{x}_{n}\right)$ is bd in $D\left(\mathrm{~A}_{1}\right) \cap N\left(\mathrm{~A}_{0}^{*}\right) \quad$ by ortho and $\quad \mathrm{A}_{1} \tilde{x}_{n}=\mathrm{A}_{1} x_{n} \quad$ (complex)
- $D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \leftrightarrow \mathrm{H}_{1} \mathrm{cpt} \Rightarrow D\left(\mathcal{A}_{0}\right) \leftrightarrow \mathrm{H}_{0} \mathrm{cpt}$
- $\Rightarrow \quad \exists \quad z \in D\left(\mathcal{A}_{0}\right)$ and $\quad \tilde{x} \in D\left(\mathrm{~A}_{1}\right) \cap N\left(\mathrm{~A}_{0}^{*}\right) \quad$ st (extract subsequences)

$$
z_{n} \rightarrow z \text { in } D\left(\mathrm{~A}_{0}\right) \quad \text { and } \quad z_{n} \rightarrow z \text { in } \mathrm{H}_{0}
$$

$$
\tilde{x}_{n} \rightarrow \tilde{x} \text { in } D\left(\mathrm{~A}_{1}\right) \cap N\left(\mathrm{~A}_{0}^{*}\right) \quad \text { and } \quad \tilde{x}_{n} \rightarrow \tilde{x} \text { in } \mathrm{H}_{1}
$$

- $x=A_{0} z+\tilde{x} \quad$ (ortho Helm type deco for x)
- Finally

$$
\begin{aligned}
\left\langle x_{n}, y_{n}\right\rangle_{\mathrm{H}_{1}} & =\left\langle\mathrm{A}_{0} z_{n}, y_{n}\right\rangle_{\mathrm{H}_{1}}+\left\langle\tilde{x}_{n}, y_{n}\right\rangle_{\mathrm{H}_{1}}=\left\langle z_{n}, \mathrm{~A}_{0}^{*} y_{n}\right\rangle_{\mathrm{H}_{0}}+\left\langle\tilde{x}_{n}, y_{n}\right\rangle_{\mathrm{H}_{1}} \\
& \rightarrow\left\langle z, \mathrm{~A}_{0}^{*} y\right\rangle_{\mathrm{H}_{0}}+\langle\tilde{x}, y\rangle_{\mathrm{H}_{1}}=\left\langle\mathrm{A}_{0} z, y\right\rangle_{\mathrm{H}_{1}}+\langle\tilde{x}, y\rangle_{\mathrm{H}_{1}}=\langle x, y\rangle_{\mathrm{H}_{1}}
\end{aligned}
$$

- q.e.d.
fa-foolbox \Rightarrow red stuff

$A_{0}^{*}-\mathrm{A}_{1}$-lemma (fa-toolbox, some fundamental results)

\begin\{fundamental part of fa-toolbox\} }

A_{0}^{*} - A_{1}-lemma (fa-toolbox, some fundamental results)

$\mathrm{A}: D(\mathrm{~A}) \subset \mathrm{H}_{0} \rightarrow \mathrm{H}_{1}$ Iddc, $\mathrm{A}^{*}: D\left(\mathrm{~A}^{*}\right) \subset \mathrm{H}_{1} \rightarrow \mathrm{H}_{0}$ Hilbert space adjoint ($\mathrm{A}, \mathrm{A}^{*}$) dual pair as $\left(\mathrm{A}^{*}\right)^{*}=\overline{\mathrm{A}}=\mathrm{A}$

A, A^{*} may not be inj
Helmholtz/Hodge/Weyl decompositions (projection theorem)

$$
\mathrm{H}_{1}=N\left(\mathrm{~A}^{*}\right) \oplus \overline{R(\mathrm{~A})} \quad \mathrm{H}_{0}=N(\mathrm{~A}) \oplus \overline{R\left(\mathrm{~A}^{*}\right)}
$$

reduced operators restr to $N(\mathrm{~A})^{\perp}$ and $N\left(\mathrm{~A}^{*}\right)^{\perp}$

$$
\begin{aligned}
& \mathcal{A}:=\left.\mathrm{A}\right|_{N(\mathrm{~A})^{\perp}}=\left.\mathrm{A}\right|_{\overline{R\left(\mathrm{~A}^{*}\right)}} \quad \mathcal{A}^{*}:=\left.\mathrm{A}^{*}\right|_{N\left(\mathrm{~A}^{*}\right)^{\perp}}=\left.\mathrm{A}^{*}\right|_{\overline{R(\mathrm{~A})}} \\
& \mathcal{A}, \mathcal{A}^{*} \text { inj } \Rightarrow \quad \mathcal{A}^{-1},\left(\mathcal{A}^{*}\right)^{-1} \mathrm{ex}
\end{aligned}
$$

A_{0}^{*} - A_{1}-lemma (fa-toolbox, some fundamental results)

$\mathrm{A}: D(\mathrm{~A}) \subset \mathrm{H}_{0} \rightarrow \mathrm{H}_{1}, \quad \mathrm{~A}^{*}: D\left(\mathrm{~A}^{*}\right) \subset \mathrm{H}_{1} \rightarrow \mathrm{H}_{0}$ Iddc $\quad\left(\mathrm{A}, \mathrm{A}^{*}\right)$ dual pair

$$
\mathrm{H}_{1}=N\left(\mathrm{~A}^{*}\right) \oplus \overline{R(\mathrm{~A})} \quad \mathrm{H}_{0}=N(\mathrm{~A}) \oplus \overline{R\left(\mathrm{~A}^{*}\right)}
$$

more precisely

$$
\begin{aligned}
\mathcal{A}:=\left.\mathrm{A}\right|_{\overline{R\left(\mathrm{~A}^{*}\right)}}: D(\mathcal{A}) \subset \overline{R\left(\mathrm{~A}^{*}\right)} \rightarrow \overline{R(\mathrm{~A})}, \quad D(\mathcal{A}):=D(\mathrm{~A}) \cap N(\mathrm{~A})^{\perp}=D(\mathrm{~A}) \cap \overline{R\left(\mathrm{~A}^{*}\right)} \\
\mathcal{A}^{*}:=\left.\mathrm{A}^{*}\right|_{\overline{R(\mathrm{~A})}}: D\left(\mathcal{A}^{*}\right) \subset \overline{R(\mathrm{~A})} \rightarrow \overline{R\left(\mathrm{~A}^{*}\right)}, \quad D\left(\mathcal{A}^{*}\right):=D\left(\mathrm{~A}^{*}\right) \cap N\left(\mathrm{~A}^{*}\right)^{\perp}=D\left(\mathrm{~A}^{*}\right) \cap \overline{R(\mathrm{~A})}
\end{aligned}
$$

$\left(\mathcal{A}, \mathcal{A}^{*}\right)$ dual pair and $\mathcal{A}, \mathcal{A}^{*} \operatorname{inj} \Rightarrow$
inverse ops exist (and bij)

$$
\mathcal{A}^{-1}: R(\mathrm{~A}) \rightarrow D(\mathcal{A}) \quad\left(\mathcal{A}^{*}\right)^{-1}: R\left(\mathrm{~A}^{*}\right) \rightarrow D\left(\mathcal{A}^{*}\right)
$$

refined decompositions

$$
D(\mathrm{~A})=N(\mathrm{~A}) \oplus D(\mathcal{A}) \quad D\left(\mathrm{~A}^{*}\right)=N\left(\mathrm{~A}^{*}\right) \oplus D\left(\mathcal{A}^{*}\right)
$$

\Rightarrow

$$
R(\mathrm{~A})=R(\mathcal{A}) \quad R\left(\mathrm{~A}^{*}\right)=R\left(\mathcal{A}^{*}\right)
$$

A_{0}^{*} - A_{1}-lemma (fa-toolbox, some fundamental results)

closed range theorem \& closed graph theorem \Rightarrow

Lemma (Friedrichs-Poincaré type est/cl range/cont inv)

The following assertions are equivalent:
(i) $\exists c_{\mathrm{A}} \in(0, \infty) \quad \forall x \in D(\mathcal{A}) \quad|x|_{\mathrm{H}_{0}} \leq c_{\mathrm{A}}|\mathrm{A} x|_{\mathrm{H}_{1}}$
(i*) $\exists c_{\mathrm{A}^{*}} \in(0, \infty) \quad \forall y \in D\left(\mathcal{A}^{*}\right) \quad|y|_{\mathrm{H}_{1}} \leq c_{\mathrm{A}^{*}}\left|\mathrm{~A}^{*} y\right|_{\mathrm{H}_{0}}$
(ii) $R(\mathrm{~A})=R(\mathcal{A})$ is closed in H_{1}.
(ii*) $R\left(\mathrm{~A}^{*}\right)=R\left(\mathcal{A}^{*}\right)$ is closed in H_{0}.
(iii) $\mathcal{A}^{-1}: R(\mathrm{~A}) \rightarrow D(\mathcal{A})$ is continuous and bijective.
(iii*) $\left(\mathcal{A}^{*}\right)^{-1}: R\left(\mathrm{~A}^{*}\right) \rightarrow D\left(\mathcal{A}^{*}\right)$ is continuous and bijective.
In case that one of the latter assertions is true, e.g., (ii), $R(\mathrm{~A})$ is closed, we have

$$
\begin{aligned}
\mathrm{H}_{0} & =N(\mathrm{~A}) \oplus R\left(\mathrm{~A}^{*}\right) & \mathrm{H}_{1} & =N\left(\mathrm{~A}^{*}\right) \oplus R(\mathrm{~A}) \\
D(\mathrm{~A}) & =N(\mathrm{~A}) \oplus D(\mathcal{A}) & D\left(\mathrm{~A}^{*}\right) & =N\left(\mathrm{~A}^{*}\right) \oplus D\left(\mathcal{A}^{*}\right) \\
D(\mathcal{A}) & =D(\mathrm{~A}) \cap R\left(\mathrm{~A}^{*}\right) & D\left(\mathcal{A}^{*}\right) & =D\left(\mathrm{~A}^{*}\right) \cap R(\mathrm{~A})
\end{aligned}
$$

and $\mathcal{A}: D(\mathcal{A}) \subset R\left(\mathrm{~A}^{*}\right) \rightarrow R(\mathrm{~A}), \quad \mathcal{A}^{*}: D\left(\mathcal{A}^{*}\right) \subset R(\mathrm{~A}) \rightarrow R\left(\mathrm{~A}^{*}\right)$.
recall
(i) $\exists c_{\mathrm{A}} \in(0, \infty) \quad \forall x \in D(\mathcal{A}) \quad|x|_{\mathrm{H}_{0}} \leq c_{\mathrm{A}}|\mathrm{A} x|_{\mathrm{H}_{1}}$
(i*) $\exists c_{\mathrm{A}^{*}} \in(0, \infty) \quad \forall y \in D\left(\mathcal{A}^{*}\right) \quad|y|_{\mathrm{H}_{1}} \leq c_{\mathrm{A}^{*}}\left|\mathrm{~A}^{*} y\right|_{\mathrm{H}_{0}}$
'best' consts in (i) and (\mathbf{i}^{*}) equal norms of the inv ops and Rayleigh quotients

$$
\begin{aligned}
c_{\mathrm{A}} & =\left|\mathcal{A}^{-1}\right|_{R(\mathrm{~A}), R\left(\mathrm{~A}^{*}\right)} & c_{\mathrm{A}^{*}} & =\left|\left(\mathcal{A}^{*}\right)^{-1}\right|_{R\left(\mathrm{~A}^{*}\right), R(\mathrm{~A})} \\
\frac{1}{c_{\mathrm{A}}} & =\inf _{0 \neq x \in D(\mathcal{A})} \frac{|\mathrm{A} x|_{\mathrm{H}_{1}}}{|x|_{\mathrm{H}_{0}}} & \frac{1}{c_{\mathrm{A}^{*}}} & =\inf _{0 \neq y \in D\left(\mathcal{A}^{*}\right)} \frac{\left|\mathrm{A}^{*} y\right|_{\mathrm{H}_{0}}}{|y|_{\mathrm{H}_{1}}}
\end{aligned}
$$

Lemma (Friedrichs-Poincaré type const)

$$
c_{\mathrm{A}}=c_{\mathrm{A}} *
$$

A_{0}^{*} - A_{1}-lemma (fa-toolbox, some fundamental results)

Lemma (cpt emb/cpt inv)

The following assertions are equivalent:
(i) $D(\mathcal{A}) \hookrightarrow \mathrm{H}_{0}$ is compact.
(i*) $D\left(\mathcal{A}^{*}\right) \leftrightarrow \mathrm{H}_{1}$ is compact.
(ii) $\mathcal{A}^{-1}: R(\mathrm{~A}) \rightarrow R\left(\mathrm{~A}^{*}\right)$ is compact.
(ii*) $\left(\mathcal{A}^{*}\right)^{-1}: R\left(\mathrm{~A}^{*}\right) \rightarrow R(\mathrm{~A})$ is compact.

Lemma (Friedrichs-Poincaré type est/cl range/cont inv)

$\Downarrow \quad D(\mathcal{A}) \leftrightarrow \mathrm{H}_{0}$ compact
(i) $\exists c_{\mathrm{A}} \in(0, \infty) \quad \forall x \in D(\mathcal{A}) \quad|x|_{\mathrm{H}_{0}} \leq c_{\mathrm{A}}|\mathrm{A} x|_{\mathrm{H}_{1}}$
(i*) $\exists c_{\mathrm{A}^{*}} \in(0, \infty) \quad \forall y \in D\left(\mathcal{A}^{*}\right) \quad|y|_{\mathrm{H}_{1}} \leq c_{\mathrm{A}^{*}}\left|\mathrm{~A}^{*} y\right|_{\mathrm{H}_{0}}$
(ii) $R(\mathrm{~A})=R(\mathcal{A})$ is closed in H_{1}.
(ii*) $R\left(\mathrm{~A}^{*}\right)=R\left(\mathcal{A}^{*}\right)$ is closed in H_{0}.
(iii) $\mathcal{A}^{-1}: R(\mathrm{~A}) \rightarrow D(\mathcal{A})$ is continuous and bijective.
(iii*) $\left(\mathcal{A}^{*}\right)^{-1}: R\left(\mathrm{~A}^{*}\right) \rightarrow D\left(\mathcal{A}^{*}\right)$ is continuous and bijective.
(i)-(iii*) equi \& the resp Helm deco hold \& $\left|\mathcal{A}^{-1}\right|=c_{\mathrm{A}}=c_{\mathrm{A}^{*}}=\left|\left(\mathcal{A}^{*}\right)^{-1}\right|$

A_{0}^{*} - A_{1}-lemma (fa-toolbox, some fundamental results)

So far no complex...
$\mathrm{A}_{0}: D\left(\mathrm{~A}_{0}\right) \subset \mathrm{H}_{0} \rightarrow \mathrm{H}_{1}, \quad \mathrm{~A}_{1}: D\left(\mathrm{~A}_{1}\right) \subset \mathrm{H}_{1} \rightarrow \mathrm{H}_{2} \quad(\mathrm{Iddc})$
$\mathrm{A}_{0}^{*}: D\left(\mathrm{~A}_{0}^{*}\right) \subset \mathrm{H}_{1} \rightarrow \mathrm{H}_{0}, \quad \mathrm{~A}_{1}^{*}: D\left(\mathrm{~A}_{1}^{*}\right) \subset \mathrm{H}_{2} \rightarrow \mathrm{H}_{1}$ (Iddc)
general complex $\left(\mathrm{A}_{1} \mathrm{~A}_{0}=0\right.$, i.e., $\quad R\left(\mathrm{~A}_{0}\right) \subset N\left(\mathrm{~A}_{1}\right)$ and $\left.R\left(\mathrm{~A}_{1}^{*}\right) \subset N\left(\mathrm{~A}_{0}^{*}\right)\right)$

$$
\cdots \underset{\cdots}{\underset{\cdots}{\rightleftarrows}} \mathrm{H}_{0} \underset{A_{0}^{*}}{\stackrel{A_{0}}{\rightleftarrows}} \mathrm{H}_{1} \underset{A_{1}^{*}}{\stackrel{A_{1}}{\rightleftarrows}} \mathrm{H}_{2} \underset{\cdots}{\underset{\cdots}{\rightleftarrows}} \quad \cdots
$$

recall Helmholtz deco

$$
\begin{aligned}
\mathrm{H}_{1} & =\overline{R\left(\mathrm{~A}_{0}\right)} \oplus N\left(\mathrm{~A}_{0}^{*}\right) \\
& \cap \cup \begin{array}{l}
\mathrm{O}
\end{array} \quad \Rightarrow \text { (e.g.) } N\left(\mathrm{~A}_{1}\right)=\overline{R\left(\mathrm{~A}_{0}\right)} \oplus(\underbrace{N\left(\mathrm{~A}_{1}\right) \cap N\left(\mathrm{~A}_{0}^{*}\right)}_{=: K_{1}})
\end{aligned}
$$

\Rightarrow refined Helmholtz deco

$$
\mathrm{H}_{1}=\overline{R\left(\mathrm{~A}_{0}\right)} \oplus K_{1} \oplus \overline{R\left(\mathrm{~A}_{1}^{*}\right)}
$$

A_{0}^{*} - A_{1}-lemma (fa-toolbox, some fundamental results)

recall

$$
\begin{array}{lll}
D\left(\mathrm{~A}_{1}\right)=D\left(\mathcal{A}_{1}\right) \cap \overline{R\left(\mathrm{~A}_{1}^{*}\right)} & R\left(\mathrm{~A}_{1}\right)=R\left(\mathcal{A}_{1}\right) & R\left(\mathrm{~A}_{1}^{*}\right)=R\left(\mathcal{A}_{1}^{*}\right) \\
D\left(\mathrm{~A}_{0}^{*}\right)=D\left(\mathcal{A}_{0}^{*}\right) \cap \overline{R\left(\mathrm{~A}_{0}\right)} & R\left(\mathrm{~A}_{0}^{*}\right)=R\left(\mathcal{A}_{0}^{*}\right) & R\left(\mathrm{~A}_{0}\right)=R\left(\mathcal{A}_{0}\right)
\end{array}
$$

cohomology group $K_{1}=N\left(\mathrm{~A}_{1}\right) \cap N\left(\mathrm{~A}_{0}^{*}\right)$

Lemma (Helmholtz deco I)

$$
\begin{array}{rlrl}
\mathrm{H}_{1} & =\overline{R\left(\mathrm{~A}_{0}\right)} \oplus N\left(\mathrm{~A}_{0}^{*}\right) & \mathrm{H}_{1} & =\overline{R\left(\mathrm{~A}_{1}^{*}\right)} \oplus N\left(\mathrm{~A}_{1}\right) \\
D\left(\mathrm{~A}_{0}^{*}\right) & =D\left(\mathcal{A}_{0}^{*}\right) \oplus N\left(\mathrm{~A}_{0}^{*}\right) & D\left(\mathrm{~A}_{1}\right)=D\left(\mathcal{A}_{1}\right) \oplus N\left(\mathrm{~A}_{1}\right) \\
N\left(\mathrm{~A}_{1}\right) & =D\left(\mathcal{A}_{0}^{*}\right) \oplus K_{1} & N\left(\mathrm{~A}_{0}^{*}\right) & =D\left(\mathcal{A}_{1}\right) \oplus K_{1} \\
D\left(\mathrm{~A}_{1}\right) & =\overline{R\left(\mathrm{~A}_{0}\right)} \oplus\left(D\left(\mathrm{~A}_{1}\right) \cap N\left(\mathrm{~A}_{0}^{*}\right)\right) & D\left(\mathrm{~A}_{0}^{*}\right) & =\overline{R\left(\mathrm{~A}_{1}^{*}\right)} \oplus\left(D\left(\mathrm{~A}_{0}^{*}\right) \cap N\left(\mathrm{~A}_{1}\right)\right)
\end{array}
$$

Lemma (Helmholtz deco II)

$$
\begin{aligned}
\mathrm{H}_{1} & =\overline{R\left(\mathrm{~A}_{0}\right)} \oplus K_{1} \oplus \overline{R\left(\mathrm{~A}_{1}^{*}\right)} \\
D\left(\mathrm{~A}_{1}\right) & =\overline{R\left(\mathrm{~A}_{0}\right)} \oplus K_{1} \oplus D\left(\mathcal{A}_{1}\right) \\
D\left(\mathrm{~A}_{0}^{*}\right) & =D\left(\mathcal{A}_{0}^{*}\right) \oplus K_{1} \oplus \overline{R\left(\mathrm{~A}_{1}^{*}\right)} \\
D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) & =D\left(\mathcal{A}_{0}^{*}\right) \oplus K_{1} \oplus D\left(\mathcal{A}_{1}\right)
\end{aligned}
$$

A_{0}^{*} - A_{1}-lemma (fa-toolbox, some fundamental results)

$K_{1}=N\left(\mathrm{~A}_{1}\right) \cap N\left(\mathrm{~A}_{0}^{*}\right) \quad D\left(\mathrm{~A}_{1}\right)=D\left(\mathcal{A}_{1}\right) \cap \overline{R\left(\mathrm{~A}_{1}^{*}\right)} \quad D\left(\mathrm{~A}_{0}^{*}\right)=D\left(\mathcal{A}_{0}^{*}\right) \cap \overline{R\left(\mathrm{~A}_{0}\right)}$

Lemma (cpt emb II)

The following assertions are equivalent:
(i) $D\left(\mathcal{A}_{0}\right) \hookrightarrow \mathrm{H}_{0}, \quad D\left(\mathcal{A}_{1}\right) \leftrightarrow \mathrm{H}_{1}, \quad$ and $\quad K_{1} \hookrightarrow \mathrm{H}_{1} \quad$ are compact.
(ii) $D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \leftrightarrow \mathrm{H}_{1} \quad$ is compact.

In this case $K_{1}<\infty$.

Theorem (fa-toolbox I)

$\Downarrow \quad D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \leftrightarrow \mathrm{H}_{1}$ compact
(i) all emb cpt, i.e., $D\left(\mathcal{A}_{0}\right) \hookrightarrow \mathrm{H}_{0}, D\left(\mathcal{A}_{1}\right) \hookrightarrow \mathrm{H}_{1}, D\left(\mathcal{A}_{0}^{*}\right) \hookrightarrow \mathrm{H}_{1}, D\left(\mathcal{A}_{1}^{*}\right) \hookrightarrow \mathrm{H}_{2} c p t$
(ii) cohomology group K_{1} finite dim
(iii) all ranges closed, i.e., $R\left(\mathrm{~A}_{0}\right)=R\left(\mathcal{A}_{0}\right), \quad R\left(\mathrm{~A}_{0}^{*}\right)=R\left(\mathcal{A}_{0}^{*}\right) \mathrm{cl}$,

$$
R\left(\mathrm{~A}_{1}\right)=R\left(\mathcal{A}_{1}\right), \quad R\left(\mathrm{~A}_{1}^{*}\right)=R\left(\mathcal{A}_{1}^{*}\right) \quad \mathrm{cl}
$$

(iv) all Friedrichs-Poincaré type est hold
(v) all Hodge-Helmholtz-Weyl type deco I \& II hold with closed ranges

div-curl-lemma

A_{0}^{*} - A_{1}-lemma (fa-toolbox, some fundamental results)

complex $\quad \cdots \underset{\cdots}{\dddot{\cdots}} \mathrm{H}_{0} \underset{A_{0}^{*}}{\stackrel{A_{0}}{\rightleftarrows}} \mathrm{H}_{1} \underset{A_{1}^{*}}{\stackrel{A_{1}}{\rightleftarrows}} \mathrm{H}_{2} \underset{\cdots}{\dddot{\longrightarrow}} \underset{ }{\rightleftarrows}$

Theorem (fa-toolbox I (Friedrichs-Poincaré type est))
$\Downarrow \quad D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \hookrightarrow \mathrm{H}_{1}$ compact $\quad \Rightarrow \quad \exists \quad\left|\mathcal{A}_{i}^{-1}\right|=c_{\mathrm{A}_{i}}=c_{\mathrm{A}_{i}^{*}}=\left|\left(\mathcal{A}_{i}^{*}\right)^{-1}\right| \in(0, \infty)$
(i) $\forall x \in D\left(\mathcal{A}_{0}\right)$
(i*) $\forall y \in D\left(\mathcal{A}_{0}^{*}\right)$
(ii) $\forall y \in D\left(\mathcal{A}_{1}\right)$
(ii*) $\forall z \in D\left(\mathcal{A}_{1}^{*}\right)$
(iii) $\forall y \in D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right)$
$\left|\left(1-\pi_{K_{1}}\right) y\right|_{\mathrm{H}_{1}} \leq c_{\mathrm{A}_{1}}\left|\mathrm{~A}_{1} y\right|_{\mathrm{H}_{2}}+c_{\mathrm{A}_{0}}\left|\mathrm{~A}_{0}^{*} y\right|_{\mathrm{H}_{0}}$
note $\pi_{K_{1}} y \in K_{1}$ and $\left(1-\pi_{K_{1}}\right) y \in K_{1}^{\perp}$

Remark

enough $R\left(\mathrm{~A}_{0}\right)$ and $R\left(\mathrm{~A}_{1}\right)$ cl

A_{0}^{*} - A_{1}-lemma (fa-toolbox, some fundamental results)

complex $\quad \cdots \underset{\cdots}{\dddot{\cdots}} \mathrm{H}_{0} \underset{\mathrm{~A}_{0}^{*}}{\stackrel{A_{0}}{\rightleftarrows}} \mathrm{H}_{1} \underset{\mathrm{~A}_{1}^{*}}{\stackrel{A_{1}}{\rightleftarrows}} \mathrm{H}_{2} \underset{\cdots}{\dddot{\cdots}} \underset{ }{\rightleftarrows}$

Theorem (fa-toolbox I (Helmholtz deco))
$\Downarrow \quad D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \leftrightarrow \mathrm{H}_{1}$ compact

$$
\begin{array}{rlrl}
\mathrm{H}_{1} & =R\left(\mathrm{~A}_{0}\right) \oplus N\left(\mathrm{~A}_{0}^{*}\right) & \mathrm{H}_{1} & =R\left(\mathrm{~A}_{1}^{*}\right) \oplus N\left(\mathrm{~A}_{1}\right) \\
D\left(\mathrm{~A}_{0}^{*}\right)=D\left(\mathcal{A}_{0}^{*}\right) \oplus N\left(\mathrm{~A}_{0}^{*}\right) & D\left(\mathrm{~A}_{1}\right)=D\left(\mathcal{A}_{1}\right) \oplus N\left(\mathrm{~A}_{1}\right) \\
N\left(\mathrm{~A}_{1}\right)=D\left(\mathcal{A}_{0}^{*}\right) \oplus K_{1} & N\left(\mathrm{~A}_{0}^{*}\right)=D\left(\mathcal{A}_{1}\right) \oplus K_{1} \\
D\left(\mathrm{~A}_{1}\right)=R\left(\mathrm{~A}_{0}\right) \oplus\left(D\left(\mathrm{~A}_{1}\right) \cap N\left(\mathrm{~A}_{0}^{*}\right)\right) & D\left(\mathrm{~A}_{0}^{*}\right)=R\left(\mathrm{~A}_{1}^{*}\right) \oplus\left(D\left(\mathrm{~A}_{0}^{*}\right) \cap N\left(\mathrm{~A}_{1}\right)\right) \\
\mathrm{H}_{1} & =R\left(\mathrm{~A}_{0}\right) \oplus K_{1} \oplus R\left(\mathrm{~A}_{1}^{*}\right) \\
D\left(\mathrm{~A}_{1}\right) & =R\left(\mathrm{~A}_{0}\right) \oplus K_{1} \oplus D\left(\mathcal{A}_{1}\right) \\
D\left(\mathrm{~A}_{0}^{*}\right) & =D\left(\mathcal{A}_{0}^{*}\right) \oplus K_{1} \oplus R\left(\mathrm{~A}_{1}^{*}\right) \\
D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) & =D\left(\mathcal{A}_{0}^{*}\right) \oplus K_{1} \oplus D\left(\mathcal{A}_{1}\right)
\end{array}
$$

Remark

$A_{0}^{*}-\mathrm{A}_{1}$-lemma (fa-toolbox, some fundamental results)

\end\{fundamental part of fa-toolbox\} }

classical de Rham complex in 3D (∇-rot-div-complex)

$\Omega \subset \mathbb{R}^{3}$ bounded weak Lipschitz domain, $\partial \Omega=\Gamma=\overline{\Gamma_{t} \dot{\cup} \Gamma_{n}}$
(electro-magneto dynamics, Maxwell's equations)
mixed boundary conditions and inhomogeneous and anisotropic media

$$
\{0\} \text { or } \mathbb{R} \underset{\pi}{\stackrel{\iota}{\rightleftarrows}} \mathrm{L}^{2} \underset{-\operatorname{div}_{\Gamma_{n}} \varepsilon}{\stackrel{\nabla \Gamma_{t}}{\rightleftarrows}} \quad \mathrm{~L}_{\varepsilon}^{2} \underset{\varepsilon^{-1} \underset{\text { rot }_{\Gamma_{n}}}{\rightleftarrows}}{\stackrel{\mathrm{rot}_{\Gamma_{t}}}{\rightleftarrows}} \mathrm{~L}^{2} \underset{-\nabla_{\Gamma_{n}}}{\stackrel{\operatorname{div}_{\Gamma_{t}}}{\rightleftarrows}} \mathrm{~L}^{2} \underset{\iota}{\underset{~}{\rightleftarrows}} \quad \mathbb{R} \text { or }\{0\}
$$

classical de Rham complex in 3D (∇-rot-div-complex)

$\Omega \subset \mathbb{R}^{3}$ bounded weak Lipschitz domain, $\partial \Omega=\Gamma=\overline{\Gamma_{t} \dot{\cup} \Gamma_{n}}$
(electro-magneto dynamics, Maxwell's equations with mixed boundary conditions)
related fos

$$
\begin{array}{rrrrrrrrr}
\nabla \Gamma_{\Gamma_{t}} u=A & \text { in } \Omega & \mid & \operatorname{rot}_{\Gamma_{t}} E=J & \text { in } \Omega & \mid & \operatorname{div}_{\Gamma_{t}} H=k & \text { in } \Omega & \pi v=b \\
\pi u=a & \text { in } \Omega & \mid & -\operatorname{div}_{\Gamma_{n}} \varepsilon E=j & \text { in } \Omega & \mid & \varepsilon^{-1} \operatorname{rot}_{\Gamma_{n}} H=K & \text { in } \Omega & -\nabla \Gamma_{n} v=B
\end{array} \quad \text { in } \Omega
$$

related sos

$$
\begin{array}{rrrrrrrr}
-\operatorname{div}_{\Gamma_{n}} \varepsilon \nabla_{\Gamma_{t}} u=j & \text { in } \Omega & \mid & \varepsilon^{-1} \operatorname{rot}_{\Gamma_{n}} \operatorname{rot}_{\Gamma_{t}} E=K & \text { in } \Omega & \mid & -\nabla_{\Gamma_{n}} \operatorname{div}_{\Gamma_{t}} H=B & \text { in } \Omega \\
\pi u=a & \text { in } \Omega & & -\operatorname{div}_{\Gamma_{n}} \varepsilon E=j & \text { in } \Omega & \varepsilon^{-1} \operatorname{rot}_{\Gamma_{n}} H=K & \text { in } \Omega
\end{array}
$$

corresponding compact embeddings:

$$
\begin{aligned}
D\left(\nabla \Gamma_{t}\right) \cap D(\pi)=D\left(\nabla \Gamma_{t}\right)=\mathrm{H}_{\Gamma_{t}}^{1} \leftrightarrow \mathrm{~L}^{2} & \text { (Rellich's selection theorem) } \\
D\left(\operatorname{rot}_{\Gamma_{t}}\right) \cap D\left(-\operatorname{div}_{\Gamma_{n}} \varepsilon\right)=\mathrm{R}_{\Gamma_{t}} \cap \varepsilon^{-1} \mathrm{D}_{\Gamma_{n}} \leftrightarrow \mathrm{~L}_{\varepsilon}^{2} & \text { (Weck's selection theorem, '72/'74) } \\
D\left(\operatorname{div}_{\Gamma_{t}}\right) \cap D\left(\varepsilon^{-1} \operatorname{rot}_{\Gamma_{n}}\right)=\mathrm{D}_{\Gamma_{t}} \cap \mathrm{R}_{\Gamma_{n}} \leftrightarrow \mathrm{~L}^{2} & \text { (Weck's selection theorem, '72/'74) } \\
D\left(\nabla \Gamma_{n}\right) \cap D(\pi)=D\left(\nabla \Gamma_{n}\right)=\mathrm{H}_{\Gamma_{n}}^{1} \leftrightarrow \mathrm{~L}^{2} & \text { (Rellich's selection theorem) }
\end{aligned}
$$

Weck's selection theorem for weak Lip. dom. and mixed bc: Bauer/Py/Schomburg ('16)

de Rham complex in ND or on Riemannian manifolds (d-complex)

$\Omega \subset \mathbb{R}^{N}$ bd w. Lip. dom. or Ω Riemannian manifold with cpt cl . and Lip. boundary Γ (generalized Maxwell equations)

de Rham complex in ND or on Riemannian manifolds (d-complex)

$\Omega \subset \mathbb{R}^{N}$ bd w . Lip. dom. or Ω Riemannian manifold with cpt cl . and Lip. boundary Γ (generalized Maxwell equations)

related fos

$$
\begin{array}{rlr}
\mathrm{d}_{\Gamma_{t}}^{q} E=F & \text { in } \Omega \\
-\delta_{\Gamma_{n}}^{q} E & =G & \text { in } \Omega
\end{array}
$$

related sos

$$
\begin{aligned}
-\delta_{\Gamma_{n}}^{q+1} \mathrm{~d}_{\Gamma_{t}}^{q} E=F & \text { in } \Omega \\
& -\delta_{\Gamma_{n}}^{q} E=G
\end{aligned}
$$

includes: EMS rot / div, Laplacian, rot rot, and more... corresponding compact embeddings:

$$
D\left(\mathrm{~d}_{\Gamma_{t}}^{q}\right) \cap D\left(\delta_{\Gamma_{n}}^{q}\right) \leftrightarrow \mathrm{L}^{2, q}
$$

(Weck's selection theorems, '72/'74)
Weck's selection theorem for Lip. manifolds and mixed bc: Bauer/Py/Schomburg ('17)

elasticity complex in 3D (sym ∇-Rot $\operatorname{Rot}_{\mathbb{S}}^{\top}$-Div ${ }_{\mathbb{S}}$-complex)

$\Omega \subset \mathbb{R}^{3}$ bounded strong Lipschitz domain

elasticity complex in 3D (sym ∇-Rot $\operatorname{Rot}_{\mathbb{S}}^{\top}$-Div ${ }_{\mathbb{S}}$-complex)

$\Omega \subset \mathbb{R}^{3}$ bounded strong Lipschitz domain

related fos ($\operatorname{Rot}_{\operatorname{Rot}}^{\mathbb{S}, \Gamma} \Gamma^{\top}, \operatorname{Rot} \operatorname{Rot}_{\mathbb{S}}^{\top}$ first order operators!)

related sos ($\operatorname{Rot}^{\operatorname{Rot}}{ }_{\mathbb{S}}^{\top} \operatorname{Rot}_{\operatorname{Rot}}^{\mathbb{S}, \Gamma} \Gamma^{\top}$ second order operator!)

$$
\begin{aligned}
& -\operatorname{Div}_{\mathbb{S}} \operatorname{sym} \nabla_{\Gamma} v=f \quad \text { in } \Omega \quad \mid \quad \operatorname{Rot}^{\operatorname{Rot}}{ }_{\mathbb{S}}^{\top} \operatorname{Rot}_{\operatorname{Rot}}^{\mathbb{S}, \Gamma}{ }^{\top} M=G \quad \text { in } \Omega \quad \mid \quad-\operatorname{sym} \nabla \operatorname{Div}_{\mathbb{S}, \Gamma} N=M \quad \text { in } \Omega \\
& \pi v=0 \quad \text { in } \Omega \quad \mid \quad-\operatorname{Div}_{\mathbb{S}} M=f \quad \text { in } \Omega \quad \mid \quad \operatorname{Rot}^{\operatorname{Rot}}{ }_{\mathbb{S}}^{\top} N=G \quad \text { in } \Omega
\end{aligned}
$$

corresponding compact embeddings:

$$
\begin{array}{rll}
D\left(\text { sym } \nabla_{\Gamma}\right) \cap D(\pi)=D\left(\nabla_{\Gamma}\right)=\mathrm{H}_{\Gamma}^{1} & \rightarrow \mathrm{~L}^{2} & \\
D\left(\operatorname{Rot}_{\operatorname{Rot}}^{\mathbb{S}, \Gamma}\right) \cap D\left(\operatorname{Div}_{\mathbb{S}}\right) & \rightarrow \mathrm{L}_{\mathbb{S}}^{2} & \text { (new selectich's selection theorem) } \\
D\left(\operatorname{Div}_{\mathbb{S}, \Gamma}\right) \cap D\left(\operatorname{Rot}^{\left.\operatorname{Rot}_{\mathbb{S}}^{\top}\right)} \rightarrow \mathrm{L}_{\mathbb{S}}^{2}\right. & \text { (new selection theorem) } \\
D(\pi) \cap D(\text { sym } \nabla)=D(\nabla)=\mathrm{H}^{1} \leftrightarrow \mathrm{~L}^{2} & \text { (Rellich's selection theorem and Korn ineq.) }
\end{array}
$$

two new selection theorems for strong Lip. dom.: Py/Schomburg/Zulehner ('18)

biharmonic / general relativity complex in 3D ($\nabla \nabla$-Rots-Div $\mathbb{T}_{\mathbb{T}}$-complex)

$\Omega \subset \mathbb{R}^{3}$ bounded strong Lipschitz domain

$$
\{0\} \underset{\pi_{\{0\}}}{\stackrel{\iota_{\{0\}}}{\rightleftarrows}} \mathrm{L}^{2} \underset{\operatorname{div} \operatorname{Div}_{\mathbb{S}}}{\stackrel{\nabla \circ}{\rightleftarrows}} \mathrm{L}_{\mathbb{S}}^{2} \underset{\operatorname{sym}_{\operatorname{Rot}_{\mathbb{T}}}^{\stackrel{\mathrm{Rot}_{\mathbb{S}}}{\rightleftarrows}}}{\stackrel{\mathrm{L}_{\mathbb{T}}^{2}}{\operatorname{Div}_{\mathbb{T}}} \underset{-\operatorname{dev} \nabla}{\rightleftarrows}} \mathrm{L}^{2} \underset{\iota_{\mathrm{RT}}}{\stackrel{\pi_{\mathrm{RT}}}{\rightleftarrows}} \text { RT }
$$

biharmonic / general relativity complex in 3D ($\nabla \nabla$-Rots-Div $\mathbb{T}_{\mathbb{T}}$-complex)

$\Omega \subset \mathbb{R}^{3}$ bounded strong Lipschitz domain

| \{0\} | $\stackrel{\iota_{\{0\}}}{\stackrel{\text { m }}{\rightleftarrows}}$ | L^{2} | $\underset{\operatorname{div} \operatorname{Div}_{\mathbb{S}}}{\stackrel{\nabla 0}{\nabla}}$ | $\mathrm{L}_{\mathbb{S}}^{2}$ | $\stackrel{\operatorname{Rog}_{S}}{\stackrel{\circ}{\operatorname{Rot}_{\mathbb{T}}}}$ | $\mathrm{L}_{\mathbb{T}}^{2}$ | $\stackrel{\stackrel{D^{\circ}}{\mathbb{T}}}{\stackrel{\rightharpoonup}{\mathbb{~}}}$ | L^{2} | $\underset{\iota_{\mathrm{RT}}}{\stackrel{\pi_{\mathrm{RT}}}{\rightleftarrows}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | related fos $\left(\nabla \nabla_{\Gamma}\right.$, div Div Dirst $_{\text {s }}$ order operators! $)$

related sos (div Div ${ }_{\mathbb{S}} \nabla \nabla_{\Gamma}=\Delta_{\Gamma}^{2}$ second order operator!)

$$
\begin{array}{rlrl|rl}
\operatorname{div} \operatorname{Div}_{\mathbb{S}} \nabla \nabla \Gamma u=\Delta_{\Gamma}^{2} u=f & \text { in } \Omega & \mid & {\operatorname{sym} \operatorname{Rot}_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma} M=G} \text { in } \Omega & -\operatorname{dev} \nabla \operatorname{Div}_{\mathbb{T}, \Gamma} N=T & \text { in } \Omega \\
\pi u=0 & \text { in } \Omega & & \operatorname{div}^{\operatorname{Div}} M=f & \text { in } \Omega & \operatorname{sym}_{\mathbb{S}} M \operatorname{Rot}_{\mathbb{T}} N=G
\end{array} \text { in } \Omega
$$

corresponding compact embeddings:

$$
\begin{array}{rlrl}
D\left(\nabla \nabla_{\Gamma}\right) \cap D(\pi)=D\left(\nabla \nabla_{\Gamma}\right)=\mathrm{H}_{\Gamma}^{2} & \leftrightarrow \mathrm{~L}^{2} & & \text { (Rellich's selection theorem) } \\
D\left(\operatorname{Rot}_{\mathbb{S}, \Gamma) \cap D\left(\operatorname{div}^{\left.\operatorname{Div}_{\mathbb{S}}\right)} \leftrightarrow \mathrm{L}_{\mathbb{S}}^{2}\right.}\right. & & \text { (new selection theorem) } \\
D\left(\operatorname{Div}_{\mathbb{T}, \Gamma}\right) \cap D\left(\operatorname{sym~Rot}_{\mathbb{T}}\right) & \leftrightarrow \mathrm{L}_{\mathbb{T}}^{2} & & \text { (new selection theorem) } \\
D(\pi) \cap D(\operatorname{dev} \nabla)=D(\operatorname{dev} \nabla)=D(\nabla)=\mathrm{H}^{1} \leftrightarrow \mathrm{~L}^{2} & & \text { (Rellich's selection theorem and Korn type ineq.) }
\end{array}
$$

two new selection theorems for strong Lip. dom. and Korn Type ineq.: Py/Zulehner ('16)

literature

results of this talk (gen global div-curl-lemma, A_{0}^{*} - A_{1}-lemma, fa-toolbox, cpt emb):

- Bauer, S., Py, Schomburg, M.: The Maxwell Compactness Property in Bounded Weak Lipschitz Domains with Mixed Boundary Conditions, (SIMA) SIAM Journal on Mathematical Analysis, 2016
- Py: Solution Theory and Functional A Posteriori Error Estimates for General First Order Systems with Applications to Electro-Magneto-Statics, (NFAO) Numerical Functional Analysis and Optimization, 2018
- Py: A Global div-curl-Lemma for Mixed Boundary Conditions in Weak Lipschitz Domains and a Corresponding Generalized A_{0}^{*} - A_{1}-Lemma in Hilbert Spaces, (ANA) Analysis (Munich), 2018
recent papers (global gen div-curl-lemma, similar results):
- Waurick, M.: A Functional Analytic Perspective to the div-curl Lemma, (JOP) J. Operator Theory, 2018
(parts of) fa-toolbox used for numerical purposes by:
- Arnold, D., Falk, R., Winther, R.
- Hiptmair, R.
- Kettunen, L.
- Schöberl, J.

literature

some more results of this talk:

- Py: On Maxwell's and Poincare's Constants, (DCDS) Discrete and Continuous Dynamical Systems - Series S, 2015
- Zulehner, W., Py: On Closed and Exact Grad grad- and div Div-Complexes, Corresponding Compact Embeddings for Tensor Rotations, and a Related Decomposition Result for Biharmonic Problems in 3D, submitted, 2016
upcoming books:
- Langer, U., Py, Repin, S. (Eds): Maxwell's equations. Analysis and numerics, Radon Series on Applied Mathematics, De Gruyter, 2018
- Py: Maxwell's Equations: Hilbert Space Methods for the Theory of Electromagnetism, Radon Series on Applied Mathematics, De Gruyter, ≈ 2020
(last book: contains all results of this talk and more...)

. . . the world is full of complexes . . . ;)

$$
\Rightarrow \text { relaxing at } \ldots
$$

AANMPDE 11

11th Workshop on Analysis and Advanced Numerical Methods for Partial Differential Equations (not only) for Junior Scientists
https://www.uni-due.de/mathematik/ag-pauly http://www.mit.jyu.fi/scoma/AANMPDE11 https://www.uni-due.de/maxwell

August 6-10 2018, Särkisaari, Finland organizers: Ulrich Langer, Py, Sergey Repin

