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CLASSICAL TIME-HARMONIC SCATTERING MAXWELL PROBLEM

time-harmonic Maxwell (electro-magnetic scattering) problem
in Q@ C R3 exterior domain

—rotH, +iweE, = F in Q (pde)
rotE, +iwpH, = G in Q (pde)
vx E,=0(=\) ondQ (boundary cond.)
E,H=0(r"") forr—oo (
EXEy+Hy, —ExH,+E,=0(r"") forr—oco

decay cond.)

Silver-Miller radiation cond.)

here: 0 # w € C, r(x) = |x], &(x) := x/|x|

inhom. aniso. media ¢, u € L°°(Q, R3%3), sym, unif. pos. def.

QUESTION / AIM: low frequency asymptotics?

I|m E,, lim H, ?
w—0 w—0
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CLASSICAL TIME-HARMONIC SCATTERING MAXWELL PROBLEM
analytical motivation:

» Weck, N. and Witsch, K.-J.: CPDE, (1992)
Complete low frequency Analysis for the reduced wave Equation with variable
coefficients in three dimensions

» Weck, N. and Witsch, K.-J.: M2AS, (1997)
Generalized linear elasticity in exterior domains — I: radiation problems

» Weck, N. and Witsch, K.-J.: M2AS, (1997)
Generalized linear elasticity in exterior domains — II: low-frequency asymptotics

analytical/numerical motivation:

» Ammari, H. and Nédélec, J.-C.: SIAM JMA, (2000)
Low-frequency electromagnetic scattering

» Ammari, H. and Buffa, A. and Nédélec, J.-C.: SIAM JAM, (2000)
A justification of eddy currents model for the Maxwell equations
(! cited 49 times in MathSciNet / unfortunately wrong !)

disadvantages of Ammari/Nédélec-papers
» no identification of terms in the expansion by proper boundary value problems
» estimates just in local L2-norms
» non local boundary conditions due to EtM-operators (DtN-operators)
» comp. supp. F,G;e =pu =1
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CLASSICAL TIME-HARMONIC SCATTERING MAXWELL PROBLEM
more compact and proper notation
(M—w)u, =f el ,5(Q) x L2 ,(Q)
Uy, € I(-jl<71/2(rot; Q) x H__4 5(rot; Q)
(S+MNuw €% ,5(Q) x L2 _{,,(Q)

here: Uy := (Ew, Ho), f = iA=1(F, G), A = [E 2} AT

0
o |10 —rot _ |0 —£x
M =iA—"Rot, Rot := [rot o |°S= Crotr = £x 0

Il
—
)
o |
=
| ©
P

M : Ifl(rot; Q) x H(rot; Q) C L2(Q) x L2(Q) — L?(Q) x L2(Q) s.a. unbd. lin. op.
= unique L2-solutions u,, forw € C\ R

later: gen. Fredholm alternative for w € R\ {0}
(Eidus’ principle of limiting absorption (1962), a priori estimates)

QUESTION: low frequency asymptotics?

lim Uy,
C\{0}3w—0

METHOD: Weck & Witsch, i.e., full ext. dom. and no artificial boundary
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GENERALIZED TIME-HARMONIC SCATTERING MAXWELL PROBLEM

gen. time-harmonic Maxwell (electro-magnetic scattering) problem
in Q c RN exterior domain, 0 # w € C

§Hy, +iweE, =F inQ (
dE, +iwpH, =G in Q (
*E, =0(=X) ondQ (bc)
E,H=0(r"") forr— oo (
drAE,+Hy, (—1)WsxdrAsH, +E,=o(r"") forr— oo (

here: E, F g-forms, H, G (q + 1)-forms
inhom. aniso. media ¢, p (linear transformations) sym, unif. pos. def.

QUESTION / AIM: low frequency asymptotics?

lim E,, lim H, ?
w—0 w—0
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GENERALIZED TIME-HARMONIC SCATTERING MAXWELL PROBLEM

time-harmonic Maxwell problem in Q ¢ RN exterior domain
for simplicity N > 3 odd, frequencies from upper half plane w € C

M—w)u, =fe Li?’/‘;“(ﬂ)
na g+
Uy € D<_%(Q) x A<_%(Q)

(S+1u, € Li‘f‘jj; Q)

here: u, := (E., H), f :==IA"'(F, G), E, F g-forms, H, G (q + 1)-forms,
a1 10 6 _le o o T . .
M=iA {d 0,/\_ 0 M’S_ R O,H._dr/\,T._j:*R*

d ext. deriv., § = & «xdx* co-deriv., R=Cqy,, T = Cs,,

M: Bq(Q) x AIT1(Q) C L299+1(Q) — LZ99+1(Q) s.a. unbd. lin. op.
denote sol. op. of time-harmonic prob. by £, := (M —w)~"  (Uy = Lu f)

QUESTION: low frequency asymptotics?

lim L
C:\{0}3w—0

(topology: operator norm of polyn. weighted Sobolev spaces)
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BOUNDED DOMAIN
time-harmonic Maxwell problem in Q ¢ RN bounded Lipschitz domain

(M —w)u, = f € L2291(Q)
U, € DI(Q) x AT (Q) =: D(M)
Helmholtz deco. = L29:9t1(Q) = N(M) ©p R(M)

M : D(M) C L299+1(Q) — L>99t1(Q) s.a.,
M : D(M) := D(M) N R(M) ¢ R(M) — R(M) s.a.

Maxwell compactness prop., i.e., D(M) < L29:9t1(Q) comp.
= Maxwell estimate, i.e., 3¢m >0 VYu e DM) |uli2,q(q) < CmIMul 2,q9(q)

= R(M) = R(M) closed and Ly := M~ : R(M) — D(M) cont.
= Lo:R(M)— R(M)comp. (static sol. op. cont./comp.)

standard sol. theory = Fredholm’s alternative, especially
op(M) = a(M) = a(M) \ {0} = op(M) \ {0} = £{wn};Z4 C R\ {0}
with (wp) strongly monotone and unbounded

= sol. op. time-harmonic prob. (f — u., = L, f) well def. for 0 < |w| small

Lo : L299HN(Q) = D(M), L, : R(M) — D(M)
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BOUNDED DOMAIN
time-harmonic Maxwell problem in Q@ ¢ RN bounded Lipschitz domain

(M —w)u, = f e L29971(Q)
U, € D(M)
Helmholtz deco. =  L2:%4+1(Q) = N(M) dx R(M) and D(M) = N(M) &, D(M)
orth.-norm.-projectors I : L2%9:9t1(Q) — N(M), 1 — M : L29-9t1(Q) — R(M)
=  —wlu, =Nf and (M —w)(1 — Mu, = (1 — Mf € L299+1(Q)
MNu, € N(M) (1 — Mu, € D(W)
note: D(M) = D(M) N R(M) = (DI(Q) ne~" § AT (Q)) x (A% ()N~ d DI(Q))
setv:=(1—-Mu, e DIM) C RAM)andg:= (1 —M)f e RA(M) = LoMv=v
= M-wyv=g & (-wlyv==Lyg
NOUmEIN Sty — (1 —w o) Log = W Lol Log
j=0
forsmall0 < |w| since |wLlo|<1 < |w|<1/|Lo]| (1stpos. Maxwell ev)

= Lof=u,=Nu,+Vv= —o.)ql_lf-i-ijﬁojﬁ(1 —mf
j=0
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BOUNDED DOMAIN

= low frequency asymptotics in L2-operator norm

oo}
Lo = ﬂJr Zw] Lo Mreg, w € Cy \ {0} small
trivial part /=0

Neumann series

M:L29%9+1(Q) — N(M), Mg :=1—N:L%%91(Q) — R(M)
Lo : R(M) — D(M) n R(M)
problems if Q exterior domain

» this low frequency asymptotic is wrong, even not well defined

» static solution theory needs weighted Poincare estimate!

= leaving L2-setting

e.g., static sol. op. maps unweighted data f to (1 4 r)~'-weighted sol. g
» not clear how to define higher powers of £g ?

» careful investigation of static sol. theo. in weighted Sobolev spaces
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EXTERIOR DOMAIN

aim: give meaning to Neumann sum in terms of an asymptotic expansion

J—1
Lo+w M= "W Lo/ Mg = O(|w]’) , JENy, weCy\{0}small
j=0

3 major complications
» growing J = stronger data norms for f and weaker solution norms for u, = L, f
» [, Mreg indicate need for polyn. weighted Hodge-Helmholtz deco. of

Lg,q,qﬂ (Q) — (Tl'lg(Q) + Regsy—1 (Q)) n Li,q,q+1 (Q)
respecting inhomogeneities A (topological direct decomposition)
(N(M) =) Tid(Q) = NLZ99(Q) € oDI(Q) x oA (Q)
Reg? ™' () = Miegl279(2) < A~ (4A7(2) x DT (2))

only subspaces of Lf’a”"+1 (Q)witht <sandt < N/2
not of L2997 (Q) if s > N/2
» expansion has to be corrected by special, explicitly computable degenerate op.
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EXTERIOR DOMAIN

more precisely: J € Ng and s, —t > 1/2 as well as f € L2P91(Q)

= main result: asymptotic estimates

J—1 J—N
[ £ ™ 1F = e £ Mgl — ' S I s gy = O zaain
j=0 j=0

O-symbol always for w — 0 and uniformly w.r.t. w and f

withw € C4 \ {0} and |w| < &, where & > 0
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GENERAL ASSUMPTIONS

» Q c RN exterior domain with Lipschitz boundary
(Maxwell local compactness property,
exist. of special forms with bounded supports repl. Dirichlet/Neumann forms)

» 1 < g < N-—2andodd space dimensions N (class. N=3,g=1)
(even dim., especially N = 2, OK
but logarithmic terms due to expansions of Hankel’s functions)

fix radius ro > 0 with RV \ Q C By, , cut-off function n

e=Id+&, u = ld+4 (A = Id+A) -C'-admissible, i.e.,

linear, real, sym., unif. pos. def. L°°-transformations with A e C! for x| > ro
asymptotically homogeneous, i.e.,

8% A = O(r—7=lel) for all |a| < 1 with order of decay T at infinity,

7 > 0 dependingon t, s

v

v
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DESCRIPTION OF RESULTS

» degenerate correction operators I'; by recursion consisting of

k 1
Ef ms Hiny = L§(ESm.0), HEy = £G(0,HE p) € L2377 (@)

sol. of hom. static boundary value problems with inhom. at infinity, e.g.,

Efnme€ ODloc( )Nne (oA (Q) NBIQ)T)
2,
Ern—+n2% e L2 y(2)

g,

‘harmonic polynomials’ +Ag”'fn behave like rk+7 at infinity (k,o > 0)
» ‘trivial’ subspace Trid(Q) = NL2%97(Q) ¢ 057(9) x oATT(Q) (C N(M))
Lof=-w"f feTi(Q)
> two kinds of media A = Id +A

1 A comp. supp., results for any J
A ‘decays’ with 7 > 0 at infinity, results for J < J dep. on 7
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DESCRIPTION OF RESULTS

» identify closed subspaces Reg?”(Q) of RegZ°(Q) c L2%9"(Q), ‘spaces of
regular convergence’, = ‘usual’ Neumann expansion

J—1

| £wf— ;Wj Lo ] 2 ) = O(wl”) [Tl 20,01 g

for f € Reg?(Q)
» charact. of RegZ"/(2) by orthogonality in L2 to the spec. grow. st. sol. E;/ &, Hi X
» corrected Neumann expansion

J—1 J—N
H L, f— Z Wl Lot f— N Z wll—/fHL?,q,qﬂ @ = O(|w|J) “f”l_i,q,qﬂ @
j=0 j=0

o
for f € Regd ™" (Q) = MregL3 ™97 (Q) € A~1(047(Q) x oD (02))
» fully corrected Neumann expansion

J—1 J=N
| £ ft w™Nf= 3wl £6 Mregf — N1 37 wlTf] 2.q.0e1(g) = O(Il”) [ 20av1 g
=0 =0

for f € L2997(Q) = (Trid(Q) + Reg? ' (Q)) N L2991 (Q)
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MAIN RESULT

Theorem (low frequency asymptotics)
LetdeNands ¢ 1= (Ng+ N/2)u (1 — N/2 — Ny) with

s>J+1/2, ()
t<min{N/2 -J—-2,-1/2}, (uw)
7>max{(N+1)/2,s —t}. (A)

Then for all small enough C \ {0} > w — 0 the asymptotic expansion

J—1 J—N
Lo+w™ M=>"w £/ Mieg — N~ >~ Wl = O(|wl]”)
j=0 j=0

holds in the norm of bounded linear operators from L3%97"(Q) to L2 %977 (Q).

Remark The main theorem holds also for J = 0 with slightly different t and .



TIME-HARMONIC SCATTERING MAXWELL PROBLEM RESULTS PROOFS (...IF THERE IS TIME) REFERENCES
0000000000 0000@00000 0000000000000 [©]
!

TIME-HARMONIC SCATTERING PROBLEM

Solving (M — w)u, = f?

M o:DY(Q)x AT(Q) CL2M(Q) s 129(Q)
u — iAT? 0 9 u
d 0

Munbd. lin.s.a. = oM)CR

w€C\R = L,=(M-w)""bounded = LZsol.forallfeL299+1(Q)
solving in o(M) \ {0} with Eidus’ ‘limiting absorption principle’ (approx. from C.)
Definition (time-harmonic (scattering) solutions)

Letw € R\ {0} and f € L2997 (Q). u, solves Max(f,w), iff

0

(i) v ot<—1/2 Uy € 57(9) x A77(Q),
(il 3 t>-1/2 (S+u, € L2997 (),
(i) (M - w)uy = .

TOOLS: a priori estimate, polynomial decay of eigensolutions, decomposition lemma,
Helmholtz’ equation
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TIME-HARMONIC SCATTERING PROBLEM

Theorem (time-harmonic (scattering) solution theory)
Letw e R\ {0} ands > 1/2, 7 > 1.

(i) Max(0,w) C (DI(Q)ne~15 a7 (Q)) x (AT (Q)Nnu'dDI(Q)) forallt € R,
i.e. gen. eigensolutions decay polynomially (and exponentially for A € C?),
no gen. eigenvalues for A = Id, comp. Helmholiz eq., Rellich’s est., princ. uniq.
cont.

(ii) dimMax(0,w) < oo
(iii) ogen(M) has no accumulation point inR \ {0}
(iv) Fredholm’s Alternative holds:
Vfe L2997 Q) Ju, solution of Max(f, w), iff
vV v e Max(0,w) (f, v)ng\,q,q+1(Q) =0
The solution u., can be chosen, such that

vV v e Max(0, Uy, V), 2., =0.
( w) <w >Liqq+1(ﬂ)

Then u,, is uniquely determined.
(v) Forallt < —1/2 the solution operator L., maps L>99*1(Q) N Max(0,w)* to
(DY(Q) x AT (Q2)) NMax(0,w)-r continuously.
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LOW FREQUENCY TIME-HARMONIC SCATTERING PROBLEM

Theorem (low frequency time-harmonic estimate)
Lett > (N+1)/2ands e (1/2,N/2) aswellast:=s— (N+1)/2 € (-N/2,-1/2).

(i) ogen(M) does not accumulate in R (especially not at zero).
ogen(M) N C = {0} forw sufficiently small.

(i) L. is well defined on L2997 (Q) for all 0 # w € C small enough.

(iiy 3¢ >0 V0 #we Cy smallenough Y Af=A(F,G) € AJ(Q) x Bg+1 Q)

| Lo f“LtZ,q,qH(Q) < C(Hf”LZq,qM o o]~ ”(55/:7dHG)HLi,q—th(Q)

dl‘l+1

+ |w|™ Z| (eF, bq 290 | + |wl™ Z [{uG, bg+1>|_2,a+1(9)|)-
=1
Especially || L., f||L$,q,q+1 @ < c||f|||_§,q,q+1(ﬂ) holds for

Af = A(F, G) € 0Ad(R)xoDI(Q) = (cAL(Q)NBY(2)) x (:DIT ()BT (2)*),
i.e., no terms with negative frequency power |w| =" occur.

TOOLS: fundamental sol. Helmholtz’ eq. (Hankel’s function),
repr. of sol. for @ = RN as conv,, cutt. tech., indirect arg.
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FIRST LOW FREQUENCY ASYMPTOTIC

Theorem (first and simple static solution theory)
LetT > 0. Then there exists a linear and bounded static solution operator

Lo+ A1 (0A%(Q) x oD (Q)) — (DY, () x AT (Q)) NA~T (oA, (Q) x oD ().
More precisely: u = (E,H) = Lo f for f = (F, G) solves Mu = f, i.e., the static system
in1dE = G, 5eE =0, <E1 BI(Q),

ieT'"§H=F, duH =0, pHL BIT(Q).

Theorem (first and simple low frequency asymptotics)
Lett > (N+1)/2ands e (1/2,N/2) aswellast <s— (N+1)/2 € (-N/2,—-1/2).
Then

li Lo =L
m o 0

Crow—

in the norm of bounded linear operators

A1 (0Ad(Q) x oDIT () — DY(Q) x AT (Q).
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EXTENDED STATIC SOLUTION THEORY

Theorem (extended static solution theory)
Letse (1—-N/2,00)\I and T > max{0,s — N/2}, 7 > —s. Then

i 5 :0,— - ~1_pg+l

in='d : (DI (QBnAL% ) ne oA (Q) — u'oDIT(Q)
E — in~'dE

ie='s - (AT BT np DI (Q) — e 10ad(Q)
H —s Qe 16H

are topological isomorphisms.

note: A2%™ = 49(32°,) finite dim. subspace of C>* (RN \ {0})
nAZ% " cL2YQ)fort <s—1,t < N/2and nAd%~ ¢ 129, ()

_ —g+1,0
same for DI} 0~ = pa+1(GTL0)

consisting of ‘neg. tower-forms’ of shape r’ 7 S,‘i’m (8,3,7,, gen. spherical harmonics)
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EXTENDED STATIC SOLUTION THEORY

Corollary (extended static solution theory)
Letse (1 —N/2,00)\ILand r > max{0,s — N/2}, - > —s. Then

loc

M- ((B9_4(@) x AZH(Q) 8 (142%™ x n%107)) N A~ (08%,(2) x 0B ()

— A1 (0A%(9) x 0DZ ()
u=(E,H)— Mu=iA""(6H,dE)

is a topological isomorphism with bounded inverse

_ _ S g+1 — =q,0 Cg+1,79+1,0
Lo=M":A""(0Ad(Q) x DI (Q) — AT (oA, (17%, Q) x 0PI} (10, Q).

o
goal: higher powers of £q even acting on A=1 (A7, (J,Q) x Oﬂ)gﬂ (3,9))
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TOWER FORMS

v N\ d
3. floor iAgT,,J 3 iog,*,,lﬁ
d™, N
2 2
2. floor iDim iAg’m
5y N d
1. floor iAng; a + ngr,,l’1
dN, 6
ground £p30, =~ %Y,
’ H d-tower ‘ d-tower

EAZK, DK € Go°(RN \ {0}) homogeneous of deg. k + o resp. k — o — N
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HIGHER POWERS OF THE STATIC SOLUTION OPERATOR

Theorem (higher powers of L)

Letje Nands e (j— N/2,00) \ 1 andJ,] finite index sets as well as
T>j—1-s7>max{0,5 - N/2} and T > s+ N/2 + max{hy, h,}. Then

ch o AT (0Al(,Q) x oDIT(3, Q)
=q,<j—1 Q =q+1,<j—1 L
1 oAg_j(Jg_7’ U j9,9) x OJD)gf} (Hgfj 7Ny 8,Q) ifjeven
— A”

=q,<j—1 Q 2g+1,<j—1 i
& (125710 ja,9) x oD (AU 9,9) L ifj odd

is a continuous linear operator with range in A= (o A () x of))?“ ()
fort<s—j,t<N/2—j+1,t<—j—N/2—max{hy, hy}.
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SPACES OF REGULAR CONVERGENCE
Regd (Q) = Miegl29941(2) € A~ (,%(R) x 4D (2))

Reg?®(Q) = A~ (0AJ(Q) x oDI"' ()
Regd/() == {f € Reg?®(Q) : £ f € L2997 ()}
‘usual Neumann sum’

Lemma (spaces of regular convergence)
LetJ e Ngands e (J+1/2,00) \ 1 as well as r > max {(N +1)/2,s — N/2}. Then
for all 0 # w € C4 small enough on RegZ’J(Q) the resolvent formula

J—1
Lo W o =w! Lo, Ly
j=0

holds. Especially fors € (J+1/2,J+N/2)\landt=s—J— (N+1)/2

J—1
[ £of— ;w’ £ Mz gy = Olwl”) |l 20t o

holds uniformly w.r.t. f € Reg?”(Q).
aim: characterize Regg’j (2) by orthogonality constraints
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GROWING STATIC SOLUTIONS
again conditionson 7 ...

Efme ODloc(Q) Ne oAl (Q
Eim—"n%0 ¢ |_2 7 .,(Q)
2

1 —1 g+
Him € 0L (Q) N oD (@)

loc
—+pitile L2 Q)

2

k k ,q,9+1
Efim = L§(ESm0), Hiy = L§(0,H; ) € 2T (@)

APk +DI K behave like rke, k,o > 0 at infinity

ESk —n(taZk, 0)e A ((Agfkf1 (Q) BnAITT5K ) x {0}) k even
O
— k
E;‘,',‘, — (0, "D %) € AT ({0} x (DT}, (@) ByDT (L)) K odd

supp A compact, then series rep. of neg. tower-forms of height < k
(gen. spherical harmonics expansion)
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PROJECTION ONTO SPACES OF REGULAR CONVERGENCE

powers L{) f have neg. tower-form parts

<CA,n9Dg:¢mﬁDg’,bLZ,q(RN) = <CA,n9Ag’,lr(mﬁAz’,%LZ,q(RN) = 099,10k ¢00,~Om,n,
<CA,n9Dg:}I(na 0Ag’,€1>L2,q(RN) =0
assume: supp A compact =
Lemma (orthogonality def. of spaces of regular convergence)
LetJeNands e (J+1— N/2,00)\1as well as f € Reg?°(Q).
Then f € Reg?”(Q), iff
k ,
(. Eaim' Dizaart gy = (L Hyn ") 2aar g =0

for all (k, o, m) € @3 and (¢,~, n) € @3, where

0% = {(ko,m)eNJ:tk<J—1Ao<s—N/2—k—-1A1<m<ul}.

Especially Reg??(Q) is a closed subspace of Reg?%(Q) c L2991 (q).
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DUAL BASIS OF GROWING TOWERS FORMS

Define +,4 1 +.0 1,1
ey = Mn(EAT}0),  hym = M0, D30T,

Then ef,f’,f, hff,f, S C°°(;R’;’) Wiﬂl s1upp ejf,’,f = supp hf,f, = supp Vn for £ > 2 and
(exn P EXm D izaan @ =0,

42 ot K
(2 EL ) 2.a.ae @ = (—1)%6k, 000~ Om,n.

same for H, Kt
Lemma (dual basis of £/ %" and Hi )

LetdeNandse (J+1—-N/2,00)\ L Then

Reg??(Q) = Reg??’(2) + 127, 12/ c Co®N),

where for f € RegZ%(Q)

frim Y (COMREE ) aanaho
k+2

k —+,k+1 -,
(f,Hy)m" )12,0.0+1(0)€0,m

W
(k,o,m)ye0d
g,

+ 2 =
(k,o,m)e031+
with T3 .= Lin {e, 52 h7 £ ™2 : (k,0,m) € ©27,(£,~,n) € ©1.
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PROOF OF LOW FREQUENCY ASYMPTOTICS

step one: proof in the reduced case, this is:

» compactly supported perturbations A
» right hand sides from RegS’O(Q)
» estimates in local norms
step two: replacing Reg?°(Q) by L2991 ()
(polynomially weighted Helmholtz decomposition)

step three: replacing local norms by weighted norms

step four: replacing compactly supported perturbations ¢, i by asymptotically
vanishing perturbations

We only drop the assumption of compactly supported perturbations of the medium in
the last step.
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STEP ONE

latter lemma =

Reg?®(Q) = Reg??’(Q) + 137, e, *2 h k213 c Co(rN)

» asymptotics clear on Regg’J(Q) (gen. Neumann sum) /

» asymptotics on T2/ ? =  asymptotics for e, k2, h, K+2 2
ymp s

o
che,mt? = e, 2 (C(RN)and right shape) = k”eC“’(RN)mRequ( Q)
J-1 J Ak
(Lo SoWILF )erilt® = ok Lo cheg® - ok 3w ey e
J
—_———
S +J“ Sk ,
=S ... K i Y o
= Lo — o e
= = W (Lo Z W Ly )€sm
j=0
same for b k+2
’ J—1—k J—1—k o
just unkn. asym. for Z W £ )es A and | (Lo — > W L5 by
=0
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STEP ONE
J-1—k J-1—k
asymptotics for | (Lo, — > W £ )es A and | (Lo — > AR i
j=0 j=0

idea: compare with special radiating solutions of the homo. problem in RV \ {0}

EL% = Bowor’ -% H) (wr)# T,  (H}, Hankel’s function)

o0 o0
=Y (—iw TALST 4 kI W 3 (—iw)K T ALA
k=0 k=0

1w _ i 1w
Ha,m =—d ]Eo',m
w
. oo oo
| . — 1,2k : +1,2k
_ ( § :(_ Iw)2k ngrmy + Hg+1 wQV” 2 :(_ lw)2k +Dg,m )
“ M=o k=0

similarly second solution pair (E2%, H2%,)

o,m>

fo o T R
(i [d 0}—w)(E’[;,m,Hﬁ;,m):(o,0) = (& +WA) (B, H,) = (0,0)

(comp.-wise Helmholtz)
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STEP ONE

note: (M — w)n(]E{;t“m,H/(;t‘)m) = CMm(EIc}L,Um’ Hjc;tum

comparing
-2 . 1,w T,wy 1w 1,w
Lo €s,m with Lo CM,n(Eo,mvHa,m) = n(Eg,mvHa,m)v
Lo hyi with Lao O (B3, HE) = m(EZ 5, Y

and a (really) long, long, long, ... calculation

Theorem (low frequency asymptotics on Regg’O(Q))
LetJ € Ng and s € (J + 1/2,00) \ L. Then for all bounded subdomains Q,, C Q

J—1 J—1—N
| Lot = Wl cffTF—wN S w/ﬁ,fHLZq,w(Qb):o(\w|J)||f||L§,q,q+1(m
j=0 j=0

holds uniformly w.r.t. f € Reg?°(Q) and 0 # w € C, small enough.

degenerate correction operators
fif € Lin{ES 8 HIX 1k +20 < j}

g,

with coefficients of shape (f, £} 15)12.0.0+1(qy and (f, Hi %) 2.0.041(q)
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STEP TWO

Theorem (polynomially weighted Helmholtz decomposition)

conditionson ...
Fors> —N/2 let 1.29(Q) := L29(Q) N .HI(Q)L=.

(i) —N/2<s< Nj2:
L39(Q) = oD¢(Q) + o0 Al(Q)
For s > 0 the decomposition is (¢ -, - >L2,q(m-orthogona/.
(i) s> Nj2:
- o
L39@) = (5@ EnDE N oDy (@)
Ee e (1@ Bn 1T Noa? (@) N L)
o -
L29(Q) = oDY(Q) + e 1oAd(Q) + AnPL,

The first two terms in the second decomposition are (e -, - >L2,q(m -orthogonal.

L29(Q) N KT (2 = oDY(Q) - e~ 0 AL(Q)

(i) s < —N/2:
deco. holds, but loosing directness, larger space of Dirichlet/Neumann forms
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STEP TWO

polynomially weighted Helmholtz decomposition for large weights s
LeT9(Q) = (Td(Q) + Regd (@) NLE*TT (@)
with projections M and Mreg := (1 — M) aswellas f < sand t < N/2
(N(M) =) Tig(2) = L2991 (9) € oDI(2) x 027 (@)
Reg? ™" (2) = Miegl2%9(2) € 0AT(@) x 0DY ()
still: supp A compact

Theorem (low frequency asymptotics on Li’q’q“(Q) in local norms)
LetJ € Ng and s € (J + 1/2,00) \ I. Then for all bounded subdomains Q, C Q

J—1 J—N
” Lo f+w_1 I'Ifwa’ L"jo+1 nregf*WN_1 Z er/'f”LZ,q,qH (@) = O(‘w“j) “f”Lg’q’qH(Q)
=0 =0

holds uniformly with respect to f € Li’q’q+1 (22) and 0 # w € C4 small enough.
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STEPS THREE AND FOUR

v

cutting technique = bounded domain and unbounded domain
» comparing with the homogeneous whole space case 2 = RN and A = Id

» represent solution by convolution with fundamental solution
» Taylor expansion of fundamental solution (Hankel’s function)

= low frequency asymptotics in this special case

v

L . 2,9,g+1
low frequency asymptotics in weighted norms LY %97 (Q)

v

approx. of asymptotically homo. media by compactly supported media
(convergence in operator norm)

done [ |
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