Electro-Magneto Statics and (Much) More by a (Linear) Functional Analysis Toolbox

Dirk Pauly Fakultät für Mathematik

UNIVERSITÄT DUISBURG ESSEN

Open-Minded ;-)

Department Colloquium - Glasgow, Jänner 2018 Hosts: Marcus Waurick & Matthias Langer

> Department of Mathematics and Statistics University of Strathclyde Glasgow, Scotland

Dirk	Pauly
- D	

Image: A mathematical states and a mathem

Maxwell's Equations

Linear Maxwell's Equations in 3D - Electro-Magneto-Dynamics

 $\Omega \subset \mathbb{R}^3$ domain (open and connected set) with boundary Γ

2

$\partial_t(\varepsilon E) - \operatorname{rot} H + \sigma E = -J$	in $\mathbb{R}_+ imes \Omega$	(DE 1.1, Ampére/Maxwell law)
$\partial_t(\mu H) + \operatorname{rot} E = 0$	in $\mathbb{R}_+\times \Omega$	(DE 1.2, Faraday/Maxwell law)
$\operatorname{div}(\varepsilon E) = ho$	in $\mathbb{R}_+\times \Omega$	(DE 2.1, electric Gauß law)
$\operatorname{div}(\mu H) = 0$	in $\mathbb{R}_+ \times \Omega$	(DE 2.2, magnetic Gauß law)
$n \times E = 0$	on $\mathbb{R}_+ \times \Gamma$	(BC 1, perfect conductor)
$n \cdot (\mu H) = 0$	on $\mathbb{R}_+ \times \Gamma$	(BC 2, perfect conductor)
$(E,H)(0) = (E_0,H_0)$	in Ω	(IC)

$E, H: \mathbb{R}_+ \times \Omega \to \mathbb{C}^3$	electric resp. magnetic/magnetization field
$J:\mathbb{R}_+\times\Omega\to\mathbb{C}^3$	electric current density,
$\rho:\mathbb{R}_+\times\Omega\to\mathbb{C}$	charge density
$\varepsilon, \mu, \sigma: \mathbb{R}_+ \times \Omega \to \mathbb{C}^{3 \times 3}$	permittivity resp. permeability resp. conductivity

div
$$F = \partial_1 F_1 + \partial_2 F_2 + \partial_3 F_3$$
, rot $F = \operatorname{curl} F = \begin{bmatrix} \partial_2 F_3 - \partial_3 F_2 \\ \partial_3 F_1 - \partial_1 F_3 \\ \partial_1 F_2 - \partial_2 F_1 \end{bmatrix}$

Maxwell's Equations

Linear Maxwell's Equations in 3D - rewrite as system

 $\Omega \subset \mathbb{R}^3$ domain

$$\begin{array}{ll} \partial_t(\varepsilon E) - \operatorname{rot} H + \sigma E = -J & \text{in } \mathbb{R}_+ \times \Omega & (\text{DE 1.1, needed}) \\ \partial_t(\mu H) + \operatorname{rot} E = 0 & \text{in } \mathbb{R}_+ \times \Omega & (\text{DE 1.2, needed}) \\ & \operatorname{div}(\varepsilon E) = \rho & \text{in } \mathbb{R}_+ \times \Omega & (\text{DE 2.1, not needed}) \\ & \operatorname{div}(\mu H) = 0 & \text{in } \mathbb{R}_+ \times \Omega & (\text{DE 2.2, not needed}) \\ & n \times E = 0 & \text{on } \mathbb{R}_+ \times \Gamma & (\text{BC 1, needed}) \\ & n \cdot (\mu H) = 0 & \text{on } \mathbb{R}_+ \times \Gamma & (\text{BC 2, not needed}) \\ & (E, H)(0) = (E_0, H_0) & \text{in } \Omega & (\text{IC, later needed}) \end{array}$$

Image: A matrix and a matrix

$$\left(\underbrace{\partial_{t} \quad \overbrace{\begin{bmatrix} \varepsilon & 0 \\ 0 & \mu \end{bmatrix}}^{=\Lambda \text{ (bd, sa, } \geq 0)} + \overbrace{\begin{bmatrix} \sigma & 0 \\ 0 & 0 \end{bmatrix}}^{=\Sigma \text{ (bd)}} + \overbrace{\begin{bmatrix} \sigma & -rot \\ rot & 0 \end{bmatrix}}^{=M \text{ (unbd, ssa)}}\right) \begin{bmatrix} E \\ H \end{bmatrix} = \begin{bmatrix} -J \\ 0 \end{bmatrix} \quad \text{in } \mathbb{R} \times \Omega \quad \text{(DE)}$$

Rainer Picard '09 (and earlier) and his Dresden school, e.g., Marcus Waurick '11, ... \Rightarrow very nice and elegant ("simple") solution theory: $\partial_t \Lambda + \Sigma + M$ cont inv, i.e., $(\partial_t \Lambda + \Sigma + M)^{-1}$ ex cont op (time-weighted- L^2 -sense) sol theo Hadamard sense + causality

~

University of Strathclyde, Glasgow, Scotland, January 17 2018

Maxwell's Equations

Maxwell's Equations in 3D - Simplifications

$$\varepsilon = \mu = \operatorname{id}, \ \sigma = 0 \Rightarrow$$

$$\partial_t E - \operatorname{rot} H = -F = -J \qquad \text{in } \mathbb{R}_+$$

$$\partial_t H + \operatorname{rot} E = G = 0 \qquad \text{in } \mathbb{R}_+$$

$$\operatorname{div} E = f = \rho \qquad \text{in } \mathbb{R}_+$$

$$\operatorname{div} H = g = 0 \qquad \text{in } \mathbb{R}_+$$

$$n \times E = 0 \qquad \text{on } \mathbb{R}$$

$$n \cdot H = 0 \qquad \text{on } \mathbb{R}$$

$$(E, H)(0) = (E_0, H_0) \qquad \text{in } \Omega$$

$\mathbb{R}_+ imes \Omega$	(DE 1.1)
$\mathbb{R}_+\times \Omega$	(DE 1.2)
$\mathbb{R}_+\times \Omega$	(DE 2.1)
$\mathbb{R}_+\times \Omega$	(DE 2.2)
$\mathbb{R}_+ \times \Gamma$	(BC 1)
$\mathbb{R}_+ \times \Gamma$	(BC 2)
Ω	(IC)

イロト イヨト イヨト イヨト

Maxwell's Equations

Maxwell's Equations in 3D - Static Cases

time indep $\Rightarrow \partial_t(E, H) = 0 \Rightarrow$

rot H = F	in Ω	(DE 1.1)
$\operatorname{rot} E = G$	in Ω	(DE 1.2)
$\operatorname{div} E = f$	in Ω	(DE 2.1)
$\operatorname{div} H = g$	in Ω	(DE 2.2)
$n \times E = 0$	on Γ	(BC 1)
$n \cdot H = 0$	on Γ	(BC 2)

E, H decoupled \Rightarrow

	rot $E = G$ div $E = f$ $n \times E = 0$	in Ω in Ω on Γ	(DE 1.2) (DE 2.1) (BC 1)	rot $H = F$ div $H = g$ $n \cdot H = 0$	in Ω in Ω on Γ	(DE 1.1) (DE 2.2) (BC 2)
	electro statics		m	magneto statics		
	rot $E = J$ div $E = j$ $n \times E = 0$ $n \cdot E = 0$		in s in s on on	Ω Ω Γ _t Γ _n		
model problem: electro-i			-magneto statics	(EMS)		

Dirk Pauly	EMS by FA-ToolBox	Universität Duisburg-Essen, Campus Essen

First Order Model Problem

Model Problem: Electro-Magneto-Static Maxwell Equations

setting: Hilbert/L²-based Sobolev spaces geometry: $\Omega \subset \mathbb{R}^3$ bounded domain with weak Lipschitz boundary $\Gamma = \partial \Omega$ for simplicity: no mixed boundary conditions

$$\operatorname{rot} E = J \qquad \qquad \operatorname{in} \Omega \qquad \qquad (1)$$

$$-\operatorname{div} E = j$$
 in Ω (2)

$$n \times E = 0$$
 on Γ (3)

non-trivial kernel:
$$\mathcal{H} = \{H \in L^2 : \text{rot } H = 0, \text{ div } H = 0, \nu \times H|_{\Gamma} = 0\}$$

additional condition on Dirichlet/Neumann fields for uniqueness:

$$\pi E = H \in \mathcal{H} \tag{4}$$

well known: (1)-(4) uniquely solvable by <u>Helmholtz</u> decompositions and <u>Friedrichs/Poincaré/Maxwell</u> type estimates for certain given right hand sides J, j, H

aim: general theory

FA-ToolBox for linear problems/systems

University of Strathclyde, Glasgow, Scotland, January 17 2018

FA-ToolBox for linear problems/systems

literature: probably very well known for ages (\geq 80 years), but hard to find ... Friedrichs, Weyl, Hörmander, Fredholm, von Neumann, Riesz, Banach, ... ?

Why not rediscover?

< ∃ > <

Image: A matrix and a matrix

First Order Model Problem

Underlying Structure of the Model Problem

 ∇ -rot-div-complex (de Rham complex):

$$\{0\} \begin{array}{c} \stackrel{\iota}{\overrightarrow{\epsilon}} \quad L^2 \quad \stackrel{\vee}{\overrightarrow{\epsilon}} \quad L^2 \quad \stackrel{rot}{\overrightarrow{\epsilon}} \quad L^2 \quad \stackrel{rot}{\overrightarrow{\epsilon}} \quad L^2 \quad \stackrel{div}{\overrightarrow{\epsilon}} \quad L^2 \quad \stackrel{\pi}{\overrightarrow{\epsilon}} \quad \mathbb{R}$$

unbounded, densely defined, closed, linear operators with adjoints

$$\begin{split} \ddot{\nabla} &: \mathring{H}^1 \subset L^2 \to L^2, \quad -\operatorname{div} = (\mathring{\nabla})^* : D \subset L^2 \to L^2 \qquad \text{sometimes: } D = H(\operatorname{div}) \\ &\operatorname{rot} : \mathring{R} \subset L^2 \to L^2, \quad \operatorname{rot} = (\operatorname{rot})^* : R \subset L^2 \to L^2 \qquad \qquad R = H(\operatorname{rot}) = H(\operatorname{curl}) \\ &\operatorname{div} : \mathring{D} \subset L^2 \to L^2, \quad -\nabla = (\operatorname{div})^* : H^1 \subset L^2 \to L^2 \qquad \qquad \mathring{R} = H_0(\operatorname{rot}) = H_0(\operatorname{curl}) \end{aligned}$$

complex: 'range \subset kernel' (rot $\nabla = 0$, div rot = 0)

$$\mathring{\nabla} \mathring{H}^1 \subset \mathring{R}_0, \quad \mathring{\text{rot}} \mathring{R} \subset \mathring{D}_0, \quad \mathring{\text{div}} \mathring{D} \subset N(\pi) = L^2_{\perp} = L^2 \cap \mathbb{R}^{\perp}$$

crucial: compact embeddings (Rellich's selection theorem & Weck's selection theorems)

$$H^1 \hookrightarrow L^2, \qquad \mathring{R} \cap D \hookrightarrow L^2, \qquad R \cap \mathring{D} \hookrightarrow L^2$$

 \Rightarrow Helmholtz decompositions, closed ranges, continuous inverses, and Friedrichs/Poincaré/Maxwell type estimates \surd

Image: A math a math

Underlying Structure of the Model Problem

$\mathring{R}\cap D\hookrightarrow L^2,\qquad R\cap \mathring{D}\hookrightarrow L^2$

Weck's selection theorems: Weck '74 (Habil.), stimulated by Rolf Leis

more literature on Weck's selection theorems:

Weber '80, Picard '84, Costabel '90, Witsch '93, Jochmann '97, Kuhn '99, Picard/Weck/Witsch '01, Bauer/P/Schomburg '16, '17

(日) (同) (日) (日)

University of Strathclyde, Glasgow, Scotland, January 17 2018

Abstract Formulation

$$\operatorname{rot} E = J$$
 in Ω

$$-\operatorname{div} E = j$$
 in Ω

$$\nu \times E = 0$$
 on Γ

$$r \circ t E = H \in \mathcal{H}$$

$$r \circ t E = J$$

$$- \operatorname{div}_{\Gamma_n} E = j$$

$$\pi E = H \in \mathcal{H}$$

-E - U - U

 $\downarrow (x \coloneqq E, \qquad A_1 \coloneqq \mathring{rot}, \qquad A_1^* = \mathring{rot}^* = \operatorname{rot}, \qquad A_0 \coloneqq \mathring{\nabla}, \qquad A_0^* = \mathring{\nabla}^* = -\operatorname{div})$

$$A_1 \times - i$$
$$A_0^* x = g$$
$$\pi_i x = h \in N(A_1) \cap N(A_0^*)$$

イロト イヨト イヨト イヨト

General First Order Problem

General or Abstract Problem

setting: unbounded, densely defined, closed, linear operators with adjoints

$$\mathbf{A}_i: D(\mathbf{A}_i) \subset \mathsf{H}_i \to \mathsf{H}_{i+1}, \quad \mathbf{A}_i^*: D(\mathbf{A}_i^*) \subset \mathsf{H}_{i+1} \to \mathsf{H}_i, \quad i \in \mathbb{Z}$$

complex: (here

$$\dots \not\rightleftharpoons \mathsf{H}_{i-2} \xrightarrow{\mathsf{A}_{i-2}}_{\mathsf{A}_{i-2}^*} \left[\begin{array}{ccc} \mathsf{A}_{i-1} & \mathsf{A}_i & \mathsf{A}_i \\ \mathsf{H}_{i-1} & \stackrel{\mathsf{Z}}{\rightleftharpoons} & \mathsf{H}_i & \stackrel{\mathsf{A}_i}{\rightleftharpoons} & \mathsf{H}_{i+1} \\ & \mathsf{A}_i^* & \mathsf{A}_i^* & \mathsf{A}_i^* \end{array} \right] \xrightarrow{\mathsf{A}_{i+1}}_{\mathsf{A}_{i+1}^*} \mathsf{H}_{i+2} \not\rightleftharpoons \dots$$

 $\text{complex property: `range } \subset \text{kernel'} \left(\boxed{A_i A_{i-1} = 0} \quad \Leftrightarrow \quad A_{i-1}^* A_i^* = 0 \right)$

$$R(\mathbf{A}_{i-1}) \subset N(\mathbf{A}_i) \qquad \Leftrightarrow \qquad R(\mathbf{A}_i^*) \subset N(\mathbf{A}_{i-1}^*)$$

problem: find $x \in D(A_i) \cap D(A_{i-1}^*)$ s.t.

$$\mathbf{A}_i x = f, \quad \mathbf{A}_{i-1}^* x = g, \quad \pi_i x = h,$$

where $f \in R(A_i)$, $g \in R(A_{i-1}^*)$ and $h \in \mathcal{H}_i$ with kernel $N(A_i) \cap N(A_{i-1}^*)$

(日) (同) (日) (日)

Toolbox

Hodge/Helmholtz/Weyl decompositions:

$$\mathsf{H}_{i} = \mathsf{N}(\mathsf{A}_{i}) \oplus_{\mathsf{H}_{i}} \overline{\mathsf{R}(\mathsf{A}_{i}^{*})}, \qquad \qquad \mathsf{H}_{i+1} = \mathsf{N}(\mathsf{A}_{i}^{*}) \oplus_{\mathsf{H}_{i+1}} \overline{\mathsf{R}(\mathsf{A}_{i})}$$

⇒ reduce A_i to $N(A_i)^{\perp} = \overline{R(A_i^*)}$ and A_i^* to $N(A_i^*)^{\perp} = \overline{R(A_i)}$ ⇒ injective reduced operators A_i , A_i^* , "same" complex for A_i , A_i^* ⇒ A_i^{-1} , $(A_i^*)^{-1}$ exist always, but might be unbounded

 \Rightarrow crucial lemmas

(日) (同) (三) (三)

General First Order Problem

Toolbox

Lemma (P)

The following assertions are equivalent:

(i)
$$\exists c_i > 0 \quad \forall \varphi \in D(\mathcal{A}_i) \qquad |\varphi|_{\mathsf{H}_i} \leq c_i |A_i \varphi|_{\mathsf{H}_{i+1}}$$

 $(\mathbf{i}^*) \exists c_i^* > 0 \quad \forall \ \psi \in D(\mathcal{A}_i^*) \quad |\psi|_{\mathsf{H}_{i+1}} \leq c_i^* \ |\mathcal{A}_i^* \psi|_{\mathsf{H}_i}$

(general Friedrichs/Poincaré/

Maxwell type estimates)

<ロト < 回 > < 回 > < 回 > < 回 >

(ii) The ranges $R(A_i) = R(A_i)$ are closed.

(ii^{*}) The ranges
$$R(A_i^*) = R(A_i^*)$$
 are closed.

(iii) The inverse operator $\mathcal{A}_i^{-1} : R(A_i) \to D(\mathcal{A}_i)$ is continuos.

(iii*) The inverse operator $(\mathcal{A}_{i}^{*})^{-1}: R(A_{i}^{*}) \to D(\mathcal{A}_{i}^{*})$ is continuos.

Lemma (P)

If
$$c_i$$
, c_i^* are "best" constants, then $c_i = c_i^* = |\mathcal{A}_i^{-1}| = |(\mathcal{A}_i^*)^{-1}|$.

Lemma (P)

If $D(\mathcal{A}_i) \hookrightarrow H_i$ is compact, then the latter assertions hold and $\mathcal{A}_i^{-1} : R(A_i) \to R(A_i^*), \ (\mathcal{A}_i^*)^{-1} : R(A_i^*) \to R(A_i)$ are compact.

proofs: elementary computations and closed range/graph theorem

University of Strathclyde, Glasgow, Scotland, January 17 2018

Toolbox

Lemma (P)

 $D(\mathcal{A}_i) \hookrightarrow \mathsf{H}_i \text{ compact } \Leftrightarrow D(\mathcal{A}_i^*) \hookrightarrow \mathsf{H}_{i+1} \text{ compact }$

Lemma (P)

 $D(A_i) \cap D(A_{i-1}^*) \hookrightarrow H_i$ compact

- $\Leftrightarrow \quad D(\mathcal{A}_i) \hookrightarrow \mathsf{H}_i, \quad D(\mathcal{A}_{i-1}^*) \hookrightarrow \mathsf{H}_i, \qquad N(\mathsf{A}_i) \cap N(\mathsf{A}_{i-1}^*) \hookrightarrow \mathsf{H}_i \quad \textit{compact}$
- $\Leftrightarrow \quad D(\mathcal{A}_i) \hookrightarrow \mathsf{H}_i, \quad D(\mathcal{A}_{i-1}) \hookrightarrow \mathsf{H}_{i-1}, \quad N(\mathsf{A}_i) \cap N(\mathsf{A}_{i-1}^*) \hookrightarrow \mathsf{H}_i \quad \textit{compact}$

Lemma (P)

Lots of Helmholtz type decompositions hold, such as

$$\mathsf{H}_{i} = \underbrace{\overline{\mathcal{R}(\mathsf{A}_{i-1})}}_{=\mathsf{N}(\mathsf{A}_{i})} \bigoplus_{\mathsf{H}_{i}} \underbrace{\left(\mathsf{N}(\mathsf{A}_{i}) \cap \mathsf{N}(\mathsf{A}_{i-1}^{*})\right)}_{=\mathsf{N}(\mathsf{A}_{i})} \bigoplus_{\mathsf{H}_{i}} \overline{\mathcal{R}(\mathsf{A}_{i}^{*})}, \quad D(\mathsf{A}_{i}) = \mathsf{N}(\mathsf{A}_{i}) \oplus_{\mathsf{H}_{i}} D(\mathcal{A}_{i}), \quad \dots$$

proofs: elementary computations and different Helmholtz type decompositions

э

・ロト ・回ト ・ヨト ・ヨト

Remark

best world: $D(A_i) \cap D(A_{i-1}^*) \hookrightarrow H_i$ compact

usually true for bounded domains	\Rightarrow	full toolbox
typically not true for unbounded domains	\Rightarrow	toolbox without compactness results
(locally compact embeddings)		

э

イロト イヨト イヨト イヨト

General First Order Problem

Solution Theory for Abstract Problem

problem: find $x \in D(A_i) \cap D(A_{i-1}^*)$ st

$$A_{i}x = f$$
$$A_{i-1}^{*}x = g$$
$$\pi_{i}x = h$$

Theorem (solution theory, P)

unique sol in Hadamard sense (cont dpd on data, ...)

$$\Leftrightarrow f \in R(A_i), g \in R(A_{i-1}^*)$$
 and $h \in N(A_i) \cap N(A_{i-1}^*)$

Proof.

$$x = x_f + x_g + h,$$
 $x_f \coloneqq \mathcal{A}_i^{-1}f,$ $x_g \coloneqq (\mathcal{A}_{i-1}^*)^{-1}g$

note: problem is linear and hence decouples

$$A_i x_f = f$$
 $A_i x_g = 0$
 $A_{i-1}^* x_f = 0$
 $A_{i-1}^* x_g = g$
 $\pi_i x_f = 0$
 $\pi_i x_g = 0$

(日) (同) (日) (日)

General First Order Problem

Variational Formulations for Abstract Problem

How to find
$$x \in D(A_i) \cap D(A_{i-1}^*)$$
, ie, $x = x_f + x_g + h$, ie,
 $x_f \in D(A_i) = D(A_i) \cap R(A_i^*)$ and $x_g \in D(A_{i-1}^*) = D(A_{i-1}^*) \cap R(A_{i-1})$ with
 $A_i x = f$ $A_i x_f = f$ $A_i x_g = 0$
 $A_{i-1}^* x = g$ $A_{i-1}^* x_f = 0$ $A_{i-1}^* x_g = g$
 $\pi_i x = h$ $\pi_i x_f = 0$ $\pi_i x_g = 0$

by variational formulations that can be "easily" implemented by numerical methods such as $\mathsf{FEM}?$

$$\begin{array}{ll} \underline{\text{formulation 1: test } A_i x_f = f \text{ by } A_i \varphi \text{ with } \varphi \in D(\mathcal{A}_i) \\ \Rightarrow & \text{find } x_f \in D(\mathcal{A}_i) \text{ st} \\ & \forall \varphi \in D(\mathcal{A}_i) & \langle A_i x_f, A_i \varphi \rangle_{\mathsf{H}_{i+1}} = \langle f, A_i \varphi \rangle_{\mathsf{H}_{i+1}} \end{array}$$

well posed by toolbox, uniq sol by Riesz

note:
$$R(A_i) = R(A_i) \implies \text{var form holds for all } \varphi \in D(A_i)$$

 $\Rightarrow A_i x_f - f \in R(A_i) \cap R(A_i)^{\perp} \Rightarrow A_i x_f = f \text{ holds}$

note: additional condition $x_f \in R(A_i^*) = N(A_i)^{\perp} \implies$ sadd point form / inf-sup note: num approx satisfies $\tilde{x}_f \in D(A_i)$ but $\tilde{x}_f \in R(A_i^*) = N(A_i)^{\perp}$ only weakly

corresponding idea works for $A_{i-1}^* x_g = g$

イロト 不得下 イヨト イヨト

General First Order Problem

Variational Formulations for Abstract Problem

How to find
$$x \in D(A_i) \cap D(A_{i-1}^*)$$
, ie, $x = x_f + x_g + h$, ie,
 $x_f \in D(A_i) = D(A_i) \cap R(A_i^*)$ and $x_g \in D(A_{i-1}^*) = D(A_{i-1}^*) \cap R(A_{i-1})$ with
 $A_i x = f$ $A_i x_f = f$ $A_i x_g = 0$
 $A_{i-1}^* x = g$ $A_{i-1}^* x_f = 0$ $A_{i-1}^* x_g = g$
 $\pi_i x = h$ $\pi_i x_f = 0$ $\pi_i x_g = 0$

by variational formulations that can be "easily" implemented by numerical methods such as FEM?

 $\begin{array}{ll} \underbrace{\text{formulation } 2: \ x_{f} \in R(A_{i}^{*}) & \Rightarrow & x_{f} = A_{i}^{*} y_{f} \text{ with } y_{f} = (\mathcal{A}_{i}^{*})^{-1} x_{f} \in D(\mathcal{A}_{i}^{*}) \\ \text{test } x_{f} \text{ by } A_{i}^{*} \phi \text{ with } \phi \in D(\mathcal{A}_{i}^{*}) \text{ and use } A_{i}^{*} x_{f} = f \\ \Rightarrow & \text{find } y_{f} \in D(\mathcal{A}_{i}^{*}) \text{ st} \\ & \forall \phi \in D(\mathcal{A}_{i}^{*}) & \langle A_{i}^{*} y_{f}, A_{i}^{*} \phi \rangle_{\mathsf{H}_{i}} = \langle x_{f}, A_{i}^{*} \phi \rangle_{\mathsf{H}_{i}} = \langle A_{i} x_{f}, \phi \rangle_{\mathsf{H}_{i+1}} = \langle f, \phi \rangle_{\mathsf{H}_{i+1}} \\ \text{well posed by toolbox, uniq sol by Riesz} \\ \text{note: } R(\mathcal{A}_{i}^{*}) = R(A_{i}^{*}) \text{ and } f \in R(A_{i}) \Rightarrow \text{ var form holds for all } \phi \in D(A_{i}^{*}) \end{array}$

$$\Rightarrow x_f := A_i^* y_f \in D(A_i) \text{ and } A_i x_f = f \text{ holds}$$

note: additional condition $y_f \in R(A_i) = N(A_i^*)^{\perp} \implies$ sadd point form / inf-sup note: num approx satisfies $\tilde{x}_f \in R(A_i^*)$ but $\tilde{x}_f \in D(A_i)$ only weakly

corresponding idea works for $A_{i-1}^* x_g = g$

イロト イポト イヨト イヨト

University of Strathclyde, Glasgow, Scotland, January 17 2018

General Second Order Problem

Solution Theory for Abstract Problem

problem: find
$$x \in D(A_i^*A_i) \cap D(A_{i-1}^*)$$
 st

$$A_i^* A_i x = f$$
$$A_{i-1}^* x = g$$
$$\pi_i x = h$$

⇒ introduce potential
$$y := A_i x$$

⇒ equiv mixed form: find pair $(x, y) \in (D(A_i) \cap D(A_{i-1}^*)) \times (D(A_i^*) \cap R(A_i))$ st

$$\begin{array}{c} =D(\mathcal{A}_{i}^{*}) \\ A_{i}x = y, & A_{i+1}y = 0 \\ A_{i-1}^{*}x = g, & A_{i}^{*}y = f \\ \pi_{i}x = h, & \pi_{i+1}y = 0 \end{array}$$

Theorem (solution theory, P)

unique sol in Hadamard sense (cont dpd on data, ...)

$$\Leftrightarrow f \in R(A_i^*), g \in R(A_{i-1}^*)$$
 and $h \in N(A_i) \cap N(A_{i-1}^*)$

Proof.

$$x = x_y + x_g + h,$$
 $x_y := \mathcal{A}_i^{-1}y,$ $x_g := (\mathcal{A}_{i-1}^*)^{-1}g,$ $y := (\mathcal{A}_i^*)^{-1}f$

University of Strathclyde, Glasgow, Scotland, January 17 2018

General Second Order Problem

Solution Theory for Abstract Problem

Theorem (solution theory, P)

unique sol in Hadamard sense (cont dpd on data, ...) $\Leftrightarrow f \in R(A_i^*), g \in R(A_{i-1}^*)$ and $h \in N(A_i) \cap N(A_{i-1}^*)$

Proof.

$$x = x_y + x_g + h$$
, $x_y := \mathcal{A}_i^{-1} y$, $x_g := (\mathcal{A}_{i-1}^*)^{-1} g$, $y := (\mathcal{A}_i^*)^{-1} f$

note: problem is linear and hence decouples

- $\begin{array}{ll} \mathbf{A}_{i}^{*}\mathbf{A}_{i}x=f & \mathbf{A}_{i}x=y, & \mathbf{A}_{i+1}y=0 \\ \mathbf{A}_{i-1}^{*}x=g & \Leftrightarrow & \mathbf{A}_{i-1}^{*}x=g, & \mathbf{A}_{i}^{*}y=f \end{array}$
 - $\pi_i x = h \qquad \qquad \pi_i x = h, \qquad \qquad \pi_{i+1} y = 0$
- $\begin{array}{ccc} A_i x_y = y & A_i x_g = 0 & A_{i+1} y = 0 \\ \Leftrightarrow & A_{i-1}^* x_y = 0 & A_{i-1}^* x_g = g & A_i^* y = f \\ & & & & & \\ \pi_i x_y = 0 & & & & & \\ \end{array}$

・ロン ・四 と ・ ヨン ・ ヨン

Applications to First Order Systems

Prototypical FOS: Electro-Magneto-Static Maxwell

 $\Omega \subset \mathbb{R}^3 \text{ bounded domain with weak Lipschitz boundary } \Gamma = \partial \Omega, \text{ "} \Gamma = \Gamma_t \dot{\cup} \Gamma_n \text{"}$

$$\operatorname{rot}_{\Gamma_t} E = J \in \operatorname{rot}_{\Gamma_t} \mathsf{R}_{\Gamma_t} \qquad \text{in } \Omega$$

$$-\operatorname{div}_{\Gamma_n}\varepsilon E=j\in\operatorname{div}_{\Gamma_n}\mathsf{D}_{\Gamma_n}=\mathsf{L}^2 \text{ or } \mathsf{L}^2_\perp \qquad \qquad \text{in } \Omega$$

$$\nu \times E = 0$$
 on Γ_t

$$\nu \cdot \varepsilon E = 0$$
 on Γ_n

$$\pi E = H \in \mathcal{H}_{\mathsf{D},\varepsilon} = \mathsf{R}_{\mathsf{\Gamma}_t,\mathsf{0}} \cap \varepsilon^{-1} \mathsf{D}_{\mathsf{\Gamma}_n,\mathsf{0}}$$

$$\Rightarrow E \in D(\operatorname{rot}_{\Gamma_t}) \cap D(\operatorname{div}_{\Gamma_n} \varepsilon) = \mathsf{R}_{\Gamma_t} \cap \varepsilon^{-1} \mathsf{D}_{\Gamma_n}$$

$$A_{0} \coloneqq \nabla_{\Gamma_{t}} : \mathsf{H}_{\Gamma_{t}}^{1} \subset \mathsf{L}^{2} \to \mathsf{L}_{\varepsilon}^{2}, \qquad \qquad \boxed{A_{1} \coloneqq \mathsf{rot}_{\Gamma_{t}}} : \mathsf{R}_{\Gamma_{t}} \subset \mathsf{L}_{\varepsilon}^{2} \to \mathsf{L}^{2}$$
$$\boxed{A_{0}^{*} = -\operatorname{div}_{\Gamma_{n}} \varepsilon} : \varepsilon^{-1} \mathsf{D}_{\Gamma_{n}} \subset \mathsf{L}_{\varepsilon}^{2} \to \mathsf{L}^{2}, \qquad \qquad A_{1}^{*} = \varepsilon^{-1} \operatorname{rot}_{\Gamma_{n}} : \mathsf{R}_{\Gamma_{n}} \subset \mathsf{L}^{2} \to \mathsf{L}_{\varepsilon}^{2}$$

(日) (同) (日) (日)

Applications to First Order Systems

Prototypical FOS: Electro-Magneto-Static Maxwell

compact embeddings:

 $\begin{array}{lll} D(\mathcal{A}_0) \hookrightarrow H_0 & \Leftrightarrow & H_{\Gamma_t}^1 \hookrightarrow L^2 & (\text{Rellich's selection theorem}) \\ D(\mathcal{A}_1) \hookrightarrow H_1 & \Leftrightarrow & \mathsf{R}_{\Gamma_t} \cap \varepsilon^{-1} \operatorname{rot} \mathsf{R}_{\Gamma_n} \subset \mathsf{R}_{\Gamma_t} \cap \varepsilon^{-1} \mathsf{D}_{\Gamma_n} \hookrightarrow \mathsf{L}^2_{\varepsilon} & (\text{Weck's selection theorem}) \end{array}$

 $c_0 = c_{fp}$ (Friedrichs/Poincaré constant) and $c_1 = c_m$ (Maxwell constant)

$$\begin{array}{ll} \forall \ \varphi \in D(\mathcal{A}_0) & |\varphi|_{\mathsf{H}_0} \leq c_0 |\mathcal{A}_0 \varphi|_{\mathsf{H}_1} & \Leftrightarrow & \forall \ \varphi \in \mathsf{H}_{\Gamma_t}^1 & |\varphi|_{\mathsf{L}^2} \leq c_{fp} |\nabla \varphi|_{\mathsf{L}_{\varepsilon}^2} \\ \forall \ \phi \in D(\mathcal{A}_0^*) & |\phi|_{\mathsf{H}_1} \leq c_0 |\mathcal{A}_0^* \phi|_{\mathsf{H}_0} & \Leftrightarrow & \forall \ \Phi \in \varepsilon^{-1} \mathsf{D}_{\Gamma_n} \cap \nabla \mathsf{H}_{\Gamma_t}^1 & |\Phi|_{\mathsf{L}_{\varepsilon}^2} \leq c_{fp} |\operatorname{div} \varepsilon \Phi|_{\mathsf{L}^2} \\ \forall \ \varphi \in D(\mathcal{A}_1) & |\varphi|_{\mathsf{H}_1} \leq c_1 |\mathcal{A}_1 \varphi|_{\mathsf{H}_2} & \Leftrightarrow & \forall \ \Phi \in \mathsf{R}_{\Gamma_t} \cap \varepsilon^{-1} \operatorname{rot} \mathsf{R}_{\Gamma_n} & |\Phi|_{\mathsf{L}_{\varepsilon}^2} \leq c_{\mathfrak{m}} |\operatorname{rot} \Phi|_{\mathsf{L}^2} \\ \forall \ \psi \in D(\mathcal{A}_1^*) & |\psi|_{\mathsf{H}_2} \leq c_1 |\mathcal{A}_1^* \psi|_{\mathsf{H}_1} & \Leftrightarrow & \forall \ \Psi \in \mathsf{R}_{\Gamma_n} \cap \operatorname{rot} \mathsf{R}_{\Gamma_t} & |\Psi|_{\mathsf{L}^2} \leq c_{\mathfrak{m}} |\operatorname{rot} \Psi|_{\mathsf{L}_{\varepsilon}^2} \end{array}$$

Helmholtz decomposition:

$$\mathsf{H}_{1} = R(\mathsf{A}_{0}) \oplus_{\mathsf{H}_{1}} \big(N(\mathsf{A}_{1}) \cap N(\mathsf{A}_{0}^{*}) \big) \oplus_{\mathsf{H}_{i}} R(\mathsf{A}_{1}^{*}) \quad \Leftrightarrow \quad \mathsf{L}_{\varepsilon}^{2} = \nabla \mathsf{H}_{\mathsf{\Gamma}_{t}}^{1} \oplus_{\mathsf{L}_{\varepsilon}^{2}} \mathcal{H}_{\mathsf{D},\varepsilon} \oplus_{\mathsf{L}_{\varepsilon}^{2}} \varepsilon^{-1} \operatorname{rot} \mathsf{R}_{\mathsf{\Gamma}_{n}}$$

(日) (同) (三) (三)

University of Strathclyde, Glasgow, Scotland, January 17 2018

Applications to Second Order Systems

Simplest SOS: Dirichlet/Neumann Laplace

 $\Omega \subset \mathbb{R}^3$ bounded domain with weak Lipschitz boundary $\Gamma = \partial \Omega$, " $\Gamma = \Gamma_t \dot{\cup} \Gamma_n$ "

$-\operatorname{div}_{\Gamma_n} \varepsilon \nabla_{\Gamma_t} u = f \in L^2 \text{ or } L^2_{\perp}$	in Ω
<i>u</i> = 0	on Γ _t
$\nu \cdot \varepsilon \nabla u = 0$	on Γ _n

\Leftrightarrow	$\nabla_{\Gamma_t} u = E \in \nabla_{\Gamma_t} H^1_{\Gamma_t}$	$\operatorname{rot}_{\Gamma_t} E = 0 \in \operatorname{rot}_{\Gamma_t} R_{\Gamma}$	_t in Ω
			,

$$u = 0 \qquad \qquad \nu \times E = 0 \qquad \qquad \text{on } \Gamma_t \qquad \text{in } \Omega$$

$$\nu \cdot \varepsilon E = 0 \qquad \text{on } I_n$$
$$\pi E = 0 \in \mathcal{H}_{D,\varepsilon}$$

Image: A math a math

 $\Rightarrow (u, E) \in D(\nabla_{\Gamma_t}) \times \left(D(\mathsf{div}_{\Gamma_n} \varepsilon) \cap R(\nabla_{\Gamma_t}) \right) = \mathsf{H}^1_{\Gamma_t} \times \left(\varepsilon^{-1} \mathsf{D}_{\Gamma_n} \cap \nabla \mathsf{H}^1_{\Gamma_t} \right)$

$$\label{eq:A0} \begin{split} \hline \mathbf{A}_0 &\coloneqq \nabla_{\Gamma_t} \\ \vdots \ \mathsf{H}_{\Gamma_t}^1 \subset \mathsf{L}^2 \to \mathsf{L}_{\varepsilon}^2, & \mathbf{A}_1 &\coloneqq \mathsf{rot}_{\Gamma_t} : \mathsf{R}_{\Gamma_t} \subset \mathsf{L}_{\varepsilon}^2 \to \mathsf{L}^2 \\ \hline \mathbf{A}_0^* &= -\operatorname{div}_{\Gamma_n} \varepsilon \\ \vdots \varepsilon^{-1} \mathsf{D}_{\Gamma_n} \subset \mathsf{L}_{\varepsilon}^2 \to \mathsf{L}^2, & \mathbf{A}_1^* &= \varepsilon^{-1} \operatorname{rot}_{\Gamma_n} : \mathsf{R}_{\Gamma_n} \subset \mathsf{L}^2 \to \mathsf{L}_{\varepsilon}^2 \end{split}$$

More Applications

More First and Second Order Systems (FOS & SOS)

 $\Omega \subset \mathbb{R}^3$ bounded weak Lipschitz domain

Electro/Magneto-Static Maxwell with mixed boundary conditions ∇ -rot-div-complex (symmetry!, de Rham complex):

$$\{0\} \text{ or } \mathbb{R} \quad \stackrel{\iota}{\underset{\pi}{\overset{\iota}{\leftrightarrow}}} \quad L^2 \quad \stackrel{\nabla_{\Gamma_t}}{\underset{-\operatorname{div}_{\Gamma_n}}{\overset{\varepsilon}{\approx}}} \quad L^2_{\varepsilon} \quad \stackrel{\operatorname{rot}_{\Gamma_t}}{\underset{\varepsilon^{-1}\operatorname{rot}_{\Gamma_n}}{\overset{\varepsilon}{\approx}}} \quad L^2 \quad \stackrel{\operatorname{div}_{\Gamma_t}}{\underset{\iota}{\overset{\varepsilon}{\approx}}} \quad L^2 \quad \stackrel{\pi}{\underset{\iota}{\overset{\varepsilon}{\approx}}} \quad \mathbb{R} \text{ or } \{0\}$$

related fos

related sos

$$\begin{array}{c|c} -\operatorname{div}_{\Gamma_n} \varepsilon \nabla_{\Gamma_t} u = j & \text{in } \Omega & | & \varepsilon^{-1} \operatorname{rot}_{\Gamma_n} \operatorname{rot}_{\Gamma_t} E = K & \text{in } \Omega & | & -\nabla_{\Gamma_n} \operatorname{div}_{\Gamma_t} H = B & \text{in } \Omega \\ \pi u = a & \text{in } \Omega & | & -\operatorname{div}_{\Gamma_n} \varepsilon E = j & \text{in } \Omega & | & \varepsilon^{-1} \operatorname{rot}_{\Gamma_n} H = K & \text{in } \Omega \end{array}$$

corresponding compact embeddings:

$$\begin{split} D(\nabla_{\Gamma_{t}}) \cap D(\pi) &= D(\nabla_{\Gamma_{t}}) = H_{\Gamma_{t}}^{1} \hookrightarrow L^{2} & (\text{Rellich's selection theorem}) \\ D(\text{rot}_{\Gamma_{t}}) \cap D(-\text{div}_{\Gamma_{n}} \varepsilon) &= R_{\Gamma_{t}} \cap \varepsilon^{-1} D_{\Gamma_{n}} \hookrightarrow L_{\varepsilon}^{2} & (\text{Weck's selection theorem}) \\ D(\text{div}_{\Gamma_{t}}) \cap D(\varepsilon^{-1} \text{rot}_{\Gamma_{n}}) &= D_{\Gamma_{t}} \cap R_{\Gamma_{n}} \hookrightarrow L^{2} & (\text{Weck's selection theorem}) \\ D(\nabla_{\Gamma_{n}}) \cap D(\pi) &= D(\nabla_{\Gamma_{n}}) = H_{\Gamma_{n}}^{1} \hookrightarrow L^{2} & (\text{Rellich's selection theorem}) \end{split}$$

Weck's selection theorem for weak Lip. dom. and mixed bc: Bauer/P/Schomburg ('16)

More Applications

More First and Second Order Systems (FOS & SOS)

 $\Omega \subset \mathbb{R}^N$ bd w. Lip. dom. or Ω Riemannian manifold with cpt cl. and Lip. boundary Γ

Generalized Electro/Magneto-Static Maxwell with mixed boundary conditions d-d-complex (symmetry!, de Rham complex):

$$\{0\} \text{ or } \mathbb{R} \quad \stackrel{\iota}{\underset{\pi}{\overset{}{\rightarrow}}} \quad L^{2,0} \quad \stackrel{d^{0}_{\Gamma_{t}}}{\underset{\pi}{\overset{}{\rightarrow}}} \quad L^{2,1} \quad \stackrel{d^{1}_{\Gamma_{t}}}{\underset{\pi}{\overset{}{\rightarrow}}} \quad \dots \quad L^{2,q} \quad \stackrel{d^{q}_{\Gamma_{t}}}{\underset{\pi}{\overset{}{\rightarrow}}} \quad L^{2,q+1} \dots \quad L^{2,N-1} \quad \stackrel{d^{N-1}_{\Gamma_{t}}}{\underset{\pi}{\overset{}{\rightarrow}}} \quad L^{2,N} \quad \stackrel{\pi}{\underset{\tau}{\overset{}{\rightarrow}}} \quad \mathbb{R} \text{ or } \{0\}$$

related fos

$$\begin{aligned} & \mathsf{d}_{\Gamma_{I}}^{q} E = F & & \text{in } \Omega \\ & -\delta_{\Gamma_{II}}^{q} E = G & & & \text{in } \Omega \end{aligned}$$

related sos

$$\begin{split} &-\delta_{\Gamma_n}^{q+1} \mathbf{d}_{\Gamma_t}^q E = F & \text{ in } \Omega \\ &-\delta_{\Gamma_n}^q E = G & \text{ in } \Omega \end{split}$$

includes: EMS rot / div, Laplacian, rot rot, and more... corresponding compact embeddings:

$$D(\mathsf{d}^{q}_{\Gamma_{t}}) \cap D(\delta^{q}_{\Gamma_{n}}) \hookrightarrow \mathsf{L}^{2,q} \tag{Weck's selection theorems}$$

Weck's selection theorem for Lip. manifolds and mixed bc: Bauer/P/Schomburg ('17)

(日) (同) (日) (日)

More Applications

More First and Second Order Systems (FOS & SOS)

 $\Omega \subset \mathbb{R}^3$ bounded strong Lipschitz domain

Elasticity sym ∇ -Rot Rot^T_{\overline{\overlin}\overlin{\overline{\overline{\overline{\overline{\overline{\overlin{\overline{\overlin{\overlin}\overlin{\o}

$$\{0\} \stackrel{\iota}{\underset{\pi}{\leftrightarrow}} L^2 \stackrel{sym\nabla_{\Gamma}}{\underset{-\operatorname{Div}_{\mathbb{S}}}{\rightleftharpoons}} L^2_{\mathbb{S}} \stackrel{\operatorname{Rot}\operatorname{Rot}_{\mathbb{S},\Gamma}^{\mathsf{T}}}{\underset{\operatorname{Rot}\operatorname{Rot}_{\mathbb{S}}^{\mathsf{T}}}{\rightleftharpoons}} L^2_{\mathbb{S}} \stackrel{\operatorname{Div}_{\mathbb{S},\Gamma}}{\underset{-\operatorname{sym}\nabla}{\leftrightarrow}} L^2 \stackrel{\pi}{\underset{\iota}{\leftrightarrow}} \operatorname{RM}$$

related fos (Rot $\mathsf{Rot}_{S,\Gamma}^{\mathsf{T}}$, Rot $\mathsf{Rot}_{S}^{\mathsf{T}}$ first order operators!) sym $\nabla_{\Gamma} v = M$ in Ω | Rot Rot^T_{$\Omega \cap \Gamma$} M = F in Ω | Div_{$\Omega \cap \Gamma$} N = g in Ω | $\pi v = r$ in Ω $\pi v = 0$ in Ω | $-\operatorname{Div}_{\mathbb{S}} M = f$ in Ω | $\operatorname{Rot} \operatorname{Rot}_{\mathbb{S}}^{\mathsf{T}} N = G$ in Ω | $-\operatorname{sym} \nabla v = M$ in Ω related sos (Rot $Rot_{S}^{T} Rot Rot_{S,\Gamma}^{T}$ second order operator!) $-\operatorname{Div}_{\mathbb{S}}\operatorname{sym} \nabla_{\Gamma} v = f$ in Ω | Rot $\operatorname{Rot}_{\mathbb{S}}^{\top}\operatorname{Rot} \operatorname{Rot}_{\mathbb{S}}^{\top} M = G$ in Ω | $-\operatorname{sym} \nabla \operatorname{Div}_{\mathbb{S},\Gamma} N = M$ in Ω $\pi v = 0$ in Ω $-\operatorname{Div}_{\mathfrak{A}} M = f$ in Ω | Rot Rot $\stackrel{\mathsf{T}}{} N = G$ in Ω

corresponding compact embeddings:

 $D(\operatorname{sym} \nabla_{\Gamma}) \cap D(\pi) = D(\nabla_{\Gamma}) = \operatorname{H}^{1}_{\Gamma} \hookrightarrow \operatorname{L}^{2}$ (Rellich's selection theorem and Korn ineq.) $D(\operatorname{Rot}\operatorname{Rot}_{\mathbb{S}}^{\top})\cap D(\operatorname{Div}_{\mathbb{S}}) \hookrightarrow L^{2}_{\mathbb{S}}$ (new selection theorem) $D(\text{Div}_{\mathbb{S}} \Gamma) \cap D(\text{Rot} \operatorname{Rot}_{\mathbb{S}}^{\mathsf{T}}) \hookrightarrow L_{\mathbb{S}}^{2}$ (new selection theorem) $D(\pi) \cap D(\operatorname{sym} \nabla) = D(\nabla) = \operatorname{H}^1 \hookrightarrow \operatorname{L}^2$ (Rellich's selection theorem and Korn ineq.) イロト イポト イヨト イヨト

two new selection theorems for strong Lip. dom.: P/Zulehner ('17)

More Applications

More First and Second Order Systems (FOS & SOS)

 $\Omega \subset \mathbb{R}^3$ bounded strong Lipschitz domain

General Relativity or Biharmonic Equation $\nabla \nabla$ -Rot_S-Div_T-complex (no symmetry!):

 $\begin{cases} 0 \end{cases} \stackrel{\iota}{\rightleftharpoons} L^{2} \quad \frac{\nabla \nabla \Gamma}{\operatorname{div}\operatorname{Div}_{S}} \quad L^{2}_{S} \quad \frac{\operatorname{Rot}_{S,\Gamma}}{\rightleftharpoons} \quad L^{2}_{T} \quad \frac{\operatorname{Div}_{T,\Gamma}}{\swarrow} \quad L^{2}_{T} \quad \frac{\pi}{\rightleftharpoons} \quad \operatorname{RT} \\ \operatorname{related fos} (\nabla \nabla_{\Gamma}, \operatorname{div}\operatorname{Div}_{S} \operatorname{first order operators!}) \\ \nabla \nabla_{\Gamma} u = M \quad \operatorname{in} \Omega \quad | \quad \operatorname{Rot}_{S,\Gamma} M = F \quad \operatorname{in} \Omega \quad | \quad \operatorname{Div}_{T,\Gamma} N = g \quad \operatorname{in} \Omega \quad | \quad \pi v = r \quad \operatorname{in} \Omega \\ \pi u = 0 \quad \operatorname{in} \Omega \quad | \quad \operatorname{div}\operatorname{Div}_{S} M = f \quad \operatorname{in} \Omega \quad | \quad \operatorname{sym}\operatorname{Rot}_{T} N = G \quad \operatorname{in} \Omega \quad | \quad -\operatorname{dev} \nabla v = T \quad \operatorname{in} \Omega \\ \operatorname{related sos} (\operatorname{div}\operatorname{Div}_{S} \nabla \nabla_{\Gamma} = \Delta_{\Gamma}^{2} \operatorname{second order operator!}) \\ \operatorname{div}\operatorname{Div}_{S} \nabla \nabla_{\Gamma} u = \Delta_{\Gamma}^{2} u = f \quad \operatorname{in} \Omega \quad | \quad \operatorname{sym}\operatorname{Rot}_{T}\operatorname{Rot}_{S,\Gamma} M = G \quad \operatorname{in} \Omega \quad | \quad -\operatorname{dev} \nabla\operatorname{Div}_{T,\Gamma} N = T \quad \operatorname{in} \Omega \\ \pi u = 0 \quad \operatorname{in} \Omega \quad | \quad \operatorname{div}\operatorname{Div}_{S} M = f \quad \operatorname{in} \Omega \quad | \quad \operatorname{sym}\operatorname{Rot}_{T} N = G \quad \operatorname{in} \Omega \quad | \quad \operatorname{sym}\operatorname{Rot}_{T} N = G \quad \operatorname{in} \Omega \\ \pi u = 0 \quad \operatorname{in} \Omega \quad | \quad \operatorname{sym}\operatorname{Rot}_{T} N = f \quad \operatorname{in} \Omega \quad | \quad \operatorname{sym}\operatorname{Rot}_{T} N = G \quad \operatorname{in} \Omega \quad | \quad \operatorname{sym}\operatorname{Rot}_{T} N = G \quad \operatorname{in} \Omega \\ \pi u = 0 \quad \operatorname{in} \Omega \quad | \quad \operatorname{sym}\operatorname{Rot}_{T} N = f \quad \operatorname{in} \Omega \quad | \quad \operatorname{sym}\operatorname{Rot}_{T} N = G \quad \operatorname{in} \Omega \\ \pi u = 0 \quad \operatorname{in} \Omega \quad | \quad \operatorname{sym}\operatorname{Rot}_{T} N = f \quad \operatorname{in} \Omega \quad | \quad \operatorname{sym}\operatorname{Rot}_{T} N = G \quad \operatorname{in} \Omega \\ \pi u = 0 \quad \operatorname{in} \Omega \quad | \quad \operatorname{sym}\operatorname{Rot}_{T} N = f \quad \operatorname{in} \Omega \\ \pi u = 0 \quad \operatorname{in} \Omega \quad | \quad \operatorname{sym}\operatorname{Rot}_{T} N = f \quad \operatorname{in} \Omega \\ \pi u = 0 \quad \operatorname{in} \Omega \quad | \quad \operatorname{sym}\operatorname{Rot}_{T} N = f \quad \operatorname{in} \Omega \\ \pi u = 0 \quad \operatorname{in} \Omega \quad | \quad \operatorname{sym}\operatorname{Rot}_{T} N = f \quad \operatorname{in} \Omega \\ \pi u = 0 \quad \operatorname{in} \Omega \quad | \quad \operatorname{sym}\operatorname{Rot}_{T} N = f \quad \operatorname{in} \Omega \\ \pi u = 0 \quad \operatorname{in} \Omega \quad | \quad \operatorname{sym}\operatorname{Rot}_{T} N = f \quad \operatorname{in} \Omega \\ \pi u = 0 \quad \operatorname{in} \Omega \quad | \quad \operatorname{sym}\operatorname{Rot}_{T} N = f \quad \operatorname{in} \Omega \\ \pi u = 0 \quad \operatorname{in} \Omega \quad | \quad \operatorname{sym}\operatorname{Rot}_{T} N = f \quad \operatorname{in} \Omega \\ \pi u = 0 \quad \operatorname{in} \Omega \quad | \quad \operatorname{sym}\operatorname{Rot}_{T} N = f \quad \operatorname{in} \Omega \\ \pi u = 0 \quad \operatorname{in} \Omega \quad | \quad \operatorname{sym}\operatorname{Rot}_{T} N = f \quad \operatorname{in} \Omega \\ \pi u = 0 \quad \operatorname{in} \Omega \quad | \quad \operatorname{in} \Omega \quad | \quad \operatorname{sym}\operatorname{Rot}_{T} N = f \quad \operatorname{in} \Omega \\ \pi u = 0 \quad \operatorname{in} \Omega \quad | \quad \operatorname{in} \Omega \cap | \quad \operatorname{in} \Omega \cap | \quad \operatorname{i$

corresponding compact embeddings:

$$\begin{split} D(\nabla\nabla\Gamma) \cap D(\pi) &= D(\nabla\nabla\Gamma) = H^2_{\Gamma} \hookrightarrow L^2 \qquad (\text{Relich's selection theorem}) \\ D(\text{Rot}_{\mathbb{S},\Gamma}) \cap D(\text{div}\,\text{Div}_{\mathbb{S}}) \hookrightarrow L^2_{\mathbb{S}} \qquad (\text{new selection theorem}) \\ D(\text{Div}_{\mathbb{T},\Gamma}) \cap D(\text{sym}\,\text{Rot}_{\mathbb{T}}) \hookrightarrow L^2_{\mathbb{T}} \qquad (\text{new selection theorem}) \\ D(\pi) \cap D(\text{dev}\,\nabla) &= D(\text{dev}\,\nabla) = D(\nabla) = H^1 \hookrightarrow L^2 \qquad (\text{Relich's selection theorem and Korn type ineq.}) \end{split}$$

two new selection theorems for strong Lip. dom. and Korn Type ineq.: P/Zulehner ('16)

イロト イポト イヨト イヨト

University of Strathclyde, Glasgow, Scotland, January 17 2018

More Applications

There are Much More Complexes

- ... the world is full of complexes. ;)
- \Rightarrow relaxing and enjoying more and "own" complexes at

AANMPDE 11

11th Workshop on Analysis and Advanced Numerical Methods for Partial Differential Equations (not only) for Junior Scientists

http://www.mit.jyu.fi/scoma/AANMPDE11

August 6-10 2018, Särkisaari, Finland

organizers: Ulrich Langer, Dirk Pauly, Sergey Repin

Image: A math a math