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Maxwell’s Equations

Linear Maxwell’s Equations in 3D - Electro-Magneto-Dynamics

Ω ⊂ R3 domain (open and connected set) with boundary Γ

∂t(εE) − rotH + σE = −J in R+ ×Ω (DE 1.1, Ampére/Maxwell law)

∂t(µH) + rotE = 0 in R+ ×Ω (DE 1.2, Faraday/Maxwell law)

div(εE) = ρ in R+ ×Ω (DE 2.1, electric Gauß law)

div(µH) = 0 in R+ ×Ω (DE 2.2, magnetic Gauß law)

n × E = 0 on R+ × Γ (BC 1, perfect conductor)

n ⋅ (µH) = 0 on R+ × Γ (BC 2, perfect conductor)

(E ,H)(0) = (E0,H0) in Ω (IC)

E ,H ∶ R+ ×Ω→ C3 electric resp. magnetic/magnetization field

J ∶ R+ ×Ω→ C3 electric current density,

ρ ∶ R+ ×Ω→ C charge density

ε, µ, σ ∶ R+ ×Ω→ C3×3 permittivity resp. permeability resp. conductivity

divF = ∂1 F1 + ∂2 F2 + ∂3 F3, rotF = curlF =
⎡⎢⎢⎢⎢⎢⎣

∂2 F3 − ∂3 F2

∂3 F1 − ∂1 F3

∂1 F2 − ∂2 F1

⎤⎥⎥⎥⎥⎥⎦
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Maxwell’s Equations

Linear Maxwell’s Equations in 3D - rewrite as system

Ω ⊂ R3 domain

∂t(εE) − rotH + σE = −J in R+ ×Ω (DE 1.1, needed)

∂t(µH) + rotE = 0 in R+ ×Ω (DE 1.2, needed)

div(εE) = ρ in R+ ×Ω (DE 2.1, not needed)

div(µH) = 0 in R+ ×Ω (DE 2.2, not needed)

n × E = 0 on R+ × Γ (BC 1, needed)

n ⋅ (µH) = 0 on R+ × Γ (BC 2, not needed)

(E ,H)(0) = (E0,H0) in Ω (IC, later needed)

(∂t

=Λ (bd, sa, ≥ 0)
³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹µ

[ε 0
0 µ

] +

=Σ (bd)
³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹µ

[σ 0
0 0

]+

=M (unbd, ssa)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

[ 0 − rot
r̊ot 0

]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∂t Λ+Σ+M (rot=r̊ot∗)

) [E
H
] = [−J

0
] in R ×Ω (DE)

Rainer Picard ’09 (and earlier) and his Dresden school, e.g., Marcus Waurick ’11, ...
⇒ very nice and elegant (“simple”) solution theory:
∂t Λ +Σ +M cont inv, i.e., (∂t Λ +Σ +M)−1 ex cont op (time-weighted-L2-sense)
sol theo Hadamard sense + causality
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Maxwell’s Equations

Maxwell’s Equations in 3D - Simplifications

ε = µ = id, σ = 0 ⇒

∂t E − rotH = −F = −J in R+ ×Ω (DE 1.1)

∂t H + rotE = G = 0 in R+ ×Ω (DE 1.2)

divE = f = ρ in R+ ×Ω (DE 2.1)

divH = g = 0 in R+ ×Ω (DE 2.2)

n × E = 0 on R+ × Γ (BC 1)

n ⋅H = 0 on R+ × Γ (BC 2)

(E ,H)(0) = (E0,H0) in Ω (IC)
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Maxwell’s Equations

Maxwell’s Equations in 3D - Static Cases

time indep ⇒ ∂t(E ,H) = 0 ⇒

rotH = F in Ω (DE 1.1)
rotE = G in Ω (DE 1.2)
divE = f in Ω (DE 2.1)
divH = g in Ω (DE 2.2)
n × E = 0 on Γ (BC 1)
n ⋅H = 0 on Γ (BC 2)

E ,H decoupled ⇒

rotE = G in Ω (DE 1.2) ∣ rotH = F in Ω (DE 1.1)
divE = f in Ω (DE 2.1) ∣ divH = g in Ω (DE 2.2)
n × E = 0 on Γ (BC 1) ∣ n ⋅H = 0 on Γ (BC 2)

electro statics magneto statics

rotE = J in Ω
divE = j in Ω
n × E = 0 on Γt

n ⋅ E = 0 on Γn

model problem: electro-magneto statics (EMS)
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First Order Model Problem

Model Problem: Electro-Magneto-Static Maxwell Equations

setting: Hilbert/L2-based Sobolev spaces
geometry: Ω ⊂ R3 bounded domain with weak Lipschitz boundary Γ = ∂Ω
for simplicity: no mixed boundary conditions

rotE = J in Ω (1)

−divE = j in Ω (2)

n × E = 0 on Γ (3)

non-trivial kernel: H = {H ∈ L2 ∶ rotH = 0, divH = 0, ν ×H ∣Γ = 0}
additional condition on Dirichlet/Neumann fields for uniqueness:

πE = H ∈ H (4)

well known: (1)-(4) uniquely solvable
by Helmholtz decompositions and Friedrichs/Poincaré/Maxwell type estimates
for certain given right hand sides J, j , H

aim: general theory FA-ToolBox for linear problems/systems
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First Order Model Problem

FA-ToolBox for linear problems/systems

literature: probably very well known for ages (≥ 80 years), but hard to find ...

Friedrichs, Weyl, Hörmander, Fredholm, von Neumann, Riesz, Banach, ... ?

Why not rediscover?
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First Order Model Problem

Underlying Structure of the Model Problem

∇-rot-div-complex (de Rham complex):

{0}
ι
⇄
π

L2 ∇̊
⇄
− div

L2 r̊ot
⇄
rot

L2 d̊iv
⇄
−∇

L2 π
⇄
ι

R

unbounded, densely defined, closed, linear operators with adjoints

∇̊ ∶ H̊1 ⊂ L2 → L2, −div = (∇̊)∗ ∶ D ⊂ L2 → L2 sometimes: D = H(div)

r̊ot ∶ R̊ ⊂ L2 → L2, rot = (r̊ot)∗ ∶ R ⊂ L2 → L2 R = H(rot) = H(curl)

d̊iv ∶ D̊ ⊂ L2 → L2, −∇ = (d̊iv)∗ ∶ H1 ⊂ L2 → L2 R̊ = H0(rot) = H0(curl)

complex: ‘range ⊂ kernel’ (rot∇ = 0, div rot = 0)

∇̊H̊1 ⊂ R̊0, r̊otR̊ ⊂ D̊0, d̊ivD̊ ⊂ N(π) = L2
� = L2 ∩R�

crucial: compact embeddings (Rellich’s selection theorem & Weck’s selection
theorems)

H1 ↪ L2, R̊ ∩D↪ L2, R ∩ D̊↪ L2

⇒ Helmholtz decompositions, closed ranges, continuous inverses, and
Friedrichs/Poincaré/Maxwell type estimates

√
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First Order Model Problem

Underlying Structure of the Model Problem

R̊ ∩D↪ L2, R ∩ D̊↪ L2

Weck’s selection theorems: Weck ’74 (Habil.), stimulated by Rolf Leis

more literature on Weck’s selection theorems:

Weber ’80, Picard ’84, Costabel ’90, Witsch ’93, Jochmann ’97, Kuhn ’99,
Picard/Weck/Witsch ’01, Bauer/P/Schomburg ’16, ’17

Dirk Pauly EMS by FA-ToolBox Universität Duisburg-Essen, Campus Essen



Department Colloquium (Department of Mathematics and Statistics) University of Strathclyde, Glasgow, Scotland, January 17 2018

First Order Model Problem

Abstract Formulation

rotE = J in Ω

−divE = j in Ω

ν × E = 0 on Γ

πE = H ∈ H
£

r̊otE = J

−divΓn E = j

πE = H ∈ H

£ (x ∶= E , A1 ∶= r̊ot, A∗
1 = r̊ot

∗ = rot, A0 ∶= ∇̊, A∗
0 = ∇̊∗ = −div)

A1x = f

A∗
0 x = g

πix = h ∈ N(A1) ∩N(A∗
0 )
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General First Order Problem

General or Abstract Problem

setting: unbounded, densely defined, closed, linear operators with adjoints

Ai ∶ D(Ai) ⊂ Hi → Hi+1, A∗
i ∶ D(A∗

i ) ⊂ Hi+1 → Hi , i ∈ Z

complex: (here i = 1)

. . . ⇄ Hi−2

Ai−2
⇄

A∗

i−2

Hi−1

Ai−1
⇄

A∗

i−1

Hi

Ai⇄
A∗

i

Hi+1

Ai+1
⇄

A∗

i+1

Hi+2 ⇄ . . .

complex property: ‘range ⊂ kernel’ ( AiAi−1 = 0 ⇔ A∗
i−1A

∗
i = 0)

R(Ai−1) ⊂ N(Ai) ⇔ R(A∗
i ) ⊂ N(A∗

i−1)

problem: find x ∈ D(Ai) ∩D(A∗
i−1) s.t.

Aix = f , A∗
i−1x = g , πix = h,

where f ∈ R(Ai), g ∈ R(A∗
i−1) and h ∈ Hi with kernel N(Ai) ∩N(A∗

i−1)
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General First Order Problem

Toolbox

Hodge/Helmholtz/Weyl decompositions:

Hi = N(Ai) ⊕Hi
R(A∗

i ), Hi+1 = N(A∗
i ) ⊕Hi+1

R(Ai)

⇒ reduce Ai to N(Ai)� = R(A∗
i ) and A∗

i to N(A∗
i )
� = R(Ai)

⇒ injective reduced operators Ai , A∗i , “same” complex for Ai , A∗i
⇒ A−1

i , (A∗i )
−1 exist always, but might be unbounded

⇒ crucial lemmas
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General First Order Problem

Toolbox

Lemma (P)

The following assertions are equivalent:

(i) ∃ ci > 0 ∀ϕ ∈ D(Ai) ∣ϕ∣Hi
≤ ci ∣Aiϕ∣Hi+1

(general Friedrichs/Poincaré/

(i∗) ∃ c∗i > 0 ∀ψ ∈ D(A∗i ) ∣ψ∣Hi+1
≤ c∗i ∣A∗

i ψ∣Hi
Maxwell type estimates)

(ii) The ranges R(Ai) = R(Ai) are closed.

(ii∗) The ranges R(A∗
i ) = R(A∗i ) are closed.

(iii) The inverse operator A−1
i ∶ R(Ai) → D(Ai) is continuos.

(iii∗) The inverse operator (A∗i )
−1 ∶ R(A∗

i ) → D(A∗i ) is continuos.

Lemma (P)

If ci , c
∗
i are “best” constants, then ci = c∗i = ∣A−1

i ∣ = ∣(A∗i )
−1∣.

Lemma (P)

If D(Ai) ↪ Hi is compact, then the latter assertions hold

and A−1
i ∶ R(Ai) → R(A∗

i ), (A∗i )
−1 ∶ R(A∗

i ) → R(Ai) are compact.

proofs: elementary computations and closed range/graph theorem
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General First Order Problem

Toolbox

Lemma (P)

D(Ai) ↪ Hi compact ⇔ D(A∗i ) ↪ Hi+1 compact

Lemma (P)

D(Ai) ∩D(A∗
i−1) ↪ Hi compact

⇔ D(Ai) ↪ Hi , D(A∗i−1) ↪ Hi , N(Ai) ∩N(A∗
i−1) ↪ Hi compact

⇔ D(Ai) ↪ Hi , D(Ai−1) ↪ Hi−1, N(Ai) ∩N(A∗
i−1) ↪ Hi compact

Lemma (P)

Lots of Helmholtz type decompositions hold, such as

=N(A∗

i−1)

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Hi = R(Ai−1) ⊕Hi

(N(Ai) ∩N(A∗
i−1))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=N(Ai )

⊕Hi
R(A∗

i ), D(Ai) = N(Ai) ⊕Hi
D(Ai), ...

proofs: elementary computations and different Helmholtz type decompositions
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General First Order Problem

Toolbox

Remark

best world: D(Ai) ∩D(A∗
i−1) ↪ Hi compact

usually true for bounded domains ⇒ full toolbox

typically not true for unbounded domains ⇒ toolbox without compactness results

(locally compact embeddings)
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General First Order Problem

Solution Theory for Abstract Problem

problem: find x ∈ D(Ai) ∩D(A∗
i−1) st

Aix = f

A∗
i−1x = g

πix = h

Theorem (solution theory, P)

unique sol in Hadamard sense (cont dpd on data, ...)
⇔ f ∈ R(Ai), g ∈ R(A∗

i−1) and h ∈ N(Ai) ∩N(A∗
i−1)

Proof.

x = xf + xg + h, xf ∶= A−1
i f , xg ∶= (A∗i−1)

−1g

note: problem is linear and hence decouples

Aixf = f Aixg = 0

A∗
i−1xf = 0 A∗

i−1xg = g

πixf = 0 πixg = 0
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General First Order Problem

Variational Formulations for Abstract Problem

How to find x ∈ D(Ai) ∩D(A∗
i−1), ie, x = xf + xg + h, ie,

xf ∈ D(Ai) = D(Ai) ∩ R(A∗
i ) and xg ∈ D(A∗

i−1) = D(A∗i−1) ∩ R(Ai−1) with

Aix = f Aixf = f Aixg = 0

A∗
i−1x = g A∗

i−1xf = 0 A∗
i−1xg = g

πix = h πixf = 0 πixg = 0

by variational formulations that can be “easily” implemented by numerical methods
such as FEM?

formulation 1: test Aixf = f by Aiϕ with ϕ ∈ D(Ai)
⇒ find xf ∈ D(Ai) st

∀ϕ ∈ D(Ai) ⟨Aixf ,Aiϕ⟩Hi+1
= ⟨f ,Aiϕ⟩Hi+1

well posed by toolbox, uniq sol by Riesz

note: R(Ai) = R(Ai) ⇒ var form holds for all ϕ ∈ D(Ai)
⇒ Aixf − f ∈ R(Ai) ∩ R(Ai)� ⇒ Aixf = f holds

note: additional condition xf ∈ R(A∗
i ) = N(Ai)� ⇒ sadd point form / inf-sup

note: num approx satisfies x̃f ∈ D(Ai) but x̃f ∈ R(A∗
i ) = N(Ai)� only weakly

corresponding idea works for A∗
i−1xg = g
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General First Order Problem

Variational Formulations for Abstract Problem

How to find x ∈ D(Ai) ∩D(A∗
i−1), ie, x = xf + xg + h, ie,

xf ∈ D(Ai) = D(Ai) ∩ R(A∗
i ) and xg ∈ D(A∗

i−1) = D(A∗i−1) ∩ R(Ai−1) with

Aix = f Aixf = f Aixg = 0

A∗
i−1x = g A∗

i−1xf = 0 A∗
i−1xg = g

πix = h πixf = 0 πixg = 0

by variational formulations that can be “easily” implemented by numerical methods
such as FEM?

formulation 2: xf ∈ R(A∗
i ) ⇒ xf = A∗

i yf with yf = (A∗i )
−1xf ∈ D(A∗i )

test xf by A∗
i φ with φ ∈ D(A∗i ) and use Aixf = f

⇒ find yf ∈ D(A∗i ) st

∀φ ∈ D(A∗i ) ⟨A∗
i yf ,A

∗
i φ⟩Hi

= ⟨xf ,A∗
i φ⟩Hi

= ⟨Aixf , φ⟩Hi+1
= ⟨f , φ⟩Hi+1

well posed by toolbox, uniq sol by Riesz

note: R(A∗i ) = R(A∗
i ) and f ∈ R(Ai) ⇒ var form holds for all φ ∈ D(A∗

i )
⇒ xf ∶= A∗

i yf ∈ D(Ai) and Aixf = f holds

note: additional condition yf ∈ R(Ai) = N(A∗
i )
� ⇒ sadd point form / inf-sup

note: num approx satisfies x̃f ∈ R(A∗
i ) but x̃f ∈ D(Ai) only weakly

corresponding idea works for A∗
i−1xg = g
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General Second Order Problem

Solution Theory for Abstract Problem

problem: find x ∈ D(A∗
i Ai) ∩D(A∗

i−1) st

A∗
i Aix = f

A∗
i−1x = g

πix = h

⇒ introduce potential y ∶= Aix
⇒ equiv mixed form: find pair (x , y) ∈ (D(Ai) ∩D(A∗

i−1)) × (D(A∗
i ) ∩ R(Ai)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=D(A∗

i
)

) st

Aix = y , Ai+1y = 0

A∗
i−1x = g , A∗

i y = f

πix = h, πi+1y = 0

Theorem (solution theory, P)

unique sol in Hadamard sense (cont dpd on data, ...)
⇔ f ∈ R(A∗

i ), g ∈ R(A∗
i−1) and h ∈ N(Ai) ∩N(A∗

i−1)

Proof.

x = xy + xg + h, xy ∶= A−1
i y , xg ∶= (A∗i−1)

−1g , y ∶= (A∗i )
−1f
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General Second Order Problem

Solution Theory for Abstract Problem

Theorem (solution theory, P)

unique sol in Hadamard sense (cont dpd on data, ...)
⇔ f ∈ R(A∗

i ), g ∈ R(A∗
i−1) and h ∈ N(Ai) ∩N(A∗

i−1)

Proof.

x = xy + xg + h, xy ∶= A−1
i y , xg ∶= (A∗i−1)

−1g , y ∶= (A∗i )
−1f

note: problem is linear and hence decouples

A∗
i Aix = f Aix = y , Ai+1y = 0

A∗
i−1x = g ⇔ A∗

i−1x = g , A∗
i y = f

πix = h πix = h, πi+1y = 0

Aixy = y Aixg = 0 Ai+1y = 0

⇔ A∗
i−1xy = 0 A∗

i−1xg = g A∗
i y = f

πixy = 0 πixg = 0 πi+1y = 0
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Applications to First Order Systems

Prototypical FOS: Electro-Magneto-Static Maxwell

Ω ⊂ R3 bounded domain with weak Lipschitz boundary Γ = ∂Ω, “Γ = Γt ∪̇Γn”

rotΓt E = J ∈ rotΓt RΓt in Ω

−divΓn εE = j ∈ divΓn DΓn = L2 or L2
� in Ω

ν × E = 0 on Γt

ν ⋅ εE = 0 on Γn

πE = H ∈ HD,ε = RΓt ,0 ∩ ε
−1DΓn,0

⇒ E ∈ D(rotΓt ) ∩D(divΓn ε) = RΓt ∩ ε−1DΓn

A0 ∶= ∇Γt ∶ H1
Γt
⊂ L2 → L2

ε, A1 ∶= rotΓt ∶ RΓt ⊂ L2
ε → L2

A∗
0 = −divΓn ε ∶ ε−1DΓn ⊂ L2

ε → L2, A∗
1 = ε−1 rotΓn ∶ RΓn ⊂ L2 → L2

ε
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Applications to First Order Systems

Prototypical FOS: Electro-Magneto-Static Maxwell

compact embeddings:

D(A0) ↪ H0 ⇔ H1
Γt
↪ L2 (Rellich’s selection theorem)

D(A1) ↪ H1 ⇔ RΓt ∩ ε
−1 rot RΓn ⊂ RΓt ∩ ε

−1DΓn ↪ L2
ε (Weck’s selection theorem)

c0 = cfp (Friedrichs/Poincaré constant) and c1 = cm (Maxwell constant)

∀ϕ ∈ D(A0) ∣ϕ∣H0
≤ c0∣A0ϕ∣H1

⇔ ∀ϕ ∈ H1
Γt

∣ϕ∣L2 ≤ cfp∣∇ϕ∣L2
ε

∀φ ∈ D(A∗0 ) ∣φ∣H1
≤ c0∣A∗

0φ∣H0
⇔ ∀Φ ∈ ε−1DΓn ∩∇H1

Γt
∣Φ∣L2

ε
≤ cfp∣div εΦ∣L2

∀ϕ ∈ D(A1) ∣ϕ∣H1
≤ c1∣A1ϕ∣H2

⇔ ∀Φ ∈ RΓt ∩ ε
−1 rot RΓn ∣Φ∣L2

ε
≤ cm∣ rot Φ∣L2

∀ψ ∈ D(A∗1 ) ∣ψ∣H2
≤ c1∣A∗

1ψ∣H1
⇔ ∀Ψ ∈ RΓn ∩ rot RΓt ∣Ψ∣L2 ≤ cm∣ rot Ψ∣L2

ε

Helmholtz decomposition:

H1 = R(A0)⊕H1
(N(A1)∩N(A∗

0 ))⊕Hi
R(A∗

1 ) ⇔ L2
ε = ∇H1

Γt
⊕L2

ε
HD,ε ⊕L2

ε
ε−1 rot RΓn
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Applications to Second Order Systems

Simplest SOS: Dirichlet/Neumann Laplace

Ω ⊂ R3 bounded domain with weak Lipschitz boundary Γ = ∂Ω, “Γ = Γt ∪̇Γn”

−divΓn ε∇Γt u = f ∈ L2 or L2
� in Ω

u = 0 on Γt

ν ⋅ ε∇u = 0 on Γn

⇔ ∇Γt u = E ∈ ∇Γt H1
Γt

rotΓt E = 0 ∈ rotΓt RΓt in Ω

−divΓn εE = f ∈ L2 or L2
� in Ω

u = 0 ν × E = 0 on Γt

ν ⋅ εE = 0 on Γn

πE = 0 ∈ HD,ε

⇒ (u,E) ∈ D(∇Γt ) × (D(divΓn ε) ∩ R(∇Γt )) = H1
Γt
× (ε−1DΓn ∩∇H1

Γt
)

A0 ∶= ∇Γt ∶ H1
Γt
⊂ L2 → L2

ε, A1 ∶= rotΓt ∶ RΓt ⊂ L2
ε → L2

A∗
0 = −divΓn ε ∶ ε−1DΓn ⊂ L2

ε → L2, A∗
1 = ε−1 rotΓn ∶ RΓn ⊂ L2 → L2

ε
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More Applications

More First and Second Order Systems (FOS & SOS)

Ω ⊂ R3 bounded weak Lipschitz domain

Electro/Magneto-Static Maxwell with mixed boundary conditions
∇-rot-div-complex (symmetry!, de Rham complex):

{0} or R
ι
⇄
π

L2
∇Γt⇄

− divΓn ε
L2
ε

rotΓt⇄
ε−1 rotΓn

L2
divΓt⇄
−∇Γn

L2 π
⇄
ι

R or {0}

related fos

∇Γt
u = A in Ω ∣ rotΓt

E = J in Ω ∣ divΓt
H = k in Ω ∣ πv = b in Ω

πu = a in Ω ∣ − divΓn εE = j in Ω ∣ ε
−1

rotΓn H = K in Ω ∣ −∇Γn v = B in Ω

related sos

− divΓn ε∇Γt
u = j in Ω ∣ ε

−1
rotΓn rotΓt

E = K in Ω ∣ −∇Γn divΓt
H = B in Ω

πu = a in Ω ∣ − divΓn εE = j in Ω ∣ ε
−1

rotΓn H = K in Ω

corresponding compact embeddings:

D(∇Γt
) ∩ D(π) = D(∇Γt

) = H
1
Γt
↪ L

2
(Rellich’s selection theorem)

D(rotΓt
) ∩D(− divΓn ε) = RΓt

∩ ε
−1

DΓn ↪ L
2
ε (Weck’s selection theorem)

D(divΓt
) ∩ D(ε

−1
rotΓn ) = DΓt

∩ RΓn ↪ L
2

(Weck’s selection theorem)

D(∇Γn ) ∩ D(π) = D(∇Γn ) = H
1
Γn
↪ L

2
(Rellich’s selection theorem)

Weck’s selection theorem for weak Lip. dom. and mixed bc: Bauer/P/Schomburg (’16)
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More Applications

More First and Second Order Systems (FOS & SOS)

Ω ⊂ RN bd w. Lip. dom. or Ω Riemannian manifold with cpt cl. and Lip. boundary Γ

Generalized Electro/Magneto-Static Maxwell with mixed boundary conditions
d-d-complex (symmetry!, de Rham complex):

{0} or R
ι
⇄
π

L
2,0

d0
Γt
⇄

−δ1
Γn

L
2,1

d1
Γt
⇄

−δ2
Γn

. . . L
2,q

d
q
Γt
⇄

−δ
q+1
Γn

L
2,q+1

. . .L
2,N−1

dN−1
Γt
⇄

−δN
Γn

L
2,N π

⇄
ι

R or {0}

related fos

d
q
Γt

E = F in Ω

− δ
q
Γn

E = G in Ω

related sos

− δ
q+1
Γn

d
q
Γt

E = F in Ω

− δ
q
Γn

E = G in Ω

includes: EMS rot / div, Laplacian, rot rot, and more. . .
corresponding compact embeddings:

D(d
q
Γt
) ∩ D(δ

q
Γn
) ↪ L

2,q
(Weck’s selection theorems)

Weck’s selection theorem for Lip. manifolds and mixed bc: Bauer/P/Schomburg (’17)
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More Applications

More First and Second Order Systems (FOS & SOS)

Ω ⊂ R3 bounded strong Lipschitz domain

Elasticity
sym∇-Rot Rot⊺S -DivS-complex (symmetry!):

{0}
ι
⇄
π

L2
sym∇Γ⇄
−DivS

L2
S

Rot Rot⊺S,Γ
⇄

Rot Rot⊺S

L2
S

DivS,Γ
⇄

− sym∇
L2 π

⇄
ι

RM

related fos (Rot Rot⊺S,Γ, Rot Rot⊺S first order operators!)

sym∇Γv = M in Ω ∣ Rot Rot
⊺

S,Γ M = F in Ω ∣ DivS,Γ N = g in Ω ∣ πv = r in Ω

πv = 0 in Ω ∣ −DivS M = f in Ω ∣ Rot Rot
⊺

S N = G in Ω ∣ − sym∇v = M in Ω

related sos (Rot Rot⊺S Rot Rot⊺S,Γ second order operator!)

−DivS sym∇Γv = f in Ω ∣ Rot Rot
⊺

S Rot Rot
⊺

S,Γ M = G in Ω ∣ − sym∇DivS,Γ N = M in Ω

πv = 0 in Ω ∣ −DivS M = f in Ω ∣ Rot Rot
⊺

S N = G in Ω

corresponding compact embeddings:

D(sym∇Γ) ∩ D(π) = D(∇Γ) = H
1
Γ ↪ L

2
(Rellich’s selection theorem and Korn ineq.)

D(Rot Rot
⊺

S,Γ) ∩ D(DivS) ↪ L
2
S (new selection theorem)

D(DivS,Γ) ∩ D(Rot Rot
⊺

S ) ↪ L
2
S (new selection theorem)

D(π) ∩ D(sym∇) = D(∇) = H
1
↪ L

2
(Rellich’s selection theorem and Korn ineq.)

two new selection theorems for strong Lip. dom.: P/Zulehner (’17)
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More Applications

More First and Second Order Systems (FOS & SOS)

Ω ⊂ R3 bounded strong Lipschitz domain

General Relativity or Biharmonic Equation
∇∇-RotS-DivT-complex (no symmetry!):

{0}
ι
⇄
π

L2
∇∇Γ⇄

div DivS
L2
S

RotS,Γ
⇄

sym RotT
L2
T

DivT,Γ
⇄

− dev∇
L2 π

⇄
ι

RT

related fos (∇∇Γ, div DivS first order operators!)

∇∇Γu = M in Ω ∣ RotS,Γ M = F in Ω ∣ DivT,Γ N = g in Ω ∣ πv = r in Ω

πu = 0 in Ω ∣ div DivS M = f in Ω ∣ sym RotT N = G in Ω ∣ − dev∇v = T in Ω

related sos (div DivS∇∇Γ = ∆2
Γ second order operator!)

div DivS∇∇Γu = ∆
2
Γu = f in Ω ∣ sym RotT RotS,Γ M = G in Ω ∣ − dev∇DivT,Γ N = T in Ω

πu = 0 in Ω ∣ div DivS M = f in Ω ∣ sym RotT N = G in Ω

corresponding compact embeddings:

D(∇∇Γ) ∩ D(π) = D(∇∇Γ) = H
2
Γ ↪ L

2
(Rellich’s selection theorem)

D(RotS,Γ) ∩ D(div DivS) ↪ L
2
S (new selection theorem)

D(DivT,Γ) ∩ D(sym RotT) ↪ L
2
T (new selection theorem)

D(π) ∩ D(dev∇) = D(dev∇) = D(∇) = H
1
↪ L

2
(Rellich’s selection theorem and Korn type ineq.)

two new selection theorems for strong Lip. dom. and Korn Type ineq.: P/Zulehner (’16)
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More Applications

There are Much More Complexes . . .

. . . the world is full of complexes. ;)

⇒ relaxing and enjoying more and “own” complexes at

AANMPDE 11
11th Workshop on Analysis and Advanced Numerical Methods

for Partial Differential Equations (not only) for Junior Scientists

http://www.mit.jyu.fi/scoma/AANMPDE11

August 6–10 2018, Särkisaari, Finland

organizers: Ulrich Langer, Dirk Pauly, Sergey Repin

← conference site
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