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Maxwell’s Equations

Linear Maxwell’s Equations in 3D - Electro-Magneto-Dynamics

Q c R? domain (open and connected set) with boundary I

Ot(eE) —rotH+0cE =-J in Ry xQ  (DE 1.1, Ampére/Maxwell law)
Ot(uH) + rot E =0 in Ry xQ  (DE 1.2, Faraday/Maxwell law)
div(eE) =p in Ry xQ  (DE 2.1, electric GauB law)
div(pH) =0 in Ry xQ  (DE 2.2, magnetic GauB law)
nxE=0 on Ry xI (BC 1, perfect conductor)
n-(uH)=0 on Ry xI (BC 2, perfect conductor)
(E,H)(0) = (Eo,Hp) in Q (1)
E,H:Ry xQ — c3 electric resp. magnetic/magnetization field
J: Ry xQ — c3 electric current density,
p:RixQ—>C charge density
e, 0 Ry xQ — 33 permittivity resp. permeability resp. conductivity
02 F3-03 F
divF =01 F1 + 02 Fp + 03 F3, rot F=curl F=|03F - 01 F3
O1F2-02F
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Maxwell’s Equations

Linear Maxwell’s Equations in 3D - rewrite as system

Dirk Pauly

University of Strathclyde, Glasgow, Scotland, January 17 2018

Q c R? domain
Ot(eE)—rotH+cE =-J in Ry xQ  (DE 1.1, needed)
Ot(uH) +rotE =0 in Ry xQ  (DE 1.2, needed)
div(eE) = p in Ry xQ  (DE 2.1, not needed)
div(pH) =0 in Ry xQ (DE 2.2, not needed)
nxE=0 on Ry xI (BC 1, needed)
n-(uH)=0 on Ry xI (BC 2, not needed)
(E,H)(0) = (Eo, Ho) inQ (IC, later needed)
=A (bd, sa, 20) =X (bd) =M (unbd, ssa)
—~— —— ——
e O c 0 0 -—rot E -J .
(o [0 u] +[o O]+[r6t 0 ])[H]_[O] inRxQ  (DE)
=0t A+X+M (rot=rot*)

Rainer Picard '09 (and earlier) and his Dresden school, e.g., Marcus Waurick '11, ...

= very nice and elegant (“simple”) solution theory:

At N+ X + M cont inv, i.e., (Ot A+X + M)~ ex cont op (time—weighted—L2—sense)

sol theo Hadamard sense + causality
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Maxwell’s Equations

Maxwell’'s Equations in 3D - Simplifications

e=p=id, c=0=>

OtE—-rotH=-F=-J in Ry xQ (DE 1.1)
OtH+rotE=G=0 in Ry xQ (DE 1.2)
divE=f=p in Ry xQ (DE 2.1)
divH=g=0 in Ry xQ (DE 2.2)
nxE=0 on Ry xT (BC1)
n-H=0 on Ry xT (BC 2)
(E, H)(0) = (Eo, Ho) in © (1<)
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Maxwell’s Equations

Maxwell's Equations in 3D - Static Cases

time indep = 0:(E,H) =0 =

rotH=F
rotE=G
divE="f
divH=g
nxE=0
n-H=0

E, H decoupled =

in Q
in Q
in Q
in Q
onl
onl

University of Strathclyde, Glasgow, Scotland, January 17 2018

rotE=G in Q (DE 1.2) rotH=F in Q (DE 1.1)
divE=f in Q (DE 2.1) divH=g in Q (DE 2.2)
nxE=0 onl (BC1) n-H=0 on (BC2)
electro statics magneto statics

rot E=J in Q

divE = in Q

nxE=0 on I;

n-E=0 on [,

model problem: electro-magneto statics (EMS)

Dirk Pauly
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First Order Model Problem

Model Problem: Electro-Magneto-Static Maxwell Equations

setting: HiIbert/LQ—based Sobolev spaces
geometry: Q c R? bounded domain with weak Lipschitz boundary I' = 9Q
for simplicity: no mixed boundary conditions

rotE =J in Q (1)
-divE=j in Q (2)
nxE=0 onl (3)

non-trivial kernel: 7 = {H e L2 : rot H =0, divH = 0, v x H|r = 0}
additional condition on Dirichlet/Neumann fields for uniqueness:

rE=HeH (4)

well known: (1)-(4) uniquely solvable
by Helmholtz decompositions and Friedrichs/Poincaré/Maxwell type estimates
for certain given right hand sides J, j, H

aim: general theory FA-ToolBox for linear problems/systems
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First Order Model Problem

FA-ToolBox for linear problems/systems

literature: probably very well known for ages (> 80 years), but hard to find ...

Friedrichs, Weyl, Hormander, Fredholm, von Neumann, Riesz, Banach, ... 7

Why not rediscover?

Dirk Pauly niversitat Dui: Essen, Campus Essen
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First Order Model Problem

Underlying Structure of the Model Problem

V-rot-div-complex (de Rham complex):

L v rot div iy
0y 2 L2 =2 2 =2 L2 = L2 2 R
T —div rot -V L

unbounded, densely defined, closed, linear operators with adjoints

VA cL? > L2 —div=(V)*:Dcl? L2 sometimes: D = H(div)
rét:Rcl? - L2 rot = (rét)* : Rc L? — L2 R = H(rot) = H(curl)
div:Dcl?-12 -v=(div)*:H cL? > 2 R = Ho(rot) = Ho(curl)

complex: ‘range c kernel’ (rotV =0, divrot = 0)
VH! c Ry, rétRcDg, divDc N(x)=L2=1L%2nR*

crucial: compact embeddings (Rellich’s selection theorem & Weck's selection
theorems)

H! o L2, RnD < L?, RAD < L2
= Helmholtz decompositions, closed ranges, continuous inverses, and
Friedrichs/Poincaré/Maxwell type estimates /
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First Order Model Problem

Underlying Structure of the Model Problem

RnD - L2, RND - L?

Weck's selection theorems: Weck '74 (Habil.), stimulated by Rolf Leis

more literature on Weck's selection theorems:

Weber '80, Picard '84, Costabel '90, Witsch '93, Jochmann '97, Kuhn '99,
Picard/Weck/Witsch '01, Bauer/P/Schomburg '16, '17
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First Order Model Problem

Abstract Formulation

rotE=J in Q
—divE = in Q
vxE=0 onl
mE=HeH
<
rotE = J
—divr, E=j
TE=HeH
{ (x:=E, Aqp=rdt, A} =rot" = rot, Ag:=V, A}=V*=-di)
Aix="f
Agx=g

TiX = he N(Al) N N(Aa)
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General First Order Problem

General or Abstract Problem

University of Strathclyde, Glasgow, Scotland, January 17 2018

setting: unbounded, densely defined, closed, linear operators with adjoints

A,' : D(A,) c H,' ind H,'+17

AI* : D(Af) C H,'+1 g H,'7

complex: (here i =1)
Ajz Ai1
2 Ho =2 Hi1 =2
A¥ A
i-2 i-1

A Aj1
< M| 2
A Al

complex property: ‘range c kernel’ (n < A7 AT

R(Ai-1) e N(A) | < R(A7)c N(AL)

problem: find x e D(A;) n D(A} ) s.t.

‘ Aix=f, Af,x=g, mx=h,

ieZ

Hi+2

0)

where f € R(A;), g€ R(A7 ;) and he H; with kernel N(A;) n N(A} )

Dirk Pauly
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General First Order Problem

Toolbo

Hodge/Helmholtz/Weyl decompositions:

Hi = N(A;) @n; R(AT), Hiv1 = N(AT) @n,,, R(A)

i+1

= reduce A;to N(Aj))*=R(AY) and A7 to N(A7)'=R(A)
= injective reduced operators A;, A7, “same" complex for A;, Af

= A,Tl, (A,’.*)’1 exist always, but might be unbounded

= crucial lemmas

Dirk Pauly niversitat Dui: Essen, Campus Essen
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General First Order Problem

Toolbox

Lemma (P)

The following assertions are equivalent:

(i) 3¢i>0 VepeD(A) leln; < ci |Ajpln,,  (general Friedrichs/Poincaré/
(i*) 3¢ >0 Vipe D(AY) [, < |Afly Maxwell type estimates)

)
(ii) The ranges R(A;) = R(A;) are closed.
(ii*) The ranges R(AY) = R(A}) are closed.
(iii) The inverse operator A7': R(A;) - D(A;) is continuos.
)

(iii*

The inverse operator (A?)~!: R(A¥) - D(AY) is continuos.

If cj, c* are “best” constants, then ¢; = ¢ = |A7Y| = |(AF)7Y.

If D(A;) = H; is compact, then the latter assertions hold
and A71: R(A;) » R(AY), (A7)™1: R(AY) — R(A;) are compact.

proofs: elementary computations and closed range/graph theorem

Dirk Pauly EMS by FA-ToolBox Universitat Duisburg-Essen, Campus Essen
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General First Order Problem

Toolbox

D(A;j) = H;j compact < D(A?) < Hj.; compact

Lemma (P)

D(A;)nD(A};) = H; compact

< D(A;) =>H;, D(AZ;)=>H; N(A)nN(A?,)—=>H; compact
< D(A;) > H;, D(Ai_1) =>Hi_1, N(A;)nN(AY,) > H; compact

| A

Lemma (P)

Lots of Helmholtz type decompositions hold, such as
=N(AZ)

H; = R(Aizr) @n, (N(A) N N(AT ) @, R(AT),  D(A)) = N(A)) @n, D(A)),

=N(Aj)

proofs: elementary computations and different Helmholtz type decompositions

Dirk Pauly EMS by FA-ToolBox Universitat D
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General First Order Problem

Toolbo

best world: D(A;j) n D(AY_;) < H; compact

usually true for bounded domains = full toolbox
typically not true for unbounded domains = toolbox without compactness results
(locally compact embeddings)

Dirk Pauly niversitat Dui: sen, Campus Essen
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General First Order Problem

Solution Theory for Abstract Problem

problem: find x e D(A;) n D(AY ) st

A,‘X= f
Af i x=g
X = h

Theorem (solution theory, P)

unique sol in Hadamard sense (cont dpd on data, ...)
<= feR(A;), geR(A7;) and heN(A;))nN(AL,;)

X =Xf+xg+h, xri= AT, xgi= (A7) 7g

note: problem is linear and hence decouples

A,‘Xf = f A,‘Xg = O
A;—ilx,r =0 A?,lxg =g
TiXf = 0 TiXg = 0

Dirk Pauly EMS by FA-ToolBox Universitat Duisburg-Essen, Campus Essen
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General First Order Problem

Variational Formulations for Abstract Problem

How to find x e D(A;) n D(A?Y ), ie, x = xf + xg + h, ie,
xf € D(A;) = D(Aj)n R(A}) and xg € D(A? ;) = D(A? ;) n R(A;_1) with

Aix=f Aixp="fF Aixg =0
Alix=g Alyxr=0 Al =g
wix=h mixF =0 TiXg =0

by variational formulations that can be “easily” implemented by numerical methods
such as FEM?

formulation 1: test A;x; = f by Ajp with ¢ € D(A;)

= find xr € D(A;) st

Ve D(A) (Aixe, AioYn,,, = (F, Aoy,

well posed by toolbox, uniq sol by Riesz
note: R(A;)=R(A;) = varform holds for all ¢ € D(A;)

= A,'Xf —-fe R(A,) n R(A,)l = A,'Xf = f holds
note: additional condition xr € R(A¥) = N(A;)* = sadd point form / inf-sup
note: num approx satisfies Xr € D(A;) but Xr € R(AY) = N(A;)* only weakly

corresponding idea works for A¥ |xz = g

Dirk Pauly EMS by FA-ToolBox Universitat Duisburg-Essen, Campus Essen
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General First Order Problem

Variational Formulations for Abstract Problem

How to find x e D(A;) n D(A?Y ), ie, x = xf + xg + h, ie,
xf € D(A;) = D(Aj)n R(A}) and xg € D(A? ;) = D(A? ;) n R(A;_1) with

A,'X =f A,‘Xf =f A,'Xg =0
Alix=g AilLxe =0 Al =g
7'l','X=h 7'l','Xf=0 7T,'Xg=0

by variational formulations that can be “easily” implemented by numerical methods
such as FEM?

formulation 2: xr € R(AY) = x¢=Afyr with yr = (A7) xr € D(A})
test x; by Af¢ with ¢ € D(A?) and use Ajxs = f

= find yr e D(A}) st

VoeD(AT)  (Alyr, Afodn, = (xr, AT b, = (Aixr, dhny,y = (F, Pnyyy

well posed by toolbox, uniq sol by Riesz
note: R(A;)=R(A})and feR(A;) = var form holds for all ¢ € D(AY)

= xr:=Afyr e D(A;) and Ajxf = f holds
note: additional condition yr € R(A;) = N(Af)* =  sadd point form / inf-sup
note: num approx satisfies Xr € R(A}) but % € D(A;) only weakly

corresponding idea works for A7 xz =g
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General Second Order Problem

Solution Theory for Abstract Problem

problem: find x e D(AYA;)nD(A} ) st

ATAix=f
A x=g
Tix=h

= introduce potential y := A;x

= equiv mixed form: find pair (x,y) € (D(A;) n D(AF ;) x ( D(AF) n R(A;)) st

| S —

~D(A7)
Ajx=y, A1y =0

AT x=g, Afy=f
mix = h, mit1y =0

Theorem (solution theory, P)

unique sol in Hadamard sense (cont dpd on data, ...)
<= feR(A}), geR(AY,)

and  heN(A;)nN(AY,)

X=Xy +Xg +h,

xy = Aty xgi= (AL) e, yi= (A7 m
Dirk Pauly
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General Second Order Problem

Solution Theory for Abstract Problem

Theorem (solution theory, P)

unique sol in Hadamard sense (cont dpd on data, ...)
<= feR(A}), geR(A7;) and heN(A;)nN(A,)

X=Xy +Xg +h, xy = Aly, xgi=(AF)7lg, yi= (A7)

note: problem is linear and hence decouples

AfAix=f Aix=y, Ajy =0
Alix=g = Alix=g, Afy=f
mix=h Tix = h, Tiv1y =0
Aixy =y Aixg =0 Ai1y=0

aad Alyx =0 Alixg=g Afy=f
ixy =0 Tixg =0 Tiv1y =0

Dirk Pauly EMS by FA-ToolBox Universitat Duisburg-Essen, Campus Essen
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Applications to First Order Systems

Prototypical FOS: Electro-Magneto-Static Maxwell

Q c R3 bounded domain with weak Lipschitz boundary [ =9Q, “T =T Ul,"

rotr, E = J e rotr, Rr, in Q
—divr, eE = j e divr, D, = L? or L? in Q
vxE=0 on It
v-eE=0 on

-1
TI'E:HGIILLD,E :Rrhoﬂs DI',,,O

= E e D(rotr,) n D(divr, €) = Rr, ne~1Dr,

Ag:=Vr, tHf, c L® > L2,

L -1 2 2
r,€l:e Dr,cl; =L,

Dirk Pauly i itat Duisburg-Essen, Campus Essen
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Applications to First Order Systems

Prototypical FOS: Electro-Magneto-Static Maxwell

compact embeddings:
D(Ag) > Ho < H|1—t < L2 (Rellich’s selection theorem)

D(A1) >Hi < Rp,nelrotRr, cRr,ne'Dr, - L2 (Weck's selection theorem)
o = czp (Friedrichs/Poincaré constant) and ¢; = ¢ (Maxwell constant)

VoeD(Ao) |plny < colAowpln,
VéeD(Ag) [dln, < colAgdlh,
VoeD(A1L)  lpln, < cilArpln,
VY eD(A])  [Yln, < alAT¢ln,

VQO € Hfl-t ‘CP||_2 < Cfp|vl,0||_§

IN

Vo ecDr, nVHE, |2 < cep|dived|2

N

<~
<~
< VoeRpnelrotRyr, |¢|L§ < G| rot ®| 2
<~

A

VW eRr, NnrotRr, |V 2 < ca|rot V| 2
€
Helmholtz decomposition:

Hi = R(Ao)@n, (N(ANN(AG))en R(A]) = LZ=VHL @M, ®pc ' rotRr,

Dirk Pauly EMS by FA-ToolBox Universitat Duisburg-Essen, Campus Essen
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Applications to Second Order Systems

Simplest SOS: Dirichlet/Neumann Laplace

Q c R3 bounded domain with weak Lipschitz boundary ' = 99, “I = Ul,"”

~divr,eVr,u="fe L2 or Li in Q
u=0 on ¢
v-eVu=0 onl,
< VrtU=E€VrtH|1-, rotr, E =0 e rotr, Rr, in Q
—divr, eE=fel? or L2 in Q
u=0 vxE=0 on It
v-eE=0 on [,
TE=0eHp,

= (u,E) € D(Vr,) x (D(divr,€) n R(Vr,)) = Hf, x (¢7'Dr, N VHE, )

| H}t cl? > Lg, Ay :=rotr, :Rr, c Li -2

:5’1D|—n cl? 12 Af=¢! rotr, : Rr, c L2 12
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More Applications

More First and Second Order Systems (FOS & SOS)

Q c R3 bounded weak Lipschitz domain

Electro/Magneto-Static Maxwell with mixed boundary conditions
V-rot-div-complex (symmetry!, de Rham complex):

Oor & 12 = o2 o2 W2 I paqo
4 —divr, & e Lrotr, -Vr, 3
related fos
Vrou=A inQ | rotr, E=J  inQ | divr, H =k inQ | wv=>b inQ
ru=a inQ | -—divr,eE=j inQ | elrotr,H=K inQ | -Vr,v=B inQ
related sos
—divr eVr,u=j in Q | et rotr, rotr, E = K inQ | -Vr,divf, H=8B in Q
ru=a inQ | ~divr, eE=j inQ | elrotr, H=K  inQ
corresponding compact embeddings:
D(Vr,) nD(m) =D(Vr,) = H%t o2 (Rellich’s selection theorem)
D(rotr, ) n D(~divr, &) =Rr, N silDrn — Li (Weck's selection theorem)
D(divr,) N D(571 rotr,) =Dr, NRr, = L2 (Weck's selection theorem)
D(Vr,) nD(x) = D(Vr,) = Hf, =L (Rellich’s selection theorem)

Weck's selection theorem for weak Lip. dom. and mixed bc: Bauer/P/Schomburg ('16)

Dirk Pauly i isburg-Essen, Campus Essen
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plications

More First and Second Order Systems (FOS & SOS)

Q c RN bd w. Lip. dom. or Q Riemannian manifold with cpt cl. and Lip. boundary I

Generalized Electro/Magneto-Static Maxwell with mixed boundary conditions
d-d-complex (symmetry!, de Rham complex):

a? dat df a1
OyorR = 20 & (2129 o 2281 L 28 S R {0}
™ _sl _s2 _ 6q+1 _sN 3
Tn Tn Tn Fn
related fos
dl E=F in Q
t
-8l E=G in Q
n
related sos
q+l g £ _ .
—Ern dFtE_F in Q
-8l E=G in Q
n
includes: EMS rot / div, Laplacian, rotrot, and more. ..
corresponding compact embeddings:
D(d?r) n D(élgn) o L2 (Weck's selection theorems)

Weck's selection theorem for Lip. manifolds and mixed bc: Bauer/P/Schomburg ('17)

Dirk Pauly
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More Applications

University of Strathclyde, Glasgow, Scotland, January 17 2018

More First and Second Order Systems (FOS & SOS)

Q c R3 bounded strong Lipschitz domain

Elasticity

sym V-Rot RotJ-Divs-complex (symmetry!):

T .
. 5 symVr Rot R°tS,r Divs ) x
{0} = L 2 2 2 2 RM
T — Divg Rot Rot; —symV v
related fos (Rot Rm.sr r+ Rot Rotg first order operators!)
symVpv=M inQ | RotRotng:F inQ | DivgrN=g inQ | v =r in Q
v =0 inQ | -DivgM=f inQ | RotRoth:G inQ | -symVv=M inQ

related sos (Rot Rots-\r Rot ROt;,r second order operator!)
—DivgsymVrv=f inQ |
wv=0 inQ |
corresponding compact embeddings:
D(sym Vr) n D(x) = D(Vr) = Hf = L?
D(Rot Rot] ) n D(Divg) — L3
D(Divg 1) N D(RotRotg ) = L3

D(w)nD(symV) =D(V) = Hl o 1L2

Rot Rotg RotRotf M = G

~DivgM = f

inQ | -symVDivgrN=M inQ

nQ | RotRot{ N=G  inQ
(Rellich’s selection theorem and Korn ineq.)
(new selection theorem)

(new selection theorem)

(Rellich’s selection theorem and Korn ineq.)

two new selection theorems for strong Lip. dom.: P/Zulehner ('17)

Dirk Pauly
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More Applications

More First and Second Or

University of Strathclyde, Glasgow, Scotland, January 17 2018

r Systems (FOS & SOS)

Q c R3 bounded strong Lipschitz domain

General Relativity or Biharmonic Equation
VV-Rotg-Divp-complex (no symmetry!):

. VVr Rots,r Divr, - ™
0y =2 > =2 1B = T =2 L =2 RT
™ div Divg sym Rotp —devV L
related fos (VVr, divDivg first order operators!)
VVru=M inQ | RotsrM=F inQ | DivirN=g inQ | TV =r in Q
Tu=0 inQ | divDivgM=f inQ symRoty N=G  in Q —devVv=T inQ
related sos (div Divg VV = A|2— second order operator!)
div Divg eru=A|2—u= f inQ | symRotrRotgrM=G inQ | —devVDivprN=T inQ
wu=0 inQ | divDivg M = f inQ | symRoty N=G  inQ

corresponding compact embeddings:
D(VVr) nD(x) = D(VVr) = Hf = L
D(Rotg ) n D(div Divg) — L3
D(Divy,r) N D(sym Rotr) — L2

D(7) n D(devV) = D(devV) = D(V) = H! & 2

(Rellich’s selection theorem)
(new selection theorem)
(new selection theorem)

(Rellich’s selection theorem and Korn type ineq.)

two new selection theorems for strong Lip. dom. and Korn Type ineq.: P/Zulehner ('16)

rg-Essen, Campus Essen

Dirk Pauly
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More Applications

There are Much More Complexes . . .

...the world is full of complexes. ;)

= relaxing and enjoying more and “own” complexes at

AANMPDE 11

11th Workshop on Analysis and Advanced Numerical Methods
for Partial Differential Equations (not only) for Junior Scientists

http://www.mit.jyu.fi/scoma/AANMPDE11

August 6-10 2018, Sarkisaari, Finland

organizers: Ulrich Langer, Dirk Pauly, Sergey Repin

Dirk Pauly EMS by FA-ToolBox Universitat Duisburg-Essen, Campus Essen
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