Electro-Magneto Statics and (Much) More by a (Linear) Functional Analysis Toolbox

Dirk Pauly
Fakultät für Mathematik
UNIVERSITÄT
DEUSSEBN R G

Open-Minded ;-)

Department Colloquium - Glasgow, Jänner 2018
Hosts: Marcus Waurick \& Matthias Langer
Department of Mathematics and Statistics
University of Strathclyde
Glasgow, Scotland

Linear Maxwell's Equations in 3D - Electro-Magneto-Dynamics

$\Omega \subset \mathbb{R}^{3}$ domain (open and connected set) with boundary Γ

$$
\begin{array}{rlrl}
\partial_{t}(\varepsilon E)-\operatorname{rot} H+\sigma E & =-J & & \text { in } \mathbb{R}_{+} \times \Omega \\
& & \text { (DE 1.1, Ampére/Maxwell law) } \\
\partial_{t}(\mu H)+\operatorname{rot} E & & 0 & \\
\text { in } \mathbb{R}_{+} \times \Omega & & \text { (DE 1.2, Faraday/Maxwell law) } \\
\operatorname{div}(\varepsilon E) & =\rho & & \text { in } \mathbb{R}_{+} \times \Omega \\
& & \text { (DE 2.1, electric Gauß law) } \\
\operatorname{div}(\mu H) & =0 & & \text { in } \mathbb{R}_{+} \times \Omega \tag{IC}\\
& & \text { (DE 2.2, magnetic Gauß law) } \\
n \times E & =0 & & \text { on } \mathbb{R}_{+} \times \Gamma \\
& & \text { (BC 1, perfect conductor) } \\
n \cdot(\mu H) & =0 & & \text { on } \mathbb{R}_{+} \times \Gamma \\
& & \text { (BC 2, perfect conductor) } \\
(E, H)(0) & =\left(E_{0}, H_{0}\right) & & \text { in } \Omega
\end{array}
$$

$$
\begin{array}{rlrl}
E, H: \mathbb{R}_{+} \times \Omega & \rightarrow \mathbb{C}^{3} & & \text { electric resp. magnetic/magnetization field } \\
J: \mathbb{R}_{+} \times \Omega \rightarrow \mathbb{C}^{3} & & \text { electric current density, } \\
\rho: \mathbb{R}_{+} \times \Omega \rightarrow \mathbb{C} & & \text { charge density } \\
\varepsilon, \mu, \sigma: \mathbb{R}_{+} \times \Omega \rightarrow \mathbb{C}^{3 \times 3} & & \text { permittivity resp. permeability resp. conductivity }
\end{array}
$$

$$
\operatorname{div} F=\partial_{1} F_{1}+\partial_{2} F_{2}+\partial_{3} F_{3}, \quad \operatorname{rot} F=\operatorname{curl} F=\left[\begin{array}{l}
\partial_{2} F_{3}-\partial_{3} F_{2} \\
\partial_{3} F_{1}-\partial_{1} F_{3} \\
\partial_{1} F_{2}-\partial_{2} F_{1}
\end{array}\right]
$$

Linear Maxwell's Equations in 3D - rewrite as system

$\Omega \subset \mathbb{R}^{3}$ domain

$$
\begin{aligned}
\partial_{t}(\varepsilon E)-\operatorname{rot} H+\sigma E & =-J & & \text { in } \mathbb{R}_{+} \times \Omega & & \text { (DE 1.1, needed) } \\
\partial_{t}(\mu H)+\operatorname{rot} E & =0 & & \text { in } \mathbb{R}_{+} \times \Omega & & \text { (DE 1.2, needed) } \\
\operatorname{div}(\varepsilon E) & =\rho & & \text { in } \mathbb{R}_{+} \times \Omega & & \text { (DE 2.1, not need } \\
\operatorname{div}(\mu H) & =0 & & \text { in } \mathbb{R}_{+} \times \Omega & & \text { (DE 2.2, not need } \\
n \times E & =0 & & \text { on } \mathbb{R}_{+} \times \Gamma & & \text { (BC 1, needed) } \\
n \cdot(\mu H) & =0 & & \text { on } \mathbb{R}_{+} \times \Gamma & & \text { (BC 2, not needed } \\
(E, H)(0) & =\left(E_{0}, H_{0}\right) & & \text { in } \Omega & & \text { (IC, later needed) }
\end{aligned}
$$

Rainer Picard '09 (and earlier) and his Dresden school, e.g., Marcus Waurick '11, ... \Rightarrow very nice and elegant ("simple") solution theory:
$\partial_{t} \Lambda+\Sigma+M$ cont inv, i.e., $\left(\partial_{t} \Lambda+\Sigma+M\right)^{-1}$ ex cont op (time-weighted- L^{2}-sense) sol theo Hadamard sense + causality

Maxwell's Equations in 3D - Simplifications

$$
\varepsilon=\mu=\mathrm{id}, \sigma=0 \Rightarrow
$$

$$
\begin{align*}
\partial_{t} E-\operatorname{rot} H & =-F=-J \\
\partial_{t} H+\operatorname{rot} E & =G=0 \tag{DE1.2}\\
\operatorname{div} E & =f=\rho \\
\operatorname{div} H & =g=0 \\
n \times E & =0 \\
n \cdot H & =0 \\
(E, H)(0) & =\left(E_{0}, H_{0}\right) \tag{IC}
\end{align*}
$$

$$
\text { in } \mathbb{R}_{+} \times \Omega
$$

(DE 1.1)
in $\mathbb{R}_{+} \times \Omega$
in $\mathbb{R}_{+} \times \Omega$
in $\mathbb{R}_{+} \times \Omega$
on $\mathbb{R}_{+} \times \Gamma$
on $\mathbb{R}_{+} \times \Gamma$
in Ω
(DE 2.1)
(DE 2.2)
(BC 1)
(BC 2)

Maxwell's Equations in 3D - Static Cases

time indep $\Rightarrow \partial_{t}(E, H)=0 \Rightarrow$

$\operatorname{rot} H$	$=F$	in Ω
$\operatorname{rot} E=G$	in Ω	$($ DE 1.1)
$\operatorname{div} E=f$	in Ω	(DE 1.2)
$\operatorname{div} H=g$	in Ω	(DE 2.1)
$n \times E=0$	on Γ	(DE 2.2)
$n \cdot H=0$	on Γ	(BC 1)
n		(BC 2)

E, H decoupled \Rightarrow
electro statics

$\operatorname{rot} E=G$	in Ω	$($ DE 1.2)	$\operatorname{rot} H=F$	in Ω	(DE 1.1)
$\operatorname{div} E=f$	in Ω	(DE 2.1)	$\operatorname{div} H=g$	in Ω	(DE 2.2)
$n \times E=0$	on Γ	(BC 1)	$n \cdot H=0$	on Γ	$($ BC 2)

magneto statics

$$
\begin{aligned}
\operatorname{rot} E=J & \text { in } \Omega \\
\operatorname{div} E=j & \text { in } \Omega \\
n \times E=0 & \text { on } \Gamma_{t} \\
n \cdot E=0 & \text { on } \Gamma_{n}
\end{aligned}
$$

model problem: electro-magneto statics (EMS)

Model Problem: Electro-Magneto-Static Maxwell Equations

setting: Hilbert $/ L^{2}$-based Sobolev spaces
geometry: $\Omega \subset \mathbb{R}^{3}$ bounded domain with weak Lipschitz boundary $\Gamma=\partial \Omega$
for simplicity: no mixed boundary conditions

$$
\begin{align*}
\operatorname{rot} E & =J & & \text { in } \Omega \tag{1}\\
-\operatorname{div} E & =j & & \text { in } \Omega \tag{2}\\
n \times E & =0 & & \text { on } \Gamma \tag{3}
\end{align*}
$$

non-trivial kernel: $\mathcal{H}=\left\{H \in \mathrm{~L}^{2}: \operatorname{rot} H=0, \operatorname{div} H=0, \nu \times\left. H\right|_{\Gamma=0}\right\}$ additional condition on Dirichlet/Neumann fields for uniqueness:

$$
\begin{equation*}
\pi E=H \in \mathcal{H} \tag{4}
\end{equation*}
$$

well known: (1)-(4) uniquely solvable
by Helmholtz decompositions and Friedrichs/Poincaré/Maxwell type estimates for certain given right hand sides J, j, H
aim: general theory
FA-ToolBox for linear problems/systems

FA-ToolBox for linear problems/systems

literature: probably very well known for ages (≥ 80 years), but hard to find ...
Friedrichs, Weyl, Hörmander, Fredholm, von Neumann, Riesz, Banach, ... ?

Why not rediscover?

Underlying Structure of the Model Problem

∇-rot-div-complex (de Rham complex):

$$
\{0\} \underset{\pi}{\stackrel{\iota}{\rightleftarrows}} \mathrm{L}^{2} \underset{-\operatorname{div}}{\stackrel{\circ}{\rightleftarrows}} \mathrm{L}^{2} \underset{\text { rot }}{\stackrel{\text { rot }}{\rightleftarrows}} \mathrm{L}^{2} \underset{-\nabla}{\underset{\sim}{\operatorname{div}}} \underset{\sim}{\rightleftarrows} \mathrm{L}^{2} \underset{\sim}{\underset{\sim}{\rightleftarrows}} \mathbb{R}
$$

unbounded, densely defined, closed, linear operators with adjoints

$$
\begin{array}{lll}
\stackrel{\circ}{\nabla}: \mathrm{H}^{1} \subset \mathrm{~L}^{2} \rightarrow \mathrm{~L}^{2}, & -\operatorname{div}=(\stackrel{\circ}{\nabla})^{*}: \mathrm{D} \subset \mathrm{~L}^{2} \rightarrow \mathrm{~L}^{2} & \text { sometimes: } \mathrm{D}=H(\text { div }) \\
\text { root }: \mathrm{R} \subset \mathrm{~L}^{2} \rightarrow \mathrm{~L}^{2}, & \operatorname{rot}=(\text { root })^{*}: R \subset \mathrm{~L}^{2} \rightarrow \mathrm{~L}^{2} & \mathrm{R}=H(\text { rot })=H \text { (curl) } \\
\text { div : } \mathrm{D} \subset \mathrm{~L}^{2} \rightarrow \mathrm{~L}^{2}, & -\nabla=(\text { div })^{*}: \mathrm{H}^{1} \subset \mathrm{~L}^{2} \rightarrow \mathrm{~L}^{2} & \dot{R}=H_{0}(\text { rot })=H_{0} \text { (curl) }
\end{array}
$$

complex: 'range \subset kernel' $(\operatorname{rot} \nabla=0, \operatorname{div} r o t=0)$

$$
\stackrel{\circ}{\nabla} \mathrm{H}^{1} \subset \mathrm{R}_{0}, \quad \operatorname{root} \mathrm{R} \subset \mathrm{D}_{0}, \quad \operatorname{div} \mathrm{D} \subset N(\pi)=\mathrm{L}_{\perp}^{2}=\mathrm{L}^{2} \cap \mathbb{R}^{\perp}
$$

crucial: compact embeddings (Rellich's selection theorem \& Weck's selection theorems)

$$
H^{1} \rightarrow L^{2}, \quad \dot{R} \cap D \rightarrow L^{2}, \quad R \cap D \rightarrow L^{2}
$$

\Rightarrow Helmholtz decompositions, closed ranges, continuous inverses, and Friedrichs/Poincaré/Maxwell type estimates $\sqrt{ }$

Underlying Structure of the Model Problem

$$
\stackrel{R}{\mathrm{R}} \cap \mathrm{D} \rightarrow \mathrm{~L}^{2}, \quad \mathrm{R} \cap \mathrm{D} \rightarrow \mathrm{~L}^{2}
$$

Weck's selection theorems: Weck '74 (Habil.), stimulated by Rolf Leis
more literature on Weck's selection theorems:
Weber '80, Picard '84, Costabel '90, Witsch '93, Jochmann '97, Kuhn '99, Picard/Weck/Witsch '01, Bauer/P/Schomburg '16, '17

Abstract Formulation

$$
\begin{aligned}
& \operatorname{rot} E=J \\
& -\operatorname{div} E=j \\
& \nu \times E=0 \\
& \pi E=H \in \mathcal{H} \\
& \text { る } \\
& \operatorname{rot} E=J \\
& -\operatorname{div}_{\Gamma_{n}} E=j \\
& \pi E=H \in \mathcal{H} \\
& \xi(x:=E \text {, } \\
& \mathrm{A}_{1}:=\mathrm{root}, \quad \mathrm{~A}_{1}^{*}=\text { root }^{*}=\mathrm{rot}, \\
& \text { in } \Omega \\
& \text { in } \Omega \\
& \text { on 「 } \\
& \mathrm{A}_{1} x=f \\
& \mathrm{~A}_{0}^{*} x=g \\
& \pi_{i} x=h \in N\left(\mathrm{~A}_{1}\right) \cap N\left(\mathrm{~A}_{0}^{*}\right)
\end{aligned}
$$

General or Abstract Problem

setting: unbounded, densely defined, closed, linear operators with adjoints

$$
\mathrm{A}_{i}: D\left(\mathrm{~A}_{i}\right) \subset \mathrm{H}_{i} \rightarrow \mathrm{H}_{i+1}, \quad \mathrm{~A}_{i}^{*}: D\left(\mathrm{~A}_{i}^{*}\right) \subset \mathrm{H}_{i+1} \rightarrow \mathrm{H}_{i}, \quad i \in \mathbb{Z}
$$

complex: \quad (here $i=1$)

$$
\ldots \rightleftarrows \mathrm{H}_{i-2} \underset{\mathrm{~A}_{i-2}^{*}}{\stackrel{\mathrm{~A}_{i-2}}{\rightleftarrows}} \mathrm{H}_{i-1} \underset{\substack{\mathrm{~A}_{i-1}^{*}}}{\stackrel{\mathrm{~A}_{i-1}}{\rightleftarrows}} \mathrm{H}_{i} \underset{\mathrm{~A}_{i}^{*}}{\stackrel{\mathrm{~A}_{i}}{\rightleftarrows}} \mathrm{H}_{i+1} \underset{\mathrm{~A}_{i+1}^{*}}{\stackrel{\mathrm{~A}_{i+1}}{\rightleftarrows}} \mathrm{H}_{i+2} \quad \rightleftarrows \quad \ldots
$$

complex property: 'range \subset kernel' $\left(\mathrm{A}_{i} \mathrm{~A}_{i-1}=0 \Leftrightarrow \mathrm{~A}_{i-1}^{*} \mathrm{~A}_{i}^{*}=0\right)$

$$
R\left(\mathrm{~A}_{i-1}\right) \subset N\left(\mathrm{~A}_{i}\right) \quad \Leftrightarrow \quad R\left(\mathrm{~A}_{i}^{*}\right) \subset N\left(\mathrm{~A}_{i-1}^{*}\right)
$$

problem: find $x \in D\left(\mathrm{~A}_{i}\right) \cap D\left(\mathrm{~A}_{i-1}^{*}\right)$ s.t.

$$
\mathrm{A}_{i} x=f, \quad \mathrm{~A}_{i-1}^{*} x=g, \quad \pi_{i} x=h,
$$

where $f \in R\left(\mathrm{~A}_{i}\right), g \in R\left(\mathrm{~A}_{i-1}^{*}\right)$ and $h \in \mathcal{H}_{i}$ with kernel $N\left(\mathrm{~A}_{i}\right) \cap N\left(\mathrm{~A}_{i-1}^{*}\right)$

Toolbox

Hodge/Helmholtz/Weyl decompositions:

$$
\mathrm{H}_{i}=N\left(\mathrm{~A}_{i}\right) \oplus_{\mathrm{H}_{i}} \overline{R\left(\mathrm{~A}_{i}^{*}\right)},
$$

$$
\mathrm{H}_{i+1}=N\left(\mathrm{~A}_{i}^{*}\right) \oplus_{\mathrm{H}_{i+1}} \overline{R\left(\mathrm{~A}_{i}\right)}
$$

\Rightarrow reduce $\quad \mathrm{A}_{i}$ to $N\left(\mathrm{~A}_{i}\right)^{\perp}=\overline{R\left(\mathrm{~A}_{i}^{*}\right)} \quad$ and $\quad \mathrm{A}_{i}^{*}$ to $N\left(\mathrm{~A}_{i}^{*}\right)^{\perp}=\overline{R\left(\mathrm{~A}_{i}\right)}$
\Rightarrow injective reduced operators $\mathcal{A}_{i}, \mathcal{A}_{i}^{*}$, "same" complex for $\mathcal{A}_{i}, \mathcal{A}_{i}^{*}$
$\Rightarrow \mathcal{A}_{i}^{-1},\left(\mathcal{A}_{i}^{*}\right)^{-1}$ exist always, but might be unbounded
\Rightarrow crucial lemmas

General First Order Problem

Toolbox

Lemma (P)

The following assertions are equivalent:
(i) $\exists c_{i}>0 \quad \forall \varphi \in D\left(\mathcal{A}_{i}\right) \quad|\varphi|_{\mathrm{H}_{i}} \leq c_{i}\left|\mathrm{~A}_{i} \varphi\right|_{\mathrm{H}_{i+1}}$
(i*) $\exists c_{i}^{*}>0 \quad \forall \psi \in D\left(\mathcal{A}_{i}^{*}\right) \quad|\psi|_{\mathrm{H}_{i+1}} \leq c_{i}^{*}\left|\mathrm{~A}_{i}^{*} \psi\right|_{\mathrm{H}_{i}}$

(general Friedrichs/Poincaré/

 Maxwell type estimates)(ii) The ranges $R\left(\mathrm{~A}_{i}\right)=R\left(\mathcal{A}_{i}\right)$ are closed.
(ii*) The ranges $R\left(\mathrm{~A}_{i}^{*}\right)=R\left(\mathcal{A}_{i}^{*}\right)$ are closed.
(iii) The inverse operator $\mathcal{A}_{i}^{-1}: R\left(\mathrm{~A}_{i}\right) \rightarrow D\left(\mathcal{A}_{i}\right)$ is continuos.
(iii*) The inverse operator $\left(\mathcal{A}_{i}^{*}\right)^{-1}: R\left(\mathrm{~A}_{i}^{*}\right) \rightarrow D\left(\mathcal{A}_{i}^{*}\right)$ is continuos.

Lemma (P)

If c_{i}, c_{i}^{*} are "best" constants, then $c_{i}=c_{i}^{*}=\left|\mathcal{A}_{i}^{-1}\right|=\left|\left(\mathcal{A}_{i}^{*}\right)^{-1}\right|$.

Lemma (P)

If $D\left(\mathcal{A}_{i}\right) \leftrightarrow \mathrm{H}_{i}$ is compact, then the latter assertions hold and $\mathcal{A}_{i}^{-1}: R\left(\mathrm{~A}_{i}\right) \rightarrow R\left(\mathrm{~A}_{i}^{*}\right),\left(\mathcal{A}_{i}^{*}\right)^{-1}: R\left(\mathrm{~A}_{i}^{*}\right) \rightarrow R\left(\mathrm{~A}_{i}\right)$ are compact.
proofs: elementary computations and closed range/graph theorem

Toolbox

Lemma (P)

$$
D\left(\mathcal{A}_{i}\right) \hookrightarrow \mathrm{H}_{i} \text { compact } \Leftrightarrow D\left(\mathcal{A}_{i}^{*}\right) \hookrightarrow \mathrm{H}_{i+1} \text { compact }
$$

Lemma (P)

$$
\begin{aligned}
& D\left(\mathrm{~A}_{i}\right) \cap D\left(\mathrm{~A}_{i-1}^{*}\right) \leftrightarrow \mathrm{H}_{i} \quad \text { compact } \\
& \Leftrightarrow \quad D\left(\mathcal{A}_{i}\right) \leftrightarrow \mathrm{H}_{i}, \quad D\left(\mathcal{A}_{i-1}^{*}\right) \leftrightarrow \mathrm{H}_{i}, \quad N\left(\mathrm{~A}_{i}\right) \cap N\left(\mathrm{~A}_{i-1}^{*}\right) \hookrightarrow \mathrm{H}_{i} \quad \text { compact } \\
& \Leftrightarrow \quad D\left(\mathcal{A}_{i}\right) \leftrightarrow \mathrm{H}_{i}, \quad D\left(\mathcal{A}_{i-1}\right) \leftrightarrow \mathrm{H}_{i-1}, \quad N\left(\mathrm{~A}_{i}\right) \cap N\left(\mathrm{~A}_{i-1}^{*}\right) \leftrightarrow \mathrm{H}_{i} \quad \text { compact }
\end{aligned}
$$

Lemma (P)

Lots of Helmholtz type decompositions hold, such as

$$
\mathrm{H}_{i}=\underbrace{\overline{R\left(\mathrm{~A}_{i-1}\right)} \oplus_{\mathrm{H}_{i}} \overbrace{\left(N\left(\mathrm{~A}_{i}\right) \cap N\left(\mathrm{~A}_{i-1}^{*}\right)\right)}^{*} \oplus_{\mathrm{H}_{i}} \overline{R\left(\mathrm{~A}_{i}^{*}\right)}}_{=N\left(\mathrm{~A}_{i}\right)}, \quad D\left(\mathrm{~A}_{i}\right)=N\left(\mathrm{~A}_{i}\right) \oplus_{\mathrm{H}_{i}} D\left(\mathcal{A}_{i}\right),
$$

proofs: elementary computations and different Helmholtz type decompositions

Toolbox

Remark

best world: $D\left(\mathrm{~A}_{i}\right) \cap D\left(\mathrm{~A}_{i-1}^{*}\right) \hookrightarrow \mathrm{H}_{i}$ compact
usually true for bounded domains $\quad \Rightarrow \quad$ full toolbox
typically not true for unbounded domains \Rightarrow toolbox without compactness results (locally compact embeddings)

Solution Theory for Abstract Problem

problem: find $x \in D\left(\mathrm{~A}_{i}\right) \cap D\left(\mathrm{~A}_{i-1}^{*}\right)$ st

$$
\begin{aligned}
\mathrm{A}_{i} x & =f \\
\mathrm{~A}_{i-1}^{*} x & =g \\
\pi_{i} x & =h
\end{aligned}
$$

Theorem (solution theory, P)

unique sol in Hadamard sense (cont dpd on data, ...)

$$
\Leftrightarrow \quad f \in R\left(\mathrm{~A}_{i}\right), \quad g \in R\left(\mathrm{~A}_{i-1}^{*}\right) \quad \text { and } \quad h \in N\left(\mathrm{~A}_{i}\right) \cap N\left(\mathrm{~A}_{i-1}^{*}\right)
$$

Proof.

$x=x_{f}+x_{g}+h, \quad x_{f}:=\mathcal{A}_{i}^{-1} f, \quad x_{g}:=\left(\mathcal{A}_{i-1}^{*}\right)^{-1} g$
note: problem is linear and hence decouples

$$
\begin{array}{rlr}
\mathrm{A}_{i} x_{f} & =f & \mathrm{~A}_{i} x_{g}
\end{array}=0
$$

Variational Formulations for Abstract Problem

How to find $x \in D\left(\mathrm{~A}_{i}\right) \cap D\left(\mathrm{~A}_{i-1}^{*}\right)$, ie, $x=x_{f}+x_{g}+h$, ie, $x_{f} \in D\left(\mathcal{A}_{i}\right)=D\left(\mathrm{~A}_{i}\right) \cap R\left(\mathrm{~A}_{i}^{*}\right)$ and $x_{g} \in D\left(\mathrm{~A}_{i-1}^{*}\right)=D\left(\mathcal{A}_{i-1}^{*}\right) \cap R\left(\mathrm{~A}_{i-1}\right)$ with

$$
\begin{aligned}
\mathrm{A}_{i} x & =f & \mathrm{~A}_{i} x_{f} & =f \\
\mathrm{~A}_{i-1}^{*} x & =g & \mathrm{~A}_{i-1}^{*} x_{f} & =0 \\
\pi_{i} x & =h & \pi_{i} x_{f} & =0
\end{aligned} \mathrm{~A}_{i-1}^{*} x_{g}=0=g ~ 子 ~=~ \pi_{i} x_{g}=0 \text { }
$$

by variational formulations that can be "easily" implemented by numerical methods such as FEM?
formulation 1: test $\mathrm{A}_{i} x_{f}=f$ by $\mathrm{A}_{i} \varphi$ with $\varphi \in D\left(\mathcal{A}_{i}\right)$

$$
\Rightarrow \quad \text { find } x_{f} \in D\left(\mathcal{A}_{i}\right) \text { st }
$$

$$
\forall \varphi \in D\left(\mathcal{A}_{i}\right) \quad\left\langle\mathrm{A}_{i} x_{f}, \mathrm{~A}_{i} \varphi\right\rangle_{\mathrm{H}_{i+1}}=\left\langle f, \mathrm{~A}_{i} \varphi\right\rangle_{\mathrm{H}_{i+1}}
$$

well posed by toolbox, uniq sol by Riesz
note: $\quad R\left(\mathcal{A}_{i}\right)=R\left(\mathrm{~A}_{i}\right) \quad \Rightarrow \quad$ var form holds for all $\varphi \in D\left(\mathrm{~A}_{i}\right)$

$$
\Rightarrow \quad \mathrm{A}_{i} x_{f}-f \in R\left(\mathrm{~A}_{i}\right) \cap R\left(\mathrm{~A}_{i}\right)^{\perp} \quad \Rightarrow \quad \mathrm{A}_{i} x_{f}=f \text { holds }
$$

note: additional condition $x_{f} \in R\left(\mathrm{~A}_{i}^{*}\right)=N\left(\mathrm{~A}_{i}\right)^{\perp} \Rightarrow$ sadd point form / inf-sup note: num approx satisfies $\tilde{x}_{f} \in D\left(\mathrm{~A}_{i}\right)$ but $\tilde{x}_{f} \in R\left(\mathrm{~A}_{i}^{*}\right)=N\left(\mathrm{~A}_{i}\right)^{\perp}$ only weakly corresponding idea works for $\mathrm{A}_{i-1}^{*} x_{g}=g$

Variational Formulations for Abstract Problem

How to find $x \in D\left(\mathrm{~A}_{i}\right) \cap D\left(\mathrm{~A}_{i-1}^{*}\right)$, ie, $x=x_{f}+x_{g}+h$, ie, $x_{f} \in D\left(\mathcal{A}_{i}\right)=D\left(\mathrm{~A}_{i}\right) \cap R\left(\mathrm{~A}_{i}^{*}\right)$ and $x_{g} \in D\left(\mathrm{~A}_{i-1}^{*}\right)=D\left(\mathcal{A}_{i-1}^{*}\right) \cap R\left(\mathrm{~A}_{i-1}\right)$ with

$$
\begin{aligned}
\mathrm{A}_{i} x & =f & \mathrm{~A}_{i} x_{f} & =f \\
\mathrm{~A}_{i-1}^{*} x & =g & \mathrm{~A}_{i-1}^{*} x_{f} & =0 \\
\pi_{i} x & =h & \pi_{i} x_{f} & =0
\end{aligned} \mathrm{~A}_{i-1}^{*} x_{g}=0 \text { g }
$$

by variational formulations that can be "easily" implemented by numerical methods such as FEM?
formulation 2: $x_{f} \in R\left(\mathrm{~A}_{i}^{*}\right) \quad \Rightarrow \quad x_{f}=\mathrm{A}_{i}^{*} y_{f}$ with $y_{f}=\left(\mathcal{A}_{i}^{*}\right)^{-1} x_{f} \in D\left(\mathcal{A}_{i}^{*}\right)$
test x_{f} by $\mathrm{A}_{i}^{*} \phi$ with $\phi \in D\left(\mathcal{A}_{i}^{*}\right)$ and use $\mathrm{A}_{i} x_{f}=f$
\Rightarrow find $y_{f} \in D\left(\mathcal{A}_{i}^{*}\right)$ st

$$
\forall \phi \in D\left(\mathcal{A}_{i}^{*}\right) \quad\left\langle\mathrm{A}_{i}^{*} y_{f}, \mathrm{~A}_{i}^{*} \phi\right\rangle_{\mathrm{H}_{i}}=\left\langle x_{f}, \mathrm{~A}_{i}^{*} \phi\right\rangle_{\mathrm{H}_{i}}=\left\langle\mathrm{A}_{i} x_{f}, \phi\right\rangle_{\mathrm{H}_{i+1}}=\langle f, \phi\rangle_{\mathrm{H}_{i+1}}
$$

well posed by toolbox, uniq sol by Riesz
note: $\quad R\left(\mathcal{A}_{i}^{*}\right)=R\left(\mathrm{~A}_{i}^{*}\right)$ and $f \in R\left(\mathrm{~A}_{i}\right) \quad \Rightarrow \quad$ var form holds for all $\phi \in D\left(\mathrm{~A}_{i}^{*}\right)$

$$
\Rightarrow \quad x_{f}:=\mathrm{A}_{i}^{*} y_{f} \in D\left(\mathrm{~A}_{i}\right) \text { and } \mathrm{A}_{i} x_{f}=f \text { holds }
$$

note: additional condition $y_{f} \in R\left(\mathrm{~A}_{i}\right)=N\left(\mathrm{~A}_{i}^{*}\right)^{\perp} \Rightarrow$ sadd point form / inf-sup note: num approx satisfies $\tilde{x}_{f} \in R\left(\mathrm{~A}_{i}^{*}\right)$ but $\tilde{x}_{f} \in D\left(\mathrm{~A}_{i}\right)$ only weakly
corresponding idea works for $\mathrm{A}_{i-1}^{*} \times_{g}=g$

Solution Theory for Abstract Problem

problem: find $x \in D\left(\mathrm{~A}_{i}^{*} \mathrm{~A}_{i}\right) \cap D\left(\mathrm{~A}_{i-1}^{*}\right)$ st

$$
\begin{aligned}
\mathrm{A}_{i}^{*} \mathrm{~A}_{i} x & =f \\
\mathrm{~A}_{i-1}^{*} x & =g \\
\pi_{i} x & =h
\end{aligned}
$$

\Rightarrow introduce potential $y:=A_{i} x$
\Rightarrow equiv mixed form: find pair $(x, y) \in\left(D\left(\mathrm{~A}_{i}\right) \cap D\left(\mathrm{~A}_{i-1}^{*}\right)\right) \times(\underbrace{D\left(\mathrm{~A}_{i}^{*}\right) \cap R\left(\mathrm{~A}_{i}\right)}_{=D\left(\mathcal{A}_{i}^{*}\right)})$ st

$$
\begin{aligned}
\mathrm{A}_{i} x & =y, & \mathrm{~A}_{i+1} y & =0 \\
\mathrm{~A}_{i-1}^{*} x & =g, & \mathrm{~A}_{i}^{*} y & =f \\
\pi_{i} x & =h, & \pi_{i+1} y & =0
\end{aligned}
$$

Theorem (solution theory, P)

unique sol in Hadamard sense (cont dpd on data, ...)

$$
\Leftrightarrow \quad f \in R\left(\mathrm{~A}_{i}^{*}\right), \quad g \in R\left(\mathrm{~A}_{i-1}^{*}\right) \quad \text { and } \quad h \in N\left(\mathrm{~A}_{i}\right) \cap N\left(\mathrm{~A}_{i-1}^{*}\right)
$$

Proof.

$$
x=x_{y}+x_{g}+h, \quad x_{y}:=\mathcal{A}_{i}^{-1} y, \quad x_{g}:=\left(\mathcal{A}_{i-1}^{*}\right)^{-1} g, \quad y:=\left(\mathcal{A}_{i}^{*}\right)^{-1} f
$$

Solution Theory for Abstract Problem

Theorem (solution theory, P)

unique sol in Hadamard sense (cont dpd on data, ...)

$$
\Leftrightarrow \quad f \in R\left(\mathrm{~A}_{i}^{*}\right), \quad g \in R\left(\mathrm{~A}_{i-1}^{*}\right) \quad \text { and } \quad h \in N\left(\mathrm{~A}_{i}\right) \cap N\left(\mathrm{~A}_{i-1}^{*}\right)
$$

Proof.

$$
x=x_{y}+x_{g}+h, \quad x_{y}:=\mathcal{A}_{i}^{-1} y, \quad x_{g}:=\left(\mathcal{A}_{i-1}^{*}\right)^{-1} g, \quad y:=\left(\mathcal{A}_{i}^{*}\right)^{-1} f
$$

note: problem is linear and hence decouples

$$
\begin{array}{rlrr}
\mathrm{A}_{i}^{*} \mathrm{~A}_{i} x=f & & \mathrm{~A}_{i} x & =y, \\
\mathrm{~A}_{i-1}^{*} x=g & \Leftrightarrow & \mathrm{~A}_{i-1}^{*} x & =g, \\
\pi_{i} x=h & & \mathrm{~A}_{i+1} y & =0 \\
& & \mathrm{~A}_{i} x & =h, \\
& & & \pi_{i+1}^{*} y
\end{array}=0 \text { l }
$$

Prototypical FOS: Electro-Magneto-Static Maxwell

$\Omega \subset \mathbb{R}^{3}$ bounded domain with weak Lipschitz boundary $\Gamma=\partial \Omega$, " $\Gamma=\Gamma_{t} \dot{\cup} \Gamma_{n} "$

$$
\begin{array}{rlrl}
\operatorname{rot}_{\Gamma_{t}} E & =J \in \operatorname{rot}_{\Gamma_{t}} \mathrm{R}_{\Gamma_{t}} & & \text { in } \Omega \\
-\operatorname{div}_{\Gamma_{n}} \varepsilon E & =j \in \operatorname{div}_{\Gamma_{n}} \mathrm{D}_{\Gamma_{n}}=\mathrm{L}^{2} \text { or } \mathrm{L}_{\perp}^{2} & & \text { in } \Omega \\
\nu \times E & =0 & & \text { on } \Gamma_{t} \\
\nu \cdot \varepsilon E & =0 & & \text { on } \Gamma_{n} \\
\pi E & =H \in \mathcal{H}_{\mathrm{D}, \varepsilon}=\mathrm{R}_{\Gamma_{t}, 0} \cap \varepsilon^{-1} \mathrm{D}_{\Gamma_{n}, 0} & & \\
\Rightarrow E \in D\left(\operatorname{rot}_{\Gamma_{t}}\right) \cap D\left(\operatorname{div}_{\Gamma_{n}} \varepsilon\right)=\mathrm{R}_{\Gamma_{t}} \cap \varepsilon^{-1} \mathrm{D}_{\Gamma_{n}} & &
\end{array}
$$

$$
\begin{array}{rr}
\mathrm{A}_{0}:=\nabla \Gamma_{t}: \mathrm{H}_{\Gamma_{t}}^{1} \subset \mathrm{~L}^{2} \rightarrow \mathrm{~L}_{\varepsilon}^{2}, & \mathrm{~A}_{1}:=\operatorname{rot}_{\Gamma_{t}}: \mathrm{R}_{\Gamma_{t}} \subset \mathrm{~L}_{\varepsilon}^{2} \rightarrow \mathrm{~L}^{2} \\
\mathrm{~A}_{0}^{*}=-\operatorname{div}_{\Gamma_{n}} \varepsilon: \varepsilon^{-1} \mathrm{D}_{\Gamma_{n}} \subset \mathrm{~L}_{\varepsilon}^{2} \rightarrow \mathrm{~L}^{2}, & \mathrm{~A}_{1}^{*}=\varepsilon^{-1} \operatorname{rot}_{\Gamma_{n}}: \mathrm{R}_{\Gamma_{n}} \subset \mathrm{~L}^{2} \rightarrow \mathrm{~L}_{\varepsilon}^{2}
\end{array}
$$

Prototypical FOS: Electro-Magneto-Static Maxwell

compact embeddings:

$$
\begin{aligned}
& D\left(\mathcal{A}_{0}\right) \leftrightarrow \mathrm{H}_{0} \quad \Leftrightarrow \quad \mathrm{H}_{\Gamma_{t}}^{1} \leftrightarrow \mathrm{~L}^{2} \quad \text { (Rellich's selection theorem) } \\
& D\left(\mathcal{A}_{1}\right) \leftrightarrow \mathrm{H}_{1} \quad \Leftrightarrow \quad \mathrm{R}_{\Gamma_{t}} \cap \varepsilon^{-1} \operatorname{rot} \mathrm{R}_{\Gamma_{n}} \subset \mathrm{R}_{\Gamma_{t}} \cap \varepsilon^{-1} \mathrm{D}_{\Gamma_{n}} \leftrightarrow \mathrm{~L}_{\varepsilon}^{2} \quad \text { (Weck's selection theorem) } \\
& c_{0}=c_{\mathrm{fp}} \text { (Friedrichs/Poincaré constant) and } c_{1}=c_{\mathrm{m}} \text { (Maxwell constant) } \\
& \begin{array}{llll}
\forall \varphi \in D\left(\mathcal{A}_{0}\right) & |\varphi|_{\mathrm{H}_{0}} \leq c_{0}\left|\mathrm{~A}_{0} \varphi\right|_{\mathrm{H}_{1}} & \Leftrightarrow & \forall \varphi \in \mathrm{H}_{\Gamma_{t}}^{1}
\end{array} \quad|\varphi|_{\mathrm{L}^{2}} \leq c_{\mathrm{fp}}|\nabla \varphi|_{\mathrm{L}_{\varepsilon}^{2}}
\end{aligned}
$$

Helmholtz decomposition:
$\mathrm{H}_{1}=R\left(\mathrm{~A}_{0}\right) \oplus_{\mathrm{H}_{1}}\left(N\left(\mathrm{~A}_{1}\right) \cap N\left(\mathrm{~A}_{0}^{*}\right)\right) \oplus_{\mathrm{H}_{i}} R\left(\mathrm{~A}_{1}^{*}\right) \quad \Leftrightarrow \quad \mathrm{L}_{\varepsilon}^{2}=\nabla \mathrm{H}_{\Gamma_{t}}^{1} \oplus_{\mathrm{L}_{\varepsilon}^{2}} \mathcal{H}_{\mathrm{D}, \varepsilon} \oplus_{\mathrm{L}_{\varepsilon}^{2}} \varepsilon^{-1} \operatorname{rot} \mathrm{R}_{\Gamma_{n}}$

Simplest SOS: Dirichlet/Neumann Laplace

$\Omega \subset \mathbb{R}^{3}$ bounded domain with weak Lipschitz boundary $\Gamma=\partial \Omega, " \Gamma=\Gamma_{t} \dot{U} \Gamma_{n} "$

$$
\begin{aligned}
& \begin{aligned}
-\operatorname{div}_{\Gamma_{n}} \varepsilon \nabla \Gamma_{t} u & =f \in \mathrm{~L}^{2} \text { or } \mathrm{L}_{\perp}^{2} & & \text { in } \Omega \\
u & =0 & & \text { on } \Gamma_{t} \\
\nu \cdot \varepsilon \nabla u & =0 & & \text { on } \Gamma_{n}
\end{aligned} \\
& \Leftrightarrow \quad \nabla_{\Gamma_{t}} u=E \in \nabla \Gamma_{t} H_{\Gamma_{t}}^{1} \quad \operatorname{rot}_{\Gamma_{t}} E=0 \in \operatorname{rot}_{\Gamma_{t}} \mathrm{R}_{\Gamma_{t}} \quad \text { in } \Omega \\
& -\operatorname{div}_{\Gamma_{n}} \varepsilon E=f \in \mathrm{~L}^{2} \text { or } L_{\perp}^{2} \quad \text { in } \Omega \\
& u=0 \\
& \nu \times E=0 \\
& \nu \cdot \varepsilon E=0 \\
& \text { on } \Gamma_{t} \\
& \pi E=0 \in \mathcal{H}_{\mathrm{D}, \varepsilon} \\
& \text { on } \Gamma_{n} \\
& \Rightarrow(u, E) \in D\left(\nabla \Gamma_{t}\right) \times\left(D\left(\operatorname{div}_{\Gamma_{n}} \varepsilon\right) \cap R\left(\nabla \Gamma_{t}\right)\right)=\mathrm{H}_{\Gamma_{t}}^{1} \times\left(\varepsilon^{-1} \mathrm{D}_{\Gamma_{n}} \cap \nabla \mathrm{H}_{\Gamma_{t}}^{1}\right) \\
& \mathrm{A}_{0}:=\nabla \Gamma_{t}: \mathrm{H}_{\Gamma_{t}}^{1} \subset \mathrm{~L}^{2} \rightarrow \mathrm{~L}_{\varepsilon}^{2}, \\
& \mathrm{~A}_{1}:=\operatorname{rot}_{\Gamma_{t}}: \mathrm{R}_{\Gamma_{t}} \subset \mathrm{~L}_{\varepsilon}^{2} \rightarrow \mathrm{~L}^{2} \\
& \mathrm{~A}_{0}^{*}=-\operatorname{div}_{\Gamma_{n}} \varepsilon: \varepsilon^{-1} \mathrm{D}_{\Gamma_{n}} \subset \mathrm{~L}_{\varepsilon}^{2} \rightarrow \mathrm{~L}^{2}, \\
& \mathrm{~A}_{1}^{*}=\varepsilon^{-1} \operatorname{rot}_{\Gamma_{n}}: \mathrm{R}_{\Gamma_{n}} \subset \mathrm{~L}^{2} \rightarrow \mathrm{~L}_{\varepsilon}^{2}
\end{aligned}
$$

More First and Second Order Systems (FOS \& SOS)

$\Omega \subset \mathbb{R}^{3}$ bounded weak Lipschitz domain

Electro/Magneto-Static Maxwell with mixed boundary conditions

 ∇-rot-div-complex (symmetry!, de Rham complex):$$
\{0\} \text { or } \mathbb{R} \underset{\pi}{\stackrel{\iota}{\rightleftarrows}} \mathrm{L}^{2} \underset{-\operatorname{div}_{\Gamma_{n}} \varepsilon}{\stackrel{\nabla \Gamma_{t}}{\rightleftarrows}} \quad \mathrm{~L}_{\varepsilon}^{2} \underset{\varepsilon^{-1}}{\stackrel{\mathrm{rot}_{\Gamma_{t}}}{\rightleftarrows}} \mathrm{~L}^{2} \underset{-\Gamma_{\Gamma_{n}}}{\stackrel{\operatorname{div}_{\Gamma_{r}}}{\rightleftarrows}} \quad \mathrm{~L}^{2} \underset{\iota}{\stackrel{\pi}{\rightleftarrows}} \quad \mathbb{R} \text { or }\{0\}
$$

related fos

| $\nabla \Gamma_{t} u=A$ | in Ω | \mid | $\operatorname{rot}_{\Gamma_{t}} E=J$ | in Ω | $\operatorname{div}_{\Gamma_{t}} H=k$ | in Ω | $\pi v=b$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |\quad in Ω

related sos

$$
\begin{array}{rrrrrrrr}
-\operatorname{div}_{\Gamma_{n}} \varepsilon \nabla \Gamma_{t} u=j & \text { in } \Omega & \mid & \varepsilon^{-1} \operatorname{rot}_{\Gamma_{n}} \operatorname{rot}_{\Gamma_{t}} E=K & \text { in } \Omega & \mid & -\nabla_{\Gamma_{n}} \operatorname{div}_{\Gamma_{t}} H=B & \text { in } \Omega \\
\pi u=a & \text { in } \Omega & & -\operatorname{div}_{\Gamma_{n}} \varepsilon E=j & \text { in } \Omega & \varepsilon^{-1} \operatorname{rot}_{\Gamma_{n}} H=K & \text { in } \Omega
\end{array}
$$

corresponding compact embeddings:

$$
\begin{aligned}
D\left(\nabla \Gamma_{t}\right) \cap D(\pi)=D\left(\nabla \Gamma_{t}\right)=\mathrm{H}_{\Gamma_{t}}^{1} \leftrightarrow \mathrm{~L}^{2} & \text { (Rellich's selection theorem) } \\
D\left(\operatorname{rot}_{\Gamma_{t}}\right) \cap D\left(-\operatorname{div}_{\Gamma_{n}} \varepsilon\right)=\mathrm{R}_{\Gamma_{t}} \cap \varepsilon^{-1} \mathrm{D}_{\Gamma_{n}} \leftrightarrow \mathrm{~L}_{\varepsilon}^{2} & \text { (Weck's selection theorem) } \\
D\left(\operatorname{div}_{\Gamma_{t}}\right) \cap D\left(\varepsilon^{-1} \operatorname{rot}_{\Gamma_{n}}\right)=\mathrm{D}_{\Gamma_{t} \cap \mathrm{R}_{\Gamma_{n}} \leftrightarrow \mathrm{~L}^{2}} & \text { (Weck's selection theorem) } \\
D\left(\nabla \Gamma_{n}\right) \cap D(\pi)=D\left(\nabla{\Gamma_{n}}\right)=\mathrm{H}_{\Gamma_{n}}^{1} \leftrightarrow \mathrm{~L}^{2} & \text { (Rellich's selection theorem) }
\end{aligned}
$$

Weck's selection theorem for weak Lip. dom. and mixed bc: Bauer/P/Schomburg ('16)

More First and Second Order Systems (FOS \& SOS)

$\Omega \subset \mathbb{R}^{N}$ bd w. Lip. dom. or Ω Riemannian manifold with cpt cl . and Lip. boundary Γ
Generalized Electro/Magneto-Static Maxwell with mixed boundary conditions d-d-complex (symmetry!, de Rham complex):

related fos

$$
\begin{array}{rlr}
\mathrm{d}_{\Gamma_{t}}^{q} E & =F & \text { in } \Omega \\
-\delta_{\Gamma_{n}}^{q} E & =G & \text { in } \Omega
\end{array}
$$

related sos

$$
\begin{aligned}
-\delta_{\Gamma_{n}}^{q+1} \mathrm{~d}_{\Gamma_{t}}^{q} E=F & \text { in } \Omega \\
-\delta_{\Gamma_{n}}^{q} E=G & \text { in } \Omega
\end{aligned}
$$

includes: EMS rot / div, Laplacian, rot rot, and more...
corresponding compact embeddings:

$$
D\left(\mathrm{~d}_{\Gamma_{t}}^{q}\right) \cap D\left(\delta_{\Gamma_{n}}^{q}\right) \hookrightarrow \mathrm{L}^{2, q} \quad \text { (Weck's selection theorems) }
$$

Weck's selection theorem for Lip. manifolds and mixed bc: Bauer/P/Schomburg ('17)

More Applications

More First and Second Order Systems (FOS \& SOS)

$\Omega \subset \mathbb{R}^{3}$ bounded strong Lipschitz domain

Elasticity

 sym ∇-Rot $\operatorname{Rot}_{\mathbb{S}}^{\top}$-Div ${ }_{\mathbb{S}}$-complex (symmetry!):related fos ($\operatorname{Rot}^{\operatorname{Rot}}{ }_{\mathbb{S}, \Gamma}^{\top}, \operatorname{Rot}^{\operatorname{Rot}}{ }_{\mathbb{S}}^{\top}$ first order operators!)
 related sos $\left(\operatorname{Rot}^{\operatorname{Rot}}{ }_{\mathbb{S}}^{\top} \operatorname{Rot} \operatorname{Rot}_{\mathbb{S}, \Gamma}^{\top}\right.$ second order operator!)

$$
\begin{aligned}
& -\operatorname{Div}_{\mathbb{S}} \operatorname{sym} \nabla_{\Gamma} v=f \quad \text { in } \Omega \quad \mid \quad \operatorname{Rot}^{\operatorname{Rot}}{ }_{\mathbb{S}}^{\top} \operatorname{Rot}_{\operatorname{Rot}}^{\mathbb{S}, \Gamma}{ }^{\top} M=G \quad \text { in } \Omega \quad \mid \quad-\operatorname{sym} \nabla \operatorname{Div}_{\mathbb{S}, \Gamma} N=M \quad \text { in } \Omega \\
& \pi v=0 \quad \text { in } \Omega \quad \mid \quad-\operatorname{Div}_{\mathbb{S}} M=f \quad \text { in } \Omega \quad \mid \quad \operatorname{Rot}^{\operatorname{Rot}}{ }_{\mathbb{S}}^{\top} N=G \quad \text { in } \Omega
\end{aligned}
$$

corresponding compact embeddings:

$$
\begin{aligned}
D\left(\operatorname{sym} \nabla_{\Gamma}\right) \cap D(\pi)=D\left(\nabla_{\Gamma}\right)=\mathrm{H}_{\Gamma}^{1} \leftrightarrow \mathrm{~L}^{2} & \text { (Rellich's selection theorem and Korn ineq.) } \\
D\left(\operatorname{Rot}^{\left.\operatorname{Rot}_{\mathbb{S}, \Gamma}^{\top}\right) \cap D\left(\operatorname{Div}_{\mathbb{S}}\right)} \leftrightarrow \mathrm{L}_{\mathbb{S}}^{2}\right. & \text { (new selection theorem) } \\
D\left(\operatorname{Div}_{\mathbb{S}, \Gamma}\right) \cap D\left(\operatorname{Rot}^{\operatorname{Rot}_{\mathbb{S}}}\right) \leftrightarrow \mathrm{L}_{\mathbb{S}}^{2} & \text { (new selection theorem) } \\
D(\pi) \cap D(\operatorname{sym} \nabla)=D(\nabla)=\mathrm{H}^{1} \leftrightarrow \mathrm{~L}^{2} & \text { (Rellich's selection theorem and Korn ineq.) }
\end{aligned}
$$

two new selection theorems for strong Lip. dom.: P/Zulehner ('17)

More Applications

More First and Second Order Systems (FOS \& SOS)

$\Omega \subset \mathbb{R}^{3}$ bounded strong Lipschitz domain

General Relativity or Biharmonic Equation

 $\nabla \nabla$-Rot ${ }_{\mathbb{S}}$-Div $\mathbb{T}_{\mathbb{T}}$-complex (no symmetry!):$$
\{0\} \underset{\pi}{\stackrel{\iota}{\rightleftarrows}} \mathrm{L}^{2} \underset{\operatorname{div} \stackrel{\nabla \operatorname{Div}_{\mathbb{S}}}{\stackrel{\nabla}{\rightleftarrows}}}{\stackrel{\rightharpoonup}{\mathbb{S}}} \underset{\mathrm{sym}^{2}}{\stackrel{\operatorname{Rot}_{\mathbb{S}, ~}, \Gamma}{\rightleftarrows}} \quad \mathrm{~L}_{\mathbb{T}}^{2} \underset{-\operatorname{dev} \nabla}{\stackrel{\operatorname{Div}_{\mathbb{T}}, \Gamma}{\rightleftarrows}} \mathrm{L}^{2} \underset{\iota}{\stackrel{\pi}{\rightleftarrows}} \mathrm{RT}
$$

related fos $\left(\nabla \nabla_{\Gamma}\right.$, div Div $_{\mathbb{S}}$ first order operators! $)$
related sos ($\operatorname{div}^{\operatorname{Div}}{ }_{\mathbb{S}} \nabla \nabla_{\Gamma}=\Delta_{\Gamma}^{2}$ second order operator!)

$$
\begin{array}{rl|rl|rl}
\operatorname{div} \operatorname{Div}_{\mathbb{S}} \nabla \nabla_{\Gamma} u=\Delta_{\Gamma}^{2} u=f & \text { in } \Omega & {\operatorname{sym} \operatorname{Rot}_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma} M=G} \quad \text { in } \Omega & -\operatorname{dev} \nabla \operatorname{Div}_{\mathbb{T}, \Gamma} N=T & \text { in } \Omega \\
\pi u=0 & \text { in } \Omega & & \operatorname{div}^{\operatorname{Div}} M=f & \text { in } \Omega & \operatorname{sym}_{\mathbb{S}} M \operatorname{Rot}_{\mathbb{T}} N=G
\end{array} \text { in } \Omega
$$

corresponding compact embeddings:

$$
\begin{array}{rlrl}
D\left(\nabla \nabla_{\Gamma}\right) \cap D(\pi)=D\left(\nabla \nabla_{\Gamma}\right)=\mathrm{H}_{\Gamma}^{2} & \leftrightarrow \mathrm{~L}^{2} & & \text { (Rellich's selection theorem) } \\
D\left(\operatorname{Rot}_{\mathbb{S}, \Gamma)}\right) \cap D\left({\left.\operatorname{div} \operatorname{Div}_{\mathbb{S}}\right)}^{\mathrm{L}_{\mathbb{S}}^{2}}\right. & & \text { (new selection theorem) } \\
D\left(\operatorname{Div}_{\mathbb{T}, \Gamma}\right) \cap D\left(\operatorname{sym}_{\operatorname{Rot}}^{\mathbb{T}}\right) & \leftrightarrow \mathrm{L}_{\mathbb{T}}^{2} & & \text { (new selection theorem) } \\
D(\pi) \cap D(\operatorname{dev} \nabla)=D(\operatorname{dev} \nabla)=D(\nabla)=\mathrm{H}^{1} \leftrightarrow \mathrm{~L}^{2} & & \text { (Rellich's selection theorem and Korn type ineq.) }
\end{array}
$$

two new selection theorems for strong Lip. dom. and Korn Type ineq.: P/Zulehner ('16)

There are Much More Complexes ...

...the world is full of complexes. ;)
\Rightarrow relaxing and enjoying more and "own" complexes at

AANMPDE 11

11th Workshop on Analysis and Advanced Numerical Methods for Partial Differential Equations (not only) for Junior Scientists http://www.mit.jyu.fi/scoma/AANMPDE11

August 6-10 2018, Särkisaari, Finland
organizers: Ulrich Langer, Dirk Pauly, Sergey Repin

