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The aim of this talk is to present parts of the so-called Functional Analysis Toolbox (FA-
ToolBox), a unified and general approach to solve PDEs. Hilbert Complexes are of particular
interest.

We shall motivate our concept by discussing the well known and prototypical div-curl-system

˚curlE = F, divE = g,

arising, e.g., in electro-magneto statics. Employing techniques from linear functional analysis (FA-
ToolBox) we develop a comprehensive (and surprisingly simple) solution theory for static problems
of the above type. We will introduce the notion of Hilbert complexes

H0
A0−−→ H1

A1−−→ H2,

of densely defined and closed linear operators

A0 : D(A0) ⊂ H0 → H1, A1 : D(A1) ⊂ H1 → H2,

satisfying the so-called complex property

R(A0) ⊂ N(A1).

The latter electro static system is then generalised to

A1x = f, A∗
0x = g.

The aim is to provide criteria on the complex such that existence and uniqueness of x can be
guaranteed. It will turn out that the crucial property is the compactness of the embedding

D(A1) ∩D(A∗
0) ↪→ H1,

i.e., in classical terms the compactness of

D( ˚curl) ∩D(div) ↪→ L2,

the co-called Picard-Weber-Weck selection theorem.
Our general theory is not only applicable to the classical de Rham complex involving grad,

curl, and div, but also to other important Hilbert complexes, such as the elasticity complex or the
biharmonic complex. Moreover, important results can be proved in this general setting, such as
general div-curl-type lemmas and informations about generalised Poincaré/Friedrichs estimates,
e.g., for the Maxwell constants.

This talk contains parts of joined work with colleagues from Essen, Linz, and Prag, in particular,
with Walter Zulehner (JKU Linz). Some parts are strongly related to the work of Doug Arnold
(Minnesota) and Ragnar Winther (Oslo) and their co-authors.

Results of this talk can be found in, e.g., [2, 1, 3, 4, 5, 7, 8, 6].
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