On the Grad grad and div Div Complexes, and a Related Decomposition Result for Biharmonic Problems in 3D: Part 1

Walter Zulehner

Institute of Computational Mathematics
JKU Linz, Austria
Workshop 1
Special Semester on
Computational Methods in Science and Engineering RICAM, Linz, October 17-22, 2016

Acknowledgment

Joint work with:
Wolfgang Krendl, Katharina Rafetseder, Martin Neumüller (Linz), Dirk Pauly (Essen)

The research was funded by the Austrian Science Fund (FWF): W1214-N15, project DK12, and S11702-N23

Motivation

primal formulation

find $u \in W=H_{0}^{2}(\Omega)$ such that

$$
\Delta^{2} u=f \quad \text { in } W^{*}=\mathrm{H}^{-2}(\Omega)
$$

decomposition into a sequence of second-order problems?

observe that

$$
\Delta^{2} u=-\operatorname{div} \operatorname{Div} \mathbf{M} \quad \text { with } \quad \mathbf{M}=-\operatorname{Grad} \operatorname{grad} u
$$

mixed formulation
find $\mathbf{M} \in \mathbf{V} \subset \mathbf{L}^{2}(\Omega, \mathbb{S})$ and $u \in Q \subset \mathrm{~L}^{2}(\Omega)$ such that

$$
\begin{array}{rlrl}
\mathbf{M}+\text { Grad grad } u & =0 & & \text { in } \mathbf{V}^{*} \\
\operatorname{div} \operatorname{Div} \mathbf{M} & & \text { in } Q^{*}
\end{array}
$$

Motivation

block-triangular system for

$$
\mathbf{M} \in \mathbf{V} \quad \text { and } \quad u \in Q
$$

of the form

Motivation

decomposition

$$
\mathbf{V}=\mathbf{V}_{1} \oplus \mathbf{V}_{2} \quad \text { with } \quad \mathbf{V}_{2}=\text { ker div Div }
$$

leads to

Outline

(1) The space V
(2) A direct and regular decomposition of \mathbf{V}
(3) The kernel of div Div
(4) Discretization
(5) Conclusion, extension and outlook

The space V

Mixed variational formulation for $f \in \mathrm{H}^{-2}(\Omega)$
Find $\mathbf{M} \in \mathbf{L}^{2}(\Omega, \mathbb{S})$ and $u \in H_{0}^{2}(\Omega)$ such that

$$
\begin{array}{rlrl}
\mathbf{M}+(\operatorname{div} \operatorname{Div})^{*} u & =0 & & \operatorname{in} \mathrm{~L}^{2}(\Omega, \mathbb{S})^{*} \\
\operatorname{div} \operatorname{Div} \mathbf{M} & & =-f & \\
\text { in } \mathrm{H}^{-2}(\Omega)
\end{array}
$$

Mixed variational formulation for $f \in \mathrm{~L}^{2}(\Omega)$
Find $\mathbf{M} \in \mathbf{H}(\operatorname{div} \operatorname{Div} ; \Omega, \mathbb{S})$ and $u \in L^{2}(\Omega)$ such that

$$
\begin{array}{ll}
\mathbf{M} \quad+(\operatorname{div} \operatorname{Div})^{*} u & =0 \quad \text { in } \mathbf{H}(\operatorname{div} \operatorname{Div} ; \Omega, \mathbb{S})^{*} \\
\operatorname{div} \operatorname{Div} \mathbf{M} & =-f \\
\text { in } L^{2}(\Omega)^{*}
\end{array}
$$

The space V

New mixed variational formulation for $f \in \mathrm{H}^{-1}(\Omega)$
Find $\mathbf{M} \in \mathbf{V}$ and $u \in H_{0}^{1}(\Omega)$ such that

$$
\begin{array}{llll}
\mathbf{M} & +(\operatorname{div} \operatorname{Div})^{*} u & =0 & \text { in } \mathbf{V}^{*} \\
\operatorname{div} \operatorname{Div} \mathbf{M} & =-f & \text { in } \mathrm{H}^{-1}(\Omega)
\end{array}
$$

with

$$
\mathbf{V}=\left\{\mathbf{N} \in \mathbf{L}^{2}(\Omega, \mathbb{S}): \operatorname{div} \operatorname{Div} \mathbf{N} \in \mathbf{H}^{-1}(\Omega)\right\} \equiv \mathbf{H}^{0,-1}(\operatorname{div} \operatorname{Div} ; \Omega, \mathbb{S})
$$

norm

$$
\begin{aligned}
& \|\mathbf{N}\|_{\mathbf{V}}=\left(\|\mathbf{N}\|_{L^{2}(\Omega)}^{2}+\|\operatorname{div} \operatorname{Div} \mathbf{N}\|_{H^{-1}(\Omega)}^{2}\right)^{1 / 2} \\
& \mathbf{H}^{1}(\Omega, \mathbb{S}) \subset \mathbf{H}^{0,-1}(\operatorname{div} \operatorname{Div} ; \Omega, \mathbb{S}) \subset \mathbf{L}^{2}(\Omega, \mathbb{S})
\end{aligned}
$$

Bernardi/Girault/Maday (1992), Z. (2015), Pechstein/Schöber! (2011),

The space V

New mixed variational formulation for $f \in \mathrm{H}^{-1}(\Omega)$

Find $\mathbf{M} \in \mathbf{V}=\mathbf{H}^{0,-1}(\operatorname{div} \operatorname{Div} ; \Omega, \mathbb{S})$ and $u \in Q=H_{0}^{1}(\Omega)$ such that

$$
\begin{array}{llrl}
\langle\mathbf{M}, \mathbf{N}\rangle & +\langle\operatorname{div} \operatorname{Div} \mathbf{N}, u\rangle & =0 & \\
\text { for all } \mathbf{N} \in \mathbf{V} \\
\langle\operatorname{div} \operatorname{Div} \mathbf{M}, v\rangle & & =-\langle f, v\rangle & \\
\text { for all } v \in Q
\end{array}
$$

Theorem

The mixed problem is well-posed in $\mathbf{V} \times Q$, equipped with the norms

$$
\|\mathbf{N}\|_{\mathbf{v}}=\left(\|\mathbf{N}\|_{\mathbf{L}^{2}(\Omega)}^{2}+\|\operatorname{div} \operatorname{Div} \mathbf{N}\|_{H^{-1}(\Omega)}^{2}\right)^{1 / 2}, \quad\|v\|_{Q}=\|v\|_{H_{0}^{1}(\Omega)}
$$

The space V

Theorem

If $(\mathbf{M}, u) \in \mathbf{V} \times Q=\mathbf{H}^{0,-1}(\operatorname{div} \operatorname{Div} ; \Omega, \mathbb{S}) \times \mathrm{H}_{0}^{1}(\Omega)$ is the solution to the mixed problem

$$
\begin{aligned}
\mathbf{M}+(\operatorname{div} \operatorname{Div})^{*} u & =0 & & \text { in } \mathbf{V}^{*} \\
\operatorname{div} \operatorname{Div} \mathbf{M} & & & \text { in } Q^{*}
\end{aligned}
$$

then $u \in W=H_{0}^{2}(\Omega)$ and u is the solution to the primal problem

$$
\Delta^{2} u=f \quad \text { in } W^{*}
$$

Vice versa, if $u \in W=H_{0}^{2}(\Omega)$ is the solution to the primal problem, then $\mathbf{M}=-$ Grad grad $u \in \mathbf{V}$ and (\mathbf{M}, u) is the solution to the mixed problem.

Krendl/Rafetseder/Z. $(2014,2016)$

A regular decomposition of $\mathbf{H}^{0,-1}$ (div Div; $\left.\Omega, \mathbb{S}\right)$

Theorem

For each $\mathbf{M} \in \mathbf{H}^{0,-1}$ (div Div; $\left.\Omega, \mathbb{S}\right)$ there is a unique decomposition

$$
\mathbf{M}=p \mathbf{I}+\mathbf{M}_{0} \quad \text { with } \quad \mathbf{I} \quad \text { identity matrix in } \mathbb{R}^{d}
$$

with $p \in \mathrm{H}_{0}^{1}(\Omega)$ and $\mathbf{M}_{0} \in \operatorname{kerdiv}$ Div.
The function $p \in \mathrm{H}_{0}^{1}(\Omega)$ is the unique solution of the Poisson problem

$$
\langle\operatorname{grad} p, \operatorname{grad} v\rangle=-\langle\operatorname{div} \operatorname{Div} \mathbf{M}, v\rangle \quad \text { for all } v \in \mathrm{H}_{0}^{1}(\Omega)
$$

Moreover,

$$
\underline{c}\left(\|p\|_{\mathbf{H}_{0}^{1}(\Omega)}^{2}+\left\|\mathbf{M}_{0}\right\|_{\mathbf{L}^{2}(\Omega)}^{2}\right) \leq\|\mathbf{M}\|_{V}^{2} \leq \bar{c}\left(\|p\|_{\mathbf{H}_{0}^{1}(\Omega)}^{2}+\left\|\mathbf{M}_{0}\right\|_{\mathbf{L}^{2}(\Omega)}^{2}\right)
$$

Decomposition of the biharmonic problem

Using

$$
\mathbf{M}=p \mathbf{I}+\mathbf{M}_{0}, \quad \mathbf{N}=q \mathbf{I}+\mathbf{N}_{0}
$$

the variational problem

$$
\begin{array}{llrl}
\langle\mathbf{M}, \mathbf{N}\rangle & +\langle\operatorname{div} \operatorname{Div} \mathbf{N}, u\rangle & =0 & \\
\text { for all } \mathbf{N} \in \mathbf{V} \\
\langle\operatorname{div} \operatorname{Div} \mathbf{M}, v\rangle & & =-\langle f, \boldsymbol{v}\rangle & \\
\text { for all } v \in Q
\end{array}
$$

can be rewritten as follows:
Find $p \in H_{0}^{1}(\Omega), \mathbf{M}_{0} \in \operatorname{ker} \operatorname{div} \operatorname{Div} \subset \mathbf{L}^{2}(\Omega, \mathbb{S}), u \in H_{0}^{1}(\Omega)$ such that

$$
\begin{aligned}
& d\langle p, q\rangle \quad+\left\langle q, \operatorname{tr} \mathbf{M}_{0}\right\rangle-\langle\operatorname{grad} u, \operatorname{grad} q\rangle=0 \\
& \left\langle p, \operatorname{tr} \mathbf{N}_{0}\right\rangle \quad+\left\langle\mathbf{M}_{0}, \mathbf{N}_{0}\right\rangle \quad=0 \\
& -\langle\operatorname{grad} p, \operatorname{grad} v\rangle \\
& =-\langle f, v\rangle
\end{aligned}
$$

for all $q \in H_{0}^{1}(\Omega), \mathbf{N}_{0} \in \operatorname{kerdiv} \operatorname{Div}$, and $v \in H_{0}^{1}(\Omega)$.

Kernel of div Div in 2D

Let Ω be topologically simple.

- Let $\mathbf{M} \in \mathbf{L}^{2}(\Omega ; \mathbb{S})$ with $\operatorname{div} \operatorname{Div} \mathbf{M}=0$. Then

$$
\mathbf{M}=\operatorname{sym} \operatorname{Curl} E, E \in \mathrm{H}^{1}(\Omega)^{2} \quad \text { with } \quad \operatorname{Curl} E=\left[\begin{array}{ll}
\partial_{2} E_{1} & -\partial_{1} E_{1} \\
\partial_{2} E_{2} & -\partial_{1} E_{2}
\end{array}\right]
$$

- Let $E \in \mathrm{~L}^{2}(\Omega)^{2}$ with sym Curl $E=0$. Then

$$
E \in R T_{0}=\left\{a x+b: \quad a \in \mathbb{R}, b \in \mathbb{R}^{2}\right\}
$$

Beirão da Veiga/Niiranen/Stenberg(2007), Huang/Huang/Xu (2011)

Decomposition of the biharmonic problem in 2D

Then the variational problem

$$
\begin{array}{ll}
d\langle p, q\rangle & +\left\langle\boldsymbol{q}, \operatorname{tr} \mathbf{M}_{0}\right\rangle-\langle\operatorname{grad} u, \operatorname{grad} q\rangle \\
\left\langle p, \operatorname{tr} \mathbf{N}_{0}\right\rangle & =0 \\
-\langle\operatorname{grad} p, \operatorname{grad} v\rangle & =0 \\
& =-\langle f, v\rangle
\end{array}
$$

can be rewritten as follows:
Find $p \in H_{0}^{1}(\Omega), E \in H^{1}(\Omega)^{2}$, and $u \in H_{0}^{1}(\Omega)$ such that

$2\langle p, q\rangle$	$+\langle q, \operatorname{curl} E\rangle$	$-\langle\operatorname{grad} u, \operatorname{grad} q\rangle$
$=0$		
$\langle p, \operatorname{curl} F\rangle$	$+\langle\operatorname{sym} \operatorname{Curl} E, \operatorname{sym} \operatorname{Curl} F\rangle$	$=0$
$\langle\operatorname{grad} p, \operatorname{grad} v\rangle$		$=-\langle f, v\rangle$

for all $q \in H_{0}^{1}(\Omega), \quad F \in H^{1}(\Omega)^{2}$, and $v \in H_{0}^{1}(\Omega)$.

Decomposition of biharmonic problems in 2D

Since

$$
\operatorname{sym} \operatorname{Curl} E=(\operatorname{div} V) \mathbf{I}-\operatorname{sym} G r a d V \quad \text { with } \quad V=\left[\begin{array}{c}
-E_{2} \\
E_{1}
\end{array}\right],
$$

the variational problem can be rewritten as follows:
Find $p \in H_{0}^{1}(\Omega), \quad V \in H^{1}(\Omega)^{2}$, and $u \in H_{0}^{1}(\Omega)$ such that

$$
\begin{array}{lll}
2\langle p, q\rangle & +\langle q, \operatorname{div} V\rangle & -\langle\operatorname{grad} u, \operatorname{grad} q\rangle \\
\langle p, \operatorname{div} W\rangle & +\langle\operatorname{sym} \operatorname{Grad} V, \operatorname{sym} \operatorname{Grad} W\rangle & =0 \\
-\langle\operatorname{grad} p, \operatorname{grad} v\rangle & & =-\langle f, v\rangle \\
\text { for all } q \in H_{0}^{1}(\Omega), & W \in \mathrm{H}^{1}(\Omega)^{2} \text {, and } v \in H_{0}^{1}(\Omega) . &
\end{array}
$$

Decomposition of biharmonic problems in 2D

decomposition (in strong form):
(1) Poisson problem with Dirichlet boundary conditions for p

$$
-\Delta p=f \quad \text { in } \Omega, \quad p=0 \quad \text { on } \Gamma
$$

(2) pure traction problem with Poisson ratio 0 for V
$-\operatorname{Div}(\operatorname{sym} \operatorname{Grad} V)=\operatorname{grad} p \quad$ in $\Omega, \quad(\operatorname{sym} \operatorname{Grad} V) n=0 \quad$ on Γ
(3) Poisson problem with Dirichlet boundary conditions for u

$$
-\Delta u=2 p+\operatorname{div} V \quad \text { in } \Omega, \quad u=0 \quad \text { on } \Gamma
$$

Kernel of div Div in 3D

Theorem

Let Ω be topologically simple.

- Let $\mathbf{M} \in \mathbf{L}^{2}(\Omega ; \mathbb{S})$ with $\operatorname{div} \operatorname{Div} \mathbf{M}=0$. Then

$$
\mathbf{M}=\operatorname{sym} \text { Curl } \mathbf{E}
$$

with

$$
\mathbf{E} \in \mathbf{H}^{1}(\Omega, \mathbb{T}) \quad \text { or } \quad \mathbf{E} \in \mathbf{H}(\text { sym Curl; } \Omega, \mathbb{T})
$$

and, vice versa, ...

- Let $\mathrm{E} \in \mathrm{L}^{2}(\Omega, \mathbb{T})$ with sym Curl $\mathrm{E}=0$. Then $\mathbf{E}=\operatorname{dev} \operatorname{Grad} V \quad$ with $\quad V \in \mathrm{H}^{1}(\Omega)^{3}$
and, vice versa, ...

Kernel of div Div in 3D

Theorem (Cont.)

- Let $V \in L^{2}(\Omega)^{3}$ with $\operatorname{dev} G r a d V=0$. Then

$$
V \in R T_{0}=\left\{a x+b: a \in \mathbb{R}, b \in \mathbb{R}^{3}\right\}
$$

and, vice versa, ...

- The potential E is uniquely determined in

$$
\mathbf{H}(\text { sym Curl; } \Omega, \mathbb{T}) \cap \mathbf{H}_{0}(\text { Div; } \Omega, \mathbb{T})
$$

with

$$
\operatorname{Div} \mathbf{E}=0 \quad \text { in } \Omega
$$

Quenneville-Bélair (2015), Pauly/Z. (2016)

Decomposition of the biharmonic problem in 3D

Then the variational problem

$$
\begin{array}{ll}
d\langle p, q\rangle & +\left\langle q, \operatorname{tr} \mathbf{M}_{0}\right\rangle-\langle\operatorname{grad} u, \operatorname{grad} q\rangle \\
\left\langle p, \operatorname{tr} \mathbf{N}_{0}\right\rangle & +\left\langle\mathbf{M}_{0}, \mathbf{N}_{0}\right\rangle \\
-\langle\operatorname{grad} p, \operatorname{grad} v\rangle & \\
=0 \\
& =-\langle f, v\rangle
\end{array}
$$

can be rewritten as follows:
Find $p \in H_{0}^{1}(\Omega), \mathbf{E} \in \mathbf{H}(\operatorname{sym} \operatorname{Curl}, \Omega, \mathbb{T})$, and $u \in H_{0}^{1}(\Omega)$ such that

$$
\begin{array}{ll}
3\langle p, q\rangle & +\langle q, \operatorname{tr} \operatorname{sym} \operatorname{Curl} \mathbf{E})\rangle \quad-\langle\operatorname{grad} u, \operatorname{grad} q\rangle \\
=0 \\
\langle p, \operatorname{tr} \operatorname{sym} \operatorname{Curl} \mathbf{F}\rangle & +\langle\operatorname{sym} \text { Curl E, sym Curl } \mathbf{F}\rangle \\
-\langle\operatorname{grad} p, \operatorname{grad} v\rangle & =0 \\
& =-\langle f, v\rangle
\end{array}
$$

for all $q \in H_{0}^{1}(\Omega), \Psi \in \mathbf{H}(\operatorname{sym} \operatorname{Curl}, \Omega, \mathbb{T})$, and $v \in H_{0}^{1}(\Omega)$.

Discretization

The Hellan-Herrmann-Johnson method

$k \in \mathbb{N}, P_{k}$ polynomials of total degree $\leq k$.
approximation space for M

$$
\begin{aligned}
\mathbf{V}_{h}=\left\{\mathbf{N} \in \mathbf{L}^{2}(\Omega, \mathbb{S}):\right. & \left.\mathbf{N}\right|_{T} \in P_{k-1} \text { for all } T \in \mathcal{T}_{h}, \text { and } \\
& \left.\mathbf{N}_{n n} \text { is continuous across all } e \in \mathcal{E}_{h}\right\} .
\end{aligned}
$$

approximation space for u

$$
Q_{h}=\mathcal{S}_{h, 0}=\mathcal{S}_{h} \cap H_{0}^{1}(\Omega)
$$

with the standard finite element spaces

$$
\mathcal{S}_{h}=\left\{v \in C(\bar{\Omega}):\left.v\right|_{T} \in P_{k} \text { for all } T \in \mathcal{T}_{h}\right\}
$$

Discretization

Hellan-Herrmann-Johnson element of order $k=1$
degrees of freedom

Discretization

Hellan-Herrmann-Johnson element of order $k=2$
degrees of freedom

$\mathbf{M}_{n n}$

u

Discretization

Hellan-Herrmann-Johnson element of order $k=3$
degrees of freedom

$\mathbf{M}_{n n}$

u

The HHJ method

Observe that

$$
\mathbf{V}_{h} \not \subset \mathbf{V}=\mathbf{H}^{0,-1}(\operatorname{div} \operatorname{Div} ; \Omega, \mathbb{S})
$$

Hellan-Herrmann-Johnson (HHJ) method:

Find $\mathbf{M}_{h} \in \mathbf{V}_{h}$ and $u_{h} \in Q_{h}$ such that

$$
\begin{array}{llr}
\left\langle\mathbf{M}_{h}, \mathbf{N}_{h}\right\rangle & & \text { for all } \mathbf{N}_{h} \in \mathbf{V}_{h} \\
\left\langle\operatorname{div} \operatorname{Div}_{h} \mathbf{M}_{h}, v_{h}\right\rangle & & =-\left\langle f, v_{h}\right\rangle \\
\left.\operatorname{Div}_{h} \mathbf{N}_{h}, u_{h}\right\rangle & =0 & \text { or all } v_{h} \in Q_{h}
\end{array}
$$

where

$$
\left\langle\operatorname{div} \operatorname{Div}_{h} \mathbf{N}, v\right\rangle=\sum_{T \in \mathcal{T}_{h}}\left\{\int_{T} \mathbf{N}: \operatorname{grad}^{2} v d x-\int_{\partial T} \mathbf{N}_{n n} \partial_{n} v d s\right\}
$$

The HHJ method

interpolation operator

$$
\boldsymbol{\Pi}_{h}: \boldsymbol{W} \subset \mathbf{V} \longrightarrow \mathbf{V}_{h}
$$

given by the conditions

$$
\begin{aligned}
& \int_{e}\left(\left(\Pi_{h} \mathbf{N}\right)_{n n}-\mathbf{N}_{n n}\right) q d s=0, \text { for all } q \in P_{k-1}, \\
& \int_{T}\left(\Pi_{h} \mathbf{N}-\mathbf{N}\right) q d x=0, \text { for all } q \in \mathcal{E}_{h-2}, \\
&, \quad T \in \mathcal{T}_{h}
\end{aligned}
$$

Brezzi/Raviart (1977)

Theorem

For each $\mathbf{M}_{h} \in \mathbf{V}_{h}$ there is a unique decomposition

$$
\mathbf{M}_{h}=\boldsymbol{\Pi}_{h}\left(p_{h} \mathbf{I}\right)+\operatorname{sym} \text { Curl } E_{h}
$$

with $p_{h} \in \mathcal{S}_{h, 0}$ and $E_{h} \in\left(\mathcal{S}_{h}\right)^{2}$.

The HHJ method

With the representation

$$
\mathbf{M}_{h}=\boldsymbol{\Pi}_{h}\left(p_{h} \mathbf{I}\right)+\operatorname{sym} \text { Curl } E_{h} \quad \text { and } \quad \mathbf{N}_{h}=\boldsymbol{\Pi}_{h}\left(q_{h} \mathbf{I}\right)+\operatorname{sym} \text { Curl } \psi_{h}
$$

the HHJ method reads:

Find $p_{h} \in \mathcal{S}_{h, 0}, E_{h} \in \mathcal{S}_{h}^{2}$, and $u_{h} \in \mathcal{S}_{h, 0}$ such that
$\left\langle\boldsymbol{\Pi}_{h}\left(p_{h} \mathbf{I}\right), \Pi_{h}\left(q_{h} \mathbf{I}\right)\right\rangle \quad+\left\langle\operatorname{sym} \operatorname{Curl} E_{h}, \Pi_{h}\left(q_{h} \mathbf{I}\right)\right\rangle \quad-\left\langle\operatorname{grad} u_{h}, \operatorname{grad} q_{h}\right\rangle=0$
$\left\langle\Pi_{h}\left(p_{h} \mathbf{I}\right)\right.$, sym Curl $\left.F_{h}\right\rangle+\left\langle\operatorname{sym}\right.$ Curl E_{h}, sym Curl $\left.F_{h}\right\rangle \quad=0$

- $\left\langle\operatorname{grad} p_{h}, \operatorname{grad} v_{h}\right\rangle$
$=-\left\langle f, v_{h}\right\rangle$
for all $q_{h} \in \mathcal{S}_{h, 0}, \quad F_{h} \in \mathcal{S}_{h}^{2}$, and $v_{h} \in \mathcal{S}_{h, 0}$.

The HHJ method

Hellan-Herrmann-Johnson element of order $k=1$
all degrees of freedom for \mathbf{M} and u are collocated

$$
p, E, u
$$

The HHJ method

Hellan-Herrmann-Johnson element of order $k=2$
all degrees of freedom for \mathbf{M} and u are collocated

$$
p, E, u
$$

The HHJ method

Hellan-Herrmann-Johnson element of order $k=3$
all degrees of freedom for \mathbf{M} and u are collocated

p, E, u

A conforming variant of the HHJ method

Removing the interpolation operator Π_{h} in

$$
\begin{aligned}
\left\langle\boldsymbol{\Pi}_{h}\left(p_{h} \mathbf{I}\right), \boldsymbol{\Pi}_{h}\left(q_{h} \mathbf{I}\right)\right\rangle+\left\langle\operatorname{sym} \operatorname{Curl} E_{h}, \boldsymbol{\Pi}_{h}\left(q_{h} \mathbf{I}\right)\right\rangle-\left\langle\operatorname{grad} u_{h}, \operatorname{grad} q_{h}\right\rangle & =0 \\
\left\langle\boldsymbol{\Pi}_{h}\left(p_{h} \mathbf{I}\right), \operatorname{sym} \operatorname{Curl} F_{h}\right\rangle+\left\langle\operatorname{sym} \operatorname{Curl} E_{h}, \operatorname{sym} \operatorname{Curl} F_{h}\right\rangle & =0 \\
-\left\langle\operatorname{grad} p_{h}, \operatorname{grad} v_{h}\right\rangle & \\
& =-\left\langle f, v_{h}\right\rangle
\end{aligned}
$$

leads to the following conforming variant:
Find $p_{h} \in \mathcal{S}_{h, 0}, E_{h} \in \mathcal{S}_{h}^{2}$, and $u_{h} \in \mathcal{S}_{h, 0}$ such that

| $\left\langle p_{h} \mathbf{I}, q_{h} \mathbf{I}\right\rangle$ | $+\left\langle\operatorname{sym} \operatorname{Curl} E_{h}, q_{h} \mathbf{I}\right\rangle-\left\langle\operatorname{grad} u_{h}, \operatorname{grad} q_{h}\right\rangle$ |
| :--- | :--- |$=0$

for all $q_{h} \in \mathcal{S}_{h, 0}, \quad F_{h} \in \mathcal{S}_{h}^{2}$, and $v_{h} \in \mathcal{S}_{h, 0}$.

Conclusion, extension and outlook

- biharmonic problems can be decomposed in three (consecutively to solve) second-order problems
- extension to more general fourth-order problems of the form

$$
\operatorname{div} \operatorname{Div}(\mathcal{C} \operatorname{Grad} \operatorname{grad} u)-\operatorname{div}(C \operatorname{grad} u)+c u=f
$$

leads to the construction of optimal preconditioners.

- work in progress: finite element spaces for $\mathbf{H}(\operatorname{sym} \operatorname{Curl} ; \Omega, \mathbb{T})$

