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CLASSICAL TIME-HARMONIC SCATTERING MAXWELL PROBLEM

time-harmonic Maxwell (electro-magnetic scattering) problem
in Q@ C R3 exterior domain

oE, —rotH, +iweE, = F in Q (pde)
rotE, +iwpH, = G inQ (pde)
vxE,=0 (=X) ondQ (boundary cond.)

E,,H,=0(r""y forr— oo (decaycond.)
EXEy+Hy, —ExXHo+E,=0("") forr — oo (Silver-Miiller radiation cond.)
here: 0 #w € C, r(x)=|x|, &(x):=x/|x|
inhom. aniso. media ¢, u € L°°(Q, R3%3), sym, unif. pos. def., supp o compact

for simplicity (in the beginning) o = 0

QUESTION / AIM: low frequency asymptotics?

lim E,, lim H, ?
w—0 w—0
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CLASSICAL TIME-HARMONIC SCATTERING MAXWELL PROBLEM
analytical motivation:
» Weck, N. and Witsch, K.-J.: CPDE, (1992)

Complete low frequency Analysis for the reduced wave Equation with variable
coefficients in three dimensions

» Weck, N. and Witsch, K.-J.: M2AS, (1997)
Generalized linear elasticity in exterior domains — I: radiation problems
» Weck, N. and Witsch, K.-J.: M2AS, (1997)
Generalized linear elasticity in exterior domains — II: low-frequency asymptotics

analytical/numerical motivation:

» Ammari, H. and Buffa, A. and Nédélec, J.-C.: SIAM JAM, (2000)
A justification of eddy currents model for the Maxwell equations
(! cited 64 times in MathSciNet / unfortunately wrong !)

» Ammari, H. and Nédélec, J.-C.: SIAM JMA, (2000)
Low-frequency electromagnetic scattering (sol. theo. by fundamental solution,
asymptotic expansion simply by Taylor series of the fundamental solution,
non-local bc, not very satisfying)

disadvantages of Ammari/Nédélec-papers
» no identification of terms in the expansion by proper boundary value problems
» estimates just in local L2-norms
» non local boundary conditions due to EtM-operators (DtN-operators)
» comp. supp. F,G;e=p=1
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CLASSICAL TIME-HARMONIC SCATTERING MAXWELL PROBLEM
more compact and proper notation
(M—w)u, =f el 5(Q) x L2 ,(Q)
U, € I(-jl< 1/2(rot; Q) x H<71/2(rot; Q)
(S+Nuw € L2 )5(Q) x L2 4 5(Q)

. . _|€ 0 -1 _ 5_1 0
here: u, := (Eu,H.), f:=iA(F,G), A= {0 M]’ AN = { 0 u_1],

. 0 —rot 0o -
M=in"1 Rot, Rot:= |: 6 ], S= CRol,r = |:§X gxi|

M: I?I(rot; Q) x H(rot; Q) C L2(Q) x L3(Q) — L?(Q) x L2(Q) s.a. unbd. lin. op.
= unique L?-solutions u,, for w € C\ R

later: gen. Fredholm alternative for w € R\ {0}
(Eidus’ principle of limiting absorption (1962), a priori estimates)

QUESTION: low frequency asymptotics?

lim Ue
C\{0}3w—0

METHOD: Weck & Witsch, i.e., full ext. dom. and no artificial boundary
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GENERALIZED TIME-HARMONIC SCATTERING MAXWELL PROBLEM

gen. time-harmonic Maxwell (electro-magnetic scattering) problem
in © ¢ RN exterior domain, 0 # w € C

SH, +iweE, =F inQ (
dE, +iwpH, = G inQ (
E,=0 (=X) ondQ (bc)
(
(

5
Q
K

Eo,Ho=0(r""y forr— oo (dc)
drAEs+Hy, (-1)NsdrasxH,+E,=o0(r"") forr— oo (gen. Silver-Miiller rc)

here: E, F g-forms, H, G (g + 1)-forms
inhom. aniso. media ¢, p (linear transformations) sym, unif. pos. def.

QUESTION / AIM: low frequency asymptotics?

im E,, lim H, ?
w—0 w—0
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GENERALIZED TIME-HARMONIC SCATTERING MAXWELL PROBLEM

time-harmonic Maxwell problem in Q C RN exterior domain
for simplicity N > 3 odd, frequencies from upper half plane w € C

2,9,9+1
(M—w)u, =f¢€ L>7/‘;+ (9)

DY (Q)x AT (Q
U, € <7%( ) X <7%( )
2,9,9+1
(§+Nuw € LI7775(9)

here: u, := (Ew, Hw), f:= i/\*‘(F, G), E,F g-forms, H,G(q+ 1)-forms,
. 0 ¢ e 0 0o T
= -5 = = = =
w0 a=fs O 5= [0 1] meaen, Tosen
dext. deriv., 6 =+xdxco-deriv, R=Cqy, T=Cs,
M : Bq(Q) x A9T1(Q) C L299+1(Q) — L%99+1(Q) s.a. unbd. lin. op.
denote sol. op. of time-harmonic prob. by £, := (M —w)™"'  (Uy = Lw )

QUESTION: low frequency asymptotics?

lim Ly, =7
C+\{0}3w—0

(topology: operator norm of polyn. weighted Sobolev spaces)
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BOUNDED DOMAIN
time-harmonic Maxwell problem in Q ¢ RN bounded Lipschitz domain

(M —w)u, = f € L2291(Q)
U, € DI(Q) x A% (Q) =: D(M)
Helmholtz deco. = L29:9t1(Q) = N(M) ©p R(M)

M : D(M) C L299+1(Q) — L299t1(Q) s.a.,
M : D(M) := D(M)n R(M) C R(M) — R(M) s.a. (red. op.)

Weck’s sel. theo./Maxwell compactness prop., i.e., D(M) < L2:9:9+1(Q) comp.
= Maxwell estimate, i.e., 3¢m >0 VYu e DM) |uli2,q(q) < CmlMul 2,q(q)

& R(M)=R(M)closed < Lo:=M"":R(M)— D(M) cont.
= Lo:R(M)— R(M)comp. (static sol. op. cont./comp.)

standard sol. theory = Fredholm’s alternative, especially

op(M) = o (M) = o(M) \ {0} = op(M) \ {0} = {Fwn}Zy C R\ {0}
with (wn) C (0, +00) strictly monotone increasing with wp 7 +o00
= sol. op. time-harmonic prob. (f — u., = L, f) well def. for 0 < |w| small

Lo : L299(Q) = D(M), L, : R(M) — D(M)
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BOUNDED DOMAIN
time-harmonic Maxwell problem in Q@ ¢ RN bounded Lipschitz domain

(M —w)u, = fe Ll2997(Q)
Uy, € D(M)
Helmholtz deco. =  L29:9+1(Q) = N(M) @, R(M) and D(M) = N(M) &, D(M)
orth.-norm.-projectors M : L2%9:9t1(Q) — N(M), 1 — M : L29:9t1(Q) — R(M)
=  —whu, =nNf and  (M—w)(1 — Mu, = (1 — M)f € R(M)
Nu, € N(M) (1 —Mu, € D(M)
note: D(M) = D(M) N R(M) = (D9(Q) ne—" 5§ AT (Q)) x (AT ()N~ d DI(Q))
setv:=(1—-Mu, e DIM) C RAM)andg:= (1 —M)f e RA(M) = LoMv=v
= M-wlv=g <& (A —-wly)v==*Log
(oo}
NUMEINSSr Y — (1 —wLo) T Log = W Lo/ Log
=0
forsmall0 < |w| since |wlo|<1 < |w|<1/|Lo]| (1stpos. Maxwell ev)

= Lof=ue=Nuy+v=—w MF+> o L1 - N)f
j=0
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BOUNDED DOMAIN

= low frequency asymptotics in L2-operator norm

oo
Lo = ﬂJr Zw] Lo Mreg, w € C4 \ {0} small
trivial part /=0

Neumann series

M:L299+1(Q) — N(M), Mg :=1—N:L%%91(Q) — R(M)
Lo : R(M) — D(M) n R(M)
problems if Q exterior domain

» this low frequency asymptotic is wrong, even not well defined

» static solution theory needs weighted Poincare estimate!

= leaving L2-setting

e.g., static sol. op. maps unweighted data f to (1 4 r)~'-weighted sol. g
» not clear how to define higher powers of £g ?

» careful investigation of static sol. theo. in weighted Sobolev spaces
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EXTERIOR DOMAIN

aim: give meaning to Neumann sum in terms of an asymptotic expansion

J—1
Lo+w M= "W Lo/ Mg = O(|w]’) , JENy, weCy\{0}small
j=0

3 major complications
» growing J = stronger data norms for f and weaker solution norms for u, = L f
» [, Mreg indicate need for polyn. weighted Hodge-Helmholtz deco. of

Li,q,qﬂ (Q) — (Tl'lg(Q) + Regsy—1 (Q)) n Li,q,q+1 (Q)
respecting inhomogeneities A (topological direct decomposition)
(N(M) =) Tid(Q) = NLZ99(Q) € oDI(Q) x oA (Q)
Reg? ™' (2) = Miegl 2797 (2) € A~ (0A%(92) x oD (2))

only subspaces of Lf’a”"+1 (Q)witht <sandt < N/2
not of L2997 (Q) if s > N/2
» expansion has to be corrected by special, explicitly computable degenerate op.
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EXTERIOR DOMAIN

more precisely: J € Ng and s, —t > 1/2 as well as f € L2%91(Q)

= main result: asymptotic estimates

J—1 J=N
| £t wmNF =3 ol £ Mragf = N1 S~ T 2aiair g = Ol [l 20.041 g
j=0 j=0 ¢

O-symbol always for w — 0 and uniformly w.r.t. w and f

withw € C4 \ {0} and |w| < &, where & > 0
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GENERAL ASSUMPTIONS

» Q c RN exterior domain with Lipschitz boundary
(Maxwell local compactness property,
exist. of special forms with bounded supports repl. Dirichlet/Neumann forms)

» 1 < g < N - 2andodd space dimensions N (class. N =3,g=1)
(even dim., especially N = 2, OK
but logarithmic terms due to expansions of Hankel’s functions)

fix radius ro > 0 with RV \ Q C By, , cut-off function n

e=Id+&, p = ld+4 (A = Id+A) -C'-admissible, i.e.,

linear, real, sym., unif. pos. def. L°°-transformations with A e C! for x| > ro
asymptotically homogeneous, i.e.,

8% A = O(r—7=1el) for all |a| < 1 with order of decay T at infinity,

7 > 0 dependingon t, s

v

v
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DESCRIPTION OF RESULTS

» degenerate correction operators I'; by recursion consisting of
Ems Hi.no = L§(ES m 0), Hyn = £G(0, Hy o) € LT (@)
sol. of hom. static boundary value problems with inhom. at infinity, e.g.,
E+ € oDl (Q)ne" (o
Eipm—T0%0 ¢ Li‘i%(Q)

Ioc(Q) n Bq( ) )
‘harmonic polynomials’ +AZ: K behave like r+o at infinity (k, o > 0)
» ‘trivial’ subspace Trid(Q) = NL2%97(Q) ¢ OD;’(Q) X oATT(Q) (C N(M))
Lof=-w"f feTi(Q)
> two kinds of media A = Id +A

1 A comp. supp., results for any J
A ‘decays’ with = > 0 at infinity, results for J < J dep. on 7
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DESCRIPTION OF RESULTS

» identify closed subspaces Reg?”(Q) of RegZ°(Q) c L2%9"(Q), ‘spaces of
regular convergence’, = ‘usual’ Neumann expansion

J—1

| £wf— ;Wj Lo ] 2t ) = O(wl”) [Tl 20,01 g

for f € Reg?(Q)
» charact. of RegZ"/(2) by orthogonality in L2 to the spec. grow. st. sol. E; &, Hi ¥
» corrected Neumann expansion

J—1 J—N
H L, f— Z Wl Lot f— N Z wll—/fHL?,q,qﬂ @ = O(|w|J) “f”l_i,q,qﬂ @
j=0 j=0

o
for f € Regd ™" (Q) = MregLs 97 (Q) € A~1 (047(Q) x oD (02))
» fully corrected Neumann expansion

J—1 J=N
| £ ft w™Nf= 3wl £ Mregf — N1 37 wlTf] 2iq.0i1(g) = O(Il”) [ 2041 g
=0 =0

for f € L2997(Q) = (Trid(Q) + Reg? ' (Q)) N L2991 (Q)
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MAIN RESULT

Theorem (low frequency asymptotics)
LetJeNands ¢ 1= (Ng+N/2)u (1 — N/2—Np) with

s>J+1/2, ()
t<min{N/2 —J—-2,-1/2}, (uw)
7>max {(N+1)/2,s —t}. (A)

Then for all small enough C \ {0} > w — 0 the asymptotic expansion

J—1 J—N
Lo+w™ M= £/ Mieg — N~ >~ Wl = O(|wl]”)
j=0 j=0

holds in the norm of bounded linear operators from L5%9"(Q) to L2%977(Q).

Remark The main theorem holds also for J = 0 with slightly different t and .
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TIME-HARMONIC SCATTERING PROBLEM

Solving (M — w)u, = f?

M i DY(Q)x AT(Q) CL2MH(Q) s 1299(Q)
u — iAT] 0 9 u
d 0

Munbd. lin.s.a. = oM)CR

w€C\R = L,=(M-w)""bounded = LZsol.forallfeL299+1(Q)
solving in o(M) \ {0} with Eidus’ ‘limiting absorption principle’ (approx. from C.)
Definition (time-harmonic (scattering) solutions)

Letw € R\ {0} and f € L2997 (Q). u, solves Max(f,w), iff

0

(i) vot<—1/2 Uy € 57(9) x A77(Q),
(il 3 t>-1/2 (S+u, € L2997 (),
(i) (M - w)uy = .

TOOLS: a priori estimate, polynomial decay of eigensolutions, decomposition lemma,
Helmholtz’ equation
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TIME-HARMONIC SCATTERING PROBLEM

Theorem (time-harmonic (scattering) solution theory)
Letw e R\ {0} ands > 1/2, 7 > 1.

i.e. gen. eigensolutions decay polynomially (and exponentially for A € C2),

no gen. eigenvalues for A = Id, comp. Helmholiz eq., Rellich’s est., princ. uniq.

cont.

(ii) dimMax(0,w) < oo
(iii) ogen(M) has no accumulation point inR \ {0}
(iv) Fredholm’s Alternative holds:

Vfe 299 Q) Ju, solution of Max(f,w), iff
vV v e Max(0,w) (f, v)Li,q,qH(Q) =0
The solution u,, can be chosen, such that
vV ove MaX(O,w) <Uw7 V>Li,q,q+1(ﬂ) =0.

Then u,, is uniquely determined.

(v) Forallt < —1/2 the solution operator L., maps L>99*1(Q) N Max(0,w)* to

(DY(Q) x AT (Q2)) NMax(0,w)-r continuously.

() Max(0,w)  (DI(Q) ne~16 AT (Q)) x (AT (Q) N pu~1dDI(Q)) forallt € R,
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LOW FREQUENCY TIME-HARMONIC SCATTERING PROBLEM

Theorem (low frequency time-harmonic estimate)
Lett > (N+1)/2ands e (1/2,N/2) aswellast:=s— (N+1)/2 € (-N/2,-1/2).

(i) ogen(M) does not accumulate in R (especially not at zero).
ogen(M) N C = {0} forw sufficiently small.

(i) L. is well defined on L2997 (Q) for all 0 # w € C small enough.

(iiy 3¢ >0 V0 #we Cy smallenough Y Af=A(F,G) € AJ(Q) x Bg+1 Q)

| o f”LtZ,q,qH(Q) < C(Hf”LZq,qM o o]~ ”(55/:7dHG)HLi,q—th(Q)

dl‘l+1

+ |w|™ Z| (eF, bq 290 | + |w|™ Z [{uG, bg+1>|_2,a+1(9)|)-
=1
Especially || L., f||L$,q,q+1 @ < c||f|||_§,q,q+1(ﬂ) holds for

Af = A(F, G) € 0Ad(2)xoDI(Q) = (cAL(Q)NBY(2)) x (:DIT ()BT (2)*),
i.e., no terms with negative frequency power |w| =" occur.

TOOLS: fundamental sol. Helmholtz’ eq. (Hankel’s function),
repr. of sol. for @ = RN as conv,, cutt. tech., indirect arg.



TIME-HARMONIC SCATTERING MAXWELL PROBLEM  RESULTS PROOFS (...IF THERE IS TIME) ~ EDDY-CURRENT APPROXIMATION ~ REFERENCES

0000000000 0000000800 0000000000000 0000000000 0000
!

FIRST LOW FREQUENCY ASYMPTOTIC

Theorem (first and simple static solution theory)
LetT > 0. Then there exists a linear and bounded static solution operator

A-T( D pa+1 DY g+ ~1( A9 DA+
Lo: A (oA (2) x oD (Q)) — (D71 (Q2) x A71 (Q)) nA (0&71 () x 0]1)71 (Q))
More precisely: u= (E,H) = Lo f for f = (F, G) solves Mu = f, i.e., the static system

in'dE=G, §eE =0, cE1 BI(Q),
ie"'6H=F, duH =0, pHL BIT(Q).

Theorem (first and simple low frequency asymptotics)
Lett > (N+1)/2ands e (1/2,N/2) aswellast <s— (N+1)/2€ (-N/2,—-1/2).
Then

lim Lo =Ly
Cyow—0

in the norm of bounded linear operators

A1 (0Ad(Q) x oDIT () — DY(Q) x AT (Q).
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EXTENDED STATIC SOLUTION THEORY

Theorem (extended static solution theory)
Letse (1—-N/2,00)\I and T > max{0,s — N/2}, 7 > —s. Then

i 5 :0,— - —1 g+l

in='d : (DI (QBnAL% ) ne oA (Q) — uoDIT(Q)
E — in~'dE

ie='s : (AT@BDI ) nu oD@ — e 1al(Q)
H —s e 16H

are topological isomorphisms.

note: 9%~ = 19(32:°,) finite dim. subspace of C> (RN \ {0})
nAZ%" cL2YQ)fort <s—1,t < N/2and nAd%™ ¢ 129, ()

_ =g+1,0
same for D710~ = pa+1(GTL0)

consisting of ‘neg. tower-forms’ of shape r’ 7 S,‘i’m (8,3,7,, gen. spherical harmonics)
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EXTENDED STATIC SOLUTION THEORY
Corollary (extended static solution theory)
Letse (1 —N/2,00)\ILand r > max{0,s — N/2}, - > —s. Then
_ 1 - 1,0,— _ 2 q+1
M: (DL (@) x AT () B (nA2% x nDT107) ) N A~ (oa,(2) x oD ()
— A1 (0A4(Q) x (DI ()
u=(E,H)— Mu=iA""(6H,dE)
is a topological isomorphism with bounded inverse
_ _ 2 - 79,0 2 7G+1,0
Lo=M": A" (08d(Q) x oDIT(Q)) — A" (0A]_, (7%, Q) x oDT] (3T1°, ).

o
goal: higher powers of £q even acting on A=1 (A7, (J,Q) x ODgﬂ (3,9))
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TOWER FORMS

v N d
3. floor iAZT,,J 3 iogf,,lﬁ
d™, N
2 2
2. floor iDim iAg’m
5 N d
1. floor iAng; a + ngr,,l’1
dN, N
ground £p30, =~ =AY,
’ H d-tower ‘ d-tower

EAZK, DK € Go°(RN \ {0}) homogeneous of deg. k + o resp. k — o — N
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HIGHER POWERS OF THE STATIC SOLUTION OPERATOR

Theorem (higher powers of L)

Letje Nands e (j— N/2,00) \ 1 andJ,J finite index sets as well as
T2>j—1-s7>max{0,s - N/2} and T > s+ N/2 + max{hy, h,}. Then

ch o AT (0al(9,Q) x oDIT(3,9))
=q,<j—1 Q =q+1,<j—1 o
1 oAg_j(Jg_7’ U j9,9Q) x OJD)gf} (agf, =Ny 8,Q) L ifjeven
— A”

=q,<j—1 Q 2g+1,<j—1 i
& (135710 ja,9) x oD (FT U 9,9) L ifj odd

is a continuous linear operator with range in A= (o & () x of))?“ ()
fort <s—j,t<N/2—j+1,t<—j—N/2—max{hy, hy}.
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SPACES OF REGULAR CONVERGENCE
Regd ~(Q) = MiegL29941(2) € A~ (,%(R) x 4D (2))

Reg?®(Q) := A~ (0AJ(Q) x oDI"' ()
Regd/() == {f € Reg?®(Q) : £ f € L2997 ()}
‘usual Neumann sum’

Lemma (spaces of regular convergence)
LetJ e Ngands e (J+1/2,00) \ 1 as well as r > max {(N +1)/2,s — N/2}. Then
for all 0 # w € C4 small enough on RegZ’J(Q) the resolvent formula

J—1
Lo o =w! Lo, Ly
j=0

holds. Especially fors € (J+1/2,J+N/2)\landt=s—J— (N+1)/2

J—1
[ £of— ,-Z;wj £ Mz gy = Olwl”) |l 20t o

holds uniformly w.r.t. f € Reg?”(Q).
aim: characterize Regg’j (2) by orthogonality constraints
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GROWING STATIC SOLUTIONS
again conditionson 7 ...

Efme 0Dm(Q) Ne oAl (Q
Eip—"n%0 ¢ |_2 7 .,(Q)
2

1 —1 g+
Him € 0L (Q) N oD ()

loc
—+piti0e L2 Q)

2

k k ,q,q+1
Efim = L8(ESm0), Hiy = L§(0,H; ) € 2T (@)

+APK +DI K behave like rke, k,o > 0 at infinity

ESk —n(taZk, 0)e (( 9, (QBnAIIT5E ) x {0}) k even
E;‘,',‘, (0,7 DIA%) € AT ({0} x (DI}, () EnDT (G 5)) K odd

supp A compact, then series rep. of neg. tower-forms of height < k
(gen. spherical harmonics expansion)
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PROJECTION ONTO SPACES OF REGULAR CONVERGENCE

powers L{) f have neg. tower-form parts

<CA,n9Dg:¢mﬁDg’,bLZ,q(RN) = <CA,n9Ag’,[r(mﬁAz’,%LZ,q(RN) = 099,10k ¢0c,~Om,n,
<CA,n9Dg:}r(nv 0Ag’,€1>L2,q(RN) =0
assume: supp A compact =
Lemma (orthogonality def. of spaces of regular convergence)
LetJeNands € (J+1— N/2,00)\1as well as f € Reg?’(Q).
Then f € Reg?”(Q), iff
k ,
(. Eaim' Dizaart gy = (L Hn ") 2 g =0

for all (k, o, m) € @3 and (¢,~, n) € @3, where

0% = {(ko,m)eNJ:k<J—1Ao<s—N/2—k—-1A1<m<ul}.

Especially Reg??(Q) is a closed subspace of Reg?%(Q) c L2991 (q).
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DUAL BASIS OF GROWING TOWERS FORMS

Define e 1 +,6 1,1
exn = M(*A25,0),  hom = Mn(0,=D ).
Then ef,f’,f, hff,f, € C>(RN) with supp ejf,’,f = supp hf,f, = supp Vn for £ > 2 and
— 042t k1 _
(eyn 5 Esm Mzaarig) =0,

42 ot K
(0 2 EL ) 2.a.ae @ = (—1)%6k, 000~ Om,n.

same for H Kt
Lemma (dual basis of £/ %" and H )

LetdeNandse (J+1—-N/2,00)\ L Then

Reg??(Q) = Reg??’(2) + 127, T2V c Co®N),

where for f € RegZ%(Q)

frim Y (COMREE aanaho
k+2

k +,K+1 —
(f,Hy)m" )12,0.0+1(0)€0,m

W
(k,o,m)ye0d
g,

LD DR Ca )
(k,o,m)e@d1+
with T3 .= Lin {e, 52 h7 ™2 : (k,0,m) € ©27,(£,~,n) € ©1.
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PROOF OF LOW FREQUENCY ASYMPTOTICS

step one: proof in the reduced case, this is:

» compactly supported perturbations A
» right hand sides from RegS’O(Q)
» estimates in local norms
step two: replacing Reg?°(Q) by L2991 (Q)
(polynomially weighted Helmholtz decomposition)
step three: replacing local norms by weighted norms

step four: replacing compactly supported perturbations &, i by asymptotically
vanishing perturbations

We only drop the assumption of compactly supported perturbations of the medium in
the last step.
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STEP ONE

latter lemma =
Reg??(Q) = Reg?”() + 787, e "% hy g c Co®Y)

» asymptotics clear on Regg’J(Q) (gen. Neumann sum) /

» asymptotics on T/ ? =  asymptotics for e, k2, h, K+2 2

o
che,mt? = e, 2 (C(RN) and right shape) = k”eC“’(R”)mRequ(Q)
J-1 J Ak
D D i o D I el %
S —
= = = (L= D0 WLy )ern
j=0

same for h &

J—1—k J—1—k
just unkn. asym. for Z W £ )es A and | (Lo — > AR Y
=0
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STEP ONE
J-1—k J-i—k
asymptotics for | (Lo, — > W £ )es A and | (Lo — > AR i
j=0 j=0

idea: compare with special radiating solutions of the homo. problem in RV \ {0}

EL% = Bow"or’ -% H) (wr)# T3,  (H. Hankel’s function)

o0 oo
=Y (—iw TALST 4 kI W 3 (—iw)K T ALA
k=0 k=0

1w _ i 1w
Ha,m =—d ]Eo',m
w
. oo oo
| . — 1,2k : +1,2k
_ ( § :(_ Iw)2k ngrmy + Hg+1 wQV” 2 :(_ lw)2k +Dg,m )
“ M=o k=0

similarly second solution pair (E2%, H2%,)

o,m>

fo o T N
(i [d 0}—w)(E’[;,m,Hﬁ;,m):(o,0) = (& +WA) (B, H,) = (0,0)

(comp.-wise Helmholtz)
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STEP ONE

note: (M — w)n(]E{;t“m,H/(;t‘)m) = CMm(Eloltum’ Hjc;tum

comparing
-2 . 1,w T,wy 1w 1,w
Lo €s,m with Lo CM,n(Eo,mvHa,m) = n(Eg,mvHa,m)v
Lohyi with Lao O (B3, HE) = m(EZ 5, HE)

and a (really) long, long, long, ... calculation

Theorem (low frequency asymptotics on Regg’O(Q))
LetJ € Ng ands € (J + 1/2,00) \ L. Then for all bounded subdomains Q,, C Q

J—1 J=1-N
| £ £~ Z"Jl [:{)H f—w Z "Jllﬁif}||_2,q,q+1(§zb) = O(lwl’) ||f||L§'q'Q+1(Q)
j=0 j=0

holds uniformly w.r.t. f € Reg?°(Q) and 0 # w € C small enough.

degenerate correction operators
fif € Lin{ES 8, HIX 1k +20 < j}

o,n

with coefficients of shape (f, E;’,l;,>|_2,q,q+1 (@) and (f, H;’,l;,>|_2,q,q4r1 @



TIME-HARMONIC SCATTERING MAXWELL PROBLEM  RESULTS PROOFS (...IF THERE IS TIME) ~ EDDY-CURRENT APPROXIMATION
0000000000 0000000000 0000000000800 0000000000

REFERENCES
0000

STEP TWO

Theorem (polynomially weighted Helmholtz decomposition)

conditionson ...
Fors> —N/2 let 1.29(Q) := L29(Q) N .HI(Q)*=.

(i) =N/2<s< Nj2:
L39(Q) = oDE(Q) + e 0 Al(Q)
For s > 0 the decomposition is (¢ -, - >L2,q(m-orthogona/.
(i) s> Nj2:
- o
1390 = (157 EnDE N oDy (@)
Ee e (1@ Bn 1T Noa? (@) N L)
o -
L29(Q) = oDY(Q) + e 10Ad(Q) + AnPL,

The first two terms in the second decomposition are (e -, - >L2,q(m -orthogonal.

L29(Q) N KT ()¢ = oDI(Q) B e~ 0 AL(Q)

(i) s < —N/2:
deco. holds, but loosing directness, larger space of Dirichlet/Neumann forms



TIME-HARMONIC SCATTERING MAXWELL PROBLEM  RESULTS PROOFS (...IF THERE IS TIME)  EDDY-CURRENT APPROXIMATION ~ REFERENCES

0000000000 0000000000 000000000000 0000000000 0000
!

STEP TWO

polynomially weighted Helmholtz decomposition for large weights s
LeT9(Q) = (T(Q) + Regd (@) NLE*IT (@)
with projections M and Mreg := (1 — M) aswellas f < sand t < N/2
(N(M) =) Tig(2) = MLZ%91(9) € oDI(2) x 027 (@)
Reg? ™" (2) = Miegl2%9(2) € 0A%(@) x 0DY ()
still: supp A compact

Theorem (low frequency asymptotics on Li’q’q“(Q) in local norms)
LetJ € Ng and s € (J + 1/2,00) \ I. Then for all bounded subdomains Q;, C Q

J—1 J—N
” Lo f+w_1 I'Ifwa’ L"jo+1 nregf*WN_1 Z w/r/'f”LquqH (@) = O(‘w“j) ||f||L§’q’Q+1(Q)
=0 =0

holds uniformly with respect to f € Li’q’q+1 (2) and 0 # w € C4 small enough.
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STEPS THREE AND FOUR

v

cutting technique = bounded domain and unbounded domain
» comparing with the homogeneous whole space case 2 = RN and A = Id

» represent solution by convolution with fundamental solution
» Taylor expansion of fundamental solution (Hankel’s function)

= low frequency asymptotics in this special case

v

L . 2,9,g+1
low frequency asymptotics in weighted norms LY %97 (Q)

v

approx. of asymptotically homo. media by compactly supported media
(convergence in operator norm)

done [ |
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CLASSICAL TIME-HARMONIC SCATTERING MAXWELL PROBLEM
AND EDDY-CURRENT APPROXIMATION

time-harmonic Maxwell (electro-magnetic scattering) problem in R® (now with o),
Qext C RS exterior domain

with complement Qin; := R3 \ Qext C R® bounded domain

giving the support of o, i.e., supp o = Qi; compact

oE, —rotH, +iweE, = F in R®
rotE, +iwuH, = G in R3
Ew, Ho € H__y p(rot; RS)
gXEw'i‘Hwa _£XHw+Ew EL2>_1/2(R3)

decay cond.)

(
(
(
(Silver-Muller radiation cond.)

as before: 0 #w € C, ¢,u € L°(Q,R3*3), sym, unif. pos. def.,

Remark/Theorems Solution theories and asymptotics hold as before with more or
less obvious changes.

Remark As before, generalization to differential forms is straight forward.
Let’s stay here with the classical case of vector analysis.
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CLASSICAL TIME-HARMONIC SCATTERING MAXWELL PROBLEM

AND EDDY-CURRENT APPROXIMATION
time-harmonic Maxwell (electro-magnetic scattering) problem in R3 (with o), .
Qext C R3 exterior domain, Qi := R3 \ Qext C R® bounded domain, suppo = Qint

oE, —rotH,+iweE, = F inR3  (pde)
rotE, +iwpH, = G inR®  (pde)
E., Ho €H__q(rot; R®) (decay cond.)
EXEwtHoy —ExHotEsel? ,(R% (Silver-Miiller radiation cond.)

time-harmonic eddy-current Maxwell problem in R3, (no radiation condition!)

oE® —rotH® = F inR®  (pde)

rot E®C 4+ iwuH® = G inR®  (pde)

diveE gy, =0 inQext  (pde)
eES | au, Lo, B(Qext) (cohomology or kernel condition)

ESC ) HE® ¢ H_1(rot;R ) (decay cond.)

KNOWN: low freq. asympt. for (Ew, Hw), i.e.,| lim E, =+/, |lim H, =/
w—0 w—0

QUESTIONS / AIMS: low freq. asympt. for (ES®, HE®) and (E., — ESC, H., — HEF), i.e.,
lim ESC.  lm H® lim E, — E® lim H, — H® ?
w—0 w—0 w—0

w—0
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CLASSICAL TIME-HARMONIC SCATTERING MAXWELL PROBLEM

AND EDDY-CURRENT APPROXIMATION
as before, more compact and proper notation

time-harmonic Maxwell (electro-magnetic scattering) problem in R3 (with o)
(M—w+T)uw =felZ,(R%) x L2, o(R®)
Uo € H__y p(rot; R%) x H__)s(rot; RS)
(S+Nuw €% (R x L2 5(R%)

here: ¥ = iA~! {U

0 2} compact perturbation of s.a. unbd. lin. op. M

= sol. theo’s for time-harm. and stat. prob. and asym. more or less the same
sol. op's: Low, Lo
time-harmonic eddy-current Maxwell problem in R3,
(M —wP + ) = f € (L3(R®) NH(div 0; Qext) N é(Qext)ﬁzmw) x L2(R®)
diV€E5C|Qext =0
EES 0 Li2(0p ) B(Rext)
U € H_,(rot; R%) x H(rot; R®)

here: projector P with P(E, H) := (0, H)
sol. op’s: L5, and again (as before) Lg‘fo =Ls0
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LOW FREQUENCY ASYMPTOTICS FOR THE EDDY-CURRENT APPROXIMATION

KNOWN: low freq. asympt. of L5 o,

QUESTIONS / AIMS: low freq. asympt. of £5%, and Lo — L3, i€,

£ and

lim lim Low—LL, 7
C\{0}3w—0 T C\{0}sw—0 Y oW

ANSWER: The first asym. is trivial (Neumann series) and hence the second as well as
the asym. of £, is already known!

NOTE:

» asym. of L, ., very complicated
» asym. of LEZ,, very simple (Neumann series as in the bounded domain case!)
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LOW FREQUENCY ASYMPTOTICS FOR THE EDDY-CURRENT APPROXIMATION

sol. op. for the eddy-current prob.
(M —wP + T)u = f € (L3(R®) N H(div 0; Qext) N é(Qext)LLzmexn)) x L2(R®)
diveE |, =0
EEgc|Qexl LLZ(QQX‘)E(QGXI)
U € H_,(rot; R%) x H(rot; R®)
is

T120%a)) x L2(R) — H_, (rot; B®) x H(rot; R%)

£, (L3(R3)NH(div 0; Qext) NB(Qext)
looking just on the weights
£, L5(R3) x LA(R%) — L2 | (R%) x L2(R®)

of course: only f sich that £5°)f = L, of is well def.
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LOW FREQUENCY ASYMPTOTICS FOR THE EDDY-CURRENT APPROXIMATION
then roughly:

(M — wP + T)u® = f

P (M + £)UC = f + wPu®
& Ul = Lo of + wly, gPus’
o (Id —wLy o PYUEC = L, of

now, unlike in the full time-harmonic Maxwell case, £, oP is a nice bounded operator
mapping some Hilbert space into itself. For this observe that

(Ugcz VE'C) = ﬁO‘,OPuE;C = £U,0P(ESC7 ch) = £a,0(0» HE)C)
solves

aUS® —rotVES =0
rot US® = HTT,

which is a very weakly coupled system.
looking again just on the weights: Pus® = (0, H) € L2 | (R®) x L2(R3)

H® e L2(R?) = U ecl?,(R% (notowers) = V& cL?R3) (notowers),

as o U2 has got compact support and hence belongs to any weighted L2-space
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LOW FREQUENCY ASYMPTOTICS FOR THE EDDY-CURRENT APPROXIMATION

looking again just on the weights:

LyoP: L2 (R%) x L2(R?) — L2, (R®) x L3(R®)
more precisely

LyoP: L2 (R%) x L2(R?) — L2 | (R®) x L3(R®)

Then
(ld —UJEJ’OP)USJC = L‘,U’of

shows that the asymptotic is simply given by Neumann’s series (as in the bounded
domain case)

Li’?wf = U Z w‘co' OP o, Of = ij(EJ,OP)j‘CU,Of7
j=1 j=1

provided that |w| is sufficient small. The series converges in L2, (R®) x L2(R®), even in
H_, (rot;R3) x H(rot; R%)
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LOW FREQUENCY ASYMPTOTICS FOR THE DIFFERENCE OF THE FULL
TIME-HARMONIC MAXWELL PROBLEM AND THE EDDY-CURRENT
APPROXIMATION

now compare (again in RV and with differential forms) the asymptotic series
J-1 )
=y ey =N Zwlr = O(jw]Y)
j=0

in the norm of bounded linear operators from L% 9" (RN) to L2 %97 (RN) (s large, t
small) and the Neumann series

L8, =" W(LyoPYLso

converging in L> 997 (RN) x L2:0:4+1(RN).
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LOW FREQUENCY ASYMPTOTICS FOR THE DIFFERENCE OF THE FULL
TIME-HARMONIC MAXWELL PROBLEM AND THE EDDY-CURRENT
APPROXIMATION

Theorem (low frequency asymptotics)
For all small enough C \ {0} > w — 0 the following asymptotics hold:

(i) Iffe Reg1’0(RN) then forallt < (1 — N)/2
(Lo = LE 2.0.001 gy £=20,0.  (approx. of order0)
t
(ii) Iff € Reg?' (RN) with s € (3/2,N/2 + 1)\ Lthenfort := s — (N + 3)/2

"(‘C'U»UJ - ‘Cg'?w)fHL?,qanﬂ (RN) = O(‘w‘){|f|}L§aQaQ+1 @ (approx. oforder1)

note in R3:

Reg??(R%) = (L2(R®) N Hy(div 0; Qext) N B(Qext)ﬂzmext)) x Hg(div 0; R®),
Regd’(R®) = {f € Regd’ " (R%) : £, ,f € L2991 (RN)}
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LOW FREQUENCY ASYMPTOTICS FOR THE DIFFERENCE OF THE FULL
TIME-HARMONIC MAXWELL PROBLEM AND THE EDDY-CURRENT
APPROXIMATION

Theorem (low frequency asymptotics, continued)
For all small enough C \ {0} > w — 0 the following asymptotics hold:
(iii) Iff € Reg??(RN) withs € (5/2,N/2 +2)\ T then fort:=s— (N +5)/2

2
||(£0"UJ - ‘Cgfw)fl‘L%CI~CI+1 (]RN) = O(‘w‘ )”f”|_§~q,0+1 ()’ (approx. of order2)

ifand only if6 F = 0 inRN and G = 0.
note: in R3 this is div F = 0 in R® and G = 0. (very simply condition, hidden jump
condition for F)

(iv) Iff + 0, the approximation can never be better than O(|w|?), even for supp f
compact.

(v) Ifsupp A compact, then Reg?" (RN) and Reg??(RN) can be replaced by

Regg’o(RN ). correction operators I'; change asymptotics just from oder O(|w|N )
on. Hence no change in asymtotics.

note: condition div F = 0 in R® is much more complicated in Ammari, Buffa, Nedelec,
namely
divF =0in Qey, divF =0in Qin

+ jump cond. on n- F, + complicated cohomology cond. on Fand n- F
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