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CLASSICAL TIME-HARMONIC SCATTERING MAXWELL PROBLEM

time-harmonic Maxwell (electro-magnetic scattering) problem
in Ω ⊂ R3 exterior domain

σEω − rot Hω + iωεEω = F in Ω (pde)

r̊otEω + iωµHω = G in Ω (pde)

ν × Eω = 0 (= λ) on ∂ Ω (boundary cond.)

Eω , Hω = O(r−1) for r →∞ (decay cond.)

ξ × Eω + Hω , −ξ × Hω + Eω = o(r−1) for r →∞ (Silver-Müller radiation cond.)

here: 0 6= ω ∈ C , r(x) = |x | , ξ(x) := x/|x |

inhom. aniso. media ε, µ ∈ L∞(Ω,R3×3) , sym, unif. pos. def., suppσ compact

for simplicity (in the beginning) σ = 0

QUESTION / AIM: low frequency asymptotics?

lim
ω→0

Eω , lim
ω→0

Hω ?
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CLASSICAL TIME-HARMONIC SCATTERING MAXWELL PROBLEM
analytical motivation:

I Weck, N. and Witsch, K.-J.: CPDE, (1992)
Complete low frequency Analysis for the reduced wave Equation with variable
coefficients in three dimensions

I Weck, N. and Witsch, K.-J.: M2AS, (1997)
Generalized linear elasticity in exterior domains – I: radiation problems

I Weck, N. and Witsch, K.-J.: M2AS, (1997)
Generalized linear elasticity in exterior domains – II: low-frequency asymptotics

analytical/numerical motivation:
I Ammari, H. and Buffa, A. and Nédélec, J.-C.: SIAM JAM, (2000)

A justification of eddy currents model for the Maxwell equations
(! cited 64 times in MathSciNet / unfortunately wrong !)

I Ammari, H. and Nédélec, J.-C.: SIAM JMA, (2000)
Low-frequency electromagnetic scattering (sol. theo. by fundamental solution,
asymptotic expansion simply by Taylor series of the fundamental solution,
non-local bc, not very satisfying)

disadvantages of Ammari/Nédélec-papers
I no identification of terms in the expansion by proper boundary value problems
I estimates just in local L2-norms
I non local boundary conditions due to EtM-operators (DtN-operators)
I comp. supp. F ,G; ε = µ = 1
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CLASSICAL TIME-HARMONIC SCATTERING MAXWELL PROBLEM

more compact and proper notation

(M − ω)uω = f ∈ L2
>1/2(Ω)× L2

>1/2(Ω)

uω ∈
◦
H<−1/2(rot; Ω)× H<−1/2(rot; Ω)

(S + 1)uω ∈ L2
>−1/2(Ω)× L2

>−1/2(Ω)

here: uω := (Eω ,Hω), f := i Λ−1(F ,G), Λ =

[
ε 0
0 µ

]
, Λ−1 =

[
ε−1 0

0 µ−1

]
,

M = i Λ−1 Rot, Rot :=

[
0 − rot

r̊ot 0

]
, S = CRot,r =

[
0 −ξ×
ξ× 0

]
M :

◦
H(rot; Ω)× H(rot; Ω) ⊂ L2(Ω)× L2(Ω)→ L2(Ω)× L2(Ω) s.a. unbd. lin. op.

⇒ unique L2-solutions uω for ω ∈ C \ R

later: gen. Fredholm alternative for ω ∈ R \ {0}
(Eidus’ principle of limiting absorption (1962), a priori estimates)

QUESTION: low frequency asymptotics? lim
C\{0}3ω→0

uω

METHOD: Weck & Witsch, i.e., full ext. dom. and no artificial boundary
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GENERALIZED TIME-HARMONIC SCATTERING MAXWELL PROBLEM

gen. time-harmonic Maxwell (electro-magnetic scattering) problem
in Ω ⊂ RN exterior domain, 0 6= ω ∈ C

δHω + iωεEω = F in Ω (pde)

d̊Eω + iωµHω = G in Ω (pde)

ι∗Eω = 0 (= λ) on ∂ Ω (bc)

Eω , Hω = O(r−1) for r →∞ (dc)

d r ∧ Eω + Hω , (−1)qN ∗ d r ∧ ∗Hω + Eω = o(r−1) for r →∞ (gen. Silver-Müller rc)

here: E ,F q-forms, H,G (q + 1)-forms
inhom. aniso. media ε, µ (linear transformations) sym, unif. pos. def.

QUESTION / AIM: low frequency asymptotics?

lim
ω→0

Eω , lim
ω→0

Hω ?
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GENERALIZED TIME-HARMONIC SCATTERING MAXWELL PROBLEM

time-harmonic Maxwell problem in Ω ⊂ RN exterior domain
for simplicity N ≥ 3 odd, frequencies from upper half plane ω ∈ C+

(M − ω)uω = f ∈ L2,q,q+1
>1/2 (Ω)

uω ∈
◦
Dq
<− 1

2
(Ω)× ∆q+1

<− 1
2

(Ω)

(S + 1)uω ∈ L2,q,q+1
>−1/2 (Ω)

here: uω := (Eω ,Hω), f := i Λ−1(F ,G), E ,F q-forms, H,G (q + 1)-forms,

M = i Λ−1
[

0 δ

d̊ 0

]
, Λ =

[
ε 0
0 µ

]
, S =

[
0 T
R 0

]
, R := d r∧ , T := ± ∗ R∗

d ext. deriv., δ = ± ∗ d ∗ co-deriv., R = Cd,r , T = Cδ,r

M :
◦
Dq(Ω)× ∆q+1(Ω) ⊂ L2,q,q+1(Ω)→ L2,q,q+1(Ω) s.a. unbd. lin. op.

denote sol. op. of time-harmonic prob. by Lω := (M − ω)−1 (uω = Lω f )

QUESTION: low frequency asymptotics?

lim
C+\{0}3ω→0

Lω = ?

(topology: operator norm of polyn. weighted Sobolev spaces)
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BOUNDED DOMAIN
time-harmonic Maxwell problem in Ω ⊂ RN bounded Lipschitz domain

(M − ω)uω = f ∈ L2,q,q+1(Ω)

uω ∈
◦
Dq(Ω)× ∆q+1(Ω) =: D(M)

Helmholtz deco. ⇒ L2,q,q+1(Ω) = N(M)⊕Λ R(M)

M : D(M) ⊂ L2,q,q+1(Ω)→ L2,q,q+1(Ω) s.a.,

M : D(M) := D(M) ∩ R(M) ⊂ R(M)→ R(M) s.a. (red. op.)

Weck’s sel. theo./Maxwell compactness prop., i.e., D(M) ↪→ L2,q,q+1(Ω) comp.
⇒ Maxwell estimate, i.e., ∃ cm > 0 ∀ u ∈ D(M) ||u||L2,q (Ω) ≤ cm||Mu||L2,q (Ω)

⇔ R(M) = R(M) closed ⇔ L0 := M−1 : R(M)→ D(M) cont.
⇒ L0 : R(M)→ R(M) comp. (static sol. op. cont./comp.)

standard sol. theory ⇒ Fredholm’s alternative, especially

σp(M) = σ(M) = σ(M) \ {0} = σp(M) \ {0} = {±ωn}∞n=1 ⊂ R \ {0}

with (ωn) ⊂ (0,+∞) strictly monotone increasing with ωn ↗ +∞

⇒ sol. op. time-harmonic prob. (f 7→ uω = Lω f ) well def. for 0 < |ω| small

Lω : L2,q,q+1(Ω)→ D(M), Lω : R(M)→ D(M)
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BOUNDED DOMAIN
time-harmonic Maxwell problem in Ω ⊂ RN bounded Lipschitz domain

(M − ω)uω = f ∈ L2,q,q+1(Ω)

uω ∈ D(M)

Helmholtz deco. ⇒ L2,q,q+1(Ω) = N(M)⊕Λ R(M) and D(M) = N(M)⊕Λ D(M)

orth.-norm.-projectors Π : L2,q,q+1(Ω)→ N(M), 1− Π : L2,q,q+1(Ω)→ R(M)

⇒ −ωΠuω = Πf and (M − ω)(1− Π)uω = (1− Π)f ∈ R(M)

Πuω ∈ N(M) (1− Π)uω ∈ D(M)

note: D(M) = D(M)∩R(M) =
( ◦
Dq(Ω)∩ε−1 δ ∆q+1(Ω)

)
×
(
∆q+1(Ω)∩µ−1 d

◦
Dq(Ω)

)
set v := (1− Π)uω ∈ D(M) ⊂ R(M) and g := (1− Π)f ∈ R(M) ⇒ L0 Mv = v

⇒ (M − ω)v = g ⇔ (1− ωL0)v = L0 g

Neumann ser.⇔ v = (1− ωL0)−1 L0 g =
∞∑
j=0

ωj L0
j L0 g

for small 0 < |ω| since ||ωL0 || < 1 ⇔ |ω| < 1/|| L0 || (1st pos. Maxwell ev)

⇒ Lω f = uω = Πuω + v = −ω−1Πf +
∞∑
j=0

ωj L0
j+1(1− Π)f
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BOUNDED DOMAIN

⇒ low frequency asymptotics in L2-operator norm

Lω = −ω−1Π︸ ︷︷ ︸
trivial part

+
∞∑
j=0

ωj L0
j+1 Πreg︸ ︷︷ ︸

Neumann series

, ω ∈ C+ \ {0} small

Π : L2,q,q+1(Ω)→ N(M), Πreg := 1− Π : L2,q,q+1(Ω)→ R(M)

L0 : R(M)→ D(M) ∩ R(M)

problems if Ω exterior domain
I this low frequency asymptotic is wrong, even not well defined
I static solution theory needs weighted Poincare estimate!
⇒ leaving L2-setting
e.g., static sol. op. maps unweighted data f to (1 + r)−1-weighted sol. u0

I not clear how to define higher powers of L0 ?
I careful investigation of static sol. theo. in weighted Sobolev spaces
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EXTERIOR DOMAIN

aim: give meaning to Neumann sum in terms of an asymptotic expansion

Lω +ω−1Π−
J−1∑
j=0

ωj L0
j+1 Πreg = O

(
|ω|J

)
, J ∈ N0, ω ∈ C+ \ {0} small

3 major complications
I growing J ⇒ stronger data norms for f and weaker solution norms for uω = Lω f
I Π , Πreg indicate need for polyn. weighted Hodge-Helmholtz deco. of

L2,q,q+1
s (Ω) =

(
Triqs (Ω) u Regq,−1

s (Ω)
)
∩ L2,q,q+1

s (Ω)

respecting inhomogeneities Λ (topological direct decomposition)

(N(M) =) Triqs (Ω) = ΠL2,q,q+1
s (Ω) ⊂ 0

◦
Dq

t (Ω)× 0∆q+1
t (Ω)

Regq,−1
s (Ω) = ΠregL2,q,q+1

s (Ω) ⊂ Λ−1(
0∆q

t (Ω)× 0
◦
Dq+1

t (Ω)
)

only subspaces of L2,q,q+1
t (Ω) with t ≤ s and t < N/2

not of L2,q,q+1
s (Ω) if s ≥ N/2

I expansion has to be corrected by special, explicitly computable degenerate op.
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EXTERIOR DOMAIN

more precisely: J ∈ N0 and s,−t > 1/2 as well as f ∈ L2,q,q+1
s (Ω)

⇒ main result: asymptotic estimates

∣∣∣∣Lω f + ω−1Πf −
J−1∑
j=0

ωj L0
j+1 Πregf − ωN−1

J−N∑
j=0

ωj Γj f
∣∣∣∣

L2,q,q+1
t (Ω)

= O
(
|ω|J

)∣∣∣∣f ∣∣∣∣
L2,q,q+1

s (Ω)

O-symbol always for ω → 0 and uniformly w.r.t. ω and f

with ω ∈ C+ \ {0} and |ω| ≤ ω̂, where ω̂ > 0
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GENERAL ASSUMPTIONS

I Ω ⊂ RN exterior domain with Lipschitz boundary
(Maxwell local compactness property,
exist. of special forms with bounded supports repl. Dirichlet/Neumann forms)

I 1 ≤ q ≤ N − 2 and odd space dimensions N (class. N = 3, q = 1)
(even dim., especially N = 2, OK
but logarithmic terms due to expansions of Hankel’s functions)

I fix radius r0 > 0 with RN \ Ω ⊂ Br0 , cut-off function η

I ε = Id +ε̂ , µ = Id +µ̂ (Λ = Id +Λ̂) τ -C1-admissible, i.e.,
linear, real, sym., unif. pos. def. L∞-transformations with Λ̂ ∈ C1 for |x | > r0
asymptotically homogeneous, i.e.,
∂α Λ̂ = O(r−τ−|α|) for all |α| ≤ 1 with order of decay τ at infinity,
τ > 0 depending on t , s
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DESCRIPTION OF RESULTS

I degenerate correction operators Γj by recursion consisting of

E+
σ,m, H+

σ,n, E+,k
σ,m =: Lk

0(E+
σ,m, 0), H+,k

σ,n =: Lk
0(0,H+

σ,n) ∈ L2,q,q+1
−N/2−σ−k (Ω)

sol. of hom. static boundary value problems with inhom. at infinity, e.g.,

E+
σ,m ∈ 0

◦
Dq

loc(Ω) ∩ ε−1(
0∆q

loc(Ω) ∩
◦
Bq(Ω)⊥

)
E+
σ,m − +∆q,0

σ,m ∈ L2,q
>− N

2
(Ω)

‘harmonic polynomials’ +∆q,k
σ,m behave like r k+σ at infinity (k , σ ≥ 0)

I ‘trivial’ subspace Triqs (Ω) = ΠL2,q,q+1
s (Ω) ⊂ 0

◦
Dq

t (Ω)× 0∆q+1
t (Ω)

(
⊂ N(M)

)
Lω f = −ω−1f , f ∈ Triqs (Ω)

I two kinds of media Λ = Id +Λ̂
1. Λ̂ comp. supp., results for any J
2. Λ̂ ‘decays’ with τ > 0 at infinity, results for J ≤ Ĵ dep. on τ
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DESCRIPTION OF RESULTS
I identify closed subspaces Regq,J

s (Ω) of Regq,0
s (Ω) ⊂ L2,q,q+1

s (Ω), ‘spaces of
regular convergence’, ⇒ ‘usual’ Neumann expansion

∣∣∣∣Lω f −
J−1∑
j=0

ωj L0
j+1 f

∣∣∣∣
L2,q,q+1

t (Ω)
= O

(
|ω|J

)∣∣∣∣f ∣∣∣∣
L2,q,q+1

s (Ω)

for f ∈ Regq,J
s (Ω)

I charact. of Regq,J
s (Ω) by orthogonality in L2 to the spec. grow. st. sol. E+,k

σ,m , H+,k
σ,n

I corrected Neumann expansion

∣∣∣∣Lω f −
J−1∑
j=0

ωj L0
j+1 f − ωN−1

J−N∑
j=0

ωj Γj f
∣∣∣∣

L2,q,q+1
t (Ω)

= O
(
|ω|J

)∣∣∣∣f ∣∣∣∣
L2,q,q+1

s (Ω)

for f ∈ Regq,−1
s (Ω) = ΠregL2,q,q+1

s (Ω) ⊂ Λ−1(
0∆q

t (Ω)× 0
◦
Dq+1

t (Ω)
)

I fully corrected Neumann expansion

∣∣∣∣Lω f + ω−1Πf −
J−1∑
j=0

ωj L0
j+1 Πregf − ωN−1

J−N∑
j=0

ωj Γj f
∣∣∣∣

L2,q,q+1
t (Ω)

= O
(
|ω|J

)∣∣∣∣f ∣∣∣∣
L2,q,q+1

s (Ω)

for f ∈ L2,q,q+1
s (Ω) =

(
Triqs (Ω) u Regq,−1

s (Ω)
)
∩ L2,q,q+1

s (Ω)
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MAIN RESULT

Theorem (low frequency asymptotics)
Let J ∈ N and s /∈ I = (N0 + N/2) ∪ (1− N/2− N0) with

s > J + 1/2,
(
f
)

t < min{N/2− J − 2,−1/2},
(
uω
)

τ > max
{

(N + 1)/2, s − t
}
. (Λ̂)

Then for all small enough C+ \ {0} 3 ω → 0 the asymptotic expansion

Lω +ω−1Π−
J−1∑
j=0

ωj L0
j+1 Πreg − ωN−1

J−N∑
j=0

ωj Γj = O
(
|ω|J

)
holds in the norm of bounded linear operators from L2,q,q+1

s (Ω) to L2,q,q+1
t (Ω).

Remark The main theorem holds also for J = 0 with slightly different t and τ .
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TIME-HARMONIC SCATTERING PROBLEM

Solving (M − ω)uω = f ?

M :
◦
Dq(Ω)× ∆q+1(Ω) ⊂ L2,q,q+1

Λ (Ω) −→ L2,q,q+1
Λ (Ω)

u 7−→ i Λ−1
[

0 δ
d 0

]
u

M unbd. lin. s.a. ⇒ σ(M) ⊂ R

ω ∈ C \ R ⇒ Lω = (M − ω)−1 bounded ⇒ L2-sol. for all f ∈ L2,q,q+1(Ω)

solving in σ(M) \ {0} with Eidus’ ‘limiting absorption principle’ (approx. from C+)

Definition (time-harmonic (scattering) solutions)
Let ω ∈ R \ {0} and f ∈ L2,q,q+1

loc (Ω). uω solves Max(f , ω), iff

(i) ∀ t < −1/2 uω ∈
◦
Dq

t (Ω)× ∆q+1
t (Ω),

(ii) ∃ t > −1/2 (S + 1)uω ∈ L2,q,q+1
t (Ω),

(iii) (M − ω)uω = f .

TOOLS: a priori estimate, polynomial decay of eigensolutions, decomposition lemma,
Helmholtz’ equation
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TIME-HARMONIC SCATTERING PROBLEM

Theorem (time-harmonic (scattering) solution theory)
Let ω ∈ R \ {0} and s > 1/2, τ > 1.

(i) Max(0, ω) ⊂
( ◦
Dq

t (Ω) ∩ ε−1 δ ∆q+1
t (Ω)

)
×
(
∆q+1

t (Ω) ∩ µ−1 d
◦
Dq

t (Ω)
)

for all t ∈ R,
i.e. gen. eigensolutions decay polynomially (and exponentially for Λ ∈ C2),
no gen. eigenvalues for Λ = Id, comp. Helmholtz eq., Rellich’s est., princ. uniq.
cont.

(ii) dim Max(0, ω) <∞
(iii) σgen(M) has no accumulation point in R \ {0}
(iv) Fredholm’s Alternative holds:
∀ f ∈ L2,q,q+1

s (Ω) ∃ uω solution of Max(f , ω), iff

∀ v ∈ Max(0, ω) 〈f , v〉
L2,q,q+1

Λ
(Ω)

= 0

The solution uω can be chosen, such that

∀ v ∈ Max(0, ω) 〈uω , v〉L2,q,q+1
Λ

(Ω)
= 0.

Then uω is uniquely determined.

(v) For all t < −1/2 the solution operator Lω maps L2,q,q+1
s (Ω) ∩Max(0, ω)⊥Λ to( ◦

Dq
t (Ω)× ∆q+1

t (Ω)
)
∩Max(0, ω)⊥Λ continuously.
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LOW FREQUENCY TIME-HARMONIC SCATTERING PROBLEM

Theorem (low frequency time-harmonic estimate)
Let τ > (N + 1)/2 and s ∈ (1/2,N/2) as well as t := s− (N + 1)/2 ∈ (−N/2,−1/2).

(i) σgen(M) does not accumulate in R (especially not at zero).
σgen(M) ∩ C+ = {0} for ω sufficiently small.

(ii) Lω is well defined on L2,q,q+1
s (Ω) for all 0 6= ω ∈ C+ small enough.

(iii) ∃ c > 0 ∀ 0 6= ω ∈ C+ small enough ∀Λf = Λ(F ,G) ∈ ∆q
s (Ω)×

◦
Dq+1

s (Ω)∣∣∣∣Lω f
∣∣∣∣

L2,q,q+1
t (Ω)

≤ c
(∣∣∣∣f ∣∣∣∣

L2,q,q+1
s (Ω)

+ |ω|−1∣∣∣∣(δ εF , dµG)
∣∣∣∣

L2,q−1,q+2
s (Ω)

+ |ω|−1
dq∑
`=1

∣∣〈εF , ◦bq
` 〉L2,q (Ω)

∣∣+ |ω|−1
dq+1∑
`=1

∣∣〈µG, bq+1
` 〉L2,q+1(Ω)

∣∣).
Especially

∣∣∣∣Lω f
∣∣∣∣

L2,q,q+1
t (Ω)

≤ c
∣∣∣∣f ∣∣∣∣

L2,q,q+1
s (Ω)

holds for

Λf = Λ(F ,G) ∈ 0∆∆q
s (Ω)×0

◦
Dq+1

s (Ω) :=
(

0∆q
s (Ω)∩

◦
Bq(Ω)⊥

)
×
(

0
◦
Dq+1

s (Ω)∩Bq+1(Ω)⊥
)
,

i.e., no terms with negative frequency power |ω|−1 occur.

TOOLS: fundamental sol. Helmholtz’ eq. (Hankel’s function),
repr. of sol. for Ω = RN as conv., cutt. tech., indirect arg.
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FIRST LOW FREQUENCY ASYMPTOTIC

Theorem (first and simple static solution theory)
Let τ > 0. Then there exists a linear and bounded static solution operator

L0 : Λ−1(
0∆∆q(Ω)×0

◦
Dq+1(Ω)

)
→
( ◦
Dq
−1(Ω)×∆q+1

−1 (Ω)
)
∩Λ−1(

0∆∆q
−1(Ω)×0

◦
Dq+1
−1 (Ω)

)
.

More precisely: u = (E ,H) = L0 f for f = (F ,G) solves Mu = f , i.e., the static system

iµ−1 d E = G, δ εE = 0, εE⊥
◦
Bq(Ω),

i ε−1 δH = F , dµH = 0, µH⊥ Bq+1(Ω).

Theorem (first and simple low frequency asymptotics)
Let τ > (N + 1)/2 and s ∈ (1/2,N/2) as well as t < s − (N + 1)/2 ∈ (−N/2,−1/2).
Then

lim
C+3ω→0

Lω = L0

in the norm of bounded linear operators

Λ−1(
0∆∆q

s (Ω)× 0
◦
Dq+1

s (Ω)
)
−→

◦
Dq

t (Ω)× ∆q+1
t (Ω).
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EXTENDED STATIC SOLUTION THEORY

Theorem (extended static solution theory)
Let s ∈ (1− N/2,∞) \ I and τ > max{0, s − N/2}, τ ≥ −s. Then

iµ−1 d :
( ◦
Dq

s−1(Ω) � ηfq,0,−
s−1

)
∩ ε−1

0∆∆q
loc(Ω) −→ µ−1

0
◦
Dq+1

s (Ω)

E 7−→ iµ−1 d E
,

i ε−1 δ :
(

∆q+1
s−1(Ω) � ηDq+1,0,−

s−1

)
∩ µ−1

0
◦
Dq+1

loc (Ω) −→ ε−1
0∆∆q

s (Ω)

H 7−→ i ε−1 δH

are topological isomorphisms.

note: fq,0,−
s−1 = fq(Ī

q,0
s−1) finite dim. subspace of C∞

(
RN \ {0}

)
ηfq,0,−

s−1 ⊂ L2,q
t (Ω) for t ≤ s − 1, t < N/2 and ηfq,0,−

s−1 6⊂ L2,q
s−1(Ω)

same for Dq+1,0,−
s−1 = Dq+1(J̄

q+1,0
s−1 )

consisting of ‘neg. tower-forms’ of shape r` τ̌ Sq
m,n (Sq

m,n gen. spherical harmonics)
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EXTENDED STATIC SOLUTION THEORY

Corollary (extended static solution theory)
Let s ∈ (1− N/2,∞) \ I and τ > max{0, s − N/2}, τ ≥ −s. Then

M :
(( ◦

Dq
s−1(Ω)× ∆q+1

s−1(Ω)
)
�
(
ηfq,0,−

s−1 × ηD
q+1,0,−
s−1

))
∩ Λ−1(

0∆∆q
loc(Ω)× 0

◦
Dq+1

loc (Ω)
)

−→ Λ−1(
0∆∆q

s (Ω)× 0
◦
Dq+1

s (Ω)
)

u = (E ,H) 7−→ Mu = i Λ−1(δH, d E)

is a topological isomorphism with bounded inverse

L0 = M−1 : Λ−1(
0∆∆q

s (Ω)× 0
◦
Dq+1

s (Ω)
)
−→ Λ−1(

0∆∆q
s−1(Ī

q,0
s−1,Ω)× 0

◦
Dq+1

s−1(J̄
q+1,0
s−1 ,Ω)

)
.

goal: higher powers of L0 even acting on Λ−1(
0∆∆q

s−1(I,Ω)× 0
◦
Dq+1

s−1(J,Ω)
)



TIME-HARMONIC SCATTERING MAXWELL PROBLEM RESULTS PROOFS (...IF THERE IS TIME) EDDY-CURRENT APPROXIMATION REFERENCES

TOWER FORMS

. . . . . .
∣∣∣ . . .

δ ↙
∣∣∣ ↘ d

3. floor ±∆q−1,3
σ,m

∣∣∣ ±Dq+1,3
σ,m

d↘
∣∣∣ ↙ δ

2. floor ±Dq,2
σ,m

∣∣∣ ±∆q,2
σ,m

δ ↙
∣∣∣ ↘ d

1. floor ±∆q−1,1
σ,m

∣∣∣ ±Dq+1,1
σ,m

d↘
∣∣∣ ↙ δ

ground ±Dq,0
σ,m

∼= ±∆q,0
σ,m∣∣

d-tower
∣∣∣ δ-tower

±∆q,k
σ,m,

±Dq,k
σ,m ∈ C∞(RN \ {0}) homogeneous of deg. k + σ resp. k − σ − N
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HIGHER POWERS OF THE STATIC SOLUTION OPERATOR

Theorem (higher powers of L0)
Let j ∈ N and s ∈ (j − N/2,∞) \ I and I, J finite index sets as well as
τ ≥ j − 1− s, τ > max{0, s − N/2} and τ > s + N/2 + max{h

I
, h

J
}. Then

Lj
0 : Λ−1(

0∆∆q
s (I,Ω)× 0

◦
Dq+1

s (J,Ω)
)

−→ Λ−1


0∆∆q

s−j (Ī
q,≤j−1
s−j ∪ jI,Ω)× 0

◦
Dq+1

s−j (J̄
q+1,≤j−1
s−j ∪ jJ,Ω) , if j even

0∆∆q
s−j (Ī

q,≤j−1
s−j ∪ jJ,Ω)× 0

◦
Dq+1

s−j (J̄
q+1,≤j−1
s−j ∪ jI,Ω) , if j odd

is a continuous linear operator with range in Λ−1(
0∆∆q

t (Ω)× 0
◦
Dq+1

t (Ω)
)

for t ≤ s − j , t < N/2− j + 1, t < −j − N/2−max{h
I
, h

J
}.
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SPACES OF REGULAR CONVERGENCE

Regq,−1
s (Ω) = ΠregL2,q,q+1

s (Ω) ⊂ Λ−1(
0∆q

t (Ω)× 0
◦
Dq+1

t (Ω)
)

Regq,0
s (Ω) := Λ−1(

0∆∆q
s (Ω)× 0

◦
Dq+1

s (Ω)
)

Regq,j
s (Ω) :=

{
f ∈ Regq,0

s (Ω) : Lj
0 f ∈ L2,q,q+1

s−j (Ω)
}

‘usual Neumann sum’

Lemma (spaces of regular convergence)
Let J ∈ N0 and s ∈ (J + 1/2,∞) \ I as well as τ > max

{
(N + 1)/2, s − N/2

}
. Then

for all 0 6= ω ∈ C+ small enough on Regq,J
s (Ω) the resolvent formula

Lω −
J−1∑
j=0

ωj Lj+1
0 = ωJ Lω LJ

0

holds. Especially for s ∈ (J + 1/2, J + N/2) \ I and t = s − J − (N + 1)/2

∣∣∣∣Lω f −
J−1∑
j=0

ωj Lj+1
0 f

∣∣∣∣
L2,q,q+1

t (Ω)
= O

(
|ω|J

)∣∣∣∣f ∣∣∣∣
L2,q,q+1

s (Ω)

holds uniformly w.r.t. f ∈ Regq,J
s (Ω).

aim: characterize Regq,j
s (Ω) by orthogonality constraints
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GROWING STATIC SOLUTIONS
again conditions on τ . . .

E+
σ,m ∈ 0

◦
Dq

loc(Ω) ∩ ε−1
0∆∆q

loc(Ω)

E+
σ,m − +∆q,0

σ,m ∈ L2,q
>− N

2
(Ω)

H+
σ,m ∈ 0∆q+1

loc (Ω) ∩ µ−1
0
◦
Dq+1

loc (Ω)

H+
σ,m − +Dq+1,0

σ,m ∈ L2,q+1
>− N

2
(Ω)

E+,k
σ,m = Lk

0(E+
σ,m, 0), H+,k

σ,n = Lk
0(0,H+

σ,n) ∈ L2,q,q+1
−N/2−σ−k (Ω)

+∆q,k
σ,m, +Dq+1,k

σ,m behave like r k+σ , k , σ ≥ 0 at infinity

E+,k
σ,m − η(+∆q,k

σ,m, 0) ∈ Λ−1
((

∆q
s−k−1(Ω) � ηfq(Ī

q,≤k
s−k−1)

)
× {0}

)
k even

E+,k
σ,m − η(0,+Dq+1,k

σ,m ) ∈ Λ−1
(
{0} ×

( ◦
Dq+1

s−k−1(Ω) � ηDq+1(J̄
q+1,≤k
s−k−1 )

))
k odd

supp Λ̂ compact, then series rep. of neg. tower-forms of height ≤ k
(gen. spherical harmonics expansion)
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PROJECTION ONTO SPACES OF REGULAR CONVERGENCE

powers Lj
0 f have neg. tower-form parts

〈C∆,η
θDq,k

σ,m,
ϑDq,`

γ,n〉L2,q (RN ) = 〈C∆,η
θ∆q,k

σ,m,
ϑ∆q,`

γ,n〉L2,q (RN ) = δϑθ,−1δk,`δσ,γδm,n,

〈C∆,η
θDq,k

σ,m,
ϑ∆q,`

γ,n〉L2,q (RN ) = 0

assume: supp Λ̂ compact ⇒

Lemma (orthogonality def. of spaces of regular convergence)
Let J ∈ N and s ∈ (J + 1− N/2,∞) \ I as well as f ∈ Regq,0

s (Ω).
Then f ∈ Regq,J

s (Ω), iff

〈f ,E+,k+1
σ,m 〉

L2,q,q+1
Λ

(Ω)
= 〈f ,H+,`+1

γ,n 〉
L2,q,q+1

Λ
(Ω)

= 0

for all (k , σ,m) ∈ Θq,J
s and (`, γ, n) ∈ Θq+1,J

s , where

Θq,J
s :=

{
(k , σ,m) ∈ N3

0 : k ≤ J − 1 ∧ σ < s − N/2− k − 1 ∧ 1 ≤ m ≤ µq
σ

}
.

Especially Regq,J
s (Ω) is a closed subspace of Regq,0

s (Ω) ⊂ L2,q,q+1
s (Ω).
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DUAL BASIS OF GROWING TOWERS FORMS

Define
e±,`σ,n := M`η(±∆q,1

σ,n, 0), h±,`σ,m := M`η(0,±Dq+1,1
σ,m ).

Then e±,`σ,n , h
±,`
σ,m ∈

◦
C∞(RN ) with supp e±,`σ,n = supp h±,`σ,m = supp∇η for ` ≥ 2 and
〈e−,`+2
γ,n ,E+,k+1

σ,m 〉L2,q,q+1(Ω) = 0,

〈h−,`+2
γ,n ,E+,k+1

σ,m 〉L2,q,q+1(Ω) = (−1)`δk,`δσ,γδm,n.

same for H+,k+1
σ,m

Lemma (dual basis of E+,k+1
σ,m and H+,`+1

γ,n )
Let J ∈ N and s ∈ (J + 1− N/2,∞) \ I. Then

Regq,0
s (Ω) = Regq,J

s (Ω) uΥq,J
s , Υq,J

s ⊂
◦
C∞(RN ),

where for f ∈ Regq,0
s (Ω)

fΥ :=
∑

(k,σ,m)∈Θ
q,J
s

(−1)k 〈f ,E+,k+1
σ,m 〉L2,q,q+1(Ω)h

−,k+2
σ,m

+
∑

(k,σ,m)∈Θ
q+1,J
s

(−1)k 〈f ,H+,k+1
σ,m 〉L2,q,q+1(Ω)e

−,k+2
σ,m .

with Υq,J
s := Lin

{
e−,k+2
σ,m , h−,`+2

γ,n : (k , σ,m) ∈ Θq,J
s , (`, γ, n) ∈ Θq+1,J

s
}

.
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PROOF OF LOW FREQUENCY ASYMPTOTICS

step one: proof in the reduced case, this is:
I compactly supported perturbations Λ̂
I right hand sides from Regq,0

s (Ω)
I estimates in local norms

step two: replacing Regq,0
s (Ω) by L2,q,q+1

s (Ω)
(polynomially weighted Helmholtz decomposition)

step three: replacing local norms by weighted norms

step four: replacing compactly supported perturbations ε̂ , µ̂ by asymptotically
vanishing perturbations

We only drop the assumption of compactly supported perturbations of the medium in
the last step.
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STEP ONE

latter lemma ⇒

Regq,0
s (Ω) = Regq,J

s (Ω) uΥq,J
s , e−,k+2

σ,m , h−,k+2
σ,m Υq,J

s ⊂
◦
C∞(RN )

I asymptotics clear on Regq,J
s (Ω) (gen. Neumann sum)

√

I asymptotics on Υq,J
s ? ⇒ asymptotics for e−,k+2

σ,m , h−,k+2
σ,m ?

Lk
0 e−,k+2

σ,m = e−,2σ,m (
◦
C∞(RN ) and right shape) ⇒ e−,k+2

σ,m ∈
◦
C∞(RN )∩Regq,k

s (Ω)

(
Lω −

J−1∑
j=0

ωj Lj+1
0︸ ︷︷ ︸

=

k−1∑
j=0

· · ·+
J−1∑
j=k

. . .

)
e−,k+2
σ,m = ωk Lω Lk

0 e−,k+2
σ,m − ωk

J−1−k∑
j=0

ωj Lj+1+k
0 e−,k+2

σ,m

= ωk(Lω − J−1−k∑
j=0

ωj Lj+1
0

)
e−,2σ,m

same for h−,k+2
σ,m

just unkn. asym. for (Lω −
J−1−k∑

j=0

ωj Lj+1
0

)
e−,2σ,m and (Lω −

J−1−k∑
j=0

ωj Lj+1
0

)
h−,k+2
σ,m
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STEP ONE

asymptotics for (Lω −
J−1−k∑

j=0

ωj Lj+1
0

)
e−,2σ,m and (Lω −

J−1−k∑
j=0

ωj Lj+1
0

)
h−,k+2
σ,m ?

idea: compare with special radiating solutions of the homo. problem in RN \ {0}

E1,ω
σ,m = βσω

νσ r1− N
2 H1

νσ
(ω r) τ̌ T q

σ,m (H1
νσ

Hankel’s function)

=
∞∑

k=0

(− iω)2k −∆q,2k+1
σ,m + κq+1

σ ω2νσ
∞∑

k=0

(− iω)2k +∆q,2k+1
σ,m

H1,ω
σ,m =

i
ω

dE1,ω
σ,m

=
i
ω

( ∞∑
k=0

(− iω)2k −Dq+1,2k
σ,m + κq+1

σ ω2νσ
∞∑

k=0

(− iω)2k +Dq+1,2k
σ,m

)
similarly second solution pair (E2,ω

σ,m,H
2,ω
σ,m)

(i
[

0 δ
d 0

]
− ω)(Ej,ω

σ,m,H
j,ω
σ,m) = (0, 0) ⇒ (∆ + ω2)(Ej,ω

σ,m,H
j,ω
σ,m) = (0, 0)

(comp.-wise Helmholtz)



TIME-HARMONIC SCATTERING MAXWELL PROBLEM RESULTS PROOFS (...IF THERE IS TIME) EDDY-CURRENT APPROXIMATION REFERENCES

STEP ONE

note: (M − ω)η(Ej,ω
σ,m,H

j,ω
σ,m) = CM,η(Ej,ω

σ,m,H
j,ω
σ,m)

comparing

Lω e−,2σ,m with Lω CM,η(E1,ω
σ,m,H

1,ω
σ,m) = η(E1,ω

σ,m,H
1,ω
σ,m),

Lω h−,2σ,m with Lω CM,η(E2,ω
σ,m,H

2,ω
σ,m) = η(E2,ω

σ,m,H
2,ω
σ,m)

and a (really) long, long, long, ... calculation

Theorem (low frequency asymptotics on Regq,0
s (Ω))

Let J ∈ N0 and s ∈ (J + 1/2,∞) \ I. Then for all bounded subdomains Ωb ⊂ Ω

∣∣∣∣Lω f −
J−1∑
j=0

ωj Lj+1
0 f − ωN

J−1−N∑
j=0

ωj Γ̂j f
∣∣∣∣

L2,q,q+1(Ωb)
= O

(
|ω|J

)∣∣∣∣f ∣∣∣∣
L2,q,q+1

s (Ω)

holds uniformly w.r.t. f ∈ Regq,0
s (Ω) and 0 6= ω ∈ C+ small enough.

degenerate correction operators

Γ̂j f ∈ Lin{E+,k
σ,m,H

+,k
σ,n : k + 2σ ≤ j}

with coefficients of shape 〈f ,E+,k
σ,m〉L2,q,q+1(Ω) and 〈f ,H+,k

σ,m〉L2,q,q+1(Ω)
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STEP TWO

Theorem (polynomially weighted Helmholtz decomposition)
conditions on τ . . .
For s > −N/2 let εL2,q

s (Ω) := L2,q
s (Ω) ∩ εHq(Ω)⊥ε .

(i) −N/2 < s < N/2:

εL2,q
s (Ω) = 0

◦
Dq

s (Ω) u ε−1
0∆∆q

s (Ω)

For s ≥ 0 the decomposition is 〈ε · , · 〉L2,q (Ω)-orthogonal.

(ii) s > N/2:

εL2,q
s (Ω) =

((
[L2,q

s (Ω) � ηD̄q
s ] ∩ 0

◦
Dq
< N

2
(Ω)
)

⊕ε ε−1([L2,q
s (Ω) � ηf̄q

s ] ∩ 0∆∆q
< N

2
(Ω)
))
∩ L2,q

s (Ω)

εL2,q
s (Ω) = 0

◦
Dq

s (Ω) u ε−1
0∆∆q

s (Ω) u∆εηP̄
q
s−2

The first two terms in the second decomposition are 〈ε · , · 〉L2,q (Ω)-orthogonal.

L2,q
s (Ω) ∩ εHq

−s(Ω)⊥ε = 0
◦
Dq

s (Ω)⊕ε ε−1
0∆∆q

s (Ω)

(iii) s < −N/2:
deco. holds, but loosing directness, larger space of Dirichlet/Neumann forms
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STEP TWO

polynomially weighted Helmholtz decomposition for large weights s

L2,q,q+1
s (Ω) =

(
Triqs (Ω) u Regq,−1

s (Ω)
)
∩ L2,q,q+1

s (Ω)

with projections Π and Πreg := (1− Π) as well as t ≤ s and t < N/2

(N(M) =) Triqs (Ω) = ΠL2,q,q+1
s (Ω) ⊂ 0

◦
Dq

t (Ω)× 0∆q+1
t (Ω)

Regq,−1
s (Ω) = ΠregL2,q,q+1

s (Ω) ⊂ 0∆q
t (Ω)× 0

◦
Dq+1

t (Ω)

still: supp λ̂ compact

Theorem (low frequency asymptotics on L2,q,q+1
s (Ω) in local norms)

Let J ∈ N0 and s ∈ (J + 1/2,∞) \ I. Then for all bounded subdomains Ωb ⊂ Ω

∣∣∣∣Lω f +ω−1Πf−
J−1∑
j=0

ωj Lj+1
0 Πregf−ωN−1

J−N∑
j=0

ωj Γj f
∣∣∣∣

L2,q,q+1(Ωb)
= O

(
|ω|J

)∣∣∣∣f ∣∣∣∣
L2,q,q+1

s (Ω)

holds uniformly with respect to f ∈ L2,q,q+1
s (Ω) and 0 6= ω ∈ C+ small enough.
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STEPS THREE AND FOUR

I cutting technique ⇒ bounded domain and unbounded domain
I comparing with the homogeneous whole space case Ω = RN and Λ = Id

I represent solution by convolution with fundamental solution
I Taylor expansion of fundamental solution (Hankel’s function)
⇒ low frequency asymptotics in this special case

I low frequency asymptotics in weighted norms L2,q,q+1
t (Ω)

I approx. of asymptotically homo. media by compactly supported media
(convergence in operator norm)

done �
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CLASSICAL TIME-HARMONIC SCATTERING MAXWELL PROBLEM
AND EDDY-CURRENT APPROXIMATION

time-harmonic Maxwell (electro-magnetic scattering) problem in R3 (now with σ!),
Ωext ⊂ R3 exterior domain
with complement Ωint := R3 \ Ωext ⊂ R3 bounded domain
giving the support of σ, i.e., suppσ = Ωint compact

σEω − rot Hω + iωεEω = F in R3 (pde)

rot Eω + iωµHω = G in R3 (pde)

Eω , Hω ∈ H<−1/2(rot;R3) (decay cond.)

ξ × Eω + Hω , −ξ × Hω + Eω ∈ L2
>−1/2(R3) (Silver-Müller radiation cond.)

as before: 0 6= ω ∈ C , ε, µ ∈ L∞(Ω,R3×3) , sym, unif. pos. def.,

Remark/Theorems Solution theories and asymptotics hold as before with more or
less obvious changes.

Remark As before, generalization to differential forms is straight forward.
Let’s stay here with the classical case of vector analysis.
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CLASSICAL TIME-HARMONIC SCATTERING MAXWELL PROBLEM
AND EDDY-CURRENT APPROXIMATION

time-harmonic Maxwell (electro-magnetic scattering) problem in R3 (with σ!),
Ωext ⊂ R3 exterior domain, Ωint := R3 \ Ωext ⊂ R3 bounded domain, suppσ = Ωint

σEω − rot Hω+ iωεEω = F in R3 (pde)

rot Eω + iωµHω = G in R3 (pde)

Eω , Hω ∈ H<−1/2(rot;R3) (decay cond.)

ξ × Eω + Hω , −ξ × Hω + Eω ∈ L2
>−1/2(R3) (Silver-Müller radiation cond.)

time-harmonic eddy-current Maxwell problem in R3, (no radiation condition!)

σEec
ω − rot Hec

ω = F in R3 (pde)

rot Eec
ω + iωµHec

ω = G in R3 (pde)

div εEec
ω |Ωext = 0 in Ωext (pde)

εEec
ω |Ωext ⊥L2(Ωext)

B̊(Ωext) (cohomology or kernel condition)

Eec
ω , Hec

ω ∈ H−1(rot;R3) (decay cond.)

KNOWN: low freq. asympt. for (Eω ,Hω), i.e., lim
ω→0

Eω =
√
, lim

ω→0
Hω =

√

QUESTIONS / AIMS: low freq. asympt. for (Eec
ω ,Hec

ω ) and (Eω − Eec
ω ,Hω − Hec

ω ), i.e.,

lim
ω→0

Eec
ω , lim

ω→0
Hec
ω lim

ω→0
Eω − Eec

ω lim
ω→0

Hω − Hec
ω ?
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CLASSICAL TIME-HARMONIC SCATTERING MAXWELL PROBLEM
AND EDDY-CURRENT APPROXIMATION

as before, more compact and proper notation

time-harmonic Maxwell (electro-magnetic scattering) problem in R3 (with σ!)

(M − ω + Σ)uω = f ∈ L2
>1/2(R3)× L2

>1/2(R3)

uω ∈ H<−1/2(rot;R3)× H<−1/2(rot;R3)

(S + 1)uω ∈ L2
>−1/2(R3)× L2

>−1/2(R3)

here: Σ = i Λ−1
[
σ 0
0 µ

]
compact perturbation of s.a. unbd. lin. op. M

⇒ sol. theo’s for time-harm. and stat. prob. and asym. more or less the same
sol. op’s: Lσ,ω , Lσ,0

time-harmonic eddy-current Maxwell problem in R3,

(M − ωP + Σ)uec
ω = f ∈

(
L2

1(R3) ∩ H(div 0; Ωext) ∩ B̊(Ωext)
⊥L2(Ωext)

)
× L2(R3)

div εEec
ω |Ωext = 0

εEec
ω |Ωext ⊥L2(Ωext)

B̊(Ωext)

uec
ω ∈ H−1(rot;R3)× H(rot;R3)

here: projector P with P(E ,H) := (0,H)
sol. op’s: Lec

σ,ω and again (as before) Lec
σ,0 = Lσ,0
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LOW FREQUENCY ASYMPTOTICS FOR THE EDDY-CURRENT APPROXIMATION

KNOWN: low freq. asympt. of Lσ,ω

QUESTIONS / AIMS: low freq. asympt. of Lec
σ,ω and Lσ,ω − Lec

σ,ω , i.e.,

lim
C\{0}3ω→0

Lec
σ,ω and lim

C\{0}3ω→0
Lσ,ω − Lec

σ,ω ?

ANSWER: The first asym. is trivial (Neumann series) and hence the second as well as
the asym. of Lσ,ω is already known!

NOTE:

I asym. of Lσ,ω very complicated
I asym. of Lec

σ,ω very simple (Neumann series as in the bounded domain case!)
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LOW FREQUENCY ASYMPTOTICS FOR THE EDDY-CURRENT APPROXIMATION

sol. op. for the eddy-current prob.

(M − ωP + Σ)uec
ω = f ∈

(
L2

1(R3) ∩ H(div 0; Ωext) ∩ B̊(Ωext)
⊥L2(Ωext)

)
× L2(R3)

div εEec
ω |Ωext = 0

εEec
ω |Ωext ⊥L2(Ωext)

B̊(Ωext)

uec
ω ∈ H−1(rot;R3)× H(rot;R3)

is

Lec
σ,ω :

(
L2

1(R3)∩H(div 0; Ωext)∩B̊(Ωext)
⊥L2(Ωext)

)
×L2(R3)→ H−1(rot;R3)×H(rot;R3)

looking just on the weights

Lec
σ,ω : L2

1(R3)× L2(R3)→ L2
−1(R3)× L2(R3)

of course: only f sich that Lec
σ,0f = Lσ,0f is well def.
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LOW FREQUENCY ASYMPTOTICS FOR THE EDDY-CURRENT APPROXIMATION
then roughly:

(M − ωP + Σ)uec
ω = f

⇔ (M + Σ)uec
ω = f + ωPuec

ω

⇔ uec
ω = Lσ,0f + ωLσ,0Puec

ω

⇔ (Id−ωLσ,0P)uec
ω = Lσ,0f

now, unlike in the full time-harmonic Maxwell case, Lσ,0P is a nice bounded operator
mapping some Hilbert space into itself. For this observe that

(Uec
ω ,V

ec
ω ) = Lσ,0Puec

ω = Lσ,0P(Eec
ω ,H

ec
ω ) = Lσ,0(0,Hec

ω )

solves

σUec
ω − rot V ec

ω = 0

rot Uec
ω = Hec

ω ,

which is a very weakly coupled system.
looking again just on the weights: Puec

ω = (0,Hec
ω ) ∈ L2

−1(R3)× L2(R3)

Hec
ω ∈ L2(R3) ⇒ Uec

ω ∈ L2
−1(R3) (no towers) ⇒ V ec

ω ∈ L2(R3) (no towers),

as σUec
ω has got compact support and hence belongs to any weighted L2-space
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LOW FREQUENCY ASYMPTOTICS FOR THE EDDY-CURRENT APPROXIMATION

looking again just on the weights:

Lσ,0P : L2
−1(R3)× L2(R3)→ L2

−1(R3)× L2(R3)

more precisely

Lσ,0P : L2
−1(R3)× L2(R3)→ L2

−1(R3)× L2(R3)

Then
(Id−ωLσ,0P)uec

ω = Lσ,0f

shows that the asymptotic is simply given by Neumann’s series (as in the bounded
domain case)

Lec
σ,ω f = uec

ω =
∞∑
j=1

(ωLσ,0P)jLσ,0f =
∞∑
j=1

ωj (Lσ,0P)jLσ,0f ,

provided that |ω| is sufficient small. The series converges in L2
−1(R3)× L2(R3), even in

H−1(rot;R3)× H(rot;R3)
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LOW FREQUENCY ASYMPTOTICS FOR THE DIFFERENCE OF THE FULL
TIME-HARMONIC MAXWELL PROBLEM AND THE EDDY-CURRENT
APPROXIMATION

now compare (again in RN and with differential forms) the asymptotic series

Lσ,ω −
J−1∑
j=0

ωjLj+1
σ,0 − ω

N−1
J−N∑
j=0

ωj Γj = O
(
|ω|J

)
in the norm of bounded linear operators from L2,q,q+1

s (RN ) to L2,q,q+1
t (RN ) (s large, t

small) and the Neumann series

Lec
σ,ω =

∞∑
j=1

ωj (Lσ,0P)jLσ,0

converging in L2,q,q+1
−1 (RN )× L2,q,q+1(RN ).
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LOW FREQUENCY ASYMPTOTICS FOR THE DIFFERENCE OF THE FULL
TIME-HARMONIC MAXWELL PROBLEM AND THE EDDY-CURRENT
APPROXIMATION

Theorem (low frequency asymptotics)
For all small enough C+ \ {0} 3 ω → 0 the following asymptotics hold:

(i) If f ∈ Regq,0
1 (RN ) then for all t < (1− N)/2

||(Lσ,ω − Lec
σ,ω)f ||

L2,q,q+1
t (RN )

ω→0−−−→ 0. (approx. of order 0)

(ii) If f ∈ Regq,1
s (RN ) with s ∈ (3/2,N/2 + 1) \ I then for t := s − (N + 3)/2

||(Lσ,ω − Lec
σ,ω)f ||

L2,q,q+1
t (RN )

= O
(
|ω|
)∣∣∣∣f ∣∣∣∣

L2,q,q+1
s (Ω)

. (approx. of order 1)

note in R3:

Regq,0
s (R3) =

(
L2

s(R3) ∩ Hs(div 0; Ωext) ∩ B̊(Ωext)
⊥L2(Ωext)

)
× Hs(div 0;R3),

Regq,j
s (R3) = {f ∈ Regq,j−1

s (R3) : Lj
σ,0f ∈ L2,q,q+1

s−j (RN )}
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LOW FREQUENCY ASYMPTOTICS FOR THE DIFFERENCE OF THE FULL
TIME-HARMONIC MAXWELL PROBLEM AND THE EDDY-CURRENT
APPROXIMATION

Theorem (low frequency asymptotics, continued)
For all small enough C+ \ {0} 3 ω → 0 the following asymptotics hold:

(iii) If f ∈ Regq,2
s (RN ) with s ∈ (5/2,N/2 + 2) \ I then for t := s − (N + 5)/2

||(Lσ,ω − Lec
σ,ω)f ||

L2,q,q+1
t (RN )

= O
(
|ω|2

)∣∣∣∣f ∣∣∣∣
L2,q,q+1

s (Ω)
, (approx. of order 2)

if and only if δ F = 0 in RN and G = 0.
note: in R3 this is div F = 0 in R3 and G = 0. (very simply condition, hidden jump
condition for F)

(iv) If f 6= 0, the approximation can never be better than O
(
|ω|2

)
, even for supp f

compact.

(v) If supp Λ̂ compact, then Regq,1
s (RN ) and Regq,2

s (RN ) can be replaced by
Regq,0

s (RN ). correction operators Γj change asymptotics just from oder O
(
|ω|N

)
on. Hence no change in asymtotics.

note: condition div F = 0 in R3 is much more complicated in Ammari, Buffa, Nedelec,
namely

div F = 0 in Ωext, div F = 0 in Ωint

+ jump cond. on n · F , + complicated cohomology cond. on F and n · F
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