Non-Standard Partial Integration: Implications to Maxwell and Korn Inequalities OR

How one cannot apply the Closed Graph Theorem

Universität Konstanz
Oberseminar Partielle Differentialgleichungen
Gastgeber: Reinhard Racke

Dirk Pauly
Universität Duisburg-Essen

Open-Minded ;-)
January 7, 2016

OVERVIEW

Key Observation
Non-Standard Integration by Parts

Maxwell inequalities
two Maxwell inequalities
PROOFS

KORN'S FIRST INEQUALITIES
STANDARD HOMOGENEOUS SCALAR BOUNDARY CONDITIONS
NON-STANDARD HOMOGENEOUS TANGENTIAL OR NORMAL BOUNDARY CONDITIONS

REFERENCES
disturbing consequences for Villani's work (fields medal)
CITATIONS
SOME FUN...

Non-Standard Integration by Parts

Proposition (Grisvard's book and older...)
Let $\Omega \subset \mathbb{R}^{N}$ be piecewise C^{2}. Then for all $v \in \dot{C}^{\infty}(\bar{\Omega})$

$$
\begin{aligned}
|\operatorname{div} v|_{L^{2}(\Omega)}^{2}+|\operatorname{rot} v|_{L^{2}(\Omega)}^{2}-|\nabla v|_{L^{2}(\Omega)}^{2}= & \sum_{\ell=1}^{L} \int_{\Gamma_{\ell}} \underbrace{\left(\operatorname{div} \nu\left|v_{n}\right|^{2}+\left((\nabla \nu) v_{\mathrm{t}}\right) \cdot v_{\mathrm{t}}\right)}_{\text {curvature, sign! }} \\
& +\sum_{\ell=1}^{L} \int_{\Gamma_{\ell}} \underbrace{\left(v_{\mathrm{n}} \operatorname{div}_{\Gamma} v_{\mathrm{t}}-v_{\mathrm{t}} \cdot \nabla_{\Gamma} v_{\mathrm{n}}\right)}_{\text {boundary conditions, no sign! }}
\end{aligned}
$$

and for all $v \in \stackrel{\circ}{\mathrm{C}}_{\mathrm{t}, \mathrm{n}}^{\infty}(\Omega)$

$$
\begin{aligned}
|\operatorname{div} v|_{L^{2}(\Omega)}^{2}+|\operatorname{rot} v|_{L^{2}(\Omega)}^{2}-|\nabla v|_{L^{2}(\Omega)}^{2}= & \sum_{\ell=1}^{L} \int_{\Gamma_{\ell}}\left(\operatorname{div} \nu\left|v_{\mathrm{n}}\right|^{2}+\left((\nabla \nu) v_{\mathrm{t}}\right) \cdot v_{\mathrm{t}}\right) \\
& \begin{cases}\leq 0, \text { if } \Omega \text { is piecewise } \mathrm{C}^{2} \text {-concave, } \\
=0 & \text {, if } \Omega \text { is a polyhedron, } \\
\geq 0 & \text {, if } \Omega \text { is piecewise } \mathrm{C}^{2} \text {-convex. }\end{cases}
\end{aligned}
$$

two Maxwell inequalities

$\Omega \subset \mathbb{R}^{3}$ bounded, weak Lipschitz (even weaker possible)
$\Rightarrow \quad \stackrel{\circ}{\mathrm{R}}(\Omega) \cap \operatorname{rotR}(\Omega) \hookrightarrow \mathrm{L}^{2}(\Omega) \quad \Leftrightarrow \quad \mathrm{R}(\Omega) \cap \operatorname{rot} \stackrel{\circ}{\mathrm{R}}(\Omega) \hookrightarrow \mathrm{L}^{2}(\Omega)$
\Rightarrow Maxwell estimates:

$$
\begin{array}{lll}
\exists \AA_{\mathrm{m}}>0 & \forall E \in \stackrel{\circ}{\mathrm{R}}(\Omega) \cap \operatorname{rot} \mathrm{R}(\Omega) & |E|_{\mathrm{L}^{2}(\Omega)} \leq \AA_{\mathrm{m}}|\operatorname{rot} E|_{\mathrm{L}^{2}(\Omega)} \\
\exists c_{\mathrm{m}}>0 & \forall H \in \mathrm{R}(\Omega) \cap \operatorname{rot} \stackrel{\circ}{R}(\Omega) & |H|_{L^{2}(\Omega)} \leq c_{m}|\operatorname{rot} H|_{\mathrm{L}^{2}(\Omega)}
\end{array}
$$

note: best constants

$$
\frac{1}{c_{\mathrm{m}}}=\underset{\substack{ \\0 \neq E \in \AA(\Omega) \cap \operatorname{rotR}(\Omega)}}{\inf } \frac{|\operatorname{rot} E|_{L^{2}(\Omega)}}{|E|_{L^{2}(\Omega)}}, \quad \frac{1}{c_{\mathrm{m}}}=\inf _{0 \neq H \in \mathrm{R}(\Omega) \cap \operatorname{rot} \AA(\Omega)} \frac{|\operatorname{rot} H|_{L^{2}(\Omega)}}{|H|_{L^{2}(\Omega)}}
$$

Theorem

$$
\begin{array}{ll}
\text { (i) } \quad \grave{c}_{\mathrm{m}}=c_{\mathrm{m}} & \text { (ii) } \Omega \text { convex } \Rightarrow c_{\mathrm{m}} \leq c_{p}
\end{array}
$$

Poincaré estimate: $\quad \exists c_{\mathrm{p}}>0 \quad \forall u \in \mathrm{H}^{1}(\Omega) \cap \mathbb{R}^{\perp} \quad|u|_{\mathrm{L}^{2}(\Omega)} \leq c_{\mathrm{p}}|\nabla u|_{\mathrm{L}^{2}(\Omega)}$
best constant: $\quad \frac{1}{c_{P}}=\inf _{0 \neq u \in \mathrm{H}^{1}(\Omega) \cap \mathbb{R}^{\perp}} \frac{|\nabla u|_{L^{2}(\Omega)}}{|u|_{L^{2}(\Omega)}}$

PROOF OF MAXWELL INEQUALITIES

step one: two lin., cl., dens. def. op. and their reduced op.

$$
\begin{aligned}
& A: D(A) \subset X \rightarrow Y, \quad \mathcal{A}: D(\mathcal{A}):=D(A) \cap R\left(A^{*}\right) \subset R\left(A^{*}\right) \rightarrow R(A), \\
& A^{*}: D\left(A^{*}\right) \subset Y \rightarrow X, \quad \mathcal{A}^{*}: D\left(\mathcal{A}^{*}\right):=D\left(A^{*}\right) \cap R(A) \subset R(A) \rightarrow R\left(A^{*}\right)
\end{aligned}
$$

crucial assumption: $D(\mathcal{A}) \hookrightarrow X\left(\Leftrightarrow D\left(\mathcal{A}^{*}\right) \hookrightarrow Y\right)$
\Downarrow
gen. Poincaré estimates:

$$
\begin{array}{rll}
\exists c_{A}>0 & \forall x \in D(\mathcal{A}) & |x| \leq c_{A}|A x| \\
\exists c_{A^{*}}>0 & \forall y \in D\left(\mathcal{A}^{*}\right) & |y| \leq c_{A^{*}}\left|A^{*} y\right|
\end{array}
$$

note: best constants

$$
\frac{1}{c_{A}}=\inf _{0 \neq x \in D(\mathcal{A})} \frac{|A x|}{|x|}, \quad \frac{1}{c_{A^{*}}}=\inf _{0 \neq y \in D\left(\mathcal{A}^{*}\right)} \frac{\left|A^{*} y\right|}{|y|}
$$

Theorem
$c_{A}=c_{A^{*}}$

PROOF OF MAXWELL INEQUALITIES

step two: two lin., cl., den. def. op. and their reduced op.

$$
\begin{aligned}
A: D(A) & \subset X \rightarrow Y, & \mathcal{A}: D(\mathcal{A}) & :=D(A) \cap R\left(A^{*}\right) \\
A^{*}: D\left(A^{*}\right) & \subset Y \rightarrow X\left(A^{*}\right) \rightarrow R(A), & \mathcal{A}^{*}: D\left(\mathcal{A}^{*}\right): & =D\left(A^{*}\right) \cap R(A)
\end{aligned} \subset R(A) \rightarrow R\left(A^{*}\right), ~ l
$$

choose

$$
\begin{aligned}
& \operatorname{rot}=\stackrel{\circ}{\operatorname{rot}}^{*}: R(\Omega) \subset L^{2}(\Omega) \rightarrow L^{2}(\Omega), \quad \operatorname{rot}=\stackrel{\circ}{r o t}^{*}: R(\Omega) \cap \operatorname{rot} \stackrel{\circ}{R}(\Omega) \subset \operatorname{rot} \stackrel{\circ}{R}(\Omega) \rightarrow \operatorname{rot} R(\Omega)
\end{aligned}
$$

crucial assumption: $\quad \stackrel{\circ}{R}(\Omega) \cap \operatorname{rot} R(\Omega) \hookrightarrow L^{2}(\Omega)\left(\Leftrightarrow R(\Omega) \cap \operatorname{rot} \stackrel{\circ}{R}(\Omega) \hookrightarrow L^{2}(\Omega)\right)$ \Downarrow
gen. Poincaré estimates (Maxwell estimates):

$$
\begin{array}{lll}
\exists \stackrel{\circ}{c}_{\mathrm{m}}>0 & \forall E \in \stackrel{\circ}{\mathrm{R}}(\Omega) \cap \operatorname{rot} \mathrm{R}(\Omega) & |E|_{\mathrm{L}^{2}(\Omega)} \leq \stackrel{\circ}{c}_{c_{\mathrm{m}}}|\operatorname{rot} E|_{\mathrm{L}^{2}(\Omega)} \\
\exists c_{\mathrm{m}}>0 & \forall H \in \mathrm{R}(\Omega) \cap \operatorname{rot} \stackrel{\circ}{\mathrm{R}}(\Omega) & |H|_{\mathrm{L}^{2}(\Omega)} \leq c_{\mathrm{m}}|\operatorname{rot} H|_{\mathrm{L}^{2}(\Omega)}
\end{array}
$$

Theorem
$\stackrel{\circ}{c}_{\mathrm{c}}^{\mathrm{m}}=\mathrm{c}_{\mathrm{m}}$

PROOF OF MAXWELL INEQUALITIES

step three:
Proposition (integration by parts (Grisvard's book and older...))
Let $\Omega \subset \mathbb{R}^{3}$ be piecewise C^{2}. Then for all $E \in \stackrel{\circ}{\mathrm{C}}^{\infty}(\bar{\Omega})$

$$
\begin{aligned}
& |\operatorname{div} E|_{L^{2}(\Omega)}^{2}+|\operatorname{rot} E|_{\mathrm{L}^{2}(\Omega)}^{2}-|\nabla E|_{\mathrm{L}^{2}(\Omega)}^{2} \\
= & \sum_{\ell=1}^{L} \int_{\Gamma_{\ell}} \underbrace{\left(\operatorname{div} \nu\left|E_{\mathrm{n}}\right|^{2}+\left((\nabla \nu) E_{\mathrm{t}}\right) \cdot E_{\mathrm{t}}\right)}_{\substack{\text { curvature, sign! } \\
\ldots \geq 0, \text { if } \Omega \text { convex. }}}+\sum_{\ell=1}^{L} \int_{\Gamma_{\ell}} \underbrace{\left(E_{\mathrm{n}} \operatorname{div}_{\Gamma} E_{\mathrm{t}}-E_{\mathrm{t}} \cdot \nabla_{\Gamma} E_{\mathrm{n}}\right)}_{\text {boundary conditions, no sign! }} .
\end{aligned}
$$

approx. convex Ω from inside by convex and smooth $\left(\Omega_{k}\right)_{k} \quad \Rightarrow$
Corollary (Gaffney's inequality)
Let $\Omega \subset \mathbb{R}^{3}$ be convex and $E \in \stackrel{\circ}{\mathrm{R}}(\Omega) \cap \mathrm{D}(\Omega)$ or $E \in \mathrm{R}(\Omega) \cap \stackrel{\circ}{\mathrm{D}}(\Omega)$.
Then $E \in \mathrm{H}^{1}(\Omega)$ and

$$
|\operatorname{rot} E|_{\mathrm{L}^{2}(\Omega)}^{2}+|\operatorname{div} E|_{\mathrm{L}^{2}(\Omega)}^{2}-|\nabla E|_{\mathrm{L}^{2}(\Omega)}^{2} \geq 0
$$

PROOF OF MAXWELL INEQUALITIES

step four:

$$
\text { (Poincaré) } \quad \exists c_{\mathrm{p}}>0 \quad \forall u \in \mathrm{H}^{1}(\Omega) \cap \mathbb{R}^{\perp} \quad|u|_{\mathrm{L}^{2}(\Omega)} \leq c_{\mathrm{p}}|\nabla u|_{\mathrm{L}^{2}(\Omega)}
$$

Let Ω be convex and $E \in R(\Omega) \cap \stackrel{\circ}{\mathrm{D}}_{0}(\Omega)$. Note $\stackrel{\circ}{\mathrm{D}}_{0}(\Omega)=\operatorname{rot} \stackrel{\circ}{\mathrm{R}}(\Omega)$.
Cor. (Gaffney) $\Rightarrow E \in \mathrm{H}^{1}(\Omega)$ and $E=\operatorname{rot} H$ with $H \in \stackrel{\circ}{\mathrm{R}}(\Omega)$.

$$
\Rightarrow \quad E \in \mathrm{H}^{1}(\Omega) \cap\left(\mathbb{R}^{3}\right)^{\perp} \cap \stackrel{\circ}{\mathrm{D}}_{0}(\Omega) \text {, since }\langle E, a\rangle_{\mathrm{L}^{2}(\Omega)}=\langle\operatorname{rot} H, a\rangle_{\mathrm{L}^{2}(\Omega)}=0 \text { for } a \in \mathbb{R}^{3}
$$

\Downarrow

$$
|E|_{\mathrm{L}^{2}(\Omega)} \leq c_{\mathrm{p}}|\nabla E|_{\mathrm{L}^{2}(\Omega)} \leq c_{\mathrm{p}}|\operatorname{rot} E|_{\mathrm{L}^{2}(\Omega)}
$$

\Downarrow

$$
c_{m} \leq c_{p}
$$

Theorem
Ω convex $\Rightarrow \quad \stackrel{\circ}{c}^{p} \leq \stackrel{\circ}{c}_{\mathrm{c}}=c_{\mathrm{m}} \leq c_{p}$
Here:
(Poincaré/Friedrichs) $\quad \exists \stackrel{\circ}{c}_{p}>0 \quad \forall u \in \dot{\mathrm{H}}^{1}(\Omega) \quad|u|_{L^{2}(\Omega)} \leq{\stackrel{\circ}{{ }^{\circ}}}^{p}|\nabla u|_{L^{2}(\Omega)}$

MATRICES

Let $A \in \mathbb{R}^{N \times N}$.
(pointwise orthogonality) $\quad \Rightarrow$

$$
\begin{aligned}
& |A|^{2}=|\operatorname{dev} A|^{2}+\frac{1}{N}|\operatorname{tr} A|^{2}, \quad|A|^{2}=|\operatorname{sym} A|^{2}+|\operatorname{skw} A|^{2}, \quad|\operatorname{sym} A|^{2}=|\operatorname{dev} \operatorname{sym} A|^{2}+\frac{1}{N}|\operatorname{tr} A|^{2} \\
& \Rightarrow \quad|\operatorname{dev} A|, N^{-1 / 2}|\operatorname{tr} A|,|\operatorname{sym} A|,|\operatorname{skw} A| \leq|A|
\end{aligned}
$$

$\Omega \subset \mathbb{R}^{N}$ and $A:=\nabla v:=J_{v}^{\top}$ for $v \in \mathrm{H}^{1}(\Omega) \quad \Rightarrow \quad$ (pointwise)

$$
\begin{align*}
|\operatorname{skw} \nabla v|^{2} & =\frac{1}{2}|\operatorname{rot} v|^{2}, \quad \operatorname{tr} \nabla v=\operatorname{div} v, \\
|\nabla v|^{2} & =|\operatorname{dev} \operatorname{sym} \nabla v|^{2}+\frac{1}{N}|\operatorname{div} v|^{2}+\frac{1}{2}|\operatorname{rot} v|^{2} \tag{1}
\end{align*}
$$

Moreover

$$
|\nabla v|^{2}=|\operatorname{rot} v|^{2}+\left\langle\nabla v,(\nabla v)^{\top}\right\rangle
$$

since

$$
\text { 2| skw }\left.\nabla v\right|^{2}=\frac{1}{2}\left|\nabla v-(\nabla v)^{\top}\right|^{2}=|\nabla v|^{2}-\left\langle\nabla v,(\nabla v)^{\top}\right\rangle \text {. }
$$

KORN'S FIRST INEQUALITY: STANDARD BOUNDARY CONDITIONS

Lemma (Korn's first inequality: ${ }^{\circ}{ }^{1}$-version)
Let Ω be an open subset of \mathbb{R}^{N} with $2 \leq N \in \mathbb{N}$. Then for all $v \in \dot{H}^{1}(\Omega)$

$$
|\nabla v|_{\mathrm{L}^{2}(\Omega)}^{2}=2|\operatorname{dev} \operatorname{sym} \nabla v|_{\mathrm{L}^{2}(\Omega)}^{2}+\frac{2-N}{N}|\operatorname{div} v|_{\mathrm{L}^{2}(\Omega)}^{2} \leq 2|\operatorname{dev} \operatorname{sym} \nabla v|_{\mathrm{L}^{2}(\Omega)}^{2}
$$

and equality holds if and only if div $v=0$ or $N=2$.

Proof.

note: $-\Delta=$ rot * rot $-\nabla$ div (vector Laplacian)

$$
\begin{equation*}
\Rightarrow \quad \forall v \in \stackrel{\circ}{C}^{\infty}(\Omega) \quad|\nabla v|_{L^{2}(\Omega)}^{2}=|\operatorname{rot} v|_{L^{2}(\Omega)}^{2}+|\operatorname{div} v|_{L^{2}(\Omega)}^{2} \quad \text { (Gaffney's equality) } \tag{2}
\end{equation*}
$$

(2) extends to all $v \in \stackrel{\circ}{\mathrm{H}}^{1}(\Omega)$ by continuity. Then

$$
|\nabla v|_{L^{2}(\Omega)}^{2}=|\operatorname{dev} \operatorname{sym} \nabla v|_{L^{2}(\Omega)}^{2}+\frac{1}{2}|\nabla v|_{L^{2}(\Omega)}^{2}+\frac{2-N}{2 N}|\operatorname{div} v|_{L^{2}(\Omega)}^{2}
$$

follows by (1), i.e., $|\nabla v|^{2}=|\operatorname{dev} \operatorname{sym} \nabla v|^{2}+\frac{1}{N}|\operatorname{div} v|^{2}+\frac{1}{2}|\operatorname{rot} v|^{2}$, and (2).

Korn's first inequality: TANGENTIAL/NORMAL BOUNDARY CONDITIONS

main result:
Theorem (Korn's first inequality: tangential/normal version)
Let $\Omega \subset \mathbb{R}^{N}$ be piecewise C^{2}-concave and $v \in \dot{\mathrm{H}}_{\mathrm{t}, \mathrm{n}}^{1}(\Omega)$. Then Korn's first inequality

$$
|\nabla v|_{L^{2}(\Omega)} \leq \sqrt{2}|\operatorname{dev} \operatorname{sym} \nabla v|_{L^{2}(\Omega)}
$$

holds. If Ω is a polyhedron, even

$$
|\nabla v|_{\mathrm{L}^{2}(\Omega)}^{2}=2|\operatorname{dev} \operatorname{sym} \nabla v|_{\mathrm{L}^{2}(\Omega)}^{2}+\frac{2-N}{N}|\operatorname{div} v|_{\mathrm{L}^{2}(\Omega)}^{2} \leq 2|\operatorname{dev} \operatorname{sym} \nabla v|_{\mathrm{L}^{2}(\Omega)}^{2}
$$

is true and equality holds if and only if div $v=0$ or $N=2$.

KORN'S FIRST INEQUALITY: TANGENTIAL/NORMAL BOUNDARY CONDITIONS

 tools:Proposition (integration by parts (Grisvard's book and older...))
Let $\Omega \subset \mathbb{R}^{N}$ be piecewise C^{2}. Then

$$
\begin{aligned}
|\operatorname{div} v|_{L^{2}(\Omega)}^{2}+|\operatorname{rot} v|_{L^{2}(\Omega)}^{2}-|\nabla v|_{L^{2}(\Omega)}^{2}= & \sum_{\ell=1}^{L} \int_{\Gamma_{\ell}} \underbrace{\left(\operatorname{div} \nu\left|v_{\mathrm{n}}\right|^{2}+\left((\nabla \nu) v_{\mathrm{t}}\right) \cdot v_{\mathrm{t}}\right)}_{\text {curvature, sign! }}, \\
& +\sum_{\ell=1}^{L} \int_{\Gamma_{\ell}} \underbrace{\left(v_{\mathrm{n}} \operatorname{div}_{\Gamma} v_{\mathrm{t}}-v_{\mathrm{t}} \cdot \nabla_{\Gamma} v_{\mathrm{n}}\right),}_{\text {boundary conditions, no sign! }} \\
|\operatorname{div} v|_{\mathrm{L}^{2}(\Omega)}^{2}+|\operatorname{rot} v|_{\mathrm{L}^{2}(\Omega)}^{2}-|\nabla v|_{\mathrm{L}^{2}(\Omega)}^{2}= & \sum_{\ell=1}^{L} \int_{\Gamma_{\ell}}\left(\operatorname{div} \nu\left|v_{\mathrm{n}}\right|^{2}+\left((\nabla \nu) v_{\mathrm{t}}\right) \cdot v_{\mathrm{t}}\right) .
\end{aligned}
$$

holds for all $v \in \stackrel{\circ}{\mathrm{C}}^{\infty}(\bar{\Omega})$ resp. $v \in \stackrel{\circ}{\mathrm{C}}, \mathrm{n}_{\infty}^{(\Omega)}$.
Corollary (Gaffney's inequalities)
Let $\Omega \subset \mathbb{R}^{N}$ be piecewise C^{2} and $v \in \stackrel{\circ}{\mathrm{H}}_{\mathrm{t}, \mathrm{n}}^{1}(\Omega)$. Then

$$
|\operatorname{rot} v|_{L^{2}(\Omega)}^{2}+|\operatorname{div} v|_{L^{2}(\Omega)}^{2}-|\nabla v|_{L^{2}(\Omega)}^{2} \begin{cases}\leq 0 & \text {, if } \Omega \text { is piecewise } \mathrm{C}^{2} \text {-concave, } \\ =0 & \text {, if } \Omega \text { is a polyhedron, } \\ \geq 0 & \text {, if } \Omega \text { is piecewise } \mathrm{C}^{2} \text {-convex. }\end{cases}
$$

Korn's first inequality: TANGENTIAL/NORMAL BOUNDARY CONDITIONS

Proof.
(1), i.e., $|\nabla v|^{2}=|\operatorname{dev} \operatorname{sym} \nabla v|^{2}+\frac{1}{N}|\operatorname{div} v|^{2}+\frac{1}{2}|\operatorname{rot} v|^{2}$, and the corollary $\quad \Rightarrow$

$$
|\nabla v|_{L^{2}(\Omega)}^{2} \leq|\operatorname{dev} \operatorname{sym} \nabla v|_{L^{2}(\Omega)}^{2}+\frac{1}{2}|\nabla v|_{L^{2}(\Omega)}^{2}+\frac{2-N}{2 N}|\operatorname{div} v|_{L^{2}(\Omega)}^{2}
$$

\Rightarrow first estimate
Ω polyhedron \Rightarrow equality holds

REFERENCES

- Pauly, D.: Zapiski POMI, (2014)

On Constants in Maxwell Inequalities for Bounded and Convex Domains

- Pauly, D.: Discrete Contin. Dyn. Syst. Ser. S, (2015) On Maxwell's and Poincaré's Constants
- Pauly, D.: Math. Methods Appl. Sci., (2015)

On the Maxwell Constants in 3D

- Bauer, S. and Pauly, D.: submitted, (2015)

On Korn's First Inequality for Tangential or Normal Boundary Conditions with Explicit Constants

- Bauer, S. and Pauly, D.: submitted, (2015)

On Korn's First Inequality for Tangential or Normal Boundary Conditions

- Desvillettes, L. and Villani, C.: ESAIM Control Optim. Calc. Var., (2002) On a variant of Korn's inequality arising in statistical mechanics. A tribute to J.L. Lions.
- Desvillettes, L. and Villani, C.: Invent. Math., (2005) On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation

CITATIONS

- Desvillettes, L. and Villani, C.: ESAIM Control Optim. Calc. Var., (2002) On a variant of Korn's inequality arising in statistical mechanics. A tribute to J.L. Lions.
- page 607
- page 608
- page 609
- Proposition 5
- (end of) Theorem 3 (continued)
- page 609 (closed graph theorem)
- Desvillettes, L. and Villani, C.: Invent. Math., (2005) On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation
- page 306

How one cannot apply the closed graph theorem!

generally: compact embedding or regularity + closed graph theorem

$$
\Rightarrow \quad \text { Poincaré type estimate }
$$

(hard analysis to do!)
surprisingly: \exists people closed graph / open mapping / bounded inverse theorem $\Rightarrow \quad$ Poincaré type estimate
(example on next slide)

How one cannot apply the closed graph theorem!

4. Our primary goal was to obtain fully explicit lower bounds for $K(\Omega)$ in terms of simple geometrical information about Ω; to achieve this completely with our method, we would have to give quantitative estimates on C_{H}. Unfortunately, we have been unable to find explicit estimates about C_{H} in the literature, although it seems unlikely that nobody has been interested in this problem. Of course, when $N=3$ and Ω is simply connected, estimate (10) is equivalent to

$$
\begin{equation*}
\|\nabla u\|_{L^{2}(\Omega)}^{2} \leq C_{H}(\Omega)\left(\|\nabla \cdot u\|_{L^{2}(\Omega)}^{2}+\|\nabla \wedge u\|_{L^{2}(\Omega)}^{2}\right), \tag{13}
\end{equation*}
$$

up to possible replacement of C_{H} by $C_{H}+1$. This is an estimate which is well-known to many people, but for which it seems very difficult to find an accurate reference. Inequality (10) can be seen as a consequence of the closed graph theorem; for instance, in the case of a simply connected domain, one just needs to note that (i) $\left\|\nabla^{\mathrm{a}} u\right\|_{L^{2}}^{2}+\|\nabla \cdot u\|_{L^{2}}^{2}$ is bounded by $\|\nabla u\|_{L^{2}}^{2}$, (ii) the identities $\nabla \cdot u=0, \nabla^{\mathrm{a}} u=0, u \cdot n=0$ (on the boundary), together imply $u=0$; so in fact the norms appearing on the left and on the right-hand side of (10) have to be equivalent. The proof of point (ii) is as follows: from Poincare's lemma in a simply connected domain, there exists a real-valued function ψ such that $\nabla \psi=u$; then ψ is a harmonic function with homogeneous Neumann boundary condition, so it has to be a constant, and $u=0$.

Of course this argument gives no insight on how to estimate the constants. As pointed out to us independently by Druet and by Serre, one can choose $C_{H}(\Omega)=1$ if Ω is convex, but the general case seems to be much harder. Anyway this is a separate issue which has nothing to do with axisymmetry; all the relevant information about axisymmetry lies in our estimates on $G(\Omega)^{-1}$.

- $C_{H}=C_{H}(\Omega)$ is a constant related to the homology of Ω and the Hodge decomposition, defined by the inequality

$$
\begin{equation*}
\left\|\nabla^{\text {sym }} v\right\|_{L^{2}(\Omega) / V_{0}(\Omega)}^{2} \leq C_{H}\left(\|\nabla \cdot v\|_{L^{2}(\Omega)}^{2}+\left\|\nabla^{\mathrm{a}} v\right\|_{L^{2}(\Omega)}^{2}\right), \tag{10}
\end{equation*}
$$

or (almost) equivalently by inequality (13) below. Here $\nabla \cdot v$ stands for the divergence of the vector field $v, \nabla \cdot v=\sum_{i} \partial v_{i} / \partial x_{i}$, and $V_{0}(\Omega)$ is the space of all vector fields $v_{0} \in H^{1}\left(\Omega ; \mathbb{R}^{N}\right)$ such that

$$
\nabla \cdot v_{0}=0, \quad \nabla^{\mathrm{a}} v_{0}=0
$$

We recall that V_{0} is a finite-dimensional vector space whose dimension depends only on the topology of Ω;

