FA-Toolbox: Part 2

Solution Theory and A Posteriori Error Estimates for Maxwell Type Problems

Dirk Pauly

Fakultät für Mathematik

UNIVERSITÄT
 $D_{E} U_{S} S_{S E} S_{N} W_{N}$ R

Open-Minded ;-)
ICIAM 2019
IMS: Modeling, Simulation and Optimization in Electrical Engineering Organizers: Stefan Kurz, Maria Salgado Rodriguez, Nella Rotundo Valencia, July 16, 2019

classical de Rham complex in 3D (∇-rot-div-complex)

$\Omega \subset \mathbb{R}^{3}$ bounded weak Lipschitz domain, $\partial \Omega=\Gamma=\overline{\Gamma_{t} \dot{\cup} \Gamma_{n}}$
(electro-magnetics, Maxwell's equations)

$$
\{0\} \underset{\pi_{\{0\}}}{\stackrel{\iota_{\{0\}}}{\rightleftarrows}} \mathrm{L}^{2} \underset{-\operatorname{div}}{\stackrel{\circ}{\nabla}} \mathrm{L}^{2} \underset{\operatorname{rot}}{\stackrel{\text { rot }}{\rightleftarrows}} \mathrm{L}^{2} \underset{-\nabla}{\stackrel{\operatorname{div}}{\rightleftarrows}} \mathrm{L}^{2} \underset{\iota_{\mathbb{R}}}{\stackrel{\pi_{\mathbb{R}}}{\rightleftarrows}} \mathbb{R}
$$

mixed boundary conditions and inhomogeneous and anisotropic media

$$
\{0\} \text { or } \mathbb{R} \underset{\pi}{\stackrel{\iota}{\rightleftarrows}} \mathrm{L}^{2} \underset{-\operatorname{div}_{\Gamma_{n}} \varepsilon}{\stackrel{\nabla_{\Gamma_{t}}}{\rightleftarrows}} \quad \mathrm{~L}_{\varepsilon}^{2} \underset{\varepsilon^{-1}{ }^{2} \operatorname{rot}_{\Gamma_{n}}}{\stackrel{-1}{\operatorname{rot}_{\Gamma_{t}}}} \mathrm{~L}_{\mu}^{2} \underset{-\nabla_{\Gamma_{n}}}{\stackrel{\operatorname{div}_{\Gamma_{t}}}{\rightleftarrows}} \mu \mathrm{~L}^{2} \underset{\iota}{\stackrel{\pi}{\rightleftarrows}} \quad \mathbb{R} \text { or }\{0\}
$$

for this talk: $\varepsilon=\mu=1$ (= id) and no mixed boundary conditions for all appearing complexes

de Rham complex in ND or on Riemannian manifolds (d-complex)

$\Omega \subset \mathbb{R}^{N}$ bd w. Lip. dom. or Ω Riemannian manifold with cpt cl . and Lip. boundary Γ (generalized Maxwell equations the mother of all complexes)

elasticity complex in 3D (sym ∇-Rot Rot $_{s}^{\top}$-Divs-complex)

$\Omega \subset \mathbb{R}^{3}$ bounded strong Lipschitz domain

$$
\{0\} \underset{\pi_{\{0\}}}{\stackrel{\iota_{\{0\}}}{\rightleftarrows}} L^{2} \underset{- \text { Div }_{\mathbb{S}}}{\stackrel{\operatorname{sym}^{\circ} \nabla}{\rightleftarrows}} \mathrm{L}_{\mathbb{S}}^{2} \underset{\operatorname{Rot}^{\operatorname{Rot} \mathrm{Rot}_{\mathbb{S}}^{\top}}}{\stackrel{\operatorname{Rot}^{\circ} \operatorname{Rot}_{\mathbb{S}}^{\top}}{\rightleftarrows}} \mathrm{L}_{\mathbb{S}}^{2} \underset{-\operatorname{sym} \nabla}{\stackrel{\operatorname{Div}_{\mathbb{S}}}{\rightleftarrows}} \mathrm{L}^{2} \underset{\iota_{\mathrm{RM}}}{\stackrel{\pi_{\mathrm{RM}}}{\rightleftarrows}} \mathrm{RM}
$$

biharmonic / general relativity complex in 3D ($\nabla \nabla$-Rots-Div $\mathbb{T}_{\mathbb{T}}$-complex)

$\Omega \subset \mathbb{R}^{3}$ bounded strong Lipschitz domain

general complex

$$
\begin{array}{ll}
\mathrm{A}_{0}: D\left(\mathrm{~A}_{0}\right) \subset \mathrm{H}_{0} \rightarrow \mathrm{H}_{1}, & \mathrm{~A}_{1}: D\left(\mathrm{~A}_{1}\right) \subset \mathrm{H}_{1} \rightarrow \mathrm{H}_{2} \tag{Iddc}\\
\mathrm{~A}_{0}^{*}: D\left(\mathrm{~A}_{0}^{*}\right) \subset \mathrm{H}_{1} \rightarrow \mathrm{H}_{0}, & \mathrm{~A}_{1}^{*}: D\left(\mathrm{~A}_{1}^{*}\right) \subset \mathrm{H}_{2} \rightarrow \mathrm{H}_{1}
\end{array}
$$

general complex property $\mathrm{A}_{1} \mathrm{~A}_{0}=0$,
i.e., $\quad R\left(\mathrm{~A}_{0}\right) \subset N\left(\mathrm{~A}_{1}\right)$ and/or eq $R\left(\mathrm{~A}_{1}^{*}\right) \subset N\left(\mathrm{~A}_{0}^{*}\right)$
$\cdots \underset{\cdots}{\underset{\cdots}{\rightleftarrows}} \mathrm{H}_{0} \underset{A_{0}^{*}}{\stackrel{A_{0}}{\rightleftarrows}} \mathrm{H}_{1} \underset{A_{1}^{*}}{\stackrel{A_{1}}{\rightleftarrows}} \mathrm{H}_{2} \underset{\cdots}{\underset{\cdots}{\rightleftarrows}} \quad \cdots$

general observations

$$
A x=f
$$

general theory

- compact embeddings
- closed ranges
\Downarrow
- solution theory
- Friedrichs/Poincaré estimates and constants
- Helmholtz/Hodge/Weyl decompositions
- continuous and compact inverse operators
- variational formulations
- functional a posteriori error estimates
- generalized div-curl-lemma
- ...
idea: solve problem with general and simple linear functional analysis

general observations

$$
A x=f
$$

let's say $A: D(A) \subset H_{0} \rightarrow H_{1}$ linear and H_{0}, H_{1} Hilbert spaces
question: How to solve?

general observations

$$
A x=f
$$

$\mathrm{A}: D(\mathrm{~A}) \subset \mathrm{H}_{0} \rightarrow \mathrm{H}_{1}$ linear
solution theory in the sense of Hadamard

- existence $\quad \Leftrightarrow \quad f \in R(\mathrm{~A})$
- uniqueness $\Leftrightarrow A$ inj $\Leftrightarrow N(A)=\{0\} \quad \Leftrightarrow \quad A^{-1}$ exists
- cont dep on $f \quad \Leftrightarrow \quad \mathrm{~A}^{-1}$ cont
$\Rightarrow \quad x=\mathrm{A}^{-1} f \in D(\mathrm{~A})$ and cont estimate (Friedrichs/Poincaré type estimate)

$$
|x|_{\mathrm{H}_{0}}=\left|\mathrm{A}^{-1} f\right|_{\mathrm{H}_{0}} \leq c_{\mathrm{A}}|f|_{\mathrm{H}_{1}}=c_{\mathrm{A}}|\mathrm{~A} x|_{\mathrm{H}_{1}}
$$

$\Rightarrow \quad$ best constant $\quad c_{\mathrm{A}}=\left|\mathrm{A}^{-1}\right|_{R(\mathrm{~A}), \mathrm{H}_{0}} \quad\left|\mathrm{~A}^{-1}\right|_{R(\mathrm{~A}), D(\mathrm{~A})}=\left(c_{\mathrm{A}}^{2}+1\right)^{1 / 2}$

general observations

$\mathrm{A}: D(\mathrm{~A}) \subset \mathrm{H}_{0} \rightarrow \mathrm{H}_{1}$
$\mathrm{A}^{*}: D\left(\mathrm{~A}^{*}\right) \subset \mathrm{H}_{1} \rightarrow \mathrm{H}_{0}$ Hilbert space adjoint
Helmholtz/Hodge/Weyl decompositions (projection theorem)

$$
\begin{gathered}
\mathrm{H}_{1}=\overline{R(\mathrm{~A})} \oplus N\left(\mathrm{~A}^{*}\right) \quad \mathrm{H}_{0}=N(\mathrm{~A}) \oplus \overline{R\left(\mathrm{~A}^{*}\right)} \\
\mathrm{A} x=\mathrm{f}
\end{gathered}
$$

solution theory in the sense of Hadamard

- existence $\quad \Leftrightarrow \quad f \in R(\mathrm{~A})=N\left(\mathrm{~A}^{*}\right)^{\perp}$
- uniqueness $\Leftrightarrow A$ inj $\Leftrightarrow N(A)=\{0\} \Leftrightarrow A^{-1}$ exists
- cont dep on $f \quad \Leftrightarrow \mathrm{~A}^{-1}$ cont $\quad \Leftrightarrow R(\mathrm{~A}) \mathrm{cl} \quad$ (cl range theo)
fund range cond:

$$
R(\mathrm{~A})=\overline{R(\mathrm{~A})} \text { closed }
$$

(must hold \leadsto right setting!)
kernel cond:

$$
N(\mathrm{~A})=\{0\}
$$

$$
\text { (fails in gen } \left.\leadsto \text { proj onto } N(\mathrm{~A})^{\perp}=\overline{R\left(\mathrm{~A}^{*}\right)}\right)
$$

general observations

Helmholtz/Hodge/Weyl decompositions (projection theorem)

$$
\mathrm{H}_{1}=\overline{R(\mathrm{~A})} \oplus N\left(\mathrm{~A}^{*}\right) \quad \mathrm{H}_{0}=N(\mathrm{~A}) \oplus \overline{R\left(\mathrm{~A}^{*}\right)}
$$

remarkable observations

- time-dependent problems are simple in gen $\mathrm{A}: D(\mathrm{~A}) \subset \mathrm{H} \rightarrow \mathrm{H}, \quad \mathrm{A}=\partial_{t}+\mathrm{T} \quad$ (gen T skew-sa, or alt lsast $\operatorname{Re} \mathrm{T} \geq 0$)

$$
N(\mathrm{~A})=\{0\} \quad N\left(\mathrm{~A}^{*}\right)=\{0\} \quad R(\mathrm{~A})(\mathrm{cl})=N\left(\mathrm{~A}^{*}\right)^{\perp}=\mathrm{H}
$$

- time-harmonic problems are more complicated
in gen $\mathrm{A}: D(\mathrm{~A}) \subset \mathrm{H} \rightarrow \mathrm{H}, \quad \mathrm{A}=-\omega+\mathrm{T}$

$$
N(\mathrm{~A}), N\left(\mathrm{~A}^{*}\right)(\text { fin } \operatorname{dim}) \quad R(\mathrm{~A})(\mathrm{cl}, \text { fin co-dim })=N\left(\mathrm{~A}^{*}\right)^{\perp}
$$

(Fredholm alternative)

- stat problems are most complicated
in gen $A: D(A) \subset H_{0} \rightarrow H_{1}, \quad A=0+T$

$$
\operatorname{dim} N(\mathrm{~A})=\operatorname{dim} N\left(\mathrm{~A}^{*}\right)=\infty(\text { possibly }) \quad R(\mathrm{~A})(\mathrm{cl}, \text { infin co-dim })=N\left(\mathrm{~A}^{*}\right)^{\perp}
$$

1st fundamental observations

$\mathrm{A}: D(\mathrm{~A}) \subset \mathrm{H}_{0} \rightarrow \mathrm{H}_{1}$ Iddc, $\mathrm{A}^{*}: D\left(\mathrm{~A}^{*}\right) \subset \mathrm{H}_{1} \rightarrow \mathrm{H}_{0}$ Hilbert space adjoint ($\mathrm{A}, \mathrm{A}^{*}$) dual pair as $\left(\mathrm{A}^{*}\right)^{*}=\overline{\mathrm{A}}=\mathrm{A}$

A, A* may not be inj
Helmholtz/Hodge/Weyl decompositions (projection theorem)

$$
\mathrm{H}_{1}=N\left(\mathrm{~A}^{*}\right) \oplus \overline{R(\mathrm{~A})} \quad \mathrm{H}_{0}=N(\mathrm{~A}) \oplus \overline{R\left(\mathrm{~A}^{*}\right)}
$$

reduced operators restr to $N(\mathrm{~A})^{\perp}$ and $N\left(\mathrm{~A}^{*}\right)^{\perp}$

$$
\begin{aligned}
\mathcal{A}:=\left.\mathrm{A}\right|_{N(\mathrm{~A})^{\perp}}=\left.\mathrm{A}\right|_{\overline{R\left(\mathrm{~A}^{*}\right)}} \quad \mathcal{A}^{*}:=\left.\mathrm{A}^{*}\right|_{N\left(\mathrm{~A}^{*}\right)^{\perp}}=\left.\mathrm{A}^{*}\right|_{\overline{R(\mathrm{~A})}} \\
\mathcal{A}, \mathcal{A}^{*} \text { inj } \Rightarrow \quad \mathcal{A}^{-1},\left(\mathcal{A}^{*}\right)^{-1} \mathrm{ex}
\end{aligned}
$$

FA-ToolBox

1st fundamental observations

$\mathrm{A}: D(\mathrm{~A}) \subset \mathrm{H}_{0} \rightarrow \mathrm{H}_{1}, \quad \mathrm{~A}^{*}: D\left(\mathrm{~A}^{*}\right) \subset \mathrm{H}_{1} \rightarrow \mathrm{H}_{0}$ Iddc $\quad\left(\mathrm{A}, \mathrm{A}^{*}\right)$ dual pair

$$
\mathrm{H}_{1}=N\left(\mathrm{~A}^{*}\right) \oplus \overline{R(\mathrm{~A})} \quad \mathrm{H}_{0}=N(\mathrm{~A}) \oplus \overline{R\left(\mathrm{~A}^{*}\right)}
$$

more precisely

$$
\begin{aligned}
\mathcal{A}:=\left.\mathrm{A}\right|_{\overline{R\left(\mathrm{~A}^{*}\right)}}: D(\mathcal{A}) \subset \overline{R\left(\mathrm{~A}^{*}\right)} \rightarrow \overline{R(\mathrm{~A})}, \quad D(\mathcal{A}):=D(\mathrm{~A}) \cap N(\mathrm{~A})^{\perp}=D(\mathrm{~A}) \cap \overline{R\left(\mathrm{~A}^{*}\right)} \\
\mathcal{A}^{*}:=\left.\mathrm{A}^{*}\right|_{\overline{R(\mathrm{~A})}}: D\left(\mathcal{A}^{*}\right) \subset \overline{R(\mathrm{~A})} \rightarrow \overline{R\left(\mathrm{~A}^{*}\right)}, \quad D\left(\mathcal{A}^{*}\right):=D\left(\mathrm{~A}^{*}\right) \cap N\left(\mathrm{~A}^{*}\right)^{\perp}=D\left(\mathrm{~A}^{*}\right) \cap \overline{R(\mathrm{~A})}
\end{aligned}
$$

$\left(\mathcal{A}, \mathcal{A}^{*}\right)$ dual pair and $\mathcal{A}, \mathcal{A}^{*} \operatorname{inj} \Rightarrow$
inverse ops exist (and bij)

$$
\mathcal{A}^{-1}: R(\mathrm{~A}) \rightarrow D(\mathcal{A}) \quad\left(\mathcal{A}^{*}\right)^{-1}: R\left(\mathrm{~A}^{*}\right) \rightarrow D\left(\mathcal{A}^{*}\right)
$$

refined decompositions

$$
D(\mathrm{~A})=N(\mathrm{~A}) \oplus D(\mathcal{A}) \quad D\left(\mathrm{~A}^{*}\right)=N\left(\mathrm{~A}^{*}\right) \oplus D\left(\mathcal{A}^{*}\right)
$$

\Rightarrow

$$
R(\mathrm{~A})=R(\mathcal{A}) \quad R\left(\mathrm{~A}^{*}\right)=R\left(\mathcal{A}^{*}\right)
$$

1st fundamental observations

closed range theorem \& closed graph theorem \Rightarrow

Lemma (Friedrichs-Poincaré type est/cl range/cont inv)

The following assertions are equivalent:
(i) $\exists c_{\mathrm{A}} \in(0, \infty) \quad \forall x \in D(\mathcal{A}) \quad|x|_{\mathrm{H}_{0}} \leq c_{\mathrm{A}}|\mathrm{A} x|_{\mathrm{H}_{1}}$
(i*) $\exists c_{\mathrm{A}^{*}} \in(0, \infty) \quad \forall y \in D\left(\mathcal{A}^{*}\right) \quad|y|_{\mathrm{H}_{1}} \leq c_{\mathrm{A}^{*}}\left|\mathrm{~A}^{*} y\right|_{\mathrm{H}_{0}}$
(ii) $R(\mathrm{~A})=R(\mathcal{A})$ is closed in H_{1}.
(ii*) $R\left(\mathrm{~A}^{*}\right)=R\left(\mathcal{A}^{*}\right)$ is closed in H_{0}.
(iii) $\mathcal{A}^{-1}: R(\mathrm{~A}) \rightarrow D(\mathcal{A})$ is continuous and bijective.
(iii*) $\left(\mathcal{A}^{*}\right)^{-1}: R\left(\mathrm{~A}^{*}\right) \rightarrow D\left(\mathcal{A}^{*}\right)$ is continuous and bijective.
In case that one of the latter assertions is true, e.g., (ii), $R(\mathrm{~A})$ is closed, we have

$$
\begin{array}{rlrl}
\mathrm{H}_{0} & =N(\mathrm{~A}) \oplus R\left(\mathrm{~A}^{*}\right) & =N\left(\mathrm{~A}^{*}\right) \oplus R(\mathrm{~A}) \\
D(\mathrm{~A}) & =N(\mathrm{~A}) \oplus D(\mathcal{A}) & D\left(\mathrm{~A}^{*}\right) & =N\left(\mathrm{~A}^{*}\right) \oplus D\left(\mathcal{A}^{*}\right) \\
D(\mathcal{A}) & =D(\mathrm{~A}) \cap R\left(\mathrm{~A}^{*}\right) & D\left(\mathcal{A}^{*}\right) & =D\left(\mathrm{~A}^{*}\right) \cap R(\mathrm{~A})
\end{array}
$$

and

$$
\mathcal{A}: D(\mathcal{A}) \subset R\left(\mathrm{~A}^{*}\right) \rightarrow R(\mathrm{~A}), \quad \mathcal{A}^{*}: D\left(\mathcal{A}^{*}\right) \subset R(\mathrm{~A}) \rightarrow R\left(\mathrm{~A}^{*}\right)
$$

Note: trivial equivalence to inf-sup condition

1st fundamental observations
recall
(i) $\exists c_{\mathrm{A}} \in(0, \infty) \quad \forall x \in D(\mathcal{A}) \quad|x|_{\mathrm{H}_{0}} \leq c_{\mathrm{A}}|\mathrm{A} x|_{\mathrm{H}_{1}}$
(i*) $\exists c_{\mathrm{A}^{*}} \in(0, \infty) \quad \forall y \in D\left(\mathcal{A}^{*}\right) \quad|y|_{\mathrm{H}_{1}} \leq c_{\mathrm{A}^{*}}\left|\mathrm{~A}^{*} y\right|_{\mathrm{H}_{0}}$
'best' consts in (i) and (\mathbf{i}^{*}) equal norms of the inv ops and Rayleigh quotients

$$
\begin{aligned}
c_{\mathrm{A}} & =\left|\mathcal{A}^{-1}\right|_{R(\mathrm{~A}), R\left(\mathrm{~A}^{*}\right)} & c_{\mathrm{A}^{*}} & =\left|\left(\mathcal{A}^{*}\right)^{-1}\right|_{R\left(\mathrm{~A}^{*}\right), R(\mathrm{~A})} \\
\frac{1}{c_{\mathrm{A}}} & =\inf _{0 \neq x \in D(\mathcal{A})} \frac{|\mathrm{A} x|_{\mathrm{H}_{1}}}{|x|_{\mathrm{H}_{0}}} & \frac{1}{c_{\mathrm{A}^{*}}} & =\inf _{0 \neq y \in D\left(\mathcal{A}^{*}\right)} \frac{\left|\mathrm{A}^{*} y\right|_{\mathrm{H}_{0}}}{|y|_{\mathrm{H}_{1}}}
\end{aligned}
$$

Lemma (Friedrichs-Poincaré type const)

$$
c_{\mathrm{A}}=c_{\mathrm{A}^{*}}
$$

1st fundamental observations

Lemma (cpt emb/cpt inv)

The following assertions are equivalent:
(i) $D(\mathcal{A}) \hookrightarrow \mathrm{H}_{0}$ is compact.
(i*) $D\left(\mathcal{A}^{*}\right) \leftrightarrow \mathrm{H}_{1}$ is compact.
(ii) $\mathcal{A}^{-1}: R(\mathrm{~A}) \rightarrow R\left(\mathrm{~A}^{*}\right)$ is compact.
(ii*) $\left(\mathcal{A}^{*}\right)^{-1}: R\left(\mathrm{~A}^{*}\right) \rightarrow R(\mathrm{~A})$ is compact.

Lemma (Friedrichs-Poincaré type est/cl range/cont inv)

$\Downarrow \quad D(\mathcal{A}) \leftrightarrow \mathrm{H}_{0}$ compact
(i) $\exists c_{\mathrm{A}} \in(0, \infty) \quad \forall x \in D(\mathcal{A}) \quad|x|_{\mathrm{H}_{0}} \leq c_{\mathrm{A}}|\mathrm{A} x|_{\mathrm{H}_{1}}$
(i*) $\exists c_{\mathrm{A}^{*}} \in(0, \infty) \quad \forall y \in D\left(\mathcal{A}^{*}\right) \quad|y|_{\mathrm{H}_{1}} \leq c_{\mathrm{A}^{*}}\left|\mathrm{~A}^{*} y\right|_{\mathrm{H}_{0}}$
(ii) $R(\mathrm{~A})=R(\mathcal{A})$ is closed in H_{1}.
(ii*) $R\left(\mathrm{~A}^{*}\right)=R\left(\mathcal{A}^{*}\right)$ is closed in H_{0}.
(iii) $\mathcal{A}^{-1}: R(\mathrm{~A}) \rightarrow D(\mathcal{A})$ is continuous and bijective.
(iii*) $\left(\mathcal{A}^{*}\right)^{-1}: R\left(\mathrm{~A}^{*}\right) \rightarrow D\left(\mathcal{A}^{*}\right)$ is continuous and bijective.
(i)-(iii* $)$ equi \& the resp Helm deco hold \& $\left|\mathcal{A}^{-1}\right|=c_{\mathrm{A}}=c_{\mathrm{A}^{*}}=\left|\left(\mathcal{A}^{*}\right)^{-1}\right|$

2nd fundamental observations

So far no complex...
$\mathrm{A}_{0}: D\left(\mathrm{~A}_{0}\right) \subset \mathrm{H}_{0} \rightarrow \mathrm{H}_{1}, \quad \mathrm{~A}_{1}: D\left(\mathrm{~A}_{1}\right) \subset \mathrm{H}_{1} \rightarrow \mathrm{H}_{2}(\mathrm{lddc})$
$\mathrm{A}_{0}^{*}: D\left(\mathrm{~A}_{0}^{*}\right) \subset \mathrm{H}_{1} \rightarrow \mathrm{H}_{0}, \quad \mathrm{~A}_{1}^{*}: D\left(\mathrm{~A}_{1}^{*}\right) \subset \mathrm{H}_{2} \rightarrow \mathrm{H}_{1}$ (Iddc)
general complex $\left(\mathrm{A}_{1} \mathrm{~A}_{0}=0\right.$, i.e., $\quad R\left(\mathrm{~A}_{0}\right) \subset N\left(\mathrm{~A}_{1}\right)$ and $\left.R\left(\mathrm{~A}_{1}^{*}\right) \subset N\left(\mathrm{~A}_{0}^{*}\right)\right)$

$$
\cdots \quad \underset{\cdots}{\underset{\cdots}{\rightleftarrows}} H_{0} \underset{A_{0}^{*}}{\stackrel{A_{0}}{\rightleftarrows}} H_{1} \underset{A_{1}^{*}}{\stackrel{A_{1}}{\rightleftarrows}} H_{2} \underset{\cdots}{\underset{\cdots}{\rightleftarrows}} \quad \cdots
$$

recall Helmholtz deco

$$
\mathrm{H}_{1}=\overline{R\left(\mathrm{~A}_{0}\right)} \oplus N\left(\mathrm{~A}_{0}^{*}\right)
$$

$$
\begin{aligned}
& \cap \\
= & N\left(\mathrm{~A}_{1}\right) \oplus(\text { e.g. }) N\left(\mathrm{~A}_{1}\right)=\overline{R\left(\mathrm{~A}_{0}\right)} \oplus(\underbrace{N\left(\mathrm{~A}_{1}^{*}\right) \cap N\left(\mathrm{~A}_{0}^{*}\right)}_{=: K_{1}})
\end{aligned}
$$

$\Rightarrow \quad$ refined Helmholtz deco

$$
\mathrm{H}_{1}=\overline{R\left(\mathrm{~A}_{0}\right)} \oplus K_{1} \oplus \overline{R\left(\mathrm{~A}_{1}^{*}\right)}
$$

FA-ToolBox

2nd fundamental observations

recall

$$
\begin{array}{lll}
D\left(\mathrm{~A}_{1}\right)=D\left(\mathcal{A}_{1}\right) \cap \overline{R\left(\mathrm{~A}_{1}^{*}\right)} & R\left(\mathrm{~A}_{1}\right)=R\left(\mathcal{A}_{1}\right) & R\left(\mathrm{~A}_{1}^{*}\right)=R\left(\mathcal{A}_{1}^{*}\right) \\
D\left(\mathrm{~A}_{0}^{*}\right)=D\left(\mathcal{A}_{0}^{*}\right) \cap \overline{R\left(\mathrm{~A}_{0}\right)} & R\left(\mathrm{~A}_{0}^{*}\right)=R\left(\mathcal{A}_{0}^{*}\right) & R\left(\mathrm{~A}_{0}\right)=R\left(\mathcal{A}_{0}\right)
\end{array}
$$

cohomology group $K_{1}=N\left(\mathrm{~A}_{1}\right) \cap N\left(\mathrm{~A}_{0}^{*}\right)$

Lemma (Helmholtz deco I)

$$
\begin{array}{rlrl}
\mathrm{H}_{1} & =\overline{R\left(\mathrm{~A}_{0}\right)} \oplus N\left(\mathrm{~A}_{0}^{*}\right) & =\overline{R\left(\mathrm{~A}_{1}^{*}\right)} \oplus N\left(\mathrm{~A}_{1}\right) \\
D\left(\mathrm{~A}_{0}^{*}\right) & =D\left(\mathcal{A}_{0}^{*}\right) \oplus N\left(\mathrm{~A}_{0}^{*}\right) & D\left(\mathrm{~A}_{1}\right)=D\left(\mathcal{A}_{1}\right) \oplus N\left(\mathrm{~A}_{1}\right) \\
N\left(\mathrm{~A}_{1}\right) & =D\left(\mathcal{A}_{0}^{*}\right) \oplus K_{1} & N\left(\mathrm{~A}_{0}^{*}\right)=D\left(\mathcal{A}_{1}\right) \oplus K_{1} \\
D\left(\mathrm{~A}_{1}\right) & =\overline{R\left(\mathrm{~A}_{0}\right)} \oplus\left(D\left(\mathrm{~A}_{1}\right) \cap N\left(\mathrm{~A}_{0}^{*}\right)\right) & D\left(\mathrm{~A}_{0}^{*}\right)=\overline{R\left(\mathrm{~A}_{1}^{*}\right)} \oplus\left(D\left(\mathrm{~A}_{0}^{*}\right) \cap N\left(\mathrm{~A}_{1}\right)\right)
\end{array}
$$

Lemma (Helmholtz deco II)

$$
\begin{aligned}
\mathrm{H}_{1} & =\overline{R\left(\mathrm{~A}_{0}\right)} \oplus K_{1} \oplus \overline{R\left(\mathrm{~A}_{1}^{*}\right)} \\
D\left(\mathrm{~A}_{1}\right) & =\overline{R\left(\mathrm{~A}_{0}\right)} \oplus K_{1} \oplus D\left(\mathcal{A}_{1}\right) \\
D\left(\mathrm{~A}_{0}^{*}\right) & =D\left(\mathcal{A}_{0}^{*}\right) \oplus K_{1} \oplus \overline{R\left(\mathrm{~A}_{1}^{*}\right)} \\
D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) & =D\left(\mathcal{A}_{0}^{*}\right) \oplus K_{1} \oplus D\left(\mathcal{A}_{1}\right)
\end{aligned}
$$

FA-ToolBox

2nd fundamental observations

$K_{1}=N\left(\mathrm{~A}_{1}\right) \cap N\left(\mathrm{~A}_{0}^{*}\right) \quad D\left(\mathrm{~A}_{1}\right)=D\left(\mathcal{A}_{1}\right) \cap \overline{R\left(\mathrm{~A}_{1}^{*}\right)} \quad D\left(\mathrm{~A}_{0}^{*}\right)=D\left(\mathcal{A}_{0}^{*}\right) \cap \overline{R\left(\mathrm{~A}_{0}\right)}$

Lemma (cpt emb II)

The following assertions are equivalent:
(i) $D\left(\mathcal{A}_{0}\right) \hookrightarrow \mathrm{H}_{0}, \quad D\left(\mathcal{A}_{1}\right) \leftrightarrow \mathrm{H}_{1}, \quad$ and $\quad K_{1} \hookrightarrow \mathrm{H}_{1} \quad$ are compact.
(ii) $D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \leftrightarrow \mathrm{H}_{1} \quad$ is compact.

In this case $K_{1}<\infty$.

Theorem (fa-toolbox I)

$\Downarrow \quad D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \leftrightarrow \mathrm{H}_{1}$ compact
(i) all emb cpt, i.e., $D\left(\mathcal{A}_{0}\right) \hookrightarrow \mathrm{H}_{0}, D\left(\mathcal{A}_{1}\right) \hookrightarrow \mathrm{H}_{1}, D\left(\mathcal{A}_{0}^{*}\right) \hookrightarrow \mathrm{H}_{1}, D\left(\mathcal{A}_{1}^{*}\right) \hookrightarrow \mathrm{H}_{2} c p t$
(ii) cohomology group K_{1} finite dim
(iii) all ranges closed, i.e., $\quad R\left(\mathrm{~A}_{0}\right), \quad R\left(\mathrm{~A}_{0}^{*}\right), \quad R\left(\mathrm{~A}_{1}\right), \quad R\left(\mathrm{~A}_{1}^{*}\right) \quad \mathrm{cl}$
(iv) all Friedrichs-Poincaré type est hold
(v) all Hodge-Helmholtz-Weyl type deco I \& II hold with closed ranges

FA-ToolBox

2nd fundamental observations

complex $\quad \cdots \underset{\cdots}{\rightleftarrows} \mathrm{H}_{0} \underset{\mathrm{~A}_{0}^{*}}{\stackrel{A_{0}}{\rightleftarrows}} \mathrm{H}_{1} \underset{\mathrm{~A}_{1}^{*}}{\stackrel{A_{1}}{\rightleftarrows}} \mathrm{H}_{2} \underset{\cdots}{\underset{\sim}{\rightleftarrows}} \quad \cdots$

Theorem (fa-toolbox I (Friedrichs-Poincaré type est))
$\Downarrow \quad D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \hookrightarrow \mathrm{H}_{1}$ compact $\quad \Rightarrow \quad \exists \quad\left|\mathcal{A}_{i}^{-1}\right|=c_{\mathrm{A}_{i}}=c_{\mathrm{A}_{i}^{*}}=\left|\left(\mathcal{A}_{i}^{*}\right)^{-1}\right| \in(0, \infty)$
(i) $\forall x \in D\left(\mathcal{A}_{0}\right)$
(i*) $\forall y \in D\left(\mathcal{A}_{0}^{*}\right)$
(ii) $\forall y \in D\left(\mathcal{A}_{1}\right)$
(ii*) $\forall z \in D\left(\mathcal{A}_{1}^{*}\right)$
$|x|_{H_{0}} \leq c_{A_{0}}\left|A_{0} x\right|_{H_{1}}$
$|y|_{\mathrm{H}_{1}} \leq c_{\mathrm{A}_{0}}\left|\mathrm{~A}_{0}^{*} y\right|_{\mathrm{H}_{0}}$
$|y|_{\mathrm{H}_{1}} \leq c_{\mathrm{A}_{1}}\left|\mathrm{~A}_{1} y\right|_{\mathrm{H}_{2}}$
(iii) $\forall y \in D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right)$
$|z|_{\mathrm{H}_{2}} \leq c_{\mathrm{A}_{1}}\left|\mathrm{~A}_{1}^{*} z\right|_{\mathrm{H}_{1}}$
note $\pi_{K_{1}} y \in K_{1}$ and $\left(1-\pi_{K_{1}}\right) y \in K_{1}^{\perp}$

Remark

enough $R\left(\mathrm{~A}_{0}\right)$ and $R\left(\mathrm{~A}_{1}\right) \mathrm{cl}$

FA-ToolBox

2nd fundamental observations

complex $\quad \cdots \underset{\cdots}{\dddot{\cdots}} \mathrm{H}_{0} \underset{\mathrm{~A}_{0}^{*}}{\stackrel{A_{0}}{\rightleftarrows}} \mathrm{H}_{1} \underset{A_{1}^{*}}{\stackrel{A_{1}}{\rightleftarrows}} \mathrm{H}_{2} \underset{\cdots}{\dddot{\cdots}} \underset{ }{\rightleftarrows}$

Theorem (fa-toolbox I (Helmholtz deco))
$\Downarrow \quad D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \leftrightarrow \mathrm{H}_{1}$ compact

$$
\begin{array}{rlrl}
\mathrm{H}_{1} & =R\left(\mathrm{~A}_{0}\right) \oplus N\left(\mathrm{~A}_{0}^{*}\right) & \mathrm{H}_{1} & =R\left(\mathrm{~A}_{1}^{*}\right) \oplus N\left(\mathrm{~A}_{1}\right) \\
D\left(\mathrm{~A}_{0}^{*}\right)=D\left(\mathcal{A}_{0}^{*}\right) \oplus N\left(\mathrm{~A}_{0}^{*}\right) & D\left(\mathrm{~A}_{1}\right)=D\left(\mathcal{A}_{1}\right) \oplus N\left(\mathrm{~A}_{1}\right) \\
N\left(\mathrm{~A}_{1}\right)=D\left(\mathcal{A}_{0}^{*}\right) \oplus K_{1} & N\left(\mathrm{~A}_{0}^{*}\right)=D\left(\mathcal{A}_{1}\right) \oplus K_{1} \\
D\left(\mathrm{~A}_{1}\right) & =R\left(\mathrm{~A}_{0}\right) \oplus\left(D\left(\mathrm{~A}_{1}\right) \cap N\left(\mathrm{~A}_{0}^{*}\right)\right) & D\left(\mathrm{~A}_{0}^{*}\right)=R\left(\mathrm{~A}_{1}^{*}\right) \oplus\left(D\left(\mathrm{~A}_{0}^{*}\right) \cap N\left(\mathrm{~A}_{1}\right)\right) \\
\mathrm{H}_{1}=R\left(\mathrm{~A}_{0}\right) \oplus K_{1} \oplus R\left(\mathrm{~A}_{1}^{*}\right) \\
D\left(\mathrm{~A}_{1}\right)=R\left(\mathrm{~A}_{0}\right) \oplus K_{1} \oplus D\left(\mathcal{A}_{1}\right) \\
D\left(\mathrm{~A}_{0}^{*}\right)=D\left(\mathcal{A}_{0}^{*}\right) \oplus K_{1} \oplus R\left(\mathrm{~A}_{1}^{*}\right) \\
D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right)=D\left(\mathcal{A}_{0}^{*}\right) \oplus K_{1} \oplus D\left(\mathcal{A}_{1}\right)
\end{array}
$$

Remark

(stat) first order system - solution theory

complex	$\cdots \underset{A_{0}}{\ldots}$	$\mathrm{H}_{0} \underset{A_{0}^{*}}{\underset{A_{0}}{\rightleftarrows}} \mathrm{H}_{1} \underset{A_{1}^{*}}{\stackrel{A_{1}}{\rightleftarrows}} \mathrm{H}_{2} \underset{\ldots}{\ldots}$	\cdots
	$\mathrm{~A}_{1} x=f$		$\operatorname{dim} N\left(\mathrm{~A}_{1}\right)=\infty$

find $x \in D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right)$ such that the fos

$$
\begin{aligned}
& \mathrm{A}_{1} x=f \quad(\operatorname{root} E=F) \\
& \mathrm{A}_{0}^{*} x=g \quad \text { think of } \quad(-\operatorname{div} E=g) \\
& \pi_{K_{1}} x=k \quad\left(\pi_{\mathrm{D}} E=K\right) \\
& \text { kernel }=\text { cohomology group }=K_{1}=N\left(\mathrm{~A}_{1}\right) \cap N\left(\mathrm{~A}_{0}^{*}\right) \\
& \text { trivially necessary } \quad f \in R\left(\mathrm{~A}_{1}\right) \quad g \in R\left(\mathrm{~A}_{0}^{*}\right) \quad k \in K_{1} \\
& \text { apply fa-toolbox }
\end{aligned}
$$

(stat) first order system - solution theory
complex $\quad \cdots \quad \underset{\cdots}{\rightleftarrows} \quad \mathrm{H}_{0} \underset{A_{0}^{*}}{\stackrel{A_{0}}{\rightleftarrows}} \mathrm{H}_{1} \underset{A_{1}^{*}}{\stackrel{A_{1}}{\rightleftarrows}} \mathrm{H}_{2} \underset{\cdots}{\underset{\sim}{\rightleftarrows}} \quad \cdots$
find $x \in D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right)$ st fos
$\mathrm{A}_{1} x=f \quad \mathrm{~A}_{0}^{*} x=g \quad \pi_{K_{1} x}=k$

Theorem (fa-toolbox II (solution theory))

$\Downarrow \quad D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \leftrightarrow \mathrm{H}_{1}$ compact
fos is uniq sol $\Leftrightarrow \quad f \in R\left(\mathrm{~A}_{1}\right) \quad g \in R\left(\mathrm{~A}_{0}^{*}\right) \quad k \in K_{1}$

$$
\begin{aligned}
& x:=x_{f}+x_{g}+k \in D\left(\mathcal{A}_{1}\right) \oplus D\left(\mathcal{A}_{0}^{*}\right) \oplus K_{1}=D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \\
& x_{f}:=\mathcal{A}_{1}^{-1} f \in D\left(\mathcal{A}_{1}\right) \\
& x_{g}:=\left(\mathcal{A}_{0}^{*}\right)^{-1} g \in D\left(\mathcal{A}_{0}^{*}\right)
\end{aligned}
$$

dep cont on data $|x|_{\mathrm{H}_{1}} \leq\left|x_{f}\right|_{\mathrm{H}_{1}}+\left|x_{g}\right|_{\mathrm{H}_{1}}+|k|_{\mathrm{H}_{1}} \leq c_{\mathrm{A}_{1}}|f|_{\mathrm{H}_{2}}+c_{\mathrm{A}_{0}}|g|_{\mathrm{H}_{0}}+|k|_{\mathrm{H}_{1}}$ moreover

$$
\pi_{R\left(\mathrm{~A}_{1}^{*}\right)} x=x_{f} \quad \pi_{R\left(\mathrm{~A}_{0}\right)} x=x_{g} \quad \pi_{K_{1}} x=k \quad|x|_{\mathrm{H}_{1}}^{2}=\left|x_{f}\right|_{\mathrm{H}_{1}}^{2}+\left|x_{g}\right|_{\mathrm{H}_{1}}^{2}+|k|_{\mathrm{H}_{1}}^{2}
$$

Remark

enough $R\left(\mathrm{~A}_{0}\right)$ and $R\left(\mathrm{~A}_{1}\right) \mathrm{cl}$

(stat) first order system - variational formulations

$$
\begin{aligned}
x:= & x_{f}+x_{g}+k \in D\left(\mathcal{A}_{1}\right) \oplus D\left(\mathcal{A}_{0}^{*}\right) \oplus K_{1}=D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \\
& x_{f}:=\mathcal{A}_{1}^{-1} f \in D\left(\mathcal{A}_{1}\right)=D\left(\mathrm{~A}_{1}\right) \cap R\left(\mathrm{~A}_{1}^{*}\right)=D\left(\mathrm{~A}_{1}\right) \cap N\left(\mathrm{~A}_{0}^{*}\right) \cap K_{1}^{\perp} \\
x_{g}:= & \left(\mathcal{A}_{0}^{*}\right)^{-1} g \in D\left(\mathcal{A}_{0}^{*}\right)=D\left(\mathrm{~A}_{0}^{*}\right) \cap R\left(\mathrm{~A}_{0}\right)=D\left(\mathrm{~A}_{0}^{*}\right) \cap N\left(\mathrm{~A}_{1}\right) \cap K_{1}^{\perp}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{A}_{1} x=f \\
& \mathrm{~A}_{1} x_{f}=f \\
& \mathrm{~A}_{1} \mathrm{X}_{\mathrm{g}}=0 \\
& \mathrm{~A}_{1} k=0 \\
& \mathrm{~A}_{0}^{*} x=g \\
& \mathrm{~A}_{0}^{*} x_{f}=0 \\
& \mathrm{~A}_{0}^{*} x_{g}=g \\
& \mathrm{~A}_{0}^{*} k=0 \\
& \pi_{K_{1} x}=k \\
& \pi_{K_{1} x_{f}}=0 \\
& \pi_{K_{1} x_{g}}=0 \\
& \pi_{K_{1}} k=k
\end{aligned}
$$

- option I: find x_{f} and x_{g} separately $\Rightarrow x=x_{f}+x_{g}+k$
- option II: find x directly

(stat) first order system - variational formulations I

finding

$$
x_{f}:=\mathcal{A}_{1}^{-1} f \in D\left(\mathcal{A}_{1}\right)=D\left(\mathrm{~A}_{1}\right) \cap \underbrace{R\left(\mathrm{~A}_{1}^{*}\right)}_{=R\left(\mathcal{A}_{1}^{*}\right)}=D\left(\mathrm{~A}_{1}\right) \cap N\left(\mathrm{~A}_{0}^{*}\right) \cap K_{1}^{\perp}
$$

$$
\begin{aligned}
\mathrm{A}_{1} x_{f} & =f \\
\mathrm{~A}_{0}^{*} x_{f} & =0 \\
\pi_{K_{1}} x_{f} & =0
\end{aligned}
$$

at least two options

- option la: multiply $\mathrm{A}_{1} x_{f}=f$ by $\mathrm{A}_{1} \xi \quad \Rightarrow$

$$
\forall \xi \in D\left(\mathcal{A}_{1}\right) \quad\left\langle\mathrm{A}_{1} x_{f}, \mathrm{~A}_{1} \xi\right\rangle_{\mathrm{H}_{2}}=\left\langle f, \mathrm{~A}_{1} \xi\right\rangle_{\mathrm{H}_{2}}
$$

weak form of

$$
\begin{aligned}
& \text { form of } \mathrm{A}_{1}^{*} \mathrm{~A}_{1} x_{f}=\mathrm{A}_{1}^{*} f \\
& \text { on Ib: rept } x_{f}=\mathrm{A}_{1}^{*} y_{f} \text { with potential } y_{f}=\left(\mathcal{A}_{1}^{*}\right)^{-1} x_{f} \in D\left(\mathcal{A}_{1}^{*}\right) \\
& \text { malt by } \quad x_{f} \quad \text { by } \quad \mathrm{A}_{1}^{*} \phi \quad \Rightarrow \\
& \forall \phi \in D\left(\mathcal{A}_{1}^{*}\right) \quad\left\langle\mathrm{A}_{1}^{*} y_{f}, \mathrm{~A}_{1}^{*} \phi\right\rangle_{\mathrm{H}_{1}}=\left\langle x_{f}, \mathrm{~A}_{1}^{*} \phi\right\rangle_{\mathrm{H}_{1}}=\left\langle\mathrm{A}_{1} x_{f}, \phi\right\rangle_{\mathrm{H}_{2}}=\langle f, \phi\rangle_{\mathrm{H}_{2}}
\end{aligned}
$$

$$
\text { weak form of } \mathrm{A}_{1} x_{f}=f \text { and } \mathrm{A}_{1} \mathrm{~A}_{1}^{*} y_{f}=f
$$

analogously for

(stat) first order system - a posteriori error estimates

problem: find $\quad x \in D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \quad$ st $\quad \mathrm{A}_{1} x=f \quad \mathrm{~A}_{0}^{*} x=g \quad \pi_{K_{1} x=k}$
'very' non-conforming 'approximation' of $x: \tilde{x} \in \mathrm{H}_{1}$
def., dcmp. err. $e=x-\tilde{x}=\pi_{R\left(\mathrm{~A}_{0}\right)} e+\pi_{K_{1}} e+\pi_{R\left(\mathrm{~A}_{1}^{*}\right)} e \in \mathrm{H}_{1}=R\left(\mathrm{~A}_{0}\right) \oplus K_{1} \oplus R\left(\mathrm{~A}_{1}^{*}\right)$

Theorem (sharp upper bounds)

Let $\tilde{x} \in \mathrm{H}_{1}$ and $e=x-\tilde{x}$. Then

$$
\begin{array}{rlr}
|e|_{\mathrm{H}_{1}}^{2} & =\left|\pi_{R\left(\mathrm{~A}_{0}\right)} e\right|_{\mathrm{H}_{1}}^{2}+\left|\pi_{K_{1}} e\right|_{\mathrm{H}_{1}}^{2}+\left|\pi_{R\left(\mathrm{~A}_{1}^{*}\right)} e\right|_{\mathrm{H}_{1}}^{2} \\
\left|\pi_{R\left(\mathrm{~A}_{0}\right)} e\right|_{\mathrm{H}_{1}} & =\min _{\phi \in D\left(\mathrm{~A}_{0}^{*}\right)}\left(c_{\mathrm{A}_{0}}\left|\mathrm{~A}_{0}^{*} \phi-g\right|_{\mathrm{H}_{0}}+|\phi-\tilde{x}|_{\mathrm{H}_{1}}\right) & \\
\left|\pi_{R\left(\mathrm{~A}_{1}^{*}\right)} e\right|_{\mathrm{H}_{1}} & =\min _{\varphi \in D\left(\mathrm{~A}_{1}\right)}\left(c_{\mathrm{A}_{1}}\left|\mathrm{~A}_{1} \varphi-f\right|_{\mathrm{H}_{2}}+|\varphi-\tilde{x}|_{\mathrm{H}_{1}}\right) & \operatorname{reg}\left(\mathrm{A}_{0} \mathrm{~A}_{0}^{*}+1\right)-\text { prbl in } D\left(\mathrm{~A}_{0}^{*}\right) \\
\left|\pi_{K_{1}} e\right|_{\mathrm{H}_{1}} & =\left|\pi_{K_{1}} \tilde{x}-k\right|_{\mathrm{H}_{1}}=\min _{\xi \in D\left(\mathrm{~A}_{0}\right)}\left|\mathrm{A}_{0} \xi+\mathrm{A}_{1}^{*} \zeta+\tilde{x}-k\right|_{\mathrm{H}_{1}} \\
\zeta \in D\left(\mathrm{~A}_{1}^{*}\right) & \operatorname{cpld}\left(\mathrm{A}_{0}^{*} \mathrm{~A}_{0}\right)-\left(\mathrm{A}_{1} \mathrm{~A}_{1}^{*}\right)-\operatorname{sys} \text { in } D\left(\mathcal{A}_{0}\right)-D\left(\mathcal{A}_{1}^{*}\right)
\end{array}
$$

Remark

Even $\pi_{K_{1}} e^{=} k-\pi_{K_{1}} \tilde{x}$ and the minima are attained at

A_{0}^{*} - A_{1}-lemma (generalized global div-curl-lemma)

Lemma (A_{0}^{*} - A_{1}-lemma)
Let $D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \rightarrow \mathrm{H}_{1}$ be compact, and
(i) $\left(x_{n}\right)$ bounded in $D\left(\mathrm{~A}_{1}\right)$,
(ii) $\left(y_{n}\right)$ bounded in $D\left(\mathrm{~A}_{0}^{*}\right)$.
$\Rightarrow \exists x \in D\left(\mathrm{~A}_{1}\right), y \in D\left(\mathrm{~A}_{0}^{*}\right)$ and subsequences st
$x_{n} \rightharpoonup x$ in $D\left(\mathrm{~A}_{1}\right)$ and $y_{n} \rightharpoonup y$ in $D\left(\mathrm{~A}_{0}^{*}\right)$ as well as

$$
\left\langle x_{n}, y_{n}\right\rangle_{\mathrm{H}_{1}} \rightarrow\langle x, y\rangle_{\mathrm{H}_{1}} .
$$

A_{0}^{*} - A_{1}-lemma (generalized global div-curl-lemma)

Lemma (generalized A_{0}^{*} - A_{1}-lemma)

Let $R\left(\mathrm{~A}_{0}\right)$ and $R\left(\mathrm{~A}_{1}\right.$ be closed, and let K_{1} be finite dimensional. Moreover, let $\left(x_{n}\right),\left(y_{n}\right) \subset H_{1}$ be bounded such that
(i) $\widetilde{\mathrm{A}}_{1} x_{n}$ is relatively compact in $D\left(\mathrm{~A}_{1}^{*}\right)^{\prime}$,
(ii) $\widetilde{\mathrm{A}}_{0}^{*} y_{n}$ is relatively compact in $D\left(\mathrm{~A}_{0}\right)^{\prime}$.
$\Rightarrow \exists x, y \in \mathrm{H}_{1}$ and subsequences st $x_{n} \rightarrow x$ in H_{1} and $y_{n} \rightarrow y$ in H_{1} as well as

$$
\left\langle x_{n}, y_{n}\right\rangle_{\mathrm{H}_{1}} \rightarrow\langle x, y\rangle_{\mathrm{H}_{1}} .
$$

proof uses key observation

Lemma

Let $R(\mathrm{~A})$ be closed. For $\left(x_{n}\right) \subset \mathrm{H}_{0}$ the following statements are equivalent:
(i) $\widetilde{\mathrm{A}} x_{n}$ is relatively compact in $D\left(\mathrm{~A}^{*}\right)^{\prime}$.
(ii) $\pi_{R\left(\mathrm{~A}^{*}\right)} x_{n}$ is relatively compact in $R\left(\mathrm{~A}^{*}\right)$ resp. H_{1}.

If $x_{n} \rightarrow x$ in H_{1}, then either of cond. (i) or (ii) implies $\pi_{R\left(\mathrm{~A}^{*}\right)} x_{n} \rightarrow \pi_{R\left(\mathrm{~A}^{*}\right)^{x}}$ in H_{1}.
nice results (and joint work/communication with) Marcus Waurick

classical de Rham complex in 3D (∇-rot-div-complex)

$\Omega \subset \mathbb{R}^{3}$ bounded weak Lipschitz domain, $\partial \Omega=\Gamma=\overline{\Gamma_{t} \dot{\cup} \Gamma_{n}}$
(electro-magneto dynamics, Maxwell's equations)
mixed boundary conditions and inhomogeneous and anisotropic media

$$
\{0\} \text { or } \mathbb{R} \underset{\pi}{\stackrel{\iota}{\rightleftarrows}} \mathrm{L}^{2} \underset{-\operatorname{div}_{\Gamma_{n}} \varepsilon}{\stackrel{\nabla \Gamma_{t}}{\rightleftarrows}} \quad \mathrm{~L}_{\varepsilon}^{2} \underset{\varepsilon^{-1} \underset{\text { rot }_{\Gamma_{n}}}{\rightleftarrows}}{\stackrel{\mathrm{rot}_{\Gamma_{t}}}{\rightleftarrows}} \mathrm{~L}^{2} \underset{-\nabla_{\Gamma_{n}}}{\stackrel{\operatorname{div}_{\Gamma_{t}}}{\rightleftarrows}} \mathrm{~L}^{2} \underset{\iota}{\underset{~}{\rightleftarrows}} \quad \mathbb{R} \text { or }\{0\}
$$

classical de Rham complex in 3D ($\overline{\text {-rot-div-complex) }}$

$\Omega \subset \mathbb{R}^{3}$ bounded weak Lipschitz domain, $\partial \Omega=\Gamma=\overline{\Gamma_{t} \dot{\cup} \Gamma_{n}}$
(electro-magneto dynamics, Maxwell's equations with mixed boundary conditions)
related fos

$\nabla \Gamma_{t} u=A$	in Ω	\mid	$\operatorname{rot}_{\Gamma_{t}} E=J$	in Ω	$\operatorname{div}_{\Gamma_{t}} H=k$	in Ω	$\pi v=b$	in Ω	
$\pi u=a$	in Ω	\mid	$-\operatorname{div}_{\Gamma_{n}} \varepsilon E=j$	in Ω	\mid	$\varepsilon^{-1} \operatorname{rot}_{\Gamma_{n}} H=K$	in Ω	$-\nabla_{\Gamma_{n}} v=B$	in Ω

related sos

$$
\begin{array}{rlrlrlrl}
-\operatorname{div}_{\Gamma_{n}} \varepsilon \nabla_{\Gamma_{t}} u=j & \text { in } \Omega & \mid & \varepsilon^{-1} \operatorname{rot}_{\Gamma_{n}} \operatorname{rot}_{\Gamma_{t}} E=K & \text { in } \Omega & \mid & -\nabla_{\Gamma_{n}} \operatorname{div}_{\Gamma_{t}} H=B & \text { in } \Omega \\
\pi u=a & \text { in } \Omega & & -\operatorname{div}_{\Gamma_{n}} \varepsilon E=j & \text { in } \Omega & \varepsilon^{-1} \operatorname{rot}_{\Gamma_{n}} H=K & \text { in } \Omega
\end{array}
$$

corresponding compact embeddings:

$$
\begin{aligned}
D\left(\nabla \Gamma_{t}\right) \cap D(\pi)=D\left(\nabla \Gamma_{t}\right)=\mathrm{H}_{\Gamma_{t}}^{1} \rightarrow \mathrm{~L}^{2} & \text { (Rellich's selection theorem) } \\
D\left(\operatorname{rot}_{\Gamma_{t}}\right) \cap D\left(-\operatorname{div}_{\Gamma_{n}} \varepsilon\right)=\mathrm{R}_{\Gamma_{t}} \cap \varepsilon^{-1} \mathrm{D}_{\Gamma_{n}} \rightarrow \mathrm{~L}_{\varepsilon}^{2} & \text { (Weck's selection theorem, '72) } \\
D\left(\operatorname{div}_{\Gamma_{t}}\right) \cap D\left(\varepsilon^{-1} \operatorname{rot}_{\Gamma_{n}}\right)=\mathrm{D}_{\Gamma_{t}} \cap \mathrm{R}_{\Gamma_{n}} \rightarrow \mathrm{~L}^{2} & \text { (Weck's selection theorem, '72) } \\
D\left(\nabla \Gamma_{n}\right) \cap D(\pi)=D\left(\nabla \Gamma_{n}\right)=\mathrm{H}_{\Gamma_{n}}^{1} \leftrightarrow \mathrm{~L}^{2} & \text { (Rellich's selection theorem) }
\end{aligned}
$$

Weck's selection theorem for weak Lip. dom. and mixed bc: Bauer/Py/Schomburg ('16)
Weck's selection theorem (Weck '74, (Habil. '72) stimulated by Rolf Leis)
(Weber '80, Picard '84, Costabel '90, Witsch '93, Jochmann '97, Fernandes/Gilardi '97,
Kuhn '99, Picard/Weck/Witsch '01, Py '96, '03, '06, '07, '08)

classical de Rham complex in 3D (∇-rot-div-complex)

$$
\begin{aligned}
\operatorname{rot} E & =F & & \text { in } \Omega \\
-\operatorname{div} \varepsilon E & =g & & \text { in } \Omega \\
\nu \times E & =0 & & \text { at } \Gamma_{t} \\
\nu \cdot \varepsilon E & =0 & & \text { at } \Gamma_{n}
\end{aligned}
$$

non-trivial kernel $\quad \mathcal{H}_{\mathrm{D}, \varepsilon}=\left\{H \in \mathrm{~L}^{2}: \operatorname{rot} H=0, \operatorname{div} \varepsilon H=0, \nu \times\left. H\right|_{\Gamma_{t}}=0,\left.\nu \cdot \varepsilon H\right|_{\Gamma_{n}}=0\right\}$ additional condition on Dirichlet/Neumann fields for uniqueness

$$
\begin{aligned}
& \pi_{\mathrm{D}} E=K \in \mathcal{H}_{\mathrm{D}, \varepsilon} \\
& \{0\} \text { or } \mathbb{R} \underset{\pi}{\stackrel{\iota}{\rightleftarrows}} \mathrm{L}^{2} \underset{-\operatorname{div}_{\Gamma_{n}} \varepsilon}{\stackrel{\Gamma_{\Gamma_{t}}}{\rightleftarrows}} \quad \mathrm{~L}_{\varepsilon}^{2} \underset{\varepsilon^{-1}}{\stackrel{\mathrm{rot}_{\mathrm{rot}_{\Gamma_{n}}}}{\rightleftarrows}} \mathrm{~L}^{2} \underset{-\mathrm{D}_{\Gamma_{n}}}{\stackrel{\operatorname{div}_{\Gamma_{t}}}{\rightleftarrows}} \mathrm{~L}^{2} \underset{\iota}{\stackrel{\pi}{\rightleftarrows}} \mathbb{R} \text { or }\{0\} \\
& \cdots \underset{\cdots}{\underset{\cdots}{\rightleftarrows}} \mathrm{H}_{-1} \underset{A_{-1}^{*}}{\stackrel{A_{-1}}{\rightleftarrows}} \mathrm{H}_{0} \underset{\mathrm{~A}_{0}^{*}}{\stackrel{A_{0}}{\rightleftarrows}} \mathrm{H}_{1} \underset{\mathrm{~A}_{1}^{*}}{\stackrel{A_{1}}{\rightleftarrows}} \mathrm{H}_{2} \underset{\mathrm{~A}_{2}^{*}}{\stackrel{A_{2}}{\rightleftarrows}} \mathrm{H}_{3} \underset{\mathrm{~A}_{3}^{*}}{\stackrel{A_{3}}{\rightleftarrows}} \mathrm{H}_{4} \underset{\cdots}{\underset{ }{\rightleftarrows}} \cdots \\
& \text { find } E \in \mathrm{R}_{\Gamma_{t}}(\Omega) \cap \varepsilon^{-1} \mathrm{D}_{\Gamma_{n}}(\Omega) \quad \text { st } \quad \text { (fos) } \quad \text { find } \quad x \in D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \text { st } \\
& \operatorname{rot}_{\Gamma_{t}} E=F \\
& -\operatorname{div}_{\Gamma_{n}} \varepsilon E=g \quad \text { translation } \\
& \mathrm{A}_{1} x=f \\
& \pi_{\mathrm{D} / \mathrm{N}} E=K \\
& \text { (fos) find } \quad x \in D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \quad \text { st } \\
& \mathrm{A}_{0}^{*} x=g \\
& \pi_{K_{1} x}=k
\end{aligned}
$$

classical de Rham complex in 3D (∇-rot-div-complex)

$c_{\mathrm{A}_{0}}=c_{\mathrm{fp}}$ (Friedrichs/Poincaré constant) and $c_{\mathrm{A}_{1}}=c_{\mathrm{m}}$ (Maxwell constant)

Lemma/Theorem $\downarrow D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \leftrightarrow \mathrm{L}_{\varepsilon}^{2}(\Omega)$ compact

(i) all Friedrichs-Poincaré type est hold

$$
\begin{array}{lllll}
\forall \varphi \in D\left(\mathcal{A}_{0}\right) & |\varphi|_{\mathrm{H}_{0}} \leq c_{\mathrm{A}_{0}}\left|\mathrm{~A}_{0} \varphi\right|_{\mathrm{H}_{1}} & \Leftrightarrow & \forall \varphi \in \mathrm{H}_{\Gamma_{t}}^{1} & |\varphi|_{\mathrm{L}^{2}} \leq c_{\mathrm{fp}}|\nabla \varphi|_{\mathrm{L}_{\varepsilon}^{2}} \\
\forall \phi \in D\left(\mathcal{A}_{0}^{*}\right) & |\phi|_{\mathrm{H}_{1}} \leq c_{\mathrm{A}_{0}}\left|\mathrm{~A}_{0}^{*} \phi\right|_{\mathrm{H}_{0}} & \Leftrightarrow & \forall \Phi \in \varepsilon^{-1} \mathrm{D}_{\Gamma_{n}} \cap \nabla \mathrm{H}_{\Gamma_{t}}^{1} & |\Phi|_{\mathrm{L}_{\varepsilon}^{2}} \leq c_{\mathrm{fp}}|\operatorname{div} \varepsilon \Phi|_{\mathrm{L}^{2}} \\
\forall \varphi \in D\left(\mathcal{A}_{1}\right) & |\varphi|_{\mathrm{H}_{1}} \leq c_{\mathrm{A}_{1}}\left|\mathrm{~A}_{1} \varphi\right|_{\mathrm{H}_{2}} & \Leftrightarrow & \forall \Phi \in \mathrm{R}_{\Gamma_{t}} \cap \varepsilon^{-1} \operatorname{rot} \mathrm{R}_{\Gamma_{n}} & |\Phi|_{\mathrm{L}_{\varepsilon}^{2}} \leq c_{\mathrm{m}}|\operatorname{rot} \Phi|_{\mathrm{L}^{2}} \\
\forall \psi \in D\left(\mathcal{A}_{1}^{*}\right) & |\psi|_{\mathrm{H}_{2}} \leq c_{\mathrm{A}_{1}}\left|\mathrm{~A}_{1}^{*} \psi\right|_{\mathrm{H}_{1}} & \Leftrightarrow & \forall \Psi \in \mathrm{R}_{\Gamma_{n}} \cap \operatorname{rot} \mathrm{R}_{\Gamma_{t}} & |\Psi|_{\mathrm{L}^{2}} \leq c_{\mathrm{m}}|\operatorname{rot} \Psi|_{\mathrm{L}_{\varepsilon}^{2}}
\end{array}
$$

(ii) all ranges $R\left(\mathrm{~A}_{0}\right)=\nabla \mathrm{H}_{\Gamma_{t}}^{1}, \quad R\left(\mathrm{~A}_{1}\right)=\operatorname{rot} \mathrm{R}_{\Gamma_{t}}, \quad R\left(\mathrm{~A}_{0}^{*}\right)=\operatorname{div} \mathrm{D}_{\Gamma_{n}} \quad$ are cl in L^{2}

(iv) all Helmholtz decomposition hold, e.g.,

$$
\mathrm{H}_{1}=R\left(\mathrm{~A}_{0}\right) \oplus K_{1} \oplus R\left(\mathrm{~A}_{1}^{*}\right) \quad \Leftrightarrow \quad \mathrm{L}_{\varepsilon}^{2}=\nabla \mathrm{H}_{\Gamma_{t}}^{1} \oplus_{\mathrm{L}_{\varepsilon}^{2}} \mathcal{H}_{\mathrm{D}, \varepsilon} \oplus_{\mathrm{L}_{\varepsilon}^{2}} \varepsilon^{-1} \operatorname{rot} \mathrm{R}_{\Gamma_{n}}
$$

(v) solution theory
(vi) variational formulations
(vii) functional a posteriori error estimates
(viii) div-curl-lemma
(ix) ...

classical de Rham complex in 3D (∇-rot-div-complex)

find $E \in \mathrm{R}_{\Gamma_{t}} \cap \varepsilon^{-1} \mathrm{D}_{\Gamma_{n}}$ s.t. \quad / \quad think of $\quad x \in D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right)$

$$
\begin{aligned}
\operatorname{rot}_{\Gamma_{t}} E & =F & \mathrm{~A}_{1} x & =f \\
\operatorname{div}_{\Gamma_{n}} \varepsilon & =g & / \quad \text { think of } & \mathrm{A}_{0}^{*} x
\end{aligned}=g
$$

sol is simply

$$
x:=x_{f}+x_{g}+k \in D\left(\mathcal{A}_{1}\right) \oplus D\left(\mathcal{A}_{0}^{*}\right) \oplus K_{1}=D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right)
$$

with

$$
x_{f}:=\mathcal{A}_{1}^{-1} f \in D\left(\mathcal{A}_{1}\right) \quad \text { and } \quad x_{g}:=\left(\mathcal{A}_{0}^{*}\right)^{-1} g \in D\left(\mathcal{A}_{0}^{*}\right)
$$

i.e., $\quad E=E_{F}+E_{g}+K$, where

$$
\begin{aligned}
& E_{F}:=\left({\left.\widetilde{\operatorname{rot}_{\Gamma_{t}}}\right)^{-1} F}^{E_{g}:=\left(\widetilde{\left.\operatorname{div}_{\Gamma_{n}} \varepsilon\right)^{-1} g} \in D\left(\widetilde{\operatorname{rot}_{\Gamma_{t}}}\right)=\mathrm{R}_{\Gamma_{t}} \cap \varepsilon^{-1} \operatorname{rot} \mathrm{R}_{\Gamma_{n}} \varepsilon \mathrm{R}_{\Gamma_{t}} \cap \varepsilon^{-1} \mathrm{D}_{\Gamma_{n}, 0} \cap \mathcal{H}_{\mathrm{D}, \varepsilon}^{1},\right.} \text {, } \mathrm{D}_{\Gamma_{n} \cap \nabla \mathrm{H}_{\Gamma_{t}}^{1}=\varepsilon^{-1} \mathrm{D}_{\Gamma_{n}} \cap \mathrm{R}_{\Gamma_{t}, 0} \cap \mathcal{H}_{\mathrm{D}, \varepsilon}^{1}},\right.
\end{aligned}
$$

Theorem (sharp upper bounds)
Let $\tilde{E} \in \mathrm{~L}_{\varepsilon}^{2}$ (very non-conforming approximation of E !) and $e:=E-\tilde{E}$. Then

$$
\begin{aligned}
& \left.|e|_{\mathrm{L}_{\varepsilon}^{2}}^{2}=\mid \pi_{R\left(\nabla_{\Gamma_{t}}\right)}\right)\left.\right|_{\mathrm{L}_{\varepsilon}^{2}} ^{2}+\left|\pi_{R\left(\varepsilon^{-1} \operatorname{rot}_{r_{n}}\right)} e\right|_{\mathrm{L}_{\varepsilon}^{2}}^{2}+\left|\pi_{\mathcal{H}_{\mathrm{D}, \varepsilon}} e\right|_{\mathrm{L}_{\varepsilon}^{2}}^{2} \\
& =\min _{\Phi \in \varepsilon^{-1} \mathrm{D}_{\Gamma_{n}}}\left(c_{\mathrm{fp}}|\operatorname{div} \varepsilon \Phi+g|_{\mathrm{L}^{2}}+|\Phi-\tilde{E}|_{\mathrm{L}_{\varepsilon}^{2}}\right)^{2} \\
& \text { reg }\left(-\nabla \Gamma_{t} \text { div }_{\Gamma_{n}}+1\right) \text {-prbl in } \mathrm{D}_{\Gamma_{n}} \\
& +\min _{\Psi \in R_{\Gamma_{t}}}\left(c_{m}|\operatorname{rot} \Psi-F|_{L^{2}}+|\Psi-\tilde{E}|_{L_{\varepsilon}^{2}}\right)^{2} \\
& \operatorname{reg}\left(\text { rot }_{\Gamma_{n}}{ }^{\text {rot } \left._{r_{t}}+1\right) \text {-prbl in } \mathrm{R}_{r_{t}}}\right. \\
& +\min _{\theta \in \mathrm{H}_{\Gamma_{t}}^{1}, \Theta \in \mathrm{R}_{\Gamma_{n}}}\left|\nabla \theta+\varepsilon^{-1} \operatorname{rot} \Theta+\tilde{E}-K\right|_{\mathrm{L}_{\varepsilon}^{2}}^{2} \\
& \operatorname{cpld}\left(-\operatorname{div}_{\Gamma_{n}} \nabla \Gamma_{t}\right)-\left(\operatorname{rot}_{\Gamma_{t}}{ }^{\text {rot } \left._{\Gamma_{n}}\right) \text {-sys in } \mathrm{H}_{\Gamma_{t}}^{1}-\mathrm{R}_{\Gamma_{n}} .}\right.
\end{aligned}
$$

Remark

- $\left(\operatorname{rot}_{\Gamma_{t}} \operatorname{rot}_{\Gamma_{n}}\right)$-prbl needs saddle point formulation
- Ω top trv $\Rightarrow \pi_{\mathrm{D}}=0$ and $\mathrm{R}_{\Gamma_{t}, 0}=\nabla \mathrm{H}_{\Gamma_{t}}^{1}$ and $\mathrm{D}_{\Gamma_{n}, 0}=\operatorname{rot} \mathrm{R}_{\Gamma_{n}}$
- Ω convex and $\varepsilon=\mu=1$ and $\Gamma_{t}=\Gamma$ or $\Gamma_{n}=\Gamma \Rightarrow c_{f} \leq c_{\mathrm{m}} \leq c_{\mathrm{p}} \leq \frac{\operatorname{diam}_{\Omega}}{\pi}$
(joint work with
Stefan Kurz, Dirk Praetorius, Sergey Repin, Daniel Sebastian)
problem: num approx with BEM

$$
\Delta u=0 \quad \text { in } \Omega,\left.\quad u\right|_{\Gamma}=g \quad \text { on } \Gamma .
$$

functional a posteriori error estimates: num approx with FEM

$$
\max _{\substack{E \in \mathrm{~L}^{2}(\Omega) \\ \operatorname{div} E=0}}\left(2\left\langle n \cdot E, g-\left.\widetilde{u}\right|_{\Gamma}\right\rangle_{\mathrm{H}^{-1 / 2}(\Gamma)}-|E|_{\mathrm{L}^{2}(\Omega)}^{2}\right)=|\nabla(u-\widetilde{u})|_{\mathrm{L}^{2}(\Omega)}^{2}=\min _{\substack{v \in \mathrm{H}^{1}(\Omega) \\ v|\Gamma=g-\widetilde{u}|_{\Gamma}}}|\nabla v|_{\mathrm{L}^{2}(\Omega)}^{2}
$$

natural energy norm ($H^{1}(\Omega)$-volume norm)
idea: compute upper and lower bounds in a thin boundary layer using \squareFEM

functional a posteriori error estimates for BEM

$$
\max _{\substack{E \in \mathrm{~L}^{2}(\Omega) \\ \operatorname{div} E=0}}\left(2\left\langle n \cdot E, g-\left.\widetilde{u}\right|_{\Gamma}\right\rangle_{\mathrm{H}^{-1 / 2}(\Gamma)}-|E|_{\mathrm{L}^{2}(\Omega)}^{2}\right)=|\nabla(u-\widetilde{u})|_{\mathrm{L}^{2}(\Omega)}^{2}=\min _{\substack{\left.v \in \mathrm{H}^{1}(\Omega) \\ v\right|_{\Gamma}=g-\left.\widetilde{u}\right|_{\Gamma}}}|\nabla v|_{\mathrm{L}^{2}(\Omega)}^{2}
$$

minimiser of upper bound:

$$
\Delta v=0 \quad \text { in } \Omega,\left.\quad v\right|_{\Gamma}=g-\left.\widetilde{u}\right|_{\Gamma} \quad \text { on } \Gamma .
$$

maximiser of lower bound: saddle point formulation (mixed/dual Laplacian)
Find $(E, u) \in \mathrm{D}_{0}(\Omega) \times \mathrm{L}^{2}(\Omega)$ s.t. for all $(\Phi, \phi) \in \mathrm{D}_{0}(\Omega) \times \mathrm{L}^{2}(\Omega)$

$$
\begin{aligned}
&\langle E, \Phi\rangle_{\mathrm{L}^{2}(\Omega)}+\langle\operatorname{div} \Phi, u\rangle_{\mathrm{L}^{2}(\Omega)} \\
&=\left\langle n \cdot \Phi, g-\left.\widetilde{u}\right|_{\Gamma}\right\rangle_{\mathrm{H}^{-1 / 2}(\Gamma)}, \\
&\langle\operatorname{div} E, \phi\rangle_{\mathrm{L}^{2}(\Omega)}
\end{aligned}
$$

note: $\mathrm{D}_{0}(\Omega)=\left\{\Phi \in \mathrm{L}^{2}(\Omega): \operatorname{div} \Phi=0\right\}$

functional a posteriori error estimates for BEM - some pics

Ω : unit square, $g(x)=\cosh \left(x_{1}\right) \cos \left(x_{2}\right)$
$\circ \circ \circ$ residual based estimator by Dirk Praetorius
upper bound
exact error
lower bound

- - - order $3 / 2$

functional a posteriori error estimates for BEM - some pics

Daniel Sebastian, Strobl am Wolfgangsee, July 1, 2019

40

functional a posteriori error estimates for BEM - some pics

41

Lemma (div-curl-lemma (global version))

Assumptions:

(i) $\left(E_{n}\right)$ bounded in $\mathrm{L}^{2}(\Omega)$
(i') $\left(H_{n}\right)$ bounded in $\mathrm{L}^{2}(\Omega)$
(ii) $\left(\operatorname{rot} E_{n}\right)$ bounded in $\mathrm{L}^{2}(\Omega)$
(ii') $\left(\operatorname{div} \varepsilon H_{n}\right)$ bounded in $L^{2}(\Omega)$
(iii) $\nu \times E_{n}=0$ on Γ_{t}, i.e., $E_{n} \in \mathrm{R}_{\Gamma_{t}}(\Omega)$
(iii') $\nu \cdot \varepsilon H_{n}=0$ on Γ_{n}, i.e., $H_{n} \in \varepsilon^{-1} \mathrm{D}_{\Gamma_{n}}(\Omega)$
$\Rightarrow \exists E, H \quad$ and subsequences st
$E_{n} \rightharpoonup E, \operatorname{rot} E_{n} \rightharpoonup \operatorname{rot} E \quad$ and $H_{n} \rightharpoonup H, \operatorname{div} H_{n} \rightharpoonup \operatorname{div} H$ in $L^{2}(\Omega) \quad$ and

$$
\left\langle E_{n}, H_{n}\right\rangle_{L_{\varepsilon}^{2}(\Omega)} \rightarrow\langle E, H\rangle_{L_{\varepsilon}^{2}(\Omega)}
$$

\Rightarrow classical local version

key tools to prove compact embeddings

crucial tool: compact embeddings

- localisation to top triv domains by partition of unity
- Helmholtz decompositions
- regular potentials
(Here is the hard analysis: weak/strong Lipschitz domains, mixed bc, ...)
- Rellich's selection theorem

literature (complexes, applications to FEM, ...)

Arnold, Falk, Winther, Christiansen, Gopalakrishnan, Schöberl, Zulehner, ...

literature (fa-toolbox, complexes, a posteriori error estimates, ...)

some results of this talk:

- Py: Solution Theory, Variational Formulations, and Functional a Posteriori Error Estimates for General First Order Systems with Applications to Electro-Magneto-Statics and More, (NFAO) Numerical Functional Analysis and Optimization, 2019

literature (complexes, Friedrichs type constants, Maxwell constants)

some results of this talk:

- Py: On Constants in Maxwell Inequalities for Bounded and Convex Domains, Zapiski POMI/ (JMS)Journal of Mathematical Sciences (Springer New York), 2015
- Py: On Maxwell's and Poincare's Constants, (DCDS) Discrete and Continuous Dynamical Systems - Series S, 2015
- Py: On the Maxwell Constants in 3D, (M2AS) Mathematical Methods in the Applied Sciences, 2017
- Py: On the Maxwell and Friedrichs/Poincaré Constants in ND, (MZ) Mathematische Zeitschrift, 2019
- Py: ...ssome (so far) unpublished results

literature (complexes, Friedrichs type constants, compact embeddings)

compact embeddings for Maywell:

- Weck: Maxwell's boundary value problems on Riemannian manifolds with nonsmooth boundaries,
(JMA2) Journal of Mathematical Analysis and Applications, 1974 (1972)
- Picard: An elementary proof for a compact imbedding result in generalized electromagnetic theory, (MZ) Mathematische Zeitschrift, 1984
- Witsch: A remark on a compactness result in electromagnetic theory, (M2AS) Mathematical Methods in the Applied Sciences, 1993
(Weber '80, Costabel '90, Jochmann '97, Fernandes/Gilardi '97, Kuhn '99, Picard/Weck/Witsch '01, Py '96, '03, '06, '07, '08)

literature (complexes, Friedrichs type constants, compact embeddings)

some results of this talk:

- Bauer, Py, Schomburg: The Maxwell Compactness Property in Bounded Weak Lipschitz Domains with Mixed Boundary Conditions, (SIMA) SIAM Journal on Mathematical Analysis, 2016
- Py, Zulehner: The divDiv-Complex and Applications to Biharmonic Equations, (AA) Applicable Analysis, 2019
- Hiptmair, Pechstein, Py, Schomburg, Zulehner,: Regular Potentials and Regular Decompositions for Bounded Strong Lipschitz Domains with Mixed Boundary Conditions in Arbitrary Dimensions, (almost) submitted
- Py, Schomburg, Zulehner: The Elasticity Complex, (almost) submitted

literature (div-curl-lemma)

original papers (local div-curl-lemma):

- Murat: Compacité par compensation, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 1978
- Tartar: Compensated compactness and applications to partial differential equations,
Nonlinear analysis and mechanics, Heriot-Watt symposium, 1979

literature (div-curl-lemma)

recent papers (global div-curl-lemma, H^{1}-detour):

- Gloria, Neukamm, Otto: Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics, (IM) Invent. Math., 2015
- Kozono, Yanagisawa: Global compensated compactness theorem for general differential operators of first order, (ARMA) Arch. Ration. Mech. Anal., 2013
- Schweizer: On Friedrichs inequality, Helmholtz decomposition, vector potentials, and the div-curl lemma,
accepted preprint, 2018
recent papers (global div-curl-lemma, general results/this talk):
- Waurick: A Functional Analytic Perspective to the div-curl Lemma, (JOP) J. Operator Theory, 2018
- Py: A Global div-curl-Lemma for Mixed Boundary Conditions in Weak Lipschitz Domains and a Corresponding Generalized A_{0}^{*} - A_{1}-Lemma in Hilbert Spaces, (ANA) Analysis (Munich), 2019

literature (full time-dependent Maxwell equations)

- Py, Picard: A Note on the Justification of the Eddy Current Model in Electrodynamics, (M2AS) Mathematical Methods in the Applied Sciences, 2017
- Py, Picard, Trostorff, Waurick: On a Class of Degenerate Abstract Parabolic Problems and Applications to Some Eddy Current Models, submitted, 2019

literature (Maxwell's equations and more...)

oe gruyter
Ulrch Lamer Dirk Pauls.
MAXWELL'S
EQUATIONS
AMAIYSIIS AND NUMEmics

RICAM OAW 흫
RADCN SERESO ON COMPUTANONAL
固

- Langer, Py, Repin (Eds): Maxwell's equations. Analysis and numerics, Radon Series on Applied Mathematics, De Gruyter, July 2019

