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Introduction

Traces for Hilbert Complexes

OVERVIEW and BASIC IDEAS
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Introduction

Traces

Traces without any regularity of the domain?

Is this even possible?

even better: Traces without domains (and boundaries)?

TUDD, 2025, May 14 — June 4
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Introduction

Traces

A:D(A) cHg —» Hp Iddc: lin, dendef, cl

Traces for D(A)?

Q c RN Lipschitz:
very classical

D(A) =H' or WP, scalar trace us = ulr
classical (we stay in Hilbert spaces)

D(A) = H(curl) or H(div), tan or nor traces vt = (v x v x zz)||_, Vo= (v- v)||_
more recent

D(A) = H(Curl Curl), H(divDiv),...
... H(Curl Curl Curl), H(curl Div), H(Grad curl) . ..

traces?
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Introduction

Traces

A: D(A) S Ho — H; lddc

Traces for D(A)?

Q c RN Lipschitz

What if less regularity? What if

° ‘qust open / no regularity | and D(A) = H}(Q), H(curl,Q), H(div,Q), ...?

° at all, just D(A)?
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Introduction

Traces

A:D(A)cHy—H; Iddc
A*: D(A*) c Hy - Ho Iddc, Hilbert space adjoint

Traces for D(A)?

basic idea: integration by parts / extension of adjoints

VXED(A) VyED(A*) <y7AX>H17(A*y7X>Hg:0

think of A = grad: D(A) = Al c L2 - L2
and A* = —div: D(A*) = H(div) c L?> - L?

(y,groad X)2 +(divy,x)2=0

Dirk Pauly Traces for Hilbert Complexes
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Introduction

Traces

AcA Iddc
A*cAT:=A* (AT transpose of A) Iddc, Hilbert space adjoints

Traces for D(A)?

basic idea and setting: integration by parts / extension of adjoints

3xeD(A) 3yeD(AT) (v, Ax)u; = (AT y, x)n, # 0

think of grad = A c A = grad D(grad) = H! c D(grad) = H!
and —div = grad* = A* c AT = grad* = —div D(div) = A(div) c D(div) = H(div)
(y,gradx)2q) + {divy, x)2(q)y = (¥n,xs)e12(ryr #0

—_—

“w "
= [YnXs = «.ynaxs»H—l/2 ). HY2(r
for some x € H, y € H(div) r (NHYAn)

‘ For simplicity of this talk: real Hilbert spaces
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Introduction

Traces

AcA Iddc

A*c AT = A* Iddc, Hilbert space adjoints
(A,A*) pair with boundary conditions
(A,AT) pair without boundary conditions
(A,A*), (A,AT = A*) dual/adjoint pairs

Traces for D(A)?

basic idea and setting: integration by parts / extension of adjoints

bd trace  7a:D(A) > D(ATY,  7ax(y) = {ys Ax)r; — (AT y, X,

X = TAX

x € D(A), y e D(AT)

bd dual trace a7 : D(AT) — D(A), TAT Y (x) = (%, AT y )y = (Ax, y)ny

Yy = TaTy

note ’ TaATY (X) = =7ax(y) ‘

or bilinear (sesquilinear) form on D(A) x D(AT) resp. D(AT) x D(A)

{(x, ) = Tax(y) = =TTy (x) = (¥, Ax)u; = (AT y, X)H,

Dirk Pauly Traces for Hilbert Complexes Institut fiir Analysis, TUDD
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Introduction

Hilbert Complexes

Spuren ohne Rander
— oder —

Was sind eigentlich Banachkomplexe?

o We give Traces for Hilbert Complexes.

@ On the other hand Hilbert Complexes are necessary for Traces.
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Traces

Traces for Single Operators

Traces for Single Operators
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Traces

Traces for Single Operators

AcA and A*cAT=A*lddc (Hilbert space adjoints)
Traces for D(A) and D(AT) —  traces come always in pairs
trace 7o : D(A) - D(AT)’
X = TAX, Tax(y) = (¥, Ax)n; — (AT y, X)H,
dual trace 7ot : D(AT) - D(A)’
Yo TATY, Tary(x) = -ax(y)

Lemma (kernels and boundedness)

N(7a) = D(A) and N(7ar)=D(A*) and |7al,|7at] <1

note: |ax(y)| < [Xlpalylpcar)
note: ax(y) =0 < xeD(A)vyeD(A*) < 7ary(x)=0
= 7ax=0 < xeD(A) and Tary=0 < yeD(A*)

Dirk Pauly Traces for Hilbert Complexes Institut fiir Analysis, TUDD
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Traces

Traces for Single Operators (Adjoints)

AcA and A*cAT=A*lddc (Hilbert space adjoints)J

Theorem (adjoints)

7 !
Tabd = —TaT and Tyrig = —Ta

R(7a7) = R(7)) = N(7a)° = D(A)O and R(7a) = D(A*)°

primal / dual traces 7a: D(A) > D(AT)',  7ma1r : D(AT) = D(A)’
primal / dual adjoint traces 74 : D(AT)"” — D(A), Tar i D(A)" — D(AT)’

note: Hilbert spaces H [ self-dual | (Riesz) and here: H = D(A) v D(A")

= isometric isomorphisms py:H — H’, tg:H—->H",
X = ppx = (-, x)H X = 1gx with tgx(x”) = x'x
note for x e D(A) and y € D(AT): for all x e H and all x" ¢ H’

(Tatay) (%) = (tay)(7ax) = Tax(y) = ~Ta7y(x)

Dirk Pauly Traces for Hilbert Complexes Institut fiir Analysis, TUDD
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Traces

Traces for Single Operators (Riesz Isometric Isometries)

AcA and A*cAT=A*lddc (Hilbert space adjoints)

recall  Riesz iso® PD(ATY D(AT) - D(ATY, and trace 75 :D(A) - D(AT)’

y = (¥ pam)

Let x e D(A). What is / solves

y::—p’Dl(AT)TAxeD(AT) and X=ATy?

Lemma (extension / right inverse)

(%,7) e N(ATA+1) x N(AAT +1) and X-xeD(A) = N(7p)

= ‘TAATy=TA)\(/=TAX‘

= | -TaAT pBI(AT) =idr(ryy | = -AT pBl(AT) right inverse of 7o on R(7p)
note: ( 0 -AT + 1) X2 0 (formally skew-symmetric)
: A 0 v y Y
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Traces

Traces for Single Operators (Riesz Isometric Isometries)

AcA and A*cAT=A*lddc (Hilbert space adjoints)

Lemma (extensions / right inverses)

—TA AT pBl(AT) =idg(r,) and 7a:=-AT pBl(AT) right inverse of Ta on R(7a)
—TAT ApD(A) idr(r,r) and Tari=- ApBl(A) right inverse of Tpt on R(7Tat)

Definition (extensions / right inverses)

Let ¢ € R(7a) and 1) € R(7a7). We call:
° = _pBI(AT)¢ e N(AAT +1) harm Neumann ext of ¢ since T AT ¢ = ¢
0 G=ATH=-AT pD(AT)¢ e N(ATA+1) harm Dirichlet ext of ¢ since Ta¢ = ¢
° = pD(A)¢ e N(ATA+1) harm Neumann ext of v since 7ot Ath = 4
b= A= 7Ap51(A)w e N(AAT +1) harm Dirichlet ext of 1 since Tar %) = ¥

V
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Traces

Traces for Single Operators AcA and A*cAT=A* (lddc)

Theorem (kernels, ranges = annihilators)

o N(ra) = D(A) o R(7a) =D(A*)° = {® e D(AT) : D(A*) c N(¥)}

o N(7ar) = D(A*) o R(ar) = D(A)° = {® e D(A)": D(A) c N(®)}
In particular, the kernels and ranges are closed.

€

Definition and Lemma (trace spaces)

o T(A):= D(A)'2® = N(ATA+1) = D(ma)/N(7a) = D(A)/D(A) =: T(A)
o T(AT):= D(A*)*PAT) = N(AAT +1) = D(7a7)/N(7a7) = D(AT)/D(A*) =: T(AT),

= red tr

?A = TA‘T(A) : T(A) d R(’TA) ‘ ‘?AT = TATlT(AT) : T(AT) id R(TAT)

Lemma (ranges)

R(7a) = R(7a) = D(A")° = pp(ary T(AT) = T(AT)’
R(7at) = R(7at) = D(A)° = pp(ay T(A) = T(A)’

Theorem (trace isometries)

The reduced traces are isometric isomorphisms.

Dirk Pauly Traces for Hilbert Compl Institut fiir Analysis,
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Traces

Traces for Single Operators

AcA and A*cAT=A* (lddc)

Remark (trace /Riesz isometric isomorphisms —)
a: D(A) » R(7a) c D(ATY', pa = pp(ay : D(A) > D(A)’
Tar : D(AT) > R(7ar) € D(AY, PAT = pp(aty : D(AT) — D(AT)’
= 7alra) : T(A) > R(ma) = T(AT), pai=palreay : T(A) > T(A)'
Tam = TaTl7(aTy : T(AT) = R(7a1) = T(A) Pat = patlreary : T(AT) - T(AT)

Lemma (trace /Riesz isometric isomorphisms —)
7a: T(A) > T(AT),  par: T(AT) —» T(AT)
Tar t T(AT) = T(A), pa: T(A) = T(A)

R(7a) = R(7a) = R(pat) = T(AT),
R(7at) = R(7a7) = R(pa) = T(A),

Definition (inverses of trace /Riesz isometric isomorphisms —»)
Par 1= Pxr  T(ATY > T(AT)
Pai=pa : T(A) = T(A)

Fa=7al i T(AT) — T(A),
Far = Tar : T(A) = T(AT),

(no ass on R(A) or domains Q)

Continuity of traces and extensions for free!
Even isometries!

Institut fiir Analysis, TUDD
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Traces

Traces for Single Operators AcA and A*cAT=A* (lddc)

Theorem (trace /Riesz isometric isomorphisms —)

T(A) 25, T(A) 25, T(ATY, T(ATY 25, T(AT) 22 . T(A)

bilinear (sesquilinear) forms on T(A) x T(AT) or D(A) x D(AT)

{06y = {06y e = Tax(y) = =Tary () = (Ax, ¥ )u; = (%, AT ¥)hg,
{0 = pax(y) = (X, ¥)p(ay = (X ¥IHg + (AX, Ay)n,

Corollary (“integration by parts”)

<AX7y)H1 = <X7AT y)Ho + «X7y»

Dirk Pauly Traces for Hilbert Complexes Institut fiir Analysis, TUDD
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TUDD, 2025, May 14 — June 4
Traces

Traces for Single Operators AcA

and A*cAT=A* (lddc)

Isometric Isomorphisms (—)

D(A)
T(A) «— T(A) — 24 R(ra) = T(AT)
ﬁAi TﬁAT
T(A) = R(rar) 4——— T(AT) ——» T(AT)
D(AT)

D(A) = D(A) @p(ay T(A)

[x1] = [x] and Taxy = Tax = Ta[Xx]

Dirk Pauly

Traces for Hilbert Complexes
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Traces

Traces for Single Operators AcA and A*cAT=A* (lddc)

Isometric Isomorphisms (—)

D(A) A R(A)

n TR

T(A) ¢—2— T(A) — 25 R(ra) = T(ATY

Al \» Tonr

T(A) = R(ra1) 4——— T(AT) ——» T(AT)

e

D(AT)

R(AT)

AT

/& = A|T(A)

Dirk Pauly Traces for Hilbert Complexes Institut fiir Analysis, TUDD
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Traces

Traces for Single Operators AcA and A*cAT=A* (lddc)

Isometric Isomorphisms (—>)

A
DA)=— = T RA)

TA
TA
L LTJ,W 1 :LI\
Lg 7 by

T(A) &= R(ra) = T(AT) == D(A")’

R(AT) TaT D(A”

AT

“on T(A) = N(ATA+1) and T(AT) = N(AAT +1)":
~~1

- ~To N A ~T ~
A =-A PAT TA:pATA A =-A A=A|T(A)
- ~L N AT ~T ~ ~T

TaT = —Apa TaT = paAA (A) L=_A A =AT ‘T(AT)

Dirk Pauly Traces for Hilbert Complexes Institut fiir Analysis, TUDD
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Traces

Traces for Single Operators AcA and A*cAT=A* (lddc)

summary

Theorem (kernels and ranges of traces / isometric isomorphisms)

o N(7a) = D(A) © N(7ar) = D(A™)

® R(7a) = R(7a) = D(A*)° = R(par) = T(AT) @ R(7s7) = R(Far) = D(A)® = R(pa) = T(A)'
o T(A)=D(A)'D(A) = N(AT A+1) o T(AT)=D(A*)'DAT) = N(AAT +1)

note:

@ elements of the trace spaces / kernels N(AT A+1) and N(AAT +1) are “smooth”
o regularity is never a problem = regularity not a good term

@ integrability is the problem

Dirk Pauly Traces for Hilbert Complexes Institut fiir Analysis, TUDD
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Traces and “Surface Differential” Operators

Traces for Hilbert Complexes

Traces for Hilbert Complexes
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Traces and “Surface Differential” Operators

Traces for Hilbert Complexes

Different Hilbert Complexes

Ao Ay
Ho Hy H>
T 2% T g%
Al =Ag AT=A}
Ao A1
Ho Hy Ho
Ay A}

T

Ay’ A
o —5 D(AT)) — D(A]) —— D(A]) —=» -

4= D(A0)" «—— D(A1)’ = D(A2)" ¢=— -~
0 1

setting:
o AjcA,  and  AjcA]=A; (1ddc)
o R(Ag) c N(A1),  R(Ag) c N(Ap) (prim HilComs)
o R(AY)c N(AY),  R(A])c N(A]) (dual HilComs)
e R(A]) c N(Ap), R(Aj") c N(AT") (adjoint HilComs)

Dirk Pauly Traces for Hilbert Complexes Institut fiir Analysis, TUDD
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Traces and “Surface Differential” Operators

Traces for Hilbert Complexes AjcA; and R(...)cN(..)

Ao : D(Ag) - D(Ar1) A1 : D(A]) » D(Ag) (vol diff ops)
Ta, : D(Ao) = D(AL) TAT D(A]) - D(Ar)’ (trace ops)
AI I D(Ag)’ N D(AI)’ Ab: D(A1)" - D(Ag)’ (surf diff ops)

Theorem (surface differential operators / commutators with traces)

T/ T /
A, Ao = — Ay 'ma and AT Al =-Ag TAT

proof: x € D(Ag) and z e D(A])

(T Ao x)(2) = (2, A1 Ao x)n, —(A] z, Ao X}, = (A§ Al z, x)n; —(A] 2, Ag x)n,
N N
=0 =0
= —Ta,x(A] 2) = = A (14, %) (2)

Institut fiir Analysis, TUDD
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Traces and “Surface Differential” Operators

Traces for Hilbert Complexes AjcA; and R(...)cN(..)

Theorem (integration by parts .. .)

@ ...on domains: xe D(A),ye D(AT) orxe T(A),ye T(AT) =

(AX7y>H1 = (X7AT y>H0 + «Xay»

@ ...on trace domains : xeD(Ag), ze D(A]) =

(Ao x, z)1 =7a, (Ao x)(2) = —Tag (X)(A] 2) = —((x, A 2))o

~ .
® ...on trace spaces | Ta, w1 Ag = —A] T\ Ta, | X € T(Ao), ze T(A]) =

(72 Aox, 21 =y (2 A0x)(2) = —7ag (X) (1AL 2) = —((x, 7. Al 2))o

® ...on trace ranges | A]’ = —?Albgl (AD) taTa, |- € R(Tay), ¥ € R(TAI) =

(AT 70, 601 = (Fa, AT 0, Far D = ~{(Fag s, Tar Ao = (2, Abth Mo

Dirk Pauly Traces for Hilbert Complexes Institut fiir Analysis, TUDD
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Traces and “Surface Differential” Operators

Traces for Hilbert Complexes AjcA; and R(...)cN(..)

Ag : D(Ag) = D(A1) Al 1 D(A]) — D(A])

(vol diff ops)

CRAZY

T, T/ T/ . I’ 7 ’ . . . .
A; " :D(Ag) = D(A}) (surf diff ops) | Ag : D(A1)" = D(Ag) simple idea = amazing complexity

0 1 O red = blue = cyan O

Dirk Pauly Traces for Hilbert Complexes Institut fiir Analysis, TUDD
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Traces and “Surface Differential” Operators

Traces for Hilbert Complexes AjcA; and R(...)cN(..)

(trace space complex) iso’

(trace range complex) iso®

(dual trace space complex) iso?

(dual trace range complex) iso?
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Regular Subspaces and Their Duals

Regular Subspaces and Duals

“Regular Subspaces” and Duals
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Regular Subspaces and Their Duals

Regular Subspaces and Duals

Al : D(A1) - D(Ag)’

e Hf ¢ D(A1) cHy (bd dense embs of reg subsps)
o D(A1) =Hj +AgH{ (bd reg deco ops)
o HE(Ag) ={xeH{:AgxeH]} cH} ¢ D(Ap) c Ho (bd dense embs)
o Fg =HZ’ (duals)
o Hi c D(A1) n D(A]) c Hy (bd dense embs of reg subsps)

note: HE (Ag) ¢ HE ¢ D(Ag) < Hg and H) ¢ D(Ag)’ c Flg < HE (Ag)’
= extend Aj:H; - H{(Ag) by VxeHi(Ag) A)p(x):=1p(Agx)

o Hj c D(A1) 2| F (Ap) :={v e H : Ajep e Fg } [c FIy = HE ' c HE(Ay)

c:Hf cD(A1) = eD(A1) cH; and AbyeD(Ag) cHy
or g eH (A)) and D(A1) 3y =y +Agyo € Hf +AgHE

= Yy=¢y+(AgP)yo and [y|< C|¢\QI(A6)|Y|D(A1) = ¢eD(A)

Dirk Pauly Traces for Hilbert Complexes Institut fiir Analysis, TUDD
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Regular Subspaces and Their Duals

Characterisation of Dual Spaces by Regular Subspaces

Characterisation of Dual Spaces by “Regular Subspaces”
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Regular Subspaces and Their Duals

Characterisation of Dual Spaces by Regular Subspaces

Theorem (Characterisation of Dual Spaces by Regular Subspaces)
D(A1)" = Hy (Ag) = {w e Ay : Ag e g}
D(A3) =Hy(A]") = {4 e Hy : A"y e Ay}

with equivalent norms.

Theorem (Characterisation of Dual Spaces by Regular Subspaces)

D(Ay) =Hi(Ag) = {¢ € HT : Agyp e Hy}
D(A3) =HT (A1) = { e HT : A{ ‘P e H3}

with equivalent norms.
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Regular Subspaces and Their Duals

Characterisation of Trace Ranges by Regular Subspaces

Characterisation of Trace Ranges by “Regular Subspaces”

Dirk Pauly Traces for Hilbert Complexes Institut fiir Analysis, TUDD
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Regular Subspaces and Their Duals

Characterisation of Trace Ranges by Regular Subspaces

recall traces: Ta, : D(Ao) — D(A])’, AT D(A]) - D(Ay)’
o N(7ar)=D(A])  © R(rar) = D(A1)° = { € D(A1): Y|4, = O}

o N(tap) =D(Ao)  © R(7a,) = D(A3)° = {t € D(A])' : ¥lp(az) = 0}

° ° *
density of H; c D(A;) and Hf c D(A}) =

° R(TAI) = I:II0 as closed subspace of D(A;)’

*
® R(7a,) = H° as closed subspace of D(A])’

= more detailed

Theorem (Characterisation of Trace Ranges by Regular Subspaces)

A o - .

R(7a7) = D(A1)" n D(A1)° = Hy (Ag) nH;® = {p e Hy s Agyp e Ho A g =0}

R(7a) = D(Ag)' nD(AG)° = Hy (Al ) nH{®° = {y e Ay : Al 'Y e Fy A ¢, =0}
Hl

with equivalent norms.

Dirk Pauly Traces for Hilbert Complexes Institut fiir Analysis, TUDD
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Regular Subspaces and Their Duals

Trace Hilbert Complexes

Hilbert Complexes of Traces and Trace Spaces
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Regular Subspaces and Their Duals

Trace Hilbert Complexes

‘ Hilbert Complexes of Traces and Trace Spaces ...to be continued ...

o different unbounded versions of “surface differential operators”

ATI ATI
« — D(A]) — D(A])' —2= D(A]) —=» - D(AT1 ) = R(7p,) < D(AY)
w4 DAY 4 D)’ D(A2) 4 D(AR) = R(ryr ) DlAne1)

o

x4 T -
R(TAO) =H] " cl sbsp of both D(A)" < HY

* AT7 % AT Al :R(ma,) = R(7a,)
1 2 1 ¢ A A
. N Hf° N H;C’ N H§'° S e 0 1
* o —
o . o R(rp ) cHT2 chi
+ + + A
B Hlo — H20 — H3O — " L et
Al Ay R(7py) = D(Ag) N D(A)°

= (AT Iy ~
=A7(A{ HnHT®

AT/ AT/
B | P - A7 Al T efiy =0
EE M E R B foefin oty n vy, =0

bt T Et
={veH°:A] "p cHI°}
[N

@ compact embeddings for trace Hilbert complexes =’ﬁ{'°(‘q')

@ boundary value problems on trace Hilbert complexes
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Additional Stuff

Trace Hilbert Complexes

Additional Stuff
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Introduction

Hilbert Complexes

Why do we need Hilbert Complexes?
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Introduction

Hilbert Complexes

Ho 2% Hy 2L H, A ldde with R(Ag) c N(A1) (complex)

A A
Ho <~ Hy <= H, Ay lddc with R(AF) c N(A) (complex)

Why do we need Hilbert Complexes?

Example: static Maxwell’s Equations (de Rham complex)

What is a good second equation for E?

Physics = divE=f Just Physics? Or 3 Math justification for div?

Is div uniquely determined?

X unique

abstract setting: A; x = f = xe N(A1)* =R(A})c N(A;) = Ajx=0

Example: A; = curl = Ag= groad = Aj=-div = divis Math necessary!

Dirk Pauly Traces for Hilbert Com Institut fiir Analysis, TUDD
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Traces

Traces for Single Operators (Riesz Isometric Isometries)

AcA and A*cAT=A*Iddc (Hilbert space adjoints)

recall Riesz iso? PD(ATY) ¢ D(AT) - D(AT),
y = <'7y)D(AT)
define domain trace o = pBI(AT)TA :D(A) - D(AT), 7a: D(A) > D(ATY

note: 7Ta = Pp(AT)TA

What is / solves

Y= oax = pBl(AT)TAX eD(AT)?

Dirk Pauly Traces for Hilbert Complexes Institut fiir Analysis, TUDD
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Traces

Traces for Single Operators (Riesz Isometric Isometries)

AcA and A*cAT=A*Iddc (Hilbert space adjoints)

Whatis D(AT)>y =oax= PBl(Ar)TAX. ie., ppamyy =TaxeD(AT)?

for all y e D(AT)

(Vs P, + (AT y, AT Phg = ppamy7 (v) = 7ax(y) = {y, Ax)n; = (AT y, x)H,

={y,¥)p(am)

= <ATY7ATy+X>H0:<Y7AX_y)H1

= ATy+xeDA™ =A)and A(ATy+x)=Ax-y
xeD(A)oD(A) = Xx:=ATyeD(A) = (AAT+1)y=0

= yeN(AAT+1) and X € N(ATA+1) and X + x e D(A)
note: TA(X+x)=7a(ATy+x)=0

and “formally” (AATy +1)y = (A-A)x and y = (AATy + 1) 1 (A-A)x
are “boundary terms” as (A—A)x =0 for x ¢ D(A)

Dirk Pauly Traces for Hilbert Complexes Institut fiir Analysis, TUDD
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Traces

Traces for Single Operators (Riesz Isometric Isometries)

AcA and A*cAT=A*lddc (Hilbert space adjoints)

Lemma (extension / right inverse)

Let xe D(A) and let X:=A"y and y=opx= PBI(AT)TAX- Then:

(%,7) € N(ATA+1) x N(AAT +1) and X+ x € D(A) = N(ra)

= TAAT}\//:TAS(/:*TAX

pi=-Tax = TAATY=7aAX=¢ with X:=ATy and j?::—pBl(AT)gp =

Corollary (extension / right inverse)

—TA AT pBl(AT) =idg(r,) and —AT pBl(AT) right inverse of Ta on R(7a)

note: AX=AATy=-y = [XIpa) =\/IX}, +|AX[, =VIpar)y and

(S form skw sym))

Corollary (extension / right inverse

Dirk Pauly Traces for Hilbert Complexes
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Traces

Traces for Single Operators (Riesz Isometric Isometries)

AcA and A*cAT=A*Iddc (Hilbert space adjoints)

Definition (extensions / right inverses)
Let ¢ € R(7a) and @ € R(7a7). We call:
° = —PBI(AT)¢ € N(AAT +1) harm Neumann ext of ¢ since Ta AT & = ¢

<

0 p=ATH=-AT Poiary® € N(ATA+1) harm Dirichlet ext of ¢ since AP =
o 7= —pBl(A)d; € N(AT A+1) harm Neumann ext of 3 since Tat A =1

o Y=Ay= ~Appiay¥ € N(AAT +1) harm Dirichlet ext of 4 since TAT =

Corollary (extension / right inverse)

—TA AT pBl(AT) =idg(r,) and 7a:=-AT p‘Dl(AT) right inverse of Ta on R(7a)
—TAT ApBl(A) =idg(r,y) and TAT = — ApBl(A) right inverse of Tpt on R(7Tat)
Corollary (extension / right inverse (S form skw sym))

O] HIRCLR] H R DAV

i
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Traces

000080000000 00000

Traces for Single Operators AcA and A*cAT=A* (lddc)

recall trace / dual trace 7a: D(A) = D(ATY, Tar : D(AT) - D(A)’

with —Taty(x) = Tax(y) = {y; Ax)u; = (AT ¥, x)n,
extensions =

Theorem (kernels, ranges = annihilators)

° N(7a) = D(A) o R(a) = D(A*)° = {® € D(AT)": D(A*) c N(®)}

o N(7pr) =D(A*) o R(7pr) = D(A)° = {® e D(A) : D(A) c N(®)}
In particular, the kernels and ranges are closed.

Definition and Lemma (trace spaces)

o T(A):= D(A)'P® = N(ATA+1) = D(7a)/N(ma) = D(A)/D(A) =: T(A)
o T(AT):= D(A*)*P(AT) = N(AAT +1) = D(7o7)/N(7a7) = D(AT)/D(A*) = T(AT)

note: T(A) c R(AT) c N(A)*Ho = N(A)*2®A) and T(AT) c R(A) c N(A*)*H = N(A*)*D(4T)
note: Hilbert (orthogonal complements) and Banach (quotients) space structures.

note: Lg: D(A) - T(A) Lg: D(AT) > T(AT)
x = [x] y [yl

Dirk Pauly
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Traces

Traces for Single Operators AcA and A*cAT=A* (lddc)

some proofs . ..
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Traces

000000800000 00000

Traces for Single Operators AcA and A*cAT=A* (lddc)

proofs of | isometries

o xe D(A) = 1gx=[x]eT(A)and x=x,-xp

axtren) = inf b= Elogy = _inf. 3 [lulbiuy + 0 = lheay = uloy

xeT(A) =

|LqX\T(A) = xIpay ‘
0o peR(TA) = TFap=- D(AT )P € T(A)=N(ATA+1) and ATAFrp = —Fa¢p
and pD(AT)¢ e T(AT) = N(AAT +1) and AFp¢ = pD(AT)¢

[Tadlp(a) = \/ITadlfy, +|ATAGL, = [ATadlD(aT) = [dlp(aT)

xeD(A) = |raxIpy = |TaTax|p(a) = [XiIpea)

xeT(A) = ‘ [Taxlpeay = ITaxIpay = IXlpeay
o xe N(ATA+1l) = AxeN(AAT+l) = ATAx=-xeN(ATA+1)

= A:N(ATA+1) > N(AAT +1) iso® since:

inf Ax=0 = x=0

surj: y e N(AAT+1) = —x:=ATyeN(ATA+1l) and Ax=-AATy=y

iso: |AX|D(AT) = \/|AX||2_10 + |ATAX||2_|1 = |X|D(A)

Dirk Pauly
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Traces

Traces for Single Operators AcA and A*cAT=A* (lddc)

proof of | R(at) = D(A)° c D(A)’
° peR(TaT) = (x)=Tary(x)=0forxeD(A) = < eD(A)>cD(A)
o peD(A) cD(A) = P =pppX

VxeD(A) (x,X)py=%(x) and Vxe D(A) {x,X)p(ay =0

v x e D(A) (%, X)Hy + (Ax,AX)y, =0

y:=AXxeD(A"=AT) and ATAX = -X

VxeD(A) ¥(x)= (x,X)n, +(Ax,AX)y, =-1a1¥(x)

N
= (x.AT AX)p,

= Y =-Tpry € R(7aT)
note: (X,¥)e N(ATA+1)x N(AAT +1) = T(A) x T(AT)

Loy

proof of | R(Tat) = pp(ay T(A)

¢ € R(7pr) = D(A)° c D(A)Y’
< ppay?PeD(A) and ¥xeD(A) (x,pp(a)¥)pa) = $(x) =0
< ppay¥ € D(A)PW = T(A)
< Y €ppay T(A)
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Traces

Traces for Single Operators AcA and A*cAT=A* (lddc)

one more characterisation of the range:

R(tpat) = T(A)' | and Far: T(AT) = T(A) iso2
@ R(7a7) c D(A) c T(A) (as T(A) c D(A) share the same norms)
e peT(A)Y = :=¢om, ecD(A)
with 7, : D(A) — D(A) orth proj onto T(A) in D(A) = D(A) ®p(ay T(A)
= dpay=0 = DA)cN(@) = JeD(A)° =R(rar)
xeT(A) = ¢x=¢x = ¢=¢eR(rar)
o [Fatylr(ay = sup [|Fary(x)]
xeT(A),
[xIp(ay=1
= sup |Taty(x)|=|Taty f=ly =y
3 [Rrv60l = Faeyioeay =Iyloe = bl

[xIp(ay=1
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Traces

Traces for Single Operators AcA and A*cAT=A* (lddc)

...some proofs, end.

Dirk Pauly Traces for Hilbert Com Institut fiir Analysis, TUDD



Graduate Lecture Series @TUDD: Applied Analysis and Co. TUDD, 2025, May 14 — June 4
0000000000 e000000

Traces

Traces for Single Operators AcA and A*cAT=A* (lddc)

= well defined reduced traces
Ta =TalT(ay s T(A) = R(7a), Tar = Tatlr(ary : T(AT) = R(7aT)

recall: T(A) = D(A)'0() = N(ATA+1) and T(AT) = D(A*)'D(AT) = N(AAT +1)

Lemma (ranges)

R(7a) = R(7a) = D(A")® = ppary T(AT) = T(AT)’
R(%at) = R(7at) = D(A)® = pp(a) T(A) = T(A)'

Theorem (trace isometries)

The reduced operators are isometric isomorphisms.

Continuity of traces and extensions for free! (no ass on R(A) or domains Q)
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Traces

Traces for Single Operators AcA and A*cAT=A* (lddc)

Remark (trace /Riesz isometric isomorphisms —)

7a: D(A) > R(7a) c D(ATY, PA = pp(ay : D(A) = D(A)’
Tar : D(AT) > R(7a1) € D(AY, PAT = Pp(AT) ¢ D(AT) - D(AT)'
7a=Talray i T(A) > R(1a) = T(A"), Pa = palTeay : T(A) > T(A)

Tat = Tatlramy : T(AT) > R(ma7) = T(A)' Pat = patlr(ary : T(AT) = T(AT)’

.

Lemma (trace /Riesz isometric isomorphisms —)

R(7a) = R(7a) = R(Pa7) = T(AT)’, 7a: T(A) —» T(AT),  par: T(AT) - T(AT)
R(TaT) = R(7a7) = R(Pa) = T(A),  Far : T(AT) — T(A), Pa: T(A) = T(A)

Definition (inverses of trace /Riesz isometric isomorphisms —)

=t T(AT) — T(A), Pat = par : T(AT) = T(AT)

Far = Tar : T(A) = T(AT), Ba =P T(A) — T(A)
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Traces

Traces for Single Operators AcA and A*cAT=A* (lddc)

Theorem (trace /Riesz isometric isomorphisms —)

T(A) 25| T(A) 7,2 T(AT)

=hA

T(AT) =5 | T(AT) »

bilinear (sesquilinear) forms on T(A) x T(AT) or D(A) x D(AT)

06y = {06y e = Tax(y) = =Tary () = (Ax, ¥ )u; = (%, AT ¥)hg,
((Xv)/»/? = PAX(}/) = (Xf}/)D(A) = <X7Y>H0 + (AvaY>H1

Corollary (“integration by parts”)

(Axvy)Hl = <X7AT y>Ho + «Xv)/»
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Traces

Traces for Single Operators AcA and A*cAT=A*

(Iddc)

Isometric Isomorphisms (—)

D(A)
T(A) «—2 T(A) — A5 R(ra) = T(ATY

A Toar

T(A)' = R(rar) 4——— T(AT) ——>» T(A")

T

D(AT)

here: D(A) 3 x = xg + x, € D(A) ®p(a) T(A)

and [x.] =[x] and Tax:. = Tax with orthogonal projections
mo : D(A) - D(A) w, : D(A) > D(A)
x = mox = xp € D(A) x> mix=x € T(A)
Dirk Pauly
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Traces

Traces for Single Operators AcA and A*cAT=A* (lddc)

Isometric Isomorphisms (—)

D(A) A R(A)

n TR

T(A) ¢—2— T(A) — 25 R(ra) = T(ATY

Al \» Tonr

T(A) = R(ra1) 4——— T(AT) ——» T(AT)

e

D(AT)

R(AT)

AT

/& = A|T(A)
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Traces

Traces for Single Operators AcA and A*cAT=A* (lddc)

Isometric Isomorphisms (—>)

A
DA)=— = T RA)

TA
TA
L LTJ,W 1 :LI\
Lg 7 by

T(A) &= R(ra) = T(AT) == D(A")’

R(AT) TaT D(A”

AT

“on T(A) = N(ATA+1) and T(AT) = N(AAT +1)":
~~1

- ~To N A ~T ~
A =-A PAT TA:pATA A =-A A=A|T(A)
- ~L N AT ~T ~ ~T

TaT = —Apa TaT = paAA (A) L=_A A =AT ‘T(AT)
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Traces

Traces for Single Operators AcA and A*cAT=A* (lddc)

Theorem (kernels and ranges of traces / isometric isomorphisms)

o N(7a) = D(A) @ N(7at) = D(A")

® R(7a) = R(a) = D(A*)° = R(par) = T(AT)" @ R(757) = R(Fa1) = D(A)° = R(pa) = T(A)’
e T(A)=D(A)'D(A) = N(ATA+1) o T(AT) = D(A*)'DAT) = N(AAT +1)

note:

@ elements of the trace spaces / kernels N(AT A+1) and N(AAT +1) are “smooth”
o regularity is never a problem = regularity not a good term

@ integrability is the problem
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Traces and “Surface Differential” Operators

Traces for Hilbert Complexes

Traces for Hilbert Complexes
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Traces and “Surface Differential” Operators

Traces for Hilbert Complexes

TUDD, 2025, May 14 — June 4

Traces for Hilbert Complexes

Ao A1
Ho Hi Ho
T a* 2 %
A=A} AT=A}
Ag Ay
Ho Hy Ho
* *
AO AI

Traces for Hilbert Com

Institut fiir Anal

Dirk Pauly



Graduate Lecture Series @TUDD: Applied Analysis and Co. TUDD, 2025, May 14 — June 4
000000000000 00
Traces and “Surface Differential” Operators

Traces for Hilbert Complexes AjcA; and R(...)cN(..)

setting: ¢ €{0,1}
o AjcA, and AfcA]=A; (Iddc)
o R(A) c N(Aps1), R(A) c N(Agi1) (prim HilComs)
o R(A7,1) c N(A}), R(A},;)cN(A)) (dual HilComs)

Hilbert complex =

R(Ro) < R(Ao) ¢ N(AL) € D(AL),  R(A]) € R(AD) € N(AT) < D(AT)
n n n n @) U U U
R(Ao) c R(Ao) c N(A1) c D(Ay1), R(AT) c R(AT) c N(Ag) « D(Ag)

consider (Banach space) adjoints

Ao : D(Ag) -~ D(A1) A] : D(A]) - D(A}) (vol diff ops)

Al":D(A}) — D(A]) Al :D(A1) — D(Ap)’ (surf diff ops)

Dirk Pauly
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Traces and “Surface Differential” Operators

Traces for Hilbert Complexes

AjcA; and R(...)cN(..)

Ao : D(Ag) - D(Ar1) A :D(A]) - D(Ag) (vol diff ops)
Ta, : D(A0) = D(AL) TAT D(A]) - D(Ar)’ (trace ops)
Al":D(A) - D(AT) Ab: D(A1)" - D(Ag)’ (surf diff ops)

observation:

T(A1) € R(A]) c R(A]) ¢ N(A]) c D(A])

T(Ag) c R(Ap) c R(Ag) c N(A1) c D(A1)

T(Ag) € N(A1) and T(A1) € N(A]) = A, A1, Tar, 7a; well def on T(A7) and T (A1)

Institut fiir Analysis, TUDD
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Traces and “Surface Differential” Operators

Traces for Hilbert Complexes

Ao : D(Ag) - D(Ar1) A{:D(A]) - D(Ag) (vol diff ops)
Aot D(Ag) -~ D(AS)’ TAT ¢ D(AD - D(A1)’ (trace ops)
Al":D(A) - D(AT) Al : D(A1)" — D(Ap)’ (surf diff ops)

computation: x € D(Ap) and z € D(A])
(A, Ao x)(2) = (2, A1 Ao x)n, —(A] z,Ag x)n, = (A Al z, x)u; —(A] 2, Ag x)u,

————
=0 =0

= —TagX(A] 2) = = A] (T, ¥)(2)

Theorem (surface differential operators / commutators with traces)

T
AL Ao = A1 'Ta,

d

q o . o =l
Corollary (surface differential operators for domain traces A, = /)A;TAH)

d —1 —1 AT/ —1 T*x —1
T, Ao:pAITAle:prIA1 pAgpAgTAo:’Al pAgTAOZ A1 TAO

(A]* AT * =Ay)

(domain) Hilbert space adjoints
Institut fiir Analysis, TUDD
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Traces and “Surface Differential” Operators
Traces for Hilbert Complexes ApcAy and R(...)cN(...)
Ao : D(Ag) - D(Ar1) A{:D(A]) - D(Ag) (vol diff ops)
Ta, : D(Ag) = D(AL) TAT D(A]) » D(A1)’ (trace ops)
Al":D(A) - D(AT) Al : D(A1)" — D(Ap)’ (surf diff ops)
Theorem (surface differential operators / commutators with traces)
° AI/|R(7—A0) = A]’ = —7a, AoTa, = || —TA; AoTa, = AT’ R(Ta,) = R(7a,)
° TAg A-lr = _A(I)TAI and TAE'&T{ = —/&T’)?AI
o Ap |R(TAI) = Ap = *’TA;]FAIFAI = ‘ 7TA3A-1FFAI =Ap: R(TA-lr) — R(TAg)
note:

T I ! T" ! T T
(A1 "Tag ) td = Tag A1 “td = Tagtd Ap = —Tar Ay

i / ’ ’
AOTAI = —AO’TAl Ly = _(TAl AO) Ly

with Tatg = —7a1 and A" 1g =14 A
since (A" 1yx)(2) = (Lgx)(A"z) = A" z(x) = z(Ax) = (Lg Ax)(2)
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Traces and “Surface Differential” Operators

Traces for Hilbert Complexes AjcA; and R(...)cN(..)

note: 7a, = —AgﬁAg and T, = —AgﬁADT

more formulas

/T\ _ — _ /\/Trv _ - .
o Al = ~Ta AoTag = Tai AoAGPar = —Ta Pt + R(Tag) = R(7a,)

® PagTAg = —ﬁAOAEﬁAg = —‘?AgﬁAg tR(7aq) R(TAg)

@ T = :FAOTAO : D(Ao) ind T(Ao) as :FAOTAO:FAOTAO = E:AOTAO
——
:TAOLJ‘;AO:idR(TAO)

o actually 7, =¢,¢} : D(Ag) = D(Ap) and R(m.) = T(Ag)
R(Ag) ¢ N(A1) « D(A;)

° TFLAO = %AlTAle%AD%\AO = _’\fAlA-lr ,?Ao
o T = tr(ryr)  R(Tar) = T(A0)" = D(Ao)"  as
0

I X =127 -1 _ -1/~ -1y-1 _ X _
L= TayTAg = “TAT g (TAO) =TaTlg (TAng ) = TATTAT _IdR(TAg) or LR(TA;;)

note: TATTaAT =1L and TarTaT =id
A Ay = IR Ay = Ry

(mA0) = (T AoeL) = Agml =1 Ag YR(Tag) = 1A = A
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Traces and “Surface Differential” Operators

Traces for Hilbert Complexes AjcA; and R(...)cN(...

L =TagTag 1 D(Ao) = T(Ao)

more formulas and trace complexes

o AT’:D(AJ) — D(A])" with domain complex
ATI ATI
s D(Ag)' — D(ATY —— D(A])’
since AJ'A]’ = (A A]) =

° AT/ - _TAleTAO R(7a,) — R(TAI) with domain complex

A’
- — R(7a,) A R(a;) — R(7a,)
since AT ’AT I= (AT "A]7) =0
o mAg = —TAIA "Tag * T(Ao) = T (A1) with domain complex

Ay Ay
— T(A0) == T(A1) =5 T(A2) —— -
since ﬂ'J_Alﬂ'J_AO = :I'/A2 TAQAI:FAl TAlAO:FAO ?Ao =0
[ —
—_AT AT
——A2 7 _Al 7
~ o~ = .. T
or m A1 Ag = TA2A2 ’ TAL TA, A1 ,TAO =0
Ne—
=id|R(rp,)
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Traces and “Surface Differential” Operators

Traces for Hilbert Complexes AjcA; and R(...)cN(..)

note: ax(y)=0 < xeD(A)vyeD(A*) << 71ary(x)=0

more formulas

/T\ _ — _ — /fr - _ - i

Al =-Ta AoTa, = TA1A0AopAg = ~TAPAT R(7ay) = R(7a;)

miAg = —Ta,A] 'Ta, and m=Ta,TA;, and @) = TAl‘T'Al = TAI7V'AIT = LR(7p7)
1

xe€D(Ag), ze D(A]) = integration by parts “on trace domains”

{(Ao x, z))1 = 7a, (Ao x)(2) = (2, A1 Ao X}, — (A] 2, Ao x)n,
=—(A] z, Ao X)H, + (Ag Al Z,X)Hy = ~TA, (x)(A] z) = ={{(x,A] z))o

xeT(Ag),ze T(A]) = integration by parts “on trace spaces”
(. Aox, )1 = 7, (1 A0x)(2) = Ta, (A0 t1x) (112)
= —7ag (LX) (A] t12) = =Tay (x) (L A] 2) = =((x, T A Z))o

as  (L-m)AoxeD(Ag) and (1-7,)AlzeD(A})

—

N P e SV ST A R -
or simply: | 7o, T1Ag = Ta; Ao = —A; 'Tag = —A ' Ta, | aS T = TagTAy = |dR(TA0)

Dirk Pauly
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Traces and “Surface Differential” Operators

Traces for Hilbert Complexes AjcA; and R(...)cN(..)

Theorem (integration by parts .. .)
@ ...on domains: xe D(A),y e D(AT) orxe T(A),ye T(AT) =

(Ax, y)ny = (AT Y)Hg + (%, ¥)

@ ...on trace domains : xeD(Ag), ze D(A]) =

{(Aox, z)1 = Ta, (Ao x)(2) = —Tay (X)(A] 2) = —{(x,A] z))o

® ...on trace spaces | Ta, w1 Ag = —A] T\ Ta, | x€ T(Ag), ze T(A]) =

(2 Rox, 201 = 7, (1. A0x)(2) = ~7ing () (AT 2) = ~((x, mL A 2

06y = Tax(y) = =Tary(x) = (Ax, ¥ )n; = (%, AT ¥)h,
o A]’ = —7a,AgTa, : R(a,) = R(7a,)

° TFLAO = —%AIAI ,?Ao : T(Ag) g T(Al) and Ty =?A1’TA1, 71'1 :TAI%AI ZLR(TAT)
1
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Traces and “Surface Differential” Operators

Traces for Hilbert Complexes AjcA; and R(...)cN(..)

;A ~ . ;A ~ .
WL:TAQTAozldR(‘rAO) and Wl:TAITAIZIdR(TAT)
1

integration by parts on trace ranges

...on trace spaces | T Ag = —Fa, A] 'T\ T, = —TFa, Al Ta, [on T(Ao)

AT _ > Al I~ _ o~ pin T
...on trace spaces | m A = —TAE)rAOﬂ'l’TA'lr = —TASAOTAI on T(A]) =

{(Fa, Al "TagXx, Z))1 = —((WLA?)X,Z»:[ = {(x,mLA]z))o = —((X,FAgA(')?AIZ))o

Definition

VeR(Ta) V9 eR(mar) (@, 90 = (T, 6, Tar ¥

= V(peR(TAO) V'gZJER(TAlT)

(AT 7, 001 = (P AT g Tag2: Far )

= (o s Tar AgTas Fag o = ~((2, Ago Do
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Traces and “Surface Differential” Operators

Traces for Hilbert Complexes AjcA; and R(...)cN(..)

= v RTiaA o~ ATya AT _ > Al I~ _ > pin
m1Ag = —Ta, AL 'L TA = —Ta AL 'TAg mA; = —TASAOTI'LTAI = —TA(T)AOTAI

= AI I = (ﬂ'lAI)’ = _’?’;I (A6 ,’\T/Ag = —?Albgl (AB)’Ld%AO = —’/T'\A1 Lgl(WLAo)”Ld%AO

Theorem (integration by parts .. .)
@ ...on domains: xe D(A),ye D(AT) orxe T(A),ye T(AT) =

(Axvy)Hl = (XvATy>Ho + «Xay»

® ...on trace domains : xeD(A), ze D(A]) =

{(Aox, z)1 = Ta, (Ao x)(2) = —Tay (X)(A] 2) = —((x,A] z))o

s _=_ = | -
@ ...on trace spaces | Ta, ™1 Ag = —A] T\ Tp, |- X € T(Ao), ze T(A]) =

(2 Aox, Z)1 = 7ay (1 A0X)(2) = ~7ag (x) (1AL Z) = —{(x, 7. Al 2))o

@ ...on trace ranges| A’ = —?AILQI (AD) taTa, |- € R(Tag), ¥ € R(TAI) =

(AT 70, 901 = (Fa A s, Fa bt = ~(Fag o, Tag Agibllo = ~{llp, Abtblo
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Traces and “Surface Differential” Operators

Traces for Hilbert Complexes AjcA; and R(...)cN(..)

Ag : D(Ag) = D(A1) Al 1 D(A]) — D(A])

(vol diff ops)

CRAZY

T, T/ T/ . I’ 7 ’ . . . .
A; " :D(Ag) = D(A}) (surf diff ops) | Ag : D(A1)" = D(Ag) simple idea = amazing complexity

0 1 O red = blue = cyan O
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Traces and “Surface Differential” Operators

Traces for Hilbert Complexes AjcA; and R(...)cN(..)

trace spaces and operators

- i " AT ST =T
A] "= =T AgTo = —T1AgTo = T1A0A] By = ~T1hg : R(Tag) = R(7a;)

Arlrary =0=miAim Ao Fopg : T(Ag) — T(Az)
0 -
=0

; ;. c T o
7 A A A A

b T(Ag) — 0> T(A;) —2 n L2 (trace space complex) iso’
i [R(rag

JEACEEN (trace range complex) iso’
Po

T(A])

— n — (dual trace space complex) iso?
7TAG\ N(Ap)  7iA]
s
R(T,
( Ag)

B Il ——

(dual trace range complex) iso?
! 4
ALl T(A) Mo
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Regular Subspaces and Their Duals

Regular Subspaces and Duals

“Regular Subspaces” and Duals
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Regular Subspaces and Their Duals

Regular Subspaces and Duals

setting

assume (for all A, and A])

e H' c D(A,) cH, (bd dense embs of reg subsps)
o D(An+1) =H},  +AHY (with bd reg deco ops)
o Hf(An) :={xeH} :AyxeH}! ;} cH} c D(An) (bd dense embs)
o H,:=(Hy) (duals)
e Hf ; ¢ D(Ant1) n D(A]) c Hpia (bd dense embs of reg subsps)
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Regular Subspaces and Their Duals

Regular Subspaces and Duals

A} : D(A1)’ — D(Ag)’

o Hf ¢ D(A1) cH; (bd dense embs of reg subsps)
e D(A1) =H{ +AgH{ (bd reg deco ops)
o HJ(Ap) ={xeH} :AgxeHi} cH c D(Ag) (bd dense embs)
o Fg =H3’ (duals)
o Hi c D(A1) nD(A]) c Hy (bd dense embs of reg subsps)

HZ (Ao) € HE © D(Ag) c Ho and Hjy c D(Ag)’ c Hy c HF (Ao)’

= extend A} to Fj by
Ao iy = HG (Ao)’

Vi eH]  VxeHS(Ag) Abp(x) = P (Ag x)

note: |Ag(x)| < |¢|.:|1-|Ao Xy < |1/1\,:|1-\X\H3(A0)

Dirk Pauly Traces for Hilbert Complexes Institut fiir Analysis, TUDD



Graduate Lecture Series @TUDD: Applied Analysis and Co. TUDD, 2025, May 14 — June 4

0O00@0000000000
Regular Subspaces and Their Duals

Regular Subspaces and Duals

Ab:D(A1) = D(Ag) and Aj:H; — HE(Ag)

note: HE (Ag) c HE and Hy c HE (Ao)’
1 € F]: might happen that Ajpe Ho

= Hi(Ag)={veH :AjyeHy}
e D(A1) =H} +AgH{ (bd reg deco ops)
o HE(Ag) ={xeH{:AgxeH]} cH} c D(Ag) c Ho (bd dense embs)
o Hj c D(A;)' EHL(AY) = {y e FIy t A e Flg} c Iy = HE/ < HE (Ay)
7 Hf cD(A1) = 4 eD(A1) cHy and Aj¢ e D(Ag) cHy
or el (A)) and D(A1) 3y =y +Agyo € Hf +AgHY
= Yy=vy+(Ag¥)yo and [py|< C‘¢‘QI(A6)|Y|D(A1)

= e D(Al)/

=

o Hic| D(A1)' =H; (Ay) e Ay  Hi (A1)
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Regular Subspaces and Their Duals

Characterisation of Dual Spaces by Regular Subspaces

Characterisation of Dual Spaces by “Regular Subspaces”
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Regular Subspaces and Their Duals

Characterisation of Dual Spaces by Regular Subspaces

Theorem (Characterisation of Dual Spaces by Regular Subspaces)
D(A1)" = Hy (Ag) = {w e Ay : Ag e A }
D(A7) =Hy(A]") = {4 e Hy : A"y e Ay}

with equivalent norms by bounded inverse theorem. Dual results:

D(A1)' = Hy(Ag) = {9 e H] : Agy e Hg}
D(A3) =HI (A1) = {p e HT : A} " e H}

modifications: Ag: D(A;)" — D(Ao)’, A%’ D(A3) - D(A})
° FIIr c D(Al) c Hy, Iflir c D(Aj) cH (bd dense embs of reg subsps)
o D(Ay) = I:|Ir +Ag Iilg D(Ag) = Itq + A} ﬁ; (bd reg deco ops)
o Fi(Ao)=....  HI(A})=... (bd dense embs)
o Hy = Fy’ (duals)
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Regular Subspaces and Their Duals

Characterisation of Trace Ranges by Regular Subspaces

Characterisation of Trace Ranges by “Regular Subspaces”
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Regular Subspaces and Their Duals

Characterisation of Trace Ranges by Regular Subspaces

recall traces: Ta, : D(Ao) — D(A])’, AT D(A]) - D(Ay)’
o N(7ar)=D(A])  © R(rar) = D(A1)° = { € D(A1): Y|4, = O}

o N(tap) =D(Ao)  © R(7a,) = D(A3)° = {t € D(A])' : ¥lp(az) = 0}

° ° *
density of H; c D(A;) and Hf c D(A}) =

° R(TAI) = I:II0 as closed subspace of D(A;)’

*
® R(7a,) = H° as closed subspace of D(A])’

= more detailed

Theorem (Characterisation of Trace Ranges by Regular Subspaces)

A o - .

R(7a7) = D(A1)" n D(A1)° = Hy (Ag) nH;® = {p e Hy s Agyp e Ho A g =0}

R(7a) = D(Ag)' nD(AG)° = Hy (Al ) nH{®° = {y e Ay : Al 'Y e Fy A ¢, =0}
Hl

with equivalent norms.
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Regular Subspaces and Their Duals

Trace Hilbert Complexes

Hilbert Complexes of Traces and Trace Spaces
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Regular Subspaces and Their Duals

Trace Hilbert Complexes

two interpretations
* o —
® R(7a,) = Hf° as closed subspace of D(A])’, note: D(A])’ c H;
* o —
@ Hi° as closed subspace of H;
© A" =A]":R(rag) > R(a,).  D(A]") = R(ay)

* o — * o —
= peR(mp) cH{°cH = Al'YeR(7a,)cH}°cH,

= R(7a,) = D(AJ) n D(Ag)°
= Fir (A ) n
={peHy Al "pecH, /\¢v||,f|+ =0}
1

* * *
={yeHI°: Al "p e H}°} =t H{°(A] ")

= different unbounded versions of “surface differential operators”
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Graduate Lecture Series @TUDD: Applied Analysis and Co.

Regular Subspaces and Their Duals

Trace Hilbert Complexes

different unbd versions of surf diff ops

D(AL,') = R(1a,) and D(A}) = R(rar )

AT’ AT/
o =3 D(A)) —— D(A]) —2— D(A]) — -
R e D(Al)’ <T D(A2)/ <T D(A3)/ —
1 2

% N AT/
+o 1 +o 2 +o
H7 H H3
o+ o4 o+
Hlo 7 H20 ’ H3O
AL Az
T T/
.o A A o _
H - 5 - Hs
AL Az

Institut fiir Analysis, TUDD
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Regular Subspaces and Their Duals

Compact Embeddings for Trace Hilbert Complexes

Compact Embeddings for Trace Hilbert Complexes
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Regular Subspaces and Their Duals

Boundary Value Problems on Trace Hilbert Complexes

Boundary Value Problems on Trace Hilbert Complexes
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Regular Subspaces and Their Duals

TEST — TEST — TEST

I HIER WEITER !!!

T(A2)
n (trace space complex) iso?

(trace range complex)  iso?

(dual trace space complex) iso

(dual trace range complex) iso
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