Poincaré meets Korn via Maxwell: Korn's First Inequality for Incompatible Tensor Fields

Patrizio Neff, Dirk Pauly, Karl-Josef Witsch
Universität Duisburg-Essen, Campus Essen

11th GAMM-Seminar on Microstructures
Universität Duisburg Essen, Campus Essen
January 20, 2012

Tiny Motivation

gradient plasticity theory, micromorphic models, dislocation theory
new variational formulation by Patrizio Neff for the plastic variable p :
Find plastic tensor field $p: \Omega \subset \mathbb{R}^{3} \rightarrow \mathbb{R}^{3 \times 3}$ with vanishing row-wise tangential
components on some part Γ_{t} of the boundary $\Gamma=\partial \Omega$ s.t. for all tensor field q (like p)
$b(p, q):=\lambda\langle\operatorname{Curl} p, \operatorname{Curl} q\rangle_{\mathrm{L}^{2}(\Omega)}+\langle\operatorname{sym} p, \operatorname{sym} q\rangle_{\mathrm{L}^{2}(\Omega)}$
$=\langle f, q\rangle_{\mathrm{L}^{2}(\Omega)}, \quad f=-\operatorname{sym} \nabla u, \quad \lambda>0$
$\Leftrightarrow p$ solves problem with mixed boundary conditions

Here: $u, \nabla u$, sym ∇u classical displacement, deformation, strain open problems: well defined?, Hilbert space (Curl and tangential trace)?
coercive?, unique solution?
answer: new estimate \Rightarrow unique solution by Lax-Milgram and ... unversirat

Tiny Motivation

gradient plasticity theory, micromorphic models, dislocation theory new variational formulation by Patrizio Neff for the plastic variable p :
Find plastic tensor field $p: \Omega \subset \mathbb{R}^{3} \rightarrow \mathbb{R}^{3 \times 3}$ with vanishing row-wise tangential components on some part Γ_{t} of the boundary $\Gamma=\partial \Omega$ s.t. for all tensor field q (like p)

$\Leftrightarrow p$ solves problem with mixed boundary conditions

Here: $u, \nabla u$, sym ∇u classical displacement, deformation, strain open problems: well defined?, Hilbert space (Curl and tangential trace)?,
coercive?, unique solution?

Tiny Motivation

gradient plasticity theory, micromorphic models, dislocation theory
new variational formulation by Patrizio Neff for the plastic variable p :
Find plastic tensor field $p: \Omega \subset \mathbb{R}^{3} \rightarrow \mathbb{R}^{3 \times 3}$ with vanishing row-wise tangential components on some part Γ_{t} of the boundary $\Gamma=\partial \Omega$ s.t. for all tensor field q (like p)

$$
\begin{aligned}
b(p, q) & : \\
& =\lambda\langle\text { Curl } p, \text { Curl } q\rangle_{\mathrm{L}^{2}(\Omega)}+\langle\operatorname{sym} p, \operatorname{sym} q\rangle_{\mathrm{L}^{2}(\Omega)} \\
& =\langle f, q\rangle_{\mathrm{L}^{2}(\Omega)}, \quad f=-\operatorname{sym} \nabla u, \quad \lambda>0
\end{aligned}
$$

$\Leftrightarrow p$ solves problem with mixed boundary conditions

Here: $u, \nabla u$, sym ∇u classical displacement, deformation, strain
> open problems: well defined?, Hilbert space (Curl and tangential trace)?

coercive?, unique solution?
answer: new estimate \Rightarrow unique solution by Lax-Milgram and

Tiny Motivation

gradient plasticity theory, micromorphic models, dislocation theory
new variational formulation by Patrizio Neff for the plastic variable p :
Find plastic tensor field $p: \Omega \subset \mathbb{R}^{3} \rightarrow \mathbb{R}^{3 \times 3}$ with vanishing row-wise tangential components on some part Γ_{t} of the boundary $\Gamma=\partial \Omega$ s.t. for all tensor field q (like p)

$$
\begin{aligned}
b(p, q) & :=\lambda\langle\text { Curl } p, \operatorname{Curl} q\rangle_{\mathrm{L}^{2}(\Omega)}+\langle\operatorname{sym} p, \operatorname{sym} q\rangle_{\mathrm{L}^{2}(\Omega)} \\
& =\langle f, q\rangle_{\mathrm{L}^{2}(\Omega)}, \quad f=-\operatorname{sym} \nabla u, \quad \lambda>0
\end{aligned}
$$

$\Leftrightarrow p$ solves problem with mixed boundary conditions

$$
\begin{aligned}
\lambda \text { Curl Curl } p+\operatorname{sym} p & =f & \Omega & \\
\tau p=0 & \Gamma_{t} & & \text { (tangential Dirichlet bc) } \\
\tau \text { Curl } p=0 & \Gamma_{n} & & \text { (tangential Neumann bc) }
\end{aligned}
$$

Here: $u, \nabla u$, sym ∇u classical displacement, deformation, strain open problems: well defined?, Hilbert space (Curl and tangential trace)?
coercive?, unique solution?
answer: new estimate \Rightarrow unique solution by L : x - Milgram and

Tiny Motivation

gradient plasticity theory, micromorphic models, dislocation theory
new variational formulation by Patrizio Neff for the plastic variable p :
Find plastic tensor field $p: \Omega \subset \mathbb{R}^{3} \rightarrow \mathbb{R}^{3 \times 3}$ with vanishing row-wise tangential components on some part Γ_{t} of the boundary $\Gamma=\partial \Omega$ s.t. for all tensor field q (like p)

$$
\begin{aligned}
b(p, q) & :=\lambda\langle\text { Curl } p, \operatorname{Curl} q\rangle_{\mathrm{L}^{2}(\Omega)}+\langle\operatorname{sym} p, \operatorname{sym} q\rangle_{\mathrm{L}^{2}(\Omega)} \\
& =\langle f, q\rangle_{\mathrm{L}^{2}(\Omega)}, \quad f=-\operatorname{sym} \nabla u, \quad \lambda>0
\end{aligned}
$$

$\Leftrightarrow p$ solves problem with mixed boundary conditions

$$
\begin{aligned}
\lambda \text { Curl Curl } p+\operatorname{sym} p & =f & \Omega & \\
\tau p=0 & \Gamma_{t} & & \text { (tangential Dirichlet bc) } \\
\tau \text { Curl } p=0 & \Gamma_{n} & & \text { (tangential Neumann bc) }
\end{aligned}
$$

Here: $u, \nabla u$, sym ∇u classical displacement, deformation, strain open problems: well defined?, Hilbert space (Curl and tangential trace)?, coercive?, unique solution?
answer: new estimate \Rightarrow unique solution by Lax-Milgram and

Tiny Motivation

gradient plasticity theory, micromorphic models, dislocation theory
new variational formulation by Patrizio Neff for the plastic variable p :
Find plastic tensor field $p: \Omega \subset \mathbb{R}^{3} \rightarrow \mathbb{R}^{3 \times 3}$ with vanishing row-wise tangential components on some part Γ_{t} of the boundary $\Gamma=\partial \Omega$ s.t. for all tensor field q (like p)

$$
\begin{aligned}
b(p, q) & :=\lambda\langle\text { Curl } p, \operatorname{Curl} q\rangle_{\mathrm{L}^{2}(\Omega)}+\langle\operatorname{sym} p, \operatorname{sym} q\rangle_{\mathrm{L}^{2}(\Omega)} \\
& =\langle f, q\rangle_{\mathrm{L}^{2}(\Omega)}, \quad f=-\operatorname{sym} \nabla u, \quad \lambda>0
\end{aligned}
$$

$\Leftrightarrow p$ solves problem with mixed boundary conditions

$$
\begin{aligned}
\lambda \text { Curl Curl } p+\operatorname{sym} p & =f & \Omega & \\
\tau p=0 & \Gamma_{t} & & \text { (tangential Dirichlet bc) } \\
\tau \text { Curl } p=0 & \Gamma_{n} & & \text { (tangential Neumann bc) }
\end{aligned}
$$

Here: $u, \nabla u$, sym ∇u classical displacement, deformation, strain open problems: well defined?, Hilbert space (Curl and tangential trace)?, coercive?, unique solution?
answer: new estimate \Rightarrow unique solution by Lax-Milgram and ...

Main Results

$■ \Omega \subset \mathbb{R}^{N}$ bounded domain with Lipschitz boundary $\Gamma:=\partial \Omega$, first $N=3$
■ $0 \neq \Gamma_{t} \subset \Gamma$ relatively open, separated from $\Gamma_{n}:=\partial \Omega \backslash \Gamma_{t}$ by Lipschitz curve

- Ω sliceable ('any domain is sliceable')
- semi-norm $\|\|\cdot\| \mid$ for tensor fields $T \in \mathrm{H}($ Curl $; \Omega) \quad(\mathrm{H}($ curl $; \Omega)$ row-wise! $)$

```
|T||}\mp@subsup{|}{}{2}:=|\operatorname{sym}T\mp@subsup{|}{\mp@subsup{L}{}{2}(\Omega)}{2}+|\operatorname{Curl}T\mp@subsup{|}{\mp@subsup{L}{}{2}(\Omega)}{2
```


Theorem

$\exists c>0 \quad \forall T \in \mathrm{H}\left(\mathrm{Curl} ; \Gamma_{t}, \Omega\right) \quad\|T\|_{L^{2}(\Omega)} \leq c\|T\|$

Corollary

is a norm on $\mathrm{H}\left(\mathrm{Curl} ; \Gamma_{t}, \Omega\right)$ equivalent to the $\|\cdot\|_{\mathrm{H}(\mathrm{Curl}: \Omega)^{\text {-norm, }} \text {, i.e. }}$

```
\existsc>0\quad\forallT\in\textrm{H}(\textrm{Curl};\mp@subsup{\Gamma}{t}{},\Omega)\quad|T\mp@subsup{|}{\textrm{H}(\textrm{Curl};\Omega)}{}\leqc||T|
```


Main Results

$■ \Omega \subset \mathbb{R}^{N}$ bounded domain with Lipschitz boundary $\Gamma:=\partial \Omega$, first $N=3$
■ $\emptyset \neq \Gamma_{t} \subset \Gamma$ relatively open, separated from $\Gamma_{n}:=\partial \Omega \backslash \overline{\Gamma_{t}}$ by Lipschitz curve

- Ω sliceable ('any domain is sliceable')
- semi-norm $\||\cdot|| |$ for tensor fields $T \in \mathrm{H}(\mathrm{Curl} ; \Omega) \quad(\mathrm{H}($ curl $; \Omega)$ row-wise! $)$ $\|T\|^{2}:=\|$ sym $T\left\|_{L^{2}(\Omega)}^{2}+\right\| \operatorname{Curl} T \|_{L^{2}(\Omega)}^{2}$

Theorem

$$
\exists c>0 \quad \forall T \in \mathrm{H}\left(\mathrm{Curl} ; \Gamma_{t}, \Omega\right)
$$

Corollary

$$
\begin{aligned}
& \text { is a morm on } H\left(\text { Curl; } \Gamma_{t}, \Omega\right) \text { equivalent to the }\|\cdot\|_{H(C \text { Curl }: \Omega)} \text {-norm, i.e., } \\
& \qquad c>0 \quad \forall T \in H\left(\text { Curl; } \Gamma_{t}, \Omega\right) \quad\|T\|_{H(\text { Curl }: \Omega)} \leq c\|T\| .
\end{aligned}
$$

Main Results

$■ \Omega \subset \mathbb{R}^{N}$ bounded domain with Lipschitz boundary $\Gamma:=\partial \Omega$, first $N=3$
$■ \emptyset \neq \Gamma_{t} \subset \Gamma$ relatively open, separated from $\Gamma_{n}:=\partial \Omega \backslash \overline{\Gamma_{t}}$ by Lipschitz curve

- Ω sliceable ('any domain is sliceable')
" semi-norm $\||\cdot| \mid$ for tensor fields $T \in H(C u r l ; \Omega) \quad(H(c u r l ; \Omega)$ row-wise!) $\|T\|^{2}:=\|\operatorname{sym} T\|_{L^{2}(\Omega)}^{2}+\|\operatorname{Curl} T\|_{L^{2}(\Omega)}^{2}$

Theorem

$$
\exists c>0 \quad \forall T \in \mathrm{H}\left(\mathrm{Curl} ; \Gamma_{t}, \Omega\right)
$$

Corollary

$$
\text { is a morm on } \mathrm{H}\left(\text { Curl; } \Gamma_{t}, \Omega\right) \text { equivalent to the }\|\cdot\|_{H(C u r l: \Omega)} \text {-norm, i.e., }
$$

Main Results

$■ \Omega \subset \mathbb{R}^{N}$ bounded domain with Lipschitz boundary $\Gamma:=\partial \Omega$, first $N=3$
$■ \emptyset \neq \Gamma_{t} \subset \Gamma$ relatively open, separated from $\Gamma_{n}:=\partial \Omega \backslash \overline{\Gamma_{t}}$ by Lipschitz curve

- Ω sliceable ('any domain is sliceable')
- semi-norm $\||\cdot \||$ for tensor fields $T \in \mathrm{H}(\operatorname{Curl} ; \Omega) \quad(\mathrm{H}($ curl; $\Omega)$ row-wise! $)$

$$
\|T\|^{2}:=\|\operatorname{sym} T\|_{\mathrm{L}^{2}(\Omega)}^{2}+\|\operatorname{Curl} T\|_{\mathrm{L}^{2}(\Omega)}^{2}
$$

Theorem

$\exists c>0 \quad \forall T \in \mathrm{H}\left(\right.$ Curl $\left.; \Gamma_{t}, \Omega\right) \quad\|T\|_{L^{2}(\Omega)} \leq c\|T\|$

Corollary

$$
\text { is a norm on } \mathrm{H}\left(\text { Curl } ; \Gamma_{t}, \Omega\right) \text { equivalent to the }\|\cdot\|_{H(C u r l: \Omega)^{-n}} \text {-norm, i.e., }
$$

Main Results

$■ \Omega \subset \mathbb{R}^{N}$ bounded domain with Lipschitz boundary $\Gamma:=\partial \Omega$, first $N=3$
■ $\emptyset \neq \Gamma_{t} \subset \Gamma$ relatively open, separated from $\Gamma_{n}:=\partial \Omega \backslash \overline{\Gamma_{t}}$ by Lipschitz curve

- Ω sliceable ('any domain is sliceable')
- semi-norm $\||\cdot \||$ for tensor fields $T \in \mathrm{H}(\operatorname{Curl} ; \Omega) \quad(\mathrm{H}($ curl; $\Omega)$ row-wise! $)$

$$
\|T\|^{2}:=\|\operatorname{sym} T\|_{L^{2}(\Omega)}^{2}+\|\operatorname{Curl} T\|_{L^{2}(\Omega)}^{2}
$$

Theorem

$$
\exists c>0 \quad \forall T \in \stackrel{\circ}{\mathrm{H}}\left(\mathrm{Curl} ; \Gamma_{t}, \Omega\right) \quad\|T\|_{\mathrm{L}^{2}(\Omega)} \leq c\|T\|
$$

Corollary

$$
\text { is a norm on } \mathrm{H}\left(\text { Curl } ; \Gamma_{t}, \Omega\right) \text { equivalent to the }\|\cdot\|_{\mathrm{H}(\mathrm{Curl} ; \Omega)} \text {-norm, i.e., }
$$

\square

Main Results

$■ \Omega \subset \mathbb{R}^{N}$ bounded domain with Lipschitz boundary $\Gamma:=\partial \Omega$, first $N=3$
■ $\emptyset \neq \Gamma_{t} \subset \Gamma$ relatively open, separated from $\Gamma_{n}:=\partial \Omega \backslash \overline{\Gamma_{t}}$ by Lipschitz curve

- Ω sliceable ('any domain is sliceable')
- semi-norm $\||\cdot \||$ for tensor fields $T \in \mathrm{H}(\operatorname{Curl} ; \Omega) \quad(\mathrm{H}($ curl; $\Omega)$ row-wise! $)$

$$
\|T\|^{2}:=\|\operatorname{sym} T\|_{L^{2}(\Omega)}^{2}+\|\operatorname{Curl} T\|_{L^{2}(\Omega)}^{2}
$$

Theorem

$$
\exists c>0 \quad \forall T \in \stackrel{\circ}{\mathrm{H}}\left(\mathrm{Curl} ; \Gamma_{t}, \Omega\right) \quad\|T\|_{\mathrm{L}^{2}(\Omega)} \leq c\|T\|
$$

Corollary

$\left\|\|\cdot\|\right.$ is a norm on $\stackrel{\circ}{\mathrm{H}}\left(\mathrm{Curl} ; \Gamma_{t}, \Omega\right)$ equivalent to the $\| \cdot \|_{\mathrm{H}(\mathrm{Curl} ; \Omega)^{-n o r m}}$, i.e.,

$$
\exists c>0 \quad \forall T \in \stackrel{\circ}{\mathrm{H}}\left(\mathrm{Curl} ; \Gamma_{t}, \Omega\right) \quad\|T\|_{\mathrm{H}(\mathrm{Cur} ; \Omega)} \leq c\|T\| .
$$

Sliceable Domains

Two ways to cut a sliceable domain:

(Many Thanks to Kostas Pamfilos for the pictures.)

Interesting Consequences

The three fundamental inequalities are implied by two

identification table for q-forms and vector proxies in $\mathbb{R}^{3} \quad \mathbf{D}_{\mathbf{E}} \mathbf{U}_{\mathbf{S}} \mathbf{I}_{\mathbf{S}} \mathbf{S}_{\mathbf{E}}^{\mathbf{B}} \mathbf{B}_{\mathbf{N}} \mathbf{U R}^{\mathbf{R}}$

Interesting Consequences

The three fundamental inequalities are implied by two

Interesting Consequences

The three fundamental inequalities are implied by two

$$
c_{\mathrm{p}}=c_{\mathrm{pf}, 0}, \quad c_{\mathrm{m}}=c_{\mathrm{pf}, 1}, \quad c_{\mathrm{k}}, c_{\mathrm{p}} \leq c
$$

q	0	1	2	3
d	grad	curl	div	0
δ	0	div	-curl	grad
$\stackrel{\circ}{\mathrm{D}}{ }^{q}\left(\Gamma_{t}, \Omega\right)$	$\stackrel{\circ}{\mathrm{H}}\left(\mathrm{grad} ; \Gamma_{t}, \Omega\right)$	$\stackrel{\circ}{\mathrm{H}}\left(\operatorname{curl} ; \Gamma_{t}, \Omega\right)$	$\stackrel{\circ}{\mathrm{H}}\left(\operatorname{div} ; \Gamma_{t}, \Omega\right)$	$\mathrm{L}^{2}(\Omega)$
$\stackrel{\circ}{\Delta^{q}}\left(\Gamma_{n}, \Omega\right)$	$\mathrm{L}^{2}(\Omega)$	$\stackrel{\circ}{\mathrm{H}}\left(\operatorname{div} ; \Gamma_{n}, \Omega\right)$	$\stackrel{\circ}{\mathrm{H}}\left(\mathrm{curl} ; \Gamma_{n}, \Omega\right)$	$\stackrel{\circ}{\mathrm{H}\left(\mathrm{grad} ; \Gamma_{n}, \Omega\right)}$
$\iota^{*} \Gamma_{t} E$	$\left.E\right\|_{\Gamma_{t}}$	$\nu \times\left. E\right\|_{\Gamma_{t}}$	$\left.\nu \cdot E\right\|_{\Gamma_{t}}$	0
${ }^{\circledast} \iota_{\Gamma_{n}}^{*} * E$	0	$\left.\nu \cdot E\right\|_{\Gamma_{n}}$	$-\nu \times\left.(\nu \times E)\right\|_{\Gamma_{n}}$	$\left.E\right\|_{\Gamma_{n}}$

identification table for q-forms and vector proxies in \mathbb{R}^{3}

Proof of Main Inequality: Tools

combination of techniques from
■ electro-magnetic (static Maxwell equations with mixed boundary conditions)

- elastic theory
three crucial tools:
(HD) Helmholtz' decomposition for tensor fields, i.e., $L^{2}(\Omega)=H^{\prime}\left(\right.$ Curl $\left._{0} ; \Gamma_{t}, \Omega\right) \oplus$ Curl' ${ }^{\prime}\left(\right.$ Cur' $\left.^{\prime} ; \Gamma_{n}, \Omega\right)$
(MI) the Maxwell inequality for tensor fields, i.e., $\|T\|_{L^{2}(\Omega)} \leq c_{\mathrm{m}}\left(\| \text { Curl } T\left\|_{L^{2}(\Omega)}^{2}+\right\| \text { Div } T \|_{L^{2}(\Omega)}^{2}\right)^{1 / 2}$ for all $T \in \mathrm{H}\left(\operatorname{Curl} ; \Gamma_{t}, \Omega\right) \cap \mathrm{H}\left(\operatorname{Div} ; \Gamma_{n}, \Omega\right) \cap\left(\mathcal{H}(\Omega)^{3}\right)^{\perp}$ (Kl') generalized Korn's first inequality, i.e., for all $T \in H\left(\right.$ Curlo; $\left.\Gamma_{t}, \Omega\right)$

$$
\|T\|_{L^{2}(\Omega)} \leq c_{k}\|\operatorname{sym} T\|_{L^{2}(\Omega)}
$$

and one trick:
(SD) sliceable domains to get KI

Proof of Main Inequality: Tools

combination of techniques from
■ electro-magnetic (static Maxwell equations with mixed boundary conditions)

- elastic theory
three crucial tools:
(HD) Helmholtz' decomposition for tensor fields, i.e.,

$$
\mathrm{L}^{2}(\Omega)=\stackrel{\circ}{\mathrm{H}}\left(\text { Curl }_{0} ; \Gamma_{t}, \Omega\right) \oplus \text { Curl } \stackrel{\circ}{\mathrm{H}}\left(\text { Curl } ; \Gamma_{n}, \Omega\right)
$$

(MI) the Maxwell inequality for tensor fields, i.e., $\|T\|_{L^{2}(\Omega)} \leq c_{\mathrm{m}}\left(\|\operatorname{Curl} T\|_{L^{2}(\Omega)}^{2}+\|\operatorname{Div} T\|_{L^{2}(\Omega)}^{2}\right)^{1 / 2}$ for all $T \in H\left(C u r l ; \Gamma_{t}, \Omega\right) \cap H\left(D i v ; ~ \Gamma_{n}, \Omega\right) \cap\left(\mathcal{H}(\Omega)^{3}\right)$ (KI) generalized Korn's first inequality, i.e., for all $T \in H\left(\mathrm{Curl}_{0} ; \Gamma_{t}, \Omega\right)$

$$
\|T\|_{L^{2}(\Omega)} \leq \sigma_{k}\|\operatorname{sym} T\|_{L^{2}(\Omega)}
$$

and one trick:
(SD) sliceable domains to get KI

$$
\begin{aligned}
& \text { unversitat } \\
& \text { DUESSESNRG }
\end{aligned}
$$

Proof of Main Inequality: Tools

combination of techniques from

- electro-magnetic (static Maxwell equations with mixed boundary conditions)
- elastic theory
three crucial tools:
(HD) Helmholtz' decomposition for tensor fields, i.e.,

$$
\mathrm{L}^{2}(\Omega)=\stackrel{\circ}{\mathrm{H}}\left(\mathrm{Curl}_{0} ; \Gamma_{t}, \Omega\right) \oplus \operatorname{Curl} \stackrel{\circ}{\mathrm{H}}\left(\text { Curl } ; \Gamma_{n}, \Omega\right)
$$

(MI) the Maxwell inequality for tensor fields, i.e., $\|T\|_{L^{2}(\Omega)} \leq c_{\mathrm{m}}\left(\|\operatorname{Curl} T\|_{L^{2}(\Omega)}^{2}+\|\operatorname{Div} T\|_{L^{2}(\Omega)}^{2}\right)^{1 / 2}$ for all $T \in H\left(\right.$ Curl. $\left.\Gamma_{t}, \Omega\right) \cap \mathrm{H}\left(\right.$ Div. $\left.\Gamma_{n}, \Omega\right) \cap\left(\mathcal{H}(\Omega)^{3}\right)$ (KI) generalized Korn's first inequality, i.e., for all $T \in \mathrm{H}\left(\mathrm{Curl}_{0} ; \Gamma_{t}, \Omega\right)$ $\|T\|_{L^{2}(\Omega)} \leq{a_{k}}\|\operatorname{sym} T\|_{L^{2}(\Omega)}$
and one trick:
(SD) sliceable domains to get KI

Proof of Main Inequality: Tools

combination of techniques from

- electro-magnetic (static Maxwell equations with mixed boundary conditions)
- elastic theory
three crucial tools:
(HD) Helmholtz' decomposition for tensor fields, i.e.,

$$
\mathrm{L}^{2}(\Omega)=\stackrel{\circ}{\mathrm{H}}\left(\mathrm{Curl}_{0} ; \Gamma_{t}, \Omega\right) \oplus \operatorname{Curl} \stackrel{\circ}{\mathrm{H}}\left(\text { Curl } ; \Gamma_{n}, \Omega\right)
$$

(MI) the Maxwell inequality for tensor fields, i.e.,

$$
\|T\|_{\mathrm{L}^{2}(\Omega)} \leq c_{\mathrm{m}}\left(\|\operatorname{Curl} T\|_{\mathrm{L}^{2}(\Omega)}^{2}+\|\operatorname{Div} T\|_{\mathrm{L}^{2}(\Omega)}^{2}\right)^{1 / 2}
$$

for all $T \in \stackrel{\circ}{\mathrm{H}}\left(\mathrm{Curl} ; \Gamma_{t}, \Omega\right) \cap \stackrel{\circ}{\mathrm{H}}\left(\operatorname{Div} ; \Gamma_{n}, \Omega\right) \cap\left(\mathcal{H}(\Omega)^{3}\right)^{\perp}$
(KI) generalized Korn's first inequality, i.e., for all $T \in H\left(\right.$ Curl $\left._{0} ; \Gamma_{t}, \Omega\right)$

$\|T\|_{L^{2}(\Omega)} \leq c_{k}\|\operatorname{sym} T\|_{L^{2}(\Omega)}$

and one trick:
(SD) sliceable domains to get KI

$$
\begin{aligned}
& \text { universitat } \\
& \text { DESSSENNRG }
\end{aligned}
$$

Proof of Main Inequality: Tools

combination of techniques from

- electro-magnetic (static Maxwell equations with mixed boundary conditions)
- elastic theory
three crucial tools:
(HD) Helmholtz' decomposition for tensor fields, i.e.,

$$
\mathrm{L}^{2}(\Omega)=\stackrel{\circ}{\mathrm{H}}\left(\mathrm{Curl}_{0} ; \Gamma_{t}, \Omega\right) \oplus \operatorname{Curl} \stackrel{\circ}{\mathrm{H}}\left(\text { Curl } ; \Gamma_{n}, \Omega\right)
$$

(MI) the Maxwell inequality for tensor fields, i.e.,

$$
\|T\|_{\mathrm{L}^{2}(\Omega)} \leq c_{\mathrm{m}}\left(\|\operatorname{Curl} T\|_{\mathrm{L}^{2}(\Omega)}^{2}+\|\operatorname{Div} T\|_{\mathrm{L}^{2}(\Omega)}^{2}\right)^{1 / 2}
$$

for all $T \in \stackrel{\circ}{\mathrm{H}}\left(\mathrm{Curl} ; \Gamma_{t}, \Omega\right) \cap \stackrel{\circ}{\mathrm{H}}\left(\operatorname{Div} ; \Gamma_{n}, \Omega\right) \cap\left(\mathcal{H}(\Omega)^{3}\right)^{\perp}$
(KI) generalized Korn's first inequality, i.e., for all $T \in \stackrel{\circ}{\mathrm{H}}\left(\mathrm{Curl}_{0} ; \Gamma_{t}, \Omega\right)$

$$
\|T\|_{L^{2}(\Omega)} \leq c_{\mathrm{k}}\|\operatorname{sym} T\|_{\mathrm{L}^{2}(\Omega)}
$$

and one trick:

> (SD) sliceable domains to get KI

Proof of Main Inequality: Tools

combination of techniques from
■ electro-magnetic (static Maxwell equations with mixed boundary conditions)

- elastic theory
three crucial tools:
(HD) Helmholtz' decomposition for tensor fields, i.e.,

$$
\mathrm{L}^{2}(\Omega)=\stackrel{\circ}{\mathrm{H}}\left(\mathrm{Curl}_{0} ; \Gamma_{t}, \Omega\right) \oplus \operatorname{Curl} \stackrel{\circ}{\mathrm{H}}\left(\text { Curl } ; \Gamma_{n}, \Omega\right)
$$

(MI) the Maxwell inequality for tensor fields, i.e.,

$$
\|T\|_{\mathrm{L}^{2}(\Omega)} \leq c_{\mathrm{m}}\left(\|\operatorname{Curl} T\|_{\mathrm{L}^{2}(\Omega)}^{2}+\|\operatorname{Div} T\|_{\mathrm{L}^{2}(\Omega)}^{2}\right)^{1 / 2}
$$

for all $T \in \stackrel{\circ}{\mathrm{H}}\left(\mathrm{Curl} ; \Gamma_{t}, \Omega\right) \cap \stackrel{\circ}{\mathrm{H}}\left(\operatorname{Div} ; \Gamma_{n}, \Omega\right) \cap\left(\mathcal{H}(\Omega)^{3}\right)^{\perp}$
(KI) generalized Korn's first inequality, i.e., for all $T \in \stackrel{\circ}{\mathrm{H}}\left(\mathrm{Curl}_{0} ; \Gamma_{t}, \Omega\right)$

$$
\|T\|_{L^{2}(\Omega)} \leq c_{\mathrm{k}}\|\operatorname{sym} T\|_{\mathrm{L}^{2}(\Omega)}
$$

and one trick:

$$
\text { (SD) sliceable domains to get } \mathrm{KI}
$$

Proof of Main Inequality: Tools

combination of techniques from
■ electro-magnetic (static Maxwell equations with mixed boundary conditions)

- elastic theory
three crucial tools:
(HD) Helmholtz' decomposition for tensor fields, i.e.,

$$
\mathrm{L}^{2}(\Omega)=\stackrel{\circ}{\mathrm{H}}\left(\mathrm{Curl}_{0} ; \Gamma_{t}, \Omega\right) \oplus \operatorname{Curl} \stackrel{\circ}{\mathrm{H}}\left(\text { Curl } ; \Gamma_{n}, \Omega\right)
$$

(MI) the Maxwell inequality for tensor fields, i.e.,

$$
\|T\|_{\mathrm{L}^{2}(\Omega)} \leq c_{\mathrm{m}}\left(\|\operatorname{Curl} T\|_{\mathrm{L}^{2}(\Omega)}^{2}+\|\operatorname{Div} T\|_{\mathrm{L}^{2}(\Omega)}^{2}\right)^{1 / 2}
$$

for all $T \in \stackrel{\circ}{\mathrm{H}}\left(\mathrm{Curl} ; \Gamma_{t}, \Omega\right) \cap \stackrel{\circ}{\mathrm{H}}\left(\operatorname{Div} ; \Gamma_{n}, \Omega\right) \cap\left(\mathcal{H}(\Omega)^{3}\right)^{\perp}$
(KI) generalized Korn's first inequality, i.e., for all $T \in \stackrel{\circ}{\mathrm{H}}\left(\mathrm{Curl}_{0} ; \Gamma_{t}, \Omega\right)$

$$
\|T\|_{L^{2}(\Omega)} \leq c_{\mathrm{k}}\|\operatorname{sym} T\|_{\mathrm{L}^{2}(\Omega)}
$$

and one trick:
(SD) sliceable domains to get KI

Proof of Main Inequality (almost trivial)

```
T\in\stackrel{\circ}{\textrm{H}}(\textrm{Curl}; \Gamma
```



```
    m Curl S = Curl T and
```



```
    | MI = |S| |\mp@subsup{L}{}{2}(\Omega)
    - KI and (*) =
    |T\mp@subsup{|}{\mp@subsup{L}{}{2}(\Omega)}{2}=|R\mp@subsup{|}{\mp@subsup{L}{}{2}(\Omega)}{2}+|S\mp@subsup{|}{\mp@subsup{L}{}{2}(\Omega)}{2}
        \leqccerk
    ⿴囗
        | T| |
```

note: $c=\max \left\{\sqrt{2} c_{\mathrm{k}}, c_{\mathrm{m}} \sqrt{1+2 c_{\mathrm{k}}^{2}}\right\}$

Proof of Main Inequality (almost trivial)

```
T\in \stackrel{\circ}{\textrm{H}}(\textrm{Curl}; \Gamma
```



```
    m Curl S = Curl T and
```



```
    -M1 }->||\mp@subsup{|}{\mp@subsup{L}{}{2}(\Omega)}{}\leq\mp@subsup{C}{||}{|}|\operatorname{Curl T}|\mp@subsup{|}{\mp@subsup{L}{}{2}(\Omega)}{(*)
    - KI and (*) =>
        |T\mp@subsup{|}{\mp@subsup{L}{}{2}(\Omega)}{2}=|R\mp@subsup{|}{\mp@subsup{L}{}{2}(\Omega)}{2}+|S\mp@subsup{|}{\mp@subsup{L}{}{2}(\Omega)}{2}
            <c_
    |
        |T||\mp@code{L'(\Omega)}
```

note: $c=\max \left\{\sqrt{2} a_{\mathrm{k}}, c_{\mathrm{m}} \sqrt{1+2 c_{k}^{2}}\right\}$
universitât
$D_{E} U_{S} I_{S} S_{E} B_{N}$ U G

Proof of Main Inequality (almost trivial)

$$
\begin{aligned}
& T \in \stackrel{\circ}{\mathrm{H}}\left(\mathrm{Curl} ; \Gamma_{t}, \Omega\right) \\
& \text { - } \mathrm{HD} \Rightarrow \quad T=R+S \in \stackrel{\circ}{\mathrm{H}}\left(\mathrm{Curl}_{0} ; \Gamma_{t}, \Omega\right) \oplus \mathrm{Curl} \stackrel{\circ}{\mathrm{H}}\left(\mathrm{Curl} ; \Gamma_{n}, \Omega\right) \\
& \square \quad \text { Curl } S=\text { Curl } T \text { and } \\
& S \in \stackrel{\circ}{\mathrm{H}}\left(\text { Curl } ; \Gamma_{t}, \Omega\right) \cap \operatorname{Curl} \stackrel{\circ}{\mathrm{H}}\left(\operatorname{Curl} ; \Gamma_{n}, \Omega\right)=\stackrel{\circ}{\mathrm{H}}\left(\text { Curl } ; \Gamma_{t}, \Omega\right) \cap \stackrel{\circ}{\mathrm{H}}\left(\operatorname{Div}_{0} ; \Gamma_{n}, \Omega\right) \cap\left(\mathcal{H}(\Omega)^{3}\right)^{\perp}
\end{aligned}
$$

= $\mathrm{MI} \Rightarrow\|S\|_{\mathrm{L}^{2}(\Omega)} \leq c_{\mathrm{m}}\|\operatorname{Curl} T\|_{L^{2}(\Omega)} \quad(*)$

- KI and $(*) \Rightarrow$ $\left\|\boldsymbol{T}^{\| 2}{ }_{L^{2}(\Omega)}=\right\| \boldsymbol{R}_{L^{2}(\Omega)}^{2}+\|S\|_{L^{2}(\Omega)}^{2}$

\square

Proof of Main Inequality (almost trivial)

$$
\text { KI and }(*) \Rightarrow
$$

$$
\|T\|_{L^{2}(\Omega)}^{2}=\|R\|_{L^{2}(\Omega)}^{2}+\|S\|_{L^{2}(\Omega)}^{2}
$$

$$
\leq c_{\mathrm{k}}^{2}\|\operatorname{sym} R\|_{\mathrm{L}^{2}(\Omega)}^{2}+\|S\|_{\mathrm{L}^{2}(\Omega)}^{2} \leq 2 c_{\mathrm{k}}^{2}\|\operatorname{sym} T\|_{\mathrm{L}^{2}(\Omega)}^{2}+\left(1+2 c_{\mathrm{k}}^{2}\right)\|S\|_{\mathrm{L}^{2}(\Omega)}^{2}
$$

\square

$$
\begin{aligned}
& T \in \stackrel{\circ}{\mathrm{H}}\left(\mathrm{Curl} ; \Gamma_{t}, \Omega\right) \\
& \text { - } \mathrm{HD} \Rightarrow \quad T=R+S \in \stackrel{\circ}{\mathrm{H}}\left(\mathrm{Curl}_{0} ; \Gamma_{t}, \Omega\right) \oplus \mathrm{Curl} \stackrel{\circ}{\mathrm{H}}\left(\mathrm{Curl} ; \Gamma_{n}, \Omega\right) \\
& \square \quad \text { Curl } S=\text { Curl } T \text { and } \\
& S \in \stackrel{\circ}{\mathrm{H}}\left(\text { Curl } ; \Gamma_{t}, \Omega\right) \cap \operatorname{Curl} \stackrel{\circ}{\mathrm{H}}\left(\operatorname{Curl} ; \Gamma_{n}, \Omega\right)=\stackrel{\circ}{\mathrm{H}}\left(\text { Curl } ; \Gamma_{t}, \Omega\right) \cap \stackrel{\circ}{\mathrm{H}}\left(\operatorname{Div}_{0} ; \Gamma_{n}, \Omega\right) \cap\left(\mathcal{H}(\Omega)^{3}\right)^{\perp} \\
& \text { - } \mathrm{MI} \Rightarrow \quad\|S\|_{\mathrm{L}^{2}(\Omega)} \leq c_{\mathrm{m}}\|\operatorname{Curl} T\|_{\mathrm{L}^{2}(\Omega)} \quad(*)
\end{aligned}
$$

Proof of Main Inequality (almost trivial)

$$
T \in \stackrel{\circ}{\mathrm{H}}\left(\text { Curl } ; \Gamma_{t}, \Omega\right)
$$

- $\mathrm{HD} \Rightarrow \quad T=R+S \in \stackrel{\circ}{\mathrm{H}}\left(\mathrm{Curl}_{0} ; \Gamma_{t}, \Omega\right) \oplus \mathrm{Curl} \stackrel{\circ}{\mathrm{H}}\left(\mathrm{Curl} ; \Gamma_{n}, \Omega\right)$
$\square \quad$ Curl $S=$ Curl T and

$$
S \in \stackrel{\circ}{\mathrm{H}}\left(\text { Curl } ; \Gamma_{t}, \Omega\right) \cap \operatorname{Curl} \stackrel{\circ}{\mathrm{H}}\left(\text { Curl } ; \Gamma_{n}, \Omega\right)=\stackrel{\circ}{\mathrm{H}}\left(\text { Curl }^{2} \Gamma_{t}, \Omega\right) \cap \stackrel{\circ}{\mathrm{H}}\left(\operatorname{Div}_{0} ; \Gamma_{n}, \Omega\right) \cap\left(\mathcal{H}(\Omega)^{3}\right)^{\perp}
$$

- $\mathrm{MI} \Rightarrow \quad\|S\|_{\mathrm{L}^{2}(\Omega)} \leq c_{\mathrm{m}}\|\operatorname{Curl} T\|_{\mathrm{L}^{2}(\Omega)} \quad(*)$
- KI and $(*) \Rightarrow$

$$
\begin{aligned}
\|T\|_{\mathrm{L}^{2}(\Omega)}^{2} & =\|R\|_{\mathrm{L}^{2}(\Omega)}^{2}+\|S\|_{\mathrm{L}^{2}(\Omega)}^{2} \\
& \leq c_{\mathrm{k}}^{2}\|\operatorname{sym} R\|_{\mathrm{L}^{2}(\Omega)}^{2}+\|S\|_{\mathrm{L}^{2}(\Omega)}^{2} \leq 2 c_{\mathrm{k}}^{2}\|\operatorname{sym} T\|_{\mathrm{L}^{2}(\Omega)}^{2}+\left(1+2 c_{\mathrm{k}}^{2}\right)\|S\|_{\mathrm{L}^{2}(\Omega)}^{2}
\end{aligned}
$$

Proof of Main Inequality (almost trivial)

$$
T \in \stackrel{\circ}{\mathrm{H}}\left(\text { Curl } ; \Gamma_{t}, \Omega\right)
$$

- $\mathrm{HD} \Rightarrow \quad T=R+S \in \stackrel{\circ}{\mathrm{H}}\left(\mathrm{Curl}_{0} ; \Gamma_{t}, \Omega\right) \oplus \mathrm{Curl} \stackrel{\circ}{\mathrm{H}}\left(\mathrm{Curl} ; \Gamma_{n}, \Omega\right)$
$\square \quad$ Curl $S=$ Curl T and
$S \in \stackrel{\circ}{\mathrm{H}}\left(\mathrm{Curl} ; \Gamma_{t}, \Omega\right) \cap \operatorname{Curl} \stackrel{\circ}{\mathrm{H}}\left(\mathrm{Curl} ; \Gamma_{n}, \Omega\right)=\stackrel{\circ}{\mathrm{H}}\left(\operatorname{Curl} ; \Gamma_{t}, \Omega\right) \cap \stackrel{\circ}{\mathrm{H}}\left(\operatorname{Div}_{0} ; \Gamma_{n}, \Omega\right) \cap\left(\mathcal{H}(\Omega)^{3}\right)^{\perp}$
- $\mathrm{MI} \Rightarrow \quad\|S\|_{\mathrm{L}^{2}(\Omega)} \leq c_{\mathrm{m}}\|\operatorname{Curl} T\|_{\mathrm{L}^{2}(\Omega)} \quad(*)$
- KI and $(*) \Rightarrow$

$$
\begin{aligned}
&\|T\|_{\mathrm{L}^{2}(\Omega)}^{2}=\|R\|_{\mathrm{L}^{2}(\Omega)}^{2}+\|S\|_{\mathrm{L}^{2}(\Omega)}^{2} \\
& \leq c_{\mathrm{k}}^{2}\|\operatorname{sym} R\|_{\mathrm{L}^{2}(\Omega)}^{2}+\|S\|_{\mathrm{L}^{2}(\Omega)}^{2} \leq 2 c_{\mathrm{k}}^{2}\|\operatorname{sym} T\|_{\mathrm{L}^{2}(\Omega)}^{2}+\left(1+2 c_{\mathrm{k}}^{2}\right)\|S\|_{\mathrm{L}^{2}(\Omega)}^{2} \\
& \square \Rightarrow\|T\|_{\mathrm{L}^{2}(\Omega)}^{2} \leq c^{2}\|T\|^{2}
\end{aligned}
$$

note: $c=\max \left\{\sqrt{2} c_{\mathrm{k}}, c_{\mathrm{m}} \sqrt{1+2 c_{k}^{2}}\right\}$

Proof of Main Inequality (almost trivial)

$$
T \in \stackrel{\circ}{\mathrm{H}}\left(\text { Curl } ; \Gamma_{t}, \Omega\right)
$$

- $\mathrm{HD} \Rightarrow \quad T=R+S \in \stackrel{\circ}{\mathrm{H}}\left(\mathrm{Curl}_{0} ; \Gamma_{t}, \Omega\right) \oplus \mathrm{Curl} \stackrel{\circ}{\mathrm{H}}\left(\mathrm{Curl} ; \Gamma_{n}, \Omega\right)$
$\square \quad$ Curl $S=$ Curl T and

$$
S \in \stackrel{\circ}{\mathrm{H}}\left(\text { Curl } ; \Gamma_{t}, \Omega\right) \cap \operatorname{Curl} \stackrel{\circ}{\mathrm{H}}\left(\text { Curl } ; \Gamma_{n}, \Omega\right)=\stackrel{\circ}{\mathrm{H}}\left(\text { Curl }^{2} \Gamma_{t}, \Omega\right) \cap \stackrel{\circ}{\mathrm{H}}\left(\operatorname{Div}_{0} ; \Gamma_{n}, \Omega\right) \cap\left(\mathcal{H}(\Omega)^{3}\right)^{\perp}
$$

- $\mathrm{MI} \Rightarrow \quad\|S\|_{\mathrm{L}^{2}(\Omega)} \leq c_{\mathrm{m}}\|\operatorname{Curl} T\|_{\mathrm{L}^{2}(\Omega)} \quad(*)$
- KI and $(*) \Rightarrow$

$$
\begin{aligned}
&\|T\|_{\mathrm{L}^{2}(\Omega)}^{2}=\|R\|_{\mathrm{L}^{2}(\Omega)}^{2}+\|S\|_{\mathrm{L}^{2}(\Omega)}^{2} \\
& \leq c_{\mathrm{k}}^{2}\|\operatorname{sym} R\|_{\mathrm{L}^{2}(\Omega)}^{2}+\|S\|_{\mathrm{L}^{2}(\Omega)}^{2} \leq 2 c_{\mathrm{k}}^{2}\|\operatorname{sym} T\|_{\mathrm{L}^{2}(\Omega)}^{2}+\left(1+2 c_{\mathrm{k}}^{2}\right)\|S\|_{\mathrm{L}^{2}(\Omega)}^{2} \\
& \square \Rightarrow\|T\|_{\mathrm{L}^{2}(\Omega)}^{2} \leq c^{2}\|T\|^{2}
\end{aligned}
$$

note: $c=\max \left\{\sqrt{2} c_{\mathrm{k}}, c_{\mathrm{m}} \sqrt{1+2 c_{\mathrm{k}}^{2}}\right\}$

References

first papers:

$[1] \Omega \subset \mathbb{R}^{3}, \Gamma_{t}=\Gamma$ connected
[2] $\Omega \subset \mathbb{R}^{N}, \Gamma_{t}=\Gamma$ connected (differential forms, curl $:=\mathrm{d} \ldots$)
[4] $\Omega \subset \mathbb{R}^{N}, \Gamma_{t} \subset \Gamma$ (almost submitted)
ongoing work: exterior domains, non-homogeneous tangential traces,
L^{p}, inhomogeneous media ... (already done, needs to be LaTexed
numerics/computations/simulations: first promising results in cooperation with Jan
Valdman (Ostrava) (tensor-H(Curl)-elements with hom. restricted tan. traces)

P. Neff, D. Pauly, and K.-J. Witsch.

A canonical extension of Korn's first inequality to $\mathrm{H}(\mathrm{Curl})$ motivated by gradient plasticity with plastic spin.
C. R. Acad. Sci. Paris, Ser. I, 349:1251-1254, 2011.
P. Neff, D. Pauly, and K.-J. Witsch.

Maxwell meets Korn: A new coercive inequality for tensor fields in $\mathbb{R}^{N \times N}$ with square-integrable exterior derivative.
Math. Methods Appl. Sci., 35:65-71, 2012.

```
UNIVERSITÄT
DEUSISSEN URG

\section*{References}

\section*{first papers:}
\([1] \Omega \subset \mathbb{R}^{3}, \Gamma_{t}=\Gamma\) connected
[2] \(\Omega \subset \mathbb{R}^{N}, \Gamma_{t}=\Gamma\) connected (differential forms, curl \(:=\mathrm{d} \ldots\) )
[3] \(\Omega \subset \mathbb{R}^{3}, \Gamma_{t} \subset \Gamma\) (this talk!, almost submitted)
[4] \(\Omega \subset \mathbb{R}^{N}, \Gamma_{t} \subset \Gamma\) (almost submitted)
ongoing work: exterior domains, non-homogeneous tangential traces,
\(L^{p}\), inhomogeneous media ... (already done, needs to be LaTexed
numerics/computations/simulations: first promising results in cooperation with Jan
Valdman (Ostrava) (tensor-H(Curl)-elements with hom. restricted tan. traces)

P. Neff, D. Pauly, and K.-J. Witsch.

A canonical extension of Korn's first inequality to \(\mathrm{H}(\mathrm{Curl})\) motivated by gradient plasticity with plastic spin.
C. R. Acad. Sci. Paris, Ser. I, 349:1251-1254, 2011.
P. Neff, D. Pauly, and K.-J. Witsch.

Maxwell meets Korn: A new coercive inequality for tensor fields in \(\mathbb{R}^{N \times N}\) with square-integrable exterior derivative.
Math. Methods Appl. Sci., 35:65-71, 2012.

\section*{References}

\section*{first papers:}
\([1] \Omega \subset \mathbb{R}^{3}, \Gamma_{t}=\Gamma\) connected
[2] \(\Omega \subset \mathbb{R}^{N}, \Gamma_{t}=\Gamma\) connected (differential forms, curl \(:=\mathrm{d} \ldots\) )
[3] \(\Omega \subset \mathbb{R}^{3}, \Gamma_{t} \subset \Gamma\) (this talk!, almost submitted)
[4] \(\Omega \subset \mathbb{R}^{N}, \Gamma_{t} \subset \Gamma\) (almost submitted)
ongoing work: exterior domains, non-homogeneous tangential traces,
\(\mathrm{L}^{p}\), inhomogeneous media ... (already done, needs to be LaTexed ...)
numerics/computations/simulations: first promising results in cooperation with Jan
Valdman (Ostrava) (tensor-H(Curl)-elements with hom. restricted tan. traces)

P. Neff, D. Pauly, and K.-J. Witsch.

A canonical extension of Korn's first inequality to \(\mathrm{H}(\mathrm{Curl})\) motivated by gradient plasticity with plastic spin.
C. R. Acad. Sci. Paris, Ser. I, 349:1251-1254, 2011.
P. Neff, D. Pauly, and K.-J. Witsch.

Maxwell meets Korn: A new coercive inequality for tensor fields in \(\mathbb{R}^{N \times N}\) with square-integrable exterior derivative.
Math. Methods Appl. Sci., 35:65-71, 2012.

\section*{References}

\section*{first papers:}
\([1] \Omega \subset \mathbb{R}^{3}, \Gamma_{t}=\Gamma\) connected
[2] \(\Omega \subset \mathbb{R}^{N}, \Gamma_{t}=\Gamma\) connected (differential forms, curl \(:=\mathrm{d} \ldots\) )
[3] \(\Omega \subset \mathbb{R}^{3}, \Gamma_{t} \subset \Gamma\) (this talk!, almost submitted)
[4] \(\Omega \subset \mathbb{R}^{N}, \Gamma_{t} \subset \Gamma\) (almost submitted)
ongoing work: exterior domains, non-homogeneous tangential traces,
\(\mathrm{L}^{p}\), inhomogeneous media ... (already done, needs to be LaTexed ...)
numerics/computations/simulations: first promising results in cooperation with Jan Valdman (Ostrava) (tensor-H(Curl)-elements with hom. restricted tan. traces)

P. Neff, D. Pauly, and K.-J. Witsch.

A canonical extension of Korn's first inequality to H (Curl) motivated by gradient plasticity with plastic spin.
C. R. Acad. Sci. Paris, Ser. I, 349:1251-1254, 2011.
P. Neff, D. Pauly, and K.-J. Witsch.

Maxwell meets Korn: A new coercive inequality for tensor fields in \(\mathbb{R}^{N \times N}\) with square-integrable exterior derivative.
Math. Methods Appl. Sci., 35:65-71, 2012.

\section*{References}

\section*{first papers:}
\([1] \Omega \subset \mathbb{R}^{3}, \Gamma_{t}=\Gamma\) connected
[2] \(\Omega \subset \mathbb{R}^{N}, \Gamma_{t}=\Gamma\) connected (differential forms, curl \(:=\mathrm{d} \ldots\) )
[3] \(\Omega \subset \mathbb{R}^{3}, \Gamma_{t} \subset \Gamma\) (this talk!, almost submitted)
[4] \(\Omega \subset \mathbb{R}^{N}, \Gamma_{t} \subset \Gamma\) (almost submitted)
ongoing work: exterior domains, non-homogeneous tangential traces,
\(\mathrm{L}^{p}\), inhomogeneous media ... (already done, needs to be LaTexed ...)
numerics/computations/simulations: first promising results in cooperation with Jan Valdman (Ostrava) (tensor-H(Curl)-elements with hom. restricted tan. traces)

P. Neff, D. Pauly, and K.-J. Witsch.

A canonical extension of Korn's first inequality to H (Curl) motivated by gradient plasticity with plastic spin.
C. R. Acad. Sci. Paris, Ser. I, 349:1251-1254, 2011.
P. Neff, D. Pauly, and K.-J. Witsch.

Maxwell meets Korn: A new coercive inequality for tensor fields in \(\mathbb{R}^{N \times N}\) with square-integrable exterior derivative.
Math. Methods Appl. Sci., 35:65-71, 2012.```

