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TWO MAXWELL INEQUALITIES

Ω ⊂ R3 bounded, weak Lipschitz (even weaker possible)

⇒
◦
R(Ω) ∩ rot R(Ω) ↪→ L2(Ω) ⇔ R(Ω) ∩ rot

◦
R(Ω) ↪→ L2(Ω)

⇒ Maxwell estimates:

∃
◦
cm > 0 ∀E ∈

◦
R(Ω) ∩ rot R(Ω) |E |L2(Ω)

≤
◦
cm| rot E |L2(Ω)

∃ cm > 0 ∀H ∈ R(Ω) ∩ rot
◦
R(Ω) |H|L2(Ω)

≤ cm| rot H|L2(Ω)

note: best constants

1
◦
cm

= inf
0 6=E∈

◦
R(Ω)∩rot R(Ω)

| rot E |L2(Ω)

|E |L2(Ω)

,
1

cm
= inf

0 6=H∈R(Ω)∩rot
◦
R(Ω)

| rot H|L2(Ω)

|H|L2(Ω)

Theorem
(i)

◦
cm = cm (ii) Ω convex ⇒ cm ≤ cp

Poincaré estimate: ∃ cp > 0 ∀ u ∈ H1(Ω) ∩ R⊥ |u|L2(Ω)
≤ cp|∇u|L2(Ω)

best constant:
1
cp

= inf
0 6=u∈H1(Ω)∩R⊥

|∇u|L2(Ω)

|u|L2(Ω)
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PROOF OF MAXWELL INEQUALITIES

step one: two lin., cl., dens. def. op. and their reduced op.

A : D(A) ⊂ X → Y , A : D(A) := D(A) ∩ R(A∗) ⊂ R(A∗)→ R(A),

A∗ : D(A∗) ⊂ Y → X , A∗ : D(A∗) := D(A∗) ∩ R(A) ⊂ R(A)→ R(A∗)

crucial assumption: D(A) ↪→ X
(
⇔ D(A∗) ↪→ Y

)
⇓

gen. Poincaré estimates:

∃ cA > 0 ∀ x ∈ D(A) |x | ≤ cA|Ax |
∃ cA∗ > 0 ∀ y ∈ D(A∗) |y | ≤ cA∗ |A∗y |

note: best constants

1
cA

= inf
0 6=x∈D(A)

|Ax |
|x |

,
1

cA∗
= inf

0 6=y∈D(A∗)

|A∗y |
|y |

Theorem
cA = cA∗
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PROOF OF MAXWELL INEQUALITIES
step two: two lin., cl., den. def. op. and their reduced op.

A : D(A) ⊂ X → Y , A : D(A) := D(A) ∩ R(A∗) ⊂ R(A∗)→ R(A),

A∗ : D(A∗) ⊂ Y → X , A∗ : D(A∗) := D(A∗) ∩ R(A) ⊂ R(A)→ R(A∗)

choose

A :=
◦

rot :
◦
R(Ω) ⊂ L2(Ω)→ L2(Ω),

◦
rot :

◦
R(Ω) ∩ rot R(Ω) ⊂ rot R(Ω)→ rot

◦
R(Ω),

rot =
◦

rot
∗

: R(Ω) ⊂ L2(Ω)→ L2(Ω), rot =
◦

rot
∗

: R(Ω) ∩ rot
◦
R(Ω) ⊂ rot

◦
R(Ω)→ rot R(Ω)

crucial assumption:
◦
R(Ω) ∩ rot R(Ω) ↪→ L2(Ω)

(
⇔ R(Ω) ∩ rot

◦
R(Ω) ↪→ L2(Ω)

)
⇓

gen. Poincaré estimates (Maxwell estimates):

∃
◦
cm > 0 ∀E ∈

◦
R(Ω) ∩ rot R(Ω) |E |L2(Ω)

≤
◦
cm| rot E |L2(Ω)

∃ cm > 0 ∀H ∈ R(Ω) ∩ rot
◦
R(Ω) |H|L2(Ω)

≤ cm| rot H|L2(Ω)

Theorem
◦
cm = cm
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PROOF OF MAXWELL INEQUALITIES

step three:

Proposition (integration by parts (Grisvard’s book and older...))
Let Ω ⊂ R3 be piecewise C2. Then for all E ∈ C∞(Ω)

| div E |2
L2(Ω)

+ | rot E |2
L2(Ω)

− |∇E |2
L2(Ω)

=
L∑

`=1

∫
Γ`

(
div ν |En|2 + ((∇ν) Et) · Et

)︸ ︷︷ ︸
curvature, sign!

. . . ≥ 0, if Ω convex.

+
L∑

`=1

∫
Γ`

(En divΓEt − Et · ∇ΓEn)︸ ︷︷ ︸
boundary conditions, no sign!

.

approx. convex Ω from inside by convex and smooth (Ωk )k ⇒

Corollary (Gaffney’s inequality)
Let Ω ⊂ R3 be convex and E ∈

◦
R(Ω) ∩ D(Ω) or E ∈ R(Ω) ∩

◦
D(Ω).

Then E ∈ H1(Ω) and

| rot E |2
L2(Ω)

+ | div E |2
L2(Ω)

− |∇E |2
L2(Ω)

≥ 0.
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PROOF OF MAXWELL INEQUALITIES

step four:

(Poincaré) ∃ cp > 0 ∀ u ∈ H1(Ω) ∩ R⊥ |u|L2(Ω)
≤ cp|∇u|L2(Ω)

Let Ω be convex and E ∈ R(Ω) ∩
◦
D0(Ω). Note

◦
D0(Ω) = rot

◦
R(Ω).

Cor. (Gaffney) ⇒ E ∈ H1(Ω) and E = rot H with H ∈
◦
R(Ω).

⇒ E ∈ H1(Ω) ∩ (R3)⊥ ∩
◦
D0(Ω), since 〈E , a〉L2(Ω)

= 〈rot H, a〉L2(Ω)
= 0 for a ∈ R3

⇓
|E |L2(Ω)

≤ cp|∇E |L2(Ω)
≤ cp| rot E |L2(Ω)

⇓
cm ≤ cp

�

Theorem
Ω convex ⇒

◦
cp ≤

◦
cm = cm ≤ cp

Here:

(Poincaré/Friedrichs) ∃
◦
cp > 0 ∀ u ∈

◦
H1(Ω) |u|L2(Ω)

≤
◦
cp|∇u|L2(Ω)
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MATRICES

Let A ∈ RN×N .

sym
skwA :=

1
2

(A± A>), idA :=
tr A
N

id, tr A := A · id, dev A := A− idA

(pointwise orthogonality) ⇒

|A|2 = | dev A|2+
1
N
| tr A|2, |A|2 = | sym A|2+| skw A|2, | sym A|2 = | dev sym A|2+

1
N
| tr A|2

⇒ | dev A|,N−1/2| tr A|, | sym A|, | skw A| ≤ |A|

Ω ⊂ RN and A := ∇v := J>v for v ∈ H1(Ω) ⇒ (pointwise)

| skw∇v |2 =
1
2
| rot v |2, tr∇v = div v ,

|∇v |2 = | dev sym∇v |2 +
1
N
| div v |2 +

1
2
| rot v |2 (1)

Moreover

|∇v |2 = | rot v |2 + 〈∇v , (∇v)>〉

since 2| skw∇v |2 =
1
2
|∇v − (∇v)>|2 = |∇v |2 − 〈∇v , (∇v)>〉.
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KORN’S FIRST INEQUALITY: STANDARD BOUNDARY CONDITIONS

Lemma (Korn’s first inequality:
◦
H1-version)

Let Ω be an open subset of RN with 2 ≤ N ∈ N. Then for all v ∈
◦
H1(Ω)

|∇v |2
L2(Ω)

= 2| dev sym∇v |2
L2(Ω)

+
2− N

N
| div v |2

L2(Ω)
≤ 2| dev sym∇v |2

L2(Ω)

and equality holds if and only if div v = 0 or N = 2.

Proof.
note: −∆ = rot∗ rot−∇ div (vector Laplacian)

⇒ ∀ v ∈
◦
C∞(Ω) |∇v |2

L2(Ω)
= | rot v |2

L2(Ω)
+ | div v |2

L2(Ω)
(Gaffney’s equality) (2)

(2) extends to all v ∈
◦
H1(Ω) by continuity. Then

|∇v |2
L2(Ω)

= | dev sym∇v |2
L2(Ω)

+
1
2
|∇v |2

L2(Ω)
+

2− N
2N

| div v |2
L2(Ω)

follows by (1), i.e., |∇v |2 = | dev sym∇v |2 +
1
N
| div v |2 +

1
2
| rot v |2, and (2).
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KORN’S FIRST INEQUALITY: TANGENTIAL/NORMAL BOUNDARY CONDITIONS

main result:

Theorem (Korn’s first inequality: tangential/normal version)
Let Ω ⊂ RN be piecewise C2-concave and v ∈

◦
H1

t,n(Ω). Then Korn’s first inequality

|∇v |L2(Ω)
≤
√

2| dev sym∇v |L2(Ω)

holds. If Ω is a polyhedron, even

|∇v |2
L2(Ω)

= 2| dev sym∇v |2
L2(Ω)

+
2− N

N
| div v |2

L2(Ω)
≤ 2| dev sym∇v |2

L2(Ω)

is true and equality holds if and only if div v = 0 or N = 2.
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KORN’S FIRST INEQUALITY: TANGENTIAL/NORMAL BOUNDARY CONDITIONS

tools:

Proposition (integration by parts (Grisvard’s book and older...))
Let Ω ⊂ RN be piecewise C2. Then

| div v |2
L2(Ω)

+ | rot v |2
L2(Ω)

− |∇v |2
L2(Ω)

=
L∑

`=1

∫
Γ`

(
div ν |vn|2 + ((∇ν) vt) · vt

)︸ ︷︷ ︸
curvature, sign!

+
L∑

`=1

∫
Γ`

(vn divΓvt − vt · ∇Γvn)︸ ︷︷ ︸
boundary conditions, no sign!

,

| div v |2
L2(Ω)

+ | rot v |2
L2(Ω)

− |∇v |2
L2(Ω)

=
L∑

`=1

∫
Γ`

(
div ν |vn|2 + ((∇ν) vt) · vt

)
.

holds for all v ∈ C∞(Ω) resp. v ∈
◦
C∞t,n(Ω).

Corollary (Gaffney’s inequalities)
Let Ω ⊂ RN be piecewise C2 and v ∈

◦
H1

t,n(Ω). Then

| rot v |2
L2(Ω)

+ | div v |2
L2(Ω)

− |∇v |2
L2(Ω)


≤ 0 , if Ω is piecewise C2-concave,
= 0 , if Ω is a polyhedron,
≥ 0 , if Ω is piecewise C2-convex.
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KORN’S FIRST INEQUALITY: TANGENTIAL/NORMAL BOUNDARY CONDITIONS

Proof.
(1), i.e., |∇v |2 = | dev sym∇v |2 +

1
N
| div v |2 +

1
2
| rot v |2, and the corollary ⇒

|∇v |2
L2(Ω)

≤ | dev sym∇v |2
L2(Ω)

+
1
2
|∇v |2

L2(Ω)
+

2− N
2N

| div v |2
L2(Ω)

⇒ first estimate

Ω polyhedron ⇒ equality holds
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HOW ONE CANNOT APPLY THE CLOSED GRAPH THEOREM!

generally: compact embedding or regularity + closed graph theorem

⇒ Poincaré type estimate

(hard analysis to do!)

surprisingly: ∃ people closed graph / open mapping / bounded inverse theorem

⇒ Poincaré type estimate

(example on next slide)

!!! THIS IS WRONG !!!



MAXWELL INEQUALITIES KORN’S FIRST INEQUALITIES REFERENCES DISTURBING CONSEQUENCES FOR VILLANI’S WORK (FIELDS MEDAL)

HOW ONE CANNOT APPLY THE CLOSED GRAPH THEOREM!

ON A VARIANT OF KORN’S INEQUALITY 609

Remarks.

1. In dimension N = 3, one can identify the space A3 of 3 × 3 antisymmetric matrices to R3 in the usual way,
via Σx = σ ∧ x. Then, to any Σ ∈ UA3 is associated σ ∈ S2 such that

Σx =
σ ∧ x√

2
·

One then recovers (up to a factor |Ω|) the formula which appears in Grad ([9], p. 274):

G(Ω) =
1

|Ω| inf
σ∈S2

inf
v∈Vσ

∥∇symv∥2
L2(Ω),

where Vσ is defined by the equations

∇ · v = 0, ∇ ∧ v = σ, v · n = 0 on ∂Ω.

Of course ∇ ∧ v is the curl of v. Also when N = 2, one can identify UA2 with S0 = {−1, +1}.

2. Grad may not have been the first one to consider the quantity G(Ω), but most probably he was the first one
to understand that this number may be useful in the context of the Boltzmann equation. Even more, to our
knowledge his paper is the only one to mention this fact. This justifies our terminology of “Grad’s number”.
The present work drew a lot of inspiration from Grad’s paper [9], which is at the same time quite obscure,
definitely false and really illuminating in certain respects – as we will discuss in [4].

3. If Ω is simply connected, which is presumably the most natural case for applications, then V0 = 0 and VΣ

contains a unique element (we shall show in a moment that VΣ is never empty).

4. Our primary goal was to obtain fully explicit lower bounds for K(Ω) in terms of simple geometrical information
about Ω; to achieve this completely with our method, we would have to give quantitative estimates on CH .
Unfortunately, we have been unable to find explicit estimates about CH in the literature, although it seems
unlikely that nobody has been interested in this problem. Of course, when N = 3 and Ω is simply connected,
estimate (10) is equivalent to

∥∇u∥2
L2(Ω) ≤ CH(Ω)

(
∥∇ · u∥2

L2(Ω) + ∥∇ ∧ u∥2
L2(Ω)

)
, (13)

up to possible replacement of CH by CH + 1. This is an estimate which is well-known to many people, but for
which it seems very difficult to find an accurate reference. Inequality (10) can be seen as a consequence of the
closed graph theorem; for instance, in the case of a simply connected domain, one just needs to note that (i)
∥∇au∥2

L2 + ∥∇ · u∥2
L2 is bounded by ∥∇u∥2

L2, (ii) the identities ∇ · u = 0, ∇au = 0, u · n = 0 (on the boundary),
together imply u = 0; so in fact the norms appearing on the left and on the right-hand side of (10) have to be
equivalent. The proof of point (ii) is as follows: from Poincaré’s lemma in a simply connected domain, there
exists a real-valued function ψ such that ∇ψ = u; then ψ is a harmonic function with homogeneous Neumann
boundary condition, so it has to be a constant, and u = 0.

Of course this argument gives no insight on how to estimate the constants. As pointed out to us independently
by Druet and by Serre, one can choose CH(Ω) = 1 if Ω is convex, but the general case seems to be much harder.
Anyway this is a separate issue which has nothing to do with axisymmetry; all the relevant information about
axisymmetry lies in our estimates on G(Ω)−1.

The organization of the paper is as follows: after a short proof of Theorem 3 in Section 3, we shall give
some quantitative estimates on the positivity of G(Ω) in Section 4, and finally give a brief discussion of the
axisymmetric case in Section 5. In an Appendix, we reproduce a proof of the abovementioned estimate of CH

when Ω is convex, which was communicated to us by Druet.
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view of fluid dynamics, our context of application may seem rather strange, because ∥∇symu∥2
L2 looks like an

energy dissipation term, of the kind encountered in the theory of the Navier–Stokes equations; but the tangency
boundary condition on u is typical of inviscid models, like the Euler equation. There is no contradiction at the
level of the modelling, because in our method the term ∥∇symu∥2

L2 is not obtained as a dissipation term, but
as the leading order, in some sense, of the second derivative of a certain functional.

The second point on which we attract the attention of the reader is the importance which we give to the
value of the positive constant K(Ω) in (8). In our study of trend to equilibrium, the value of the constant K(Ω)
is used to quantify the deviation of Ω from axisymmetry. It is therefore of great interest to have as much insight
as possible in the explicit value of K(Ω), in terms of the geometry of Ω. In fact, the main interest of the present
work is to provide the following estimates on K(Ω).

Theorem 3 (continued). The largest admissible constant K(Ω) in (8) satisfies

K(Ω)−1 ≤ 2 N
(
1 + CH(Ω)

)(
1 + K(Ω)−1

)(
1 + G(Ω)−1

)
, (9)

where the various constants above are defined as follows:

• CH = CH(Ω) is a constant related to the homology of Ω and the Hodge decomposition, defined by the
inequality

∥∇symv∥2
L2(Ω)/V0(Ω) ≤ CH

(
∥∇ · v∥2

L2(Ω) + ∥∇av∥2
L2(Ω)

)
, (10)

or (almost) equivalently by inequality (13) below. Here ∇ · v stands for the divergence of the vector field
v, ∇ · v =

∑
i ∂vi/∂xi, and V0(Ω) is the space of all vector fields v0 ∈ H1(Ω; RN ) such that

∇ · v0 = 0, ∇av0 = 0.

We recall that V0 is a finite-dimensional vector space whose dimension depends only on the topology of Ω;

• K(Ω) is the constant in (1);

• and finally, G = G(Ω) is what we shall call Grad’s number:

G(Ω) =
1

2|Ω| inf
Σ∈UAN

inf
v∈VΣ

∥∇symv∥2
L2(Ω). (11)

Here UAN is the space of antisymmetric N × N real matrices with unit norm:

Σ ∈ UAN ⇐⇒
(
Σ + T Σ = 0 and |Σ| = 1

)
,

and for any N × N matrix Σ, we define VΣ as the set of all vector fields in H1(Ω) satisfying

⎧
⎪⎨
⎪⎩

∇ · v ≡ 0, ∇av ≡ Σ in Ω,

v · n = 0 on ∂Ω.

(12)

Moreover, G(Ω) > 0 and, at least when N = 2 or 3, an explicit lower bound on G(Ω) can be given in terms of
“basic” geometrical information about how far Ω is from being axisymmetric.

(copies from original paper...)
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