MAXWELL INEQUALITIES	KORN'S FIRST INEQUALITIES	REFERENCES	DISTURBING CONSEQUENCES FOR VILLANI'S WORK (FIELDS MEDAL)
00000	00000	0	000

VERFEINERTE PARTIELLE INTEGRATION: AUSWIRKUNGEN AUF DIE KONSTANTEN IN MAXWELL- UND KORN-UNGLEICHUNGEN

TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG

OBERSEMINAR NUMERISCHE MATHEMATIK GASTGEBER: Oliver Rheinbach

> Dirk Pauly Universität Duisburg-Essen

UNIVERSITÄT DUISBURG ESSEN

Open-Minded ;-)

8. Dezember 2015

MAXWELL INEQUALITIES	Korn's first inequalities	REFERENCES	DISTURBING CONSEQUENCES FOR VILLANI'S WORK (FIELDS MEDAL)
00000	00000	0	000

OVERVIEW

MAXWELL INEQUALITIES TWO MAXWELL INEQUALITIES PROOFS

KORN'S FIRST INEQUALITIES STANDARD HOMOGENEOUS SCALAR BOUNDARY CONDITIONS NON-STANDARD HOMOGENEOUS TANGENTIAL OR NORMAL BOUNDARY CONDITIONS

REFERENCES

DISTURBING CONSEQUENCES FOR VILLANI'S WORK (FIELDS MEDAL) CITATIONS SOME FUN...

MAXWELL INEQUALITIES	KORN'S FIRST INEQUALITIES	REFERENCES	DISTURBING CONSEQUENCES FOR VILLANI'S WORK (FIELDS MEDAL)
00000	00000	0	000

TWO MAXWELL INEQUALITIES

 $\Omega \subset \mathbb{R}^3$ bounded, weak Lipschitz (even weaker possible)

- $\Rightarrow \qquad \stackrel{\,\,{}_\circ}{\mathsf{R}}(\Omega)\cap \mathsf{rot}\,\mathsf{R}(\Omega) \hookrightarrow \mathsf{L}^2(\Omega) \quad \Leftrightarrow \quad \mathsf{R}(\Omega)\cap \mathsf{rot}\,\overset{\,\,{}_\circ}{\mathsf{R}}(\Omega) \hookrightarrow \mathsf{L}^2(\Omega)$
- \Rightarrow Maxwell estimates:

$$\begin{aligned} \exists \, \overset{\circ}{c}_{\mathsf{m}} &> 0 \qquad \forall \, E \in \overset{\circ}{\mathsf{R}}(\Omega) \cap \operatorname{rot} \mathsf{R}(\Omega) \qquad |E|_{\mathsf{L}^{2}(\Omega)} \leq \overset{\circ}{c}_{\mathsf{m}} |\operatorname{rot} E|_{\mathsf{L}^{2}(\Omega)} \\ \exists \, c_{\mathsf{m}} &> 0 \qquad \forall \, H \in \mathsf{R}(\Omega) \cap \operatorname{rot} \overset{\circ}{\mathsf{R}}(\Omega) \qquad |H|_{\mathsf{L}^{2}(\Omega)} \leq c_{\mathsf{m}} |\operatorname{rot} H|_{\mathsf{L}^{2}(\Omega)} \end{aligned}$$

note: best constants

$$\frac{1}{\overset{\circ}{\mathcal{C}_{\mathsf{m}}}} = \inf_{\substack{0 \neq E \in \overset{\circ}{\mathsf{R}}(\Omega) \cap \mathsf{rot} \, \mathsf{R}(\Omega)}} \frac{|\operatorname{rot} E|_{\mathsf{L}^{2}(\Omega)}}{|E|_{\mathsf{L}^{2}(\Omega)}}, \quad \frac{1}{c_{\mathsf{m}}} = \inf_{\substack{0 \neq H \in \mathsf{R}(\Omega) \cap \mathsf{rot} \, \overset{\circ}{\mathsf{R}}(\Omega)}} \frac{|\operatorname{rot} H|_{\mathsf{L}^{2}(\Omega)}}{|H|_{\mathsf{L}^{2}(\Omega)}}$$

Theorem

(i) $\ddot{c}_{m} = c_{m}$ (ii) $\Omega \text{ convex} \Rightarrow c_{m} \leq c_{p}$

MAXWELL INEQUALITIES	KORN'S FIRST INEQUALITIES	REFERENCES	DISTURBING CONSEQUENCES FOR VILLANI'S WORK (FIELDS MEDAL)
0●000	00000	0	000

step one: two lin., cl., dens. def. op. and their reduced op.

$$\begin{array}{ll} A:D(A)\subset X\to Y, & \mathcal{A}:D(\mathcal{A}):=D(A)\cap R(A^*)\subset R(A^*)\to R(A),\\ A^*:D(A^*)\subset Y\to X, & \mathcal{A}^*:D(\mathcal{A}^*):=D(A^*)\cap R(A)\subset R(A)\to R(A^*) \end{array}$$

crucial assumption: $D(\mathcal{A}) \hookrightarrow X (\Leftrightarrow D(\mathcal{A}^*) \hookrightarrow Y)$

₩

gen. Poincaré estimates:

$$\begin{array}{ll} \exists \ c_A > 0 & \forall \ x \in D(\mathcal{A}) & |x| \le c_A |Ax| \\ \exists \ c_{A^*} > 0 & \forall \ y \in D(\mathcal{A}^*) & |y| \le c_{A^*} |A^*y| \end{array}$$

note: best constants

$$\frac{1}{c_A} = \inf_{0 \neq x \in D(\mathcal{A})} \frac{|Ax|}{|x|}, \quad \frac{1}{c_{A^*}} = \inf_{0 \neq y \in D(\mathcal{A}^*)} \frac{|A^*y|}{|y|}$$

Theorem $c_A = c_{A^*}$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 = のへで

MAXWELL INEQUALITIES	Korn's first inequalities	REFERENCES	DISTURBING CONSEQUENCES FOR VILLANI'S WORK (FIELDS MEDAL)
00000	00000	0	000

step two: two lin., cl., den. def. op. and their reduced op.

$$\begin{aligned} A: D(A) \subset X \to Y, & \mathcal{A}: D(\mathcal{A}) := D(A) \cap R(A^*) \subset R(A^*) \to R(A), \\ A^*: D(A^*) \subset Y \to X, & \mathcal{A}^*: D(\mathcal{A}^*) := D(A^*) \cap R(A) \subset R(A) \to R(A^*) \end{aligned}$$

choose

$$\begin{split} A &:= \mathring{\text{rot}} : \mathring{\mathsf{R}}(\Omega) \subset \mathsf{L}^{2}(\Omega) \to \mathsf{L}^{2}(\Omega), \qquad \mathring{\text{rot}} : \mathring{\mathsf{R}}(\Omega) \cap \operatorname{rot} \mathsf{R}(\Omega) \subset \operatorname{rot} \mathsf{R}(\Omega) \to \operatorname{rot} \mathring{\mathsf{R}}(\Omega),\\ \operatorname{rot} &= \mathring{\operatorname{rot}}^{*} : \mathsf{R}(\Omega) \subset \mathsf{L}^{2}(\Omega) \to \mathsf{L}^{2}(\Omega), \quad \operatorname{rot} = \mathring{\text{rot}}^{*} : \mathsf{R}(\Omega) \cap \operatorname{rot} \mathring{\mathsf{R}}(\Omega) \subset \operatorname{rot} \mathring{\mathsf{R}}(\Omega) \to \operatorname{rot} \mathsf{R}(\Omega) \\ \operatorname{crucial assumption:} \quad \mathring{\mathsf{R}}(\Omega) \cap \operatorname{rot} \mathsf{R}(\Omega) \hookrightarrow \mathsf{L}^{2}(\Omega) (\Leftrightarrow \quad \mathsf{R}(\Omega) \cap \operatorname{rot} \mathring{\mathsf{R}}(\Omega) \hookrightarrow \mathsf{L}^{2}(\Omega)) \\ \Downarrow \end{split}$$

gen. Poincaré estimates (Maxwell estimates):

$$\exists \overset{\circ}{c}_{m} > 0 \qquad \forall E \in \overset{\circ}{R}(\Omega) \cap \operatorname{rot} R(\Omega) \qquad |E|_{L^{2}(\Omega)} \le \overset{\circ}{c}_{m} |\operatorname{rot} E|_{L^{2}(\Omega)}$$
$$\exists c_{m} > 0 \qquad \forall H \in R(\Omega) \cap \operatorname{rot} \overset{\circ}{R}(\Omega) \qquad |H|_{L^{2}(\Omega)} \le c_{m} |\operatorname{rot} H|_{L^{2}(\Omega)}$$

 $\overset{\circ}{c}_{m}=\textit{c}_{m}$

step three:

Proposition (integration by parts (Grisvard's book and older...)) Let $\Omega \subset \mathbb{R}^3$ be piecewise C^2 . Then for all $E \in C^{\infty}(\overline{\Omega})$

$$\begin{split} |\operatorname{div} E|_{L^{2}(\Omega)}^{2} + |\operatorname{rot} E|_{L^{2}(\Omega)}^{2} - |\nabla E|_{L^{2}(\Omega)}^{2} \\ = \sum_{\ell=1}^{L} \int_{\Gamma_{\ell}} \underbrace{\left(\operatorname{div} \nu |E_{n}|^{2} + \left((\nabla \nu) E_{t}\right) \cdot E_{t}\right)}_{\operatorname{curvature, sign!}} + \sum_{\ell=1}^{L} \int_{\Gamma_{\ell}} \underbrace{\left(E_{n} \operatorname{div}_{\Gamma} E_{t} - E_{t} \cdot \nabla_{\Gamma} E_{n}\right)}_{\operatorname{boundary conditions, no sign!}}. \end{split}$$

approx. convex Ω from inside by convex and smooth $(\Omega_k)_k \Rightarrow$

 $\begin{array}{l} \mbox{Corollary (Gaffney's inequality)}\\ \mbox{Let }\Omega\subset \mathbb{R}^3 \mbox{ be convex and } E\in \overset{\circ}{\mathsf{R}}(\Omega)\cap\mathsf{D}(\Omega) \mbox{ or } E\in\mathsf{R}(\Omega)\cap \overset{\circ}{\mathsf{D}}(\Omega).\\ \mbox{Then } E\in\mathsf{H}^1(\Omega) \mbox{ and } \end{array}$

$$|\operatorname{rot} E|^{2}_{L^{2}(\Omega)} + |\operatorname{div} E|^{2}_{L^{2}(\Omega)} - |\nabla E|^{2}_{L^{2}(\Omega)} \ge 0.$$

MAXWELL INEQUALITIES	KORN'S FIRST INEQUALITIES	REFERENCES	DISTURBING CONSEQUENCES FOR VILLANI'S WORK (FIELDS MEDAL)
0000	00000	0	000

step four:

$$(\mathsf{Poincaré}) \qquad \exists \, c_{\mathsf{p}} > 0 \quad \forall \, u \in \mathsf{H}^1(\Omega) \cap \mathbb{R}^\perp \qquad \left| u \right|_{\mathsf{L}^2(\Omega)} \leq c_{\mathsf{p}} \left| \nabla u \right|_{\mathsf{L}^2(\Omega)}$$

 $\text{Let }\Omega\text{ be convex and }E\in\mathsf{R}(\Omega)\cap\overset{\circ}{\mathsf{D}}_0(\Omega).\quad\text{Note }\overset{\circ}{\mathsf{D}}_0(\Omega)=\text{rot}\overset{\circ}{\mathsf{R}}(\Omega).$

Cor. (Gaffney) $\Rightarrow E \in H^1(\Omega)$ and $E = \operatorname{rot} H$ with $H \in \overset{\circ}{\mathsf{R}}(\Omega)$.

$$\Rightarrow \quad E \in \mathsf{H}^1(\Omega) \cap (\mathbb{R}^3)^{\perp} \cap \overset{\circ}{\mathsf{D}}_0(\Omega), \, \text{since } \left\langle E, a \right\rangle_{\mathsf{L}^2(\Omega)} = \left\langle \operatorname{rot} H, a \right\rangle_{\mathsf{L}^2(\Omega)} = 0 \, \, \text{for } a \in \mathbb{R}^3$$

∜

$$|E|_{\mathsf{L}^{2}(\Omega)} \leq c_{\mathsf{p}} |\nabla E|_{\mathsf{L}^{2}(\Omega)} \leq c_{\mathsf{p}} |\operatorname{rot} E|_{\mathsf{L}^{2}(\Omega)}$$

₩

 $c_{\rm m} \leq c_{\rm p}$

Theorem

 $\begin{array}{ll} \Omega \ \textit{convex} & \Rightarrow & \stackrel{\circ}{c}_{p} \leq \stackrel{\circ}{c}_{m} = \textit{c}_{m} \leq \textit{c}_{p} \\ \text{Here:} \end{array}$

$$(\text{Poincaré/Friedrichs}) \qquad \exists \stackrel{\circ}{c}_p > 0 \quad \forall \, u \in \stackrel{\circ}{H}^1(\Omega) \qquad |u|_{L^2(\Omega)} \leq \stackrel{\circ}{c}_p |\nabla u|_{L^2(\Omega)}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

MAXWELL INEQUALITIES	KORN'S FIRST INEQUALITIES	REFERENCES	DISTURBING CONSEQUENCES FOR VILLANI'S WORK (FIELDS MEDAL)
00000	● O OOO	0	000

MATRICES

Let $A \in \mathbb{R}^{N \times N}$.

$$\sup_{\mathsf{skw}} A := \frac{1}{2} (A \pm A^{\top}), \quad \text{ id}_A := \frac{\operatorname{tr} A}{N} \operatorname{id}, \quad \operatorname{tr} A := A \cdot \operatorname{id}, \quad \operatorname{dev} A := A - \operatorname{id}_A$$

(pointwise orthogonality) \Rightarrow

$$|A|^{2} = |\det A|^{2} + \frac{1}{N} |\operatorname{tr} A|^{2}, \quad |A|^{2} = |\operatorname{sym} A|^{2} + |\operatorname{skw} A|^{2}, \quad |\operatorname{sym} A|^{2} = |\operatorname{dev} \operatorname{sym} A|^{2} + \frac{1}{N} |\operatorname{tr} A|^{2}$$

$$\Rightarrow \quad |\operatorname{dev} A|, N^{-1/2} |\operatorname{tr} A|, |\operatorname{sym} A|, |\operatorname{skw} A| \le |A|$$

$$\Omega \subset \mathbb{R}^N$$
 and $A := \nabla v := J_v^\top$ for $v \in H^1(\Omega) \Rightarrow$ (pointwise)

$$|\operatorname{skw} \nabla v|^{2} = \frac{1}{2} |\operatorname{rot} v|^{2}, \quad \operatorname{tr} \nabla v = \operatorname{div} v,$$
$$|\nabla v|^{2} = |\operatorname{dev} \operatorname{sym} \nabla v|^{2} + \frac{1}{N} |\operatorname{div} v|^{2} + \frac{1}{2} |\operatorname{rot} v|^{2}$$
(1)

Moreover

$$|\nabla v|^2 = |\operatorname{rot} v|^2 + \langle \nabla v, (\nabla v)^\top \rangle$$

since $2|\operatorname{skw} \nabla v|^2 = \frac{1}{2} |\nabla v - (\nabla v)^\top|^2 = |\nabla v|^2 - \langle \nabla v, (\nabla v)^\top \rangle.$

 Maxwell inequalities
 Korn's first inequalities
 references
 disturbing consequences for Villani's work (fields medal)

 00000
 0
 0
 000

KORN'S FIRST INEQUALITY: STANDARD BOUNDARY CONDITIONS

Lemma (Korn's first inequality: H¹-version)

Let Ω be an open subset of \mathbb{R}^N with $2 \leq N \in \mathbb{N}$. Then for all $v \in \check{H}^1(\Omega)$

$$|\nabla v|_{\mathsf{L}^2(\Omega)}^2 = 2|\operatorname{dev}\operatorname{sym} \nabla v|_{\mathsf{L}^2(\Omega)}^2 + \frac{2-N}{N}|\operatorname{div} v|_{\mathsf{L}^2(\Omega)}^2 \leq 2|\operatorname{dev}\operatorname{sym} \nabla v|_{\mathsf{L}^2(\Omega)}^2$$

and equality holds if and only if div v = 0 or N = 2.

 $\label{eq:proof_proof_proof} \begin{array}{ll} \mbox{Proof.} \\ \mbox{note:} -\Delta = \mbox{rot}^* \mbox{ rot} - \nabla \mbox{ div} & (\mbox{vector Laplacian}) \end{array}$

$$\Rightarrow \quad \forall \ v \in \overset{\circ}{C}^{\infty}(\Omega) \quad |\nabla v|^{2}_{L^{2}(\Omega)} = | \text{ rot } v|^{2}_{L^{2}(\Omega)} + | \text{ div } v|^{2}_{L^{2}(\Omega)} \quad (\text{Gaffney's equality}) \quad (2)$$

(2) extends to all $v\in \overset{\circ}{\mathsf{H}}{}^1(\Omega)$ by continuity. Then

$$|\nabla v|_{L^{2}(\Omega)}^{2} = |\operatorname{dev}\operatorname{sym}\nabla v|_{L^{2}(\Omega)}^{2} + \frac{1}{2}|\nabla v|_{L^{2}(\Omega)}^{2} + \frac{2-N}{2N}|\operatorname{div} v|_{L^{2}(\Omega)}^{2}$$

follows by (1), i.e., $|\nabla v|^{2} = |\operatorname{dev}\operatorname{sym}\nabla v|^{2} + \frac{1}{N}|\operatorname{div} v|^{2} + \frac{1}{2}|\operatorname{rot} v|^{2}$, and (2).

KORN'S FIRST INEQUALITY: TANGENTIAL/NORMAL BOUNDARY CONDITIONS

main result:

Theorem (Korn's first inequality: tangential/normal version) Let $\Omega \subset \mathbb{R}^N$ be piecewise C²-concave and $v \in \overset{\circ}{H}^1_{t,n}(\Omega)$. Then Korn's first inequality

$$|\nabla v|_{\mathsf{L}^2(\Omega)} \leq \sqrt{2} |\operatorname{dev}\operatorname{sym} \nabla v|_{\mathsf{L}^2(\Omega)}$$

holds. If Ω is a polyhedron, even

$$|\nabla v|_{\mathsf{L}^2(\Omega)}^2 = 2|\operatorname{dev}\operatorname{sym} \nabla v|_{\mathsf{L}^2(\Omega)}^2 + \frac{2-N}{N}|\operatorname{div} v|_{\mathsf{L}^2(\Omega)}^2 \leq 2|\operatorname{dev}\operatorname{sym} \nabla v|_{\mathsf{L}^2(\Omega)}^2$$

is true and equality holds if and only if div v = 0 or N = 2.

 Maxwell inequalities
 Korn's first inequalities
 References
 Disturbing consequences for Villani's work (Fields medal)

 00000
 000
 000
 000
 000

KORN'S FIRST INEQUALITY: TANGENTIAL/NORMAL BOUNDARY CONDITIONS tools:

Proposition (integration by parts (Grisvard's book and older...)) Let $\Omega \subset \mathbb{R}^N$ be piecewise C². Then

$$|\operatorname{div} v|_{L^{2}(\Omega)}^{2} + |\operatorname{rot} v|_{L^{2}(\Omega)}^{2} - |\nabla v|_{L^{2}(\Omega)}^{2} = \sum_{\ell=1}^{L} \int_{\Gamma_{\ell}} \underbrace{(\operatorname{div} \nu |v_{n}|^{2} + ((\nabla \nu) v_{t}) \cdot v_{t})}_{\operatorname{curvature, sign!}} + \sum_{\ell=1}^{L} \int_{\Gamma_{\ell}} \underbrace{(v_{n} \operatorname{div}_{\Gamma} v_{t} - v_{t} \cdot \nabla_{\Gamma} v_{n})}_{\operatorname{boundary conditions, no sign!}},$$
$$|\operatorname{div} v|_{L^{2}(\Omega)}^{2} + |\operatorname{rot} v|_{L^{2}(\Omega)}^{2} - |\nabla v|_{L^{2}(\Omega)}^{2} = \sum_{\ell=1}^{L} \int_{\Gamma_{\ell}} (\operatorname{div} \nu |v_{n}|^{2} + ((\nabla \nu) v_{t}) \cdot v_{t}).$$

holds for all $v \in C^{\infty}(\overline{\Omega})$ resp. $v \in \tilde{C}{}^{\infty}_{t,n}(\Omega)$.

 $\begin{array}{l} \mbox{Corollary (Gaffney's inequalities)}\\ \mbox{Let }\Omega\subset \mathbb{R}^N \mbox{ be piecewise } C^2 \mbox{ and } v\in \overset{\circ}{H}^1_{t,n}(\Omega). \mbox{ Then} \end{array}$

$$|\operatorname{rot} v|_{L^{2}(\Omega)}^{2} + |\operatorname{div} v|_{L^{2}(\Omega)}^{2} - |\nabla v|_{L^{2}(\Omega)}^{2} \begin{cases} \leq 0 &, \text{ if } \Omega \text{ is piecewise } C^{2}\text{-concave,} \\ = 0 &, \text{ if } \Omega \text{ is a polyhedron,} \\ \geq 0 &, \text{ if } \Omega \text{ is piecewise } C^{2}\text{-convex.} \end{cases}$$

MAXWELL INEQUALITIES	KORN'S FIRST INEQUALITIES	REFERENCES	DISTURBING CONSEQUENCES FOR VILLANI'S WORK (FIELDS MEDAL)
00000	00000	0	000

KORN'S FIRST INEQUALITY: TANGENTIAL/NORMAL BOUNDARY CONDITIONS

Proof.
(1), i.e.,
$$|\nabla v|^2 = |\operatorname{dev}\operatorname{sym}\nabla v|^2 + \frac{1}{N}|\operatorname{div} v|^2 + \frac{1}{2}|\operatorname{rot} v|^2$$
, and the corollary \Rightarrow
 $|\nabla v|^2_{L^2(\Omega)} \le |\operatorname{dev}\operatorname{sym}\nabla v|^2_{L^2(\Omega)} + \frac{1}{2}|\nabla v|^2_{L^2(\Omega)} + \frac{2-N}{2N}|\operatorname{div} v|^2_{L^2(\Omega)}$

 \Rightarrow first estimate

 $\Omega \text{ polyhedron } \Rightarrow \text{ equality holds}$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

MAXWELL INEQUALITIES	KORN'S FIRST INEQUALITIES	REFERENCES	DISTURBING CONSEQUENCES FOR VILLANI'S WORK (FIELDS MEDAL)
00000	00000	•	000

REFERENCES

- Pauly, D.: Zapiski POMI, (2014) On Constants in Maxwell Inequalities for Bounded and Convex Domains
- Pauly, D.: Discrete Contin. Dyn. Syst. Ser. S, (2015) On Maxwell's and Poincaré's Constants
- Pauly, D.: Math. Methods Appl. Sci., (2015) On the Maxwell Constants in 3D

- Bauer, S. and Pauly, D.: submitted, (2015) On Korn's First Inequality for Tangential or Normal Boundary Conditions with Explicit Constants
- Bauer, S. and Pauly, D.: submitted, (2015) On Korn's First Inequality for Tangential or Normal Boundary Conditions

- Desvillettes, L. and Villani, C.: ESAIM Control Optim. Calc. Var., (2002) On a variant of Korn's inequality arising in statistical mechanics. A tribute to J.L. Lions.
- Desvillettes, L. and Villani, C.: Invent. Math., (2005) On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation

<ロト < 同ト < 三ト < 三ト < 三 ・ つ < ○</p>

MAXWELL INEQUALITIES	KORN'S FIRST INEQUALITIES	REFERENCES	DISTURBING CONSEQUENCES FOR VILLANI'S WORK (FIELDS MEDAL)
00000	00000	0	•00

CITATIONS

- Desvillettes, L. and Villani, C.: ESAIM Control Optim. Calc. Var., (2002) On a variant of Korn's inequality arising in statistical mechanics. A tribute to J.L. Lions.
 - page 607
 - page 608
 - page 609
 - Proposition 5
 - (end of) Theorem 3 (continued)
 - page 609 (closed graph theorem)

- Desvillettes, L. and Villani, C.: Invent. Math., (2005)
 On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation
 - page 306

MAXWELL INEQUALITIES	KORN'S FIRST INEQUALITIES	REFERENCES	DISTURBING CONSEQUENCES FOR VILLANI'S WORK (FIELDS MEDAL)
00000	00000	0	000

HOW ONE CANNOT APPLY THE CLOSED GRAPH THEOREM!

generally: compact embedding or regularity + closed graph theorem

 \Rightarrow Poincaré type estimate

(hard analysis to do!)

<u>surprisingly:</u> ∃ people closed graph / open mapping / bounded inverse theorem ⇒ Poincaré type estimate

(example on next slide)

!!! THIS IS WRONG !!!

 MAXWELL INEQUALITIES
 KORN'S FIRST INEQUALITIES
 REFERENCES
 DISTURBING CONSEQUENCES FOR VILLANI'S WORK (FIELDS MEDAL)

 00000
 00000
 0
 000

HOW ONE CANNOT APPLY THE CLOSED GRAPH THEOREM!

4. Our primary goal was to obtain fully explicit lower bounds for K(Ω) in terms of simple geometrical information about Ω: to achieve this completely with our method, we would have to give quantitative estimates on C_H. Unfortunately, we have been unable to find explicit estimates about C_H in the literature, although it seems unlikely that nobody has been interested in this problem. Of course, when N = 3 and Ω is simply connected, estimate (10) is equivalent to

$$\|\nabla u\|_{L^{2}(\Omega)}^{2} \le C_{H}(\Omega) (\|\nabla \cdot u\|_{L^{2}(\Omega)}^{2} + \|\nabla \wedge u\|_{L^{2}(\Omega)}^{2}),$$
 (13)

up to possible replacement of C_H by $C_H + 1$. This is an estimate which is well-known to many people, but for which it seems very difficult to find an accurate reference. Inequality (10) can be seen as a consequence of the closed graph theorem; for instance, in the case of a simply connected domain, one just needs to note that (i) $||\nabla^*u||_{Z^*}^2 + ||\nabla \cdot u||_{Z^*}^2$ is bounded by $||\nabla u||_{Z^*}^2$, (ii) the identities $\nabla \cdot u = 0$, $\nabla^*u = 0$, $u \cdot n = 0$ (on the boundary), together imply u = 0; so in fact the norms appearing on the left and on the right-hand side of (10) have to be equivalent. The proof of point (ii) is as follows: from Poincaré's lemma in a simply connected domain, there exists a real-valued function ψ such that $\nabla \psi = u$; then ψ is a harmonic function with homogeneous Neumann boundary condition, so it has to be a constant, and u = 0.

Of course this argument gives no insight on how to estimate the constants. As pointed out to us independently by Druet and by Serre, one can choose $C_{II}(\Omega) = 1$ if Ω is convex, but the general case seems to be much harder. Anyway this is a separate issue which has nothing to do with axisymmetry; all the relevant information about axisymmetry lies in our estimates on $G(\Omega)^{-1}$.

• $C_H = C_H(\Omega)$ is a constant related to the homology of Ω and the Hodge decomposition, defined by the inequality

$$\|\nabla^{\text{sym}}v\|_{L^{2}(\Omega)/V_{0}(\Omega)}^{2} \leq C_{H}\left(\|\nabla \cdot v\|_{L^{2}(\Omega)}^{2} + \|\nabla^{a}v\|_{L^{2}(\Omega)}^{2}\right),\tag{10}$$

or (almost) equivalently by inequality (13) below. Here $\nabla \cdot v$ stands for the divergence of the vector field $v, \nabla \cdot v = \sum_i \partial v_i / \partial x_i$, and $V_0(\Omega)$ is the space of all vector fields $v_0 \in H^1(\Omega; \mathbb{R}^N)$ such that

$$\nabla \cdot v_0 = 0$$
, $\nabla^a v_0 = 0$.

We recall that V_0 is a finite-dimensional vector space whose dimension depends only on the topology of Ω ;

(copies from original paper...)