Functional A Posteriori Error Estimates for Static and Eddy Current Maxwell Type Problems

Dirk Pauly

Universität Duisburg-Essen, Campus Essen, Fakultät für Mathematik
joint work with
Sergey Repin
Steklov Institute, St. Petersburg

DK Statusseminar
(Doctoral Program, Computational Mathematics, Numerical Analysis and Symbolic Computation)

Johannes Kepler Universität Linz
Strobl am Wolfgangsee
October 4, 2012
universitat
DESSSEN URG

Introduction：General Electro－Magneto Static Maxwell Type Problem

```
|}\Omega\mathrm{ smooth N-dim. Riemann. manifold. with comp.cl. and Lip. bound. }
|
    i.e., }\mp@subsup{\Gamma}{t}{}\subset\Gamma,\mp@subsup{\Gamma}{n}{}:=\Gamma\\overline{\mp@subsup{\Gamma}{t}{}}\mathrm{ , where }\gamma:=\overline{\mp@subsup{\Gamma}{t}{}}\cap\overline{\mp@subsup{\Gamma}{n}{}}\mathrm{ Lipschitz
|}\varepsilon\mathrm{ given medium property: bd., sym., unif. pos. def., lin. mapping on q-forms
⿴囗
m F,G,f,g}\mathrm{ given right hand side data: diff. forms on }\Omega\mathrm{ resp. Г, Г 
|}\tau\mathrm{ tangential trace, i.e., }\tauE=\mp@subsup{\iota}{\mp@subsup{\Gamma}{t}{}}{*}E\mathrm{ with }\mp@subsup{\iota}{\mp@subsup{\Gamma}{t}{}}{}:\mp@subsup{\Gamma}{t}{}\hookrightarrow\Gamma\hookrightarrow\hookrightarrow\Omega, canon. em
```



```
|, *, Hodge's stars on \Omega resp. \Gamma resp. \Gamma \Gamma//n
|}\textrm{d},\delta=\mp@subsup{\textrm{d}}{}{\prime}=\pm*\textrm{d}*\mathrm{ exterior derivative and co-derivative
|
m H}\mp@subsup{\mathcal{L}}{\varepsilon}{q}(\Omega)\textrm{Di}./Neu.-forms: H\in\mp@subsup{\mathcal{H}}{\varepsilon}{q}(\Omega)\Leftrightarrow\textrm{d}H=0,\delta\varepsilonH=0 and \tauH=0,\nu\varepsilonH=
    d E=F, \delta\varepsilonE=G in \Omega
    \tauE=f in \Gamma 位 (static Maxwell type problem)
    \nu\varepsilonE=g in 「n
    \varepsilonE\perp \mathcal{H}}\mp@subsup{\varepsilon}{q}{q}(\Omega
```

universitat

- GOAL: NON-CONFORMING estimates for error e $:=E-\tilde{E}$,

where \tilde{E} (just) in $L^{2, q}(\Omega)$ approximation of E

Introduction：General Electro－Magneto Static Maxwell Type Problem

■ Ω smooth N－dim．Riemann．manifold．with comp．cl．and Lip．bound．$\Gamma=\partial \Omega$
－「 is decomposed in tangential and normal parts divided by a Lipschitz interface， －ε given medium property：bd．，sym．，unif．pos．def．，lin．mapping on q－forms －E＇electric field＇：differential form（ q－form）on Ω
－F $, ~ G, f, g$ given right hand side data：diff．forms on Ω resp．$\Gamma, \Gamma_{t / n}$ －τ tangential trace，i．e．，$\tau E=\iota_{\Gamma_{t}}^{*} E$ with $\iota_{t}: \Gamma_{t} \hookrightarrow \Gamma \hookrightarrow \Omega$ ，canon．emb

```
■ \nu normal trace, i.e., }\nuE=\circledast\mp@subsup{\iota}{r}{*}*E\mathrm{ with }\mp@subsup{\iota}{\Gamma}{}:\mp@subsup{\Gamma}{n}{}\hookrightarrow\Gamma\hookrightarrow
```

\＃＊，$*$ Hodge＇s stars on Ω resp．「 resp．「 ${ }_{t / n}$
－ $\mathrm{d}, \delta=\mathrm{d}^{\prime}= \pm * \mathrm{~d} *$ exterior derivative and co－derivative
－ 1 orthogonality w．r．t．$L^{2, q}(\Omega)$－scalar product $\langle E, H\rangle_{\Omega}:=\int_{\Omega} E \wedge * H$
－ $\mathcal{H}_{\varepsilon}^{q}(\Omega)$ Di．／Neu．－forms：$H \in \mathcal{H}_{\varepsilon}^{q}(\Omega) \Leftrightarrow \mathrm{d} H=0, \delta \varepsilon H=0$ and $\tau H=0, \nu \varepsilon H=0$

$$
\begin{array}{rlrl}
\mathrm{d} E & =F, \quad \delta \varepsilon E=G & & \text { in } \Omega \\
\\
\tau E & =f & & \text { in } \Gamma_{t}
\end{array} \quad \text { (static Maxwell type problem) }
$$

Introduction: General Electro-Magneto Static Maxwell Type Problem

■ Ω smooth N-dim. Riemann. manifold. with comp. cl. and Lip. bound. $\Gamma=\partial \Omega$

- Γ is decomposed in tangential and normal parts divided by a Lipschitz interface, i.e., $\Gamma_{t} \subset \Gamma, \Gamma_{n}:=\Gamma \backslash \overline{\Gamma_{t}}$, where $\gamma:=\overline{\Gamma_{t}} \cap \overline{\Gamma_{n}}$ Lipschitz
ne given medium property: bd., sym., unif. pos. def., lin. mapping on q-forms
1 E 'electric field': differential form (q-form) on Ω
- F, G, f, g given right hand side data: diff. forms on Ω resp. $\Gamma, \Gamma_{t / n}$

■ τ tangential trace, i.e., $\tau E=\iota_{\Gamma_{t}}^{*} E$ with $\iota_{t}: \Gamma_{t} \hookrightarrow \Gamma \hookrightarrow \Omega$, canon. emb

- II ν normal trace, i.e., $\nu E=* \iota_{\Gamma_{n}}^{*} * E$ with $\iota_{\Gamma_{n}}: \Gamma_{n} \hookrightarrow \Gamma \hookrightarrow \bar{\Omega}$
- ${ }^{\text {. }}$, Hodge's stars on Ω resp. 「 resp. $\Gamma_{t / n}$
- $\mathrm{d}, \delta=\mathrm{d}^{\prime}= \pm * \mathrm{~d} *$ exterior derivative and co-derivative
\pm orthogonality w.r.t. $L^{2, q}(\Omega)$-scalar product $\langle E, H\rangle_{\Omega}:=\int_{\Omega} E \wedge * H$
- $\mathcal{H}_{\varepsilon}^{q}(\Omega)$ Di./Neu.-forms: $H \in \mathcal{H}_{\varepsilon}^{q}(\Omega) \Leftrightarrow \mathrm{d} H=0, \delta \varepsilon H=0$ and $\tau H=0$, v $\mathcal{H} H=0$

$$
\begin{aligned}
\mathrm{d} E & =F, \quad \delta \varepsilon E=G & & \text { in } \Omega \\
\tau E & =f & & \text { in } \Gamma_{t} \\
\nu \varepsilon E & =g & & \text { in } \Gamma_{n}
\end{aligned} \quad \text { (static Maxwell type problem) }
$$

Introduction: General Electro-Magneto Static Maxwell Type Problem

$■ \Omega$ smooth N-dim. Riemann. manifold. with comp. cl. and Lip. bound. $\Gamma=\partial \Omega$
■ Γ is decomposed in tangential and normal parts divided by a Lipschitz interface, i.e., $\Gamma_{t} \subset \Gamma, \Gamma_{n}:=\Gamma \backslash \overline{\Gamma_{t}}$, where $\gamma:=\overline{\Gamma_{t}} \cap \overline{\Gamma_{n}}$ Lipschitz

- ε given medium property: bd., sym., unif. pos. def., lin. mapping on q-forms
- E 'electric field': differential form (q-form) on Ω
- F, G, f, g given right hand side data: diff. forms on Ω resp. $\Gamma, \Gamma_{t / n}$
- τ tangential trace, i.e., $\tau E=\iota_{\Gamma_{t}}^{*} E$ with $\iota_{t}: \Gamma_{t} \hookrightarrow \Gamma \hookrightarrow \Omega$, canon. emb

■ ν normal trace, i.e., $\nu E=\circledast \iota_{r}^{*} * E$ with $\iota_{\Gamma}: \Gamma_{n} \hookrightarrow \Gamma \hookrightarrow \Omega$

- ${ }^{*}, *$ Hodge's stars on Ω resp. 「 resp. $\Gamma_{t / n}$
- $\mathrm{d}, \delta=\mathrm{d}^{\prime}= \pm * \mathrm{~d} *$ exterior derivative and co-derivative
$=\perp$ orthogonality w.r.t. $L^{2, q}(\Omega)$-scalar product $\langle E, H\rangle_{\Omega}:=\int_{\Omega} E \wedge * H$
- $\mathcal{H}_{\varepsilon}^{q}(\Omega)$ Di./Neu.-forms: $H \in \mathcal{H}_{\varepsilon}^{q}(\Omega) \Leftrightarrow \mathrm{d} H=0, \delta \varepsilon H=0$ and $\tau H=0, \nu \varepsilon H=0$

$$
\begin{array}{rlrl}
\mathrm{d} E & =F, \quad \delta \varepsilon E=G & & \text { in } \Omega \\
\\
\tau E & =f & & \text { in } \Gamma_{t}
\end{array} \quad \text { (static Maxwell type problem) }
$$

Introduction: General Electro-Magneto Static Maxwell Type Problem

$■ \Omega$ smooth N-dim. Riemann. manifold. with comp. cl. and Lip. bound. $\Gamma=\partial \Omega$
■ Γ is decomposed in tangential and normal parts divided by a Lipschitz interface, i.e., $\Gamma_{t} \subset \Gamma, \Gamma_{n}:=\Gamma \backslash \overline{\Gamma_{t}}$, where $\gamma:=\overline{\Gamma_{t}} \cap \overline{\Gamma_{n}}$ Lipschitz

- ε given medium property: bd., sym., unif. pos. def., lin. mapping on q-forms
- E 'electric field': differential form (q-form) on Ω
= F, G, f, g given right hand side data: diff. forms on Ω resp. $\Gamma, \Gamma_{t / n}$
■ τ tangential trace, i.e., $\tau E=\iota_{\Gamma_{t}}^{*} E$ with $\iota_{t}: \Gamma_{t} \hookrightarrow \Gamma \hookrightarrow \bar{\Omega}$, canon. emb
- v normal trace ie $\quad \nu F=\omega_{\imath}^{*} * E$ with \quad : $\Gamma_{n} \hookrightarrow \Gamma \hookrightarrow \bar{\Omega}$

■ *, * Hodge's stars on Ω resp. 「 resp. $\Gamma_{t / n}$

- $\mathrm{d}, \delta=\mathrm{d}^{\prime}= \pm * \mathrm{~d} *$ exterior derivative and co-derivative
- 1 orthogonality w.r.t. $L^{2 . a}(\Omega)$-scalar product $\langle E, H\rangle_{\Omega}:=\int_{\Omega} E \wedge * H$
- $\mathcal{H}_{\varepsilon}^{q}(\Omega) \mathrm{Di} . /$ Neu.-forms: $H \in \mathcal{H}_{\varepsilon}^{q}(\Omega) \Leftrightarrow \mathrm{d} H=0, \delta \varepsilon H=0$ and $\tau H=0, \nu \varepsilon H=0$

$$
\begin{aligned}
\mathrm{d} E & =F, \quad \delta \varepsilon E=G & & \text { in } \Omega \\
\tau E & =f & & \text { in } \Gamma_{t} \\
\nu \varepsilon E & =g & & \text { in } \Gamma_{n} \\
\varepsilon E & \perp \mathcal{H}_{\varepsilon}^{q}(\Omega) & &
\end{aligned}
$$

Introduction: General Electro-Magneto Static Maxwell Type Problem

$■ \Omega$ smooth N-dim. Riemann. manifold. with comp. cl. and Lip. bound. $\Gamma=\partial \Omega$
■ Γ is decomposed in tangential and normal parts divided by a Lipschitz interface, i.e., $\Gamma_{t} \subset \Gamma, \Gamma_{n}:=\Gamma \backslash \overline{\Gamma_{t}}$, where $\gamma:=\overline{\Gamma_{t}} \cap \overline{\Gamma_{n}}$ Lipschitz

- ε given medium property: bd., sym., unif. pos. def., lin. mapping on q-forms
- E 'electric field': differential form (q-form) on Ω
- F, G, f, g given right hand side data: diff. forms on Ω resp. $\Gamma, \Gamma_{t / n}$

■ τ tangential trace, i.e., $\tau E=\iota_{\Gamma_{t}}^{*} E$ with $\iota_{t}: \Gamma_{t} \hookrightarrow \Gamma \hookrightarrow \Omega$, canon. emb.

- ν normal trace, i.e., $\nu E=\circledast \iota_{\Gamma}^{*} * E$ with $\iota_{\Gamma}: \Gamma_{n} \hookrightarrow \Gamma \hookrightarrow \bar{\Omega}$

■. * Hodge's stars on Ω resp. Г resp. $\Gamma_{+/ n}$

- $\mathrm{d}, \delta=\mathrm{d}^{\prime}= \pm * \mathrm{~d} *$ exterior derivative and co-derivative
- \perp orthogonality w.r.t. $\mathrm{L}^{2, q}(\Omega)$-scalar product $\langle E, H\rangle_{\Omega}:=\int_{\Omega} E \wedge * H$
- $\mathcal{H}_{\varepsilon}^{q}(\Omega)$ Di./Neu.-forms: $H \in \mathcal{H}_{\varepsilon}^{q}(\Omega) \Leftrightarrow \mathrm{d} H=0, \delta \varepsilon H=0$ and $\tau H=0$, $\nu \varepsilon H=0$

$$
\begin{array}{rlrl}
\mathrm{d} E & =F, \quad \delta \varepsilon E=G & & \text { in } \Omega \\
\\
\tau E & =f & & \text { in } \Gamma_{t} \\
\nu \varepsilon E & =g & & \text { in } \Gamma_{n} \\
\varepsilon E & \perp \mathcal{H}_{\varepsilon}^{q}(\Omega) & &
\end{array}
$$

- GOAL: NON-CONFORMING estimates for error e $:=E-\tilde{E}$,

Introduction: General Electro-Magneto Static Maxwell Type Problem

- Ω smooth N-dim. Riemann. manifold. with comp. cl. and Lip. bound. $\Gamma=\partial \Omega$
- Γ is decomposed in tangential and normal parts divided by a Lipschitz interface, i.e., $\Gamma_{t} \subset \Gamma_{,} \Gamma_{n}:=\Gamma \backslash \overline{\Gamma_{t}}$, where $\gamma:=\overline{\Gamma_{t}} \cap \overline{\Gamma_{n}}$ Lipschitz
- ε given medium property: bd., sym., unif. pos. def., lin. mapping on q-forms
- E 'electric field': differential form (q-form) on Ω
- F, G, f, g given right hand side data: diff. forms on Ω resp. $\Gamma, \Gamma_{t / n}$
- τ tangential trace, i.e., $\tau E=\iota_{\Gamma_{t}}^{*} E$ with $\iota_{t}: \Gamma_{t} \hookrightarrow \Gamma \hookrightarrow \bar{\Omega}$, canon. emb.
- ν normal trace, i.e., $\nu E=\circledast \iota_{\Gamma_{n}}^{*} * E$ with $\iota_{\Gamma_{n}}: \Gamma_{n} \hookrightarrow \Gamma \hookrightarrow \bar{\Omega}$
- $*, \circledast$ Hodge's stars on Ω resp. 「 resp. $\Gamma_{t / n}$
- $\mathrm{d}, \delta=\mathrm{d}^{\prime}= \pm * \mathrm{~d} *$ exterior derivative and co-derivative
- \perp orthogonality w.r.t. $\mathrm{L}^{2, q}(\Omega)$-scalar product $\langle E, H\rangle_{\Omega}:=\int_{\Omega} E \wedge * H$
- $\mathcal{H}_{\varepsilon}^{q}(\Omega)$ Di./Neu.-forms: $H \in \mathcal{H}_{\varepsilon}^{q}(\Omega) \Leftrightarrow \mathrm{d} H=0, \delta \varepsilon H=0$ and $\tau H=0$, $\nu \varepsilon H=0$

$$
\begin{array}{rlrl}
\mathrm{d} E & =F, \quad \delta \varepsilon E=G & & \text { in } \Omega \\
\\
\tau E & =f & & \text { in } \Gamma_{t}
\end{array} \quad \text { (static Maxwell type problem) }
$$

UNIVERSITAT
DESSSEBN RG

Introduction: General Electro-Magneto Static Maxwell Type Problem

- Ω smooth N-dim. Riemann. manifold. with comp. cl. and Lip. bound. $\Gamma=\partial \Omega$
- Γ is decomposed in tangential and normal parts divided by a Lipschitz interface, i.e., $\Gamma_{t} \subset \Gamma_{,} \Gamma_{n}:=\Gamma \backslash \overline{\Gamma_{t}}$, where $\gamma:=\overline{\Gamma_{t}} \cap \overline{\Gamma_{n}}$ Lipschitz
- ε given medium property: bd., sym., unif. pos. def., lin. mapping on q-forms
- E 'electric field': differential form (q-form) on Ω
- F, G, f, g given right hand side data: diff. forms on Ω resp. $\Gamma, \Gamma_{t / n}$
- τ tangential trace, i.e., $\tau E=\iota_{\Gamma_{t}}^{*} E$ with $\iota_{t}: \Gamma_{t} \hookrightarrow \Gamma \hookrightarrow \bar{\Omega}$, canon. emb.
- ν normal trace, i.e., $\nu E=\circledast \iota_{\Gamma_{n}}^{*} * E$ with $\iota_{\Gamma_{n}}: \Gamma_{n} \hookrightarrow \Gamma \hookrightarrow \bar{\Omega}$
- $*, \circledast$ Hodge's stars on Ω resp. 「 resp. $\Gamma_{t / n}$
- $\mathrm{d}, \delta=\mathrm{d}^{\prime}= \pm * \mathrm{~d} *$ exterior derivative and co-derivative

- $\mathcal{H}_{\varepsilon}^{q}(\Omega)$ Di./Neu.-forms: $H \in \mathcal{H}_{\varepsilon}^{q}(\Omega) \Leftrightarrow \mathrm{d} H=0, \delta \varepsilon H=0$ and $\tau H=0, \nu \varepsilon H=0$

$$
\begin{aligned}
\mathrm{d} E & =F, \quad \delta \varepsilon E=G & & \text { in } \Omega \\
\tau E & =f & & \text { in } \Gamma_{t} \\
\nu \varepsilon E & =g & & \text { in } \Gamma_{n} \\
\varepsilon E & \perp \mathcal{H}_{\varepsilon}^{q}(\Omega) & &
\end{aligned}
$$

UNIVERSITAT

Introduction: General Electro-Magneto Static Maxwell Type Problem

- Ω smooth N-dim. Riemann. manifold. with comp. cl. and Lip. bound. $\Gamma=\partial \Omega$
- Γ is decomposed in tangential and normal parts divided by a Lipschitz interface, i.e., $\Gamma_{t} \subset \Gamma_{,} \Gamma_{n}:=\Gamma \backslash \overline{\Gamma_{t}}$, where $\gamma:=\overline{\Gamma_{t}} \cap \overline{\Gamma_{n}}$ Lipschitz
- ε given medium property: bd., sym., unif. pos. def., lin. mapping on q-forms
- E 'electric field': differential form (q-form) on Ω
- F, G, f, g given right hand side data: diff. forms on Ω resp. $\Gamma, \Gamma_{t / n}$
- τ tangential trace, i.e., $\tau E=\iota_{\Gamma_{t}}^{*} E$ with $\iota_{t}: \Gamma_{t} \hookrightarrow \Gamma \hookrightarrow \bar{\Omega}$, canon. emb.
- ν normal trace, i.e., $\nu E=\circledast \iota_{\Gamma_{n}}^{*} * E$ with $\iota_{\Gamma_{n}}: \Gamma_{n} \hookrightarrow \Gamma \hookrightarrow \bar{\Omega}$
- $*, \circledast$ Hodge's stars on Ω resp. 「 resp. $\Gamma_{t / n}$
- $\mathrm{d}, \delta=\mathrm{d}^{\prime}= \pm * \mathrm{~d} *$ exterior derivative and co-derivative
- \perp orthogonality w.r.t. $\mathrm{L}^{2, q}(\Omega)$-scalar product $\langle E, H\rangle_{\Omega}:=\int_{\Omega} E \wedge * H$
- $\mathcal{H}_{\varepsilon}^{q}(\Omega)$ Di./Neu.-forms: $H \in \mathcal{H}_{\varepsilon}^{q}(\Omega) \Leftrightarrow \mathrm{d} H=0, \delta \varepsilon H=0$ and $\tau H=0, \nu \varepsilon H=0$

$$
\begin{aligned}
\mathrm{d} E & =F, \quad \delta \varepsilon E=G & & \text { in } \Omega \\
\tau E & =f & & \text { in } \Gamma_{t} \\
\nu \varepsilon E & =g & & \text { in } \Gamma_{n} \\
\varepsilon E & \perp \mathcal{H}_{\varepsilon}^{q}(\Omega) & &
\end{aligned}
$$

- GOAL: NON-CONFORMING estimates for error e $:=E-\tilde{E}$,

Introduction: General Electro-Magneto Static Maxwell Type Problem

- Ω smooth N-dim. Riemann. manifold. with comp. cl. and Lip. bound. $\Gamma=\partial \Omega$
- Γ is decomposed in tangential and normal parts divided by a Lipschitz interface, i.e., $\Gamma_{t} \subset \Gamma_{,} \Gamma_{n}:=\Gamma \backslash \overline{\Gamma_{t}}$, where $\gamma:=\overline{\Gamma_{t}} \cap \overline{\Gamma_{n}}$ Lipschitz
- ε given medium property: bd., sym., unif. pos. def., lin. mapping on q-forms
- E 'electric field': differential form (q-form) on Ω
- F, G, f, g given right hand side data: diff. forms on Ω resp. $\Gamma, \Gamma_{t / n}$
- τ tangential trace, i.e., $\tau E=\iota_{\Gamma_{t}}^{*} E$ with $\iota_{t}: \Gamma_{t} \hookrightarrow \Gamma \hookrightarrow \bar{\Omega}$, canon. emb.
- ν normal trace, i.e., $\nu E=\circledast \iota_{\Gamma_{n}}^{*} * E$ with $\iota_{\Gamma_{n}}: \Gamma_{n} \hookrightarrow \Gamma \hookrightarrow \bar{\Omega}$
- $*, \circledast$ Hodge's stars on Ω resp. 「 resp. $\Gamma_{t / n}$
- $\mathrm{d}, \delta=\mathrm{d}^{\prime}= \pm * \mathrm{~d} *$ exterior derivative and co-derivative
- \perp orthogonality w.r.t. $\mathrm{L}^{2, q}(\Omega)$-scalar product $\langle E, H\rangle_{\Omega}:=\int_{\Omega} E \wedge * H$
- $\mathcal{H}_{\varepsilon}^{q}(\Omega)$ Di./Neu.-forms: $H \in \mathcal{H}_{\varepsilon}^{q}(\Omega) \Leftrightarrow \mathrm{d} H=0, \delta \varepsilon H=0$ and $\tau H=0, \nu \varepsilon H=0$

$$
\begin{aligned}
\mathrm{d} E & =F, \quad \delta \varepsilon E=G & & \text { in } \Omega \\
\tau E & =f & & \text { in } \Gamma_{t} \\
\nu \varepsilon E & =g & & \text { in } \Gamma_{n} \\
\varepsilon E & \perp \mathcal{H}_{\varepsilon}^{q}(\Omega) & &
\end{aligned}
$$

Introduction: General Electro-Magneto Static Maxwell Type Problem

- Ω smooth N-dim. Riemann. manifold. with comp. cl. and Lip. bound. $\Gamma=\partial \Omega$
- Γ is decomposed in tangential and normal parts divided by a Lipschitz interface, i.e., $\Gamma_{t} \subset \Gamma_{,} \Gamma_{n}:=\Gamma \backslash \overline{\Gamma_{t}}$, where $\gamma:=\overline{\Gamma_{t}} \cap \overline{\Gamma_{n}}$ Lipschitz
- ε given medium property: bd., sym., unif. pos. def., lin. mapping on q-forms
- E 'electric field': differential form (q-form) on Ω
- F, G, f, g given right hand side data: diff. forms on Ω resp. $\Gamma, \Gamma_{t / n}$
- τ tangential trace, i.e., $\tau E=\iota_{\Gamma_{t}}^{*} E$ with $\iota_{t}: \Gamma_{t} \hookrightarrow \Gamma \hookrightarrow \bar{\Omega}$, canon. emb.
- ν normal trace, i.e., $\nu E=\circledast \iota_{\Gamma_{n}}^{*} * E$ with $\iota_{\Gamma_{n}}: \Gamma_{n} \hookrightarrow \Gamma \hookrightarrow \bar{\Omega}$
- $*, \circledast$ Hodge's stars on Ω resp. 「 resp. $\Gamma_{t / n}$
- $\mathrm{d}, \delta=\mathrm{d}^{\prime}= \pm * \mathrm{~d} *$ exterior derivative and co-derivative
- \perp orthogonality w.r.t. $\mathrm{L}^{2, q}(\Omega)$-scalar product $\langle E, H\rangle_{\Omega}:=\int_{\Omega} E \wedge * H$
- $\mathcal{H}_{\varepsilon}^{q}(\Omega)$ Di./Neu.-forms: $H \in \mathcal{H}_{\varepsilon}^{q}(\Omega) \Leftrightarrow \mathrm{d} H=0, \delta \varepsilon H=0$ and $\tau H=0, \nu \varepsilon H=0$

$$
\begin{aligned}
\mathrm{d} E & =F, \quad \delta \varepsilon E=G & & \text { in } \Omega \\
\tau E & =f & & \text { in } \Gamma_{t} \\
\nu \varepsilon E & =g & & \text { in } \Gamma_{n} \\
\varepsilon E & \perp \mathcal{H}_{\varepsilon}^{q}(\Omega) & &
\end{aligned}
$$

- GOAL: NON-CONFORMING estimates for error $e:=E-\tilde{E}$, where \tilde{E} (just) in $\mathrm{L}^{2, q}(\Omega)$ approximation of E

Introduction：Electro－Magneto Static Maxwell Problem（special case $q=1$ ）

```
| \Omega\subset\mp@subsup{\mathbb{R}}{}{3}\mathrm{ bounded domain with Lipschitz boundary }\Gamma=\partial\Omega\mathrm{ ,}
    \Gamma ~ \ ~ i s ~ d e c o m p o s e d ~ i n ~ t a n g e n t i a l ~ a n d ~ n o r m a l ~ p a r t s ~ d i v i d e d ~ b y ~ a ~ L i p s c h i t z ~ i n t e r f a c e ,
    i.e., }\mp@subsup{\Gamma}{t}{}\subset\mp@subsup{\Gamma}{,}{}\mp@subsup{\Gamma}{n}{}:=\Gamma\\overline{\mp@subsup{\Gamma}{t}{}}\mathrm{ , where }\gamma:=\overline{\mp@subsup{\Gamma}{t}{}}\cap\mp@subsup{\Gamma}{n}{}\mathrm{ Lipschitz
|=\varepsilon:\Omega->\mp@subsup{\mathbb{R}}{}{3\times3}}\mathrm{ given medium property: bd., sym., unif. pos. def. matrix field
⿴囗 Electric or magnetic (H) field
⿴囗 F,G,f,g given right hand side data
| \tau,\nu restr. tang. resp. norm. trace, i.e., \tauE =n\timesE | |rt resp. }\nuH=n=H\mp@subsup{|}{\mp@subsup{r}{n}{}}{
m orthogonality w.r.t. L L
|. H\in\mp@subsup{\mathcal{H}}{\varepsilon}{}(\Omega)\mathrm{ Dirich./Neum.-fields }\Leftrightarrow\mathrm{ curl H=0, div }\varepsilonH=0\mathrm{ and }\tauH=0,\nu\varepsilonH=0
    curl E=F in \Omega
    div}\varepsilonE=G\quad\mathrm{ in }
        \tauE=f in \Gamma 左 (electro-magneto static Maxwell problem)
    \nu\varepsilonE=g in \Gamman
        \varepsilonE\perp \mathcal{H}
```

- note: $\Gamma_{t}=\Gamma \Rightarrow$ electro static (elec. bc); $\Gamma_{n}=\Gamma \Rightarrow$ magneto static (magn. bc)
GOAL: NON-CONFORMING estimates for error $e:=E-F \quad$.
where \tilde{E} (just) in $L^{2}(\Omega)$ approximation of E

Introduction: Electro-Magneto Static Maxwell Problem (special case $q=1$)

$■ \Omega \subset \mathbb{R}^{3}$ bounded domain with Lipschitz boundary $\Gamma=\partial \Omega$,
Γ is decomposed in tangential and normal parts divided by a Lipschitz interface, i.e., $\Gamma_{t} \subset \Gamma, \Gamma_{n}:=\Gamma \backslash \overline{\Gamma_{t}}$, where $\gamma:=\overline{\Gamma_{t}} \cap \overline{\Gamma_{n}}$ Lipschitz

- $\varepsilon: \Omega \rightarrow \mathbb{R}^{3 \times 3}$ given medium property: bd., sym., unif. pos. def. matrix field

E electric or magnetic (H) field

- F, G, f, g given right hand side data

■ τ, ν restr. tang. resp. norm. trace, i.e., $\tau E=n \times\left. E\right|_{\Gamma_{t}}$ resp. $\nu H=\left.n \cdot H\right|_{\Gamma_{n}}$
■ orthogonality w.r.t. $L^{2}(\Omega)$-scalar product $\langle E, H\rangle_{\Omega}:=\int_{\Omega} E \cdot H$ - $H \in \mathcal{H}_{\varepsilon}(\Omega)$ Dirich./Neum.-fields $\Leftrightarrow \operatorname{curl} H=0, \operatorname{div} \varepsilon H=0$ and $\tau H=0, \nu \varepsilon H=0$

$$
\begin{aligned}
\operatorname{curl} E & =F & & \text { in } \Omega \\
\operatorname{div} \varepsilon E & =G & & \text { in } \Omega \\
\tau E & =f & & \text { in } \Gamma_{t} \\
\nu \varepsilon E & =g & & \text { in } \Gamma_{n} \\
\varepsilon E & \perp \mathcal{H}_{\varepsilon}(\Omega) & &
\end{aligned}
$$

$$
\tau E=f \quad \text { in } \Gamma_{t} \quad \text { (electro-magneto static Maxwell problem) }
$$

n note: $\Gamma_{t}=\Gamma \Rightarrow$ electro static (elec. bc); $\Gamma_{n}=\Gamma \Rightarrow$ magneto static (magn. bc)

- GOAL: NON-CONFORMING estimates for error $e:=E-E$,

DES'SERERG
where \tilde{E} (just) in $\mathrm{L}^{2}(\Omega)$ approximation of E

Introduction：Electro－Magneto Static Maxwell Problem（special case $q=1$ ）

$■ \Omega \subset \mathbb{R}^{3}$ bounded domain with Lipschitz boundary $\Gamma=\partial \Omega$ ，
Γ is decomposed in tangential and normal parts divided by a Lipschitz interface， i．e．，$\Gamma_{t} \subset \Gamma, \Gamma_{n}:=\Gamma \backslash \overline{\Gamma_{t}}$ ，where $\gamma:=\overline{\Gamma_{t}} \cap \overline{\Gamma_{n}}$ Lipschitz
■ $\varepsilon: \Omega \rightarrow \mathbb{R}^{3 \times 3}$ given medium property：bd．，sym．，unif．pos．def．matrix field
－E electric or magnetic（H）field
－F ，G, f, g given right hand side data
■ τ, ν restr．tang．resp．norm．trace，i．e．，$\tau E=n \times\left. E\right|_{\Gamma_{t}}$ resp．$\nu H=\left.n \cdot H\right|_{\Gamma_{n}}$
－\perp orthogonality w．r．t．$L^{2}(\Omega)$－scalar product $\langle E, H\rangle_{\Omega}:=\int_{\Omega} E \cdot H$
－$H \in \mathcal{H}_{\varepsilon}(\Omega)$ Dirich．／Neum．－fields $\Leftrightarrow \operatorname{curl} H=0, \operatorname{div} \varepsilon H=0$ and $\tau H=0, \nu \varepsilon H=0$

$$
\begin{aligned}
\operatorname{curl} E & =F & & \text { in } \Omega \\
\operatorname{div} \varepsilon E & =G & & \text { in } \Omega \\
\tau E & =f & & \text { in } \Gamma_{t} \quad \text { (electro-magneto static Maxwell problem) } \\
\nu \varepsilon E & =g & & \text { in } \Gamma_{n} \\
\varepsilon E & \perp \mathcal{H}_{\varepsilon}(\Omega) & &
\end{aligned}
$$

note：$\Gamma_{t}=\Gamma \Rightarrow$ electro static（elec．bc）；$\Gamma_{n}=\Gamma \Rightarrow$ magneto static（magn．bc）
－GOAL：NON－CONFORMING estimates for error $e:=E-E$ ，
DES＇SERERG
where \tilde{E}（just）in $L^{2}(\Omega)$ approximation of E

Introduction: Electro-Magneto Static Maxwell Problem (special case $q=1$)

$■ \Omega \subset \mathbb{R}^{3}$ bounded domain with Lipschitz boundary $\Gamma=\partial \Omega$,
Γ is decomposed in tangential and normal parts divided by a Lipschitz interface, i.e., $\Gamma_{t} \subset \Gamma, \Gamma_{n}:=\Gamma \backslash \overline{\Gamma_{t}}$, where $\gamma:=\overline{\Gamma_{t}} \cap \overline{\Gamma_{n}}$ Lipschitz

- $\varepsilon: \Omega \rightarrow \mathbb{R}^{3 \times 3}$ given medium property: bd., sym., unif. pos. def. matrix field
- E electric or magnetic (H) field
- F, G, f, g given right hand side data

■ τ, ν restr. tang. resp. norm. trace, i.e., $\tau E=n \times\left. E\right|_{\Gamma_{t}}$ resp. $\nu H=\left.n \cdot H\right|_{\Gamma_{n}}$

- 1 orthogonality w.r.t. $L^{2}(\Omega)$-scalar product $\langle E, M\rangle_{\Omega}:=\int_{\Omega} E \cdot H$ - $H \in \mathcal{H}_{\varepsilon}(\Omega)$ Dirich./Neum.-fields $\Leftrightarrow \operatorname{curl} H=0, \operatorname{div} \varepsilon H=0$ and $\tau H=0, \nu \varepsilon H=0$

$$
\begin{array}{rlrl}
\operatorname{curl} E & =F & & \text { in } \Omega \\
& & \\
\operatorname{div} \varepsilon E & =G & & \text { in } \Omega \\
& & \\
\tau E & =f & & \text { in } \Gamma_{t} \\
\nu \varepsilon E & =g & & \text { in } \Gamma_{n} \\
& & \\
\varepsilon E & \perp \mathcal{H}_{\varepsilon}(\Omega) & &
\end{array}
$$

- note: $\Gamma_{t}=\Gamma \Rightarrow$ electro static (elec. bc); $\Gamma_{n}=\Gamma \Rightarrow$ magneto static (magn. bc)
- GOAL: NON-CONFORMING estimates for error $e:=E-E$,

DESSSENRG
where \tilde{E} (just) in $\mathrm{L}^{2}(\Omega)$ approximation of E

Introduction：Electro－Magneto Static Maxwell Problem（special case $q=1$ ）

－$\Omega \subset \mathbb{R}^{3}$ bounded domain with Lipschitz boundary $\Gamma=\partial \Omega$ ，
Γ is decomposed in tangential and normal parts divided by a Lipschitz interface， i．e．，$\Gamma_{t} \subset \Gamma, \Gamma_{n}:=\Gamma \backslash \overline{\Gamma_{t}}$ ，where $\gamma:=\overline{\Gamma_{t}} \cap \overline{\Gamma_{n}}$ Lipschitz
－$\varepsilon: \Omega \rightarrow \mathbb{R}^{3 \times 3}$ given medium property：bd．，sym．，unif．pos．def．matrix field
－E electric or magnetic (H) field
－F, G, f, g given right hand side data

－note：$\Gamma_{t}=\Gamma \Rightarrow$ electro static（elec．bc）$\Gamma_{n}=\Gamma \Rightarrow$ magneto static（magn．bc）
－GOAL：NON－CONFORMING estimates for error $e:=E-E$ ，
DESTSENRG
where \tilde{E}（just）in $\mathrm{L}^{2}(\Omega)$ approximation of E

Introduction：Electro－Magneto Static Maxwell Problem（special case $q=1$ ）

－$\Omega \subset \mathbb{R}^{3}$ bounded domain with Lipschitz boundary $\Gamma=\partial \Omega$ ，
Γ is decomposed in tangential and normal parts divided by a Lipschitz interface， i．e．，$\Gamma_{t} \subset \Gamma, \Gamma_{n}:=\Gamma \backslash \overline{\Gamma_{t}}$ ，where $\gamma:=\overline{\Gamma_{t}} \cap \overline{\Gamma_{n}}$ Lipschitz
－$\varepsilon: \Omega \rightarrow \mathbb{R}^{3 \times 3}$ given medium property：bd．，sym．，unif．pos．def．matrix field
－E electric or magnetic (H) field
－F, G, f, g given right hand side data
$■ \tau, \nu$ restr．tang．resp．norm．trace，i．e．，$\tau E=n \times\left. E\right|_{\Gamma_{t}}$ resp．$\nu H=\left.n \cdot H\right|_{r_{n}}$

－$H \in \mathcal{H}_{\varepsilon}(\Omega)$ Dirich．$/$ Neum．－fields \Leftrightarrow curl $H=0, \operatorname{div} \varepsilon H=0$ and $\tau H=0, \nu \varepsilon H=0$

$$
\begin{array}{rlrl}
\operatorname{curl} E & =F & & \text { in } \Omega \\
& & \\
\operatorname{div} \varepsilon E & =G & & \text { in } \Omega \\
\tau E & =f & & \text { in } \Gamma_{t} \\
\nu \varepsilon E & =g & & \text { (electro-magneto static Maxwell problem) } \\
\varepsilon E & \perp \mathcal{H}_{\varepsilon}(\Omega) & &
\end{array}
$$

note：$\Gamma_{t}=\Gamma \Rightarrow$ electro static（elec．bc）；$\Gamma_{n}=\Gamma \Rightarrow$ magneto static（magn．bc）
－GOAL：NON－CONFORMING estimates for error $e:=E-E$ ，

Introduction: Electro-Magneto Static Maxwell Problem (special case $q=1$)

- $\Omega \subset \mathbb{R}^{3}$ bounded domain with Lipschitz boundary $\Gamma=\partial \Omega$,
Γ is decomposed in tangential and normal parts divided by a Lipschitz interface, i.e., $\Gamma_{t} \subset \Gamma, \Gamma_{n}:=\Gamma \backslash \overline{\Gamma_{t}}$, where $\gamma:=\overline{\Gamma_{t}} \cap \overline{\Gamma_{n}}$ Lipschitz
- $\varepsilon: \Omega \rightarrow \mathbb{R}^{3 \times 3}$ given medium property: bd., sym., unif. pos. def. matrix field
- E electric or magnetic (H) field
- F, G, f, g given right hand side data
$■ \tau, \nu$ restr. tang. resp. norm. trace, i.e., $\tau E=n \times\left. E\right|_{\Gamma_{t}}$ resp. $\nu H=\left.n \cdot H\right|_{\Gamma_{n}}$
- \perp orthogonality w.r.t. $L^{2}(\Omega)$-scalar product $\langle E, H\rangle_{\Omega}:=\int_{\Omega} E \cdot H$

```
- \(H \in \mathcal{H}_{\varepsilon}(\Omega)\) Dirich./Neum.-fields \(\Leftrightarrow\) curl \(H=0\)
\(\operatorname{curl} E=F \quad\) in \(\Omega\)
\(\operatorname{div} \varepsilon E=G \quad\) in \(\Omega\)
        \(\tau E=f \quad\) in \(\Gamma_{t} \quad\) (electro-magneto static Maxwell problem)
        \(\nu \varepsilon E=g \quad\) in \(\Gamma_{n}\)
            \(\varepsilon E \perp \mathcal{H}_{\varepsilon}(\Omega)\)
```

note: $\Gamma_{t}=\Gamma \Rightarrow$ electro static (elec. bc); $\Gamma_{n}=\Gamma \Rightarrow$ magneto static (magn. bc)

- GOAL: NON-CONFORMING estimates for error $e:=E-E$,

Introduction: Electro-Magneto Static Maxwell Problem (special case $q=1$)

- $\Omega \subset \mathbb{R}^{3}$ bounded domain with Lipschitz boundary $\Gamma=\partial \Omega$,
Γ is decomposed in tangential and normal parts divided by a Lipschitz interface, i.e., $\Gamma_{t} \subset \Gamma, \Gamma_{n}:=\Gamma \backslash \overline{\Gamma_{t}}$, where $\gamma:=\overline{\Gamma_{t}} \cap \overline{\Gamma_{n}}$ Lipschitz
- $\varepsilon: \Omega \rightarrow \mathbb{R}^{3 \times 3}$ given medium property: bd., sym., unif. pos. def. matrix field
- E electric or magnetic (H) field
- F, G, f, g given right hand side data
$■ \tau, \nu$ restr. tang. resp. norm. trace, i.e., $\tau E=n \times\left. E\right|_{\Gamma_{t}}$ resp. $\nu H=\left.n \cdot H\right|_{\Gamma_{n}}$
- \perp orthogonality w.r.t. $L^{2}(\Omega)$-scalar product $\langle E, H\rangle_{\Omega}:=\int_{\Omega} E \cdot H$
- $H \in \mathcal{H}_{\varepsilon}(\Omega)$ Dirich. $/$ Neum.-fields $\Leftrightarrow \operatorname{curl} H=0, \operatorname{div} \varepsilon H=0$ and $\tau H=0, \nu \varepsilon H=0$

$$
\begin{aligned}
\operatorname{curl} E & =F & & \text { in } \Omega \\
\operatorname{div} \varepsilon E & =G & & \text { in } \Omega \\
\tau E & =f & & \text { in } \Gamma_{t} \quad \text { (electro-magneto static Maxwell problem) } \\
\nu \varepsilon E & =g & & \text { in } \Gamma_{n} \\
\varepsilon E & \perp \mathcal{H}_{\varepsilon}(\Omega) & &
\end{aligned}
$$

n note: $\Gamma_{t}=\Gamma \Rightarrow$ electro static (elec. bc); $\Gamma_{n}=\Gamma \Rightarrow$ magneto static (magn. bc)

- GOAL: NON-CONFORMING estimates for error $e:=E-E$,

Introduction: Electro-Magneto Static Maxwell Problem (special case $q=1$)

- $\Omega \subset \mathbb{R}^{3}$ bounded domain with Lipschitz boundary $\Gamma=\partial \Omega$,
Γ is decomposed in tangential and normal parts divided by a Lipschitz interface, i.e., $\Gamma_{t} \subset \Gamma, \Gamma_{n}:=\Gamma \backslash \overline{\Gamma_{t}}$, where $\gamma:=\overline{\Gamma_{t}} \cap \overline{\Gamma_{n}}$ Lipschitz
- $\varepsilon: \Omega \rightarrow \mathbb{R}^{3 \times 3}$ given medium property: bd., sym., unif. pos. def. matrix field
- E electric or magnetic (H) field
- F, G, f, g given right hand side data
$■ \tau, \nu$ restr. tang. resp. norm. trace, i.e., $\tau E=n \times\left. E\right|_{\Gamma_{t}}$ resp. $\nu H=\left.n \cdot H\right|_{\Gamma_{n}}$
- \perp orthogonality w.r.t. $L^{2}(\Omega)$-scalar product $\langle E, H\rangle_{\Omega}:=\int_{\Omega} E \cdot H$
- $H \in \mathcal{H}_{\varepsilon}(\Omega)$ Dirich. $/$ Neum.-fields $\Leftrightarrow \operatorname{curl} H=0, \operatorname{div} \varepsilon H=0$ and $\tau H=0, \nu \varepsilon H=0$

$$
\begin{align*}
\operatorname{curl} E & =F & & \text { in } \Omega \\
\operatorname{div} \varepsilon E & =G & & \\
\tau E & =f & & \text { in } \Omega \\
& \text { in } \Gamma_{t} & & \\
\nu \varepsilon E & =g & & \text { (electro-magneto static Maxwell problem) } \\
\varepsilon E & \perp \mathcal{H}_{\varepsilon}(\Omega) & &
\end{align*}
$$

- note: $\Gamma_{t}=\Gamma \Rightarrow$ electro static (elec. bc); $\Gamma_{n}=\Gamma \Rightarrow$ magneto static (magn. bc)
- GOAL: NON-CONFORMING estimates for error $e:=E-\tilde{E}$, where E (just) in $L^{2}(\Omega)$ approximation of E

Introduction: Electro-Magneto Static Maxwell Problem (special case $q=1$)

$■ \Omega \subset \mathbb{R}^{3}$ bounded domain with Lipschitz boundary $\Gamma=\partial \Omega$, Γ is decomposed in tangential and normal parts divided by a Lipschitz interface, i.e., $\Gamma_{t} \subset \Gamma, \Gamma_{n}:=\Gamma \backslash \overline{\Gamma_{t}}$, where $\gamma:=\overline{\Gamma_{t}} \cap \overline{\Gamma_{n}}$ Lipschitz

■ $\varepsilon: \Omega \rightarrow \mathbb{R}^{3 \times 3}$ given medium property: bd., sym., unif. pos. def. matrix field

- E electric or magnetic (H) field
- F, G, f, g given right hand side data
$■ \tau, \nu$ restr. tang. resp. norm. trace, i.e., $\tau E=n \times\left. E\right|_{\Gamma_{t}}$ resp. $\nu H=\left.n \cdot H\right|_{\Gamma_{n}}$
$■ \perp$ orthogonality w.r.t. $\mathrm{L}^{2}(\Omega)$-scalar product $\langle E, H\rangle_{\Omega}:=\int_{\Omega} E \cdot H$
$■ H \in \mathcal{H}_{\varepsilon}(\Omega)$ Dirich./Neum.-fields $\Leftrightarrow \operatorname{curl} H=0, \operatorname{div} \varepsilon H=0$ and $\tau H=0, \nu \varepsilon H=0$

$$
\begin{align*}
\operatorname{curl} E & =F & & \text { in } \Omega \\
\operatorname{div} \varepsilon E & =G & & \text { in } \Omega \\
\tau E & =f & & \text { in } \Gamma_{t} \quad \text { (electro-magneto static Maxwell problem) } \\
\nu \varepsilon E & =g & & \text { in } \Gamma_{n} \\
\varepsilon E & \perp \mathcal{H}_{\varepsilon}(\Omega) & &
\end{align*}
$$

\square note: $\Gamma_{t}=\Gamma \Rightarrow$ electro static (elec. bc); $\Gamma_{n}=\Gamma \Rightarrow$ magneto static (magn. bc)
■ GOAL: NON-CONFORMING estimates for error $e:=E-\tilde{E}$, where \tilde{E} (just) in $L^{2}(\Omega)$ approximation of E

Introduction: Electro or Magneto Static Maxwell Problem (simplifications)

■ $\Gamma_{t}=\Gamma_{,} \Gamma_{n}=\emptyset$ or $\Gamma_{n}=\Gamma_{,} \Gamma_{t}=\emptyset$

- $\varepsilon=\mu=\mathrm{id}$
- E electric field, H magnetic field
- $D \in \mathcal{H}_{D}(\Omega)$ Dirichlet fields $\Leftrightarrow \operatorname{curl} D=0, \operatorname{div} D=0$ and $\tau D=0$

■ $N \in \mathcal{H}_{N_{1}}(\Omega)$ Neumann fields $\Leftrightarrow \operatorname{curl} N=0, \operatorname{div} N=0$ and $\nu N=0$

```
curl E=F, curl H=L in \Omega
div}E=G.\quad\operatorname{div}H=K\quad\mathrm{ in }\Omega\mathrm{ (electro or magneto
```



```
        E\perp\mp@subsup{\mathcal{H}}{D}{}(\Omega),}\quadH\perp\mp@subsup{\mathcal{H}}{N}{}(\Omega
```

- GOAL: NON-CONFORMING estimates for errors $e:=E-\tilde{E}, h:=H-\tilde{H}$, where \tilde{E}, \tilde{H} (just) in $L^{2}(\Omega)$ approximations of E, H

unverstitat

DESSSENURG

Introduction: Electro or Magneto Static Maxwell Problem (simplifications)

■ $\Gamma_{t}=\Gamma_{,} \Gamma_{n}=\emptyset$ or $\Gamma_{n}=\Gamma_{,} \Gamma_{t}=\emptyset$

- $\varepsilon=\mu=\mathrm{id}$
- E electric field, H magnetic field
- $D \in \mathcal{H}_{D}(\Omega)$ Dirichlet fields $\Leftrightarrow \operatorname{curl} D=0$, $\operatorname{div} D=0$ and $\tau D=0$
- - $N \in \mathcal{H}_{N}(\Omega)$ Neumann fields $\Leftrightarrow \operatorname{curl} N=0, \operatorname{div} N=0$ and $\nu N=0$

```
curl E=F, curl H=L in \Omega
div}E=G,\quad\operatorname{div}H=K\quad\mathrm{ in }\Omega\quad\mathrm{ (electro or magneto
```



```
        E \perp H}\mp@subsup{\mathcal{HD}}{D}{}(\Omega),\quadH\perp\mp@subsup{\mathcal{H}}{N}{}(\Omega
```

- GOAL NON-CONFORMING estimates for errors e $:=E-E, h:=H-\tilde{H}$, where \tilde{E}, \tilde{H} (just) in $L^{2}(\Omega)$ approximations of E, H

Introduction: Electro or Magneto Static Maxwell Problem (simplifications)

■ $\Gamma_{t}=\Gamma_{,} \Gamma_{n}=\emptyset$ or $\Gamma_{n}=\Gamma_{,} \Gamma_{t}=\emptyset$

- $\varepsilon=\mu=\mathrm{id}$
- E electric field, H magnetic field
- $D \in \mathcal{H}_{D}(\Omega)$ Dirichlet fields $\Leftrightarrow \operatorname{curl} D=0, \operatorname{div} D=0$ and $\tau D=0$
- $N \in \mathcal{H}_{N}(\Omega)$ Neumann fields $\Leftrightarrow \operatorname{curl} N=0, \operatorname{div} N=0$ and $\nu N=0$

```
curl E=F, curl H=L in \Omega
div}E=G,\quad\operatorname{div}H=K\quad\mathrm{ in }\Omega\quad\mathrm{ (electro or magneto
```



```
E \perp H}\mp@subsup{\mathcal{HD}}{D}{}(\Omega),\quadH\perp\mp@subsup{\mathcal{H}}{N}{}(\Omega
```

- GOAL NON-CONFORMING estimates for errors $e:=E-\tilde{E}, h:=H-\tilde{H}$, where \tilde{E}, \tilde{H} (just) in $L^{2}(\Omega)$ approximations of E, H

Introduction: Electro or Magneto Static Maxwell Problem (simplifications)

■ $\Gamma_{t}=\Gamma_{,} \Gamma_{n}=\emptyset$ or $\Gamma_{n}=\Gamma_{,} \Gamma_{t}=\emptyset$

- $\varepsilon=\mu=\mathrm{id}$
- E electric field, H magnetic field

```
| D \in H}\mp@subsup{\mathcal{L}}{D}{(\Omega)}\mathrm{ Dirichlet fields }\Leftrightarrow\operatorname{curl}D=0,\operatorname{div}D=0\mathrm{ and }\tauD=
| N N H
```

```
curl E=F, curl H=L in \Omega
```

curl E=F, curl H=L in \Omega
div}E=G,\quad\operatorname{div}H=K\quad\mathrm{ in }\Omega\quad\mathrm{ (electro or magneto

```
div}E=G,\quad\operatorname{div}H=K\quad\mathrm{ in }\Omega\quad\mathrm{ (electro or magneto
```



```
    E \perp \mathcal{H}
```

 E \perp \mathcal{H}
 - GOAL: NON-CONFORMING estimates for errors e :=E-E E, h:=H-\tilde{H},
where \tilde{E},\tilde{H}\mathrm{ (just) in L}\mp@subsup{L}{}{2}(\Omega)\mathrm{ approximations of E,H}

```

\section*{Introduction: Electro or Magneto Static Maxwell Problem (simplifications)}

■ \(\Gamma_{t}=\Gamma_{, ~} \Gamma_{n}=\emptyset\) or \(\Gamma_{n}=\Gamma_{, ~} \Gamma_{t}=\emptyset\)
- \(\varepsilon=\mu=\mathrm{id}\)
- \(E\) electric field, \(H\) magnetic field
- \(D \in \mathcal{H}_{D}(\Omega)\) Dirichlet fields \(\Leftrightarrow \operatorname{curl} D=0, \operatorname{div} D=0\) and \(\tau D=0\)
- \(N \in \mathcal{H}_{N}(\Omega)\) Neumann fields \(\Leftrightarrow\) curl \(N=0\), div \(N=0\) and \(\nu N=0\)

- GOAL: NON-CONFORMING estimates for errors \(e:=E-\tilde{E}, h:=H-\tilde{H}\), where \(\tilde{E}, \tilde{H}\) (just) in \(L^{2}(\Omega)\) approximations of \(E, H\)

\section*{Introduction: Electro or Magneto Static Maxwell Problem (simplifications)}

■ \(\Gamma_{t}=\Gamma_{,} \Gamma_{n}=\emptyset\) or \(\Gamma_{n}=\Gamma_{,} \Gamma_{t}=\emptyset\)
- \(\varepsilon=\mu=\mathrm{id}\)
- \(E\) electric field, \(H\) magnetic field
- \(D \in \mathcal{H}_{D}(\Omega)\) Dirichlet fields \(\Leftrightarrow \operatorname{curl} D=0, \operatorname{div} D=0\) and \(\tau D=0\)
- \(N \in \mathcal{H}_{N}(\Omega)\) Neumann fields \(\Leftrightarrow \operatorname{curl} N=0, \operatorname{div} N=0\) and \(\nu N=0\)

- GOAL: NON-CONFORMING estimates for errors \(e:=E-\tilde{E}, h:=H-\tilde{H}\) where \(\tilde{E}, \tilde{H}\) (just) in \(L^{2}(\Omega)\) approximations of \(E, H\)

\section*{universitat}

DUSSEB URG

\section*{Introduction: Electro or Magneto Static Maxwell Problem (simplifications)}

■ \(\Gamma_{t}=\Gamma_{,} \Gamma_{n}=\emptyset\) or \(\Gamma_{n}=\Gamma_{,} \Gamma_{t}=\emptyset\)
- \(\varepsilon=\mu=\mathrm{id}\)
- \(E\) electric field, \(H\) magnetic field
- \(D \in \mathcal{H}_{D}(\Omega)\) Dirichlet fields \(\Leftrightarrow \operatorname{curl} D=0, \operatorname{div} D=0\) and \(\tau D=0\)
- \(N \in \mathcal{H}_{N}(\Omega)\) Neumann fields \(\Leftrightarrow \operatorname{curl} N=0, \operatorname{div} N=0\) and \(\nu N=0\)
\[
\begin{array}{rlrlrl}
\operatorname{curl} E & =F, & & \text { curl } H & =L & \\
\operatorname{div} E & =G, & & \operatorname{div} H & =K & \\
\text { in } \Omega & & \text { (electro or magneto } \\
\tau E & =f, & \nu H & =g & & \text { in } \Gamma \\
& & & \text { static Maxwell problem) } \\
E & \perp \mathcal{H}_{D}(\Omega), & H & \perp \mathcal{H}_{N}(\Omega) & &
\end{array}
\]
- GOAL: NON-CONFORMING estimates for errors \(e:=E-\tilde{E}, h:=H-\tilde{H}\) where \(\tilde{E}, \tilde{H}\) (just) in \(L^{2}(\Omega)\) approximations of \(E, H\)

\section*{Introduction: Electro or Magneto Static Maxwell Problem (simplifications)}

■ \(\Gamma_{t}=\Gamma_{,} \Gamma_{n}=\emptyset\) or \(\Gamma_{n}=\Gamma_{,} \Gamma_{t}=\emptyset\)
- \(\varepsilon=\mu=\mathrm{id}\)
- \(E\) electric field, \(H\) magnetic field
- \(D \in \mathcal{H}_{D}(\Omega)\) Dirichlet fields \(\Leftrightarrow \operatorname{curl} D=0, \operatorname{div} D=0\) and \(\tau D=0\)

■ \(N \in \mathcal{H}_{N}(\Omega)\) Neumann fields \(\Leftrightarrow \operatorname{curl} N=0, \operatorname{div} N=0\) and \(\nu N=0\)
\[
\begin{array}{rlrlrl}
\operatorname{curl} E & =F, & & \text { curl } H & =L & \\
\operatorname{div} E & =G, & & \operatorname{div} H & =K & \\
\text { in } \Omega & & \text { (electro or magneto } \\
\tau E & =f, & \nu H & =g & & \text { in } \Gamma \\
E & & \text { static Maxwell problem) } \\
E & \mathcal{H}_{D}(\Omega), & H & \perp \mathcal{H}_{N}(\Omega) & &
\end{array}
\]
- GOAL: NON-CONFORMING estimates for errors \(e:=E-\tilde{E}, h:=H-\tilde{H}\), where \(\tilde{E}, \tilde{H}\) (just) in \(L^{2}(\Omega)\) approximations of \(E, H\)

\section*{Introduction: Dirichlet or Neumann Laplace Problems}
- \(u \in \mathrm{H}^{1}(\Omega)\) with \(\Delta u=\operatorname{div} \nabla u=G \quad\) and \(\left.\quad u\right|_{\Gamma}=v\) or \(\left.\partial_{n} u\right|_{\Gamma}=\left.n \cdot \nabla u\right|_{\Gamma}=g\)
- Set \(E:=\nabla u\) or \(H:=\nabla u\), note: \(n \times\left.\nabla u\right|_{\Gamma}=\left.\nabla_{\Gamma} u\right|_{\Gamma} \quad\) (since \(d \iota^{*}=\iota^{*} d\) )
```

curl E=0,
curl H=0 in \Omega
div}H=G in \Omega (electro or magneto
rE = \mp@subsup{\nabla}{\Gamma}{}v=:f,
static Maxwell problem)

```
- \(\Rightarrow\) NON-CONFORMING estimates for errors \(e:=E-\tilde{E}, h:=H-\tilde{H}\),
    where \(\tilde{E}, \tilde{H}\) (just) in \(L^{2}(\Omega)\) approximation of \(E=\nabla u, H=\nabla u\)
- \(\Rightarrow\) NON-CONFORMING estimates for energy norm
- note: also mixed boundary conditions possible:
    \(u \in \mathrm{H}^{1}(\Omega)\) with \(\Delta u=G \quad\) and \(\left.\quad u\right|_{\Gamma_{t}}=v\) and \(\left.\partial_{n} u\right|_{\Gamma_{n}}=\left.n \cdot \nabla u\right|_{\Gamma_{n}}=g\)
- note: also possible \(\tau E=\left.\partial_{t} u\right|_{\Gamma}=n \times\left.\nabla u\right|_{\Gamma}=f\)

\section*{Introduction: Dirichlet or Neumann Laplace Problems}
\(■ u \in \mathrm{H}^{1}(\Omega)\) with \(\Delta u=\operatorname{div} \nabla u=G \quad\) and \(\left.\quad u\right|_{\Gamma}=v\) or \(\left.\partial_{n} u\right|_{\Gamma}=\left.n \cdot \nabla u\right|_{\Gamma}=g\)
- Set \(E:=\nabla u\) or \(H:=\nabla u\), note: \(n \times\left.\nabla u\right|_{\Gamma}=\left.\nabla_{\Gamma} u\right|_{\Gamma} \quad\left(\right.\) since \(\left.d \iota^{*}=\iota^{*} \mathrm{~d}\right)\)


\section*{Introduction: Dirichlet or Neumann Laplace Problems}

■ \(u \in \mathrm{H}^{1}(\Omega)\) with \(\Delta u=\operatorname{div} \nabla u=G \quad\) and \(\left.\quad u\right|_{\Gamma}=v\) or \(\left.\partial_{n} u\right|_{\Gamma}=\left.n \cdot \nabla u\right|_{\Gamma}=g\)
\(■\) Set \(E:=\nabla u\) or \(H:=\nabla u\), note: \(n \times\left.\nabla u\right|_{\Gamma}=\left.\nabla_{\Gamma} u\right|_{\Gamma} \quad\left(\right.\) since \(\left.d \iota^{*}=\iota^{*} \mathrm{~d}\right)\)
\(\left.\begin{array}{rlrlrl}\operatorname{curl} E & =0, & \operatorname{curl} H & =0 & & \text { in } \Omega \\ \operatorname{div} E & =G, & \operatorname{div} H & =G & & \\ \tau E & =\nabla_{\Gamma v}=: f, & \nu H & =g & & \text { in } \Gamma\end{array} \quad \begin{array}{l}\text { (electro or magneto } \\ E\end{array}\right)\)
- \(\Rightarrow\) NON-CONFORMING estimates for errors \(e:=E-\tilde{E}, h:=H-\tilde{H}\) where \(E, H\) (just) in \(L^{2}(\Omega)\) approximation of \(E=\nabla u, H=\nabla u\)
■ \(\Rightarrow\) NON-CONFORMING estimates for energy norm
- note: also mixed boundary conditions possible:
\(u \in H^{1}(\Omega)\) with \(\Delta u=G\) and \(\left.u\right|_{r_{t}}=v\) and \(\left.\partial_{n} u\right|_{\Gamma_{n}}=\left.n \cdot \nabla u\right|_{r_{n}}=g\)
- note: also possible \(\tau E=\left.\partial_{t} u\right|_{\Gamma}=n \times\left.\nabla u\right|_{\Gamma}=f\)

\section*{Introduction: Dirichlet or Neumann Laplace Problems}

■ \(u \in \mathrm{H}^{1}(\Omega)\) with \(\Delta u=\operatorname{div} \nabla u=G \quad\) and \(\left.\quad u\right|_{\Gamma}=v\) or \(\left.\partial_{n} u\right|_{\Gamma}=\left.n \cdot \nabla u\right|_{\Gamma}=g\)
\(■\) Set \(E:=\nabla u\) or \(H:=\nabla u\), note: \(n \times\left.\nabla u\right|_{\Gamma}=\left.\nabla_{\Gamma} u\right|_{\Gamma} \quad\left(\right.\) since \(\left.d \iota^{*}=\iota^{*} \mathrm{~d}\right)\)
\[
\begin{aligned}
\Rightarrow \quad \operatorname{curl} E & =0, & \operatorname{curl} H & =0 & & \text { in } \Omega \\
\operatorname{div} E & =G, & \operatorname{div} H & =G & & \\
\tau E & =\nabla_{\Gamma} v=: f, & \nu H & =g & & \text { in } \Gamma
\end{aligned}
\]
[ \(\quad \Rightarrow\) NON-CONFORMING estimates for errors \(e:=E-\tilde{E}, h:=H-\tilde{H}\), where \(\tilde{E}, \tilde{H}\) (just) in \(L^{2}(\Omega)\) approximation of \(E=\nabla u, H=\nabla u\)
■ \(\Rightarrow\) NON-CONFORMING estimates for energy norm
- note: also mixed boundary conditions possible:
\(u \in \mathrm{H}^{1}(\Omega)\) with \(\Delta u=G \quad\) and \(\left.\quad u\right|_{\Gamma_{t}}=v\) and \(\left.\partial_{n} u\right|_{r_{n}}=\left.n \cdot \nabla u\right|_{r_{n}}=g\)
- note: also possible \(\tau E=\left.\partial_{t} u\right|_{\Gamma}=n \times\left.\nabla u\right|_{\Gamma}=f\)

\section*{universitat}

DEDSSESNRG

\section*{Introduction: Dirichlet or Neumann Laplace Problems}

■ \(u \in \mathrm{H}^{1}(\Omega)\) with \(\Delta u=\operatorname{div} \nabla u=G \quad\) and \(\left.\quad u\right|_{\Gamma}=v\) or \(\left.\partial_{n} u\right|_{\Gamma}=\left.n \cdot \nabla u\right|_{\Gamma}=g\)
\(■\) Set \(E:=\nabla u\) or \(H:=\nabla u\), note: \(n \times\left.\nabla u\right|_{\Gamma}=\left.\nabla_{\Gamma} u\right|_{\Gamma} \quad\left(\right.\) since \(\left.d \iota^{*}=\iota^{*} \mathrm{~d}\right)\)
\[
\begin{array}{rlrlrl}
\Rightarrow \quad \text { curl } E & =0, & & \text { curl } H & =0 & \\
\operatorname{div} E & =G, & & \text { in } \Omega & \\
\tau E & =\nabla_{\Gamma} v=: f, & \nu H & =G & & \text { in } \Omega \\
E & & \text { (electro or magneto } \\
E & \text { proj. on } \mathcal{H}_{D}(\Omega), & H & & \text { in } \Gamma & \\
\text { static Maxwell pro }
\end{array}
\]

■ \(\Rightarrow\) NON-CONFORMING estimates for errors \(e:=E-\tilde{E}, h:=H-\tilde{H}\), where \(\tilde{E}, \tilde{H}\) (just) in \(L^{2}(\Omega)\) approximation of \(E=\nabla u, H=\nabla u\)
- \(\Rightarrow\) NON-CONFORMING estimates for energy norm
- note: also mixed boundary conditions possible:
\(u \in \mathrm{H}^{1}(\Omega)\) with \(\Delta u=G\) and \(\left.u\right|_{r_{t}}=v\) and \(\left.\partial_{n} u\right|_{r_{n}}=\left.n \cdot \nabla u\right|_{r_{n}}=g\)
- note: also possible \(\tau E=\partial_{t} u_{\Gamma}=n \times\left.\nabla u\right|_{\Gamma}=f\)
universitat
EUSSEENURG

\section*{Introduction: Dirichlet or Neumann Laplace Problems}

■ \(u \in \mathrm{H}^{1}(\Omega)\) with \(\Delta u=\operatorname{div} \nabla u=G \quad\) and \(\left.\quad u\right|_{\Gamma}=v\) or \(\left.\partial_{n} u\right|_{\Gamma}=\left.n \cdot \nabla u\right|_{\Gamma}=g\)
\(■\) Set \(E:=\nabla u\) or \(H:=\nabla u\), note: \(n \times\left.\nabla u\right|_{\Gamma}=\left.\nabla_{\Gamma} u\right|_{\Gamma} \quad\left(\right.\) since \(\left.d \iota^{*}=\iota^{*} \mathrm{~d}\right)\)
\[
\begin{array}{rlrlrl}
\Rightarrow \quad \operatorname{curl} E & =0, & & \text { curl } H & =0 & \\
\text { div } E & =G, & & \text { in } \Omega & \\
\tau E & =\nabla_{\Gamma} v=: f, & \nu H & =g & & \text { in } \Omega \\
E & & \text { (electro or magneto } \\
E \text { proj. on } \mathcal{H}_{D}(\Omega), & H & & \text { static Maxwell pro }
\end{array}
\]

■ \(\Rightarrow\) NON-CONFORMING estimates for errors \(e:=E-\tilde{E}, h:=H-\tilde{H}\), where \(\tilde{E}, \tilde{H}\) (just) in \(L^{2}(\Omega)\) approximation of \(E=\nabla u, H=\nabla u\)
\(■ \Rightarrow\) NON-CONFORMING estimates for energy norm
- note: also mixed boundary conditions possible:
\(u \in H^{1}(\Omega)\) with \(\Delta u=G \quad\) and \(\left.\quad u\right|_{\Gamma_{t}}=v\) and \(\left.\partial_{n} u\right|_{\Gamma_{n}}=\left.n \cdot \nabla u\right|_{\Gamma_{n}}=g\)
輏 note: also nossible \(\tau E=\left.\partial_{+} u\right|_{\Gamma}=n \times\left.\nabla u\right|_{\Gamma}=f\)
universitat
EUSSEENURG

\section*{Introduction: Dirichlet or Neumann Laplace Problems}

■ \(u \in \mathrm{H}^{1}(\Omega)\) with \(\Delta u=\operatorname{div} \nabla u=G \quad\) and \(\left.\quad u\right|_{\Gamma}=v\) or \(\left.\partial_{n} u\right|_{\Gamma}=\left.n \cdot \nabla u\right|_{\Gamma}=g\)
\(■\) Set \(E:=\nabla u\) or \(H:=\nabla u\), note: \(n \times\left.\nabla u\right|_{\Gamma}=\left.\nabla_{\Gamma} u\right|_{\Gamma} \quad\left(\right.\) since \(\left.d \iota^{*}=\iota^{*} \mathrm{~d}\right)\)
\[
\begin{aligned}
\Rightarrow \quad \operatorname{curl} E & =0, & \operatorname{curl} H & =0 & & \text { in } \Omega \\
\operatorname{div} E & =G, & \operatorname{div} H & =G & & \\
\tau E & =\nabla_{\Gamma} v=: f, & \nu H & =g & & \text { in } \Gamma
\end{aligned}
\]

■ \(\Rightarrow\) NON-CONFORMING estimates for errors \(e:=E-\tilde{E}, h:=H-\tilde{H}\), where \(\tilde{E}, \tilde{H}\) (just) in \(L^{2}(\Omega)\) approximation of \(E=\nabla u, H=\nabla u\)
\(■ \Rightarrow\) NON-CONFORMING estimates for energy norm
- note: also mixed boundary conditions possible: \(u \in \mathrm{H}^{1}(\Omega)\) with \(\Delta u=G \quad\) and \(\left.\quad u\right|_{\Gamma_{t}}=v\) and \(\left.\partial_{n} u\right|_{\Gamma_{n}}=\left.n \cdot \nabla u\right|_{\Gamma_{n}}=g\)
- note: also possible \(\tau E=\left.\partial_{t} u\right|_{\Gamma}=n \times\left.\nabla u\right|_{\Gamma}=f\)

\section*{Introduction: Dirichlet or Neumann Laplace Problems}

■ \(u \in \mathrm{H}^{1}(\Omega)\) with \(\Delta u=\operatorname{div} \nabla u=G \quad\) and \(\left.\quad u\right|_{\Gamma}=v\) or \(\left.\partial_{n} u\right|_{\Gamma}=\left.n \cdot \nabla u\right|_{\Gamma}=g\)
\(■\) Set \(E:=\nabla u\) or \(H:=\nabla u\), note: \(n \times\left.\nabla u\right|_{\Gamma}=\left.\nabla_{\Gamma} u\right|_{\Gamma} \quad\left(\right.\) since \(\left.d \iota^{*}=\iota^{*} \mathrm{~d}\right)\)
\[
\begin{aligned}
\Rightarrow \quad \operatorname{curl} E & =0, & \operatorname{curl} H & =0 & & \text { in } \Omega \\
\operatorname{div} E & =G, & \operatorname{div} H & =G & & \\
\tau E & =\nabla_{\Gamma} v=: f, & \nu H & =g & & \text { in } \Gamma
\end{aligned}
\]

■ \(\Rightarrow\) NON-CONFORMING estimates for errors \(e:=E-\tilde{E}, h:=H-\tilde{H}\), where \(\tilde{E}, \tilde{H}\) (just) in \(L^{2}(\Omega)\) approximation of \(E=\nabla u, H=\nabla u\)
\(■ \Rightarrow\) NON-CONFORMING estimates for energy norm
- note: also mixed boundary conditions possible:
\[
u \in \mathrm{H}^{1}(\Omega) \text { with } \Delta u=G \quad \text { and }\left.\quad u\right|_{\Gamma_{t}}=v \text { and }\left.\partial_{n} u\right|_{\Gamma_{n}}=\left.n \cdot \nabla u\right|_{\Gamma_{n}}=g
\]
- note: also possible \(\tau E=\left.\partial_{t} u\right|_{\Gamma}=n \times\left.\nabla u\right|_{\Gamma}=f\)

\section*{Introduction: curl curl-Problems}

回 \(\Rightarrow\) NON-CONFORMING estimates for errors \(e:=E-\tilde{E}, h:=H-\tilde{H}\), where \(\tilde{E}, \tilde{H}\) (just) in \(L^{2}(\Omega)\) approximation of \(E=\operatorname{curl} U, H=\mathrm{curl} U\)
- \(\Rightarrow\) NON-CONFORMING estimates for energy half-norm

■ note: also mixed boundary conditions possible:
\(U \in \mathrm{H}(\operatorname{curl} ; \Omega)\) with curl curl \(U=F \quad\) and \(n \times\left. U\right|_{\Gamma_{n}}=v\) or \(n \times\left.\operatorname{curl} U\right|_{r_{t}}=f\)
note: also possible \(\nu H=n \cdot\) curl \(\left.U\right|_{\Gamma_{t}}=g\)

\section*{unvestrit}


- \(U \in \mathrm{H}(\operatorname{curl} ; \Omega)\) with curl curl \(U=F \quad\) and \(\quad n \times\left. U\right|_{\Gamma}=v\) or \(n \times\left.\operatorname{curl} U\right|_{\Gamma}=f\)
- Set \(E:=\operatorname{curl} U\) or \(H:=\operatorname{curl} U\), note: \(\left.n \cdot \operatorname{curl} U\right|_{\Gamma}=\left.\operatorname{curl}\right|_{\Gamma} n \times\left. U\right|_{\Gamma} \quad\left(\mathrm{d} \iota^{*}=\iota^{*} \mathrm{~d}\right)\)
- \(U \in \mathrm{H}(\operatorname{curl} ; \Omega)\) with curl curl \(U=F \quad\) and \(\quad n \times\left. U\right|_{\Gamma}=v\) or \(n \times\left.\operatorname{curl} U\right|_{\Gamma}=f\)
- Set \(E:=\operatorname{curl} U\) or \(H:=\operatorname{curl} U\), note: \(\left.n \cdot \operatorname{curl} U\right|_{\Gamma}=\left.\operatorname{curl}\right|_{\Gamma} n \times\left. U\right|_{\Gamma} \quad\left(\mathrm{d} \iota^{*}=\iota^{*} \mathrm{~d}\right)\)
\(\Rightarrow\)
in \(\Omega\)
in 「
in \(\Omega \quad\) (electro or magneto
static Maxwell problem)
```

$$
E \perp \mathcal{H}_{D}(\Omega),
$$

```

```

curl E=F.

```
curl E=F.
    div}E=0,\quad\operatorname{div}H=
    div}E=0,\quad\operatorname{div}H=
        \tauE=f,}\quad\nuH=\textrm{curl}\mp@subsup{|}{\Gammav}{}=:
        \tauE=f,}\quad\nuH=\textrm{curl}\mp@subsup{|}{\Gammav}{}=:
        E \perpH}\mp@subsup{\mathcal{H}}{D}{}(\Omega),\quadH\mathrm{ proj. on }\mp@subsup{\mathcal{H}}{N}{}(\Omega
        E \perpH}\mp@subsup{\mathcal{H}}{D}{}(\Omega),\quadH\mathrm{ proj. on }\mp@subsup{\mathcal{H}}{N}{}(\Omega
curl H=F
curl H=F
    \nuH=curl |rv =: g in \Gamma
```

 \nuH=curl |rv =: g in \Gamma
    ```


\section*{Introduction: curl curl-Problems}

■ \(U \in \mathrm{H}(\) curl \(; \Omega)\) with curl curl \(U=F \quad\) and \(\quad n \times\left. U\right|_{\Gamma}=v\) or \(n \times\left.\operatorname{curl} U\right|_{\Gamma}=f\)
- Set \(E:=\operatorname{curl} U\) or \(H:=\operatorname{curl} U\), note: \(\left.n \cdot \operatorname{curl} U\right|_{\Gamma}=\left.\operatorname{curl}\right|_{\Gamma} n \times\left. U\right|_{\Gamma} \quad\left(d \iota^{*}=\iota^{*} d\right)\)
```

curl }E=F
div}E=0,\quad\operatorname{div}H=
\tauE=f,\quad \nuH= curl | }\veev=:g\quad\mathrm{ in }
E \perp H H
curl H=F
div}H=0\quad\mathrm{ in }
H proj. on }\mp@subsup{\mathcal{H}}{N}{}(\Omega

```
in \(\Omega\)
in \(\Omega \quad\) (electro or magneto
in \(\Gamma \quad\) static Maxwell problem)
- \(\Rightarrow\) NON-CONFORMING estimates for errors \(e:=E-E, h:=H-\tilde{H}\), where \(\tilde{E}, \tilde{H}\) (just) in \(L^{2}(\Omega)\) approximation of \(E=\operatorname{curl} U, H=\operatorname{curl} U\)
■ \(\Rightarrow\) NON-CONFORMING estimates for energy half-norm
- note: also mixed boundary conditions possible:
\(U \in H(\) curl \(; \Omega)\) with curl curl \(U=F \quad\) and \(n \times\left. U\right|_{r_{n}}=v\) or \(n \times\left.\operatorname{curl} U\right|_{r_{t}}=f\)
- note: also possible \(\nu H=\left.n \cdot \operatorname{curl} U\right|_{r_{t}}=g\)

\section*{Introduction: curl curl-Problems}

■ U \(\in \mathrm{H}(\) curl \(; \Omega)\) with curl curl \(U=F \quad\) and \(\quad n \times\left. U\right|_{\Gamma}=v\) or \(n \times\left.\operatorname{curl} U\right|_{\Gamma}=f\)
■ Set \(E:=\operatorname{curl} U\) or \(H:=\operatorname{curl} U\), note: \(\left.n \cdot \operatorname{curl} U\right|_{\Gamma}=\operatorname{curl}_{\Gamma} n \times\left. U\right|_{\Gamma} \quad\left(\mathrm{d} \iota^{*}=\iota^{*} \mathrm{~d}\right)\)


\section*{Introduction: curl curl-Problems}
- \(U \in \mathrm{H}(\) curl \(; \Omega)\) with curl curl \(U=F \quad\) and \(\quad n \times\left. U\right|_{\Gamma}=v\) or \(n \times\left.\operatorname{curl} U\right|_{\Gamma}=f\)

■ Set \(E:=\operatorname{curl} U\) or \(H:=\operatorname{curl} U\), note: \(\left.n \cdot \operatorname{curl} U\right|_{\Gamma}=\operatorname{curl}_{\Gamma} n \times\left. U\right|_{\Gamma} \quad\left(\mathrm{d} \iota^{*}=\iota^{*} \mathrm{~d}\right)\)
\[
\begin{aligned}
& \Rightarrow \quad \text { curl } E=F, \quad \text { curl } H=F \quad \text { in } \Omega \\
& \operatorname{div} E=0, \quad \operatorname{div} H=0 \quad \text { in } \Omega \quad \text { (electro or magneto } \\
& \tau E=f, \quad \nu H=\text { curl }\left.\right|_{\Gamma} v=: g \quad \text { in } \Gamma \\
& E \perp \mathcal{H}_{D}(\Omega), \quad H \text { proj. on } \mathcal{H}_{N}(\Omega)
\end{aligned}
\]
- \(\Rightarrow\) NON-CONFORMING estimates for errors \(e:=E-\tilde{E}, h:=H-\tilde{H}\), where \(\tilde{E}, \tilde{H}\) (just) in \(L^{2}(\Omega)\) approximation of \(E=\operatorname{curl} U, H=\) curl \(U\)
- \(\Rightarrow\) NON-CONFORMING estimates for energy half-norm
- note: also mixed boundary conditions possible: \(U \in \mathrm{H}(\) curl \(; \Omega)\) with curl curl \(U=F \quad\) and \(n \times\left. U\right|_{\Gamma_{n}}=v\) or \(n \times\left.\operatorname{curl} U\right|_{r_{t}}=f\)
- note: also possible \(\nu H=n \cdot\) curl \(\left.U\right|_{r_{t}}=g\)

\section*{Introduction: curl curl-Problems}
- \(U \in \mathrm{H}(\) curl \(; \Omega)\) with curl curl \(U=F \quad\) and \(\quad n \times\left. U\right|_{\Gamma}=v\) or \(n \times\left.\operatorname{curl} U\right|_{\Gamma}=f\)

■ Set \(E:=\operatorname{curl} U\) or \(H:=\operatorname{curl} U\), note: \(\left.n \cdot \operatorname{curl} U\right|_{\Gamma}=\operatorname{curl}_{\Gamma} n \times\left. U\right|_{\Gamma} \quad\left(\mathrm{d} \iota^{*}=\iota^{*} \mathrm{~d}\right)\)
\[
\begin{aligned}
\Rightarrow \quad \operatorname{curl} E & =F, & & \text { curl } H & =F & \\
\operatorname{div} E & =0, & \operatorname{div} \Omega & =0 & & \\
\tau E & =f, & \nu H & =\left.\operatorname{curl}\right|_{\Gamma v=: g} & & \text { in } \Gamma
\end{aligned}
\]

■ \(\Rightarrow\) NON-CONFORMING estimates for errors \(e:=E-\tilde{E}, h:=H-\tilde{H}\), where \(\tilde{E}, \tilde{H}\) (just) in \(L^{2}(\Omega)\) approximation of \(E=\operatorname{curl} U, H=\operatorname{curl} U\)
- \(\Rightarrow\) NON-CONFORMING estimates for energy half-norm
- note: also mixed boundary conditions possible:
\(U \in \mathrm{H}(\) curl \(; \Omega)\) with curl curl \(U=F \quad\) and
a note: also possible \(\nu H=n \cdot\) curl \(\left.U\right|_{\Gamma_{t}}=g\)
universitat
purssmug

\section*{Introduction: curl curl-Problems}

■ \(U \in \mathrm{H}(\) curl \(; \Omega)\) with curl curl \(U=F \quad\) and \(\quad n \times\left. U\right|_{\Gamma}=v\) or \(n \times\left.\operatorname{curl} U\right|_{\Gamma}=f\)
■ Set \(E:=\operatorname{curl} U\) or \(H:=\operatorname{curl} U\), note: \(\left.n \cdot \operatorname{curl} U\right|_{\Gamma}=\operatorname{curl}_{\Gamma} n \times\left. U\right|_{\Gamma} \quad\left(\mathrm{d} \iota^{*}=\iota^{*} \mathrm{~d}\right)\)
\[
\begin{aligned}
\Rightarrow \quad \operatorname{curl} E & =F, & & \text { curl } H & =F & \\
\operatorname{div} E & =0, & \operatorname{div} \Omega & =0 & & \\
\tau E & =f, & \nu H & =\left.\operatorname{curl}\right|_{\Gamma v=: g} & & \text { in } \Gamma
\end{aligned}
\]

■ \(\Rightarrow\) NON-CONFORMING estimates for errors \(e:=E-\tilde{E}, h:=H-\tilde{H}\), where \(\tilde{E}, \tilde{H}\) (just) in \(\mathrm{L}^{2}(\Omega)\) approximation of \(E=\operatorname{curl} U, H=\operatorname{curl} U\)
■ \(\Rightarrow\) NON-CONFORMING estimates for energy half-norm
- note: also mixed boundary conditions possible:
\(U \in \mathrm{H}(\) curl \(; \Omega)\) with curl curl \(U=F \quad\) and \(n \times\left. U\right|_{\Gamma_{n}}=v\) or \(n \times\left.\operatorname{curl} U\right|_{r_{t}}=f\)
- note: also nossible \(\nu H=n \cdot\) curl \(\left\|\|_{r}=g\right.\)
universitat
pats

\section*{Introduction: curl curl-Problems}

■ \(U \in \mathrm{H}(\) curl \(; \Omega)\) with curl curl \(U=F \quad\) and \(\quad n \times\left. U\right|_{\Gamma}=v\) or \(n \times\left.\operatorname{curl} U\right|_{\Gamma}=f\)
- Set \(E:=\operatorname{curl} U\) or \(H:=\operatorname{curl} U\), note: \(\left.n \cdot \operatorname{curl} U\right|_{\Gamma}=\operatorname{curl}_{\Gamma} n \times\left. U\right|_{\Gamma} \quad\left(\mathrm{d} \iota^{*}=\iota^{*} \mathrm{~d}\right)\)
\[
\begin{array}{rlrlrl}
\Rightarrow \quad \operatorname{curl} E & =F, & & \text { curl } H & =F & \\
\operatorname{div} E & =0, & & \text { in } \Omega & \\
\tau E & =f, & & \operatorname{div} H & =0 & \\
E H & =\left.\operatorname{curl}\right|_{\Gamma v}=: g & & \text { in } \Gamma & & \text { (electro or magneto } \\
E & \perp \mathcal{H}_{D}(\Omega), & & H \text { proj. on } \mathcal{H}_{N}(\Omega) & &
\end{array}
\]

■ \(\Rightarrow\) NON-CONFORMING estimates for errors \(e:=E-\tilde{E}, h:=H-\tilde{H}\), where \(\tilde{E}, \tilde{H}\) (just) in \(\mathrm{L}^{2}(\Omega)\) approximation of \(E=\operatorname{curl} U, H=\operatorname{curl} U\)
■ \(\Rightarrow\) NON-CONFORMING estimates for energy half-norm
■ note: also mixed boundary conditions possible:
\(U \in \mathrm{H}(\) curl \(; \Omega)\) with curl curl \(U=F \quad\) and \(n \times\left. U\right|_{\Gamma_{n}}=v\) or \(n \times\left.\operatorname{curl} U\right|_{\Gamma_{t}}=f\)
n note: also possible \(\nu H=n \cdot\) curl \(\left.U\right|_{r_{t}}=g\)

\section*{Introduction: curl curl-Problems}

■ \(U \in \mathrm{H}(\) curl \(; \Omega)\) with curl curl \(U=F \quad\) and \(\quad n \times\left. U\right|_{\Gamma}=v\) or \(n \times\left.\operatorname{curl} U\right|_{\Gamma}=f\)
■ Set \(E:=\operatorname{curl} U\) or \(H:=\operatorname{curl} U\), note: \(\left.n \cdot \operatorname{curl} U\right|_{\Gamma}=\operatorname{curl}_{\Gamma} n \times\left. U\right|_{\Gamma} \quad\left(\mathrm{d} \iota^{*}=\iota^{*} \mathrm{~d}\right)\)
\[
\begin{aligned}
\Rightarrow \quad \operatorname{curl} E & =F, & & \text { curl } H & =F & \\
\operatorname{div} E & =0, & & \operatorname{div} H & =0 & \\
\tau E & =f, & \nu H & =\left.\operatorname{curl}\right|_{\ulcorner v=:} g & & \text { in } \Gamma
\end{aligned}
\]

■ \(\Rightarrow\) NON-CONFORMING estimates for errors \(e:=E-\tilde{E}, h:=H-\tilde{H}\), where \(\tilde{E}, \tilde{H}\) (just) in \(\mathrm{L}^{2}(\Omega)\) approximation of \(E=\operatorname{curl} U, H=\operatorname{curl} U\)
■ \(\Rightarrow\) NON-CONFORMING estimates for energy half-norm
- note: also mixed boundary conditions possible:
\(U \in \mathrm{H}(\) curl \(; \Omega)\) with curl curl \(U=F \quad\) and \(n \times\left. U\right|_{\Gamma_{n}}=v\) or \(n \times\left.\operatorname{curl} U\right|_{\Gamma_{t}}=f\)
- note: also possible \(\nu H=\left.n \cdot \operatorname{curl} U\right|_{r_{t}}=g\)

\section*{Simple Model Problem and Solution Theory}

introducing scalar and vector potentials \(u\) and \(U\) solving


\section*{Simple Model Problem and Solution Theory}
\[
\begin{array}{rlrlr}
\operatorname{curl} E & =F & & \text { in } \Omega & \\
\operatorname{div} E & =G & & \text { in } \Omega & \\
\tau E & =0 & & & \\
E & \perp \mathcal{H}_{D}(\Omega) & & & \\
\operatorname{curl} E_{c} & =F, & & & \\
\operatorname{div} E_{c} & =0, & \operatorname{curl} E_{d} & =0 & \\
\tau E_{c} & =0, & \operatorname{div} E_{d} & =G & \\
E_{c} & \perp \mathcal{H}_{D}(\Omega), & \tau E_{d} & =0 & \\
& & & \text { in } \Gamma & \\
E_{d} & \perp \mathcal{H}_{D}(\Omega) & &
\end{array}
\]
introducing scalar and vector potentials \(u\) and \(U\) solving
\(\Delta u=\operatorname{div} \nabla u=G \quad\) in \(\Omega\)
\(\| \perp \mathcal{H}_{D}(\Omega)\)

\section*{Simple Model Problem and Solution Theory}
\[
\begin{array}{rlrl}
\text { curl } E & =F & & \text { in } \Omega \\
\operatorname{div} E & =G & & \\
\tau E & =0 & & \text { in } \Omega \\
& & & \text { (electro static Maxwell problem) } \\
E & \perp \mathcal{H}_{D}(\Omega) & & \\
\operatorname{curl} E_{c} & =F, & \operatorname{curl} E_{d}=0 & \\
\operatorname{div} E_{c} & =0, & \operatorname{div} E_{d}=G & \\
& & \text { in } \Omega \quad \text { (2 electro static Maxwell problems) }
\end{array}
\]
introducing scalar and vector potentials \(u\) and \(U\) solving

\section*{Simple Model Problem and Solution Theory}
\[
\begin{array}{rlrlr}
\operatorname{curl} E & =F & & \text { in } \Omega & \\
\operatorname{div} E & =G & & \text { in } \Omega & \text { (electro static Maxwell problem) } \\
\tau E & =0 & & & \\
E & \perp \mathcal{H}_{D}(\Omega) & & & \\
\text { unr } E_{c} & =F, & & & \\
\operatorname{div} E_{c} & =0, & \operatorname{curl} E_{d} & =0 & \\
\tau E_{c} & =0, & \operatorname{div} \Omega & & \\
E_{c} & & \perp \mathcal{H}_{D}(\Omega), & \tau E_{d} & =0 \\
E_{d} & \perp \mathcal{H}_{D}(\Omega) & & \text { in } \Gamma &
\end{array}
\]
introducing scalar and vector potentials \(u\) and \(U\) solving
\[
\begin{array}{rlrl}
\Delta U=\text { curl curl } U & =F, & \Delta u=\operatorname{div} \nabla u=G & \\
\operatorname{div} U & =0 & & \text { in } \Omega \\
\tau U & =0, & & u=0 \\
& & \text { in } \Gamma \\
\tau \operatorname{curl} U & =0 & & \text { in } \Gamma \\
U & \perp \mathcal{H}_{D}(\Omega) & &
\end{array}
\]
variational formulations for \(u\) and \(U\) (right Hilbert spaces)

\section*{Simple Model Problem and Solution Theory}
\[
\begin{array}{rlrl}
\operatorname{curl} E & =F & & \text { in } \Omega \\
& & \\
\operatorname{div} E & =G & & \text { in } \Omega \\
\tau E & =0 & & \text { (electro static Maxwell problem) } \\
E & \perp \mathcal{H}_{D}(\Omega) & & \\
\text { url } E_{c} & =F, & & \\
\operatorname{div} E_{c} & =0, & \operatorname{curl} E_{d}=0 & \\
\tau E_{c} & =0, & \operatorname{div} E_{d}=G & \\
\text { in } \Omega \quad \text { in } \quad \text { (2 electro static Maxwell problems) } \\
& \tau E_{d}=0 & & \text { in } \Gamma
\end{array}
\]
introducing scalar and vector potentials \(u\) and \(U\) solving
\[
\begin{array}{rlrl}
\Delta U=\text { curl curl } U & =F, & & \Delta u=\operatorname{div} \nabla u=G \\
& & \text { in } \Omega \\
\operatorname{div} U & =0 & & \text { in } \Omega \\
\tau U & =0, & & \text { in } \Gamma \\
\tau \operatorname{curl} U & =0 & & \text { in } \Gamma \\
U & \perp \mathcal{H}_{D}(\Omega) & &
\end{array}
\]
variational formulations for \(u\) and \(U\) (right Hilbert spaces)

\section*{Simple Model Problem and Solution Theory}
\[
\begin{array}{rlrlr}
\operatorname{curl} E & =F & & \text { in } \Omega & \\
\operatorname{div} E & =G & & \text { in } \Omega & \text { (electro static Maxwell problem) } \\
\tau E & =0 & & & \\
E & \perp \mathcal{H}_{D}(\Omega) & & & \\
\text { unr } E_{c} & =F, & & & \\
\operatorname{div} E_{c} & =0, & \operatorname{curl} E_{d} & =0 & \\
\tau \operatorname{div} E_{d} & =G & & \text { in } \Omega & \\
\tau E_{c} & =0, & \tau E_{d} & =0 & \\
E_{c} & \perp \mathcal{H}_{D}(\Omega), & E_{d} & \perp \mathcal{H}_{D}(\Omega) &
\end{array}
\]
introducing scalar and vector potentials \(u\) and \(U\) solving
\[
\begin{array}{rlrl}
\Delta U=\text { curl curl } U & =F, & \Delta u=\operatorname{div} \nabla u=G & \\
\operatorname{div} \Omega & =0 & & \text { in } \Omega \\
\tau U & =0, & & u=0 \\
& & \text { in } \Gamma \\
\tau \operatorname{curl} U & =0 & & \text { in } \Gamma \\
U & \perp \mathcal{H}_{D}(\Omega) & &
\end{array}
\]
variational formulations for \(u\) and \(U\) (right Hilbert spaces)
\(\Rightarrow E_{c}:=\operatorname{curl} U\) and \(E_{d}:=\nabla u\) as well as \(E:=E_{c}+E_{d}\)

\section*{Model Problem and Method for Error Estimates}
\[
\begin{aligned}
\operatorname{curl} E & =F & & \text { in } \Omega \\
\operatorname{div} E & =G & & \text { in } \Omega \\
\tau E & =0 & & \text { (electro static Maxwell problem) } \\
E & \perp \mathcal{H}_{D}(\Omega) & &
\end{aligned}
\]

\section*{Model Problem and Method for Error Estimates}
\[
\begin{aligned}
\operatorname{curl} E & =F & & \text { in } \Omega \\
\operatorname{div} E & =G & & \text { in } \Omega \\
\tau E & =0 & & \text { in } \Gamma \\
E & \perp \mathcal{H}_{D}(\Omega) & &
\end{aligned}
\]
- method: funct. a post. error est. for linear second order elliptic problems pioneering work of Sergey Repin starting 1990's
later extended to 'all' linear and non-linear second order elliptic problems (Laplace, elastic, parabolic, hyperbolic, even order problems, ...)
- Maxwell system is first order! What to do?
- solution: Helmholtz decomposition \(\Rightarrow\) scalar and vector potentials \(\Rightarrow\) second order methods for the potentials

\section*{Model Problem and Method for Error Estimates}
\[
\begin{aligned}
\operatorname{curl} E & =F & & \text { in } \Omega \\
\operatorname{div} E & =G & & \text { in } \Omega \\
\tau E & =0 & & \text { in } \Gamma \\
E & \perp \mathcal{H}_{D}(\Omega) & &
\end{aligned}
\]
- method: funct. a post. error est. for linear second order elliptic problems pioneering work of Sergey Repin starting 1990's
later extended to 'all' linear and non-linear second order elliptic problems (Laplace, elastic, parabolic, hyperbolic, even order problems, ...)
■ Maxwell system is first order! What to do?
- solution: Helmholtz decomposition \(\Rightarrow\) scalar and vector potentials
\(\Rightarrow\) second order methods for the potentials

\section*{Universitat}


\section*{Model Problem and Method for Error Estimates}
\[
\begin{aligned}
\operatorname{curl} E & =F & & \text { in } \Omega \\
\operatorname{div} E & =G & & \text { in } \Omega \\
\tau E & =0 & & \text { (electro static Maxwell problem) } \\
E & \perp \mathcal{H}_{D}(\Omega) & &
\end{aligned}
\]
- method: funct. a post. error est. for linear second order elliptic problems pioneering work of Sergey Repin starting 1990's
later extended to 'all' linear and non-linear second order elliptic problems (Laplace, elastic, parabolic, hyperbolic, even order problems, ...)
- Maxwell system is first order! What to do?
\(■\) solution: Helmholtz decomposition \(\Rightarrow\) scalar and vector potentials \(\Rightarrow\) second order methods for the potentials

\section*{Sobolev Spaces}
spaces:
```

 H(curl; \Omega):={E\in L' (\Omega): curl E E L'2}(\Omega)
 H(curlo;\Omega):={E\subsetH(curl;\Omega): curl E = 0}
 \circ}\overline{\circ}\textrm{H}(\textrm{curl};\Omega
 H}(\mathrm{ curl ; }\Omega):={E\inH(curl;\Omega):\tauE=0}=\mp@subsup{C}{}{\infty}(\Omega
 H}(\mp@subsup{curl}{0}{;}\Omega):=H(\operatorname{curl};\Omega)\capH(\mp@subsup{curl}{0}{\prime};\Omega
    ```
analogously:
\(H(\operatorname{div} ; \Omega), \quad H\left(\operatorname{div}_{0} ; \Omega\right), \quad H(\operatorname{div} ; \Omega), \quad H\left(\operatorname{div}_{0} ; \Omega\right)\)
and:
```

$\mathcal{H}_{D}(\Omega):=\mathrm{H}\left(\operatorname{curl}_{0} ; \Omega\right) \cap \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right)$
$=\left\{E \subset \mathrm{~L}^{2}(\Omega) \cdot \operatorname{cutl}^{\prime} E=0\right.$, div $\left.E=0, \tau E=0\right\}$

Sobolev Spaces

spaces:

$$
\mathrm{H}(\text { curl } ; \Omega):=\left\{E \in \mathrm{~L}^{2}(\Omega): \text { curl } E \in \mathrm{~L}^{2}(\Omega)\right\}
$$

$H\left(\right.$ curlo $\left._{0} ; \Omega\right):=\{E \in H($ curl $; \Omega): \operatorname{curl} E=0\}$
$\mathrm{H}($ curl $; \Omega):=\{E \in \mathrm{H}($ curl $; \Omega): \tau E=0\}=\mathrm{C}^{\infty}(\Omega)$

$\mathrm{H}($ curl $0: \Omega):=\mathrm{H}($ curl $: \Omega) \cap \mathrm{H}($ curl $0: \Omega)$

analogously:
$H(\operatorname{div} ; \Omega), \quad H\left(\operatorname{div}_{0} ; \Omega\right), \quad H(\operatorname{div} ; \Omega), \quad H\left(\operatorname{div}_{0} ; \Omega\right)$
and:

$$
\begin{aligned}
\mathcal{H}_{D}(\Omega) & :=\mathrm{H}\left(\operatorname{curl}_{0} ; \Omega\right) \cap \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right) \quad \text { (finite dimension) } \\
& =\left\{E \in \mathrm{~L}^{2}(\Omega): \operatorname{curl} E=0, \operatorname{div} E=0, \tau E=0\right\}
\end{aligned}
$$

Sobolev Spaces

spaces:

$$
\mathrm{H}(\text { curl } ; \Omega):=\left\{E \in \mathrm{~L}^{2}(\Omega): \text { curl } E \in \mathrm{~L}^{2}(\Omega)\right\}
$$

$$
\mathrm{H}\left(\text { curl }_{0} ; \Omega\right):=\{E \in \mathrm{H}(\text { curl } ; \Omega): \operatorname{curl} E=0\}
$$

$\mathrm{H}($ curl $; \Omega):=\{E \in \mathrm{H}($ curl $; \Omega): \tau E=0\}=\mathrm{C}^{\infty}(\Omega)$

analogously

 $H(d i v ; \Omega), \quad H\left(\operatorname{div}_{0} ; \Omega\right), \quad H(\operatorname{div} ; \Omega), \quad H\left(\operatorname{div}_{0} ; \Omega\right)$and
$\mathcal{H}_{D}(\Omega):=\mathrm{H}\left(\operatorname{curl}_{0} ; \Omega\right) \cap \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right)$

$$
=\left\{E \in \mathrm{~L}^{2}(\Omega): \operatorname{curl} E=0, \operatorname{div} E=0, \tau E=0\right\}
$$

Sobolev Spaces

spaces:

$$
\begin{aligned}
\mathrm{H}(\operatorname{curl} ; \Omega) & :=\left\{E \in \mathrm{~L}^{2}(\Omega): \operatorname{curl} E \in \mathrm{~L}^{2}(\Omega)\right\} \\
\mathrm{H}\left(\operatorname{curl}_{0} ; \Omega\right) & :=\{E \in \mathrm{H}(\operatorname{curl} ; \Omega): \operatorname{curl} E=0\}
\end{aligned}
$$

$$
\stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega):=\{E \in \mathrm{H}(\operatorname{curl} ; \Omega): \tau E=0\}={\bar{\circ}{ }^{\circ} \infty(\Omega)}^{\mathrm{H}(\mathrm{curl} ; \Omega)} \quad \text { (Gauß' theorem) }
$$

$$
\mathrm{H}\left(\text { curl }_{0} ; \Omega\right):=\mathrm{H}(\text { curl } ; \Omega) \cap \mathrm{H}\left(\text { curl }_{0} ; \Omega\right)
$$

analogously

$$
\mathrm{H}(\operatorname{div} ; \Omega), \quad \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right), \quad \mathrm{H}(\operatorname{div} ; \Omega), \quad \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right)
$$

and
$\mathcal{H}_{D}(\Omega):=\mathrm{H}\left(\operatorname{curl}_{0} ; \Omega\right) \cap \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right)$

$$
=\left\{E \in \mathrm{~L}^{2}(\Omega): \operatorname{curl} E=0, \operatorname{div} E=0, \tau E=0\right\}
$$

Sobolev Spaces

spaces:

$$
\begin{aligned}
& \mathrm{H}(\text { curl } ; \Omega):=\left\{E \in \mathrm{~L}^{2}(\Omega): \text { curl } E \in \mathrm{~L}^{2}(\Omega)\right\} \\
& \mathrm{H}\left(\text { curl }_{0} ; \Omega\right):=\{E \in \mathrm{H}(\text { curl } ; \Omega): \operatorname{curl} E=0\} \\
& \stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega):=\{E \in \mathrm{H}(\operatorname{curl} ; \Omega): \tau E=0\}={\bar{\circ}{ }^{\circ} \infty(\Omega)}^{\mathrm{H}(\text { curl } ; \Omega)} \quad \text { (Gauß' theorem) } \\
& \stackrel{\circ}{\mathrm{H}}\left(\text { curl }_{0} ; \Omega\right):=\stackrel{\circ}{\mathrm{H}}(\text { curl } ; \Omega) \cap \mathrm{H}\left(\text { curl }_{0} ; \Omega\right)
\end{aligned}
$$

analogously

and
$\mathcal{H}_{D}(\Omega):=\mathrm{H}\left(\operatorname{curl}_{0} ; \Omega\right) \cap \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right)$

$$
=\left\{E \in 1^{2}(\Omega) \cdot \operatorname{curl} E=0, \operatorname{div} E=0, \tau E=0\right\}
$$

Sobolev Spaces

spaces:

$$
\begin{aligned}
\mathrm{H}(\operatorname{curl} ; \Omega) & :=\left\{E \in \mathrm{~L}^{2}(\Omega): \operatorname{curl} E \in \mathrm{~L}^{2}(\Omega)\right\} \\
\mathrm{H}\left(\operatorname{curl}_{0} ; \Omega\right) & :=\{E \in \mathrm{H}(\operatorname{curl} ; \Omega): \operatorname{curl} E=0\}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega):=\left\{E \in \mathrm{H}\left(\operatorname{curl}^{\prime} ; \Omega\right): \tau E=0\right\}={\bar{\circ}{ }^{\infty}(\Omega)}^{\mathrm{H}\left(\text { curl }^{\infty} \Omega\right)} \quad \text { (Gauß' theorem) } \\
& \stackrel{\circ}{\mathrm{H}}\left(\operatorname{curl}_{0} ; \Omega\right):=\stackrel{\circ}{\mathrm{H}}\left(\operatorname{curl}^{\prime} ; \Omega\right) \cap \mathrm{H}\left(\text { curl }_{0} ; \Omega\right)
\end{aligned}
$$

analogously:

$$
\mathrm{H}(\operatorname{div} ; \Omega), \quad \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right), \quad \stackrel{\circ}{\mathrm{H}}(\operatorname{div} ; \Omega), \quad \stackrel{\circ}{\mathrm{H}}\left(\operatorname{div}_{0} ; \Omega\right)
$$

and

$\mathcal{H}_{D}(\Omega):=\mathrm{H}\left(\operatorname{curl}_{0} ; \Omega\right) \cap \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right)$

$$
=\left\{E \in \mathrm{~L}^{2}(\Omega): \operatorname{curl} E=0, \operatorname{div} E=0, \tau E=0\right\}
$$

universitat
DESSEENURG

Sobolev Spaces

spaces:

$$
\begin{aligned}
\mathrm{H}\left(\operatorname{curl}^{\prime} \Omega\right) & :=\left\{E \in \mathrm{~L}^{2}(\Omega): \operatorname{curl} E \in \mathrm{~L}^{2}(\Omega)\right\} \\
\mathrm{H}\left(\text { curl }_{0} ; \Omega\right) & :=\{E \in \mathrm{H}(\operatorname{curl} ; \Omega): \operatorname{curl} E=0\} \\
\stackrel{\circ}{\mathrm{H}}\left(\operatorname{curl}^{\prime} \Omega\right) & :=\{E \in \mathrm{H}(\operatorname{curl} ; \Omega): \tau E=0\}=\stackrel{\circ}{\circ} \infty(\Omega)_{\mathrm{H}(\text { curl } ; \Omega)}^{\circ} \quad \text { (Gauß' theorem) } \\
\mathrm{H}\left(\operatorname{curl}_{0} ; \Omega\right) & :=\stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega) \cap \mathrm{H}\left(\operatorname{curl}_{0} ; \Omega\right)
\end{aligned}
$$

analogously:

$$
\mathrm{H}(\operatorname{div} ; \Omega), \quad \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right), \quad \stackrel{\circ}{\mathrm{H}}(\operatorname{div} ; \Omega), \quad \stackrel{\circ}{\mathrm{H}}\left(\operatorname{div}_{0} ; \Omega\right)
$$

and:

$$
\begin{aligned}
\mathcal{H}_{D}(\Omega) & :=\stackrel{\circ}{\mathrm{H}}\left(\operatorname{curl}_{0} ; \Omega\right) \cap \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right) \\
& =\left\{E \in \mathrm{~L}^{2}(\Omega): \operatorname{curl} E=0, \operatorname{div} E=0, \tau E=0\right\}
\end{aligned}
$$

Results: Upper Bounds for Non-Conforming Approximations

$\tilde{E} \in \mathrm{~L}^{2}(\Omega)$ approximations of $E \Rightarrow$

Theorem For all $\tilde{E} \in L^{2}(\Omega)$ and all $D \in \mathcal{H}_{D}(\Omega)$

holds. Here, Φ denotes a projection onto Dirichlet fields $\mathcal{H}_{D}(\Omega)$ and

$$
\begin{aligned}
& M_{\text {curl }}(\tilde{E} ; X):=c_{\mathrm{m}}\|F-\operatorname{curl} X\|_{L^{2}(\Omega)}+\|\tilde{E}-X\|_{L^{2}(\Omega)}, \\
& M_{\operatorname{div}}(\tilde{E} ; Y):=c_{\mathrm{p}}\|G-\operatorname{div} Y\|_{L^{2}(\Omega)}+\|\tilde{E}-Y\|_{L^{2}(\Omega)} .
\end{aligned}
$$

only natural continuity constants involved:

- c_{p} Poincaré constant, i.e., $\forall u \in M^{1}(\Omega)$

$$
\|u\|_{L^{2}(\Omega)} \leq c_{\mathrm{p}}\|\nabla u\|_{\mathrm{L}^{2}(\Omega)}
$$

- $c_{\text {m }}$ Maxwell constant, i.e., $\forall E \in \mathbb{H}:=\mathrm{H}(\operatorname{curl} ; \Omega) \cap H\left(\operatorname{div}_{0} ; \Omega\right) \cap \mathcal{H}_{N}(\Omega) \perp$

$$
\|E\|_{L^{2}(\Omega)} \leq c_{m} \| \text { curi } E^{\prime \prime} L_{L^{2}(\Omega)}
$$

Results: Upper Bounds for Non-Conforming Approximations

$\tilde{E} \in \mathrm{~L}^{2}(\Omega)$ approximations of $E \Rightarrow$
Theorem For all $\tilde{E} \in \mathrm{~L}^{2}(\Omega)$ and all $D \in \mathcal{H}_{D}(\Omega)$

$$
\|E-\tilde{E}-D\|_{\mathrm{L}^{2}(\Omega)}^{2} \leq \inf _{\substack{\mathcal{H}(\mathrm{curl} ; \Omega)}} M_{\text {curl }}^{2}(\tilde{E} ; X)+\inf _{Y \in \mathrm{H}(\operatorname{div} ; \Omega)} M_{\mathrm{div}}^{2}(\tilde{E} ; Y)+|\Phi(\tilde{E}-D)|^{2}
$$

holds. Here, Φ denotes a projection onto Dirichlet fields $\mathcal{H}_{D}(\Omega)$ and

$$
\begin{aligned}
& M_{\text {curl }}(\tilde{E} ; X):=c_{\mathrm{m}}\|F-\operatorname{curl} X\|_{L^{2}(\Omega)}+\|\tilde{E}-X\|_{L^{2}(\Omega)}, \\
& M_{\text {div }}(\tilde{E} ; Y):=c_{\mathrm{p}}\|G-\operatorname{div} Y\|_{L^{2}(\Omega)}+\|\tilde{E}-Y\|_{L^{2}(\Omega)} .
\end{aligned}
$$

only natural continuity constants involved:

- c_{p} Poincaré constant, i.e., $\forall u \in H^{1}(\Omega)$

$$
\|u\|_{L^{2}(\Omega)} \leq c_{\mathrm{p}}\|\nabla u\|_{\mathrm{L}^{2}(\Omega)}
$$

. $c_{\text {m }}$ Maxwell constant, i.e., $\forall E \in \mathbb{H}:=\mathrm{H}(\operatorname{curl} ; \Omega) \cap \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right) \cap \mathcal{H}_{N}(\Omega)$

$$
\|E\|_{L^{2}(\Omega)} \leq c_{m} \| \text { curi } E \|_{L^{2}(\Omega)}
$$

Results: Upper Bounds for Non-Conforming Approximations

$\tilde{E} \in \mathrm{~L}^{2}(\Omega)$ approximations of $E \Rightarrow$
Theorem For all $\tilde{E} \in \mathrm{~L}^{2}(\Omega)$ and all $D \in \mathcal{H}_{D}(\Omega)$

$$
\|E-\tilde{E}-D\|_{\mathrm{L}^{2}(\Omega)}^{2} \leq \inf _{\substack{\mathrm{H}(\mathrm{cur} ; \Omega)}} M_{\mathrm{curl}}^{2}(\tilde{E} ; X)+\inf _{Y \in \mathrm{H}(\operatorname{div} ; \Omega)} M_{\mathrm{div}}^{2}(\tilde{E} ; Y)+|\Phi(\tilde{E}-D)|^{2}
$$

holds. Here, Φ denotes a projection onto Dirichlet fields $\mathcal{H}_{D}(\Omega)$ and

$$
\begin{aligned}
& M_{\text {curl }}(\tilde{E} ; X):=c_{\mathrm{m}}\|F-\operatorname{curl} X\|_{\mathrm{L}^{2}(\Omega)}+\|\tilde{E}-X\|_{\mathrm{L}^{2}(\Omega)} \\
& M_{\operatorname{div}}(\tilde{E} ; Y):=c_{\mathrm{p}}\|G-\operatorname{div} Y\|_{\mathrm{L}^{2}(\Omega)}+\|\tilde{E}-Y\|_{\mathrm{L}^{2}(\Omega)}
\end{aligned}
$$

only natural continuity constants involved:

- c_{p} Poincaré constant, i.e., $\forall u \in H^{1}(\Omega)$
$\|u\|_{L^{2}(\Omega)} \leq c_{\mathrm{P}}\|\nabla u\|_{L^{2}(\Omega)}$
- $c_{\text {m }}$ Maxwell constant, i.e., $\forall E \in \mathbb{H}:=\mathrm{H}(\operatorname{curl} ; \Omega) \cap \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right) \cap \mathcal{H}_{N}(\Omega)$
$\|E\|_{L^{2}(\Omega)} \leq c_{\mathrm{m}} \| \operatorname{curl} E_{L^{2}(\Omega)}$

Results: Upper Bounds for Non-Conforming Approximations

$\tilde{E} \in \mathrm{~L}^{2}(\Omega)$ approximations of $E \Rightarrow$
Theorem For all $\tilde{E} \in \mathrm{~L}^{2}(\Omega)$ and all $D \in \mathcal{H}_{D}(\Omega)$

$$
\|E-\tilde{E}-D\|_{\mathrm{L}^{2}(\Omega)}^{2} \leq \inf _{\substack{\mathrm{H}(\mathrm{cur} ; \Omega)}} M_{\mathrm{curl}}^{2}(\tilde{E} ; X)+\inf _{Y \in \mathrm{H}(\operatorname{div} ; \Omega)} M_{\mathrm{div}}^{2}(\tilde{E} ; Y)+|\Phi(\tilde{E}-D)|^{2}
$$

holds. Here, Φ denotes a projection onto Dirichlet fields $\mathcal{H}_{D}(\Omega)$ and

$$
\begin{aligned}
& M_{\text {curl }}(\tilde{E} ; X):=c_{\mathrm{m}}\|F-\operatorname{curl} X\|_{\mathrm{L}^{2}(\Omega)}+\|\tilde{E}-X\|_{\mathrm{L}^{2}(\Omega)} \\
& M_{\operatorname{div}}(\tilde{E} ; Y):=c_{\mathrm{p}}\|G-\operatorname{div} Y\|_{\mathrm{L}^{2}(\Omega)}+\|\tilde{E}-Y\|_{\mathrm{L}^{2}(\Omega)}
\end{aligned}
$$

only natural continuity constants involved:

- c_{p} Poincaré constant, i.e., $\forall u \in \stackrel{\circ}{\mathrm{H}}^{1}(\Omega)$

$$
\|u\|_{L^{2}(\Omega)} \leq c_{\mathrm{p}}\|\nabla u\|_{\mathrm{L}^{2}(\Omega)}
$$

- $c_{\text {II }}$ Maxwell constant, i.e., $\forall E \in \mathbb{H}:=H(\operatorname{curl} ; \Omega) \cap H\left(\operatorname{div}_{0} ; \Omega\right) \cap \mathcal{H}_{N}(\Omega)$
$\|E\|_{L^{2}(\Omega)} \leq c_{\mathrm{m}}\|\operatorname{curl} E\|_{L^{2}(\Omega)}$

Results: Upper Bounds for Non-Conforming Approximations

$\tilde{E} \in \mathrm{~L}^{2}(\Omega)$ approximations of $E \Rightarrow$
Theorem For all $\tilde{E} \in \mathrm{~L}^{2}(\Omega)$ and all $D \in \mathcal{H}_{D}(\Omega)$

$$
\|E-\tilde{E}-D\|_{\mathrm{L}^{2}(\Omega)}^{2} \leq \inf _{\substack{\dot{\mathrm{H}}(\mathrm{cur} ; \Omega)}} M_{\mathrm{curl}}^{2}(\tilde{E} ; X)+\inf _{Y \in \mathrm{H}(\text { div } ; \Omega)} M_{\mathrm{div}}^{2}(\tilde{E} ; Y)+|\Phi(\tilde{E}-D)|^{2}
$$

holds. Here, Φ denotes a projection onto Dirichlet fields $\mathcal{H}_{D}(\Omega)$ and

$$
\begin{aligned}
& M_{\text {curl }}(\tilde{E} ; X):=c_{\mathrm{m}}\|F-\operatorname{curl} X\|_{\mathrm{L}^{2}(\Omega)}+\|\tilde{E}-X\|_{\mathrm{L}^{2}(\Omega)} \\
& M_{\operatorname{div}}(\tilde{E} ; Y):=c_{\mathrm{p}}\|G-\operatorname{div} Y\|_{\mathrm{L}^{2}(\Omega)}+\|\tilde{E}-Y\|_{\mathrm{L}^{2}(\Omega)}
\end{aligned}
$$

only natural continuity constants involved:

- c_{p} Poincaré constant, i.e., $\forall u \in \stackrel{\circ}{\mathrm{H}}^{1}(\Omega)$

$$
\|u\|_{L^{2}(\Omega)} \leq c_{\mathrm{p}}\|\nabla u\|_{\mathrm{L}^{2}(\Omega)}
$$

- c_{m} Maxwell constant, i.e., $\forall E \in \mathbb{H}:=\mathrm{H}(\operatorname{curl} ; \Omega) \cap \stackrel{\circ}{\mathrm{H}}\left(\operatorname{div}_{0} ; \Omega\right) \cap \mathcal{H}_{N}(\Omega)^{\perp}$

$$
\|E\|_{L^{2}(\Omega)} \leq c_{\mathrm{m}}\|\operatorname{curl} E\|_{\mathrm{L}^{2}(\Omega)}
$$

Proof：Tools

－Rellich＇s selection theorems，i．e．，$H^{1}(\Omega), H^{1}(\Omega) \hookrightarrow L^{2}(\Omega)$ compact
\Rightarrow Poincaré estimate，i．e．

$$
\begin{array}{ll}
\forall u \in \dot{H}^{1}(\Omega) & \|u\|_{L^{2}(\Omega)} \leq c_{p}\|\nabla u\|_{L^{2}(\Omega)} \\
\forall u \in H^{1}(\Omega) \cap\{1\}^{\perp} & \|u\|_{L^{2}(\Omega)} \leq \tilde{c}_{\mathrm{p}}\|\nabla u\|_{L^{2}(\Omega)}
\end{array}
$$

－Maxwell selection theorems，i．e．，

$$
\stackrel{\circ}{\mathrm{H}}(\text { curl } ; \Omega) \cap \mathrm{H}(\text { div } ; \Omega), \mathrm{H}(\text { curl } ; \Omega) \cap \mathrm{H}(\text { div } ; \Omega) \hookrightarrow L^{2}(\Omega) \text { compact }
$$

\Rightarrow Maxwell estimates，i．e．，

$$
\begin{array}{ll}
\forall E \in \tilde{\mathbb{H}}=\stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega) \cap \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right) \cap \mathcal{H}_{D}(\Omega)^{\perp} & \|E\|_{L^{2}(\Omega)} \leq \tilde{c}_{\mathrm{m}}\|\operatorname{curl} E\|_{\mathrm{L}^{2}(\Omega)} \\
\forall E \in \mathbb{H}=\mathrm{H}(\operatorname{curl} ; \Omega) \cap \stackrel{\circ}{\mathrm{H}}\left(\operatorname{div}_{0} ; \Omega\right) \cap \mathcal{H}_{N}(\Omega)^{\perp} & \|E\|_{L^{2}(\Omega)} \leq c_{\mathrm{m}}\|\operatorname{curl} E\|_{L^{2}(\Omega)}
\end{array}
$$

－Maxwell selection theorems $\Rightarrow \operatorname{dim} \mathcal{H}_{D}(\Omega), \operatorname{dim} \mathcal{H}_{N}(\Omega)<\infty$（Betti numbers）
－Helmholtz decompositions（all 6 images are closed in $\mathrm{L}^{2}(\Omega)$ ）

$$
\begin{aligned}
\mathrm{L}^{2}(\Omega) & =\nabla \stackrel{\circ}{\mathrm{H}^{1}}(\Omega) \oplus \overbrace{\mathcal{H}_{D}(\Omega) \oplus \operatorname{curl} \mathrm{H}(\text { curl } ; \Omega)}^{\mathrm{H}(\text { divo } ; \Omega)}, \\
\mathrm{L}^{2}(\Omega) & =\nabla \mathrm{H}^{1}(\Omega) \oplus \underbrace{}_{=\stackrel{\mathrm{H}(\text { div } ; \Omega)}{\mathcal{H}_{N}(\Omega) \oplus \operatorname{curl} \stackrel{\circ}{\mathrm{H}}(\text { curl } ; \Omega)}},
\end{aligned}
$$

$$
\operatorname{curl} \mathrm{H}(\operatorname{curl} ; \Omega)=\operatorname{curl} \mathbb{H}
$$

$$
\operatorname{curl} \dot{\mathrm{H}}(\text { curl } ; \Omega)=\operatorname{curl} \tilde{\mathbb{H}}
$$

Proof: Tools

- Rellich's selection theorems, i.e., $\stackrel{\mathrm{H}}{ }^{1}(\Omega), \mathrm{H}^{1}(\Omega) \hookrightarrow \mathrm{L}^{2}(\Omega)$ compact
\Rightarrow Poincaré estimate, i.e.,

$$
\begin{array}{ll}
\forall u \in \stackrel{\circ}{\mathrm{H}}^{1}(\Omega) & \|u\|_{\mathrm{L}^{2}(\Omega)} \leq c_{\mathrm{p}}\|\nabla u\|_{\mathrm{L}^{2}(\Omega)} \\
\forall u \in \mathrm{H}^{1}(\Omega) \cap\{1\}^{\perp} & \|u\|_{\mathrm{L}^{2}(\Omega)} \leq \tilde{\tilde{c}_{\mathrm{p}}}\|\nabla u\|_{\mathrm{L}^{2}(\Omega)}
\end{array}
$$

- Maxwell selection theorems, i.e.
$H($ curl $; \Omega) \cap H(\operatorname{div} ; \Omega), H($ curl $; \Omega) \cap H(\operatorname{div} ; \Omega) \hookrightarrow L^{2}(\Omega)$ compact \Rightarrow Maxwell estimates, i.e.,

| $\forall E \in \tilde{H}=H(\operatorname{curl} ; \Omega) \cap H\left(\operatorname{div}_{0} ; \Omega\right) \cap \mathcal{H}_{D}(\Omega)^{\perp}$ | $\\|E\\|_{L^{2}(\Omega)} \leq \tilde{c}_{\mathrm{m}}\\|\operatorname{curl} E\\|_{L^{2}(\Omega)}$ |
| :--- | :--- | :--- |
| $\forall E \in \mathbb{H}=H(\operatorname{curl} ; \Omega) \cap \stackrel{\circ}{H}\left(\operatorname{div}_{0} ; \Omega\right) \cap \mathcal{H}_{N}(\Omega)^{\perp}$ | $\\|E\\|_{L^{2}(\Omega)} \leq c_{\mathrm{m}}\\|\operatorname{curl} E\\|_{L^{2}(\Omega)}$ |

- Maxwell selection theorems $\Rightarrow \operatorname{dim} \mathcal{H}_{D}(\Omega), \operatorname{dim} \mathcal{H}_{N}(\Omega)<\infty$ (Betti numbers)
- Helmholtz decompositions (all 6 images are closed in $\mathrm{L}^{2}(\Omega)$)

Proof: Tools

- Rellich's selection theorems, i.e., $\stackrel{H}{H}^{1}(\Omega), \mathrm{H}^{1}(\Omega) \hookrightarrow \mathrm{L}^{2}(\Omega)$ compact
\Rightarrow Poincaré estimate, i.e.,

$$
\begin{array}{ll}
\forall u \in \stackrel{\circ}{\mathrm{H}}^{1}(\Omega) & \|u\|_{\mathrm{L}^{2}(\Omega)} \leq c_{\mathrm{p}}\|\nabla u\|_{\mathrm{L}^{2}(\Omega)} \\
\forall u \in \mathrm{H}^{1}(\Omega) \cap\{1\}^{\perp} & \|u\|_{\mathrm{L}^{2}(\Omega)} \leq \tilde{c_{\mathrm{p}}}\|\nabla u\|_{\mathrm{L}^{2}(\Omega)}
\end{array}
$$

■ Maxwell selection theorems, i.e.,
$\stackrel{\circ}{\mathrm{H}}($ curl $; \Omega) \cap \mathrm{H}(\operatorname{div} ; \Omega), \mathrm{H}($ curl $; \Omega) \cap \stackrel{\circ}{\mathrm{H}}(\operatorname{div} ; \Omega) \hookrightarrow \mathrm{L}^{2}(\Omega)$ compact
\Rightarrow Maxwell estimates, i.e.,

$$
\begin{array}{ll}
\forall E \in \tilde{\mathbb{H}}=\stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega) \cap \dot{\mathrm{H}}\left(\operatorname{div}_{0} ; \Omega\right) \cap \mathcal{H}_{D}(\Omega)^{\perp} & \|E\|_{L^{2}(\Omega)} \leq \tilde{c}_{\mathrm{m}}\|\operatorname{curl} E\|_{\mathrm{L}^{2}(\Omega)} \\
\forall E \in \mathbb{H}=\mathrm{H}(\operatorname{curl} ; \Omega) \cap \stackrel{\circ}{\mathrm{H}}\left(\operatorname{div}_{0} ; \Omega\right) \cap \mathcal{H}_{N}(\Omega)^{\perp} & \|E\|_{L^{2}(\Omega)} \leq c_{\mathrm{m}}\|\operatorname{curl} E\|_{\mathrm{L}^{2}(\Omega)}
\end{array}
$$

- Maxwell selection theorems $\Rightarrow \operatorname{dim} \mathcal{H}_{D}(\Omega), \operatorname{dim} \mathcal{H}_{N}(\Omega)<\infty$ (Betti numbers)
- Helmholtz decompositions (all 6 images are closed in $\mathrm{L}^{2}(\Omega)$)

Proof: Tools

- Rellich's selection theorems, i.e., $\stackrel{H}{H}^{1}(\Omega), \mathrm{H}^{1}(\Omega) \hookrightarrow \mathrm{L}^{2}(\Omega)$ compact
\Rightarrow Poincaré estimate, i.e.,

$$
\begin{array}{ll}
\forall u \in \stackrel{\circ}{\mathrm{H}}^{1}(\Omega) & \|u\|_{\mathrm{L}^{2}(\Omega)} \leq c_{\mathrm{p}}\|\nabla u\|_{\mathrm{L}^{2}(\Omega)} \\
\forall u \in \mathrm{H}^{1}(\Omega) \cap\{1\}^{\perp} & \|u\|_{\mathrm{L}^{2}(\Omega)} \leq \tilde{c_{\mathrm{p}}}\|\nabla u\|_{\mathrm{L}^{2}(\Omega)}
\end{array}
$$

■ Maxwell selection theorems, i.e.,
$\stackrel{\circ}{\mathrm{H}}($ curl $; \Omega) \cap \mathrm{H}(\operatorname{div} ; \Omega), \mathrm{H}($ curl $; \Omega) \cap \stackrel{\circ}{\mathrm{H}}(\operatorname{div} ; \Omega) \hookrightarrow \mathrm{L}^{2}(\Omega)$ compact
\Rightarrow Maxwell estimates, i.e.,

$$
\begin{array}{ll}
\forall E \in \tilde{\mathbb{H}}=\stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega) \cap \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right) \cap \mathcal{H}_{D}(\Omega)^{\perp} & \|E\|_{\mathrm{L}^{2}(\Omega)} \leq \tilde{c_{\mathrm{m}}}\|\operatorname{curl} E\|_{\mathrm{L}^{2}(\Omega)} \\
\forall E \in \mathbb{H}=\mathrm{H}(\operatorname{curl} ; \Omega) \cap \stackrel{\circ}{\mathrm{H}}\left(\operatorname{div}_{0} ; \Omega\right) \cap \mathcal{H}_{N}(\Omega)^{\perp} & \|E\|_{\mathrm{L}^{2}(\Omega)} \leq c_{\mathrm{m}}\|\operatorname{curl} E\|_{\mathrm{L}^{2}(\Omega)}
\end{array}
$$

- Maxwell selection theorems $\Rightarrow \operatorname{dim} \mathcal{H}_{D}(\Omega), \operatorname{dim} \mathcal{H}_{N}(\Omega)<\infty$ (Betti numbers)
- Helmholtz decompositions (all 6 images are closed in $L^{2}(\Omega)$)

Proof: Tools

- Rellich's selection theorems, i.e., $\stackrel{H}{H}^{1}(\Omega), \mathrm{H}^{1}(\Omega) \hookrightarrow \mathrm{L}^{2}(\Omega)$ compact
\Rightarrow Poincaré estimate, i.e.,

$$
\begin{array}{ll}
\forall u \in \stackrel{\circ}{\mathrm{H}}^{1}(\Omega) & \|u\|_{\mathrm{L}^{2}(\Omega)} \leq c_{\mathrm{p}}\|\nabla u\|_{\mathrm{L}^{2}(\Omega)} \\
\forall u \in \mathrm{H}^{1}(\Omega) \cap\{1\}^{\perp} & \|u\|_{\mathrm{L}^{2}(\Omega)} \leq \tilde{c}_{\mathrm{p}}\|\nabla u\|_{\mathrm{L}^{2}(\Omega)}
\end{array}
$$

- Maxwell selection theorems, i.e.,

$$
\stackrel{\circ}{\mathrm{H}}(\text { curl } ; \Omega) \cap \mathrm{H}(\operatorname{div} ; \Omega), \mathrm{H}(\text { curl } ; \Omega) \cap \stackrel{\circ}{\mathrm{H}}(\operatorname{div} ; \Omega) \hookrightarrow \mathrm{L}^{2}(\Omega) \text { compact }
$$

\Rightarrow Maxwell estimates, i.e.,

$$
\begin{array}{ll}
\forall E \in \tilde{\mathbb{H}}=\stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega) \cap \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right) \cap \mathcal{H}_{D}(\Omega)^{\perp} & \|E\|_{\mathrm{L}^{2}(\Omega)} \leq \tilde{c_{\mathrm{m}}}\|\operatorname{curl} E\|_{\mathrm{L}^{2}(\Omega)} \\
\forall E \in \mathbb{H}=\mathrm{H}(\operatorname{curl} ; \Omega) \cap \stackrel{\circ}{\mathrm{H}}\left(\operatorname{div}_{0} ; \Omega\right) \cap \mathcal{H}_{N}(\Omega)^{\perp} & \|E\|_{\mathrm{L}^{2}(\Omega)} \leq c_{\mathrm{m}}\|\operatorname{curl} E\|_{\mathrm{L}^{2}(\Omega)}
\end{array}
$$

- Maxwell selection theorems $\Rightarrow \operatorname{dim} \mathcal{H}_{D}(\Omega), \operatorname{dim} \mathcal{H}_{N}(\Omega)<\infty$ (Betti numbers)
- Helmholtz decompositions (all 6 images are closed in $\mathrm{L}^{2}(\Omega)$)

$$
\begin{aligned}
\mathrm{L}^{2}(\Omega)=\nabla \stackrel{\circ}{\mathrm{H}}^{1}(\Omega) \oplus \overbrace{\mathcal{H}_{D}(\Omega) \oplus \operatorname{curl} \mathrm{H}(\text { curl } ; \Omega)}^{=\mathrm{H}(\text { divo } ; \Omega)}, & \text { curl } \mathrm{H}(\text { curl } ; \Omega)=\operatorname{curl} \mathbb{H} \\
\mathrm{L}^{2}(\Omega)=\nabla \mathrm{H}^{1}(\Omega) \oplus \underbrace{\mathcal{H}_{N}(\Omega) \oplus \operatorname{curl} \stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega)}_{=\stackrel{\circ}{\mathrm{H}}\left(\text { div }^{2} ; \Omega\right)}, & \text { curl } \stackrel{\circ}{\mathrm{H}}(\text { curl } ; \Omega)=\operatorname{curl} \tilde{\mathbb{H}}
\end{aligned}
$$

Proof

$$
e=E-\tilde{E} \in \mathrm{~L}^{2}(\Omega)
$$

- Helmholtz decomposition of error \Rightarrow
- $e_{\nabla}=\nabla u$ with scalar potential $u \in \mathrm{H}^{1}(\Omega)$
- $e_{\text {curl }}=\operatorname{curl} U$ with vector potential $U \in \mathbb{H}$
$=\|e\|_{L^{2}(\Omega)}^{2}=\left\|e_{\nabla}\right\|_{L^{2}(\Omega)}^{2}+\left\|e_{\mathcal{H}}\right\|_{L^{2}(\Omega)}^{2}+\left\|e_{\text {curr }}\right\|_{L^{2}(\Omega)}^{2}$
universitat
DESSSEN URG

Proof

$e=E-\tilde{E} \in \mathrm{~L}^{2}(\Omega)$
■ Helmholtz decomposition of error \Rightarrow

$$
e=e_{\nabla}+e_{\mathcal{H}}+e_{\text {curl }} \in \nabla \dot{H}^{1}(\Omega) \oplus \mathcal{H}_{D}(\Omega) \oplus \text { curl } \mathbb{H}
$$

- $e_{\nabla}=\nabla u$ with scalar potential $u \in \mathrm{H}^{1}(\Omega)$
- $e_{\text {curl }}=$ curl U with vector potential $U \in \mathbb{H}$

Proof

$e=E-\tilde{E} \in \mathrm{~L}^{2}(\Omega)$

- Helmholtz decomposition of error \Rightarrow

$$
e=e_{\nabla}+e_{\mathcal{H}}+e_{\text {curl }} \in \nabla \dot{H}^{1}(\Omega) \oplus \mathcal{H}_{D}(\Omega) \oplus \text { curl } \mathbb{H}
$$

- $e_{\nabla}=\nabla u$ with scalar potential $u \in \stackrel{\circ}{H}^{1}(\Omega)$
- $e_{\text {curl }}=$ curl U with vector potential $U \in \mathbb{H}$

Proof

$e=E-\tilde{E} \in \mathrm{~L}^{2}(\Omega)$

- Helmholtz decomposition of error \Rightarrow

$$
e=e_{\nabla}+e_{\mathcal{H}}+e_{\text {curl }} \in \nabla \dot{H}^{1}(\Omega) \oplus \mathcal{H}_{D}(\Omega) \oplus \text { curl } \mathbb{H}
$$

- $e_{\nabla}=\nabla u$ with scalar potential $u \in \stackrel{\circ}{H}^{1}(\Omega)$
- $e_{\text {curl }}=$ curl U with vector potential $U \in \mathbb{H}$

Proof

$e=E-\tilde{E} \in \mathrm{~L}^{2}(\Omega)$

- Helmholtz decomposition of error \Rightarrow

$$
e=e_{\nabla}+e_{\mathcal{H}}+e_{\text {curl }} \in \nabla \dot{H}^{1}(\Omega) \oplus \mathcal{H}_{D}(\Omega) \oplus \text { curl } \mathbb{H}
$$

- $e_{\nabla}=\nabla u$ with scalar potential $u \in \stackrel{\circ}{H}^{1}(\Omega)$
- $e_{\text {curl }}=$ curl U with vector potential $U \in \mathbb{H}$
- $\|e\|_{\mathrm{L}^{2}(\Omega)}^{2}=\left\|e_{\nabla}\right\|_{\mathrm{L}^{2}(\Omega)}^{2}+\left\|e_{\mathcal{H}}\right\|_{\mathrm{L}^{2}(\Omega)}^{2}+\left\|e_{\mathrm{cur}}\right\|_{\mathrm{L}^{2}(\Omega)}^{2}$

Proof

- $e_{\nabla}=\nabla u, u \in{\stackrel{\circ}{H^{1}}(\Omega): \quad \forall \varphi \in \dot{H}^{1}(\Omega) \quad \forall \gamma \in H(d i v ; \Omega)}^{(\Omega)}$

$$
\begin{aligned}
&\left\langle e_{\nabla}, \nabla \varphi\right\rangle_{L^{2}(\Omega)}=\langle e, \nabla \varphi\rangle_{L^{2}(\Omega)}=\langle E, \nabla \varphi\rangle_{L^{2}(\Omega)}-\langle\tilde{E}, \nabla \varphi\rangle_{L^{2}(\Omega)} \\
&=\langle\operatorname{div} Y-G, \varphi\rangle_{L^{2}(\Omega)}+\langle Y-\tilde{E}, \nabla \varphi\rangle_{L^{2}(\Omega)} \\
& \leq\|\operatorname{div} Y-G\|_{L^{2}(\Omega)} \underbrace{\|\varphi\|_{L^{2}(\Omega)}}+\|Y-\tilde{E}\|_{L^{2}(\Omega)}\|\nabla \varphi\|_{L^{2}(\Omega)}
\end{aligned}
$$

$$
\leq c_{p}\|\nabla \varphi\|_{L^{2}(\Omega)}
$$

$$
\varphi:=u \quad \Rightarrow \quad\left\|e_{\nabla}\right\|_{L^{2}(\Omega)} \leq c_{p}\|\operatorname{div} Y-G\|_{L^{2}(\Omega)}+\|Y-\tilde{E}\|_{L^{2}(\Omega)}
$$

$$
e_{\text {curl }}=\operatorname{curl} U, U \in \mathbb{H}:
$$

Proof

- $e_{\nabla}=\nabla u, u \in \dot{H}^{1}(\Omega): \quad \forall \varphi \in \dot{H}^{1}(\Omega) \quad \forall Y \in H(\operatorname{div} ; \Omega)$

$$
\left\langle e_{\nabla}, \nabla \varphi\right\rangle_{L^{2}(\Omega)}=\langle e, \nabla \varphi\rangle_{L^{2}(\Omega)}=\langle E, \nabla \varphi\rangle_{L^{2}(\Omega)}-\langle\tilde{E}, \nabla \varphi\rangle_{L^{2}(\Omega)}
$$

$$
=\langle\operatorname{div} Y-G, \varphi\rangle_{L^{2}(\Omega)}+\langle Y-\tilde{E}, \nabla \varphi\rangle_{L^{2}(\Omega)}
$$

$$
\leq\|\operatorname{div} Y-G\|_{L^{2}(\Omega)} \underbrace{\|\varphi\|_{L^{2}}}_{\leq c_{\mathrm{P}}\left\|\nabla \varphi_{L^{2}}\right\|_{L^{2}(\Omega)}}+\|Y-\tilde{E}\|_{L^{2}(\Omega)}\|\nabla \varphi\|_{L^{2}(\Omega)}
$$

- $e_{\text {curl }}=\operatorname{curl} U, U \in \mathbb{H}:$

Proof

- $e_{\nabla}=\nabla u, u \in \dot{\mathrm{H}}^{1}(\Omega): \quad \forall \varphi \in \dot{\mathrm{H}}^{1}(\Omega) \quad \forall Y \in \mathrm{H}(\operatorname{div} ; \Omega)$

$$
\begin{aligned}
&\left\langle e_{\nabla}, \nabla \varphi\right\rangle_{L^{2}(\Omega)}=\langle e, \nabla \varphi\rangle_{L^{2}(\Omega)}=\langle E, \nabla \varphi\rangle_{L^{2}(\Omega)}-\langle\tilde{E}, \nabla \varphi\rangle_{L^{2}(\Omega)} \\
&=\langle\operatorname{div} Y-G, \varphi\rangle_{L^{2}(\Omega)}+\langle Y-\tilde{E}, \nabla \varphi\rangle_{L^{2}(\Omega)} \\
& \leq\|\operatorname{div} Y-G\|_{L^{2}(\Omega)} \underbrace{\| \|_{L^{2}(\Omega)}}_{\leq c_{\mathrm{p}}\|\nabla\|_{L^{2}(\Omega)}}+\|Y-\tilde{E}\|_{L^{2}(\Omega)}\|\nabla \varphi\|_{L^{2}(\Omega)} \\
& \varphi:=u \Rightarrow\left\|e_{\nabla}\right\|_{L^{2}(\Omega)} \leq c_{\mathrm{p}}\|\operatorname{div} Y-G\|_{L^{2}(\Omega)}+\|Y-\tilde{E}\|_{L^{2}(\Omega)}
\end{aligned}
$$

Proof

- $e_{\nabla}=\nabla u, u \in \dot{\mathrm{H}}^{1}(\Omega): \quad \forall \varphi \in \dot{\mathrm{H}}^{1}(\Omega) \quad \forall Y \in \mathrm{H}(\operatorname{div} ; \Omega)$

$$
\left\langle e_{\nabla}, \nabla \varphi\right\rangle_{L^{2}(\Omega)}=\langle e, \nabla \varphi\rangle_{L^{2}(\Omega)}=\langle E, \nabla \varphi\rangle_{L^{2}(\Omega)}-\langle\tilde{E}, \nabla \varphi\rangle_{L^{2}(\Omega)}
$$

$$
=\langle\operatorname{div} Y-G, \varphi\rangle_{L^{2}(\Omega)}+\langle Y-\tilde{E}, \nabla \varphi\rangle_{L^{2}(\Omega)}
$$

$$
\leq\|\operatorname{div} Y-G\|_{L^{2}(\Omega)} \underbrace{\|\varphi\|_{L^{2}(\Omega)}}_{\leq c_{\mathrm{C}}\|\nabla\|_{L_{L^{2}}(\Omega)}}+\|Y-\tilde{E}\|_{L^{2}(\Omega)}\|\nabla \varphi\|_{L^{2}(\Omega)}
$$

$$
\varphi:=u \quad \Rightarrow \quad\left\|e_{\nabla}\right\|_{L^{2}(\Omega)} \leq c_{\mathrm{p}}\|\operatorname{div} Y-G\|_{L^{2}(\Omega)}+\|Y-\tilde{E}\|_{L^{2}(\Omega)}
$$

- $e_{\text {curl }}=\operatorname{curl} U, U \in \mathbb{H}:$
$\left\langle e_{\text {curl }}, \text { curl } \mid \Phi\right\rangle_{L^{2}(\Omega)}=\langle e, \operatorname{curl} \mid \Phi\rangle_{L^{2}(\Omega)}=\langle E, \text { curl } \Phi\rangle_{L^{2}(\Omega)}-\langle\tilde{E}, \text { curl } \Phi\rangle_{L^{2}(\Omega)}$
$=\langle F-\operatorname{curl} X, \Phi\rangle_{L^{2}(\Omega)}+\langle X-\tilde{E}, \operatorname{curl} \Phi\rangle_{L^{2}(\Omega)}$

$\Phi:=U \quad \Rightarrow$
$\left\|e_{\text {curl }}\right\|_{\mathrm{L}^{2}(\Omega)} \leq c_{\mathrm{m}}\|F-\operatorname{curl} X\|_{\mathrm{L}^{2}(\Omega)}+\|X-E\|_{\mathrm{L}^{2}(\Omega)}$
- $e_{\mathcal{H}}$: simple algebraic manipulation

Proof

- $e_{\nabla}=\nabla u, u \in \dot{H}^{1}(\Omega): \quad \forall \varphi \in \dot{H}^{1}(\Omega) \quad \forall Y \in H(\operatorname{div} ; \Omega)$

$$
\left\langle e_{\nabla}, \nabla \varphi\right\rangle_{\mathrm{L}^{2}(\Omega)}=\langle e, \nabla \varphi\rangle_{\mathrm{L}^{2}(\Omega)}=\langle E, \nabla \varphi\rangle_{\mathrm{L}^{2}(\Omega)}-\langle\tilde{E}, \nabla \varphi\rangle_{\mathrm{L}^{2}(\Omega)}
$$

$$
=\langle\operatorname{div} Y-G, \varphi\rangle_{L^{2}(\Omega)}+\langle Y-\tilde{E}, \nabla \varphi\rangle_{L^{2}(\Omega)}
$$

$$
\leq\|\operatorname{div} Y-G\|_{L^{2}(\Omega)} \underbrace{\|\varphi\|_{L^{2}(\Omega)}}_{\leq c_{\mathrm{p}}\|\nabla\|_{L_{L^{2}}(\Omega)}}+\|Y-\tilde{E}\|_{L^{2}(\Omega)}\|\nabla \varphi\|_{L^{2}(\Omega)}
$$

$$
\varphi:=u \quad \Rightarrow \quad\left\|e_{\nabla}\right\|_{L^{2}(\Omega)} \leq c_{p}\|\operatorname{div} Y-G\|_{L^{2}(\Omega)}+\|Y-\tilde{E}\|_{L^{2}(\Omega)}
$$

■ $e_{\text {curl }}=\operatorname{curl} U, U \in \mathbb{H}: \quad \forall \Phi \in \mathbb{H} \quad \forall X \in \stackrel{\circ}{\mathrm{H}}($ curl $; \Omega)$

$$
\begin{aligned}
&\left\langle e_{\text {curl }}, \operatorname{curl} \mid \Phi\right\rangle_{L^{2}(\Omega)}=\langle e, \operatorname{curl} \mid \Phi\rangle_{L^{2}(\Omega)}=\langle E, \operatorname{curl} \Phi\rangle_{L^{2}(\Omega)}-\langle\tilde{E}, \operatorname{curl} \mid \Phi\rangle_{L^{2}(\Omega)} \\
&=\langle F-\operatorname{curl} X, \Phi\rangle_{L^{2}(\Omega)}+\langle X-\tilde{E}, \operatorname{curl} \Phi\rangle_{L^{2}(\Omega)} \\
& \leq\|F-\operatorname{curl} X\|_{L^{2}(\Omega)} \underbrace{\left\|\operatorname{curl}^{2} \mid\right\|_{L^{2}(\Omega)}}_{\leq c_{i n}\| \|_{L^{2}}(\Omega)}+\|X-\tilde{E}\|_{L^{2}(\Omega)}\|\operatorname{curl} \mid \Phi\|_{L^{2}(\Omega)}
\end{aligned}
$$

$\Phi:=U \quad \Rightarrow \quad\left\|e_{\text {curr }}\right\|_{L^{2}(\Omega)} \leq c_{\|}\|F-\operatorname{curl} X\|_{L^{2}(\Omega)}+\|X-\tilde{E}\|_{L^{2}}(\Omega)$

- $e_{\mathcal{H}}$: simple algebraic manipulation
universitat
$\Rightarrow\left\|e_{\mathcal{H}}\right\|_{L^{2}(\Omega)} \leq|\Phi(\tilde{E}-D)|$
DESSSEBURG

Proof

- $e_{\nabla}=\nabla u, u \in \dot{H}^{1}(\Omega): \quad \forall \varphi \in \dot{H}^{1}(\Omega) \quad \forall Y \in H(\operatorname{div} ; \Omega)$

$$
\begin{aligned}
&\left\langle e_{\nabla}, \nabla \varphi\right\rangle_{L^{2}(\Omega)}=\langle e, \nabla \varphi\rangle_{L^{2}(\Omega)}=\langle E, \nabla \varphi\rangle_{L^{2}(\Omega)}-\langle\tilde{E}, \nabla \varphi\rangle_{L^{2}(\Omega)} \\
&=\langle\operatorname{div} Y-G, \varphi\rangle_{L^{2}(\Omega)}+\langle Y-\tilde{E}, \nabla \varphi\rangle_{L^{2}(\Omega)} \\
& \leq\|\operatorname{div} Y-G\|_{L^{2}(\Omega)} \underbrace{\| \|_{L^{2}(\Omega)}}_{\leq c_{\mathrm{p}}\| \|_{L^{2}(\Omega)}}+\|Y-\tilde{E}\|_{L^{2}(\Omega)}\|\nabla \varphi\|_{L^{2}(\Omega)} \\
& \varphi:=u \Rightarrow\left\|e_{\nabla}\right\|_{L^{2}(\Omega)} \leq c_{\mathrm{p}}\|\operatorname{div} Y-G\|_{L^{2}(\Omega)}+\|Y-\tilde{E}\|_{L^{2}(\Omega)}
\end{aligned}
$$

- $e_{\text {curl }}=\operatorname{curl} U, U \in \mathbb{H}: \quad \forall \Phi \in \mathbb{H} \quad \forall X \in \dot{H}($ curl; $\Omega)$

$$
\left\langle e_{\text {curl }}, \operatorname{curl} \Phi\right\rangle_{L^{2}(\Omega)}=\langle e, \operatorname{curl} \Phi\rangle_{L^{2}(\Omega)}=\langle E, \operatorname{curl} \mid \Phi\rangle_{L^{2}(\Omega)}-\langle\tilde{E}, \operatorname{curl} \mid \Phi\rangle_{L^{2}(\Omega)}
$$

$$
=\langle F-\operatorname{curl} X, \Phi\rangle_{L^{2}(\Omega)}+\langle X-\tilde{E}, \operatorname{curl} \Phi\rangle_{L^{2}(\Omega)}
$$

$$
\leq\|F-\operatorname{curl} X\|_{L^{2}(\Omega)} \underbrace{\|\Phi\|_{L^{2}(\Omega)}}_{\leq c_{\mathrm{m}}\|\operatorname{cur} \mid \Phi\|_{L^{2}(\Omega)}}+\|X-\tilde{E}\|_{L^{2}(\Omega)}\|\operatorname{curl} \Phi\|_{L^{2}(\Omega)}
$$

$$
\Phi:=U \quad \Rightarrow \quad\left\|e_{\text {curl }}\right\|_{L^{2}(\Omega)} \leq c_{m}\|F-\operatorname{curl} X\|_{L^{2}(\Omega)}+\|X-\tilde{E}\|_{L^{2}(\Omega)}
$$

universitat

- $e_{\mathcal{H}}$: simple algebraic manipulation

Proof

$$
\begin{aligned}
&\left\langle e_{\nabla}, \nabla \varphi\right\rangle_{\mathrm{L}^{2}(\Omega)}=\langle e, \nabla \varphi\rangle_{\mathrm{L}^{2}(\Omega)}=\langle E, \nabla \varphi\rangle_{\mathrm{L}^{2}(\Omega)}-\langle\tilde{E}, \nabla \varphi\rangle_{\mathrm{L}^{2}(\Omega)} \\
&=\langle\operatorname{div} Y-G, \varphi\rangle_{\mathrm{L}^{2}(\Omega)}+\langle Y-\tilde{E}, \nabla \varphi\rangle_{\mathrm{L}^{2}(\Omega)} \\
& \leq\|\operatorname{div} Y-G\|_{\mathrm{L}^{2}(\Omega)} \underbrace{\|\varphi\|_{\mathrm{L}^{2}(\Omega)}}_{\leq c_{\mathrm{p}}\|\nabla \varphi\|_{\mathrm{L}^{2}(\Omega)}}+\|Y-\tilde{E}\|_{\mathrm{L}^{2}(\Omega)}\|\nabla \varphi\|_{\mathrm{L}^{2}(\Omega)} \\
& \varphi:=u \quad \Rightarrow\left\|e_{\nabla}\right\|_{\mathrm{L}^{2}(\Omega)} \leq c_{\mathrm{p}}\|\operatorname{div} Y-G\|_{\mathrm{L}^{2}(\Omega)}+\|Y-\tilde{E}\|_{\mathrm{L}^{2}(\Omega)}
\end{aligned}
$$

- $e_{\text {curl }}=\operatorname{curl} U, U \in \mathbb{H}: \quad \forall \Phi \in \mathbb{H} \quad \forall X \in \stackrel{\circ}{\mathrm{H}}(\mathrm{curl} ; \Omega)$

$$
\left\langle e_{\mathrm{curl}}, \operatorname{curl} \Phi\right\rangle_{\mathrm{L}^{2}(\Omega)}=\langle e, \operatorname{curl} \Phi\rangle_{\mathrm{L}^{2}(\Omega)}=\langle E, \operatorname{curl} \Phi\rangle_{\mathrm{L}^{2}(\Omega)}-\langle\tilde{E}, \operatorname{curl} \Phi\rangle_{\mathrm{L}^{2}(\Omega)}
$$

$$
=\langle F-\operatorname{curl} X, \Phi\rangle_{L^{2}(\Omega)}+\langle X-\tilde{E}, \operatorname{curl} \Phi\rangle_{L^{2}(\Omega)}
$$

$$
\leq\|F-\operatorname{curl} X\|_{L^{2}(\Omega)} \underbrace{\|\Phi\|_{L^{2}(\Omega)}}_{\leq c_{\pi}\|\operatorname{curl} \mid\|_{L^{2}(\Omega)}}+\|X-\tilde{E}\|_{L^{2}(\Omega)}\|\operatorname{curl} \Phi\|_{L^{2}(\Omega)}
$$

$$
\Phi:=U \quad \Rightarrow \quad\left\|e_{\text {curl }}\right\|_{L^{2}(\Omega)} \leq c_{m}\|F-\operatorname{curl} X\|_{L^{2}(\Omega)}+\|X-\tilde{E}\|_{L^{2}(\Omega)}
$$

- $e_{\mathcal{H}}$: simple algebraic manipulation

$$
\Rightarrow\left\|e_{\mathcal{H}}\right\|_{L^{2}(\Omega)} \leq|\Phi(\tilde{E}-D)|
$$

Eddy Current: Problem Formulation and Solution

much simpler problem! no projection on solenoidal or Dirichlet fields, coercivity immediately implied by equation

Eddy Current: Problem Formulation and Solution

much simpler problem! no projection on solenoidal or Dirichlet fields, coercivity immediately implied by equation

$$
\begin{array}{rlrl}
\partial_{t} B+\operatorname{curl} E & =J, & \operatorname{div} B & =\kappa, \\
& & B=\mu H \\
-\partial_{t} D+\operatorname{curl} H & =\sigma E+j, & \operatorname{div} D=\rho, & \\
=\varepsilon E
\end{array}
$$

assume σ, μ to be time independent
time-harmonic ansatz for E, F, i.e., $U(t, x)=\exp (i n \omega t) U_{n}(x)$ with frequency $\omega>0$ curl curl $E_{n}+i n \omega E_{n}=F_{n} \quad(\sigma=\mu=$ id for simplicity $)$

Hilbert space for Lax-Milgram: $\mathrm{H}($ curl $; \Omega)$; denote $E:=E_{n}$ variational formulation: find $E \in \mathrm{H}($ curl $; \Omega)$ s.t. $\forall \Phi \in \mathrm{H}($ curl $; \Omega)$ $b(E, \phi):=\langle\operatorname{curl} E, \operatorname{curl} \phi\rangle_{L^{2}(\Omega)}+i n \omega\langle E, \Phi\rangle_{L^{2}(\Omega)}=f(\Phi):=\langle F, \Phi\rangle_{L^{2}(\Omega)}$
c_{b} depending on n and ω

Eddy Current: Problem Formulation and Solution

much simpler problem! no projection on solenoidal or Dirichlet fields, coercivity immediately implied by equation

$$
\begin{array}{rlrl}
\partial_{t} B+\operatorname{curl} E & =J, & \operatorname{div} B & =\kappa, \\
& & B=\mu H \\
-\partial_{t} D+\operatorname{curl} H & =\sigma E+j, & \operatorname{div} D=\rho, & \\
=\varepsilon E
\end{array}
$$

assume σ, μ to be time independent
time-harmonic ansatz for E, F, i.e., $U(t, x)=\exp (i n \omega t) U_{n}(x)$ with frequency $\omega>0$ $\Rightarrow \quad$ curl curl $E_{n}+$ in $\omega E_{n}=F_{n} \quad(\sigma=\mu=i d$ for simplicity $)$

Hilbert space for Lax-Milgram: $\mathrm{H}($ curl $; \Omega)$; denote $E:=E_{n}$ variational formulation: find $E \in \mathrm{H}($ curl $; \Omega)$ s.t. $\forall \Phi \in \mathrm{H}($ curl $; \Omega)$ $b(E, \phi):=\langle\operatorname{curl} E, \operatorname{curl} \phi\rangle_{L^{2}(\Omega)}+i n \omega\langle E, \Phi\rangle_{L^{2}(\Omega)}=f(\Phi):=\langle F, \Phi\rangle_{L^{2}(\Omega)}$

Eddy Current: Problem Formulation and Solution

much simpler problem! no projection on solenoidal or Dirichlet fields, coercivity immediately implied by equation

$$
\begin{aligned}
\partial_{t} B+\operatorname{curl} E & =J, & \operatorname{div} B & =\kappa,
\end{aligned}
$$

assume σ, μ to be time independent

$$
\Rightarrow \quad \sigma \partial_{t} E=\operatorname{curl} \partial_{t} H-\partial_{t} j=-\operatorname{curl} \mu^{-1} \operatorname{curl} E+\operatorname{curl} \mu^{-1} J-\partial_{t} j
$$

time-harmonic ansatz for E, F, i.e., $U(t, x)=\exp (i n \omega t) U_{n}(x)$ with frequency $\omega>0$ $\Rightarrow \quad$ curl curl $E_{n}+$ inw $E_{n}=F_{n} \quad(\sigma=\mu=i d$ for simplicity $)$

Hilbert space for Lax-Milgram: $\mathrm{H}($ curl ; $\Omega)$; denote $E:=E_{n}$ variational formulation: find $E \in \mathrm{H}($ curl $; \Omega)$ s.t. $\forall \Phi \in \mathrm{H}($ curl $; \Omega)$ $b(E, \phi):=\langle\text { curl } E, \operatorname{curl} \phi\rangle_{L^{2}(\Omega)}+i n \omega\langle E, \phi\rangle_{L^{2}(\Omega)}=f(\phi):=\langle F, \Phi\rangle_{L^{2}(\Omega)}$

Eddy Current: Problem Formulation and Solution

much simpler problem! no projection on solenoidal or Dirichlet fields, coercivity immediately implied by equation

$$
\begin{aligned}
\partial_{t} B+\operatorname{curl} E & =J, & & \operatorname{div} B
\end{aligned}=\kappa, \quad B=\mu H
$$

assume σ, μ to be time independent

$$
\begin{gathered}
\Rightarrow \quad \sigma \partial_{t} E=\operatorname{curl} \partial_{t} H-\partial_{t} j=-\operatorname{curl} \mu^{-1} \operatorname{curl} E+\operatorname{curl} \mu^{-1} J-\partial_{t} j \\
\Rightarrow \quad \operatorname{curl} \mu^{-1} \operatorname{curl} E+\sigma \partial_{t} E=F, \quad F:=\operatorname{curl} \mu^{-1} J-\partial_{t} j
\end{gathered}
$$

time-harmonic ansatz for E, F, i.e., $U(t, x)=\exp (i n \omega t) U_{n}(x)$ with frequency $\omega>0$
$\Rightarrow \quad$ curl curl $E_{n}+i n \omega E_{n}=F_{n} \quad(\sigma=\mu=$ id for simplicity $)$

Hilbert space for Lax-Milgram: $\mathrm{H}($ curl; $\Omega)$; denote $E:=E_{n}$
variational formulation: find $E \in \mathrm{H}($ curl $; \Omega)$ s.t. $\forall \Phi \in \mathrm{H}($ curl $; \Omega)$
$b(E, \phi):=\langle\text { curl } E, \text { curl } \phi\rangle_{L^{2}(\Omega)}+i n \omega\langle E, \phi\rangle_{L^{2}(\Omega)}=f(\phi):=\langle F, \phi\rangle_{L^{2}(\Omega)}$

Eddy Current: Problem Formulation and Solution

much simpler problem! no projection on solenoidal or Dirichlet fields, coercivity immediately implied by equation

$$
\begin{array}{rlrl}
\partial_{t} B+\operatorname{curl} E & =J, & \operatorname{div} B & =\kappa, \\
& & B=\mu H \\
-\partial_{t} D+\operatorname{curl} H & =\sigma E+j, & \operatorname{div} D=\rho, & \\
=\varepsilon E
\end{array}
$$

assume σ, μ to be time independent

$$
\begin{gathered}
\Rightarrow \quad \sigma \partial_{t} E=\operatorname{curl} \partial_{t} H-\partial_{t} j=-\operatorname{curl} \mu^{-1} \operatorname{curl} E+\operatorname{curl} \mu^{-1} J-\partial_{t} j \\
\Rightarrow \quad \operatorname{curl} \mu^{-1} \operatorname{curl} E+\sigma \partial_{t} E=F, \quad F:=\operatorname{curl} \mu^{-1} J-\partial_{t} j
\end{gathered}
$$

time-harmonic ansatz for E, F, i.e., $U(t, x)=\exp (i n \omega t) U_{n}(x)$ with frequency $\omega>0$
curl curl $E_{n}+\operatorname{in} \omega E_{n}=F_{n} \quad(\sigma=\mu=$ id for simplicity $)$
Hilbert space for Lax-Milgram: $\mathrm{H}($ curl $; \Omega)$; denote $E:=E_{n}$ variational formulation: find $E \in \mathrm{H}($ curl $; \Omega)$ s.t. $\forall \Phi \in \mathrm{H}($ curl $; \Omega)$ $b(E, \phi):=\langle\operatorname{curl} E, \operatorname{curl} \phi\rangle_{L^{2}(\Omega)}+i n \omega\langle E, \Phi\rangle_{L^{2}(\Omega)}=f(\Phi):=\langle F, \Phi\rangle_{L^{2}(\Omega)}$

Eddy Current: Problem Formulation and Solution

much simpler problem! no projection on solenoidal or Dirichlet fields, coercivity immediately implied by equation

$$
\begin{array}{rlrl}
\partial_{t} B+\operatorname{curl} E & =J, & \operatorname{div} B & =\kappa, \\
& & B=\mu H \\
-\partial_{t} D+\operatorname{curl} H & =\sigma E+j, & \operatorname{div} D=\rho, & \\
=\varepsilon E
\end{array}
$$

assume σ, μ to be time independent

$$
\begin{gathered}
\Rightarrow \quad \sigma \partial_{t} E=\operatorname{curl} \partial_{t} H-\partial_{t} j=-\operatorname{curl} \mu^{-1} \operatorname{curl} E+\operatorname{curl} \mu^{-1} J-\partial_{t} j \\
\Rightarrow \quad \operatorname{curl} \mu^{-1} \operatorname{curl} E+\sigma \partial_{t} E=F, \quad F:=\operatorname{curl} \mu^{-1} J-\partial_{t} j
\end{gathered}
$$

time-harmonic ansatz for E, F, i.e., $U(t, x)=\exp (i n \omega t) U_{n}(x)$ with frequency $\omega>0$

$$
\Rightarrow \quad \text { curl curl } E_{n}+i n \omega E_{n}=F_{n} \quad(\sigma=\mu=\text { id for simplicity })
$$

Hilbert space for Lax-Milgram: $\mathrm{H}($ curl $; \Omega)$; denote $E:=E_{n}$ variational formulation: find $E \in \mathrm{H}($ curl $; \Omega)$ s.t. $\forall \Phi \in \mathrm{H}($ curl: $\Omega)$ $b(E, \phi):=\langle\operatorname{curl} E, \operatorname{curl} \phi\rangle_{L^{2}(\Omega)}+i n \omega\langle E, \Phi\rangle_{L^{2}(\Omega)}=f(\Phi):=\langle F, \phi\rangle_{L^{2}(\Omega)}$

Eddy Current: Problem Formulation and Solution

much simpler problem! no projection on solenoidal or Dirichlet fields, coercivity immediately implied by equation

$$
\begin{array}{rlrl}
\partial_{t} B+\operatorname{curl} E & =J, & \operatorname{div} B & =\kappa, \\
& & B=\mu H \\
-\partial_{t} D+\operatorname{curl} H & =\sigma E+j, & & \operatorname{div} D=\rho,
\end{array}
$$

assume σ, μ to be time independent

$$
\begin{gathered}
\Rightarrow \quad \sigma \partial_{t} E=\operatorname{curl} \partial_{t} H-\partial_{t} j=-\operatorname{curl} \mu^{-1} \operatorname{curl} E+\operatorname{curl} \mu^{-1} J-\partial_{t} j \\
\Rightarrow \quad \operatorname{curl} \mu^{-1} \operatorname{curl} E+\sigma \partial_{t} E=F, \quad F:=\operatorname{curl} \mu^{-1} J-\partial_{t} j
\end{gathered}
$$

time-harmonic ansatz for E, F, i.e., $U(t, x)=\exp (i n \omega t) U_{n}(x)$ with frequency $\omega>0$

$$
\Rightarrow \quad \text { curl curl } E_{n}+i n \omega E_{n}=F_{n} \quad(\sigma=\mu=\text { id for simplicity })
$$

Hilbert space for Lax-Milgram: $\stackrel{\circ}{\mathrm{H}}($ curl $; \Omega)$; denote $E:=E_{n}$
variational formulation: find $E \in H($ curl $; \Omega)$ s.t. $\forall \varnothing \in H(c u r l ; \Omega)$
$b(E, \Phi):=\langle\operatorname{curl} E, \operatorname{curl} \Phi\rangle_{L^{2}(\Omega)}+i n \omega\langle E, \Phi\rangle_{L^{2}(\Omega)}=f(\Phi):=\langle F, \Phi\rangle_{L^{2}(\Omega)}$

Eddy Current: Problem Formulation and Solution

much simpler problem! no projection on solenoidal or Dirichlet fields, coercivity immediately implied by equation

$$
\begin{array}{rlrl}
\partial_{t} B+\operatorname{curl} E & =J, & \operatorname{div} B & =\kappa, \\
& & B=\mu H \\
-\partial_{t} D+\operatorname{curl} H & =\sigma E+j, & & \operatorname{div} D=\rho,
\end{array}
$$

assume σ, μ to be time independent

$$
\begin{gathered}
\Rightarrow \quad \sigma \partial_{t} E=\operatorname{curl} \partial_{t} H-\partial_{t} j=-\operatorname{curl} \mu^{-1} \operatorname{curl} E+\operatorname{curl} \mu^{-1} J-\partial_{t} j \\
\Rightarrow \quad \operatorname{curl} \mu^{-1} \operatorname{curl} E+\sigma \partial_{t} E=F, \quad F:=\operatorname{curl} \mu^{-1} J-\partial_{t} j
\end{gathered}
$$

time-harmonic ansatz for E, F, i.e., $U(t, x)=\exp (i n \omega t) U_{n}(x)$ with frequency $\omega>0$

$$
\Rightarrow \quad \text { curl curl } E_{n}+i n \omega E_{n}=F_{n} \quad(\sigma=\mu=\text { id for simplicity })
$$

Hilbert space for Lax-Milgram: $\stackrel{\circ}{\mathrm{H}}($ curl $; \Omega)$; denote $E:=E_{n}$
variational formulation: find $E \in \stackrel{\circ}{\mathrm{H}}($ curl $; \Omega)$ s.t. $\forall \Phi \in \mathrm{H}$ (curl; Ω)

$$
b(E, \Phi):=\langle\operatorname{curl} E, \operatorname{curl} \Phi\rangle_{\mathrm{L}^{2}(\Omega)}+i n \omega\langle E, \Phi\rangle_{\mathrm{L}^{2}(\Omega)}=f(\Phi):=\langle F, \Phi\rangle_{\mathrm{L}^{2}(\Omega)}
$$

Eddy Current: Problem Formulation and Solution

much simpler problem! no projection on solenoidal or Dirichlet fields, coercivity immediately implied by equation

$$
\begin{array}{rlrl}
\partial_{t} B+\operatorname{curl} E & =J, & \operatorname{div} B & =\kappa, \\
& & B=\mu H \\
-\partial_{t} D+\operatorname{curl} H & =\sigma E+j, & \operatorname{div} D=\rho, & \\
=\varepsilon E
\end{array}
$$

assume σ, μ to be time independent

$$
\begin{gathered}
\Rightarrow \quad \sigma \partial_{t} E=\operatorname{curl} \partial_{t} H-\partial_{t} j=-\operatorname{curl} \mu^{-1} \operatorname{curl} E+\operatorname{curl} \mu^{-1} J-\partial_{t} j \\
\Rightarrow \quad \operatorname{curl} \mu^{-1} \operatorname{curl} E+\sigma \partial_{t} E=F, \quad F:=\operatorname{curl} \mu^{-1} J-\partial_{t} j
\end{gathered}
$$

time-harmonic ansatz for E, F, i.e., $U(t, x)=\exp (i n \omega t) U_{n}(x)$ with frequency $\omega>0$

$$
\Rightarrow \quad \text { curl curl } E_{n}+i n \omega E_{n}=F_{n} \quad(\sigma=\mu=\text { id for simplicity })
$$

Hilbert space for Lax-Milgram: $\stackrel{\circ}{\mathrm{H}}($ curl; $\Omega)$; denote $E:=E_{n}$
variational formulation: find $E \in \stackrel{\circ}{\mathrm{H}}($ curl $; \Omega)$ s.t. $\forall \Phi \in \mathrm{H}$ (curl; Ω)

$$
b(E, \Phi):=\langle\operatorname{curl} E, \operatorname{curl} \Phi\rangle_{\mathrm{L}^{2}(\Omega)}+i n \omega\langle E, \Phi\rangle_{\mathrm{L}^{2}(\Omega)}=f(\Phi):=\langle F, \Phi\rangle_{\mathrm{L}^{2}(\Omega)}
$$

b coercive since $|b(\Phi, \Phi)|^{2}=\|\operatorname{curl} \Phi\|_{\mathrm{L}^{2}(\Omega)}^{2}+n^{2} \omega^{2}\|\Phi\|_{\mathrm{L}^{2}(\Omega)}^{2} \geq c_{\mathrm{b}}\|\Phi\|_{\mathrm{H}(\text { curl } ; \Omega)}^{2}$
c_{b} depending on n and ω

Eddy Current: Upper and Lower Bounds

$\tilde{E} \in \stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega)$ approximation of $E \in \stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega) \Rightarrow e:=E-\tilde{E} \in \stackrel{\circ}{\mathrm{H}}(\mathrm{curl} ; \Omega)$

pick $\Phi \in H(c u r l ; \Omega)$ and $X \in H(c u r l ; \Omega)$

$$
\begin{aligned}
& b(e, \Phi)=f(\Phi)-b(\tilde{E}, \Phi) \\
= & \langle F, \Phi\rangle_{L^{2}(\Omega)}-\langle\operatorname{curl} \tilde{E}, \operatorname{curl} \Phi\rangle_{\mathrm{L}^{2}(\Omega)}-\operatorname{in} \omega\langle\tilde{E}, \Phi\rangle_{\mathrm{L}^{2}(\Omega)} \\
= & \langle F-\operatorname{curl} X-\operatorname{in} \omega \tilde{E}, \Phi\rangle_{\mathrm{L}^{2}(\Omega)}+\langle X-\operatorname{curl} \tilde{E}, \operatorname{curl} \Phi\rangle_{\mathrm{L}^{2}(\Omega)} \\
\leq & (\underbrace{\|F-\operatorname{curl} X-\operatorname{in\omega } \tilde{E}\|_{\mathrm{L}^{2}(\Omega)}+\|X-\operatorname{curl} \tilde{E}\|_{\mathrm{L}^{2}(\Omega)}})\|\Phi\|_{\mathrm{H}(\operatorname{curl} ; \Omega)}
\end{aligned}
$$

$: M_{+}(E, X)$
$\phi:=e \Rightarrow$

Remark:

- also lower bounds
- also mixed boundary conditions possible
- also $\tilde{E} \in \mathrm{~L}^{2}(\Omega)$ possible, again with Helmholtz decomposition
- typical features of Sergey's estimates: sharpness,
universitat

Eddy Current：Upper and Lower Bounds

$\tilde{E} \in \stackrel{\circ}{\mathrm{H}}($ curl $; \Omega)$ approximation of $E \in \stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega) \Rightarrow e:=E-\tilde{E} \in \stackrel{\circ}{\mathrm{H}}($ curl $; \Omega)$
pick $\Phi \in \stackrel{\circ}{\mathrm{H}}(\mathrm{curl} ; \Omega)$ and $X \in \mathrm{H}($ curl $; \Omega)$

$M_{+}(E, X)$
$\Phi:=e \Rightarrow$

Remark：
－also lower bounds
－also mixed boundary conditions possible
－also $\tilde{E} \in \mathrm{~L}^{2}(\Omega)$ possible，again with Helmholtz decomposition
－typical features of Sergev＇s estimates：sharpness，

Eddy Current: Upper and Lower Bounds

$\tilde{E} \in \stackrel{\circ}{\mathrm{H}}($ curl $; \Omega)$ approximation of $E \in \stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega) \Rightarrow e:=E-\tilde{E} \in \stackrel{\circ}{\mathrm{H}}(\mathrm{curl} ; \Omega)$ pick $\Phi \in \stackrel{\circ}{\mathrm{H}}($ curl $; \Omega)$ and $X \in \mathrm{H}($ curl $; \Omega)$

$$
\begin{aligned}
& \Rightarrow \\
&= b(e, \Phi)=f(\Phi)-b(\tilde{E}, \Phi) \\
&=\langle F, \Phi\rangle_{\mathrm{L}^{2}(\Omega)}-\langle\operatorname{curl} \tilde{E}, \operatorname{curl} \Phi\rangle_{\mathrm{L}^{2}(\Omega)}-\operatorname{in\omega }\langle\tilde{E}, \Phi\rangle_{\mathrm{L}^{2}(\Omega)} \\
& \leq(\underbrace{\| F-\operatorname{curl} X-\operatorname{in} \omega \tilde{E}, \Phi\rangle_{\mathrm{L}^{2}(\Omega)}+\langle X-\operatorname{curl} \tilde{E}, \operatorname{curl} \Phi\rangle_{\mathrm{L}^{2}(\Omega)}}_{=: M_{+}(\tilde{E}, X)} \\
&\left.=\operatorname{in\omega \tilde {E}\| _{\mathrm {L}^{2}(\Omega)}+\| X-\operatorname {curl}\tilde {E}\| _{\mathrm {L}^{2}(\Omega)}}\right)\|\Phi\|_{\mathrm{H}(\operatorname{curl} ; \Omega)}
\end{aligned}
$$

$\Phi:=e \Rightarrow$

Remark

- also lower bounds
- also mixed boundary conditions possible
- also $\tilde{E} \in \mathrm{~L}^{2}(\Omega)$ possible, again with Helmholtz decomposition
- typical features of Sergey's estimates: sharpness,
only natural constants, simple implementation,

Eddy Current: Upper and Lower Bounds

$\tilde{E} \in \stackrel{\circ}{\mathrm{H}}($ curl $; \Omega)$ approximation of $E \in \stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega) \Rightarrow e:=E-\tilde{E} \in \stackrel{\circ}{\mathrm{H}}(\mathrm{curl} ; \Omega)$ pick $\Phi \in \stackrel{\circ}{\mathrm{H}}($ curl $; \Omega)$ and $X \in \mathrm{H}($ curl $; \Omega)$

$$
\begin{aligned}
& \Rightarrow \\
&= b(e, \Phi)=f(\Phi)-b(\tilde{E}, \Phi) \\
&=\langle F, \Phi\rangle_{\mathrm{L}^{2}(\Omega)}-\langle\operatorname{curl} \tilde{E}, \operatorname{curl} \Phi\rangle_{\mathrm{L}^{2}(\Omega)}-\operatorname{in\omega }\langle\tilde{E}, \Phi\rangle_{\mathrm{L}^{2}(\Omega)} \\
& \leq(\underbrace{\| F-\operatorname{curl} X-\operatorname{in} \omega \tilde{E}, \Phi\rangle_{\mathrm{L}^{2}(\Omega)}+\langle X-\operatorname{curl} \tilde{E}, \operatorname{curl} \Phi\rangle_{\mathrm{L}^{2}(\Omega)}}_{=M_{+}(\tilde{E}, X)} \\
&=\operatorname{in\omega \tilde {E}\| _{\mathrm {L}^{2}(\Omega)}+\| X-\operatorname {curl}\tilde {E}\| _{\mathrm {L}^{2}(\Omega)})}\|\Phi\|_{\mathrm{H}(\operatorname{curl} ; \Omega)}
\end{aligned}
$$

$\Phi:=e \Rightarrow$

$$
\|e\|_{\mathrm{H}(\mathrm{cur} ; \Omega)} \leq c_{\mathrm{b}}^{-1} \inf _{X \in \mathrm{H}(\operatorname{curl} ; \Omega)} M_{+}(\tilde{E}, X)
$$

Remark

- also lower bounds
- also mixed boundary conditions possible
- also $\tilde{E} \in \mathrm{~L}^{2}(\Omega)$ possible, again with Helmholtz decomposition
- typical features of Sergey's estimates: sharpness,
only natural constants, simple implementation,

Eddy Current: Upper and Lower Bounds

$\tilde{E} \in \stackrel{\circ}{\mathrm{H}}($ curl $; \Omega)$ approximation of $E \in \stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega) \Rightarrow e:=E-\tilde{E} \in \stackrel{\circ}{\mathrm{H}}(\mathrm{curl} ; \Omega)$ pick $\Phi \in \stackrel{\circ}{\mathrm{H}}($ curl $; \Omega)$ and $X \in \mathrm{H}($ curl $; \Omega)$

$$
\begin{aligned}
& \Rightarrow \\
&= b(e, \Phi)=f(\Phi)-b(\tilde{E}, \Phi) \\
&=\langle F, \Phi\rangle_{\mathrm{L}^{2}(\Omega)}-\langle\operatorname{curl} \tilde{E}, \operatorname{curl} \Phi\rangle_{\mathrm{L}^{2}(\Omega)}-\operatorname{in\omega }\langle\tilde{E}, \Phi\rangle_{\mathrm{L}^{2}(\Omega)} \\
& \leq(\underbrace{\| F-\operatorname{curl} X-\operatorname{in} \omega \tilde{E}, \Phi\rangle_{\mathrm{L}^{2}(\Omega)}+\langle X-\operatorname{curl} \tilde{E}, \operatorname{curl} \Phi\rangle_{\mathrm{L}^{2}(\Omega)}}_{=M_{+}(\tilde{E}, X)} \\
&=\operatorname{in\omega \tilde {E}\| _{\mathrm {L}^{2}(\Omega)}+\| X-\operatorname {curl}\tilde {E}\| _{\mathrm {L}^{2}(\Omega)})}\|\Phi\|_{\mathrm{H}(\operatorname{curl} ; \Omega)}
\end{aligned}
$$

$\Phi:=e \Rightarrow$

$$
\|e\|_{\mathrm{H}(\mathrm{curl} ; \Omega)} \leq c_{\mathrm{b}}^{-1} \inf _{X \in \mathrm{H}(\operatorname{curl} ; \Omega)} M_{+}(\tilde{E}, X)
$$

Remark:

- also lower bounds
- also mixed boundary conditions possible
- also $\tilde{E} \in \mathrm{~L}^{2}(\Omega)$ possible, again with Helmholtz decomposition
- typical features of Sergey's estimates: sharpness,
only natural constants, simple implementation,

Eddy Current: Upper and Lower Bounds

$\tilde{E} \in \stackrel{\circ}{\mathrm{H}}($ curl $; \Omega)$ approximation of $E \in \stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega) \Rightarrow e:=E-\tilde{E} \in \stackrel{\circ}{\mathrm{H}}(\mathrm{curl} ; \Omega)$ pick $\Phi \in \stackrel{\circ}{\mathrm{H}}(\mathrm{curl} ; \Omega)$ and $X \in \mathrm{H}($ curl $; \Omega)$

$$
\begin{aligned}
& \Rightarrow \\
&= b(e, \Phi)=f(\Phi)-b(\tilde{E}, \Phi) \\
&=\langle F, \Phi\rangle_{\mathrm{L}^{2}(\Omega)}-\langle\operatorname{curl} \tilde{E}, \operatorname{curl} \Phi\rangle_{\mathrm{L}^{2}(\Omega)}-\operatorname{in\omega }\langle\tilde{E}, \Phi\rangle_{\mathrm{L}^{2}(\Omega)} \\
& \leq(\underbrace{\| F-\operatorname{curl} X-\operatorname{in} \omega \tilde{E}, \Phi\rangle_{\mathrm{L}^{2}(\Omega)}+\langle X-\operatorname{curl} \tilde{E}, \operatorname{curl} \Phi\rangle_{\mathrm{L}^{2}(\Omega)}}_{=: M_{+}(\tilde{E}, X)} \\
&\left.=\operatorname{in\omega \tilde {E}\| _{\mathrm {L}^{2}(\Omega)}+\| X-\operatorname {curl}\tilde {E}\| _{\mathrm {L}^{2}(\Omega)}}\right)\|\Phi\|_{\mathrm{H}(\operatorname{curl} ; \Omega)}
\end{aligned}
$$

$\Phi:=e \Rightarrow$

$$
\|e\|_{\mathrm{H}(\mathrm{cur} ; \Omega)} \leq c_{\mathrm{b}}^{-1} \inf _{X \in \mathrm{H}(\operatorname{curl} ; \Omega)} M_{+}(\tilde{E}, X)
$$

Remark:

- also lower bounds
- also mixed boundary conditions possible
- also $E \in L^{2}(\Omega)$ possible, again with Helmholtz decomposition
- typical features of Sergey's estimates: sharpness,
only natural constants, simple implementation,

Eddy Current: Upper and Lower Bounds

$\tilde{E} \in \stackrel{\circ}{\mathrm{H}}($ curl $; \Omega)$ approximation of $E \in \stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega) \Rightarrow e:=E-\tilde{E} \in \stackrel{\circ}{\mathrm{H}}(\mathrm{curl} ; \Omega)$ pick $\Phi \in \stackrel{\circ}{\mathrm{H}}(\mathrm{curl} ; \Omega)$ and $X \in \mathrm{H}($ curl $; \Omega)$

$$
\begin{aligned}
& \Rightarrow \\
&= b(e, \Phi)=f(\Phi)-b(\tilde{E}, \Phi) \\
&=\langle F, \Phi\rangle_{\mathrm{L}^{2}(\Omega)}-\langle\operatorname{curl} \tilde{E}, \operatorname{curl} \Phi\rangle_{\mathrm{L}^{2}(\Omega)}-\operatorname{in\omega }\langle\tilde{E}, \Phi\rangle_{\mathrm{L}^{2}(\Omega)} \\
& \leq(\underbrace{\| F-\operatorname{curl} X-\operatorname{in} \omega \tilde{E}, \Phi\rangle_{\mathrm{L}^{2}(\Omega)}+\langle X-\operatorname{curl} \tilde{E}, \operatorname{curl} \Phi\rangle_{\mathrm{L}^{2}(\Omega)}}_{=: M_{+}(\tilde{E}, X)} \\
&\left.=\operatorname{in\omega \tilde {E}\| _{\mathrm {L}^{2}(\Omega)}+\| X-\operatorname {curl}\tilde {E}\| _{\mathrm {L}^{2}(\Omega)}}\right)\|\Phi\|_{\mathrm{H}(\operatorname{curl} ; \Omega)}
\end{aligned}
$$

$\Phi:=e \Rightarrow$

$$
\|e\|_{\mathrm{H}(\mathrm{curl} ; \Omega)} \leq c_{\mathrm{b}}^{-1} \inf _{X \in \mathrm{H}(\operatorname{curl} ; \Omega)} M_{+}(\tilde{E}, X)
$$

Remark:

- also lower bounds
- also mixed boundary conditions possible
- also $\tilde{E} \in \mathrm{~L}^{2}(\Omega)$ possible, again with Helmholtz decomposition
- typical features of Sergey's estimates: sharpness,

Eddy Current: Upper and Lower Bounds

$\tilde{E} \in \stackrel{\circ}{\mathrm{H}}($ curl $; \Omega)$ approximation of $E \in \stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega) \Rightarrow e:=E-\tilde{E} \in \stackrel{\circ}{\mathrm{H}}(\mathrm{curl} ; \Omega)$ pick $\Phi \in \stackrel{\circ}{\mathrm{H}}(\mathrm{curl} ; \Omega)$ and $X \in \mathrm{H}($ curl $; \Omega)$

$$
\begin{aligned}
& \Rightarrow \\
&= b(e, \Phi)=f(\Phi)-b(\tilde{E}, \Phi) \\
&=\langle F, \Phi\rangle_{\mathrm{L}^{2}(\Omega)}-\langle\operatorname{curl} \tilde{E}, \operatorname{curl} \Phi\rangle_{\mathrm{L}^{2}(\Omega)}-\operatorname{in\omega } \omega\langle\tilde{E}, \Phi\rangle_{\mathrm{L}^{2}(\Omega)} \\
& \leq(\underbrace{\| F-\operatorname{curl} X-\operatorname{in} \omega \tilde{E}, \Phi\rangle_{\mathrm{L}^{2}(\Omega)}+\langle X-\operatorname{curl} \tilde{E}, \operatorname{curl} \Phi\rangle_{\mathrm{L}^{2}(\Omega)}}_{=M_{+}(\tilde{E}, X)} \\
&\left.=\operatorname{in\omega }\left\|_{\mathrm{L}^{2}(\Omega)}+\right\| X-\operatorname{curl} \tilde{E} \|_{\mathrm{L}^{2}(\Omega)}\right)\|\Phi\|_{\mathrm{H}(\operatorname{curl} ; \Omega)}
\end{aligned}
$$

$\Phi:=e \Rightarrow$

$$
\|e\|_{\mathrm{H}(\mathrm{curl} ; \Omega)} \leq c_{\mathrm{b}}^{-1} \inf _{X \in \mathrm{H}(\operatorname{curl} ; \Omega)} M_{+}(\tilde{E}, X)
$$

Remark:

- also lower bounds
- also mixed boundary conditions possible
- also $\tilde{E} \in \mathrm{~L}^{2}(\Omega)$ possible, again with Helmholtz decomposition
- typical features of Sergey's estimates: sharpness,
universitat
DESSSERNRG only natural constants, simple implementation,

Last Slide!

more results:

- lower bounds

回 usual features of Sergey's estimates: sharpness, only natural constants, simple implementation,Ω exterior domain, polynomially weighted estimates

- differential forms, $\Omega \subset \mathbb{R}^{N}, \Omega$ Riemannian manifold
- hyperbolic problems full time-dependent Maxwell system, eddy current,
- include ε, μ
- diffusion problem, elasticity,
- mixed boundary conditions
- first papers published with Sergey Repin, soon more...

Thank You!

Last Slide!

more results:

- lower bounds
- usual features of Sergey's estimates:
sharpness, only natural constants, simple implementation,
- - Ω exterior domain, polvnomially weighted estimates
- differential forms, $\Omega \subset \mathbb{R}^{N}, \Omega$ Riemannian manifold
- hyperbolic problems, full time-dependent Maxwell system, eddy current,
- include ε. μ
- diffusion problem, elasticity,
- mixed boundary conditions
- first naners nublished with Sergey Repin, soon more...

Thank You!

Last Slide!

more results:

- lower bounds

■ usual features of Sergey's estimates: sharpness, only natural constants, simple implementation, ...

- Ω exterior domain, polynomially weighted estimates
differential forms, $\Omega \subset \mathbb{R}^{N}, \Omega$ Riemannian manifold
= hyperbolic problems, full time-dependent Maxmell system, eddy current,
n include ε, μ
- diffusion problem, elasticity,
- mixed boundary conditions
- first papers published with Sergey Repin, soon more.

Thank You!

Last Slide!

more results:

- lower bounds

■ usual features of Sergey's estimates: sharpness, only natural constants, simple implementation, ...
$■ \Omega$ exterior domain, polynomially weighted estimates

- differential forms, $\Omega \subset \mathbb{R}^{N}, \Omega$ Riemannian manifold
- hyperbolic problems, full time-dependent Maxwell system, eddy current,

■ include ε, μ

- diffusion problem, elasticity,
- mixed boundary conditions
- first napers nublished with Sergey Repin, soon more.
Thank You!

Last Slide!

more results:

- lower bounds

■ usual features of Sergey's estimates: sharpness, only natural constants, simple implementation, ...
$■ \Omega$ exterior domain, polynomially weighted estimates
■ differential forms, $\Omega \subset \mathbb{R}^{N}, \Omega$ Riemannian manifold

- hyperbolic problems, full time-dependent Maxwell system, eddy current,
- include ε, μ
- diffusion problem, elasticity
n mixed boundary conditions
- first papers published with Sergey Repin, soon more.
Thank You!

Last Slide!

more results:

- lower bounds

■ usual features of Sergey's estimates: sharpness, only natural constants, simple implementation, ...
$■ \Omega$ exterior domain, polynomially weighted estimates

- differential forms, $\Omega \subset \mathbb{R}^{N}, \Omega$ Riemannian manifold

■ hyperbolic problems, full time-dependent Maxwell system, eddy current, ...
diffusion problem, elasticity,

- mixed boundary conditions
- first papers published with Sergey Repin, soon more
Thank You!

Last Slide!

more results:

- lower bounds

■ usual features of Sergey's estimates: sharpness, only natural constants, simple implementation, ...
$■ \Omega$ exterior domain, polynomially weighted estimates

- differential forms, $\Omega \subset \mathbb{R}^{N}, \Omega$ Riemannian manifold

■ hyperbolic problems, full time-dependent Maxwell system, eddy current, ...

- include ε, μ
- diffusion problem, elasticity,
- mixed boundary conditions
- first naners nublished with Sergey Repin, soon more
Thank You!

Last Slide!

more results:

- lower bounds
- usual features of Sergey's estimates: sharpness, only natural constants, simple implementation, ...
$■ \Omega$ exterior domain, polynomially weighted estimates
■ differential forms, $\Omega \subset \mathbb{R}^{N}, \Omega$ Riemannian manifold
■ hyperbolic problems, full time-dependent Maxwell system, eddy current, ...
■ include ε, μ
- diffusion problem, elasticity, ...
- mixed boundary conditions
- first papers published with Sergey Repin, soon more.
Thank You!

Last Slide!

more results:

- lower bounds

■ usual features of Sergey's estimates: sharpness, only natural constants, simple implementation, ...
$■ \Omega$ exterior domain, polynomially weighted estimates

- differential forms, $\Omega \subset \mathbb{R}^{N}, \Omega$ Riemannian manifold

■ hyperbolic problems, full time-dependent Maxwell system, eddy current, ...
■ include ε, μ

- diffusion problem, elasticity, ...
- mixed boundary conditions
- first papers published with Sergey Repin, soon more.
Thank You!

Last Slide!

more results:

- lower bounds

■ usual features of Sergey's estimates: sharpness, only natural constants, simple implementation, ...
$■ \Omega$ exterior domain, polynomially weighted estimates

- differential forms, $\Omega \subset \mathbb{R}^{N}, \Omega$ Riemannian manifold

■ hyperbolic problems, full time-dependent Maxwell system, eddy current, ...
■ include ε, μ

- diffusion problem, elasticity, ...
- mixed boundary conditions
- first papers published with Sergey Repin, soon more...
universitat
DESSSEN RG

Last Slide!

more results:

- lower bounds
- usual features of Sergey's estimates: sharpness, only natural constants, simple implementation, ...
$■ \Omega$ exterior domain, polynomially weighted estimates
- differential forms, $\Omega \subset \mathbb{R}^{N}, \Omega$ Riemannian manifold

■ hyperbolic problems, full time-dependent Maxwell system, eddy current, ...
■ include ε, μ

- diffusion problem, elasticity, ...
- mixed boundary conditions
- first papers published with Sergey Repin, soon more...

Thank You!

