Old and New Results for Hilbert Complexes and (Linear) First Order Systems

Dirk Pauly
Fakultät für Mathematik

UNIVERSITÃT
 $D_{E} U_{S} S_{S} S_{E N} B_{N}$ R G

Open-Minded ;-)

CMAM-8 Computational Methods in Applied Mathematics July 2-6, 2018

Institute of Mathematics, National Academy of Sciences
Minsk, Belarus
linear equation

general observations

$$
\mathrm{A} x=f
$$

general observations

$$
A x=f
$$

general theory

- solution theory
- Friedrichs/Poincaré estimates and constants
- Helmholtz/Hodge/Weyl decompositions
- compact embeddings
- continuous and compact inverse operators
- closed ranges
- variational formulations
- functional a posteriori error estimates
- generalized div-curl-lemma
- ...
idea: solve problem with general and simple linear functional analysis
\Rightarrow functional analysis toolbox (fa-toolbox) ...

general observations

A : $D(A) \subset H_{0} \rightarrow H_{1}$ linear, H_{0}, H_{1} Hilbert spaces (for simplicity) solve and provide tools

$$
\mathrm{A} x=f
$$

examples

$\mathrm{A} \in \mathbb{R}^{m \times n}$	(matrix eq)
$\mathrm{A}=\partial_{t}-\square^{\text {d }}$	(so heat/diffusion eq)
$\mathrm{A}=\partial_{t}^{2}-\stackrel{\square}{\square}$	(so wave eq)
$\mathrm{A}=-\stackrel{\text { d }}{ }-\omega^{2}$	(so red wave/Helmholtz eq)
$\mathrm{A}=-{ }^{\text {a }}$	(so Laplace eq)

right hand sides and solutions (typically)

-	$f \in \mathbb{R}^{m}$
-	$x \in \mathbb{R}^{n}$
-	$f \in \mathrm{~L}^{2}(I \times \Omega)$
or in (closed) subspaces $R(\mathrm{~A})$	$x \in \mathrm{~L}^{2}(I) \times \dot{\mathrm{H}}^{1}(\Omega)$
(here $\left.\mathrm{H}^{1}(\Omega)=\mathrm{H}_{0}^{1}(\Omega)\right)$	

general observations

A: $D(A) \subset \mathrm{H}_{0} \rightarrow \mathrm{H}_{1}$ linear, $\mathrm{H}_{0}, \mathrm{H}_{1}$ Hilbert spaces (for simplicity)
solve and provide tools

$$
A x=f
$$

examples

- $\quad \mathrm{A}=\partial_{t}^{2}-\stackrel{\Delta}{\Delta}=\partial_{t}^{2}-\operatorname{div} \stackrel{\circ}{\nabla} \quad$ (so wave eq)
- $A=\partial_{t}-\left[\begin{array}{cc}0 & \text { div } \\ \nabla & 0\end{array}\right] \quad$ (fo wave eq, pref form, acoustics)
- $A=\left[\begin{array}{cc}0 & \text { div } \\ \stackrel{\circ}{\nabla} & 0\end{array}\right]-\omega \quad$ (fo red wave/Helmholtz eq, time-harm acoustics)
right hand sides and solutions (typically)
- $f \in \mathrm{~L}^{2}(I \times \Omega) \quad x \in \mathrm{~L}^{2}(I) \times \dot{\mathrm{H}}^{1}(\Omega)$
- $f \in \mathrm{~L}^{2}(I \times \Omega) \times \mathrm{L}^{2}(I \times \Omega) \quad x \in\left(\mathrm{~L}^{2}(I) \times \mathrm{H}^{1}(\Omega)\right) \times\left(\mathrm{L}^{2}(I) \times \mathrm{D}(\Omega)\right)$
- $f \in \mathrm{~L}^{2}(\Omega) \times \mathrm{L}^{2}(\Omega) \quad x \in \dot{H}^{1}(\Omega) \times \mathrm{D}(\Omega)$
or in (closed) subspaces $R(\mathrm{~A})$
(here $\mathrm{D}(\Omega)=\mathrm{H}(\operatorname{div}, \Omega))$

general observations

A : $D(A) \subset H_{0} \rightarrow H_{1}$ linear, H_{0}, H_{1} Hilbert spaces (for simplicity) solve and provide tools
examples

$$
\mathrm{A} x=f
$$

- $\mathrm{A}=\partial_{t}^{2}+$ rot root (so Maxwell/wave eq)
- $A=\partial_{t}-\left[\begin{array}{cc}0 & -r o t \\ \text { rot } & 0\end{array}\right] \quad$ (fo Maxwell/wave eq, pref form)
- $A=\left[\begin{array}{cc}0 & - \text { rot } \\ \text { rot } & 0\end{array}\right]-\omega \quad$ (fo time-harm Maxwell eq)
- $A=\left[\begin{array}{cc}0 & -r o t \\ \text { ro̊t } & 0\end{array}\right] \quad$ (fo stat Maxwell eq) \Rightarrow ro̊t - div / rot -div sys
- $\mathbf{A}=\partial_{t}+$ rot root (so eddy current Maxwell eq)
- A $=$ rot ro̊ $-\omega \quad$ (so time-harm eddy current Maxwell eq)
right hand sides and solutions (typically)
- $\quad f \in \mathrm{~L}^{2}(I \times \Omega)$

$$
\text { - } \quad f \in \mathrm{~L}^{2}(I \times \Omega) \times \mathrm{L}^{2}(I \times \Omega)
$$

$$
\text { - } \quad f \in \mathrm{~L}^{2}(\Omega) \times \mathrm{L}^{2}(\Omega)
$$

$$
\begin{aligned}
& \quad x \in \mathrm{~L}^{2}(I) \times \dot{R}(\Omega) \\
& \quad x \in\left(\mathrm{~L}^{2}(I) \times \dot{R}(\Omega)\right) \times\left(\mathrm{L}^{2}(I) \times \mathrm{R}(\Omega)\right) \\
& \quad x \in \dot{R}(\Omega) \times \mathrm{R}(\Omega)
\end{aligned}
$$

or in (closed) subspaces $R(\mathrm{~A})$

general observations

so far all equations form the classical de Rham complex in 3D (∇-rot-div-complex)
($\Omega \subset \mathbb{R}^{3}$ bounded weak Lipschitz domain)
electro-magneto dynamics/time-harm/statics, Maxwell's equations, acoustics
complex: $\quad \operatorname{rot} \nabla=0 \quad \operatorname{div} r o t=0$

general observations

other possible complexes:
elasticity complex in 3D (sym ∇-Rot $\operatorname{Rot}_{\mathbb{S}}^{\top}$ - $\operatorname{Div}_{\mathbb{S}}$-complex)
($\Omega \subset \mathbb{R}^{3}$ bounded strong Lipschitz domain)
elasticity, Rot Rot ${ }^{\perp}$ Rot Rot ${ }^{\perp}$ eq
$\{0\} \underset{\pi_{\{0\}}}{\stackrel{\iota_{\{0\}}}{\rightleftarrows}} \mathrm{L}^{2}(\Omega) \underset{-\operatorname{Div}_{\mathbb{S}}}{\stackrel{\operatorname{sym}}{\rightleftarrows} \nabla} \mathrm{L}_{\mathbb{S}}^{2}(\Omega) \underset{\operatorname{Rot}^{\left(\operatorname{Rot}_{\mathbb{S}}^{\top}\right.}}{\stackrel{\operatorname{Rot}^{\circ} \operatorname{Rot}_{\mathbb{S}}^{\top}}{\rightleftarrows}} \mathrm{L}_{\mathbb{S}}^{2}(\Omega) \underset{-\operatorname{sym} \nabla}{\stackrel{\operatorname{Div}_{\mathbb{S}}}{\rightleftarrows}} \mathrm{L}^{2}(\Omega) \underset{\iota_{\mathrm{RM}}}{\stackrel{\pi_{\mathrm{RM}}}{\rightleftarrows}} \mathrm{RM}$
complex: $\quad \operatorname{Rot}_{\operatorname{Rot}_{\mathbb{S}}}^{\top} \operatorname{sym} \nabla=0 \quad \operatorname{Div}_{\mathbb{S}} \operatorname{Rot} \operatorname{Rot}_{\mathbb{S}}^{\top}=0$

general observations

other possible complexes:
biharmonic / general relativity complex in $3 \mathrm{D}\left(\nabla \nabla-\right.$ Rot $_{\mathbb{S}}-$ Div $_{\mathbb{T}}$-complex)
($\Omega \subset \mathbb{R}^{3}$ bounded strong Lipschitz domain)
biharmonic / general relativity

complex: $\quad \operatorname{Rot}_{\mathbb{S}} \nabla \nabla=0 \quad \operatorname{Div}_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}}=0$

general observations

$\mathrm{H}_{0}, \mathrm{H}_{1}, \mathrm{H}_{2}$ Hilbert spaces (for simplicity)
$\mathrm{A}_{0}: D\left(\mathrm{~A}_{0}\right) \subset \mathrm{H}_{0} \rightarrow \mathrm{H}_{1}$ Iddc (lin, den def, cl)
$\mathrm{A}_{1}: D\left(\mathrm{~A}_{1}\right) \subset \mathrm{H}_{1} \rightarrow \mathrm{H}_{2}$ Iddc
$\mathrm{A}_{0}^{*}: D\left(\mathrm{~A}_{0}^{*}\right) \subset \mathrm{H}_{1} \rightarrow \mathrm{H}_{0}$ Iddc (Hilbert space adjoint)
$\mathrm{A}_{1}^{*}: D\left(\mathrm{~A}_{1}^{*}\right) \subset \mathrm{H}_{2} \rightarrow \mathrm{H}_{1}$ Iddc (Hilbert space adjoint)
general complex

$$
\cdots \quad \underset{\cdots}{\underset{\sim}{m}} \mathrm{H}_{0} \underset{A_{0}^{*}}{\stackrel{A_{0}}{\rightleftarrows}} \mathrm{H}_{1} \underset{A_{1}^{*}}{\stackrel{A_{1}}{\rightleftarrows}} \mathrm{H}_{2} \underset{\cdots}{\underset{\cdots}{\rightleftarrows}} \quad \cdots
$$

complex:

$$
\mathrm{A}_{1} \mathrm{~A}_{0}=0 \quad\left(\Leftrightarrow \quad \mathrm{~A}_{0}^{*} \mathrm{~A}_{1}^{*}=0\right)
$$

more precisely: $\quad R\left(\mathrm{~A}_{0}\right) \subset N\left(\mathrm{~A}_{1}\right) \quad\left(\Leftrightarrow \quad R\left(\mathrm{~A}_{1}^{*}\right) \subset N\left(\mathrm{~A}_{0}^{*}\right)\right)$

general observations

$\mathrm{A}_{0}: D\left(\mathrm{~A}_{0}\right) \subset \mathrm{H}_{0} \rightarrow \mathrm{H}_{1}, \mathrm{~A}_{1}: D\left(\mathrm{~A}_{1}\right) \subset \mathrm{H}_{1} \rightarrow \mathrm{H}_{2}$ Iddc $\mathrm{A}_{0}^{*}: D\left(\mathrm{~A}_{0}^{*}\right) \subset \mathrm{H}_{1} \rightarrow \mathrm{H}_{0}, \mathrm{~A}_{1}^{*}: D\left(\mathrm{~A}_{1}^{*}\right) \subset \mathrm{H}_{2} \rightarrow \mathrm{H}_{1}$ Iddc (Hilbert space adjoints) general complex $\left(\mathrm{A}_{1} \mathrm{~A}_{0}=0\right)$

$$
\cdots \quad \underset{\cdots}{\underset{\sim}{\rightleftarrows}} \mathrm{H}_{0} \underset{A_{0}^{*}}{\stackrel{A_{0}}{\rightleftarrows}} \mathrm{H}_{1} \underset{A_{1}^{*}}{\stackrel{A_{1}}{\rightleftarrows}} \mathrm{H}_{2} \underset{\cdots}{\underset{A_{2}}{\rightleftarrows}} \quad \cdots
$$

$$
\mathrm{A} x=f
$$

typical equations/systems

$$
\begin{array}{llll}
\text { (stat fos) } & \text { (stat sos (sa)) } & \text { (stat fos (sa/ssa)) } & \text { (time-harm fos (sa/ssa)) } \\
A=A_{1} & A=A_{1}^{*} A_{1} & A=\left[\begin{array}{cc}
0 & \pm A_{1}^{*} \\
A_{1} & 0
\end{array}\right] & A=\omega-\left[\begin{array}{cc}
0 & \pm A_{1}^{*} \\
A_{1} & 0
\end{array}\right]
\end{array}
$$

(diff sos)
(wave sos)
(wave fos)
$\mathrm{A}=\partial_{t}+\mathrm{A}_{1}^{*} \mathrm{~A}_{1} \quad \mathrm{~A}=\partial_{t}^{2}+\mathrm{A}_{1}^{*} \mathrm{~A}_{1}$
$A=\partial_{t}-\left[\begin{array}{cc}0 & -A_{1}^{*} \\ \mathrm{~A}_{1} & 0\end{array}\right]$

general observations

$$
A x=f
$$

let's say $A: D(A) \subset H_{0} \rightarrow H_{1}$ linear and H_{0}, H_{1} Hilbert spaces
question: How to solve?

general observations

$$
A x=f
$$

$\mathrm{A}: D(\mathrm{~A}) \subset \mathrm{H}_{0} \rightarrow \mathrm{H}_{1}$ linear
solution theory in the sense of Hadamard

- existence $\quad \Leftrightarrow \quad f \in R(\mathrm{~A})$
- uniqueness $\Leftrightarrow A$ inj $\quad \Leftrightarrow N(A)=\{0\} \quad \Leftrightarrow \quad A^{-1}$ exists
- cont dep on $f \quad \Leftrightarrow \quad \mathrm{~A}^{-1}$ cont
$\Rightarrow \quad x=\mathrm{A}^{-1} f \in D(\mathrm{~A})$ and cont estimate (Friedrichs/Poincaré type estimate)

$$
|x|_{\mathrm{H}_{0}}=\left|\mathrm{A}^{-1} f\right|_{\mathrm{H}_{0}} \leq c_{\mathrm{A}}|f|_{\mathrm{H}_{1}}=c_{\mathrm{A}}|\mathrm{~A} x|_{\mathrm{H}_{1}}
$$

$$
\Rightarrow \quad \text { best constant } \quad c_{\mathrm{A}}=\left|\mathrm{A}^{-1}\right|_{R(\mathrm{~A}), \mathrm{H}_{0}} \quad\left|\mathrm{~A}^{-1}\right|_{R(\mathrm{~A}), D(\mathrm{~A})}=\left(c_{\mathrm{A}}^{2}+1\right)^{1 / 2}
$$

general observations

$\mathrm{A}: D(\mathrm{~A}) \subset \mathrm{H}_{0} \rightarrow \mathrm{H}_{1}$
$\mathrm{A}^{*}: D\left(\mathrm{~A}^{*}\right) \subset \mathrm{H}_{1} \rightarrow \mathrm{H}_{0}$ Hilbert space adjoint
Helmholtz/Hodge/Weyl decompositions (projection theorem)

$$
\begin{gathered}
\mathrm{H}_{1}=\overline{R(\mathrm{~A})} \oplus N\left(\mathrm{~A}^{*}\right) \quad \mathrm{H}_{0}=N(\mathrm{~A}) \oplus \overline{R\left(\mathrm{~A}^{*}\right)} \\
\mathrm{A} x=\mathrm{f}
\end{gathered}
$$

solution theory in the sense of Hadamard

- existence $\quad \Leftrightarrow \quad f \in R(\mathrm{~A})=N\left(\mathrm{~A}^{*}\right)^{\perp}$
- uniqueness $\Leftrightarrow A$ inj $\Leftrightarrow N(A)=\{0\} \Leftrightarrow A^{-1}$ exists
- cont dep on $f \quad \Leftrightarrow \mathrm{~A}^{-1}$ cont $\Leftrightarrow R(\mathrm{~A}) \mathrm{cl} \quad$ (cl range theo)
fund range cond:

$$
R(\mathrm{~A})=\overline{R(\mathrm{~A})} \text { closed } \quad \text { (must hold } \leadsto \text { right setting! })
$$

kernel cond:

$$
N(\mathrm{~A})=\{0\}
$$

(fails in gen \leadsto proj onto $N(\mathrm{~A})^{\perp}=\overline{R\left(\mathrm{~A}^{*}\right)}$)

general observations

Helmholtz/Hodge/Weyl decompositions (projection theorem)

$$
\mathrm{H}_{1}=\overline{R(\mathrm{~A})} \oplus N\left(\mathrm{~A}^{*}\right) \quad \mathrm{H}_{0}=N(\mathrm{~A}) \oplus \overline{R\left(\mathrm{~A}^{*}\right)}
$$

remarkable observations

- time-dependent problems are simple in gen $\quad \mathrm{A}: D(\mathrm{~A}) \subset \mathrm{H} \rightarrow \mathrm{H}, \quad \mathrm{A}=\partial_{t}+\mathrm{T} \quad$ (gen T skew-sa, or alt Isast $\operatorname{Re} \mathrm{T} \geq 0$)

$$
N(\mathrm{~A})=\{0\} \quad N\left(\mathrm{~A}^{*}\right)=\{0\} \quad R(\mathrm{~A})(\mathrm{cl})=N\left(\mathrm{~A}^{*}\right)^{\perp}=\mathrm{H}
$$

- time-harmonic problems are more complicated in gen $\mathrm{A}: D(\mathrm{~A}) \subset \mathrm{H} \rightarrow \mathrm{H}, \quad \mathrm{A}=-\omega+\mathrm{T}$

$$
N(\mathrm{~A}), N\left(\mathrm{~A}^{*}\right)(\text { fin } \operatorname{dim}) \quad R(\mathrm{~A})(\mathrm{cl}, \text { fin co-dim })=N\left(\mathrm{~A}^{*}\right)^{\perp}
$$

(Fredholm alternative)

- stat problems are most complicated
in gen $A: D(A) \subset H_{0} \rightarrow H_{1}$

$$
\operatorname{dim} N(\mathrm{~A})=\operatorname{dim} N\left(\mathrm{~A}^{*}\right)=\infty(\text { possibly }) \quad R(\mathrm{~A})(\mathrm{cl}, \text { infin co-dim })=N\left(\mathrm{~A}^{*}\right)^{\perp}
$$

fa-toolbox for linear (first order) problems/systems

$$
\mathrm{A} x=f
$$

general theory

- solution theory
- Friedrichs/Poincaré estimates and constants
- Helmholtz/Hodge/Weyl decompositions
- compact embeddings
- continuous and compact inverse operators
- closed ranges
- variational formulations
- functional a posteriori error estimates
- generalized div-curl-lemma
- . . .
idea: solve problem with general and simple linear functional analysis (\Rightarrow fa-toolbox) ...
literature: probably very well known for ages, but hard to find ...
Friedrichs, Weyl, Hörmander, Fredholm, von Neumann, Riesz, Banach, ... ?
Why not rediscover and extend/modify for our purposes?

1st fundamental observations

$\mathrm{A}: D(\mathrm{~A}) \subset \mathrm{H}_{0} \rightarrow \mathrm{H}_{1}$ Iddc, $\mathrm{A}^{*}: D\left(\mathrm{~A}^{*}\right) \subset \mathrm{H}_{1} \rightarrow \mathrm{H}_{0}$ Hilbert space adjoint ($\mathrm{A}, \mathrm{A}^{*}$) dual pair as $\left(\mathrm{A}^{*}\right)^{*}=\overline{\mathrm{A}}=\mathrm{A}$

A, A* may not be inj
Helmholtz/Hodge/Weyl decompositions (projection theorem)

$$
\mathrm{H}_{1}=N\left(\mathrm{~A}^{*}\right) \oplus \overline{R(\mathrm{~A})} \quad \mathrm{H}_{0}=N(\mathrm{~A}) \oplus \overline{R\left(\mathrm{~A}^{*}\right)}
$$

reduced operators restr to $N(\mathrm{~A})^{\perp}$ and $N\left(\mathrm{~A}^{*}\right)^{\perp}$

$$
\mathcal{A}:=\left.\mathrm{A}\right|_{N(\mathrm{~A})^{\perp}}=\left.\mathrm{A}\right|_{\overline{R\left(\mathrm{~A}^{*}\right)}} \quad \mathcal{A}^{*}:=\left.\mathrm{A}^{*}\right|_{N\left(\mathrm{~A}^{*}\right)^{\perp}}=\left.\mathrm{A}^{*}\right|_{R(\mathrm{~A})}
$$

$\mathcal{A}, \mathcal{A}^{*} \mathrm{inj} \quad \Rightarrow \quad \mathcal{A}^{-1},\left(\mathcal{A}^{*}\right)^{-1}$ ex

1st fundamental observations

$\mathrm{A}: D(\mathrm{~A}) \subset \mathrm{H}_{0} \rightarrow \mathrm{H}_{1}, \quad \mathrm{~A}^{*}: D\left(\mathrm{~A}^{*}\right) \subset \mathrm{H}_{1} \rightarrow \mathrm{H}_{0}$ Iddc $\quad\left(\mathrm{A}, \mathrm{A}^{*}\right)$ dual pair

$$
\mathrm{H}_{1}=N\left(\mathrm{~A}^{*}\right) \oplus \overline{R(\mathrm{~A})} \quad \mathrm{H}_{0}=N(\mathrm{~A}) \oplus \overline{R\left(\mathrm{~A}^{*}\right)}
$$

more precisely

$$
\begin{aligned}
& \mathcal{A}:=\left.\mathrm{A}\right|_{\overline{R\left(\mathrm{~A}^{*}\right)}}: D(\mathcal{A}) \subset \overline{R\left(\mathrm{~A}^{*}\right)} \rightarrow \overline{R(\mathrm{~A})}, \quad D(\mathcal{A}):=D(\mathrm{~A}) \cap N(\mathrm{~A})^{\perp}=D(\mathrm{~A}) \cap \overline{R\left(\mathrm{~A}^{*}\right)} \\
& \mathcal{A}^{*}:=\left.\mathrm{A}^{*}\right|_{\overline{R(\mathrm{~A})}}: D\left(\mathcal{A}^{*}\right) \subset \overline{R(\mathrm{~A})} \rightarrow \overline{R\left(\mathrm{~A}^{*}\right)}, \quad D\left(\mathcal{A}^{*}\right):=D\left(\mathrm{~A}^{*}\right) \cap N\left(\mathrm{~A}^{*}\right)^{\perp}=D\left(\mathrm{~A}^{*}\right) \cap \overline{R(\mathrm{~A})}
\end{aligned}
$$

$\left(\mathcal{A}, \mathcal{A}^{*}\right)$ dual pair and $\mathcal{A}, \mathcal{A}^{*} \operatorname{inj} \Rightarrow$
inverse ops exist (and bij)

$$
\mathcal{A}^{-1}: R(\mathrm{~A}) \rightarrow D(\mathcal{A}) \quad\left(\mathcal{A}^{*}\right)^{-1}: R\left(\mathrm{~A}^{*}\right) \rightarrow D\left(\mathcal{A}^{*}\right)
$$

refined decompositions

$$
D(\mathrm{~A})=N(\mathrm{~A}) \oplus D(\mathcal{A}) \quad D\left(\mathrm{~A}^{*}\right)=N\left(\mathrm{~A}^{*}\right) \oplus D\left(\mathcal{A}^{*}\right)
$$

\Rightarrow

$$
R(\mathrm{~A})=R(\mathcal{A}) \quad R\left(\mathrm{~A}^{*}\right)=R\left(\mathcal{A}^{*}\right)
$$

1st fundamental observations

closed range theorem \& closed graph theorem \Rightarrow

Lemma (Friedrichs-Poincaré type est/cl range/cont inv)

The following assertions are equivalent:
(i) $\exists c_{\mathrm{A}} \in(0, \infty) \quad \forall x \in D(\mathcal{A}) \quad|x|_{\mathrm{H}_{0}} \leq c_{\mathrm{A}}|\mathrm{A} x|_{\mathrm{H}_{1}}$
(i*) $\exists c_{\mathrm{A}^{*}} \in(0, \infty) \quad \forall y \in D\left(\mathcal{A}^{*}\right) \quad|y|_{\mathrm{H}_{1}} \leq c_{\mathrm{A}^{*}}\left|\mathrm{~A}^{*} y\right|_{\mathrm{H}_{0}}$
(ii) $R(\mathrm{~A})=R(\mathcal{A})$ is closed in H_{1}.
(ii*) $R\left(\mathrm{~A}^{*}\right)=R\left(\mathcal{A}^{*}\right)$ is closed in H_{0}.
(iii) $\mathcal{A}^{-1}: R(\mathrm{~A}) \rightarrow D(\mathcal{A})$ is continuous and bijective.
(iii*) $\left(\mathcal{A}^{*}\right)^{-1}: R\left(\mathrm{~A}^{*}\right) \rightarrow D\left(\mathcal{A}^{*}\right)$ is continuous and bijective.
In case that one of the latter assertions is true, e.g., (ii), $R(\mathrm{~A})$ is closed, we have

$$
\begin{aligned}
\mathrm{H}_{0} & =N(\mathrm{~A}) \oplus R\left(\mathrm{~A}^{*}\right) & \mathrm{H}_{1} & =N\left(\mathrm{~A}^{*}\right) \oplus R(\mathrm{~A}) \\
D(\mathrm{~A}) & =N(\mathrm{~A}) \oplus D(\mathcal{A}) & D\left(\mathrm{~A}^{*}\right) & =N\left(\mathrm{~A}^{*}\right) \oplus D\left(\mathcal{A}^{*}\right) \\
D(\mathcal{A}) & =D(\mathrm{~A}) \cap R\left(\mathrm{~A}^{*}\right) & D\left(\mathcal{A}^{*}\right) & =D\left(\mathrm{~A}^{*}\right) \cap R(\mathrm{~A})
\end{aligned}
$$

and $\mathcal{A}: D(\mathcal{A}) \subset R\left(\mathrm{~A}^{*}\right) \rightarrow R(\mathrm{~A}), \quad \mathcal{A}^{*}: D\left(\mathcal{A}^{*}\right) \subset R(\mathrm{~A}) \rightarrow R\left(\mathrm{~A}^{*}\right)$.

1st fundamental observations
recall
(i) $\exists c_{\mathrm{A}} \in(0, \infty) \quad \forall x \in D(\mathcal{A}) \quad|x|_{\mathrm{H}_{0}} \leq c_{\mathrm{A}}|\mathrm{A} x|_{\mathrm{H}_{1}}$
(i*) $\exists c_{\mathrm{A}^{*}} \in(0, \infty) \quad \forall y \in D\left(\mathcal{A}^{*}\right) \quad|y|_{\mathrm{H}_{1}} \leq c_{\mathrm{A}^{*}}\left|\mathrm{~A}^{*} y\right|_{\mathrm{H}_{0}}$
'best' consts in (i) and (i*) equal norms of the invops and Rayleigh quotients

$$
\begin{aligned}
c_{\mathrm{A}} & =\left|\mathcal{A}^{-1}\right|_{R(\mathrm{~A}), R\left(\mathrm{~A}^{*}\right)} & c_{\mathrm{A}^{*}} & =\left|\left(\mathcal{A}^{*}\right)^{-1}\right|_{R\left(\mathrm{~A}^{*}\right), R(\mathrm{~A})} \\
\frac{1}{c_{\mathrm{A}}} & =\inf _{0 \neq x \in D(\mathcal{A})} \frac{|\mathrm{A} x|_{\mathrm{H}_{1}}}{|x|_{\mathrm{H}_{0}}} & \frac{1}{c_{\mathrm{A}^{*}}} & =\inf _{0 \neq y \in D\left(\mathcal{A}^{*}\right)} \frac{\left|\mathrm{A}^{*} y\right|_{\mathrm{H}_{0}}}{|y|_{\mathrm{H}_{1}}}
\end{aligned}
$$

Lemma (Friedrichs-Poincaré type const)

$$
c_{\mathrm{A}}=c_{\mathrm{A}}{ }^{*}
$$

1st fundamental observations

Lemma (cpt emb/cpt inv)

The following assertions are equivalent:
(i) $D(\mathcal{A}) \leftrightarrow \mathrm{H}_{0}$ is compact.
(i*) $D\left(\mathcal{A}^{*}\right) \leftrightarrow \mathrm{H}_{1}$ is compact.
(ii) $\mathcal{A}^{-1}: R(\mathrm{~A}) \rightarrow R\left(\mathrm{~A}^{*}\right)$ is compact.
(ii*) $\left(\mathcal{A}^{*}\right)^{-1}: R\left(\mathrm{~A}^{*}\right) \rightarrow R(\mathrm{~A})$ is compact.

Lemma (Friedrichs-Poincaré type est/cl range/cont inv)

$\Downarrow \quad D(\mathcal{A}) \leftrightarrow \mathrm{H}_{0}$ compact
(i) $\exists c_{\mathrm{A}} \in(0, \infty) \quad \forall x \in D(\mathcal{A}) \quad|x|_{\mathrm{H}_{0}} \leq c_{\mathrm{A}}|\mathrm{A} x|_{\mathrm{H}_{1}}$
(i*) $\exists c_{\mathrm{A}^{*}} \in(0, \infty) \quad \forall y \in D\left(\mathcal{A}^{*}\right) \quad|y|_{\mathrm{H}_{1}} \leq c_{\mathrm{A}^{*}}\left|\mathrm{~A}^{*} y\right|_{\mathrm{H}_{0}}$
(ii) $R(\mathrm{~A})=R(\mathcal{A})$ is closed in H_{1}.
(ii*) $R\left(\mathrm{~A}^{*}\right)=R\left(\mathcal{A}^{*}\right)$ is closed in H_{0}.
(iii) $\mathcal{A}^{-1}: R(\mathrm{~A}) \rightarrow D(\mathcal{A})$ is continuous and bijective.
(iii*) $\left(\mathcal{A}^{*}\right)^{-1}: R\left(\mathrm{~A}^{*}\right) \rightarrow D\left(\mathcal{A}^{*}\right)$ is continuous and bijective.
(i)-(iii*) equi \& the resp Helm deco hold \& $\left|\mathcal{A}^{-1}\right|=c_{\mathrm{A}}=c_{\mathrm{A}^{*}}=\left|\left(\mathcal{A}^{*}\right)^{-1}\right|$

2nd fundamental observations

So far no complex...
$\mathrm{A}_{0}: D\left(\mathrm{~A}_{0}\right) \subset \mathrm{H}_{0} \rightarrow \mathrm{H}_{1}, \quad \mathrm{~A}_{1}: D\left(\mathrm{~A}_{1}\right) \subset \mathrm{H}_{1} \rightarrow \mathrm{H}_{2}$ (Iddc)
$\mathrm{A}_{0}^{*}: D\left(\mathrm{~A}_{0}^{*}\right) \subset \mathrm{H}_{1} \rightarrow \mathrm{H}_{0}, \quad \mathrm{~A}_{1}^{*}: D\left(\mathrm{~A}_{1}^{*}\right) \subset \mathrm{H}_{2} \rightarrow \mathrm{H}_{1}$ (Iddc)
general complex $\left(\mathrm{A}_{1} \mathrm{~A}_{0}=0\right.$, i.e., $\quad R\left(\mathrm{~A}_{0}\right) \subset N\left(\mathrm{~A}_{1}\right)$ and $\left.R\left(\mathrm{~A}_{1}^{*}\right) \subset N\left(\mathrm{~A}_{0}^{*}\right)\right)$

$$
\cdots \underset{\cdots}{\underset{\cdots}{\rightleftarrows}} H_{0} \underset{A_{0}^{*}}{\stackrel{A_{0}}{\rightleftarrows}} H_{1} \underset{A_{1}^{*}}{\stackrel{A_{1}}{\rightleftarrows}} H_{2} \underset{\cdots}{\underset{\cdots}{\rightleftarrows}} \quad \cdots
$$

recall Helmholtz deco

$$
\mathrm{H}_{1}=\overline{R\left(\mathrm{~A}_{0}\right)} \oplus N\left(\mathrm{~A}_{0}^{*}\right)
$$

$$
\begin{aligned}
& \cap \\
&= N\left(\mathrm{~A}_{1}\right) \oplus \\
& \overline{R\left(\mathrm{~A}_{1}^{*}\right)}
\end{aligned} \quad \text { (e.g.) } N\left(\mathrm{~A}_{1}\right)=\overline{R\left(\mathrm{~A}_{0}\right)} \oplus(\underbrace{N\left(\mathrm{~A}_{1}\right) \cap N\left(\mathrm{~A}_{0}^{*}\right)}_{=: K_{1}})
$$

\Rightarrow refined Helmholtz deco

$$
\mathrm{H}_{1}=\overline{R\left(\mathrm{~A}_{0}\right)} \oplus K_{1} \oplus \overline{R\left(\mathrm{~A}_{1}^{*}\right)}
$$

2nd fundamental observations

recall

$$
\begin{array}{lll}
D\left(\mathrm{~A}_{1}\right)=D\left(\mathcal{A}_{1}\right) \cap \overline{R\left(\mathrm{~A}_{1}^{*}\right)} & R\left(\mathrm{~A}_{1}\right)=R\left(\mathcal{A}_{1}\right) & R\left(\mathrm{~A}_{1}^{*}\right)=R\left(\mathcal{A}_{1}^{*}\right) \\
D\left(\mathrm{~A}_{0}^{*}\right)=D\left(\mathcal{A}_{0}^{*}\right) \cap \overline{R\left(\mathrm{~A}_{0}\right)} & R\left(\mathrm{~A}_{0}^{*}\right)=R\left(\mathcal{A}_{0}^{*}\right) & R\left(\mathrm{~A}_{0}\right)=R\left(\mathcal{A}_{0}\right)
\end{array}
$$

cohomology group $K_{1}=N\left(\mathrm{~A}_{1}\right) \cap N\left(\mathrm{~A}_{0}^{*}\right)$

Lemma (Helmholtz deco I)

$$
\begin{array}{rlrl}
\mathrm{H}_{1} & =\overline{R\left(\mathrm{~A}_{0}\right)} \oplus N\left(\mathrm{~A}_{0}^{*}\right) & \mathrm{H}_{1} & =\overline{R\left(\mathrm{~A}_{1}^{*}\right)} \oplus N\left(\mathrm{~A}_{1}\right) \\
D\left(\mathrm{~A}_{0}^{*}\right) & =D\left(\mathcal{A}_{0}^{*}\right) \oplus N\left(\mathrm{~A}_{0}^{*}\right) & D\left(\mathrm{~A}_{1}\right) & =D\left(\mathcal{A}_{1}\right) \oplus N\left(\mathrm{~A}_{1}\right) \\
N\left(\mathrm{~A}_{1}\right) & =D\left(\mathcal{A}_{0}^{*}\right) \oplus K_{1} & N\left(\mathrm{~A}_{0}^{*}\right) & =D\left(\mathcal{A}_{1}\right) \oplus K_{1} \\
D\left(\mathrm{~A}_{1}\right) & =\overline{R\left(\mathrm{~A}_{0}\right)} \oplus\left(D\left(\mathrm{~A}_{1}\right) \cap N\left(\mathrm{~A}_{0}^{*}\right)\right) & D\left(\mathrm{~A}_{0}^{*}\right) & =\overline{R\left(\mathrm{~A}_{1}^{*}\right)} \oplus\left(D\left(\mathrm{~A}_{0}^{*}\right) \cap N\left(\mathrm{~A}_{1}\right)\right)
\end{array}
$$

Lemma (Helmholtz deco II)

$$
\begin{aligned}
\mathrm{H}_{1} & =\overline{R\left(\mathrm{~A}_{0}\right)} \oplus K_{1} \oplus \overline{R\left(\mathrm{~A}_{1}^{*}\right)} \\
D\left(\mathrm{~A}_{1}\right) & =\overline{R\left(\mathrm{~A}_{0}\right)} \oplus K_{1} \oplus D\left(\mathcal{A}_{1}\right) \\
D\left(\mathrm{~A}_{0}^{*}\right) & =D\left(\mathcal{A}_{0}^{*}\right) \oplus K_{1} \oplus \overline{R\left(\mathrm{~A}_{1}^{*}\right)} \\
D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) & =D\left(\mathcal{A}_{0}^{*}\right) \oplus K_{1} \oplus D\left(\mathcal{A}_{1}\right)
\end{aligned}
$$

2nd fundamental observations

$K_{1}=N\left(\mathrm{~A}_{1}\right) \cap N\left(\mathrm{~A}_{0}^{*}\right) \quad D\left(\mathrm{~A}_{1}\right)=D\left(\mathcal{A}_{1}\right) \cap \overline{R\left(\mathrm{~A}_{1}^{*}\right)} \quad D\left(\mathrm{~A}_{0}^{*}\right)=D\left(\mathcal{A}_{0}^{*}\right) \cap \overline{R\left(\mathrm{~A}_{0}\right)}$

Lemma (cpt emb II)

The following assertions are equivalent:
(i) $D\left(\mathcal{A}_{0}\right) \hookrightarrow \mathrm{H}_{0}, \quad D\left(\mathcal{A}_{1}\right) \leftrightarrow \mathrm{H}_{1}, \quad$ and $\quad K_{1} \hookrightarrow \mathrm{H}_{1} \quad$ are compact.
(ii) $D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \leftrightarrow \mathrm{H}_{1} \quad$ is compact.

In this case $K_{1}<\infty$.

Theorem (fa-toolbox I)

$\Downarrow \quad D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \leftrightarrow \mathrm{H}_{1}$ compact
(i) all emb cpt, i.e., $D\left(\mathcal{A}_{0}\right) \hookrightarrow \mathrm{H}_{0}, D\left(\mathcal{A}_{1}\right) \hookrightarrow \mathrm{H}_{1}, D\left(\mathcal{A}_{0}^{*}\right) \hookrightarrow \mathrm{H}_{1}, D\left(\mathcal{A}_{1}^{*}\right) \hookrightarrow \mathrm{H}_{2} c p t$
(ii) cohomology group K_{1} finite dim
(iii) all ranges closed, i.e., $\quad R\left(\mathrm{~A}_{0}\right), \quad R\left(\mathrm{~A}_{0}^{*}\right), \quad R\left(\mathrm{~A}_{1}\right), \quad R\left(\mathrm{~A}_{1}^{*}\right) \mathrm{cl}$
(iv) all Friedrichs-Poincaré type est hold
(v) all Hodge-Helmholtz-Weyl type deco I \& II hold with closed ranges

2nd fundamental observations

complex $\quad \cdots \underset{\cdots}{\dddot{\cdots}} \mathrm{H}_{0} \underset{A_{0}^{*}}{\stackrel{A_{0}}{\rightleftarrows}} \mathrm{H}_{1} \underset{A_{1}^{*}}{\stackrel{A_{1}}{\rightleftarrows}} \mathrm{H}_{2} \underset{\cdots}{\dddot{\longrightarrow}} \underset{ }{\rightleftarrows}$

Theorem (fa-toolbox I (Friedrichs-Poincaré type est))

$\Downarrow \quad D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \leftrightarrow \mathrm{H}_{1}$ compact $\quad \Rightarrow \quad \exists \quad\left|\mathcal{A}_{i}^{-1}\right|=c_{\mathrm{A}_{i}}=c_{\mathrm{A}_{i}^{*}}=\left|\left(\mathcal{A}_{i}^{*}\right)^{-1}\right| \in(0, \infty)$
(i) $\forall x \in D\left(\mathcal{A}_{0}\right)$
(i*) $\forall y \in D\left(\mathcal{A}_{0}^{*}\right)$
(ii) $\forall y \in D\left(\mathcal{A}_{1}\right)$
(ii*) $\forall z \in D\left(\mathcal{A}_{1}^{*}\right)$
(iii) $\forall y \in D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right)$
note $\pi_{K_{1}} y \in K_{1}$ and $\left(1-\pi_{K_{1}}\right) y \in K_{1}^{\perp}$

Remark

enough $R\left(\mathrm{~A}_{0}\right)$ and $R\left(\mathrm{~A}_{1}\right)$ cl

2nd fundamental observations

complex $\quad \cdots \underset{\cdots}{\dddot{\cdots}} \mathrm{H}_{0} \underset{A_{0}^{*}}{\stackrel{A_{0}}{\rightleftarrows}} \mathrm{H}_{1} \underset{A_{1}^{*}}{\stackrel{A_{1}}{\rightleftarrows}} \mathrm{H}_{2} \underset{\ldots}{\dddot{\cdots}} \quad \ldots$

Theorem (fa-toolbox I (Helmholtz deco))
$\Downarrow \quad D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \leftrightarrow \mathrm{H}_{1}$ compact

$$
\begin{array}{rlrl}
\mathrm{H}_{1} & =R\left(\mathrm{~A}_{0}\right) \oplus N\left(\mathrm{~A}_{0}^{*}\right) & \mathrm{H}_{1} & =R\left(\mathrm{~A}_{1}^{*}\right) \oplus N\left(\mathrm{~A}_{1}\right) \\
D\left(\mathrm{~A}_{0}^{*}\right)=D\left(\mathcal{A}_{0}^{*}\right) \oplus N\left(\mathrm{~A}_{0}^{*}\right) & D\left(\mathrm{~A}_{1}\right)=D\left(\mathcal{A}_{1}\right) \oplus N\left(\mathrm{~A}_{1}\right) \\
N\left(\mathrm{~A}_{1}\right)=D\left(\mathcal{A}_{0}^{*}\right) \oplus K_{1} & N\left(\mathrm{~A}_{0}^{*}\right)=D\left(\mathcal{A}_{1}\right) \oplus K_{1} \\
D\left(\mathrm{~A}_{1}\right) & =R\left(\mathrm{~A}_{0}\right) \oplus\left(D\left(\mathrm{~A}_{1}\right) \cap N\left(\mathrm{~A}_{0}^{*}\right)\right) & D\left(\mathrm{~A}_{0}^{*}\right)=R\left(\mathrm{~A}_{1}^{*}\right) \oplus\left(D\left(\mathrm{~A}_{0}^{*}\right) \cap N\left(\mathrm{~A}_{1}\right)\right) \\
\mathrm{H}_{1}=R\left(\mathrm{~A}_{0}\right) \oplus K_{1} \oplus R\left(\mathrm{~A}_{1}^{*}\right) \\
D\left(\mathrm{~A}_{1}\right)=R\left(\mathrm{~A}_{0}\right) \oplus K_{1} \oplus D\left(\mathcal{A}_{1}\right) \\
D\left(\mathrm{~A}_{0}^{*}\right)=D\left(\mathcal{A}_{0}^{*}\right) \oplus K_{1} \oplus R\left(\mathrm{~A}_{1}^{*}\right) \\
D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right)=D\left(\mathcal{A}_{0}^{*}\right) \oplus K_{1} \oplus D\left(\mathcal{A}_{1}\right)
\end{array}
$$

Remark

(stat) first order system - solution theory

find $x \in D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right)$ such that the fos

$$
\begin{aligned}
& \mathrm{A}_{1} x=f \quad(\operatorname{root} E=F) \\
& \mathrm{A}_{0}^{*} x=g \quad \text { think of } \quad(-\operatorname{div} E=g) \\
& \pi_{K_{1} x}=k \\
& \text { (} \pi_{\mathrm{D}} E=K \text {) } \\
& \text { kernel }=\text { cohomology group }=K_{1}=N\left(\mathrm{~A}_{1}\right) \cap N\left(\mathrm{~A}_{0}^{*}\right) \\
& \text { trivially necessary } \quad f \in R\left(\mathrm{~A}_{1}\right) \quad g \in R\left(\mathrm{~A}_{0}^{*}\right) \quad k \in K_{1}
\end{aligned}
$$

(stat) first order system - solution theory

complex $\quad \ldots \underset{\cdots}{\underset{\sim}{\rightleftarrows}} \mathrm{H}_{0} \underset{A_{0}^{*}}{\stackrel{A_{0}}{\rightleftarrows}} \mathrm{H}_{1} \underset{\mathrm{~A}_{1}^{*}}{\stackrel{A_{1}}{\rightleftarrows}} \mathrm{H}_{2} \underset{\cdots}{\underset{\sim}{\rightleftarrows}} \quad \cdots$
find $x \in D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right)$ st fos

$$
\mathrm{A}_{1} x=f \quad \mathrm{~A}_{0}^{*} x=g \quad \pi_{K_{1} x}=k
$$

Theorem (fa-toolbox II (solution theory))

$\Downarrow \quad D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \leftrightarrow \mathrm{H}_{1}$ compact
fos is uniq sol $\Leftrightarrow \quad f \in R\left(\mathrm{~A}_{1}\right) \quad g \in R\left(\mathrm{~A}_{0}^{*}\right) \quad k \in K_{1}$

$$
\begin{aligned}
& x:=x_{f}+x_{g}+k \in D\left(\mathcal{A}_{1}\right) \oplus D\left(\mathcal{A}_{0}^{*}\right) \oplus K_{1}=D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \\
& x_{f}:=\mathcal{A}_{1}^{-1} f \in D\left(\mathcal{A}_{1}\right) \\
& x_{g}:=\left(\mathcal{A}_{0}^{*}\right)^{-1} g \in D\left(\mathcal{A}_{0}^{*}\right)
\end{aligned}
$$

dep cont on data $|x|_{\mathrm{H}_{1}} \leq\left|x_{f}\right|_{\mathrm{H}_{1}}+\left|x_{g}\right|_{\mathrm{H}_{1}}+|k|_{\mathrm{H}_{1}} \leq c_{\mathrm{A}_{1}}|f|_{\mathrm{H}_{2}}+c_{\mathrm{A}_{0}}|g|_{\mathrm{H}_{0}}+|k|_{\mathrm{H}_{1}}$ moreover

$$
\pi_{R\left(\mathrm{~A}_{1}^{*}\right)^{*} x=x_{f}} \quad \pi_{R\left(\mathrm{~A}_{0}\right)} x=x_{g} \quad \pi_{K_{1}} x=k \quad|x|_{\mathrm{H}_{1}}^{2}=\left|x_{f}\right|_{\mathrm{H}_{1}}^{2}+\left|x_{g}\right|_{\mathrm{H}_{1}}^{2}+|k|_{\mathrm{H}_{1}}^{2}
$$

Remark

enough $R\left(\mathrm{~A}_{0}\right)$ and $R\left(\mathrm{~A}_{1}\right) \mathrm{cl}$

(stat) first order system - variational formulations

$$
\begin{aligned}
x:= & x_{f}+x_{g}+k \in D\left(\mathcal{A}_{1}\right) \oplus D\left(\mathcal{A}_{0}^{*}\right) \oplus K_{1}=D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \\
& x_{f}:=\mathcal{A}_{1}^{-1} f \in D\left(\mathcal{A}_{1}\right)=D\left(\mathrm{~A}_{1}\right) \cap R\left(\mathrm{~A}_{1}^{*}\right)=D\left(\mathrm{~A}_{1}\right) \cap N\left(\mathrm{~A}_{0}^{*}\right) \cap K_{1}^{\perp} \\
x_{g}:= & \left(\mathcal{A}_{0}^{*}\right)^{-1} g \in D\left(\mathcal{A}_{0}^{*}\right)=D\left(\mathrm{~A}_{0}^{*}\right) \cap R\left(\mathrm{~A}_{0}\right)=D\left(\mathrm{~A}_{0}^{*}\right) \cap N\left(\mathrm{~A}_{1}\right) \cap K_{1}^{\perp}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{A}_{1} x=f \\
& \mathrm{~A}_{1} x_{f}=f \\
& \mathrm{~A}_{1} \mathrm{X}_{\mathrm{g}}=0 \\
& \mathrm{~A}_{1} k=0 \\
& \mathrm{~A}_{0}^{*} x=g \\
& \mathrm{~A}_{0}^{*} x_{f}=0 \\
& \mathrm{~A}_{0}^{*} x_{g}=g \\
& \mathrm{~A}_{0}^{*} k=0 \\
& \pi_{K_{1} x}=k \\
& \pi_{K_{1} x_{f}}=0 \\
& \pi_{K_{1} x_{g}}=0 \\
& \pi_{K_{1}} k=k
\end{aligned}
$$

- option I: find x_{f} and x_{g} separately $\Rightarrow x=x_{f}+x_{g}+k$
- option II: find x directly

(stat) first order system - variational formulations I

finding

$$
x_{f}:=\mathcal{A}_{1}^{-1} f \in D\left(\mathcal{A}_{1}\right)=D\left(\mathrm{~A}_{1}\right) \cap \underbrace{R\left(\mathrm{~A}_{1}^{*}\right)}_{=R\left(\mathcal{A}_{1}^{*}\right)}=D\left(\mathrm{~A}_{1}\right) \cap N\left(\mathrm{~A}_{0}^{*}\right) \cap K_{1}^{\perp}
$$

$$
\begin{aligned}
\mathrm{A}_{1} x_{f} & =f \\
\mathrm{~A}_{0}^{*} x_{f} & =0 \\
\pi_{K_{1}} x_{f} & =0
\end{aligned}
$$

at least two options

- option la: multiply $\mathrm{A}_{1} x_{f}=f$ by $\mathrm{A}_{1} \xi \quad \Rightarrow$

$$
\forall \xi \in D\left(\mathcal{A}_{1}\right) \quad\left\langle\mathrm{A}_{1} x_{f}, \mathrm{~A}_{1} \xi\right\rangle_{\mathrm{H}_{2}}=\left\langle f, \mathrm{~A}_{1} \xi\right\rangle_{\mathrm{H}_{2}}
$$

weak form of

$$
\mathrm{A}_{1}^{*} \mathrm{~A}_{1} x_{f}=\mathrm{A}_{1}^{*} f
$$

$$
x_{f}=A_{1}^{*} y_{f} \quad \text { with potential } \quad y_{f}=\left(\mathcal{A}_{1}^{*}\right)^{-1} x_{f} \in D\left(\mathcal{A}_{1}^{*}\right)
$$

$$
x_{f} \quad \text { by } \quad A_{1}^{*} \phi \quad \Rightarrow
$$

$$
\forall \phi \in D\left(\mathcal{A}_{1}^{*}\right) \quad\left\langle\mathrm{A}_{1}^{*} y_{f}, \mathrm{~A}_{1}^{*} \phi\right\rangle_{\mathrm{H}_{1}}=\left\langle x_{f}, \mathrm{~A}_{1}^{*} \phi\right\rangle_{\mathrm{H}_{1}}=\left\langle\mathrm{A}_{1} x_{f}, \phi\right\rangle_{\mathrm{H}_{2}}=\langle f, \phi\rangle_{\mathrm{H}_{2}}
$$

weak form of $\mathrm{A}_{1 x_{f}=f}$ and $\mathrm{A}_{1} \mathrm{~A}_{1}^{*} y_{f}=f$
analogously for x_{g}

(stat) first order system - variational formulations I

Theorem

Let $D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \leftrightarrow \mathrm{H}_{1}$ be compact and let $f \in R\left(\mathrm{~A}_{1}\right)$ and $g \in R\left(\mathrm{~A}_{0}^{*}\right)$.
The part sol x_{f} and x_{g} can be found by the following 4 var form:
(i) $\exists^{1} \tilde{x}_{f} \in D\left(\mathcal{A}_{1}\right) \quad$ st $\quad \forall \xi \in D\left(\mathcal{A}_{1}\right) \quad\left\langle\mathrm{A}_{1} \tilde{x}_{f}, \mathrm{~A}_{1} \xi\right\rangle_{\mathrm{H}_{2}}=\left\langle f, \mathrm{~A}_{1} \xi\right\rangle_{\mathrm{H}_{2}}$ which even holds for all $\xi \in D\left(\mathrm{~A}_{1}\right) . \quad \Rightarrow \quad \tilde{x}_{f}=x_{f}$
(i') $\exists^{1} y_{f} \in D\left(\mathcal{A}_{1}^{*}\right) \quad$ st $\quad \forall \phi \in D\left(\mathcal{A}_{1}^{*}\right) \quad\left\langle\mathrm{A}_{1}^{*} y_{f}, \mathrm{~A}_{1}^{*} \phi\right\rangle_{\mathrm{H}_{1}}=\langle f, \phi\rangle_{\mathrm{H}_{2}}$ which even holds for all $\phi \in D\left(\mathrm{~A}_{1}^{*}\right) . \quad \Rightarrow \quad \mathrm{A}_{1}^{*} y_{f}=x_{f}$
(ii) $\exists^{1} \tilde{x}_{g} \in D\left(\mathcal{A}_{0}^{*}\right)$ st $\quad \forall \zeta \in D\left(\mathcal{A}_{0}^{*}\right) \quad\left\langle\mathrm{A}_{0}^{*} \tilde{x}_{g}, \mathrm{~A}_{0}^{*} \zeta\right\rangle_{\mathrm{H}_{0}}=\left\langle g, \mathrm{~A}_{0}^{*} \zeta\right\rangle_{\mathrm{H}_{0}}$ which even holds for all $\zeta \in D\left(A_{0}^{*}\right) . \quad \Rightarrow \quad \tilde{x}_{g}=x_{g}$
(ii') $\exists^{1} z_{g} \in D\left(\mathcal{A}_{0}\right) \quad$ st $\quad \forall \varphi \in D\left(\mathcal{A}_{0}\right) \quad\left\langle\mathrm{A}_{0} z_{g}, \mathrm{~A}_{0} \varphi\right\rangle_{\mathrm{H}_{1}}=\langle g, \varphi\rangle_{\mathrm{H}_{0}}$ which even holds for all $\varphi \in D\left(\mathrm{~A}_{0}\right) . \quad \Rightarrow \quad \mathrm{A}_{0} \mathrm{z}_{g}=x_{g}$
(stat) first order system - variational formulations I
e.g. $\exists^{1} \tilde{x}_{f} \in D\left(\mathcal{A}_{1}\right) \quad$ st $\quad \forall \xi \in D\left(\mathrm{~A}_{1}\right) \quad\left\langle\mathrm{A}_{1} \tilde{x}_{f}, \mathrm{~A}_{1} \xi\right\rangle_{\mathrm{H}_{2}}=\left\langle f, \mathrm{~A}_{1} \xi\right\rangle_{\mathrm{H}_{2}} \quad \Rightarrow \quad \tilde{x}_{f}=x_{f}$

Helmholtz deco \Rightarrow

$$
\begin{aligned}
\tilde{x}_{f} & \in D\left(\mathcal{A}_{1}\right)=D\left(\mathrm{~A}_{1}\right) \cap R\left(\mathrm{~A}_{1}^{*}\right)=D\left(\mathrm{~A}_{1}\right) \cap N\left(\mathrm{~A}_{1}\right)^{\perp}=D\left(\mathrm{~A}_{1}\right) \cap\left(R\left(\mathcal{A}_{0}\right) \oplus K_{1}\right)^{\perp} \\
& =D\left(\mathrm{~A}_{1}\right) \cap R\left(\mathcal{A}_{0}\right)^{\perp} \cap K_{1}^{\perp}
\end{aligned}
$$

$\Rightarrow \quad$ saddle point formulations/double (multiple) saddle point formulations
Theorem
Let $D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \leftrightarrow \mathrm{H}_{1}$ be compact and let $f \in R\left(\mathrm{~A}_{1}\right)$ and $g \in R\left(\mathrm{~A}_{0}^{*}\right)$.
The part sol x_{f} and x_{g} can be found by the following 4 var form:
(i) $\exists^{1}\left(\tilde{x}_{f}, u, h\right) \in D\left(\mathrm{~A}_{1}\right) \times D\left(\mathcal{A}_{0}\right) \times K_{1} \quad$ st $\quad \forall(\xi, \varphi, \kappa) \in D\left(\mathrm{~A}_{1}\right) \times D\left(\mathrm{~A}_{0}\right) \times K_{1}$

$$
\begin{aligned}
\left\langle\mathrm{A}_{1} \tilde{x}_{f}, \mathrm{~A}_{1} \xi\right\rangle_{\mathrm{H}_{2}}+\left\langle\mathrm{A}_{0} u, \xi\right\rangle_{\mathrm{H}_{1}}+\langle h, \xi\rangle_{\mathrm{H}_{1}} & =\left\langle f, \mathrm{~A}_{1} \xi\right\rangle_{\mathrm{H}_{2}} \\
& \begin{aligned}
\left\langle\tilde{x}_{f}, \mathrm{~A}_{0} \varphi\right\rangle_{\mathrm{H}_{1}} & =0 \\
\left.\Rightarrow \quad u=0 \quad h=0 \quad \tilde{x}_{f}, \kappa\right\rangle_{\mathrm{H}_{1}} & =0
\end{aligned}
\end{aligned}
$$

(i') analogously for y_{f}
(ii) analogously for \tilde{x}_{g}
(ii') analogously for z_{g}

(stat) first order system - variational formulations I

latter tripple saddle point formulation

$$
\begin{aligned}
& \exists^{1}\left(\tilde{x}_{f}, u, h\right) \in D\left(\mathrm{~A}_{1}\right) \times D\left(\mathcal{A}_{0}\right) \times K_{1} \quad \text { st } \quad \forall(\xi, \varphi, \kappa) \in D\left(\mathrm{~A}_{1}\right) \times D\left(\mathrm{~A}_{0}\right) \times K_{1} \\
&\left\langle\mathrm{~A}_{1} \tilde{x}_{f}, \mathrm{~A}_{1} \xi\right\rangle_{\mathrm{H}_{2}}+\left\langle\mathrm{A}_{0} u, \xi\right\rangle_{\mathrm{H}_{1}}+\langle h, \xi\rangle_{\mathrm{H}_{1}}=\left\langle f, \mathrm{~A}_{1} \xi\right\rangle_{\mathrm{H}_{2}} \\
&\left\langle\tilde{x}_{f}, \mathrm{~A}_{0} \varphi\right\rangle_{\mathrm{H}_{1}}=0 \\
&\left\langle\tilde{x}_{f}, \kappa\right\rangle_{\mathrm{H}_{1}}=0
\end{aligned}
$$

is weak formulation of

$$
\mathrm{A}_{1}^{*} \mathrm{~A}_{1} \tilde{x}_{f}+\mathrm{A}_{0} u+h=\mathrm{A}_{1}^{*} f \quad \mathrm{~A}_{0}^{*} \tilde{x}_{f}=0 \quad \pi_{K_{1}} \tilde{x}_{f}=0
$$

i.e., in formal matrix notation

$$
\left[\begin{array}{ccc}
\mathrm{A}_{1}^{*} \mathrm{~A}_{1} & \mathrm{~A}_{0} & \iota_{K_{1}} \\
\mathrm{~A}_{0}^{*} & 0 & 0 \\
\pi_{K_{1}}=\iota_{K_{1}}^{*} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\tilde{x}_{f} \\
u \\
h
\end{array}\right]=\left[\begin{array}{c}
\mathrm{A}_{1}^{*} f \\
0 \\
0
\end{array}\right]
$$

Note $u=0, \quad h=0, \quad \tilde{x}_{f}=x_{f}$
potential y_{f}

$$
\left[\begin{array}{ccc}
\mathrm{A}_{1} \mathrm{~A}_{1}^{*} & \mathrm{~A}_{2}^{*} & \iota_{K_{2}} \\
\mathrm{~A}_{2} & 0 & 0 \\
\pi_{K_{2}}=\iota_{K_{2}}^{*} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
y_{f} \\
v \\
h_{2}
\end{array}\right]=\left[\begin{array}{l}
f \\
0 \\
0
\end{array}\right]
$$

Note

$$
v=0, \quad h_{2}=0,
$$

$$
\mathrm{A}_{1}^{*} y_{f}=x_{f}
$$

(stat) first order system - variational formulations II

$$
\left[\begin{array}{ccc}
\mathrm{A}_{1}^{*} \mathrm{~A}_{1} & \mathrm{~A}_{0} & \iota \kappa_{1} \\
\mathrm{~A}_{0}^{*} & 0 & 0 \\
\pi_{K_{1}}=\iota_{K_{1}}^{*} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\tilde{x}_{f} \\
u \\
h
\end{array}\right]=\left[\begin{array}{c}
\mathrm{A}_{1}^{*} f \\
0 \\
0
\end{array}\right]
$$

Note

$$
u=0, \quad h=0,
$$

$$
\tilde{x}_{f}=x_{f}
$$

SAME formulation can be used to compute $x=x_{f}+x_{g}+k$ directly!

$$
\begin{aligned}
& \quad\left[\begin{array}{ccc}
\mathrm{A}_{1}^{*} \mathrm{~A}_{1} & \mathrm{~A}_{0} & \iota_{K_{1}} \\
\mathrm{~A}_{0}^{*} & 0 & 0 \\
\pi_{K_{1}}=\iota_{K_{1}}^{*} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\tilde{x} \\
u \\
h
\end{array}\right]=\left[\begin{array}{c}
\mathrm{A}_{1}^{*} f \\
g \\
k
\end{array}\right] \\
& \Rightarrow \quad u=0, \quad h=0, \quad \tilde{x}=x
\end{aligned}
$$

Remark

$$
\begin{array}{llllll}
\text { special case } & \mathrm{A}_{0}=\nabla \cdot \circ & \mathrm{A}_{0}^{*}=-\operatorname{div} & \text { or } & \mathrm{A}_{0}=\nabla & \mathrm{A}_{0}^{*}=-\operatorname{div} \\
& \mathrm{A}_{1}=\mathrm{ro̊} & \mathrm{~A}_{1}^{*}=\operatorname{rot} & & \mathrm{A}_{0}=\operatorname{rot} & \mathrm{A}_{0}^{*}=\mathrm{rot}
\end{array}
$$

var form recently proposed by
Alonso Rodriguez, A., Bertolazzi E., and Valli A.: The curl-div system: theory and finite element approximation, talk/preprint, 2018

(stat) first order system - variational formulations II

Theorem

Let $D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \leftrightarrow \mathrm{H}_{1}$ be compact and let $f \in R\left(\mathrm{~A}_{1}\right)$ and $g \in R\left(\mathrm{~A}_{0}^{*}\right)$. x can be found by the following 2 double saddle point var form:
(i) $\exists^{1}\left(\tilde{x}, u, h_{1}\right) \in D\left(\mathrm{~A}_{1}\right) \times D\left(\mathcal{A}_{0}\right) \times K_{1} \quad$ st $\quad \forall(\xi, \varphi, \kappa) \in D\left(\mathrm{~A}_{1}\right) \times D\left(\mathrm{~A}_{0}\right) \times K_{1}$

$$
\begin{aligned}
\left\langle\mathrm{A}_{1} \tilde{x}, \mathrm{~A}_{1} \xi\right\rangle_{\mathrm{H}_{2}}+\left\langle\mathrm{A}_{0} u, \xi\right\rangle_{\mathrm{H}_{1}}+\left\langle h_{1}, \xi\right\rangle_{\mathrm{H}_{1}} & =\left\langle f, \mathrm{~A}_{1} \xi\right\rangle_{\mathrm{H}_{2}} \\
\left\langle\tilde{x}, \mathrm{~A}_{0} \varphi\right\rangle_{\mathrm{H}_{1}} & =\langle g, \varphi\rangle_{\mathrm{H}_{0}} \\
\langle\tilde{x}, \kappa\rangle_{\mathrm{H}_{1}} & =\langle k, \kappa\rangle_{\mathrm{H}_{1}}
\end{aligned}
$$

(ii) $\exists^{1}\left(\hat{x}, v, h_{2}\right) \in D\left(\mathrm{~A}_{0}^{*}\right) \times D\left(\mathcal{A}_{1}^{*}\right) \times K_{1}$ st $\quad \forall(\zeta, \phi, \kappa) \in D\left(\mathrm{~A}_{0}^{*}\right) \times D\left(\mathrm{~A}_{1}^{*}\right) \times K_{1}$

$$
\begin{aligned}
\left\langle\mathrm{A}_{0}^{*} \hat{x}, \mathrm{~A}_{0}^{*} \zeta\right\rangle_{\mathrm{H}_{0}}+\left\langle\mathrm{A}_{1}^{*} v, \zeta\right\rangle_{\mathrm{H}_{1}}+\left\langle h_{2}, \zeta\right\rangle_{\mathrm{H}_{1}} & =\left\langle g, \mathrm{~A}_{0}^{*} \zeta\right\rangle_{\mathrm{H}_{0}} \\
\left\langle\hat{x}, \mathrm{~A}_{1}^{*} \phi\right\rangle_{\mathrm{H}_{1}} & =\langle f, \phi\rangle_{\mathrm{H}_{2}} \\
\langle\hat{x}, \kappa\rangle_{\mathrm{H}_{1}} & =\langle k, \kappa\rangle_{\mathrm{H}_{1}}
\end{aligned}
$$

(stat) first order system - variational formulations II

form matrix not

$$
\left[\begin{array}{ccc}
\mathrm{A}_{1}^{*} \mathrm{~A}_{1} & \mathrm{~A}_{0} & \iota K_{1} \\
\mathrm{~A}_{0}^{*} & 0 & 0 \\
\pi_{K_{1}}=\iota_{K_{1}}^{*} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\tilde{x} \\
u \\
h_{1}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{A}_{1}^{*} f \\
g \\
k
\end{array}\right]
$$

$\Rightarrow \quad u=0, \quad h_{1}=0, \quad \tilde{x}=x$

$$
\left[\begin{array}{ccc}
\mathrm{A}_{0} \mathrm{~A}_{0}^{*} & \mathrm{~A}_{1}^{*} & \iota K_{1} \\
\mathrm{~A}_{1} & 0 & 0 \\
\pi_{K_{1}}=\iota_{K_{1}}^{*} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\hat{x} \\
v \\
h_{2}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{A}_{0} g \\
f \\
k
\end{array}\right]
$$

$$
\Rightarrow \quad v=0, \quad h_{2}=0, \quad \hat{x}=x
$$

(stat) first order system - variational formulations II

$$
\begin{aligned}
D\left(\mathcal{A}_{0}\right) & =D\left(\mathrm{~A}_{0}\right) \cap R\left(\mathrm{~A}_{0}^{*}\right)=D\left(\mathrm{~A}_{0}\right) \cap N\left(\mathrm{~A}_{0}\right)^{\perp}=D\left(\mathrm{~A}_{0}\right) \cap\left(R\left(\mathcal{A}_{-1}\right) \oplus K_{0}\right)^{\perp} \\
& =D\left(\mathrm{~A}_{0}\right) \cap R\left(\mathcal{A}_{-1}\right)^{\perp} \cap K_{0}^{\perp} \\
D\left(\mathcal{A}_{1}^{*}\right) & =D\left(\mathrm{~A}_{1}^{*}\right) \cap R\left(\mathrm{~A}_{1}\right)=D\left(\mathrm{~A}_{1}^{*}\right) \cap N\left(\mathrm{~A}_{1}^{*}\right)^{\perp}=D\left(\mathrm{~A}_{1}^{*}\right) \cap\left(R\left(\mathcal{A}_{2}^{*}\right) \oplus K_{2}\right)^{\perp} \\
& =D\left(\mathrm{~A}_{1}^{*}\right) \cap R\left(\mathcal{A}_{2}^{*}\right)^{\perp} \cap K_{2}^{\perp}
\end{aligned}
$$

(stat) first order system - variational formulations II

$$
D\left(\mathcal{A}_{0}\right)=D\left(\mathrm{~A}_{0}\right) \cap R\left(\mathcal{A}_{-1}\right)^{\perp} \cap K_{0}^{\perp} \quad D\left(\mathcal{A}_{1}^{*}\right)=D\left(\mathrm{~A}_{1}^{*}\right) \cap R\left(\mathcal{A}_{2}^{*}\right)^{\perp} \cap K_{2}^{\perp}
$$

Theorem

Let $D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \hookrightarrow \mathrm{H}_{1}$ be compact and let $f \in R\left(\mathrm{~A}_{1}\right)$ and $g \in R\left(\mathrm{~A}_{0}^{*}\right)$. x can be found by the following quadruple saddle point var form:

$$
\begin{aligned}
& \exists^{1}\left(\tilde{x}, u, y, h_{1}, h_{0}\right) \in D\left(\mathrm{~A}_{1}\right) \times D\left(\mathrm{~A}_{0}\right) \times D\left(\mathcal{A}_{-1}\right) \times K_{1} \times K_{0} \quad s t \\
& \forall(\xi, \varphi, \vartheta, \kappa, \lambda) \in D\left(\mathrm{~A}_{1}\right) \times D\left(\mathrm{~A}_{0}\right) \times D\left(\mathrm{~A}_{-1}\right) \times K_{1} \times K_{0}
\end{aligned} \quad \begin{aligned}
&\left\langle\mathrm{A}_{1} \tilde{x}, \mathrm{~A}_{1} \xi\right\rangle_{\mathrm{H}_{2}}+\left\langle\mathrm{A}_{0} u, \xi\right\rangle_{\mathrm{H}_{1}}+\left\langle h_{1}, \xi\right\rangle_{\mathrm{H}_{1}}=\left\langle f, \mathrm{~A}_{1} \xi\right\rangle_{\mathrm{H}_{2}} \\
&\left\langle\tilde{x}, \mathrm{~A}_{0} \varphi\right\rangle_{\mathrm{H}_{1}}+\left\langle\mathrm{A}_{-1} y, \varphi\right\rangle_{\mathrm{H}_{0}}+\left\langle h_{0}, \varphi\right\rangle_{\mathrm{H}_{0}}=\langle g, \varphi\rangle_{\mathrm{H}_{0}} \\
&\left\langle u, \mathrm{~A}_{-1} \vartheta\right\rangle_{\mathrm{H}_{0}}=0 \\
&\langle\tilde{x}, \kappa\rangle_{\mathrm{H}_{1}}=\langle k, \kappa\rangle_{\mathrm{H}_{1}} \\
&\langle u, \lambda\rangle_{\mathrm{H}_{0}}=0
\end{aligned} \quad \begin{aligned}
& \\
& \Rightarrow \quad u=0, \quad y=0, \quad h_{1}=0, \quad h_{0}=0, \tilde{x}=x
\end{aligned}
$$

(stat) first order system - variational formulations II

$$
D\left(\mathcal{A}_{0}\right)=D\left(\mathrm{~A}_{0}\right) \cap R\left(\mathcal{A}_{-1}\right)^{\perp} \cap K_{0}^{\perp} \quad D\left(\mathcal{A}_{1}^{*}\right)=D\left(\mathrm{~A}_{1}^{*}\right) \cap R\left(\mathcal{A}_{2}^{*}\right)^{\perp} \cap K_{2}^{\perp}
$$

Theorem

Let $D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \hookrightarrow \mathrm{H}_{1}$ be compact and let $f \in R\left(\mathrm{~A}_{1}\right)$ and $g \in R\left(\mathrm{~A}_{0}^{*}\right)$. x can be found by the following quadruple saddle point var form:

$$
\begin{aligned}
& \exists^{1}\left(\hat{x}, v, z, h_{1}, h_{2}\right) \in D\left(\mathrm{~A}_{0}^{*}\right) \times D\left(\mathrm{~A}_{1}^{*}\right) \times D\left(\mathcal{A}_{2}^{*}\right) \times K_{1} \times K_{2} \quad s t \\
& \forall(\zeta, \phi, \theta, \kappa, \lambda) \in D\left(\mathrm{~A}_{0}^{*}\right) \times D\left(\mathrm{~A}_{1}^{*}\right) \times D\left(\mathrm{~A}_{2}^{*}\right) \times K_{1} \times K_{2} \\
& \qquad \begin{aligned}
&\left\langle\mathrm{A}_{0}^{*} \hat{x}, \mathrm{~A}_{0}^{*} \zeta\right\rangle_{\mathrm{H}_{0}}+\left\langle\mathrm{A}_{1}^{*} v, \zeta\right\rangle_{\mathrm{H}_{1}}+\left\langle h_{1}, \zeta\right\rangle_{\mathrm{H}_{1}}=\left\langle g, \mathrm{~A}_{0}^{*} \zeta\right\rangle_{\mathrm{H}_{0}} \\
&\left\langle\hat{x}, \mathrm{~A}_{1}^{*} \phi\right\rangle_{\mathrm{H}_{1}}+\left\langle\mathrm{A}_{2}^{*} z, \phi\right\rangle_{\mathrm{H}_{2}}+\left\langle h_{2}, \phi\right\rangle_{\mathrm{H}_{2}}=\langle f, \phi\rangle_{\mathrm{H}_{2}} \\
&\left\langle v, \mathrm{~A}_{2}^{*} \theta\right\rangle_{\mathrm{H}_{2}}=0 \\
&\langle\hat{x}, \kappa\rangle_{\mathrm{H}_{1}}=\langle k, \kappa\rangle_{\mathrm{H}_{1}} \\
&\langle v, \lambda\rangle_{\mathrm{H}_{2}}=0
\end{aligned} \\
& \\
& \quad \begin{aligned}
& \hat{x}=0, \quad z=0, \quad h_{1}=0, \quad h_{2}=0, \\
& \hat{x}=x
\end{aligned}
\end{aligned}
$$

(stat) first order system - variational formulations II

form matrix not

$$
\left[\begin{array}{ccccc}
\mathrm{A}_{1}^{*} \mathrm{~A}_{1} & \mathrm{~A}_{0} & 0 & \iota_{K_{1}} & 0 \\
\mathrm{~A}_{0}^{*} & 0 & \mathrm{~A}_{-1} & 0 & \iota_{K_{0}} \\
0 & \mathrm{~A}_{-1}^{*} & 0 & 0 & 0 \\
\pi_{K_{1}}=\iota_{K_{1}}^{*} & 0 & 0 & 0 & 0 \\
0 & \pi_{K_{0}}=\iota_{K_{0}}^{*} & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\tilde{x} \\
u \\
y \\
h_{1} \\
h_{0}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{A}_{1}^{*} f \\
g \\
0 \\
k \\
0
\end{array}\right]
$$

note $\quad u=0, \quad y=0, \quad h_{1}=0, \quad h_{0}=0, \quad \tilde{x}=x$

$$
\left[\begin{array}{ccccc}
\mathrm{A}_{0} \mathrm{~A}_{0}^{*} & \mathrm{~A}_{1}^{*} & 0 & \iota_{K_{1}} & 0 \\
\mathrm{~A}_{1} & 0 & \mathrm{~A}_{2}^{*} & 0 & \iota_{K_{2}} \\
0 & \mathrm{~A}_{2} & 0 & 0 & 0 \\
\pi_{K_{1}}=\iota_{K_{1}}^{*} & 0 & 0 & 0 & 0 \\
0 & \pi_{K_{2}}=\iota_{K_{2}}^{*} & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\hat{x} \\
v \\
z \\
h_{1} \\
h_{2}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{A}_{0} g \\
f \\
0 \\
k \\
0
\end{array}\right]
$$

note $\quad v=0, \quad z=0, \quad h_{1}=0, \quad h_{2}=0, \quad \hat{x}=x$
typical situation in 3D:

- $K_{-1}, K_{0}, K_{3}, K_{4}$ trivial only K_{1}, K_{2} non-trivial (Dirichlet/Neumann fields)
- $\mathrm{A}_{-2}^{*}=0 \Rightarrow N\left(\mathrm{~A}_{-2}^{*}\right)=\mathrm{H}_{-1}$
- $\mathrm{A}_{4}=0 \Rightarrow N\left(\mathrm{~A}_{4}\right)=\mathrm{H}_{4}$
- $N\left(\mathrm{~A}_{3}\right), N\left(\mathrm{~A}_{-1}^{*}\right)$ finite co-dim

(stat) first order system - variational formulations II

typical situation in 3D:

- $K_{-1}, K_{0}, K_{3}, K_{4}$ trivial only K_{1}, K_{2} non-trivial (Dirichlet/Neumann fields)
- $\mathrm{A}_{-2}^{*}=0 \Rightarrow N\left(\mathrm{~A}_{-2}^{*}\right)=\mathrm{H}_{-1}$
- $\mathrm{A}_{4}=0 \Rightarrow N\left(\mathrm{~A}_{4}\right)=\mathrm{H}_{4}$
- $N\left(\mathrm{~A}_{3}\right), N\left(\mathrm{~A}_{-1}^{*}\right)$ finite co-dim
recall

$$
\begin{aligned}
D\left(\mathcal{A}_{i}\right) & =D\left(\mathrm{~A}_{i}\right) \cap R\left(\mathrm{~A}_{i-1}\right)^{\perp} \cap K_{i}^{\perp} & D\left(\mathcal{A}_{i}^{*}\right) & =D\left(\mathrm{~A}_{i}^{*}\right) \cap R\left(\mathrm{~A}_{i+1}^{*}\right)^{\perp} \cap K_{i+1}^{\perp} \\
& =D\left(\mathrm{~A}_{i}\right) \cap N\left(\mathrm{~A}_{i-1}^{*}\right) \cap K_{i}^{\perp} & & =D\left(\mathrm{~A}_{i}^{*}\right) \cap N\left(\mathrm{~A}_{i+1}\right) \cap K_{i+1}^{\perp}
\end{aligned}
$$

always in 3D

$$
\begin{array}{rlrl}
D\left(\mathcal{A}_{-1}\right) & =D\left(\mathrm{~A}_{-1}\right) & D\left(\mathcal{A}_{3}^{*}\right)=D\left(\mathrm{~A}_{3}^{*}\right) \\
D\left(\mathcal{A}_{0}\right) & =D\left(\mathrm{~A}_{0}\right) \cap N\left(\mathrm{~A}_{-1}^{*}\right) & & D\left(\mathcal{A}_{2}^{*}\right)=D\left(\mathrm{~A}_{2}^{*}\right) \cap N\left(\mathrm{~A}_{3}\right)
\end{array}
$$

often in 3D

$$
D\left(\mathcal{A}_{0}\right)=D\left(\mathrm{~A}_{0}\right) \quad D\left(\mathcal{A}_{2}^{*}\right)=D\left(\mathrm{~A}_{2}^{*}\right)
$$

(stat) first order system - variational formulations II

always in 3D

$$
\begin{aligned}
D\left(\mathcal{A}_{-1}\right) & =D\left(\mathrm{~A}_{-1}\right) & & D\left(\mathcal{A}_{3}^{*}\right)=D\left(\mathrm{~A}_{3}^{*}\right) \\
D\left(\mathcal{A}_{0}\right) & =D\left(\mathrm{~A}_{0}\right) \cap N\left(\mathrm{~A}_{-1}^{*}\right) & & D\left(\mathcal{A}_{2}^{*}\right)=D\left(\mathrm{~A}_{2}^{*}\right) \cap N\left(\mathrm{~A}_{3}\right)
\end{aligned}
$$

often in 3D

$$
D\left(\mathcal{A}_{0}\right)=D\left(\mathrm{~A}_{0}\right) \quad D\left(\mathcal{A}_{2}^{*}\right)=D\left(\mathrm{~A}_{2}^{*}\right)
$$

always in 3D: test spaces (K_{0} trivial)

$$
D\left(\mathrm{~A}_{1}\right) \times D\left(\mathrm{~A}_{0}\right) \times D\left(\mathcal{A}_{-1}\right) \times K_{1}=D\left(\mathrm{~A}_{1}\right) \times D\left(\mathrm{~A}_{0}\right) \times D\left(\mathrm{~A}_{-1}\right) \times K_{1} \quad \mathrm{OK}
$$

$$
\left[\begin{array}{cccc}
\mathrm{A}_{1}^{*} \mathrm{~A}_{1} & \mathrm{~A}_{0} & 0 & \iota_{K_{1}} \\
\mathrm{~A}_{0}^{*} & 0 & \mathrm{~A}_{-1} & 0 \\
0 & \mathrm{~A}_{-1}^{*} & 0 & 0 \\
\pi_{K_{1}}=\iota_{K_{1}}^{*} & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\tilde{x} \\
u \\
y \\
h_{1}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{A}_{1}^{*} f \\
g \\
0 \\
k
\end{array}\right]
$$

often in 3D: test spaces

$$
D\left(\mathrm{~A}_{0}^{*}\right) \times D\left(\mathrm{~A}_{1}^{*}\right) \times D\left(\mathcal{A}_{2}^{*}\right) \times K_{1} \times K_{2}=D\left(\mathrm{~A}_{0}^{*}\right) \times D\left(\mathrm{~A}_{1}^{*}\right) \times D\left(\mathrm{~A}_{2}^{*}\right) \times K_{1} \times K_{2} \quad \mathrm{OK}
$$

$$
\left[\begin{array}{ccccc}
\mathrm{A}_{0} \mathrm{~A}_{0}^{*} & \mathrm{~A}_{1}^{*} & 0 & \iota \iota_{1} & 0 \\
\mathrm{~A}_{1} & 0 & \mathrm{~A}_{2}^{*} & 0 & \iota K_{2} \\
0 & \mathrm{~A}_{2} & 0 & 0 & 0 \\
\pi_{K_{1}}=\iota_{K_{1}}^{*} & 0 & 0 & 0 & 0 \\
0 & \pi_{K_{2}}=\iota_{K_{2}}^{*} & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\hat{x} \\
v \\
z \\
h_{1} \\
h_{2}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{A}_{0} g \\
f \\
0 \\
k \\
0
\end{array}\right]
$$

(stat) first order system - variational formulations II

always in 3D

$$
D\left(\mathcal{A}_{-1}\right)=D\left(\mathrm{~A}_{-1}\right) \quad D\left(\mathcal{A}_{3}^{*}\right)=D\left(\mathrm{~A}_{3}^{*}\right)
$$

always in 3D: test spaces (K_{0} trivial)

$$
D\left(\mathrm{~A}_{1}\right) \times D\left(\mathrm{~A}_{0}\right) \times D\left(\mathcal{A}_{-1}\right) \times K_{1}=D\left(\mathrm{~A}_{1}\right) \times D\left(\mathrm{~A}_{0}\right) \times D\left(\mathrm{~A}_{-1}\right) \times K_{1} \quad \mathrm{OK}
$$

$$
\left[\begin{array}{cccc}
\mathrm{A}_{1}^{*} \mathrm{~A}_{1} & \mathrm{~A}_{0} & 0 & \iota_{K_{1}} \\
\mathrm{~A}_{0}^{*} & 0 & \mathrm{~A}_{-1} & 0 \\
0 & \mathrm{~A}_{-1}^{*} & 0 & 0 \\
\pi_{K_{1}}=\iota_{K_{1}}^{*} & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\tilde{x} \\
u \\
y \\
h_{1}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{A}_{1}^{*} f \\
g \\
0 \\
k
\end{array}\right]
$$

always in 3D: test spaces (K_{3} trivial)

$$
D\left(\mathrm{~A}_{0}^{*}\right) \times D\left(\mathrm{~A}_{1}^{*}\right) \times D\left(\mathrm{~A}_{2}^{*}\right) \times D\left(\mathcal{A}_{3}^{*}\right) \times K_{1} \times K_{2}=D\left(\mathrm{~A}_{0}^{*}\right) \times D\left(\mathrm{~A}_{1}^{*}\right) \times D\left(\mathrm{~A}_{2}^{*}\right) \times D\left(\mathrm{~A}_{3}^{*}\right) \times K_{1} \times K_{2}
$$

$$
\left[\begin{array}{cccccc}
\mathrm{A}_{0} \mathrm{~A}_{0}^{*} & \mathrm{~A}_{1}^{*} & 0 & 0 & \iota \iota_{1} & 0 \\
\mathrm{~A}_{1} & 0 & \mathrm{~A}_{2}^{*} & 0 & 0 & \iota K_{2} \\
0 & \mathrm{~A}_{2} & 0 & \mathrm{~A}_{3}^{*} & 0 & 0 \\
0 & 0 & \mathrm{~A}_{3} & 0 & 0 & 0 \\
\pi_{K_{1}}=\iota_{K_{1}}^{*} & 0 & 0 & 0 & 0 & 0 \\
0 & \pi_{K_{2}}=\iota_{K_{2}}^{*} & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\hat{x} \\
v \\
z \\
w \\
h_{1} \\
h_{2}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{A}_{0} g \\
f \\
0 \\
0 \\
k \\
0
\end{array}\right]
$$

(stat) first order system - a posteriori error estimates

problem: find $\quad x \in D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \quad$ st $\quad \mathrm{A}_{1} x=f \quad \mathrm{~A}_{0}^{*} x=g \quad \pi_{K_{1} x=k}$
'very' non-conforming 'approximation' of $x: \tilde{x} \in \mathrm{H}_{1}$
def., dcmp. err. $e=x-\tilde{x}=\pi_{R\left(\mathrm{~A}_{0}\right)} e+\pi_{K_{1}} e+\pi_{R\left(\mathrm{~A}_{1}^{*}\right)} e \in \mathrm{H}_{1}=R\left(\mathrm{~A}_{0}\right) \oplus K_{1} \oplus R\left(\mathrm{~A}_{1}^{*}\right)$

Theorem (sharp upper bounds)

Let $\tilde{x} \in \mathrm{H}_{1}$ and $e=x-\tilde{x}$. Then

$$
\begin{array}{rlr}
|e|_{\mathrm{H}_{1}}^{2} & =\left|\pi_{R\left(\mathrm{~A}_{0}\right)} e\right|_{\mathrm{H}_{1}}^{2}+\left|\pi_{K_{1}} e\right|_{\mathrm{H}_{1}}^{2}+\left|\pi_{R\left(\mathrm{~A}_{1}^{*}\right)} e\right|_{\mathrm{H}_{1}}^{2} \\
\left|\pi_{R\left(\mathrm{~A}_{0}\right)} e\right|_{\mathrm{H}_{1}} & =\min _{\phi \in D\left(\mathrm{~A}_{0}^{*}\right)}\left(c_{\mathrm{A}_{0}}\left|\mathrm{~A}_{0}^{*} \phi-g\right|_{\mathrm{H}_{0}}+|\phi-\tilde{x}|_{\mathrm{H}_{1}}\right) & \\
\left|\pi_{R\left(\mathrm{~A}_{1}^{*}\right)} e\right|_{\mathrm{H}_{1}} & =\min _{\varphi \in D\left(\mathrm{~A}_{1}\right)}\left(c_{\mathrm{A}_{1}}\left|\mathrm{~A}_{1} \varphi-f\right|_{\mathrm{H}_{2}}+|\varphi-\tilde{x}|_{\mathrm{H}_{1}}\right) & r \operatorname{reg}\left(\mathrm{~A}_{0} \mathrm{~A}_{0}^{*}+1\right)-\text { prbl in } D\left(\mathrm{~A}_{0}^{*}\right) \\
\left|\pi_{K_{1}} e\right|_{\mathrm{H}_{1}} & =\left|\pi_{K_{1}} \tilde{x}-k\right|_{\mathrm{H}_{1}}=\min _{\substack{\xi \in D\left(\mathrm{~A}_{0}\right) \\
\zeta \in D\left(\mathrm{~A}_{1}^{*}\right)}}\left|\mathrm{A}_{0} \xi+\mathrm{A}_{1}^{*} \zeta+\tilde{x}-k\right|_{\mathrm{H}_{1}} \\
& \operatorname{cpld}\left(\mathrm{~A}_{0}^{*} \mathrm{~A}_{0}\right)-\left(\mathrm{A}_{1} \mathrm{~A}_{1}^{*}\right)-\operatorname{sys} \operatorname{in} D\left(\mathrm{~A}_{1}\right) \\
\hline
\end{array}
$$

Remark

Even $\pi_{K_{1}} e=k-\pi_{K_{1}} \tilde{x}$ and the minima are attained at

$$
\hat{\phi}=\pi_{R\left(\mathrm{~A}_{0}\right)^{e}}+\tilde{x}, \quad \hat{\varphi}=\pi_{R\left(\mathrm{~A}_{1}^{*}\right)^{e}} e \tilde{x}, \quad \mathrm{~A}_{0} \hat{\xi}+\mathrm{A}_{1}^{*} \hat{\zeta}=\left(\pi_{K_{1}}-1\right) \tilde{x}
$$

(stat) first order system - a posterior error estimates

problem:	find	$x \in D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right)$	st	$\mathrm{A}_{1} x=f$	$\mathrm{~A}_{0}^{*} x=g$	$\pi_{K_{1} x}=k$

'very' non-conforming 'approximation' of $x: \tilde{x} \in \mathrm{H}_{1}$
def., damp. err.

$$
e=x-\tilde{x}=\pi_{R\left(\mathrm{~A}_{0}\right)} e+\pi_{K_{1}} e+\pi_{R\left(\mathrm{~A}_{1}^{*}\right)} e \in \mathrm{H}_{1}=R\left(\mathrm{~A}_{0}\right) \oplus K_{1} \oplus R\left(\mathrm{~A}_{1}^{*}\right)
$$

Theorem (sharp lower bounds)

Let $\tilde{x} \in \mathrm{H}_{1}$ and $e=x-\tilde{x}$. Then

$$
\begin{array}{rlr}
|e|_{\mathrm{H}_{1}}^{2} & =\left|\pi_{R\left(\mathrm{~A}_{0}\right)} e\right|_{\mathrm{H}_{1}}^{2}+\left|\pi_{K_{1}} e\right|_{\mathrm{H}_{1}}^{2}+\left|\pi_{R\left(\mathrm{~A}_{1}^{*}\right)} e\right|_{\mathrm{H}_{1}}^{2} & \\
\left|\pi_{R\left(\mathrm{~A}_{0}\right)} e\right|_{\mathrm{H}_{1}}^{2} & =\max _{\phi \in D\left(\mathrm{~A}_{0}\right)}\left(2\langle g, \phi\rangle_{\mathrm{H}_{0}}-\left\langle 2 \tilde{x}+\mathrm{A}_{0} \phi, \mathrm{~A}_{0} \phi\right\rangle_{\mathrm{H}_{1}}\right) & \\
\left|\pi_{R\left(\mathrm{~A}_{1}^{*}\right)} e\right|_{\mathrm{H}_{1}}^{2} & =\max _{\varphi \in D\left(\mathrm{~A}_{1}^{*}\right)-\text { orb in } D\left(\mathcal{A}_{0}\right)}\left(2\langle f, \varphi\rangle_{\mathrm{H}_{2}}-\left\langle 2 \tilde{x}+\mathrm{A}_{1}^{*} \varphi, \mathrm{~A}_{1}^{*} \varphi\right\rangle_{\mathrm{H}_{1}}\right) & \\
\left|\pi_{K_{1}} e\right|_{\mathrm{H}_{1}}^{2} & =\max _{\psi \in K_{1}}\langle 2(k-\tilde{x})-\psi, \psi\rangle_{\mathrm{H}_{1}} & \\
\pi_{K_{1}} e & =k-\pi_{K_{1}} \tilde{x} &
\end{array}
$$

Remark

The maxima are attained at $\quad \phi \in D\left(\mathrm{~A}_{0}\right)$ with $\mathrm{A}_{0} \phi=\pi_{\mathrm{A}_{0}} e$ and $\quad \varphi \in D\left(\mathrm{~A}_{1}^{*}\right)$ with $\mathrm{A}_{1}^{*} \varphi=\pi_{R\left(\mathrm{~A}_{1}^{*}\right)} e \quad$ and $\quad \psi=\pi_{K_{1}} e$

A_{0}^{*} - A_{1}-lemma (generalized global div-curl-lemma)

Lemma ($\mathrm{A}_{0}^{*}-\mathrm{A}_{1}$-lemma)

Let $D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \rightarrow \mathrm{H}_{1}$ be compact, and
(i) $\left(x_{n}\right)$ bounded in $D\left(\mathrm{~A}_{1}\right)$,
(ii) $\left(y_{n}\right)$ bounded in $D\left(\mathrm{~A}_{0}^{*}\right)$.
$\Rightarrow \exists x \in D\left(\mathrm{~A}_{1}\right), y \in D\left(\mathrm{~A}_{0}^{*}\right)$ and subsequences st
$x_{n} \rightharpoonup x$ in $D\left(\mathrm{~A}_{1}\right)$ and $y_{n} \rightarrow y$ in $D\left(\mathrm{~A}_{0}^{*}\right)$ as well as

$$
\left\langle x_{n}, y_{n}\right\rangle_{\mathrm{H}_{1}} \rightarrow\langle x, y\rangle_{\mathrm{H}_{1}} .
$$

classical de Rham complex in 3D (∇-rot-div-complex)

$\Omega \subset \mathbb{R}^{3}$ bounded weak Lipschitz domain, $\partial \Omega=\Gamma=\overline{\Gamma_{t} \dot{\cup} \Gamma_{n}}$
(electro-magneto dynamics, Maxwell's equations)
mixed boundary conditions and inhomogeneous and anisotropic media

$$
\{0\} \text { or } \mathbb{R} \underset{\pi}{\stackrel{\iota}{\rightleftarrows}} \mathrm{L}^{2} \underset{-\operatorname{div}_{\Gamma_{n}} \varepsilon}{\stackrel{\nabla_{\Gamma_{t}}}{\rightleftarrows}} \quad \mathrm{~L}_{\varepsilon}^{2} \underset{\varepsilon^{-1} \underset{\text { rot }_{\Gamma_{n}}}{\stackrel{\operatorname{rot}_{\Gamma_{t}}}{\rightleftarrows}} \mathrm{~L}^{2} \underset{-\nabla_{\Gamma_{n}}}{\stackrel{\operatorname{div}_{\Gamma_{t}}}{\rightleftarrows}} \mathrm{~L}^{2} \underset{\iota}{\stackrel{\pi}{\rightleftarrows}} \quad \mathbb{R} \text { or }\{0\}}{\substack{ \\\hline}}
$$

classical de Rham complex in 3D ($\overline{\text {-rot-div-complex) }}$

$\Omega \subset \mathbb{R}^{3}$ bounded weak Lipschitz domain, $\partial \Omega=\Gamma=\overline{\Gamma_{t} \dot{\cup} \Gamma_{n}}$
(electro-magneto dynamics, Maxwell's equations with mixed boundary conditions)
related fos

related sos

$$
\begin{array}{rrrrrrrr}
-\operatorname{div}_{\Gamma_{n}} \varepsilon \nabla_{\Gamma_{t}} u=j & \text { in } \Omega & \mid & \varepsilon^{-1} \operatorname{rot}_{\Gamma_{n}} \operatorname{rot}_{\Gamma_{t}} E=K & \text { in } \Omega & \mid & -\nabla_{\Gamma_{n}} \operatorname{div}_{\Gamma_{t}} H=B & \text { in } \Omega \\
\pi u=a & \text { in } \Omega & & -\operatorname{div}_{\Gamma_{n}} \varepsilon E=j & \text { in } \Omega & \varepsilon^{-1} \operatorname{rot}_{\Gamma_{n}} H=K & \text { in } \Omega
\end{array}
$$

corresponding compact embeddings:

$$
\begin{aligned}
D\left(\nabla \Gamma_{t}\right) \cap D(\pi)=D\left(\nabla \Gamma_{t}\right)=\mathrm{H}_{\Gamma_{t}}^{1} \leftrightarrow \mathrm{~L}^{2} & \text { (Rellich's selection theorem) } \\
D\left(\operatorname{rot}_{\Gamma_{t}}\right) \cap D\left(-\operatorname{div}_{\Gamma_{n}} \varepsilon\right)=\mathrm{R}_{\Gamma_{t}} \cap \varepsilon^{-1} \mathrm{D}_{\Gamma_{n}} \leftrightarrow \mathrm{~L}_{\varepsilon}^{2} & \text { (Weck's selection theorem, '74) } \\
D\left(\operatorname{div}_{\Gamma_{t}}\right) \cap D\left(\varepsilon^{-1} \operatorname{rot}_{\Gamma_{n}}\right)=\mathrm{D}_{\Gamma_{t}} \cap \mathrm{R}_{\Gamma_{n}} \leftrightarrow \mathrm{~L}^{2} & \text { (Weck's selection theorem, '74) } \\
D\left(\nabla \Gamma_{n}\right) \cap D(\pi)=D\left(\nabla \Gamma_{n}\right)=\mathrm{H}_{\Gamma_{n}}^{1} \leftrightarrow \mathrm{~L}^{2} & \text { (Rellich's selection theorem) }
\end{aligned}
$$

Weck's selection theorem for weak Lip. dom. and mixed bc: Bauer/Py/Schomburg ('16)
Weck's selection theorem (Weck '74, (Habil. '72) stimulated by Rolf Leis)
(Weber '80, Picard '84, Costabel '90, Witsch '93, Jochmann '97, Kuhn '99, Picard/Weck/Witsch '01, Py '96, '03, '06, '07, '08)

classical de Rham complex in 3D (∇-rot-div-complex)

$$
\begin{aligned}
\operatorname{rot} E & =F & & \text { in } \Omega \\
-\operatorname{div} \varepsilon E & =g & & \text { in } \Omega \\
\nu \times E & =0 & & \text { at } \Gamma_{t} \\
\nu \cdot \varepsilon E & =0 & & \text { at } \Gamma_{n}
\end{aligned}
$$

non-trivial kernel $\mathcal{H}_{\mathrm{D}, \varepsilon}=\left\{H \in \mathrm{~L}^{2}: \operatorname{rot} H=0, \operatorname{div} \varepsilon H=0, \nu \times\left. H\right|_{\Gamma_{t}}=0,\left.\nu \cdot \varepsilon H\right|_{\Gamma_{n}}=0\right\}$ additional condition on Dirichlet/Neumann fields for uniqueness

$$
\begin{aligned}
& \pi_{\mathrm{D}} E=K \in \mathcal{H}_{\mathrm{D}, \varepsilon}
\end{aligned}
$$

$$
\begin{aligned}
& \cdots \underset{\ldots}{\underset{\sim}{\rightleftarrows}} \mathrm{H}_{-1} \underset{A_{-1}^{*}}{\stackrel{A_{-1}}{\rightleftarrows}} \mathrm{H}_{0} \underset{A_{0}^{*}}{\stackrel{A_{0}}{\rightleftarrows}} \mathrm{H}_{1} \underset{A_{1}^{*}}{\stackrel{A_{1}}{\rightleftarrows}} \mathrm{H}_{2} \underset{A_{2}^{*}}{\stackrel{A_{2}}{\rightleftarrows}} \mathrm{H}_{3} \underset{A_{3}^{*}}{\stackrel{A_{3}}{\rightleftarrows}} \mathrm{H}_{4} \underset{\cdots}{\underset{\sim}{\rightleftarrows}} \ldots \\
& \text { find } E \in \mathrm{R}_{\Gamma_{t}}(\Omega) \cap \varepsilon^{-1} \mathrm{D}_{\Gamma_{n}}(\Omega) \quad \text { st } \quad \text { (fos) } \quad \text { find } \quad x \in D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \quad \text { st } \\
& \operatorname{rot}_{r_{t}} E=F \\
& -\operatorname{div}_{\Gamma_{n}} \varepsilon E=g \\
& \pi_{\mathrm{D} / \mathrm{N}} E=K \\
& \mathrm{~A}_{1} x=f \\
& \text { translation } \\
& \mathrm{A}_{0}^{*} x=g \\
& \pi_{K_{1} x}=k
\end{aligned}
$$

classical de Rham complex in 3D (∇-rot-div-complex)

$c_{\mathrm{A}_{0}}=c_{\mathrm{fp}}$ (Friedrichs/Poincaré constant) and $c_{\mathrm{A}_{1}}=c_{\mathrm{m}}$ (Maxwell constant)

Lemma/Theorem $\downarrow \quad D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \leftrightarrow \mathrm{L}_{\varepsilon}^{2}(\Omega)$ compact

(i) all Friedrichs-Poincaré type est hold

$$
\begin{array}{lllll}
\forall \varphi \in D\left(\mathcal{A}_{0}\right) & |\varphi|_{\mathrm{H}_{0}} \leq c_{\mathrm{A}_{0}}\left|\mathrm{~A}_{0} \varphi\right|_{\mathrm{H}_{1}} & \Leftrightarrow & \forall \varphi \in \mathrm{H}_{\Gamma_{t}}^{1} & |\varphi|_{\mathrm{L}^{2}} \leq c_{\mathrm{fp}}|\nabla \varphi|_{\mathrm{L}_{\varepsilon}^{2}} \\
\forall \phi \in D\left(\mathcal{A}_{0}^{*}\right) & |\phi|_{\mathrm{H}_{1}} \leq c_{\mathrm{A}_{0}}\left|\mathrm{~A}_{0}^{*} \phi\right|_{\mathrm{H}_{0}} & \Leftrightarrow & \forall \Phi \in \varepsilon^{-1} \mathrm{D}_{\Gamma_{n}} \cap \nabla \mathrm{H}_{\Gamma_{t}}^{1} & |\Phi|_{\mathrm{L}_{\varepsilon}^{2}} \leq c_{\mathrm{fp}}|\operatorname{div} \varepsilon \Phi|_{\mathrm{L}^{2}} \\
\forall \varphi \in D\left(\mathcal{A}_{1}\right) & |\varphi|_{\mathrm{H}_{1}} \leq c_{\mathrm{A}_{1}}\left|\mathrm{~A}_{1} \varphi\right|_{\mathrm{H}_{2}} & \Leftrightarrow & \forall \Phi \in \mathrm{R}_{\Gamma_{t}} \cap \varepsilon^{-1} \operatorname{rot} \mathrm{R}_{\Gamma_{n}} & |\Phi|_{\mathrm{L}_{\varepsilon}^{2}} \leq c_{\mathrm{m}}|\operatorname{rot} \Phi|_{\mathrm{L}^{2}} \\
\forall \psi \in D\left(\mathcal{A}_{1}^{*}\right) & |\psi|_{\mathrm{H}_{2}} \leq c_{\mathrm{A}_{1}}\left|\mathrm{~A}_{1}^{*} \psi\right|_{\mathrm{H}_{1}} & \Leftrightarrow & \forall \Psi \in \mathrm{R}_{\Gamma_{n}} \cap \operatorname{rot} \mathrm{R}_{\Gamma_{t}} & |\Psi|_{\mathrm{L}^{2}} \leq c_{\mathrm{m}}|\operatorname{rot} \Psi|_{\mathrm{L}_{\varepsilon}^{2}}
\end{array}
$$

(ii) all ranges $R\left(\mathrm{~A}_{0}\right)=\nabla \mathrm{H}_{\Gamma_{t}}^{1}, \quad R\left(\mathrm{~A}_{1}\right)=\operatorname{rot} \mathrm{R}_{\Gamma_{t}}, \quad R\left(\mathrm{~A}_{0}^{*}\right)=\operatorname{div} \mathrm{D}_{\Gamma_{n}} \quad$ are cl in L^{2}

(iv) all Helmholtz decomposition hold, e.g.,

$$
\mathrm{H}_{1}=R\left(\mathrm{~A}_{0}\right) \oplus K_{1} \oplus R\left(\mathrm{~A}_{1}^{*}\right) \quad \Leftrightarrow \quad \mathrm{L}_{\varepsilon}^{2}=\nabla \mathrm{H}_{\Gamma_{t}}^{1} \oplus_{\mathrm{L}_{\varepsilon}^{2}} \mathcal{H}_{\mathrm{D}, \varepsilon} \oplus_{\mathrm{L}_{\varepsilon}^{2}} \varepsilon^{-1} \operatorname{rot} \mathrm{R}_{\Gamma_{n}}
$$

(v) solution theory
(vi) variational formulations
(vii) functional a posteriori error estimates
(viii) div-curl-lemma
(ix) ...

classical de Rham complex in 3D (∇-rot-div-complex)

variational formulations
var space

$$
(\tilde{E}, u, r, H) \in \mathrm{R}_{\Gamma_{t}} \times \mathrm{H}_{\Gamma_{t}}^{1} \times\{0\} / \mathbb{R} \times \mathcal{H}_{\mathrm{D}, \varepsilon}
$$

$$
\left[\begin{array}{cccc}
\mu \operatorname{rot}_{\Gamma_{n}} \operatorname{rot}_{\Gamma_{t}} & \operatorname{grad}_{\Gamma_{t}} & 0 & \iota_{\mathcal{H}}^{\mathrm{D}, \varepsilon} \\
-\operatorname{div}_{\Gamma_{n}} \varepsilon & 0 & \iota_{\{0\} / \mathbb{R}} & 0 \\
0 & \pi_{\{0\} / \mathbb{R}} & 0 & 0 \\
\pi_{\mathcal{H}_{\mathrm{D}, \varepsilon}} & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\tilde{E} \\
u \\
r \\
H
\end{array}\right]=\left[\begin{array}{c}
\mu \operatorname{rot}_{\Gamma_{n}} F \\
g \\
0 \\
K
\end{array}\right]
$$

var space
$(\hat{E}, U, v, r, H, \tilde{H}) \in \varepsilon^{-1} \mathrm{D}_{\Gamma_{n}} \times \mathrm{R}_{\Gamma_{n}} \times \mathrm{H}_{\Gamma_{n}}^{1} \times\{0\} / \mathbb{R} \times \mathcal{H}_{\mathrm{D}, \varepsilon} \times \mathcal{H}_{\mathrm{N}}$
$\left[\begin{array}{cccccc}-\operatorname{grad}_{\Gamma_{t}} \operatorname{div}_{\Gamma_{n}} \varepsilon & \mu \operatorname{rot}_{\Gamma_{n}} & 0 & 0 & \iota_{\mathcal{H}} \mathcal{H}_{\mathrm{D}, \varepsilon} & 0 \\ \operatorname{rot}_{\Gamma_{t}} & 0 & -\operatorname{grad}_{\Gamma_{n}} & 0 & 0 & \iota_{\mathcal{H}} \\ 0 & \operatorname{div}_{\Gamma_{t}} & 0 & \iota_{\{0\} / \mathbb{R}} & 0 & 0 \\ 0 & 0 & \pi_{\{0\} / \mathbb{R}} & 0 & 0 & 0 \\ \pi_{\mathcal{H}_{\mathrm{D}, \varepsilon}} & 0 & 0 & 0 & 0 & 0 \\ 0 & \pi_{\mathcal{H}} & 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{c}\hat{E} \\ U \\ v \\ r \\ H \\ \tilde{H}\end{array}\right]=\left[\begin{array}{c}\operatorname{grad}_{\Gamma_{t}} g \\ F \\ 0 \\ 0 \\ K \\ 0\end{array}\right]$
note $\quad u=v=0, \quad r=0, \quad U=H=\tilde{H}=0, \quad \tilde{E}=\hat{E}=E$

Theorem (sharp upper bounds)
Let $\tilde{E} \in \mathrm{~L}_{\varepsilon}^{2}$ (very non-conforming approximation of E !) and $e:=E-\tilde{E}$. Then

$$
\begin{aligned}
& \left.|e|_{L_{\varepsilon}^{2}}^{2}=\mid \pi_{R\left(\nabla_{\Gamma_{t}}\right.}\right)\left.e\right|_{L_{\varepsilon}^{2}} ^{2}+\left|\pi_{R\left(\varepsilon^{-1} \operatorname{rot}_{\Gamma_{n}}\right)} e\right|_{L_{\varepsilon}^{2}}^{2}+\left|\pi_{\mathcal{H}_{\mathrm{D}, \varepsilon}} e\right|_{L_{\varepsilon}^{2}}^{2} \\
& =\min _{\Phi \in \varepsilon^{-1} \mathrm{D}_{\Gamma_{n}}}\left(c_{\mathrm{fp}}|\operatorname{div} \varepsilon \Phi+g|_{\mathrm{L}^{2}}+|\Phi-\tilde{E}|_{\mathrm{L}_{\varepsilon}^{2}}\right)^{2} \\
& \operatorname{reg}\left(-\nabla_{\Gamma_{t}} \text { div }_{\Gamma_{n}}+1\right) \text {-prbl in } \mathrm{D}_{\Gamma_{n}} \\
& +\min _{\Phi \in R_{\Gamma_{t}}}\left(c_{m}|\operatorname{rot} \Phi-F|_{L^{2}}+|\Phi-\tilde{E}|_{L_{\varepsilon}^{2}}\right)^{2} \\
& \operatorname{reg}_{\left(\text {rotr }_{r_{n}}{ }^{\text {rot }_{r_{t}}}+1\right) \text {-prbl in } \mathrm{R}_{\Gamma_{t}}} \\
& +\min _{\phi \in H_{\Gamma_{t}}, \psi \in \mathrm{R}_{\Gamma_{n}}}\left|\nabla \phi+\varepsilon^{-1} \operatorname{rot} \Psi+\tilde{E}-K\right|_{L_{\varepsilon}^{2}}^{2} \\
& \operatorname{cpld}\left(-\operatorname{div}_{\Gamma_{n}} \nabla_{\Gamma_{t}}\right)-\left(\operatorname{rot}_{\Gamma_{t}} \operatorname{rot}_{\Gamma_{n}}\right)-\operatorname{sys} \text { in } \mathrm{H}_{\Gamma_{t}}^{1}-\mathrm{R}_{\Gamma_{n}}
\end{aligned}
$$

Remark

- $\left(\operatorname{rot}_{r_{t}} \operatorname{rot}_{r_{n}}\right)$-prbl needs saddle point formulation
- Ω top trv $\Rightarrow \pi_{\mathrm{D}}=0$ and $\mathrm{R}_{\Gamma_{t}, 0}=\nabla \mathrm{H}_{\Gamma_{t}}^{1}$ and $\mathrm{D}_{\Gamma_{n}, 0}=\operatorname{rot} \mathrm{R}_{\Gamma_{n}}$
- Ω convex and $\varepsilon=\mu=1$ and $\Gamma_{t}=\Gamma$ or $\Gamma_{n}=\Gamma \Rightarrow c_{\mathrm{f}} \leq c_{\mathrm{m}} \leq c_{\mathrm{p}} \leq \frac{\operatorname{diam}_{\Omega}}{\pi}$

classical de Rham complex in 3D (∇-rot-div-complex)

Theorem (sharp lower bounds)

Let \square (very non-conforming approximation of E!) and \square Then

$$
\begin{aligned}
|e|_{\mathrm{L}_{\varepsilon}^{2}}^{2}= & \left.\mid \pi_{R\left(\nabla_{\Gamma_{t}}\right.}\right)\left.e\right|_{\mathrm{L}_{\varepsilon}^{2}} ^{2}+\left|\pi_{R\left(\varepsilon^{-1} \operatorname{rot}_{\Gamma_{n}}\right)} e\right|_{\mathrm{L}_{\varepsilon}^{2}}^{2}+\left|\pi_{\mathcal{H}_{\mathrm{D}, \varepsilon}} e\right|_{\mathrm{L}_{\varepsilon}^{2}}^{2} \\
= & \max _{\varphi \in \mathrm{H}_{\Gamma_{t}}^{1}}\left(2\langle g, \varphi\rangle_{\mathrm{L}^{2}}-\langle 2 \tilde{E}+\operatorname{grad} \varphi, \varepsilon \operatorname{grad} \varphi\rangle_{\mathrm{L}^{2}}\right) \\
& +\max _{\psi \in \mathrm{R}_{\Gamma_{n}}}\left(2\langle F, \Psi\rangle_{\mathrm{L}^{2}}-\langle 2 \tilde{E}+\mu \operatorname{rot} \Psi, \operatorname{rot} \Psi\rangle_{\mathrm{L}}\right. \\
& +\max _{\psi \in \mathcal{H}_{\mathrm{D}, \varepsilon}}\langle 2(K-\tilde{E})-\Psi, \Psi\rangle_{\mathrm{L}_{\varepsilon}^{2}}
\end{aligned}
$$

$$
=\max _{\varphi \in \mathrm{H}_{\Gamma_{t}}^{1}}\left(2\langle g, \varphi\rangle_{\mathrm{L}^{2}}-\langle 2 \tilde{E}+\operatorname{grad} \varphi, \varepsilon \operatorname{grad} \varphi\rangle_{\mathrm{L}^{2}}\right) \quad \quad \operatorname{reg}\left(-\nabla_{\Gamma_{t}} \operatorname{div}_{\Gamma_{n}}+1\right)-p r b / \text { in } \mathrm{D}_{\Gamma_{n}}
$$

Lemma (div-curl-lemma (global version))

Assumptions:

(i) $\left(E_{n}\right)$ bounded in $\mathrm{L}^{2}(\Omega)$
(i') $\left(H_{n}\right)$ bounded in $\mathrm{L}^{2}(\Omega)$
(ii) $\left(\operatorname{rot} E_{n}\right)$ bounded in $\mathrm{L}^{2}(\Omega)$
(ii') (div εH_{n}) bounded in $\mathrm{L}^{2}(\Omega)$
(iii) $\nu \times E_{n}=0$ on Γ_{t}, i.e., $E_{n} \in \mathrm{R}_{\Gamma_{t}}(\Omega)$
(iii') $\nu \cdot \varepsilon H_{n}=0$ on Γ_{n}, i.e., $H_{n} \in \varepsilon^{-1} \mathrm{D}_{\Gamma_{n}}(\Omega)$
$\Rightarrow \exists E, H$ and subsequences st
$E_{n} \rightharpoonup E, \operatorname{rot} E_{n} \rightharpoonup \operatorname{rot} E \quad$ and $H_{n} \rightharpoonup H, \operatorname{div} H_{n} \rightarrow \operatorname{div} H$ in $L^{2}(\Omega) \quad$ and

$$
\left\langle E_{n}, H_{n}\right\rangle_{L_{\varepsilon}^{2}(\Omega)} \rightarrow\langle E, H\rangle_{L_{\varepsilon}^{2}(\Omega)}
$$

de Rham complex in ND or on Riemannian manifolds (d-complex)

$\Omega \subset \mathbb{R}^{N}$ bd w. Lip. dom. or Ω Riemannian manifold with cpt cl . and Lip. boundary Γ (generalized Maxwell equations)

de Rham complex in ND or on Riemannian manifolds (d-complex)

$\Omega \subset \mathbb{R}^{N}$ bd w . Lip. dom. or Ω Riemannian manifold with cpt cl . and Lip. boundary Γ (generalized Maxwell equations)

related fos

$$
\begin{array}{rlr}
\mathrm{d}_{\Gamma_{t}}^{q} E=F & \text { in } \Omega \\
-\delta_{\Gamma_{n}}^{q} E & =G & \text { in } \Omega
\end{array}
$$

related sos

$$
\begin{array}{rr}
-\delta_{\Gamma_{n}}^{q+1} \mathrm{~d}_{\Gamma_{t}}^{q} E=F & \text { in } \Omega \\
& -\delta_{\Gamma_{n}}^{q} E=G
\end{array}
$$

includes: EMS rot/div, Laplacian, rot rot, and more... corresponding compact embeddings:

$$
D\left(\mathrm{~d}_{\Gamma_{t}}^{q}\right) \cap D\left(\delta_{\Gamma_{n}}^{q}\right) \hookrightarrow \mathrm{L}^{2, q}
$$

(Weck's selection theorems, '74)
Weck's selection theorem for Lip. manifolds and mixed bc: Bauer/Py/Schomburg ('17)

elasticity complex in 3D (sym ∇-Rot Rot ${ }_{S}^{\top}$-Divs-complex)

$\Omega \subset \mathbb{R}^{3}$ bounded strong Lipschitz domain

elasticity complex in 3D (sym ∇-Rot $\operatorname{Rot}_{\mathbb{S}}^{\top}$-Div ${ }_{\mathbb{S}}$-complex)

$\Omega \subset \mathbb{R}^{3}$ bounded strong Lipschitz domain

related fos ($\operatorname{Rot}_{\operatorname{Rot}}^{\mathbb{S}, \Gamma} \Gamma^{\top}, \operatorname{Rot} \operatorname{Rot}_{\mathbb{S}}^{\top}$ first order operators!)

related sos $\left(\operatorname{Rot}^{\operatorname{Rot}}{ }_{\mathbb{S}}^{\top} \operatorname{Rot} \operatorname{Rot}_{\mathbb{S}, \Gamma}^{\top}\right.$, second order operator!)

$$
\begin{array}{rrrrrrr}
-\operatorname{Div}_{\mathbb{S}} \operatorname{sym} \nabla_{\Gamma} v=f & \text { in } \Omega & \mid & \operatorname{Rot}_{\operatorname{Rot}}^{\mathbb{S}} \operatorname{Rot}^{\operatorname{Rot}}{ }_{\mathbb{S}, \Gamma}^{\top} M=G & \text { in } \Omega & \mid & -\operatorname{sym} \nabla \operatorname{Div}_{\mathbb{S}, \Gamma} N=M
\end{array} \text { in } \Omega
$$

corresponding compact embeddings:

$$
\begin{array}{rlrl}
D\left(\text { sym } \nabla_{\Gamma}\right) \cap D(\pi)=D\left(\nabla_{\Gamma}\right)=\mathrm{H}_{\Gamma}^{1} & \leftrightarrow \mathrm{~L}^{2} & & \text { (Rellich's selection theorem and Korn ineq.) } \\
D\left(\operatorname{Rot}_{\operatorname{Rot}}^{\mathbb{S}, \Gamma}\right) \cap D\left(\operatorname{Div}_{\mathbb{S}}\right) & \rightarrow \mathrm{L}_{\mathbb{S}}^{2} & & \text { (new selection theorem) } \\
D\left(\operatorname{Div}_{\mathbb{S}}, \Gamma\right) \cap D\left(\operatorname{Rot}^{\operatorname{Rot}_{\mathbb{S}}^{\top}}\right) & \leftrightarrow \mathrm{L}_{\mathbb{S}}^{2} & \text { (new selection theorem) } \\
D(\pi) \cap D(\text { sym } \nabla)=D(\nabla)=\mathrm{H}^{1} \leftrightarrow \mathrm{~L}^{2} & & \text { (Rellich's selection theorem and Korn ineq.) }
\end{array}
$$

two new selection theorems for strong Lip. dom.: Py/Schomburg/Zulehner ('18)

biharmonic / general relativity complex in 3D ($\nabla \nabla$-Rots-Div \mathbb{T}_{T}-complex)

$\Omega \subset \mathbb{R}^{3}$ bounded strong Lipschitz domain

$$
\{0\} \underset{\pi_{\{0\}}}{\stackrel{\iota_{\{0\}}}{\rightleftarrows}} \mathrm{L}^{2} \underset{\operatorname{div} \operatorname{Div}_{\mathbb{S}}}{\stackrel{\nabla 0}{\rightleftarrows}} \mathrm{~L}_{\mathbb{S}}^{2} \underset{\operatorname{sym}_{\underset{\operatorname{Rot}_{\mathbb{T}}}{\rightleftarrows}}^{\stackrel{\mathrm{Rot}_{\mathbb{S}}}{\rightleftarrows}}}{\stackrel{L}{2}} \underset{-\operatorname{dev} \nabla}{\stackrel{\operatorname{Div}_{\mathbb{T}}}{\rightleftarrows}} \mathrm{L}^{2} \underset{\iota_{\mathrm{RT}}}{\stackrel{\pi_{\mathrm{RT}}}{\rightleftarrows}} \text { RT }
$$

biharmonic / general relativity complex in 3D ($\nabla \nabla$-Rots $\mathbb{S}^{-D i v} \mathbb{T}^{-}$-complex)

$\Omega \subset \mathbb{R}^{3}$ bounded strong Lipschitz domain

$\{0\} \underset{\pi_{\{0\}}}{\stackrel{\iota_{\{0\}}}{\rightleftarrows}} \mathrm{L}^{2} \underset{\operatorname{div} \operatorname{Div}_{\mathbb{S}}}{\stackrel{\nabla \circ}{\rightleftarrows}} \mathrm{L}_{\mathbb{S}}^{2} \underset{\operatorname{sym} \underset{\mathrm{Rot}_{\mathbb{T}}}{\stackrel{\mathrm{Rot}_{S}}{\rightleftarrows}}}{\stackrel{\rightharpoonup}{*}} \mathrm{~L}_{\mathbb{T}}^{2} \underset{-\operatorname{dev} \nabla}{\stackrel{\mathrm{Div}_{\mathbb{T}}}{\rightleftarrows}} \mathrm{L}^{2} \underset{\iota_{\mathrm{RT}}}{\stackrel{\pi_{\mathrm{RT}}}{\rightleftarrows}}$ RT related fos $\left(\nabla \nabla_{\Gamma}\right.$, div Div Dirst $_{\text {s }}$ order operators! $)$

$\nabla \nabla_{\Gamma} u=M$	in Ω	$\operatorname{Rot}_{\mathbb{S}, \Gamma} M=F$	in Ω	\mid	$\operatorname{Div}_{\mathbb{T}, \Gamma} N=g$	in Ω	$\pi v=r$	in Ω
$\pi u=0$	in Ω		$\operatorname{div}^{\operatorname{Div}} M=f$	in Ω	$\operatorname{sym~Rot}_{\mathbb{T}} N=G$	in Ω	$-\operatorname{dev} \nabla v=T$	in Ω

related sos (div Div ${ }_{\mathbb{S}} \nabla \nabla_{\Gamma}=\Delta_{\Gamma}^{2}$ second order operator!)

$$
\begin{aligned}
& \operatorname{div} \operatorname{Div}_{\mathbb{S}} \nabla \nabla \Gamma u=\Delta_{\Gamma}^{2} u=f \quad \text { in } \Omega \quad \mid \quad \operatorname{sym}^{2} \operatorname{Rot}_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma} M=G \quad \text { in } \Omega \quad \mid \quad-\operatorname{dev} \nabla \operatorname{Div}_{\mathbb{T}, \Gamma} N=T \quad \text { in } \Omega \\
& \pi u=0 \quad \text { in } \Omega \quad \mid \quad \operatorname{div} \operatorname{Div}_{\mathbb{S}} M=f \quad \text { in } \Omega \quad \mid \quad{\operatorname{sym} \operatorname{Rot}_{\mathbb{T}} N=G \quad \text { in } \Omega}
\end{aligned}
$$

corresponding compact embeddings:

$$
\begin{array}{rlrl}
D\left(\nabla \nabla_{\Gamma}\right) \cap D(\pi)=D\left(\nabla \nabla_{\Gamma}\right)=\mathrm{H}_{\Gamma}^{2} & \leftrightarrow \mathrm{~L}^{2} & & \text { (Rellich's selection theorem) } \\
D\left(\operatorname{Rot}_{\mathbb{S}, \Gamma) \cap D\left(\operatorname{div}^{\left.\operatorname{Div}_{\mathbb{S}}\right)} \leftrightarrow \mathrm{L}_{\mathbb{S}}^{2}\right.}\right. & & \text { (new selection theorem) } \\
D\left(\operatorname{Div}_{\mathbb{T}, \Gamma}\right) \cap D\left(\operatorname{sym~Rot}_{\mathbb{T}}\right) & \leftrightarrow \mathrm{L}_{\mathbb{T}}^{2} & & \text { (new selection theorem) } \\
D(\pi) \cap D(\operatorname{dev} \nabla)=D(\operatorname{dev} \nabla)=D(\nabla)=\mathrm{H}^{1} \leftrightarrow \mathrm{~L}^{2} & & \text { (Rellich's selection theorem and Korn type ineq.) }
\end{array}
$$

two new selection theorems for strong Lip. dom. and Korn Type ineq.: Py/Zulehner ('16)

literature (fa-toolbox, complexes, a posteriori error estimates, ...)

results of this talk:

- Py: Solution Theory and Functional A Posteriori Error Estimates for General First Order Systems with Applications to Electro-Magneto-Statics, (NFAO) Numerical Functional Analysis and Optimization, 2018
(paper contains main results of this talk)

literature (a posteriori error estimates of functional type)

- Repin, S.: A posteriori error estimates for variational problems with uniformly convex functionals, (MC) Mathematics of Computation, 2000
- Neittaanmäki, P., Repin, S.: Reliable methods for computer simulation, error control and a posteriori estimates, Elsevier, 2004
- Repin, S.: A posteriori estimates for partial differential equations, Radon Series on Applied Mathematics, De Gruyter, 2008
- Py, Repin, S.: Functional A Posteriori Error Estimates for Elliptic Problems in Exterior Domains, (PMA) Problemy Matematicheskogo Analiza/ (JMS)Journal of Mathematical Sciences (Springer New York), 2009
- Py, Repin, S.: Two-sided a posteriori error bounds for electro-magneto static problems,
Zapiski POMI/ (JMS)Journal of Mathematical Sciences (Springer New York), 2009
- Mali, O., Neittaanmäki, P., Repin, S.: Accuracy verification methods, theory and algorithms,
Springer, 2014

literature (a posteriori error equations)

- Anjam, I., Py: Functional a posteriori error control for conforming mixed approximations of coercive problems with lower order terms, (CMAM) Computational Methods in Applied Mathematics, 2016
- Anjam, I., Py: An Elementary Method of Deriving A Posteriori Error Equalities and Estimates for Linear Partial Differential Equations, (CMAM) Computational Methods in Applied Mathematics, 2018

literature (complexes, Friedrichs type constants, Maxwell constants)

results of this talk:

- Py: On Constants in Maxwell Inequalities for Bounded and Convex Domains, Zapiski POMI/ (JMS)Journal of Mathematical Sciences (Springer New York), 2015
- Py: On Maxwell's and Poincare's Constants, (DCDS) Discrete and Continuous Dynamical Systems - Series S, 2015
- Py: On the Maxwell Constants in 3D, (M2AS) Mathematical Methods in the Applied Sciences, 2017
- Py: On the Maxwell and Friedrichs/Poincare Constants in ND, submitted, 2017

literature (complexes, Friedrichs type constants, compact embeddings)

- Weck, N.: Maxwell's boundary value problems on Riemannian manifolds with nonsmooth boundaries, (JMA2) Journal of Mathematical Analysis and Applications, 1974 (1972)
- Picard, R.: An elementary proof for a compact imbedding result in generalized electromagnetic theory, (MZ) Mathematische Zeitschrift, 1984
- Witsch, K.-J.: A remark on a compactness result in electromagnetic theory, (M2AS) Mathematical Methods in the Applied Sciences, 1993
results of this talk:
- Bauer, S., Py, Schomburg, M.: The Maxwell Compactness Property in Bounded Weak Lipschitz Domains with Mixed Boundary Conditions, (SIMA) SIAM Journal on Mathematical Analysis, 2016
- Zulehner, W., Py: On Closed and Exact Grad grad- and div Div-Complexes, Corresponding Compact Embeddings for Tensor Rotations, and a Related Decomposition Result for Biharmonic Problems in 3D, submitted, 2016
- Py, Schomburg, M., Zulehner, W.: Compact Embeddings, Friedrichs/Poincaré Type Estimates, Helmholtz Type Decompositions, and a General Toolbox for the Elasticity Complex in 3D, in preparation, 2018

literature (div-curl-lemma)

original papers (local div-curl-lemma):

- Murat, F.: Compacité par compensation, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 1978
- Tartar, L.: Compensated compactness and applications to partial differential equations,
Nonlinear analysis and mechanics, Heriot-Watt symposium, 1979

literature (div-curl-lemma)

recent papers (global div-curl-lemma, H^{1}-detour):

- Gloria, A., Neukamm, S., Otto, F.: Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics, (IM) Invent. Math., 2015
- Kozono, H., Yanagisawa, T.: Global compensated compactness theorem for general differential operators of first order, (ARMA) Arch. Ration. Mech. Anal., 2013
- Schweizer, B.: On Friedrichs inequality, Helmholtz decomposition, vector potentials, and the div-curl lemma, accepted preprint, 2018
recent papers (global div-curl-lemma, general results/this talk):
- Waurick, M.: A Functional Analytic Perspective to the div-curl Lemma, (JOP) J. Operator Theory, 2018
- Py: A Global div-curl-Lemma for Mixed Boundary Conditions in Weak Lipschitz Domains and a Corresponding Generalized A_{0}^{*} - A_{1}-Lemma in Hilbert Spaces, (ANA) Analysis (Munich), 2018

literature (complexes, optimization, and a posteriori error estimates for degenerated magneto statics)

- Py, Yousept, I.: A Posteriori Error Analysis for the Optimal Control of Magneto-Static Fields, (M2NA) ESAIM: Mathematical Modelling and Numerical Analysis, 2017

literature (full time-dependent Maxwell equations)

- Py, Picard, R.: A Note on the Justification of the Eddy Current Model in Electrodynamics, (M2AS) Mathematical Methods in the Applied Sciences, 2017

literature (Maxwell's equations and more...)

upcoming books:

- Langer, U., Py, Repin, S. (Eds): Maxwell's equations. Analysis and numerics, Radon Series on Applied Mathematics, De Gruyter, 2018
- Py: Maxwell's Equations: Hilbert Space Methods for the Theory of Electromagnetism, Radon Series on Applied Mathematics, De Gruyter, 2020
(last book: contains all results of this talk and more...)

. . . the world is full of complexes ... ;)

\Rightarrow relaxing at

AANMPDE 11

11th Workshop on Analysis and Advanced Numerical Methods for Partial Differential Equations (not only) for Junior Scientists
http://www.mit.jyu.fi/scoma/AANMPDE11
August 6-10 2018, Särkisaari, Finland
organizers: Ulrich Langer, Dirk Pauly, Sergey Repin

