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linear equation

general observations

A x = f
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linear equation

general observations

Ax = f

general theory

solution theory
Friedrichs/Poincaré estimates and constants
Helmholtz/Hodge/Weyl decompositions
compact embeddings
continuous and compact inverse operators
closed ranges
variational formulations
functional a posteriori error estimates
generalized div-curl-lemma
. . .

idea: solve problem with general and simple linear functional analysis

⇒ functional analysis toolbox (fa-toolbox) ...
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linear equation

general observations

A ∶ D(A) ⊂ H0 → H1 linear, H0, H1 Hilbert spaces (for simplicity)

solve and provide tools
Ax = f

examples

● A ∈ Rm×n (matrix eq)

● A = ∂t −∆̊ (so heat/diffusion eq)

● A = ∂2
t −∆̊ (so wave eq)

● A = −∆̊ − ω2 (so red wave/Helmholtz eq)

● A = −∆̊ (so Laplace eq)

right hand sides and solutions (typically)

● f ∈ Rm x ∈ Rn

● f ∈ L2(I ×Ω) x ∈ L2(I) × H̊1(Ω)
● f ∈ L2(Ω) x ∈ H̊1(Ω)

or in (closed) subspaces R(A) (here H̊1(Ω) = H1
0(Ω))
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linear equation

general observations

A ∶ D(A) ⊂ H0 → H1 linear, H0, H1 Hilbert spaces (for simplicity)

solve and provide tools
Ax = f

examples

● A = ∂2
t −∆̊ = ∂2

t −div ∇̊ (so wave eq)

● A = ∂t − [0 div
∇̊ 0

] (fo wave eq, pref form, acoustics)

● A = [0 div
∇̊ 0

] − ω (fo red wave/Helmholtz eq, time-harm acoustics)

right hand sides and solutions (typically)

● f ∈ L2(I ×Ω) x ∈ L2(I) × H̊1(Ω)
● f ∈ L2(I ×Ω) × L2(I ×Ω) x ∈ (L2(I) × H̊1(Ω)) × (L2(I) ×D(Ω))

● f ∈ L2(Ω) × L2(Ω) x ∈ H̊1(Ω) ×D(Ω)

or in (closed) subspaces R(A) (here D(Ω) = H(div,Ω))
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linear equation

general observations

A ∶ D(A) ⊂ H0 → H1 linear, H0, H1 Hilbert spaces (for simplicity)

solve and provide tools
Ax = f

examples

● A = ∂2
t + rot r̊ot (so Maxwell/wave eq)

● A = ∂t − [ 0 − rot
r̊ot 0

] (fo Maxwell/wave eq, pref form)

● A = [ 0 − rot
r̊ot 0

] − ω (fo time-harm Maxwell eq)

● A = [ 0 − rot
r̊ot 0

] (fo stat Maxwell eq) ⇒ r̊ot − div / rot−d̊iv sys

● A = ∂t + rot r̊ot (so eddy current Maxwell eq)

● A = rot r̊ot − ω (so time-harm eddy current Maxwell eq)

right hand sides and solutions (typically)

● f ∈ L2(I ×Ω) x ∈ L2(I) × R̊(Ω)
● f ∈ L2(I ×Ω) × L2(I ×Ω) x ∈ (L2(I) × R̊(Ω)) × (L2(I) × R(Ω))

● f ∈ L2(Ω) × L2(Ω) x ∈ R̊(Ω) × R(Ω)
or in (closed) subspaces R(A) (here R(Ω) = H(rot,Ω) R̊(Ω) = H0(rot,Ω))
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linear equation

general observations

so far all equations form the classical de Rham complex in 3D (∇-rot-div-complex)

(Ω ⊂ R3 bounded weak Lipschitz domain)

electro-magneto dynamics/time-harm/statics, Maxwell’s equations, acoustics

{0}
ι{0}
⇄
π{0}

L2(Ω)
∇̊
⇄
− div

L2(Ω)
r̊ot
⇄
rot

L2(Ω)
d̊iv
⇄
−∇

L2(Ω)
πR⇄
ιR

R

complex: rot∇ = 0 div rot = 0

Dirk Pauly Old and New Results for HCes and FOSs Universität Duisburg-Essen, Germany



CMAM-8 Computational Methods in Applied Mathematics RCOTWS Raubichi, Minsk, Belarus, July 3, 2018

linear equation

general observations

other possible complexes:

elasticity complex in 3D (sym∇-Rot Rot⊺S -DivS-complex)

(Ω ⊂ R3 bounded strong Lipschitz domain)

elasticity, Rot Rot� Rot Rot� eq

{0}
ι{0}
⇄
π{0}

L2(Ω)
˚sym∇

⇄
−DivS

L2
S(Ω)

˚Rot Rot
⊺
S⇄

Rot Rot⊺S

L2
S(Ω)

D̊ivS⇄
− sym∇

L2(Ω)
πRM⇄
ιRM

RM

complex: Rot Rot⊺S sym∇ = 0 DivS Rot Rot⊺S = 0
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linear equation

general observations

other possible complexes:

biharmonic / general relativity complex in 3D (∇∇-RotS-DivT-complex)

(Ω ⊂ R3 bounded strong Lipschitz domain)

biharmonic / general relativity

{0}
ι{0}
⇄
π{0}

L2(Ω)
∇̊∇
⇄

div DivS
L2
S(Ω)

R̊otS⇄
sym RotT

L2
T(Ω)

D̊ivT⇄
− dev∇

L2(Ω)
πRT⇄
ιRT

RT

complex: RotS∇∇ = 0 DivT RotS = 0
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linear equation

general observations

H0, H1, H2 Hilbert spaces (for simplicity)

A0 ∶ D(A0) ⊂ H0 → H1 lddc (lin, den def, cl)

A1 ∶ D(A1) ⊂ H1 → H2 lddc

A∗0 ∶ D(A∗0 ) ⊂ H1 → H0 lddc (Hilbert space adjoint)

A∗1 ∶ D(A∗1 ) ⊂ H2 → H1 lddc (Hilbert space adjoint)

general complex

⋯
⋯
⇄
⋯

H0

A0⇄
A∗

0

H1

A1⇄
A∗

1

H2
⋯
⇄
⋯

⋯

complex: A1A0 = 0 (⇔ A∗0 A∗1 = 0)

more precisely: R(A0) ⊂ N(A1) (⇔ R(A∗1 ) ⊂ N(A∗0 ))
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linear equation

general observations

A0 ∶ D(A0) ⊂ H0 → H1, A1 ∶ D(A1) ⊂ H1 → H2 lddc

A∗0 ∶ D(A∗0 ) ⊂ H1 → H0, A∗1 ∶ D(A∗1 ) ⊂ H2 → H1 lddc (Hilbert space adjoints)

general complex (A1A0 = 0)

⋯
⋯
⇄
⋯

H0

A0⇄
A∗

0

H1

A1⇄
A∗

1

H2
⋯
⇄
⋯

⋯

Ax = f

typical equations/systems

(stat fos) (stat sos (sa)) (stat fos (sa/ssa)) (time-harm fos (sa/ssa))

A = A1 A = A∗1 A1 A = [ 0 ±A∗1
A1 0

] A = ω − [ 0 ±A∗1
A1 0

]

(diff sos) (wave sos) (wave fos)

A = ∂t +A∗1 A1 A = ∂2
t +A∗1 A1 A = ∂t − [ 0 −A∗1

A1 0
]
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linear equation

general observations

Ax = f

let’s say A ∶ D(A) ⊂ H0 → H1 linear and H0, H1 Hilbert spaces

question: How to solve?
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linear equation

general observations

Ax = f

A ∶ D(A) ⊂ H0 → H1 linear

solution theory in the sense of Hadamard

● existence ⇔ f ∈ R(A)

● uniqueness ⇔ A inj ⇔ N(A) = {0} ⇔ A−1 exists

● cont dep on f ⇔ A−1 cont

⇒ x = A−1f ∈ D(A) and cont estimate (Friedrichs/Poincaré type estimate)

∣x ∣H0
= ∣A−1f ∣H0

≤ cA∣f ∣H1
= cA∣Ax ∣H1

⇒ best constant cA = ∣A−1∣R(A),H0
∣A−1∣R(A),D(A) = (c2

A + 1)1/2
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linear equation

general observations

A ∶ D(A) ⊂ H0 → H1

A∗ ∶ D(A∗) ⊂ H1 → H0 Hilbert space adjoint

Helmholtz/Hodge/Weyl decompositions (projection theorem)

H1 = R(A)⊕N(A∗) H0 = N(A)⊕ R(A∗)

Ax = f

solution theory in the sense of Hadamard

● existence ⇔ f ∈ R(A) = N(A∗)�

● uniqueness ⇔ A inj ⇔ N(A) = {0} ⇔ A−1 exists

● cont dep on f ⇔ A−1 cont ⇔ R(A) cl (cl range theo)

fund range cond: R(A) = R(A) closed (must hold ↝ right setting!)

kernel cond: N(A) = {0} (fails in gen ↝ proj onto N(A)� = R(A∗))
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linear equation

general observations

Helmholtz/Hodge/Weyl decompositions (projection theorem)

H1 = R(A)⊕N(A∗) H0 = N(A)⊕ R(A∗)

remarkable observations

time-dependent problems are simple
in gen A ∶ D(A) ⊂ H→ H, A = ∂t +T (gen T skew-sa, or alt lsast Re T ≥ 0)

N(A) = {0} N(A∗) = {0} R(A) (cl) = N(A∗)� = H

time-harmonic problems are more complicated
in gen A ∶ D(A) ⊂ H→ H, A = −ω +T

N(A), N(A∗) (fin dim) R(A) (cl, fin co-dim) = N(A∗)�

(Fredholm alternative)

stat problems are most complicated
in gen A ∶ D(A) ⊂ H0 → H1

dimN(A) = dimN(A∗) =∞ (possibly) R(A) (cl, infin co-dim) = N(A∗)�
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linear equation

fa-toolbox for linear (first order) problems/systems

Ax = f

general theory

solution theory
Friedrichs/Poincaré estimates and constants
Helmholtz/Hodge/Weyl decompositions
compact embeddings
continuous and compact inverse operators
closed ranges
variational formulations
functional a posteriori error estimates
generalized div-curl-lemma
. . .

idea: solve problem with general and simple linear functional analysis
(⇒ fa-toolbox) ...

literature: probably very well known for ages, but hard to find ...

Friedrichs, Weyl, Hörmander, Fredholm, von Neumann, Riesz, Banach, ... ?

Why not rediscover and extend/modify for our purposes?
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linear equation

1st fundamental observations

A ∶ D(A) ⊂ H0 → H1 lddc, A∗ ∶ D(A∗) ⊂ H1 → H0 Hilbert space adjoint

(A,A∗) dual pair as (A∗)∗ = A = A

A, A∗ may not be inj

Helmholtz/Hodge/Weyl decompositions (projection theorem)

H1 = N(A∗)⊕ R(A) H0 = N(A)⊕ R(A∗)

reduced operators restr to N(A)� and N(A∗)�

A ∶= A∣N(A)� = A∣
R(A∗)

A∗ ∶= A∗∣N(A∗)� = A∗∣
R(A)

A, A∗ inj ⇒ A−1, (A∗)−1 ex

Dirk Pauly Old and New Results for HCes and FOSs Universität Duisburg-Essen, Germany
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linear equation

1st fundamental observations

A ∶ D(A) ⊂ H0 → H1, A∗ ∶ D(A∗) ⊂ H1 → H0 lddc (A,A∗) dual pair

H1 = N(A∗)⊕ R(A) H0 = N(A)⊕ R(A∗)
more precisely

A ∶= A∣
R(A∗)

∶ D(A) ⊂ R(A∗)→ R(A), D(A) ∶= D(A) ∩N(A)� = D(A) ∩ R(A∗)

A∗ ∶= A∗∣
R(A)

∶ D(A∗) ⊂ R(A)→ R(A∗), D(A∗) ∶= D(A∗) ∩N(A∗)� = D(A∗) ∩ R(A)

(A,A∗) dual pair and A, A∗ inj ⇒

inverse ops exist (and bij)

A−1 ∶ R(A)→ D(A) (A∗)−1 ∶ R(A∗)→ D(A∗)

refined decompositions

D(A) = N(A)⊕D(A) D(A∗) = N(A∗)⊕D(A∗)

⇒
R(A) = R(A) R(A∗) = R(A∗)

Dirk Pauly Old and New Results for HCes and FOSs Universität Duisburg-Essen, Germany
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linear equation

1st fundamental observations

closed range theorem & closed graph theorem ⇒

Lemma (Friedrichs-Poincaré type est/cl range/cont inv)

The following assertions are equivalent:

(i) ∃ cA ∈ (0,∞) ∀ x ∈ D(A) ∣x ∣H0
≤ cA∣Ax ∣H1

(i∗) ∃ cA∗ ∈ (0,∞) ∀ y ∈ D(A∗) ∣y ∣H1
≤ cA∗ ∣A∗y ∣H0

(ii) R(A) = R(A) is closed in H1.

(ii∗) R(A∗) = R(A∗) is closed in H0.

(iii) A−1 ∶ R(A)→ D(A) is continuous and bijective.

(iii∗) (A∗)−1 ∶ R(A∗)→ D(A∗) is continuous and bijective.

In case that one of the latter assertions is true, e.g., (ii), R(A) is closed, we have

H0 = N(A)⊕ R(A∗) H1 = N(A∗)⊕ R(A)
D(A) = N(A)⊕D(A) D(A∗) = N(A∗)⊕D(A∗)
D(A) = D(A) ∩ R(A∗) D(A∗) = D(A∗) ∩ R(A)

and A ∶ D(A) ⊂ R(A∗)→ R(A), A∗ ∶ D(A∗) ⊂ R(A)→ R(A∗).

Dirk Pauly Old and New Results for HCes and FOSs Universität Duisburg-Essen, Germany
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linear equation

1st fundamental observations

recall

(i) ∃ cA ∈ (0,∞) ∀ x ∈ D(A) ∣x ∣H0
≤ cA∣Ax ∣H1

(i∗) ∃ cA∗ ∈ (0,∞) ∀ y ∈ D(A∗) ∣y ∣H1
≤ cA∗ ∣A∗y ∣H0

‘best’ consts in (i) and (i∗) equal norms of the inv ops and Rayleigh quotients

cA = ∣A−1∣R(A),R(A∗) cA∗ = ∣(A∗)−1∣R(A∗),R(A)

1

cA
= inf

0≠x∈D(A)

∣Ax ∣H1

∣x ∣H0

1

cA∗
= inf

0≠y∈D(A∗)

∣A∗y ∣H0

∣y ∣H1

Lemma (Friedrichs-Poincaré type const)

cA = cA∗

Dirk Pauly Old and New Results for HCes and FOSs Universität Duisburg-Essen, Germany
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linear equation

1st fundamental observations

Lemma (cpt emb/cpt inv)

The following assertions are equivalent:

(i) D(A)↪↪ H0 is compact.

(i∗) D(A∗)↪↪ H1 is compact.

(ii) A−1 ∶ R(A)→ R(A∗) is compact.

(ii∗) (A∗)−1 ∶ R(A∗)→ R(A) is compact.

Lemma (Friedrichs-Poincaré type est/cl range/cont inv)

⇓ D(A)↪↪ H0 compact

(i) ∃ cA ∈ (0,∞) ∀ x ∈ D(A) ∣x ∣H0
≤ cA∣Ax ∣H1

(i∗) ∃ cA∗ ∈ (0,∞) ∀ y ∈ D(A∗) ∣y ∣H1
≤ cA∗ ∣A∗y ∣H0

(ii) R(A) = R(A) is closed in H1.

(ii∗) R(A∗) = R(A∗) is closed in H0.

(iii) A−1 ∶ R(A)→ D(A) is continuous and bijective.

(iii∗) (A∗)−1 ∶ R(A∗)→ D(A∗) is continuous and bijective.

(i)-(iii∗) equi & the resp Helm deco hold & ∣A−1∣ = cA = cA∗ = ∣(A∗)−1∣

Dirk Pauly Old and New Results for HCes and FOSs Universität Duisburg-Essen, Germany
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linear equation

2nd fundamental observations

So far no complex...

A0 ∶ D(A0) ⊂ H0 → H1, A1 ∶ D(A1) ⊂ H1 → H2 (lddc)

A∗0 ∶ D(A∗0 ) ⊂ H1 → H0, A∗1 ∶ D(A∗1 ) ⊂ H2 → H1 (lddc)

general complex (A1A0 = 0, i.e., R(A0) ⊂ N(A1) and R(A∗1 ) ⊂ N(A∗0 ))

⋯
⋯
⇄
⋯

H0

A0⇄
A∗

0

H1

A1⇄
A∗

1

H2
⋯
⇄
⋯

⋯

recall Helmholtz deco

H1 = R(A0)⊕N(A∗0 )

⋂ ⋃ ⇒ (e.g.) N(A1) = R(A0)⊕ (N(A1) ∩N(A∗0 )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶K1

)

= N(A1)⊕ R(A∗1 )
⇒ refined Helmholtz deco

H1 = R(A0)⊕K1 ⊕ R(A∗1 )

Dirk Pauly Old and New Results for HCes and FOSs Universität Duisburg-Essen, Germany
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linear equation

2nd fundamental observations

recall

D(A1) = D(A1) ∩ R(A∗1 ) R(A1) = R(A1) R(A∗1 ) = R(A∗1 )

D(A∗0 ) = D(A∗0 ) ∩ R(A0) R(A∗0 ) = R(A∗0 ) R(A0) = R(A0)

cohomology group K1 = N(A1) ∩N(A∗0 )

Lemma (Helmholtz deco I)

H1 = R(A0)⊕N(A∗0 ) H1 = R(A∗1 )⊕N(A1)
D(A∗0 ) = D(A∗0 )⊕N(A∗0 ) D(A1) = D(A1)⊕N(A1)
N(A1) = D(A∗0 )⊕K1 N(A∗0 ) = D(A1)⊕K1

D(A1) = R(A0)⊕ (D(A1) ∩N(A∗0 )) D(A∗0 ) = R(A∗1 )⊕ (D(A∗0 ) ∩N(A1))

Lemma (Helmholtz deco II)

H1 = R(A0)⊕K1 ⊕ R(A∗1 )

D(A1) = R(A0)⊕K1 ⊕D(A1)

D(A∗0 ) = D(A∗0 )⊕K1 ⊕ R(A∗1 )
D(A1) ∩D(A∗0 ) = D(A∗0 )⊕K1 ⊕D(A1)

Dirk Pauly Old and New Results for HCes and FOSs Universität Duisburg-Essen, Germany



CMAM-8 Computational Methods in Applied Mathematics RCOTWS Raubichi, Minsk, Belarus, July 3, 2018

linear equation

2nd fundamental observations

K1 = N(A1) ∩N(A∗0 ) D(A1) = D(A1) ∩ R(A∗1 ) D(A∗0 ) = D(A∗0 ) ∩ R(A0)

Lemma (cpt emb II)

The following assertions are equivalent:

(i) D(A0)↪↪ H0, D(A1)↪↪ H1, and K1 ↪↪ H1 are compact.

(ii) D(A1) ∩D(A∗0 )↪↪ H1 is compact.

In this case K1 <∞.

Theorem (fa-toolbox I)

⇓ D(A1) ∩D(A∗0 )↪↪ H1 compact

(i) all emb cpt, i.e., D(A0)↪↪ H0, D(A1)↪↪ H1, D(A∗0 )↪↪ H1, D(A∗1 )↪↪ H2 cpt

(ii) cohomology group K1 finite dim

(iii) all ranges closed, i.e., R(A0), R(A∗0 ), R(A1), R(A∗1 ) cl

(iv) all Friedrichs-Poincaré type est hold

(v) all Hodge-Helmholtz-Weyl type deco I & II hold with closed ranges

Dirk Pauly Old and New Results for HCes and FOSs Universität Duisburg-Essen, Germany
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linear equation

2nd fundamental observations

complex ⋯
⋯
⇄
⋯

H0

A0⇄
A∗

0

H1

A1⇄
A∗

1

H2
⋯
⇄
⋯

⋯

Theorem (fa-toolbox I (Friedrichs-Poincaré type est))

⇓ D(A1) ∩D(A∗0 )↪↪ H1 compact ⇒ ∃ ∣A−1
i ∣ = cAi

= cA∗
i
= ∣(A∗i )−1∣ ∈ (0,∞)

(i) ∀ x ∈ D(A0) ∣x ∣H0
≤ cA0

∣A0x ∣H1

(i∗) ∀ y ∈ D(A∗0 ) ∣y ∣H1
≤ cA0

∣A∗0 y ∣H0

(ii) ∀ y ∈ D(A1) ∣y ∣H1
≤ cA1

∣A1y ∣H2

(ii∗) ∀ z ∈ D(A∗1 ) ∣z ∣H2
≤ cA1

∣A∗1 z ∣H1

(iii) ∀ y ∈ D(A1) ∩D(A∗0 ) ∣(1 − πK1
)y ∣H1

≤ cA1
∣A1y ∣H2

+ cA0
∣A∗0 y ∣H0

note πK1
y ∈ K1 and (1 − πK1

)y ∈ K�
1

Remark

enough R(A0) and R(A1) cl

Dirk Pauly Old and New Results for HCes and FOSs Universität Duisburg-Essen, Germany
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linear equation

2nd fundamental observations

complex ⋯
⋯
⇄
⋯

H0

A0⇄
A∗

0

H1

A1⇄
A∗

1

H2
⋯
⇄
⋯

⋯

Theorem (fa-toolbox I (Helmholtz deco))

⇓ D(A1) ∩D(A∗0 )↪↪ H1 compact

H1 = R(A0) ⊕N(A∗0 ) H1 = R(A∗1 )⊕N(A1)
D(A∗0 ) = D(A∗0 )⊕N(A∗0 ) D(A1) = D(A1)⊕N(A1)
N(A1) = D(A∗0 )⊕K1 N(A∗0 ) = D(A1)⊕K1

D(A1) = R(A0) ⊕ (D(A1) ∩N(A∗0 )) D(A∗0 ) = R(A∗1 ) ⊕ (D(A∗0 ) ∩N(A1))

H1 = R(A0) ⊕K1 ⊕ R(A∗1 )
D(A1) = R(A0) ⊕K1 ⊕D(A1)
D(A∗0 ) = D(A∗0 )⊕K1 ⊕ R(A∗1 )

D(A1) ∩D(A∗0 ) = D(A∗0 )⊕K1 ⊕D(A1)

Remark

enough R(A0) and R(A1) cl
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(stat) first order system

(stat) first order system - solution theory

complex ⋯
⋯
⇄
⋯

H0

A0⇄
A∗

0

H1

A1⇄
A∗

1

H2
⋯
⇄
⋯

⋯

A1x = f dimN(A1) =∞

find x ∈ D(A1) ∩D(A∗0 ) such that the fos

A1x = f (r̊otE = F)
A∗0 x = g think of (−divE = g)
πK1

x = k (πDE = K)

kernel = cohomology group = K1 = N(A1) ∩N(A∗0 )

trivially necessary f ∈ R(A1) g ∈ R(A∗0 ) k ∈ K1

apply fa-toolbox
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(stat) first order system

(stat) first order system - solution theory

complex ⋯
⋯
⇄
⋯

H0

A0⇄
A∗

0

H1

A1⇄
A∗

1

H2
⋯
⇄
⋯

⋯

find x ∈ D(A1) ∩D(A∗0 ) st fos A1x = f A∗0 x = g πK1
x = k

Theorem (fa-toolbox II (solution theory))

⇓ D(A1) ∩D(A∗0 )↪↪ H1 compact

fos is uniq sol ⇔ f ∈ R(A1) g ∈ R(A∗0 ) k ∈ K1

x ∶= xf + xg + k ∈ D(A1)⊕D(A∗0 )⊕K1 = D(A1) ∩D(A∗0 )

xf ∶= A−1
1 f ∈ D(A1)

xg ∶= (A∗0 )−1g ∈ D(A∗0 )

dep cont on data ∣x ∣H1
≤ ∣xf ∣H1

+ ∣xg ∣H1
+ ∣k ∣H1

≤ cA1
∣f ∣H2

+ cA0
∣g ∣H0

+ ∣k ∣H1

moreover
πR(A∗

1
)x = xf πR(A0)

x = xg πK1
x = k ∣x ∣2H1

= ∣xf ∣2H1
+ ∣xg ∣2H1

+ ∣k ∣2H1

Remark

enough R(A0) and R(A1) cl
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(stat) first order system

(stat) first order system - variational formulations

x ∶= xf + xg + k ∈ D(A1)⊕D(A∗0 )⊕K1 = D(A1) ∩D(A∗0 )
xf ∶= A−1

1 f ∈ D(A1) = D(A1) ∩ R(A∗1 ) = D(A1) ∩N(A∗0 ) ∩K�
1

xg ∶= (A∗0 )−1g ∈ D(A∗0 ) = D(A∗0 ) ∩ R(A0) = D(A∗0 ) ∩N(A1) ∩K�
1

A1x = f A1xf = f A1xg = 0 A1k = 0

A∗0 x = g A∗0 xf = 0 A∗0 xg = g A∗0k = 0

πK1
x = k πK1

xf = 0 πK1
xg = 0 πK1

k = k

option I: find xf and xg separately ⇒ x = xf + xg + k

option II: find x directly

Dirk Pauly Old and New Results for HCes and FOSs Universität Duisburg-Essen, Germany
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(stat) first order system

(stat) first order system - variational formulations I

finding

xf ∶= A−1
1 f ∈ D(A1) = D(A1) ∩ R(A∗1 )

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
=R(A∗

1
)

= D(A1) ∩N(A∗0 ) ∩K�
1

A1xf = f

A∗0 xf = 0

πK1
xf = 0

at least two options

option Ia: multiply A1xf = f by A1ξ ⇒
∀ ξ ∈ D(A1) ⟨A1xf ,A1ξ⟩H2

= ⟨f ,A1ξ⟩H2

weak form of A∗1 A1xf = A∗1 f

option Ib: repr xf = A∗1 yf with potential yf = (A∗1 )−1xf ∈ D(A∗1 )
and mult by xf by A∗1φ ⇒

∀φ ∈ D(A∗1 ) ⟨A∗1 yf ,A∗1φ⟩H1
= ⟨xf ,A∗1φ⟩H1

= ⟨A1xf , φ⟩H2
= ⟨f , φ⟩H2

weak form of A1xf = f and A1A∗1 yf = f

analogously for xg
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(stat) first order system

(stat) first order system - variational formulations I

Theorem

Let D(A1) ∩D(A∗0 )↪↪ H1 be compact and let f ∈ R(A1) and g ∈ R(A∗0 ).
The part sol xf and xg can be found by the following 4 var form:

(i) ∃1 x̃f ∈ D(A1) st ∀ ξ ∈ D(A1) ⟨A1x̃f ,A1ξ⟩H2
= ⟨f ,A1ξ⟩H2

which even holds for all ξ ∈ D(A1). ⇒ x̃f = xf

(i’) ∃1 yf ∈ D(A∗1 ) st ∀φ ∈ D(A∗1 ) ⟨A∗1 yf ,A∗1φ⟩H1
= ⟨f , φ⟩H2

which even holds for all φ ∈ D(A∗1 ). ⇒ A∗1 yf = xf

(ii) ∃1 x̃g ∈ D(A∗0 ) st ∀ ζ ∈ D(A∗0 ) ⟨A∗0 x̃g ,A∗0 ζ⟩H0
= ⟨g ,A∗0 ζ⟩H0

which even holds for all ζ ∈ D(A∗0 ). ⇒ x̃g = xg

(ii’) ∃1 zg ∈ D(A0) st ∀ϕ ∈ D(A0) ⟨A0zg ,A0ϕ⟩H1
= ⟨g , ϕ⟩H0

which even holds for all ϕ ∈ D(A0). ⇒ A0zg = xg
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(stat) first order system

(stat) first order system - variational formulations I

e.g. ∃1 x̃f ∈ D(A1) st ∀ ξ ∈ D(A1) ⟨A1x̃f ,A1ξ⟩H2
= ⟨f ,A1ξ⟩H2

⇒ x̃f = xf

Helmholtz deco ⇒
x̃f ∈ D(A1) = D(A1) ∩ R(A∗1 ) = D(A1) ∩N(A1)� = D(A1) ∩ (R(A0)⊕K1)

�

= D(A1) ∩ R(A0)� ∩K�
1

⇒ saddle point formulations/double (multiple) saddle point formulations

Theorem

Let D(A1) ∩D(A∗0 )↪↪ H1 be compact and let f ∈ R(A1) and g ∈ R(A∗0 ).
The part sol xf and xg can be found by the following 4 var form:

(i) ∃1 (x̃f ,u,h) ∈ D(A1) ×D(A0) ×K1 st ∀ (ξ,ϕ, κ) ∈ D(A1) ×D(A0) ×K1

⟨A1x̃f ,A1ξ⟩H2
+ ⟨A0u, ξ⟩H1

+ ⟨h, ξ⟩H1
= ⟨f ,A1ξ⟩H2

⟨x̃f ,A0ϕ⟩H1
= 0

⟨x̃f , κ⟩H1
= 0

⇒ u = 0 h = 0 x̃f = xf

(i’) analogously for yf

(ii) analogously for x̃g

(ii’) analogously for zg
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(stat) first order system

(stat) first order system - variational formulations I

latter tripple saddle point formulation

∃1 (x̃f ,u,h) ∈ D(A1) ×D(A0) ×K1 st ∀ (ξ,ϕ, κ) ∈ D(A1) ×D(A0) ×K1

⟨A1x̃f ,A1ξ⟩H2
+ ⟨A0u, ξ⟩H1

+ ⟨h, ξ⟩H1
= ⟨f ,A1ξ⟩H2

⟨x̃f ,A0ϕ⟩H1
= 0

⟨x̃f , κ⟩H1
= 0

is weak formulation of

A∗1 A1x̃f +A0u + h = A∗1 f A∗0 x̃f = 0 πK1
x̃f = 0

i.e., in formal matrix notation

⎡⎢⎢⎢⎢⎢⎣

A∗1 A1 A0 ιK1

A∗0 0 0
πK1

= ι∗K1
0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x̃f
u
h

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

A∗1 f
0
0

⎤⎥⎥⎥⎥⎥⎦
Note u = 0, h = 0, x̃f = xf

potential yf ⎡⎢⎢⎢⎢⎢⎣

A1A∗1 A∗2 ιK2

A2 0 0
πK2

= ι∗K2
0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

yf
v
h2

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

f
0
0

⎤⎥⎥⎥⎥⎥⎦
Note v = 0, h2 = 0, A∗1 yf = xf
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(stat) first order system

(stat) first order system - variational formulations II

⎡⎢⎢⎢⎢⎢⎣

A∗1 A1 A0 ιK1

A∗0 0 0
πK1

= ι∗K1
0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x̃f
u
h

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

A∗1 f
0
0

⎤⎥⎥⎥⎥⎥⎦

Note u = 0, h = 0, x̃f = xf

SAME formulation can be used to compute x = xf + xg + k directly!

⎡⎢⎢⎢⎢⎢⎣

A∗1 A1 A0 ιK1

A∗0 0 0
πK1

= ι∗K1
0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x̃
u
h

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

A∗1 f
g
k

⎤⎥⎥⎥⎥⎥⎦

⇒ u = 0, h = 0, x̃ = x

Remark

special case A0 = ∇̊ A∗0 = −div or A0 = ∇ A∗0 = −d̊iv

A1 = r̊ot A∗1 = rot A0 = rot A∗0 = r̊ot

var form recently proposed by
Alonso Rodriguez, A., Bertolazzi E., and Valli A.: The curl-div system: theory and
finite element approximation, talk/preprint, 2018
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(stat) first order system

(stat) first order system - variational formulations II

Theorem

Let D(A1) ∩D(A∗0 )↪↪ H1 be compact and let f ∈ R(A1) and g ∈ R(A∗0 ).
x can be found by the following 2 double saddle point var form:

(i) ∃1 (x̃ ,u,h1) ∈ D(A1) ×D(A0) ×K1 st ∀ (ξ,ϕ, κ) ∈ D(A1) ×D(A0) ×K1

⟨A1x̃ ,A1ξ⟩H2
+ ⟨A0u, ξ⟩H1

+ ⟨h1, ξ⟩H1
= ⟨f ,A1ξ⟩H2

⟨x̃ ,A0ϕ⟩H1
= ⟨g , ϕ⟩H0

⟨x̃ , κ⟩H1
= ⟨k, κ⟩H1

⇒ u = 0, h1 = 0, x̃ = x

(ii) ∃1 (x̂ , v ,h2) ∈ D(A∗0 ) ×D(A∗1 ) ×K1 st ∀ (ζ, φ, κ) ∈ D(A∗0 ) ×D(A∗1 ) ×K1

⟨A∗0 x̂ ,A∗0 ζ⟩H0
+ ⟨A∗1 v , ζ⟩H1

+ ⟨h2, ζ⟩H1
= ⟨g ,A∗0 ζ⟩H0

⟨x̂ ,A∗1φ⟩H1
= ⟨f , φ⟩H2

⟨x̂ , κ⟩H1
= ⟨k, κ⟩H1

⇒ v = 0, h2 = 0, x̂ = x
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(stat) first order system

(stat) first order system - variational formulations II

form matrix not ⎡⎢⎢⎢⎢⎢⎣

A∗1 A1 A0 ιK1

A∗0 0 0
πK1

= ι∗K1
0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x̃
u
h1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

A∗1 f
g
k

⎤⎥⎥⎥⎥⎥⎦

⇒ u = 0, h1 = 0, x̃ = x

⎡⎢⎢⎢⎢⎢⎣

A0A∗0 A∗1 ιK1

A1 0 0
πK1

= ι∗K1
0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x̂
v
h2

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

A0g
f
k

⎤⎥⎥⎥⎥⎥⎦

⇒ v = 0, h2 = 0, x̂ = x
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(stat) first order system

(stat) first order system - variational formulations II

D(A0) = D(A0) ∩ R(A∗0 ) = D(A0) ∩N(A0)� = D(A0) ∩ (R(A−1)⊕K0)
�

= D(A0) ∩ R(A−1)� ∩K�
0

D(A∗1 ) = D(A∗1 ) ∩ R(A1) = D(A∗1 ) ∩N(A∗1 )� = D(A∗1 ) ∩ (R(A∗2 )⊕K2)
�

= D(A∗1 ) ∩ R(A∗2 )� ∩K�
2
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(stat) first order system

(stat) first order system - variational formulations II

D(A0) = D(A0) ∩ R(A−1)� ∩K�
0 D(A∗1 ) = D(A∗1 ) ∩ R(A∗2 )� ∩K�

2

Theorem

Let D(A1) ∩D(A∗0 )↪↪ H1 be compact and let f ∈ R(A1) and g ∈ R(A∗0 ).
x can be found by the following quadruple saddle point var form:

∃1 (x̃ ,u, y ,h1,h0) ∈ D(A1) ×D(A0) ×D(A−1) ×K1 ×K0 st

∀ (ξ,ϕ, ϑ, κ, λ) ∈ D(A1) ×D(A0) ×D(A−1) ×K1 ×K0

⟨A1x̃ ,A1ξ⟩H2
+ ⟨A0u, ξ⟩H1

+ ⟨h1, ξ⟩H1
= ⟨f ,A1ξ⟩H2

⟨x̃ ,A0ϕ⟩H1
+ ⟨A−1y , ϕ⟩H0

+ ⟨h0, ϕ⟩H0
= ⟨g , ϕ⟩H0

⟨u,A−1ϑ⟩H0
= 0

⟨x̃ , κ⟩H1
= ⟨k, κ⟩H1

⟨u, λ⟩H0
= 0

⇒ u = 0, y = 0, h1 = 0, h0 = 0, x̃ = x
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(stat) first order system

(stat) first order system - variational formulations II

D(A0) = D(A0) ∩ R(A−1)� ∩K�
0 D(A∗1 ) = D(A∗1 ) ∩ R(A∗2 )� ∩K�

2

Theorem

Let D(A1) ∩D(A∗0 )↪↪ H1 be compact and let f ∈ R(A1) and g ∈ R(A∗0 ).
x can be found by the following quadruple saddle point var form:

∃1 (x̂ , v , z,h1,h2) ∈ D(A∗0 ) ×D(A∗1 ) ×D(A∗2 ) ×K1 ×K2 st

∀ (ζ, φ, θ, κ, λ) ∈ D(A∗0 ) ×D(A∗1 ) ×D(A∗2 ) ×K1 ×K2

⟨A∗0 x̂ ,A∗0 ζ⟩H0
+ ⟨A∗1 v , ζ⟩H1

+ ⟨h1, ζ⟩H1
= ⟨g ,A∗0 ζ⟩H0

⟨x̂ ,A∗1φ⟩H1
+ ⟨A∗2 z, φ⟩H2

+ ⟨h2, φ⟩H2
= ⟨f , φ⟩H2

⟨v ,A∗2 θ⟩H2
= 0

⟨x̂ , κ⟩H1
= ⟨k, κ⟩H1

⟨v , λ⟩H2
= 0

⇒ v = 0, z = 0, h1 = 0, h2 = 0, x̂ = x
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(stat) first order system

(stat) first order system - variational formulations II

form matrix not

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A∗1 A1 A0 0 ιK1
0

A∗0 0 A−1 0 ιK0

0 A∗
−1 0 0 0

πK1
= ι∗K1

0 0 0 0

0 πK0
= ι∗K0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̃
u
y
h1

h0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A∗1 f
g
0
k
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

note u = 0, y = 0, h1 = 0, h0 = 0, x̃ = x

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0A∗0 A∗1 0 ιK1
0

A1 0 A∗2 0 ιK2

0 A2 0 0 0
πK1

= ι∗K1
0 0 0 0

0 πK2
= ι∗K2

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂
v
z
h1

h2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0g
f
0
k
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

note v = 0, z = 0, h1 = 0, h2 = 0, x̂ = x

typical situation in 3D:
K−1, K0, K3, K4 trivial only K1, K2 non-trivial (Dirichlet/Neumann fields)
A∗
−2 = 0 ⇒ N(A∗

−2) = H−1

A4 = 0 ⇒ N(A4) = H4

N(A3), N(A∗
−1) finite co-dim
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(stat) first order system

(stat) first order system - variational formulations II

typical situation in 3D:

K−1, K0, K3, K4 trivial only K1, K2 non-trivial (Dirichlet/Neumann fields)

A∗
−2 = 0 ⇒ N(A∗

−2) = H−1

A4 = 0 ⇒ N(A4) = H4

N(A3), N(A∗
−1) finite co-dim

recall

D(Ai) = D(Ai) ∩ R(Ai−1)� ∩K�
i D(A∗i ) = D(A∗i ) ∩ R(A∗i+1)� ∩K�

i+1

= D(Ai) ∩N(A∗i−1) ∩K�
i = D(A∗i ) ∩N(Ai+1) ∩K�

i+1

always in 3D

D(A−1) = D(A−1) D(A∗3 ) = D(A∗3 )
D(A0) = D(A0) ∩N(A∗−1) D(A∗2 ) = D(A∗2 ) ∩N(A3)

often in 3D

D(A0) = D(A0) D(A∗2 ) = D(A∗2 )
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(stat) first order system

(stat) first order system - variational formulations II

always in 3D

D(A−1) = D(A−1) D(A∗3 ) = D(A∗3 )
D(A0) = D(A0) ∩N(A∗−1) D(A∗2 ) = D(A∗2 ) ∩N(A3)

often in 3D

D(A0) = D(A0) D(A∗2 ) = D(A∗2 )
always in 3D: test spaces (K0 trivial)
D(A1) ×D(A0) ×D(A−1) ×K1 = D(A1) ×D(A0) ×D(A−1) ×K1 OK

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A∗1 A1 A0 0 ιK1

A∗0 0 A−1 0
0 A∗

−1 0 0
πK1

= ι∗K1
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x̃
u
y
h1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A∗1 f
g
0
k

⎤⎥⎥⎥⎥⎥⎥⎥⎦
often in 3D: test spaces
D(A∗0 ) ×D(A∗1 ) ×D(A∗2 ) ×K1 ×K2 = D(A∗0 ) ×D(A∗1 ) ×D(A∗2 ) ×K1 ×K2 OK

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0A∗0 A∗1 0 ιK1
0

A1 0 A∗2 0 ιK2

0 A2 0 0 0
πK1

= ι∗K1
0 0 0 0

0 πK2
= ι∗K2

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂
v
z
h1

h2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0g
f
0
k
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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(stat) first order system

(stat) first order system - variational formulations II

always in 3D

D(A−1) = D(A−1) D(A∗3 ) = D(A∗3 )

always in 3D: test spaces (K0 trivial)
D(A1) ×D(A0) ×D(A−1) ×K1 = D(A1) ×D(A0) ×D(A−1) ×K1 OK

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A∗1 A1 A0 0 ιK1

A∗0 0 A−1 0
0 A∗

−1 0 0
πK1

= ι∗K1
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x̃
u
y
h1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A∗1 f
g
0
k

⎤⎥⎥⎥⎥⎥⎥⎥⎦

always in 3D: test spaces (K3 trivial)
D(A∗0 )×D(A∗1 )×D(A∗2 )×D(A∗3 )×K1×K2 = D(A∗0 )×D(A∗1 )×D(A∗2 )×D(A∗3 )×K1×K2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0A∗0 A∗1 0 0 ιK1
0

A1 0 A∗2 0 0 ιK2

0 A2 0 A∗3 0 0
0 0 A3 0 0 0

πK1
= ι∗K1

0 0 0 0 0

0 πK2
= ι∗K2

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂
v
z
w
h1

h2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0g
f
0
0
k
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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(stat) first order system

(stat) first order system - a posteriori error estimates

problem: find x ∈ D(A1) ∩D(A∗0 ) st A1x = f A∗0 x = g πK1
x = k

‘very’ non-conforming ‘approximation’ of x : x̃ ∈ H1

def., dcmp. err. e = x − x̃ = πR(A0)
e + πK1

e + πR(A∗
1
)e ∈ H1 = R(A0)⊕K1 ⊕ R(A∗1 )

Theorem (sharp upper bounds)

Let x̃ ∈ H1 and e = x − x̃ . Then
∣e∣2H1

= ∣πR(A0)
e∣2H1

+ ∣πK1
e∣2H1

+ ∣πR(A∗
1
)e∣2H1

∣πR(A0)
e∣H1

= min
φ∈D(A∗

0
)
(cA0

∣A∗0φ − g ∣H0
+ ∣φ − x̃ ∣H1

) reg (A0A
∗
0 + 1)-prbl in D(A∗0 )

∣πR(A∗
1
)e∣H1

= min
ϕ∈D(A1)

(cA1
∣A1ϕ − f ∣H2

+ ∣ϕ − x̃ ∣H1
) reg (A∗1 A1 + 1)-prbl in D(A1)

∣πK1
e∣H1

= ∣πK1
x̃ − k ∣H1

= min
ξ∈D(A0)

ζ∈D(A∗1 )

∣A0ξ +A∗1 ζ + x̃ − k ∣H1

cpld (A∗0 A0)-(A1A
∗
1 )-sys in D(A0)-D(A

∗
1 )

Remark

Even πK1
e = k − πK1

x̃ and the minima are attained at
φ̂ = πR(A0)

e + x̃ , ϕ̂ = πR(A∗
1
)e + x̃ , A0ξ̂ +A∗1 ζ̂ = (πK1

− 1)x̃ .
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(stat) first order system

(stat) first order system - a posteriori error estimates

problem: find x ∈ D(A1) ∩D(A∗0 ) st A1x = f A∗0 x = g πK1
x = k

‘very’ non-conforming ‘approximation’ of x : x̃ ∈ H1

def., dcmp. err. e = x − x̃ = πR(A0)
e + πK1

e + πR(A∗
1
)e ∈ H1 = R(A0)⊕K1 ⊕ R(A∗1 )

Theorem (sharp lower bounds)

Let x̃ ∈ H1 and e = x − x̃ . Then
∣e∣2H1

= ∣πR(A0)
e∣2H1

+ ∣πK1
e∣2H1

+ ∣πR(A∗
1
)e∣2H1

∣πR(A0)
e∣2H1

= max
φ∈D(A0)

(2⟨g , φ⟩H0
− ⟨2x̃ +A0φ,A0φ⟩H1

) (A∗0 A0)-prbl in D(A0)

∣πR(A∗
1
)e∣2H1

= max
ϕ∈D(A∗

1
)
(2⟨f , ϕ⟩H2

− ⟨2x̃ +A∗1ϕ,A
∗
1ϕ⟩H1

) (A1A
∗
0 )-prbl in D(A∗1 )

∣πK1
e∣2H1

= max
ψ∈K1

⟨2(k − x̃) − ψ,ψ⟩H1

πK1
e = k − πK1

x̃

Remark

The maxima are attained at φ ∈ D(A0) with A0φ = πA0
e

and ϕ ∈ D(A∗1 ) with A∗1ϕ = πR(A∗
1
)e and ψ = πK1

e
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(stat) first order system

A∗
0-A1-lemma (generalized global div-curl-lemma)

Lemma (A∗0 -A1-lemma)

Let D(A1) ∩D(A∗0 )↪ H1 be compact, and

(i) (xn) bounded in D(A1),

(ii) (yn) bounded in D(A∗0 ).

⇒ ∃ x ∈ D(A1), y ∈ D(A∗0 ) and subsequences st

xn ⇀ x in D(A1) and yn ⇀ y in D(A∗0 ) as well as

⟨xn, yn⟩H1
→ ⟨x , y⟩H1

.
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applications: fos & sos (first and second order systems)

classical de Rham complex in 3D (∇-rot-div-complex)

Ω ⊂ R3 bounded weak Lipschitz domain, ∂Ω = Γ = Γt ∪̇Γn

(electro-magneto dynamics, Maxwell’s equations)

{0}
ι{0}
⇄
π{0}

L2 ∇̊
⇄
− div

L2 r̊ot
⇄
rot

L2 d̊iv
⇄
−∇

L2
πR⇄
ιR

R

mixed boundary conditions and inhomogeneous and anisotropic media

{0} or R
ι
⇄
π

L2
∇Γt⇄

− divΓn ε
L2
ε

rotΓt⇄
ε−1 rotΓn

L2
divΓt⇄
−∇Γn

L2 π
⇄
ι

R or {0}
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applications: fos & sos (first and second order systems)

classical de Rham complex in 3D (∇-rot-div-complex)

Ω ⊂ R3 bounded weak Lipschitz domain, ∂Ω = Γ = Γt ∪̇Γn

(electro-magneto dynamics, Maxwell’s equations with mixed boundary conditions)

{0} or R
ι
⇄
π

L2
∇Γt⇄

− divΓn ε
L2
ε

rotΓt⇄
ε−1 rotΓn

L2
divΓt⇄
−∇Γn

L2 π
⇄
ι

R or {0}

related fos

∇Γt
u = A in Ω ∣ rotΓt

E = J in Ω ∣ divΓt
H = k in Ω ∣ πv = b in Ω

πu = a in Ω ∣ − divΓn εE = j in Ω ∣ ε
−1

rotΓn H = K in Ω ∣ −∇Γn v = B in Ω

related sos

− divΓn ε∇Γt
u = j in Ω ∣ ε

−1
rotΓn rotΓt

E = K in Ω ∣ −∇Γn divΓt
H = B in Ω

πu = a in Ω ∣ − divΓn εE = j in Ω ∣ ε
−1

rotΓn H = K in Ω

corresponding compact embeddings:

D(∇Γt
) ∩ D(π) = D(∇Γt

) = H
1
Γt
↪ L

2
(Rellich’s selection theorem)

D(rotΓt
) ∩ D(− divΓn ε) = RΓt

∩ ε
−1

DΓn ↪ L
2
ε (Weck’s selection theorem, ’74)

D(divΓt
) ∩ D(ε

−1
rotΓn ) = DΓt

∩ RΓn ↪ L
2

(Weck’s selection theorem, ’74)

D(∇Γn ) ∩D(π) = D(∇Γn ) = H
1
Γn
↪ L

2
(Rellich’s selection theorem)

Weck’s selection theorem for weak Lip. dom. and mixed bc: Bauer/Py/Schomburg (’16)

Weck’s selection theorem (Weck ’74, (Habil. ’72) stimulated by Rolf Leis)
(Weber ’80, Picard ’84, Costabel ’90, Witsch ’93, Jochmann ’97, Kuhn ’99, Picard/Weck/Witsch ’01,
Py ’96, ’03, ’06, ’07, ’08)
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applications: fos & sos (first and second order systems)

classical de Rham complex in 3D (∇-rot-div-complex)

rotE = F in Ω

−div εE = g in Ω

ν × E = 0 at Γt

ν ⋅ εE = 0 at Γn

non-trivial kernel HD,ε = {H ∈ L2 ∶ rotH = 0, div εH = 0, ν ×H ∣Γt = 0, ν ⋅ εH ∣Γn = 0}
additional condition on Dirichlet/Neumann fields for uniqueness

πDE = K ∈HD,ε

{0} or R
ι
⇄
π

L2
∇Γt⇄

− divΓn ε
L2
ε

rotΓt⇄
ε−1 rotΓn

L2
divΓt⇄
−∇Γn

L2 π
⇄
ι

R or {0}

⋯
⋯
⇄
⋯

H−1

A−1⇄
A∗−1

H0

A0⇄
A∗

0

H1

A1⇄
A∗

1

H2

A2⇄
A∗

2

H3

A3⇄
A∗

3

H4
⋯
⇄
⋯

⋯

find E ∈ RΓt (Ω) ∩ ε−1DΓn(Ω) st (fos) find x ∈ D(A1) ∩D(A∗0 ) st

rotΓt E = F A1x = f

−divΓn εE = g translation A∗0 x = g

πD/NE = K πK1
x = k
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applications: fos & sos (first and second order systems)

classical de Rham complex in 3D (∇-rot-div-complex)

cA0
= cfp (Friedrichs/Poincaré constant) and cA1

= cm (Maxwell constant)

Lemma/Theorem ⇓ D(A1) ∩D(A∗0 )↪↪ L2
ε(Ω) compact

(i) all Friedrichs-Poincaré type est hold

∀ϕ ∈ D(A0) ∣ϕ∣H0
≤ cA0

∣A0ϕ∣H1
⇔ ∀ϕ ∈ H1

Γt
∣ϕ∣L2 ≤ cfp∣∇ϕ∣L2

ε

∀φ ∈ D(A∗0 ) ∣φ∣H1
≤ cA0

∣A∗0φ∣H0
⇔ ∀Φ ∈ ε−1DΓn ∩∇H1

Γt
∣Φ∣L2

ε
≤ cfp∣div εΦ∣L2

∀ϕ ∈ D(A1) ∣ϕ∣H1
≤ cA1

∣A1ϕ∣H2
⇔ ∀Φ ∈ RΓt ∩ ε

−1 rot RΓn ∣Φ∣L2
ε
≤ cm∣ rot Φ∣L2

∀ψ ∈ D(A∗1 ) ∣ψ∣H2
≤ cA1

∣A∗1ψ∣H1
⇔ ∀Ψ ∈ RΓn ∩ rot RΓt ∣Ψ∣L2 ≤ cm∣ rot Ψ∣L2

ε

(ii) all ranges R(A0) = ∇H1
Γt

, R(A1) = rot RΓt , R(A∗0 ) = div DΓn are cl in L2

(iii) the inverse ops (∇̃Γt )−1, (d̃ivΓnε)−1, (r̃otΓt )−1, (ε̃−1 rotΓn)−1 are cont, even cpt

(iv) all Helmholtz decomposition hold, e.g.,

H1 = R(A0)⊕K1 ⊕ R(A∗1 ) ⇔ L2
ε = ∇H1

Γt
⊕L2

ε
HD,ε ⊕L2

ε
ε−1 rot RΓn

(v) solution theory

(vi) variational formulations

(vii) functional a posteriori error estimates

(viii) div-curl-lemma

(ix) . . .
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applications: fos & sos (first and second order systems)

classical de Rham complex in 3D (∇-rot-div-complex)

{0} or R
ι
⇄
π

L2
∇Γt⇄

− divΓn ε
L2
ε

rotΓt⇄
ε−1 rotΓn

L2
divΓt⇄
−∇Γn

L2 π
⇄
ι

R or {0}

variational formulations

var space (Ẽ ,u, r ,H) ∈ RΓt ×H1
Γt
× {0}/R ×HD,ε

⎡⎢⎢⎢⎢⎢⎢⎢⎣

µ rotΓn rotΓt gradΓt
0 ιHD,ε

−divΓn ε 0 ι{0}/R 0
0 π{0}/R 0 0

πHD,ε 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ẽ
u
r
H

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

µ rotΓn F
g
0
K

⎤⎥⎥⎥⎥⎥⎥⎥⎦

var space (Ê ,U, v , r ,H, H̃) ∈ ε−1DΓn × RΓn ×H1
Γn
× {0}/R ×HD,ε ×HN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−gradΓt
divΓn ε µ rotΓn 0 0 ιHD,ε 0

rotΓt 0 −gradΓn
0 0 ιHN

0 divΓt 0 ι{0}/R 0 0
0 0 π{0}/R 0 0 0

πHD,ε 0 0 0 0 0
0 πHN

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ê
U
v
r
H

H̃

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

gradΓt
g

F
0
0
K
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

note u = v = 0, r = 0, U = H = H̃ = 0, Ẽ = Ê = E
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applications: fos & sos (first and second order systems)

classical de Rham complex in 3D (∇-rot-div-complex)

Theorem (sharp upper bounds)

Let Ẽ ∈ L2
ε (very non-conforming approximation of E !) and e ∶= E − Ẽ . Then

∣e∣2
L2
ε
= ∣πR(∇Γt

)e∣2
L2
ε
+ ∣πR(ε−1 rotΓn )

e∣2
L2
ε
+ ∣πHD,εe∣

2
L2
ε

= min
Φ∈ε−1DΓn

(cfp∣div εΦ + g ∣L2 + ∣Φ − Ẽ ∣L2
ε
)2

reg (−∇Γt
divΓn

+1)-prbl in DΓn

+ min
Φ∈RΓt

(cm∣ rot Φ − F ∣L2 + ∣Φ − Ẽ ∣L2
ε
)2

reg (rotΓn
rotΓt

+1)-prbl in RΓt

+ min
φ∈H1

Γt
,Ψ∈RΓn

∣∇φ + ε−1 rot Ψ + Ẽ −K ∣2
L2
ε

cpld (− divΓn
∇Γt

)-(rotΓt
rotΓn

)-sys in H
1
Γt

-RΓn

Remark

(rotΓt rotΓn)-prbl needs saddle point formulation

Ω top trv ⇒ πD = 0 and RΓt ,0 = ∇H1
Γt

and DΓn,0 = rot RΓn

Ω convex and ε = µ = 1 and Γt = Γ or Γn = Γ⇒ cf ≤ cm ≤ cp ≤
diamΩ

π
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applications: fos & sos (first and second order systems)

classical de Rham complex in 3D (∇-rot-div-complex)

Theorem (sharp lower bounds)

Let Ẽ ∈ L2
ε (very non-conforming approximation of E !) and e ∶= E − Ẽ . Then

∣e∣2
L2
ε
= ∣πR(∇Γt

)e∣2
L2
ε
+ ∣πR(ε−1 rotΓn )

e∣2
L2
ε
+ ∣πHD,εe∣

2
L2
ε

= max
ϕ∈H1

Γt

(2⟨g , ϕ⟩L2 − ⟨2Ẽ + gradϕ, εgradϕ⟩L2) reg (−∇Γt
divΓn

+1)-prbl in DΓn

+ max
Ψ∈RΓn

(2⟨F ,Ψ⟩L2 − ⟨2Ẽ + µ rot Ψ, rot Ψ⟩L2) reg (rotΓn
rotΓt

+1)-prbl in RΓt

+ max
Ψ∈HD,ε

⟨2(K − Ẽ) −Ψ,Ψ⟩L2
ε
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applications: fos & sos (first and second order systems)

div-curl-lemma

Lemma (div-curl-lemma (global version))

Assumptions:

(i) (En) bounded in L2(Ω)
(i’) (Hn) bounded in L2(Ω)
(ii) (rotEn) bounded in L2(Ω)
(ii’) (div εHn) bounded in L2(Ω)
(iii) ν × En = 0 on Γt , i.e., En ∈ RΓt (Ω)
(iii’) ν ⋅ εHn = 0 on Γn, i.e., Hn ∈ ε−1DΓn(Ω)
⇒ ∃ E , H and subsequences st

En ⇀ E , rotEn ⇀ rotE and Hn ⇀ H, divHn ⇀ divH in L2(Ω) and

⟨En,Hn⟩L2
ε(Ω)

→ ⟨E ,H⟩L2
ε(Ω)
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applications: fos & sos (first and second order systems)

de Rham complex in ND or on Riemannian manifolds (d-complex)

Ω ⊂ RN bd w. Lip. dom. or Ω Riemannian manifold with cpt cl. and Lip. boundary Γ

(generalized Maxwell equations)

{0}
ι{0}
⇄
π{0}

L2,0 d̊
⇄
− δ

L2,1 d̊
⇄
− δ

⋯ L2,q d̊
⇄
− δ

L2,q+1⋯L2,N−1 d̊
⇄
− δ

L2,N
πR⇄
ιR

R
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applications: fos & sos (first and second order systems)

de Rham complex in ND or on Riemannian manifolds (d-complex)

Ω ⊂ RN bd w. Lip. dom. or Ω Riemannian manifold with cpt cl. and Lip. boundary Γ

(generalized Maxwell equations)

{0} or R
ι
⇄
π

L
2,0

d0
Γt
⇄

−δ1
Γn

L
2,1

d1
Γt
⇄

−δ2
Γn

⋯ L
2,q

d
q
Γt
⇄

−δq+1
Γn

L
2,q+1

⋯L
2,N−1

dN−1
Γt
⇄

−δN
Γn

L
2,N π

⇄
ι

R or {0}

related fos

d
q
Γt

E = F in Ω

− δ
q
Γn

E = G in Ω

related sos

− δ
q+1
Γn

d
q
Γt

E = F in Ω

− δ
q
Γn

E = G in Ω

includes: EMS rot / div, Laplacian, rot rot, and more. . .
corresponding compact embeddings:

D(d
q
Γt
) ∩ D(δ

q
Γn
)↪ L

2,q
(Weck’s selection theorems, ’74)

Weck’s selection theorem for Lip. manifolds and mixed bc: Bauer/Py/Schomburg (’17)
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applications: fos & sos (first and second order systems)

elasticity complex in 3D (sym∇-Rot Rot⊺S-DivS-complex)

Ω ⊂ R3 bounded strong Lipschitz domain

{0}
ι{0}
⇄
π{0}

L2
˚sym∇

⇄
−DivS

L2
S

˚Rot Rot
⊺
S⇄

Rot Rot⊺S

L2
S

D̊ivS⇄
− sym∇

L2
πRM⇄
ιRM

RM
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applications: fos & sos (first and second order systems)

elasticity complex in 3D (sym∇-Rot Rot⊺S-DivS-complex)

Ω ⊂ R3 bounded strong Lipschitz domain

{0}
ι{0}
⇄
π{0}

L2
˚sym∇

⇄
−DivS

L2
S

˚Rot Rot
⊺
S⇄

Rot Rot⊺S

L2
S

D̊ivS⇄
− sym∇

L2
πRM⇄
ιRM

RM

related fos (Rot Rot⊺S,Γ, Rot Rot⊺S first order operators!)

sym∇Γv = M in Ω ∣ Rot Rot
⊺
S,Γ M = F in Ω ∣ DivS,Γ N = g in Ω ∣ πv = r in Ω

πv = 0 in Ω ∣ −DivS M = f in Ω ∣ Rot Rot
⊺
S N = G in Ω ∣ − sym∇v = M in Ω

related sos (Rot Rot⊺S Rot Rot⊺S,Γ second order operator!)

−DivS sym∇Γv = f in Ω ∣ Rot Rot
⊺
S Rot Rot

⊺
S,Γ M = G in Ω ∣ − sym∇DivS,Γ N = M in Ω

πv = 0 in Ω ∣ −DivS M = f in Ω ∣ Rot Rot
⊺
S N = G in Ω

corresponding compact embeddings:

D(sym∇Γ) ∩ D(π) = D(∇Γ) = H
1
Γ ↪ L

2
(Rellich’s selection theorem and Korn ineq.)

D(Rot Rot
⊺
S,Γ) ∩ D(DivS)↪ L

2
S (new selection theorem)

D(DivS,Γ) ∩ D(Rot Rot
⊺
S )↪ L

2
S (new selection theorem)

D(π) ∩ D(sym∇) = D(∇) = H
1
↪ L

2
(Rellich’s selection theorem and Korn ineq.)

two new selection theorems for strong Lip. dom.: Py/Schomburg/Zulehner (’18)
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applications: fos & sos (first and second order systems)

biharmonic / general relativity complex in 3D (∇∇-RotS-DivT-complex)

Ω ⊂ R3 bounded strong Lipschitz domain

{0}
ι{0}
⇄
π{0}

L2 ∇̊∇
⇄

div DivS
L2
S

R̊otS⇄
sym RotT

L2
T

D̊ivT⇄
− dev∇

L2
πRT⇄
ιRT

RT
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applications: fos & sos (first and second order systems)

biharmonic / general relativity complex in 3D (∇∇-RotS-DivT-complex)

Ω ⊂ R3 bounded strong Lipschitz domain

{0}
ι{0}
⇄
π{0}

L2 ∇̊∇
⇄

div DivS
L2
S

R̊otS⇄
sym RotT

L2
T

D̊ivT⇄
− dev∇

L2
πRT⇄
ιRT

RT

related fos (∇∇Γ, div DivS first order operators!)

∇∇Γu = M in Ω ∣ RotS,Γ M = F in Ω ∣ DivT,Γ N = g in Ω ∣ πv = r in Ω

πu = 0 in Ω ∣ div DivS M = f in Ω ∣ sym RotT N = G in Ω ∣ − dev∇v = T in Ω

related sos (div DivS∇∇Γ = ∆2
Γ second order operator!)

div DivS∇∇Γu = ∆
2
Γu = f in Ω ∣ sym RotT RotS,Γ M = G in Ω ∣ − dev∇DivT,Γ N = T in Ω

πu = 0 in Ω ∣ div DivS M = f in Ω ∣ sym RotT N = G in Ω

corresponding compact embeddings:

D(∇∇Γ) ∩ D(π) = D(∇∇Γ) = H
2
Γ ↪ L

2
(Rellich’s selection theorem)

D(RotS,Γ) ∩ D(div DivS)↪ L
2
S (new selection theorem)

D(DivT,Γ) ∩ D(sym RotT)↪ L
2
T (new selection theorem)

D(π) ∩ D(dev∇) = D(dev∇) = D(∇) = H
1
↪ L

2
(Rellich’s selection theorem and Korn type ineq.)

two new selection theorems for strong Lip. dom. and Korn Type ineq.: Py/Zulehner (’16)
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results of this talk:
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(NFAO) Numerical Functional Analysis and Optimization, 2018

(paper contains main results of this talk)
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2015

Py: On Maxwell’s and Poincare’s Constants,
(DCDS) Discrete and Continuous Dynamical Systems - Series S, 2015

Py: On the Maxwell Constants in 3D,
(M2AS) Mathematical Methods in the Applied Sciences, 2017

Py: On the Maxwell and Friedrichs/Poincare Constants in ND,
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Corresponding Compact Embeddings for Tensor Rotations, and a Related
Decomposition Result for Biharmonic Problems in 3D,
submitted, 2016

Py, Schomburg, M., Zulehner, W.: Compact Embeddings, Friedrichs/Poincaré
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Elasticity Complex in 3D,
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Schweizer, B.: On Friedrichs inequality, Helmholtz decomposition, vector
potentials, and the div-curl lemma,
accepted preprint, 2018

recent papers (global div-curl-lemma, general results/this talk):

Waurick, M.: A Functional Analytic Perspective to the div-curl Lemma,
(JOP) J. Operator Theory, 2018

Py: A Global div-curl-Lemma for Mixed Boundary Conditions in Weak Lipschitz
Domains and a Corresponding Generalized A∗0 -A1-Lemma in Hilbert Spaces,
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commercials

. . . the world is full of complexes . . . ;)

⇒ relaxing at

AANMPDE 11
11th Workshop on Analysis and Advanced Numerical Methods

for Partial Differential Equations (not only) for Junior Scientists

http://www.mit.jyu.fi/scoma/AANMPDE11

August 6–10 2018, Särkisaari, Finland

organizers: Ulrich Langer, Dirk Pauly, Sergey Repin

← conference site
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