Functional A Posteriori Error Estimates for First Order Systems

Dirk Pauly
Fakultät für Mathematik
Universität Duisburg-Essen, Campus Essen, Germany

CMAM 6

International Conference on Computational Methods in Applied Mathematics
September 292014
Strobl/St. Wolfgang, Austria

UNiversitãt
DESTSENURG

Model Problem: Electro-Static Maxwell Equations

setting: Hilbert/Sobolev spaces (L^{2}-based)
geometry: $\Omega \subset \mathbb{R}^{3}$ bounded domain with Lipschitz (or weaker) boundary $\Gamma=\partial \Omega$

$$
\begin{align*}
\operatorname{rot} E & =F & & \text { in } \Omega \tag{1}\\
-\operatorname{div} \varepsilon E & =G & & \text { in } \Omega \tag{2}\\
\nu \times E & =0 & & \text { at } \Gamma \tag{3}
\end{align*}
$$

non-trivial kernel: $\mathcal{H}_{\mathrm{D}, \varepsilon}=\left\{E \in \mathrm{~L}^{2}: \operatorname{rot} E=0, \operatorname{div} \varepsilon E=0, \nu \times\left. E\right|_{\Gamma}=0\right\}$ additional condition:

$$
\begin{equation*}
\pi_{\mathrm{D}} E=H \in \mathcal{H}_{\mathrm{D}, \varepsilon} \tag{4}
\end{equation*}
$$

well known:
(1)-(4) uniquely solvable
by Helmholtz decompositions and Poincaré/Maxwell estimates for certain right hand sides F, G, H

First Order Model Problem

Underlying Structure of the Model Problem

exact sequence:

$$
0 \underset{0}{\stackrel{0}{\rightleftarrows}} L^{2} \underset{-\operatorname{div} \varepsilon}{\stackrel{\circ}{\nabla}} L_{\varepsilon}^{2} \underset{\varepsilon^{-1}}{\stackrel{\text { rot }}{\rightleftarrows}} L^{2} \underset{-\nabla}{\stackrel{\text { div }}{\rightleftarrows}} L^{2} \underset{0}{\stackrel{0}{\rightleftarrows}} 0
$$

unbounded, densely defined, closed, linear operators with adjoints

$$
\begin{array}{lrl}
\stackrel{\circ}{\nabla}: \stackrel{\circ}{H}^{1} \subset \mathrm{~L}^{2} \rightarrow \mathrm{~L}_{\varepsilon}^{2}, & -\operatorname{div} \varepsilon=(\stackrel{\circ}{\nabla})^{*}: \varepsilon^{-1} \mathrm{D} \subset \mathrm{~L}_{\varepsilon}^{2} \rightarrow \mathrm{~L}^{2} & \text { sometimes: } \\
\text { rot }: \stackrel{\circ}{\mathrm{R}} \subset \mathrm{~L}_{\varepsilon}^{2} \rightarrow \mathrm{~L}^{2}, & \varepsilon^{-1} \text { rot }=(\text { (rot })^{*}: \mathrm{R} \subset \mathrm{~L}^{2} \rightarrow \mathrm{~L}_{\varepsilon}^{2} & \mathrm{R}=H(\text { rot })=H(\text { curl }) \\
\operatorname{div}: \stackrel{\circ}{\mathrm{D}} \subset \mathrm{~L}^{2} \rightarrow \mathrm{~L}^{2}, & -\nabla=(\text { div })^{*}: \mathrm{H}^{1} \subset \mathrm{~L}^{2} \rightarrow \mathrm{~L}^{2} & \mathrm{D}=H(\text { div })
\end{array}
$$

exact: 'range \subset kernel' $(\operatorname{rot} \nabla=0, \operatorname{div} r o t=0)$

$$
\begin{aligned}
& \stackrel{\circ}{\nabla} \stackrel{\circ}{\mathrm{H}}^{1}=R(\stackrel{\circ}{\nabla}) \subset N(\stackrel{\circ}{\circ} \circ \mathrm{t})=\stackrel{\circ}{\mathrm{R}}_{0}, \quad-\operatorname{div} \varepsilon \varepsilon^{-1} \mathrm{D}=R(-\operatorname{div} \varepsilon) \subset N(0)=\mathrm{L}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{div} \stackrel{\circ}{\mathrm{D}}=R(\mathrm{div}) \subset N(0)=\mathrm{L}^{2}, \\
& -\nabla \mathrm{H}^{1}=R(-\nabla) \subset N\left(\varepsilon^{-1} \text { rot }\right)=\mathrm{R}_{0}
\end{aligned}
$$

crucial: compact embeddings (Rellich's selection theorem, Maxwell cpt property)

$$
\mathrm{H}^{1} \leftrightarrow \mathrm{~L}^{2}, \quad \stackrel{\circ}{\mathrm{R}} \cap \varepsilon^{-1} \mathrm{D}, \quad \mathrm{R} \cap \varepsilon^{-1} \stackrel{\circ}{\mathrm{D}} \hookrightarrow \mathrm{~L}^{2}
$$

\Rightarrow Helmholtz decompositions and Poincaré/Maxwell estimates

UNIVERSITAAT

Abstract Formulation

$$
\begin{array}{rlrl}
\operatorname{rot} E & =F & & \text { in } \Omega \\
-\operatorname{div} \varepsilon E & =G & & \text { in } \Omega \\
\nu \times E & =0 & & \text { at } \Gamma \\
\pi_{\mathrm{D}} E & =H \in \mathcal{H}_{\mathrm{D}, \varepsilon} & & \\
& \vdots & \\
\circ & & \\
\operatorname{rot} E & =F & \operatorname{div} \varepsilon E & =G \\
\pi_{\mathrm{D}} E & =H \in \mathcal{H}_{\mathrm{D}, \varepsilon} & &
\end{array}
$$

$$
\left(\mathrm{A}_{i}:=\operatorname{rot}, \quad \mathrm{A}_{i}^{*}=\varepsilon^{-1} \mathrm{rot}\right) \quad \zeta(x:=E) \quad\left(\mathrm{A}_{i-1}:=\stackrel{\circ}{\nabla}, \quad \mathrm{A}_{i-1}^{*}=-\operatorname{div} \varepsilon\right)
$$

$$
\mathrm{A}_{i} x=f
$$

$$
\mathrm{A}_{i-1}^{*} x=g
$$

$$
\pi_{i} x=h \in \mathcal{H}_{i}:=N\left(\mathrm{~A}_{i}\right) \cap N\left(\mathrm{~A}_{i-1}^{*}\right)
$$

General or Abstract Problem

setting: unbounded, densely defined, closed, linear operators with adjoints

$$
\mathrm{A}_{i}: D\left(\mathrm{~A}_{i}\right) \subset \mathrm{H}_{i} \rightarrow \mathrm{H}_{i+1}, \quad \mathrm{~A}_{i}^{*}: D\left(\mathrm{~A}_{i}^{*}\right) \subset \mathrm{H}_{i+1} \rightarrow \mathrm{H}_{i}, \quad i \in \mathbb{Z}
$$

exact sequence:

$$
\cdots \rightleftarrows \mathrm{H}_{i-2} \underset{\mathrm{~A}_{i-2}^{*}}{\stackrel{\mathrm{~A}_{i-2}}{\rightleftarrows}} \mathrm{H}_{i-1} \underset{\mathrm{~A}_{i-1}^{*}}{\stackrel{\mathrm{~A}_{i-1}}{\rightleftarrows}} \mathrm{H}_{i} \underset{\mathrm{~A}_{i}^{*}}{\stackrel{\mathrm{~A}_{i}}{\rightleftarrows}} \mathrm{H}_{i+1} \underset{\mathrm{~A}_{i+1}^{*}}{\stackrel{\mathrm{~A}_{i+1}}{\rightleftarrows}} \mathrm{H}_{i+2} \rightleftarrows \ldots
$$

exact: 'range \subset kernel' $\left(\mathrm{A}_{i} \mathrm{~A}_{i-1}=0, \mathrm{~A}_{i-1}^{*} \mathrm{~A}_{i}^{*}=0\right)$

$$
R\left(\mathrm{~A}_{i-1}\right) \subset N\left(\mathrm{~A}_{i}\right), \quad R\left(\mathrm{~A}_{i}^{*}\right) \subset N\left(\mathrm{~A}_{i-1}^{*}\right)
$$

problem: find $x \in D\left(\mathrm{~A}_{i}\right) \cap D\left(\mathrm{~A}_{i-1}^{*}\right)$ s.t.

$$
\mathrm{A}_{i} x=f, \quad \mathrm{~A}_{i-1}^{*} x=g, \quad \pi_{i} x=h,
$$

where $f \in R\left(\mathrm{~A}_{i}\right), g \in R\left(\mathrm{~A}_{i-1}^{*}\right)$ and $h \in \mathcal{H}_{i}$ with kernel $\mathcal{H}_{i}:=N\left(\mathrm{~A}_{i}\right) \cap N\left(\mathrm{~A}_{i-1}^{*}\right)$

tool box

Hodge/Helmholtz/Weyl decompositions:

$$
\mathrm{H}_{i}=N\left(\mathrm{~A}_{i}\right) \oplus_{\mathrm{H}_{i}} \overline{R\left(\mathrm{~A}_{i}^{*}\right)}, \quad \quad \mathrm{H}_{i+1}=N\left(\mathrm{~A}_{i}^{*}\right) \oplus_{\mathrm{H}_{i+1}} \overline{R\left(\mathrm{~A}_{i}\right)}
$$

\Rightarrow reduced (injective) operators

$$
\begin{aligned}
\mathcal{A}_{i}: D\left(\mathcal{A}_{i}\right):=D\left(\mathrm{~A}_{i}\right) \cap \overline{R\left(\mathrm{~A}_{i}^{*}\right)} \subset \overline{R\left(\mathrm{~A}_{i}^{*}\right)} \rightarrow \overline{R\left(\mathrm{~A}_{i}\right)}, & \left(\mathrm{A}_{i}: D\left(\mathrm{~A}_{i}\right) \subset \mathrm{H}_{i} \rightarrow \mathrm{H}_{i+1}\right) \\
\mathcal{A}_{i}^{*}: D\left(\mathcal{A}_{i}^{*}\right):=D\left(\mathrm{~A}_{i}^{*}\right) \cap \overline{R\left(\mathrm{~A}_{i}\right)} \subset \overline{R\left(\mathrm{~A}_{i}\right)} \rightarrow \overline{R\left(\mathrm{~A}_{i}^{*}\right)}, & \left(\mathrm{A}_{i}^{*}: D\left(\mathrm{~A}_{i}^{*}\right) \subset \mathrm{H}_{i+1} \rightarrow \mathrm{H}_{i}\right)
\end{aligned}
$$

$\Rightarrow \mathcal{A}_{i}^{-1},\left(\mathcal{A}_{i}^{*}\right)^{-1}$ exist, exact sequence for $\mathcal{A}_{i}, \mathcal{A}_{i}^{*}$
crucial: compact embeddings

$$
\begin{gathered}
\qquad D\left(\mathcal{A}_{i}\right) \leftrightarrow \mathrm{H}_{i} \Leftrightarrow \quad \Leftrightarrow \quad\left(D\left(\mathcal{A}_{i}^{*}\right) \rightarrow \mathrm{H}_{i+1}\right) \\
\Rightarrow\left\{\begin{array}{l}
\text { (general) Poincaré estimates (Poincaré, Friedrichs, Maxwell, ...) } \\
\text { closed ranges } \\
\text { continuous and compact invers operators } \\
\text { Helmholtz decompositions }
\end{array}\right.
\end{gathered}
$$

tool box (Poincaré estimates, closed ranges, compact inverses)

compact embedding $D\left(\mathcal{A}_{i}\right) \hookrightarrow \mathrm{H}_{i} \Rightarrow$

- $\forall \varphi \in D\left(\mathcal{A}_{i}\right) \quad|\varphi|_{\mathrm{H}_{i}} \leq c_{\mathrm{A}_{i}}\left|\mathrm{~A}_{i} \varphi\right|_{\mathrm{H}_{i+1}}$
- $\forall \psi \in D\left(\mathcal{A}_{i}^{*}\right) \quad|\psi|_{\mathrm{H}_{i+1}} \leq c_{\mathrm{A}_{i}^{*}}\left|\mathrm{~A}_{i}^{*} \psi\right|_{\mathrm{H}_{i}}$
- $R\left(\mathrm{~A}_{i}\right)=R\left(\mathcal{A}_{i}\right), R\left(\mathrm{~A}_{i}^{*}\right)=R\left(\mathcal{A}_{i}^{*}\right)$ closed
\Rightarrow reduced operators

$$
\begin{aligned}
\mathcal{A}_{i}: D\left(\mathcal{A}_{i}\right):=D\left(\mathrm{~A}_{i}\right) \cap R\left(\mathrm{~A}_{i}^{*}\right) \subset R\left(\mathrm{~A}_{i}^{*}\right) \rightarrow R\left(\mathrm{~A}_{i}\right), & \left(\mathrm{A}_{i}: D\left(\mathrm{~A}_{i}\right) \subset \mathrm{H}_{i} \rightarrow \mathrm{H}_{i+1}\right) \\
\mathcal{A}_{i}^{*}: D\left(\mathcal{A}_{i}^{*}\right):=D\left(\mathrm{~A}_{i}^{*}\right) \cap R\left(\mathrm{~A}_{i}\right) \subset R\left(\mathrm{~A}_{i}\right) \rightarrow R\left(\mathrm{~A}_{i}^{*}\right), & \left(\mathrm{A}_{i}^{*}: D\left(\mathrm{~A}_{i}^{*}\right) \subset \mathrm{H}_{i+1} \rightarrow \mathrm{H}_{i}\right)
\end{aligned}
$$

- $\mathcal{A}_{i}^{-1}: R\left(\mathrm{~A}_{i}\right) \rightarrow D\left(\mathcal{A}_{i}\right)$ cont., $\mathcal{A}_{i}^{-1}: R\left(\mathrm{~A}_{i}\right) \rightarrow R\left(\mathcal{A}_{i}^{*}\right)$ cpt., $\left\|\mathcal{A}_{i}^{-1}\right\|=c_{\mathrm{A}_{i}}$
- $\left(\mathcal{A}_{i}^{*}\right)^{-1}: R\left(\mathrm{~A}_{i}^{*}\right) \rightarrow D\left(\mathcal{A}_{i}^{*}\right)$ cont., $\left(\mathcal{A}_{i}^{*}\right)^{-1}: R\left(\mathrm{~A}_{i}^{*}\right) \rightarrow R\left(\mathcal{A}_{i}\right)$ cpt., $\|\left(\mathcal{A}_{i}^{*}\right)^{-1} \mid=c_{\mathrm{A}_{i}^{*}}$
note: 'best' constants $c_{\mathrm{A}_{i}}$ and $c_{\mathrm{A}_{i}^{*}}$ satisfy

$$
\frac{1}{c_{\mathrm{A}_{i}}}=\inf _{\varphi \in D\left(\mathcal{A}_{i}\right)} \frac{\left|\mathrm{A}_{i} \varphi\right|_{\mathrm{H}_{i+1}}}{|\varphi|_{\mathrm{H}_{i}}}=\inf _{\psi \in D\left(\mathcal{A}_{i}^{*}\right)} \frac{\left|\mathrm{A}_{i}^{*} \psi\right|_{\mathrm{H}_{i}}}{|\psi|_{\mathrm{H}_{i+1}}}=\frac{1}{c_{\mathrm{A}_{i}^{*}}} \Rightarrow c_{i}:=c_{\mathrm{A}_{i}}=c_{\mathrm{A}_{i}^{*}}
$$

tool box (Hodge/Helmholtz/Weyl decompositions)

$$
\begin{aligned}
\mathrm{H}_{i} & =N\left(\mathrm{~A}_{i}\right) \oplus \mathrm{H}_{i} R\left(\mathrm{~A}_{i}^{*}\right), & \mathrm{H}_{i} & =R\left(\mathrm{~A}_{i-1}\right) \oplus_{\mathrm{H}_{i}} N\left(\mathrm{~A}_{i-1}^{*}\right) \\
D\left(\mathrm{~A}_{i}\right) & =N\left(\mathrm{~A}_{i}\right) \oplus \mathrm{H}_{i} D\left(\mathcal{A}_{i}\right), & D\left(\mathrm{~A}_{i-1}^{*}\right) & =D\left(\mathcal{A}_{i-1}^{*}\right) \oplus \mathrm{H}_{i} N\left(\mathrm{~A}_{i-1}^{*}\right)
\end{aligned}
$$

exact sequence: $R\left(\mathrm{~A}_{i-1}\right) \subset N\left(\mathrm{~A}_{i}\right), R\left(\mathrm{~A}_{i}^{*}\right) \subset N\left(\mathrm{~A}_{i-1}^{*}\right) \Rightarrow$

$$
N\left(\mathrm{~A}_{i-1}^{*}\right)=\mathcal{H}_{i} \oplus_{\mathrm{H}_{i}} R\left(\mathrm{~A}_{i}^{*}\right), \quad N\left(\mathrm{~A}_{i}\right)=R\left(\mathrm{~A}_{i-1}\right) \oplus_{\mathrm{H}_{i}} \mathcal{H}_{i}, \quad \mathcal{H}_{i}=N\left(\mathrm{~A}_{i}\right) \cap N\left(\mathrm{~A}_{i-1}^{*}\right)
$$

\Rightarrow refined Helmholtz decomposition

$$
\begin{aligned}
\mathrm{H}_{i} & =R\left(\mathrm{~A}_{i-1}\right) \oplus_{\mathrm{H}_{i}} \mathcal{H}_{i} \oplus_{\mathrm{H}_{i}} R\left(\mathrm{~A}_{i}^{*}\right) \\
D\left(\mathrm{~A}_{i}\right) & =R\left(\mathrm{~A}_{i-1}\right) \oplus_{\mathrm{H}_{i}} \mathcal{H}_{i} \oplus_{\mathrm{H}_{i}} D\left(\mathcal{A}_{i}\right) \\
D\left(\mathrm{~A}_{i-1}^{*}\right) & =D\left(\mathcal{A}_{i-1}^{*}\right) \oplus_{\mathrm{H}_{i}} \mathcal{H}_{i} \oplus_{\mathrm{H}_{i}} R\left(\mathrm{~A}_{i}^{*}\right)
\end{aligned}
$$

with orthonormal projectors

$$
\begin{array}{ccccc}
\pi_{\mathrm{A}_{i-1}}: \mathrm{H}_{i} \rightarrow R\left(\mathrm{~A}_{i-1}\right), & \forall \psi \in D\left(\mathrm{~A}_{i-1}^{*}\right) & \pi_{\mathrm{A}_{i-1}} \psi \in D\left(\mathcal{A}_{i-1}^{*}\right) & \wedge & \mathrm{A}_{i-1}^{*} \pi_{\mathrm{A}_{i-1}} \psi=\mathrm{A}_{i-1}^{*} \psi \\
\pi_{\mathrm{A}_{i}^{*}}: \mathrm{H}_{i} \rightarrow R\left(\mathrm{~A}_{i}^{*}\right), & \forall \varphi \in D\left(\mathrm{~A}_{i}\right) & \pi_{\mathrm{A}_{i}^{*}} \varphi \in D\left(\mathcal{A}_{i}\right) & \wedge & \mathrm{A}_{i} \pi_{\mathrm{A}_{i}^{*}} \varphi=\mathrm{A}_{i} \varphi
\end{array}
$$

$$
\pi_{i}: \mathrm{H}_{i} \rightarrow \mathcal{H}_{i}
$$

Abstract Problem and Goal

problem: find $x \in D\left(\mathrm{~A}_{i}\right) \cap D\left(\mathrm{~A}_{i-1}^{*}\right)$ s.t.

$$
\begin{aligned}
\mathrm{A}_{i} x & =f \\
\mathrm{~A}_{i-1}^{*} x & =g \\
\pi_{i} x & =h
\end{aligned}
$$

Theorem (solution theory)

unique solution (dpd. cont. on data) $\Leftrightarrow f \in R\left(\mathrm{~A}_{i}\right), g \in R\left(\mathrm{~A}_{i-1}^{*}\right)$ and $h \in \mathcal{H}_{i}$

Proof.

$x=\mathcal{A}_{i}^{-1} f+\left(\mathcal{A}_{i-1}^{*}\right)^{-1} g+h$
goal: functional a posteriori error estimates 'in the spirit of Sergey Repin'

```
for \tilde{x}\in\mp@subsup{\textrm{H}}{i}{}(\mathrm{ (very non-conforming!) estimate }|x-\tilde{x}\mp@subsup{|}{\mp@subsup{H}{i}{}}{}\mathrm{ in terms of }\tilde{x},f,g,h
```


Solution Theory by Variational Methods

unique solution $x=\mathcal{A}_{i}^{-1} f+\left(\mathcal{A}_{i-1}^{*}\right)^{-1} g+h \in D\left(\mathrm{~A}_{i}\right) \cap D\left(\mathrm{~A}_{i-1}^{*}\right)$ of

$$
\mathrm{A}_{i} x=f, \quad \mathrm{~A}_{i-1}^{*} x=g, \quad \pi_{i} x=h
$$

can be found by variational techniques (Lax-Milgram)

- for $\mathcal{A}_{i}^{-1} f$ we solve $\mathrm{A}_{i} \mathrm{~A}_{i}^{*} \psi=f$: find $\psi \in D\left(\mathcal{A}_{i}^{*}\right)$ with

$$
\begin{equation*}
\forall \varphi \in D\left(\mathcal{A}_{i}^{*}\right) \quad\left\langle\mathrm{A}_{i}^{*} \psi, \mathrm{~A}_{i}^{*} \varphi\right\rangle_{\mathrm{H}_{i}}=\langle f, \varphi\rangle_{\mathrm{H}_{i+1}} \tag{5}
\end{equation*}
$$

$f \in R\left(\mathrm{~A}_{i}\right) \Rightarrow(5)$ holds for all $\varphi \in D\left(\mathrm{~A}_{i}^{*}\right)$
$\Rightarrow x_{\mathrm{A}_{i}}:=\mathrm{A}_{i}^{*} \psi \in D\left(\mathcal{A}_{i}\right)$ and $\mathrm{A}_{i} x_{\mathrm{A}_{i}}=f$
$\Rightarrow x_{\mathrm{A}_{i}}=\mathcal{A}_{i}^{-1} f \in D\left(\mathcal{A}_{i}\right)$ and $\left|x_{\mathrm{A}_{i}}\right| \mathrm{H}_{i} \leq c_{i}|f|_{\mathrm{H}_{i+1}}$
note: $D\left(\mathcal{A}_{i}^{*}\right)=D\left(\mathrm{~A}_{i}^{*}\right) \cap R\left(\mathrm{~A}_{i}\right)$ and $R\left(\mathrm{~A}_{i}\right)=N\left(\mathrm{~A}_{i}^{*}\right)^{\mathrm{H}_{i+1}}$
$\Rightarrow(5)$ is equivalent to the saddle point problem: find $\psi \in D\left(\mathrm{~A}_{i}^{*}\right)$ with

$$
\begin{array}{cc}
\forall \varphi \in D\left(\mathrm{~A}_{i}^{*}\right) & \left\langle\mathrm{A}_{i}^{*} \psi, \mathrm{~A}_{i}^{*} \varphi\right\rangle_{\mathrm{H}_{i}}=\langle f, \varphi\rangle_{\mathrm{H}_{i+1}}, \\
\forall \phi \in N\left(\mathrm{~A}_{i}^{*}\right) & \langle\psi, \phi\rangle_{\mathrm{H}_{i+1}}=0
\end{array}
$$

Solution Theory by Variational Methods

unique solution $x=\mathcal{A}_{i}^{-1} f+\left(\mathcal{A}_{i-1}^{*}\right)^{-1} g+h \in D\left(\mathrm{~A}_{i}\right) \cap D\left(\mathrm{~A}_{i-1}^{*}\right)$ of

$$
\mathrm{A}_{i} x=f, \quad \mathrm{~A}_{i-1}^{*} x=g, \quad \pi_{i} x=h
$$

can be found by variational techniques (Lax-Milgram)

- for $\left(\mathcal{A}_{i-1}^{*}\right)^{-1} g$ we solve $\mathrm{A}_{i-1}^{*} \mathrm{~A}_{i-1} \psi=f$: find $\psi \in D\left(\mathcal{A}_{i-1}\right)$ with

$$
\begin{equation*}
\forall \varphi \in D\left(\mathcal{A}_{i-1}\right) \quad\left\langle\mathrm{A}_{i-1} \psi, \mathrm{~A}_{i-1} \varphi\right\rangle_{\mathrm{H}_{i}}=\langle g, \varphi\rangle_{\mathrm{H}_{i-1}} \tag{6}
\end{equation*}
$$

$g \in R\left(\mathrm{~A}_{i-1}^{*}\right) \Rightarrow(6)$ holds for all $\varphi \in D\left(\mathrm{~A}_{i-1}\right)$
$\Rightarrow x_{\mathrm{A}_{i-1}^{*}}:=\mathrm{A}_{i-1} \psi \in D\left(\mathcal{A}_{i-1}^{*}\right)$ and $\mathrm{A}_{i-1}^{*} x_{\mathrm{A}_{i-1}^{*}}=g$
$\Rightarrow x_{\mathrm{A}_{i-1}^{*}}=\left(\mathcal{A}_{i-1}^{*}\right)^{-1} g \in D\left(\mathcal{A}_{i-1}^{*}\right)$ and $\left|x_{\mathrm{A}_{i-1}^{*}}\right| \mathrm{H}_{i} \leq c_{i-1}|g|_{\mathrm{H}_{i-1}}$
note: $D\left(\mathcal{A}_{i-1}\right)=D\left(\mathrm{~A}_{i-1}\right) \cap R\left(\mathrm{~A}_{i-1}^{*}\right)$ and $R\left(\mathrm{~A}_{i-1}^{*}\right)=N\left(\mathrm{~A}_{i-1}\right)^{\perp \mathrm{H}_{i-1}}$
$\Rightarrow(6)$ is equivalent to the saddle point problem: find $\psi \in D\left(\mathrm{~A}_{i-1}\right)$ with

$$
\begin{aligned}
& \forall \varphi \in D\left(\mathrm{~A}_{i-1}\right) \\
& \forall \phi \in N\left(\mathrm{~A}_{i-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
\left\langle\mathrm{A}_{i-1} \psi, \mathrm{~A}_{i-1} \varphi\right\rangle_{\mathrm{H}_{i}} & =\langle g, \varphi\rangle_{\mathrm{H}_{i-1}}, \\
\langle\psi, \phi\rangle_{\mathrm{H}_{i-1}} & =0
\end{aligned}
$$

Upper Bounds

problem:

$$
\text { find } \quad x \in D\left(\mathrm{~A}_{i}\right) \cap D\left(\mathrm{~A}_{i-1}^{*}\right) \quad \text { s.t. } \quad \mathrm{A}_{i} x=f, \quad \mathrm{~A}_{i-1}^{*} x=g, \quad \pi_{i} x=h
$$

'very' non-conforming 'approximation' of $x: \tilde{x} \in \mathrm{H}_{i}$
define error

$$
\begin{aligned}
& e:=x-\tilde{x} \text { and decompose } \\
& e=\pi_{\mathrm{A}_{i-1}} e+\pi_{i} e+\pi_{\mathrm{A}_{i}^{*}} e \in \mathrm{H}_{i}=R\left(\mathrm{~A}_{i-1}\right) \oplus_{\mathrm{H}_{i}} \mathcal{H}_{i} \oplus_{\mathrm{H}_{i}} R\left(\mathrm{~A}_{i}^{*}\right)
\end{aligned}
$$

Theorem (sharp upper bounds I)

Let $\tilde{x} \in \mathrm{H}_{i}$ and $e:=x-\tilde{x}$. Then

$$
\begin{aligned}
|e|_{\mathrm{H}_{i}}^{2} & =\left|\pi_{\mathrm{A}_{i-1}} e\right|_{\mathrm{H}_{i}}^{2}+\left|\pi_{i} e\right|_{\mathrm{H}_{i}}^{2}+\left|\pi_{\mathrm{A}_{i}^{*}} e\right|_{\mathrm{H}_{i}}^{2} \\
\left|\pi_{\mathrm{A}_{i-1}} e\right|_{\mathrm{H}_{i}} & =\min _{\phi \in D\left(\mathrm{~A}_{i-1}^{*}\right)}\left(c_{i-1}\left|g-\mathrm{A}_{i-1}^{*} \phi\right|_{\mathrm{H}_{i-1}}+\left|\pi_{\mathrm{A}_{i-1}}(\phi-\tilde{x})\right|_{\mathrm{H}_{i}}\right) \\
\left|\pi_{\mathrm{A}_{i}^{*}} e\right|_{\mathrm{H}_{i}} & =\min _{\varphi \in D\left(\mathrm{~A}_{i}\right)}\left(c_{i}\left|f-\mathrm{A}_{i} \varphi\right|_{\mathrm{H}_{i+1}}+\left|\pi_{\mathrm{A}_{i}^{*}}(\varphi-\tilde{x})\right|_{\mathrm{H}_{i}}\right) \\
\pi_{i} e & =h-\pi_{i} \tilde{x}
\end{aligned}
$$

The minima are attained at $\phi=\varphi=x$.

Upper Bounds

Theorem (sharp upper bounds II)

Let $\tilde{x} \in \mathrm{H}_{i}$ and $e:=x-\tilde{x}$. Then

$$
\begin{aligned}
|e|_{\mathrm{H}_{i}}^{2} & =\left|\pi_{\mathrm{A}_{i-1}} e\right|_{\mathrm{H}_{i}}^{2}+\left|\pi_{i} e\right|_{\mathrm{H}_{i}}^{2}+\left|\pi_{\mathrm{A}_{i}^{*}} e\right|_{\mathrm{H}_{i}}^{2}, \\
\left|\pi_{\mathrm{A}_{i-1}} e\right|_{\mathrm{H}_{i}} & =\min _{\phi \in D\left(\mathrm{~A}_{i-1}^{*}\right)}\left(c_{i-1}\left|g-\mathrm{A}_{i-1}^{*} \phi\right|_{\mathrm{H}_{i-1}}+\left|\pi_{\mathrm{A}_{i-1}}(\phi-\tilde{x})\right|_{\mathrm{H}_{i}}\right), \\
\left|\pi_{\mathrm{A}_{i}^{*}} e\right|_{\mathrm{H}_{i}} & =\min _{\varphi \in D\left(\mathrm{~A}_{i}\right)}\left(c_{i}\left|f-\mathrm{A}_{i} \varphi\right|_{\mathrm{H}_{i+1}}+\left|\pi_{\mathrm{A}_{i}^{*}}(\varphi-\tilde{x})\right|_{\mathrm{H}_{i}}\right), \\
\pi_{i} e & =h-\pi_{i} \tilde{x}, \\
\left|\pi_{\mathrm{A}_{i-1}}(\phi-\tilde{x})\right|_{\mathrm{H}_{i}} & =\min _{\xi \in N\left(\mathrm{~A}_{i-1}^{*}\right)}|\phi-\tilde{x}-\xi|_{\mathrm{H}_{i}} \\
\left|\pi_{\mathrm{A}_{i}^{*}}(\varphi-\tilde{x})\right|_{\mathrm{H}_{i}} & =\min _{\zeta \in N\left(\mathrm{~A}_{i}\right)}|\varphi-\tilde{x}-\zeta|_{\mathrm{H}_{i}} \\
\left|h-\pi_{i} \tilde{x}\right|_{\mathrm{H}_{i}} & =\min _{\tau \in D\left(\mathrm{~A}_{i-1}\right)}\left|h-\tilde{x}-\mathrm{A}_{i-1} \tau-\mathrm{A}_{i}^{*} \sigma\right|_{\mathrm{H}_{i}}
\end{aligned}
$$

The minima are attained at $\phi=\varphi=x$ as well as
$\xi=\left(1-\pi_{\mathrm{A}_{i-1}}\right)(\phi-\tilde{x})$ and $\zeta=\left(1-\pi_{\mathrm{A}_{i}^{*}}\right)(\varphi-\tilde{x})$ and $\mathrm{A}_{i-1} \tau+\mathrm{A}_{i}^{*} \sigma=\left(\pi_{i}-1\right) \tilde{x}$.

Functional A Posteriori Error Estimates for First Order Problem

Upper Bounds

Corollary (upper bounds III)

Let $\tilde{x} \in \mathrm{H}_{i}$ and $e:=x-\tilde{x}$. Then

$$
\begin{aligned}
& |e|_{\mathrm{H}_{i}}^{2}=\left|\pi_{\mathrm{A}_{i-1}} e\right|_{\mathrm{H}_{i}}^{2}+\left|\pi_{i} e\right|_{\mathrm{H}_{i}}^{2}+\left|\pi_{\mathrm{A}_{i}^{*}} e\right|_{\mathrm{H}_{i}}^{2} \\
& =\min _{\phi \in D\left(\mathrm{~A}_{i-1}^{*}\right)}(c_{i-1}\left|g-\mathrm{A}_{i-1}^{*} \phi\right|_{\mathrm{H}_{i-1}}+\underbrace{\min _{\xi \in N\left(\mathrm{~A}_{i-1}^{*}\right)}|\phi-\tilde{x}-\xi|_{\mathrm{H}_{i}}}_{=\left|\pi_{\mathrm{A}_{i-1}}(\phi-\tilde{x})\right|_{\mathrm{H}_{i}} \leq|\phi-\tilde{x}|_{\mathrm{H}_{i}} \quad(\xi=0)})^{2} \\
& +\min _{\varphi \in D\left(\mathrm{~A}_{i}\right)}\left(c_{i}\left|f-\mathrm{A}_{i} \varphi\right|_{\mathrm{H}_{i+1}}+\min _{\zeta \in N\left(\mathrm{~A}_{i}\right)}|\varphi-\tilde{x}-\zeta|_{\mathrm{H}_{i}}\right)^{2} \\
& =\mid \pi_{\mathrm{A}_{i}^{*}} \underbrace{}_{\left.(\varphi-\tilde{x})\right|_{\mathrm{H}_{i}} \leq|\varphi-\tilde{x}|_{\mathrm{H}_{i}}} \quad(\zeta=0) \\
& +\min _{\tau \in D\left(\mathrm{~A}_{i-1}\right),}\left|h-\tilde{x}-\mathrm{A}_{i-1} \tau-\mathrm{A}_{i}^{*} \sigma\right|_{\mathrm{H}_{i}}^{2} \\
& \sigma \in D\left(\mathrm{~A}_{i}^{*}\right) \\
& =\left|\pi_{i} e\right|_{\mathrm{H}_{i}}=\left|h-\pi_{i} \tilde{x}\right|_{\mathrm{H}_{i}} \quad\left(\mathrm{~A}_{i-1} \tau+\mathrm{A}_{i}^{*} \sigma=\left(\pi_{i}-1\right) \tilde{x}\right) \\
& \leq 3|e|_{H_{i}}^{2} \text {. }
\end{aligned}
$$

put $\phi=\varphi=x$

Upper Bounds (Proof)

$$
|e|_{\mathrm{H}_{i}}^{2}=\left|\pi_{\mathrm{A}_{i-1}} e\right|_{\mathrm{H}_{i}}^{2}+\left|\pi_{i} e\right|_{\mathrm{H}_{i}}^{2}+\left|\pi_{\mathrm{A}_{i}^{*}} e\right|_{\mathrm{H}_{i}}^{2}
$$

- $\pi_{\mathrm{A}_{i-1}} e=\mathrm{A}_{i-1} u$ with $u \in D\left(\mathcal{A}_{i-1}\right)$
for $\psi \in D\left(\mathcal{A}_{i-1}\right), \phi \in D\left(\mathrm{~A}_{i-1}^{*}\right)$

$$
\begin{aligned}
\left\langle\mathrm{A}_{i-1} u, \mathrm{~A}_{i-1} \psi\right\rangle_{\mathrm{H}_{i}} & =\left\langle\pi_{\mathrm{A}_{i-1}} e, \mathrm{~A}_{i-1} \psi\right\rangle_{\mathrm{H}_{i}}=\left\langle e, \mathrm{~A}_{i-1} \psi\right\rangle_{\mathrm{H}_{i}} \\
& =\left\langle x-\phi, \mathrm{A}_{i-1} \psi\right\rangle_{\mathrm{H}_{i}}+\left\langle\phi-\tilde{x}, \mathrm{~A}_{i-1} \psi\right\rangle_{\mathrm{H}_{i}} \\
& =\left\langle g-\mathrm{A}_{i-1}^{*} \phi, \psi\right\rangle_{\mathrm{H}_{i-1}}+\left\langle\pi_{\mathrm{A}_{i-1}}(\phi-\tilde{x}), \mathrm{A}_{i-1} \psi\right\rangle_{\mathrm{H}_{i}} \\
& \leq\left(c_{i-1}\left|g-\mathrm{A}_{i-1}^{*} \phi\right|_{\mathrm{H}_{i-1}}+\left|\pi_{\mathrm{A}_{i-1}}(\phi-\tilde{x})\right|_{\mathrm{H}_{i}}\right)\left|\mathrm{A}_{i-1} \psi\right|_{\mathrm{H}_{i}}
\end{aligned}
$$

note: $\forall \psi \in D\left(\mathcal{A}_{i-1}\right) \quad|\psi|_{\mathrm{H}_{i-1}} \leq c_{i-1}\left|\mathrm{~A}_{i-1} \psi\right|_{\mathrm{H}_{i}}$
$\psi:=u \Rightarrow\left|\pi_{\mathrm{A}_{i-1}} e\right|_{\mathrm{H}_{i}}=\left|\mathrm{A}_{i-1} u\right|_{\mathrm{H}_{i}} \leq c_{i-1}\left|g-\mathrm{A}_{i-1}^{*} \phi\right|_{\mathrm{H}_{i-1}}+\left|\pi_{\mathrm{A}_{i-1}}(\phi-\tilde{x})\right|_{\mathrm{H}_{i}}$

Upper Bounds (Proof)

$$
|e|_{\mathrm{H}_{i}}^{2}=\left|\pi_{\mathrm{A}_{i-1}} e\right|_{\mathrm{H}_{i}}^{2}+\left|\pi_{i} e\right|_{\mathrm{H}_{i}}^{2}+\left|\pi_{\mathrm{A}_{i}^{*}} e\right|_{\mathrm{H}_{i}}^{2}
$$

- $\pi_{\mathrm{A}_{i}^{*}} e=\mathrm{A}_{i}^{*} u$ with $u \in D\left(\mathcal{A}_{i}^{*}\right)$
for $\psi \in D\left(\mathcal{A}_{i}^{*}\right), \varphi \in D\left(\mathrm{~A}_{i}\right)$

$$
\begin{aligned}
\left\langle\mathrm{A}_{i}^{*} u, \mathrm{~A}_{i}^{*} \psi\right\rangle_{\mathrm{H}_{i}} & =\left\langle\pi_{\mathrm{A}_{i}^{*}} e, \mathrm{~A}_{i}^{*} \psi\right\rangle_{\mathrm{H}_{i}}=\left\langle e, \mathrm{~A}_{i}^{*} \psi\right\rangle_{\mathrm{H}_{i}} \\
& =\left\langle x-\varphi, \mathrm{A}_{i}^{*} \psi\right\rangle_{\mathrm{H}_{i}}+\left\langle\varphi-\tilde{x}, \mathrm{~A}_{i}^{*} \psi\right\rangle_{\mathrm{H}_{i}} \\
& =\left\langle f-\mathrm{A}_{i} \varphi, \psi\right\rangle_{\mathrm{H}_{i+1}}+\left\langle\pi_{\mathrm{A}_{i}^{*}}(\varphi-\tilde{x}), \mathrm{A}_{i}^{*} \psi\right\rangle_{\mathrm{H}_{i}} \\
& \leq\left(c_{i}\left|f-\mathrm{A}_{i} \varphi\right|_{\mathrm{H}_{i+1}}+\left|\pi_{\mathrm{A}_{i}^{*}}(\varphi-\tilde{x})\right|_{\mathrm{H}_{i}}\right)\left|\mathrm{A}_{i}^{*} \psi\right|_{\mathrm{H}_{i}}
\end{aligned}
$$

note: $\forall \psi \in D\left(\mathcal{A}_{i}^{*}\right) \quad|\psi|_{\mathrm{H}_{i+1}} \leq c_{i}\left|\mathrm{~A}_{i}^{*} \psi\right|_{\mathrm{H}_{i}}$
$\psi:=u \Rightarrow\left|\pi_{\mathrm{A}_{i}^{*}} e\right|_{\mathrm{H}_{i}}=\left|\mathrm{A}_{i}^{*} u\right|_{\mathrm{H}_{i}} \leq c_{i}\left|f-\mathrm{A}_{i} \varphi\right|_{\mathrm{H}_{i+1}}+\left|\pi_{\mathrm{A}_{i}^{*}}(\varphi-\tilde{x})\right|_{\mathrm{H}_{i}}$

Upper Bounds (Proof)

recall

$$
\begin{aligned}
|e|_{\mathrm{H}_{i}}^{2} & =\left|\pi_{\mathrm{A}_{i-1}} e\right|_{\mathrm{H}_{i}}^{2}+\left|\pi_{i} e\right|_{\mathrm{H}_{i}}^{2}+\left|\pi_{\mathrm{A}_{i}^{*}} e\right|_{\mathrm{H}_{i}}^{2} \\
\left|\pi_{\mathrm{A}_{i-1}} e\right|_{\mathrm{H}_{i}} & =\min _{\phi \in D\left(\mathrm{~A}_{i-1}^{*}\right)}\left(c_{i-1}\left|g-\mathrm{A}_{i-1}^{*} \phi\right|_{\mathrm{H}_{i-1}}+\left|\pi_{\mathrm{A}_{i-1}}(\phi-\tilde{x})\right|_{\mathrm{H}_{i}}\right) \\
\left|\pi_{\mathrm{A}_{i}^{*}} e\right|_{\mathrm{H}_{i}} & =\min _{\varphi \in D\left(\mathrm{~A}_{i}\right)}\left(c_{i}\left|f-\mathrm{A}_{i} \varphi\right|_{\mathrm{H}_{i+1}}+\left|\pi_{\mathrm{A}_{i}^{*}}(\varphi-\tilde{x})\right|_{\mathrm{H}_{i}}\right) \\
\pi_{i} e & =h-\pi_{i} \tilde{x}
\end{aligned}
$$

\Rightarrow for all $\xi \in N\left(\mathrm{~A}_{i-1}^{*}\right)$ and $\zeta \in N\left(\mathrm{~A}_{i}\right)$

$$
\begin{aligned}
\left|\pi_{\mathrm{A}_{i-1}}(\phi-\tilde{x})\right|_{\mathrm{H}_{i}}^{2}=\left\langle\phi-\tilde{x}-\xi, \pi_{\mathrm{A}_{i-1}}(\phi-\tilde{x})\right\rangle_{\mathrm{H}_{i}} & \Rightarrow\left|\pi_{\mathrm{A}_{i-1}}(\phi-\tilde{x})\right|_{\mathrm{H}_{i}} \leq|\phi-\tilde{x}-\xi|_{\mathrm{H}_{i}} \\
\left|\pi_{\mathrm{A}_{i}^{*}}(\varphi-\tilde{x})\right|_{\mathrm{H}_{i}}^{2}=\left\langle\varphi-\tilde{x}-\zeta, \pi_{\mathrm{A}_{i}^{*}}(\varphi-\tilde{x})\right\rangle_{\mathrm{H}_{i}} & \Rightarrow\left|\pi_{\mathrm{A}_{i}^{*}}(\varphi-\tilde{x})\right|_{\mathrm{H}_{i}} \leq|\varphi-\tilde{x}-\zeta|_{\mathrm{H}_{i}}
\end{aligned}
$$

for all $\tau \in D\left(\mathrm{~A}_{i-1}\right), \sigma \in D\left(\mathrm{~A}_{i}^{*}\right)$

$$
\begin{aligned}
& \left|h-\pi_{i} \tilde{x}\right|_{\mathrm{H}_{i}}^{2}=\left\langle h-\pi_{i} \tilde{x}-\mathrm{A}_{i-1} \tau-\mathrm{A}_{i}^{*} \sigma, h-\pi_{i} \tilde{x}\right\rangle_{\mathrm{H}_{i}} \\
\Rightarrow \quad & \left|h-\pi_{i} \tilde{x}\right|_{\mathrm{H}_{i}} \leq\left|h-\pi_{i} \tilde{x}-\mathrm{A}_{i-1} \tau-\mathrm{A}_{i}^{*} \sigma\right|_{\mathrm{H}_{i}}
\end{aligned}
$$

Lower Bounds

recall problem: find $x \in D\left(\mathrm{~A}_{i}\right) \cap D\left(\mathrm{~A}_{i-1}^{*}\right) \quad$ s.t. $\quad \mathrm{A}_{i} x=f, \quad \mathrm{~A}_{i-1}^{*} x=g, \quad \pi_{i} x=h$
'very' non-conforming 'approximation' of $x: \tilde{x} \in \mathrm{H}_{i}$
error $e:=x-\tilde{x}$ with $e=\pi_{\mathrm{A}_{i-1}} e+\pi_{i} e+\pi_{\mathrm{A}_{i}^{*}} e \in \mathrm{H}_{i}=R\left(\mathrm{~A}_{i-1}\right) \oplus_{\mathrm{H}_{i}} \mathcal{H}_{i} \oplus_{\mathrm{H}_{i}} R\left(\mathrm{~A}_{i}^{*}\right)$

Theorem (sharp lower bounds)

Let $\tilde{x} \in \mathrm{H}_{i}$ and $e:=x-\tilde{x}$. Then

$$
\begin{aligned}
|e|_{\mathrm{H}_{i}}^{2} & =\left|\pi_{\mathrm{A}_{i-1}} e\right|_{\mathrm{H}_{i}}^{2}+\left|\pi_{i} e\right|_{\mathrm{H}_{i}}^{2}+\left|\pi_{\mathrm{A}_{i}^{*}} e\right|_{\mathrm{H}_{i}}^{2}, \\
\left|\pi_{\mathrm{A}_{i-1}} e\right|_{\mathrm{H}_{i}}^{2} & =\max _{\phi \in D\left(\mathrm{~A}_{i-1}\right)}\left(2\langle g, \phi\rangle_{\mathrm{H}_{i-1}}-\left\langle 2 \tilde{x}+\mathrm{A}_{i-1} \phi, \mathrm{~A}_{i-1} \phi\right\rangle_{\mathrm{H}_{i}}\right), \\
\left|\pi_{\mathrm{A}_{i}^{*}} e\right|_{\mathrm{H}_{i}}^{2} & =\max _{\varphi \in D\left(\mathrm{~A}_{i}^{*}\right)}\left(2\langle f, \varphi\rangle_{\mathrm{H}_{i+1}}-\left\langle 2 \tilde{x}+\mathrm{A}_{i}^{*} \varphi, \mathrm{~A}_{i}^{*} \varphi\right\rangle_{\mathrm{H}_{i}}\right), \\
\pi_{i} e & =h-\pi_{i} \tilde{x} .
\end{aligned}
$$

The maxima are attained at $\phi \in D\left(\mathrm{~A}_{i-1}\right)$ with $\mathrm{A}_{i-1} \phi=\pi_{\mathrm{A}_{i-1}} e$ and $\varphi \in D\left(\mathrm{~A}_{i}^{*}\right)$ with $\mathrm{A}_{i}^{*} \varphi=\pi_{\mathrm{A}_{i}^{*}}$.

Lower Bounds (Proof)

$$
|e|_{\mathrm{H}_{i}}^{2}=\left|\pi_{\mathrm{A}_{i-1}} e\right|_{\mathrm{H}_{i}}^{2}+\left|\pi_{i} e\right|_{\mathrm{H}_{i}}^{2}+\left|\pi_{\mathrm{A}_{i}^{*}} e\right|_{\mathrm{H}_{i}}^{2}
$$

note: $|u|^{2}=\max _{v}\left(2\langle u, v\rangle-|v|^{2}\right) \quad(\max$ at $v=u)$
\Rightarrow for all $\phi \in D\left(\mathrm{~A}_{i-1}\right)$ and $\varphi \in D\left(\mathrm{~A}_{i}^{*}\right)$ and with $\pi_{\mathrm{A}_{i-1}} e \in R\left(\mathrm{~A}_{i-1}\right)$ and $\pi_{\mathrm{A}_{i}^{*}} e \in R\left(\mathrm{~A}_{i}^{*}\right)$

$$
\begin{aligned}
\left|\pi_{\mathrm{A}_{i-1}} e\right|_{\mathrm{H}_{i}}^{2} & =\max _{\phi \in D\left(\mathrm{~A}_{i-1}\right)}(2 \underbrace{\left\langle\pi_{\mathrm{A}_{i-1}} e, \mathrm{~A}_{i-1} \phi\right\rangle_{\mathrm{H}_{i}}}_{=\left\langle e, \mathrm{~A}_{i-1} \phi\right\rangle_{\mathrm{H}_{i}}}-\left|\mathrm{A}_{i-1} \phi\right|_{\mathrm{H}_{i}}^{2}) \\
& =\max _{\phi \in D\left(\mathrm{~A}_{i-1}\right)}\left(2\langle g, \phi\rangle_{\mathrm{H}_{i-1}}-2\left\langle\tilde{x}, \mathrm{~A}_{i-1}^{*} \phi\right\rangle_{\mathrm{H}_{i}}-\left|\mathrm{A}_{i-1} \phi\right|_{\mathrm{H}_{i}}^{2}\right) \\
& =\max _{\phi \in D\left(\mathrm{~A}_{i-1}\right)}\left(2\langle g, \phi\rangle_{\mathrm{H}_{i-1}}-\left\langle 2 \tilde{x}+\mathrm{A}_{i-1} \phi, \mathrm{~A}_{i-1} \phi\right\rangle_{\mathrm{H}_{i}}\right) \\
\left|\pi_{\mathrm{A}_{i}^{*}}\right|_{\mathrm{H}_{i}}^{2} & =\max _{\varphi \in D\left(\mathrm{~A}_{i}^{*}\right)}(2 \underbrace{\left\langle\pi_{\mathrm{A}_{i}^{*}} e, \mathrm{~A}_{i}^{*} \varphi\right\rangle_{\mathrm{H}_{i}}}_{=\left\langle e, \mathrm{~A}_{i}^{*} \varphi\right\rangle_{\mathrm{H}_{i}}}-\left|\mathrm{A}_{i}^{*} \varphi\right|_{\mathrm{H}_{i}}^{2}) \\
& =\max _{\varphi \in D\left(\mathrm{~A}_{i}^{*}\right)}\left(2\langle f, \varphi\rangle_{\mathrm{H}_{i+1}}-2\left\langle\tilde{x}, \mathrm{~A}_{i}^{*} \varphi\right\rangle_{\mathrm{H}_{i}}\right)-\left\langle\mathrm{A}_{i}^{*} \varphi, \mathrm{~A}_{i}^{*} \varphi\right\rangle_{\mathrm{H}_{i}} \\
& =\max _{\varphi \in D\left(\mathrm{~A}_{i}^{*}\right)}\left(2\langle f, \varphi\rangle_{\mathrm{H}_{i+1}}-\left\langle 2 \tilde{x}+\mathrm{A}_{i}^{*} \varphi, \mathrm{~A}_{i}^{*} \varphi\right\rangle_{\mathrm{H}_{i}}\right)
\end{aligned}
$$

Abstract Problem and Goal

problem: find $x \in D\left(\mathrm{~A}_{i}^{*} \mathrm{~A}_{i}\right) \cap D\left(\mathrm{~A}_{i-1}^{*}\right)$ s.t.

$$
\begin{aligned}
\mathrm{A}_{i}^{*} \mathrm{~A}_{i} x & =f \\
\mathrm{~A}_{i-1}^{*} x & =g \\
\pi_{i} x & =h
\end{aligned}
$$

equivalent mixed formulation ($y:=\mathrm{A}_{i} x$):
find pair $(x, y) \in\left(D\left(\mathrm{~A}_{i}\right) \cap D\left(\mathrm{~A}_{i-1}^{*}\right)\right) \times(\underbrace{D\left(\mathrm{~A}_{i}^{*}\right) \times R\left(\mathrm{~A}_{i}\right)}_{=D\left(\mathcal{A}_{i}^{*}\right)})$ s.t.

$$
\begin{aligned}
\mathrm{A}_{i} x & =y, & \mathrm{~A}_{i+1} y & =0 \\
\mathrm{~A}_{i-1}^{*} x & =g, & \mathrm{~A}_{i}^{*} y & =f \\
\pi_{i} x & =h, & \pi_{i+1} y & =0
\end{aligned}
$$

cont. solution theory $\sqrt{ }: x=\mathcal{A}_{i}^{-1} y+\left(\mathcal{A}_{i-1}^{*}\right)^{-1} g+h$ and $y=\left(\mathcal{A}_{i}^{*}\right)^{-1} f$ goal: functional a posteriori error estimates 'in the spirit of Sergey Repin'

$$
\text { for }(\tilde{x}, \tilde{y}) \in \mathrm{H}_{i} \times \mathrm{H}_{i+1} \text { (very non-conforming!) }
$$

$$
\text { estimate }|(x, y)-(\tilde{x}, \tilde{y})|_{H_{i} \times H_{i+1}} \text { in terms of } \tilde{x}, \tilde{y}, f, g, h
$$

Upper Bounds

problem: find $\quad(x, y) \in\left(D\left(\mathrm{~A}_{i}\right) \cap D\left(\mathrm{~A}_{i-1}^{*}\right)\right) \times D\left(\mathcal{A}_{i}^{*}\right) \quad$ s.t.

$$
\mathrm{A}_{i}^{*} y=f, \quad \mathrm{~A}_{i} x=y, \quad \mathrm{~A}_{i-1}^{*} x=g, \quad \pi_{i} x=h
$$

non-conforming 'approximation' of $x:(\tilde{x}, \tilde{y}) \in \mathrm{H}_{i} \times \mathrm{H}_{i+1}$
define errors $e_{x}:=x-\tilde{x}$ and $e_{y}:=y-\tilde{y}$ and decompose

$$
\begin{gathered}
e_{x}=\pi_{\mathrm{A}_{i-1}} e_{x}+\pi_{i} e_{x}+\pi_{\mathrm{A}_{i}^{*}} e_{x} \in \mathrm{H}_{i}=R\left(\mathrm{~A}_{i-1}\right) \oplus_{\mathrm{H}_{i}} \mathcal{H}_{i} \oplus_{\mathrm{H}_{i}} R\left(\mathrm{~A}_{i}^{*}\right) \\
e_{y-\pi_{\mathrm{A}_{i}} \tilde{y}}^{\pi_{\mathrm{A}_{i}} e_{y}}+\underbrace{\pi_{i+1} e_{y}}_{=-\pi_{i+1} \tilde{y}}+\underbrace{\pi_{\mathrm{A}_{i+1}^{*}}^{*} e_{y}}_{=-\pi_{\mathrm{A}_{i+1}^{*}} \tilde{y}} \in \mathrm{H}_{i+1}=R\left(\mathrm{~A}_{i}\right) \oplus_{\mathrm{H}_{i+1}} \mathcal{H}_{i+1} \oplus_{\mathrm{H}_{i+1}} R\left(\mathrm{~A}_{i+1}^{*}\right) \\
\Rightarrow\left(1-\pi_{\mathrm{A}_{i}}\right) e_{y}=-\left(\pi_{i+1}+\pi_{\mathrm{A}_{i+1}^{*}}\right) \tilde{y}=-\left(1-\pi_{\mathrm{A}_{i}}\right) \tilde{y} \\
\Downarrow \\
\left|e_{x}\right|_{\mathrm{H}_{i}}^{2}=\left|\pi_{\mathrm{A}_{i-1}} e_{x}\right|_{\mathrm{H}_{i}}^{2}+\left|\pi_{i} e_{x}\right|_{\mathrm{H}_{i}}^{2}+\left|\pi_{\mathrm{A}_{i}^{*}}^{*} e_{x}\right|_{\mathrm{H}_{i}}^{2} \\
\left|e_{y}\right|_{\mathrm{H}_{i+1}}^{2}=\left|\pi_{\mathrm{A}_{i}} e_{y}\right|_{\mathrm{H}_{i+1}}^{2}+\left|\left(1-\pi_{\mathrm{A}_{i}}\right) \tilde{y}\right|_{\mathrm{H}_{i+1}}^{2}
\end{gathered}
$$

Upper Bounds

$(\tilde{x}, \tilde{y}) \in \mathrm{H}_{i} \times \mathrm{H}_{i+1}$ and $e=(x, y)-(\tilde{x}, \tilde{y}) \in \mathrm{H}_{i} \times \mathrm{H}_{i+1}$
\Downarrow

$$
\pi_{i} e_{x}=h-\pi_{i} \tilde{x}, \quad\left(1-\pi_{\mathrm{A}_{i}}\right) e_{y}=-\left(1-\pi_{\mathrm{A}_{i}}\right) \tilde{y}
$$

and

$$
\begin{aligned}
\left|\pi_{\mathrm{A}_{i-1}} e_{x}\right|_{\mathrm{H}_{i}} & =\min _{\phi \in D\left(\mathrm{~A}_{i-1}^{*}\right)}\left(c_{i-1}\left|g-\mathrm{A}_{i-1}^{*} \phi\right|_{\mathrm{H}_{i-1}}+\left|\pi_{\mathrm{A}_{i-1}}(\phi-\tilde{x})\right|_{\mathrm{H}_{i}}\right) \\
\left|\pi_{\mathrm{A}_{i}^{*}} e_{x}\right|_{\mathrm{H}_{i}} & =\min _{\varphi \in D\left(\mathrm{~A}_{i}\right)}\left(c_{i}\left|y-\mathrm{A}_{i} \varphi\right|_{\mathrm{H}_{i+1}}+\left|\pi_{\mathrm{A}_{i}^{*}}(\varphi-\tilde{x})\right|_{\mathrm{H}_{i}}\right) \\
\left|\pi_{\mathrm{A}_{i}} e_{y}\right|_{\mathrm{H}_{i+1}} & =\min _{\phi \in D\left(\mathrm{~A}_{i}^{*}\right)}\left(c_{i}\left|f-\mathrm{A}_{i}^{*} \phi\right|_{\mathrm{H}_{i}}+\left|\pi_{\mathrm{A}_{i}}(\phi-\tilde{y})\right|_{\mathrm{H}_{i+1}}\right)
\end{aligned}
$$

$' y, \tilde{\tilde{y}}=\mathrm{A}_{i} \varphi \in R\left(\mathrm{~A}_{i}\right)^{\prime} \Rightarrow \pi_{\mathrm{A}_{i}}\left(y-\mathrm{A}_{i} \varphi\right)=y-\mathrm{A}_{i} \varphi, \pi_{\mathrm{A}_{i+1}^{*}}\left(y-\mathrm{A}_{i} \varphi\right)=0, \pi_{i+1}\left(y-\mathrm{A}_{i} \varphi\right)=0$
\Downarrow

$$
\left|y-\mathrm{A}_{i} \varphi\right|_{\mathrm{H}_{i+1}}=\left|\pi_{\mathrm{A}_{i}}\left(y-\mathrm{A}_{i} \varphi\right)\right|_{\mathrm{H}_{i+1}}=\min _{\phi \in D\left(\mathrm{~A}_{i}^{*}\right)}\left(c_{i}\left|f-\mathrm{A}_{i}^{*} \phi\right|_{\mathrm{H}_{i}}+\left|\pi_{\mathrm{A}_{i}} \phi-\mathrm{A}_{i} \varphi\right|_{\mathrm{H}_{i+1}}\right)
$$

Upper Bounds

Theorem (sharp upper bounds)

Let $(\tilde{x}, \tilde{y}) \in \mathrm{H}_{i} \times \mathrm{H}_{i+1}$ and $e:=(x, y)-(\tilde{x}, \tilde{y}) \in \mathrm{H}_{i} \times \mathrm{H}_{i+1}$.
Then $\pi_{i} e_{x}=h-\pi_{i} \tilde{x}$ and $\left(1-\pi_{\mathrm{A}_{i}}\right) e_{y}=-\left(1-\pi_{\mathrm{A}_{i}}\right) \tilde{y}$ as well as

$$
\begin{aligned}
& \mid \pi_{\mathrm{A}_{i}} e_{y}{\mid \mathrm{H}_{i+1}}= \min _{\xi \in D\left(\mathrm{~A}_{i}^{*}\right)}\left(c_{i}\left|f-\mathrm{A}_{i}^{*} \xi\right|_{\mathrm{H}_{i}}+\left|\pi_{\mathrm{A}_{i}}(\xi-\tilde{y})\right|_{\mathrm{H}_{i+1}}\right), \\
&\left|\left(1-\pi_{\mathrm{A}_{i}}\right) e_{y}\right|_{\mathrm{H}_{i+1}}=\left|\left(1-\pi_{\mathrm{A}_{i}}\right) \tilde{y}\right|_{\mathrm{H}_{i+1}}=\min _{\zeta \in D\left(\mathrm{~A}_{i}\right)}\left|\tilde{y}-\mathrm{A}_{i} \zeta\right|_{\mathrm{H}_{i+1}}, \\
&\left|\pi_{\mathrm{A}_{i-1}} e_{x}\right|_{\mathrm{H}_{i}}= \min _{\phi \in D\left(\mathrm{~A}_{i-1}^{*}\right)}\left(c_{i-1}\left|g-\mathrm{A}_{i-1}^{*} \phi\right|_{\mathrm{H}_{i-1}}+\left|\pi_{\mathrm{A}_{i-1}}(\phi-\tilde{x})\right|_{\mathrm{H}_{i}}\right), \\
& \mid \pi_{\mathrm{A}_{i}^{*}} e_{x}{\mid \mathrm{H}_{i}}=\min _{\varphi \in D\left(\mathrm{~A}_{i}\right)}\left(\left|\pi_{\mathrm{A}_{i}^{*}}(\varphi-\tilde{x})\right|_{\mathrm{H}_{i}}\right. \\
&\left.\quad+c_{i} \min _{\psi \in D\left(\mathrm{~A}_{i}^{*}\right)}\left(c_{i}\left|f-\mathrm{A}_{i}^{*} \psi\right|_{\mathrm{H}_{i}}+\left|\pi_{\mathrm{A}_{i}} \psi-\mathrm{A}_{i} \varphi\right|_{\mathrm{H}_{i+1}}\right)\right) .
\end{aligned}
$$

The projectors can be computed and sharply estimates as before.
recall

$$
\begin{aligned}
\left|e_{x}\right|_{\mathrm{H}_{i}}^{2} & =\left|\pi_{\mathrm{A}_{i-1}} e_{x}\right|_{\mathrm{H}_{i}}^{2}+\left|\pi_{i} e_{x}\right|_{\mathrm{H}_{i}}^{2}+\left|\pi_{\mathrm{A}_{i}^{*}} e_{x}\right|_{\mathrm{H}_{i}}^{2}, \\
\left|e_{y}\right|_{\mathrm{H}_{i+1}}^{2} & =\left|\pi_{\mathrm{A}_{i}} e_{y}\right|_{\mathrm{H}_{i+1}}^{2}+\left|\left(1-\pi_{\mathrm{A}_{i+1}}\right) e_{y}\right|_{\mathrm{H}_{i+1}}^{2}
\end{aligned}
$$

Functional A Posteriori Error Estimates for Second Order Problems
Lower Bounds

universitãt

DES'SSBN URG

Electro-Static Maxwell

$\Omega \subset \mathbb{R}^{3}$ bounded domain with Lipschitz (or weaker) boundary $\Gamma=\partial \Omega$

$$
\begin{aligned}
\operatorname{rot} E & =F \in \operatorname{rot} \stackrel{\circ}{\mathrm{R}} & & \text { in } \Omega \\
-\operatorname{div} \varepsilon E & =G \in \operatorname{div} \mathrm{D}=\mathrm{L}^{2} & & \text { in } \Omega \\
\nu \times E & =0 & & \text { at } \Gamma \\
\pi_{\mathrm{D}} E & =D \in \mathcal{H}_{\mathrm{D}, \varepsilon}=\stackrel{\circ}{\mathrm{R}_{0}} \cap \varepsilon^{-1} \mathrm{D}_{0} & &
\end{aligned}
$$

$\Rightarrow E \in \stackrel{\circ}{\mathrm{R}} \cap \varepsilon^{-1} \mathrm{D}$
set $i:=1$

$$
\begin{array}{cr}
\mathrm{A}_{i-1}:=\stackrel{\circ}{\nabla}: \stackrel{\circ}{\mathrm{H}}^{1} \subset \mathrm{~L}^{2} \rightarrow \mathrm{~L}_{\varepsilon}^{2}, & \mathrm{~A}_{i}:=\stackrel{\circ}{\mathrm{rot}}: \stackrel{\circ}{\mathrm{R}} \subset \mathrm{~L}_{\varepsilon}^{2} \rightarrow \mathrm{~L}^{2} \\
\mathrm{~A}_{i-1}^{*}=-\operatorname{div} \varepsilon: \varepsilon^{-1} \mathrm{D} \subset \mathrm{~L}_{\varepsilon}^{2} \rightarrow \mathrm{~L}^{2}, & \mathrm{~A}_{i}^{*}=\varepsilon^{-1} \operatorname{rot}: \mathrm{R} \subset \mathrm{~L}^{2} \rightarrow \mathrm{~L}_{\varepsilon}^{2}
\end{array}
$$

Applications to First Order Systems

Electro-Static Maxwell

compact embeddings:

$$
\begin{array}{clrl}
D\left(\mathcal{A}_{i-1}\right) \leftrightarrow \mathrm{H}_{i-1} & \Leftrightarrow & \stackrel{\circ}{\mathrm{H}}^{1} \leftrightarrow \mathrm{~L}^{2} & \text { (Rellich's selection theorem) } \\
D\left(\mathcal{A}_{i}\right) \leftrightarrow \mathrm{H}_{i} & \Leftrightarrow & \stackrel{\circ}{\mathrm{R}} \cap \varepsilon^{-1} \operatorname{rot} \mathrm{R} \leftrightarrow \mathrm{~L}_{\varepsilon}^{2} & \text { (tan. Maxwell cpt property) }
\end{array}
$$

$c_{i-1}=c_{\mathrm{p}, \mathrm{o}}$ (Poincaré/Friedrichs constant) and $c_{i}=c_{\mathrm{m}, \mathrm{t}}$ (tangential Maxwell constant)
$\forall \varphi \in D\left(\mathcal{A}_{i-1}\right) \quad|\varphi|_{\mathrm{H}_{i-1}} \leq c_{i-1}\left|\mathrm{~A}_{i-1} \varphi\right|_{\mathrm{H}_{i}} \quad \Leftrightarrow \quad \forall \varphi \in \dot{\mathrm{H}}^{1} \quad|\varphi|_{\mathrm{L}^{2}} \leq c_{\mathrm{p}, 0}|\nabla \varphi|_{\mathrm{L}_{\varepsilon}^{2}}$
$\forall \phi \in D\left(\mathcal{A}_{i-1}^{*}\right) \quad|\phi|_{\mathrm{H}_{i}} \leq c_{i-1}\left|\mathrm{~A}_{i-1}^{*} \phi\right|_{\mathrm{H}_{i-1}} \quad \Leftrightarrow \quad \forall \Phi \in \varepsilon^{-1} \mathrm{D} \cap \nabla \dot{\mathrm{H}}^{1} \quad|\Phi|_{\mathrm{L}_{\varepsilon}^{2}} \leq c_{\mathrm{p}, \mathrm{o}}|\operatorname{div} \varepsilon \Phi|_{\mathrm{L}^{2}}$
$\forall \varphi \in D\left(\mathcal{A}_{i}\right) \quad|\varphi|_{\mathrm{H}_{i}} \leq c_{i}\left|\mathrm{~A}_{i} \varphi\right|_{\mathrm{H}_{i+1}} \quad \Leftrightarrow \quad \forall \Phi \in \stackrel{\circ}{\mathrm{R}} \cap \varepsilon^{-1} \operatorname{rot} \mathrm{R} \quad|\Phi|_{\mathrm{L}_{\varepsilon}^{2}} \leq c_{\mathrm{m}, \mathrm{t}}|\stackrel{\circ}{\operatorname{rot}} \Phi|_{\mathrm{L}^{2}}$
$\forall \psi \in D\left(\mathcal{A}_{i}^{*}\right) \quad|\psi|_{\mathrm{H}_{i+1}} \leq c_{i}\left|\mathrm{~A}_{i}^{*} \psi\right|_{\mathrm{H}_{i}} \quad \Leftrightarrow \quad \forall \Psi \in \mathrm{R} \cap \operatorname{rot} \stackrel{\circ}{\mathrm{R}} \quad|\Psi|_{\mathrm{L}^{2}} \leq c_{\mathrm{m}, \mathrm{t}}|\operatorname{rot} \Psi|_{\mathrm{L}_{\varepsilon}^{2}}$
Helmholtz decomposition:

$$
\mathrm{H}_{i}=R\left(\mathrm{~A}_{i-1}\right) \oplus_{\mathrm{H}_{i}} \mathcal{H}_{i} \oplus_{\mathrm{H}_{i}} R\left(\mathrm{~A}_{i}^{*}\right) \quad \Leftrightarrow \quad \mathrm{L}_{\varepsilon}^{2}=\nabla \stackrel{\mathrm{H}}{ }_{1}^{\oplus_{\mathrm{L}_{\varepsilon}^{2}}} \mathcal{H}_{\mathrm{D}, \varepsilon} \oplus_{\mathrm{L}_{\varepsilon}^{2}} \varepsilon^{-1} \operatorname{rot} \mathrm{R}
$$

orthonormal projectors:

$$
\begin{array}{rlrl}
& \pi_{\mathrm{A}_{i-1}}: \mathrm{H}_{i} \rightarrow R\left(\mathrm{~A}_{i-1}\right), & \pi_{\mathrm{A}_{i}^{*}}: \mathrm{H}_{i} \rightarrow R\left(\mathrm{~A}_{i}^{*}\right), & \pi_{i}: \mathrm{H}_{i} \rightarrow \mathcal{H}_{i} \\
\Leftrightarrow \quad \pi_{\circ}: \mathrm{L}_{\varepsilon}^{2} \rightarrow \nabla \stackrel{\mathrm{H}}{ }_{1}, & \pi_{\varepsilon^{-1} \mathrm{rot}}: \mathrm{L}_{\varepsilon}^{2} \rightarrow \varepsilon^{-1} \operatorname{rot} \mathrm{R}, & \pi_{\mathrm{D}}: \mathrm{L}_{\varepsilon}^{2} \rightarrow \mathcal{H}_{\mathrm{D}, \varepsilon}
\end{array}
$$

Applications to First Order Systems

Electro-Static Maxwell: Upper Bounds

Theorem (sharp upper bounds I)

Let $\tilde{E} \in \mathrm{~L}_{\varepsilon}^{2}$ (very non-conforming!) and e $:=E-\tilde{E}$. Then

$$
\begin{aligned}
&|e|_{L_{\varepsilon}^{2}}^{2}=\left|\pi_{\circ} e\right|_{L_{\varepsilon}^{2}}^{2}+\left|\pi_{\varepsilon^{-1} \operatorname{rot}} e\right|_{L_{\varepsilon}^{2}}^{2}+\left|\pi_{\mathrm{D}} e\right|_{\mathrm{L}_{\varepsilon}^{2}}^{2} \\
&=\min _{\Phi \in \varepsilon^{-1} \mathrm{D}}\left(c_{\mathrm{p}, \circ}|G+\operatorname{div} \varepsilon \Phi|_{\mathrm{L}^{2}}+\right. \\
&=\underbrace{\min _{\Psi \in \varepsilon^{-1} \mathrm{D}_{0}}|\Phi-\tilde{E}-\Psi|_{\mathrm{L}_{\varepsilon}^{2}}}_{\left.\stackrel{\circ}{\circ}(\Phi-\tilde{E})\right|_{\mathrm{L}_{\varepsilon}^{2}} \leq|\Phi-\tilde{E}|_{L_{\varepsilon}^{2}} \quad(\Psi=0)})^{2}
\end{aligned}
$$

$$
+\min _{\Phi \in \stackrel{\circ}{\mathrm{R}}}(c_{\mathrm{m}, \mathrm{t}}|F-\operatorname{rot} \Phi|_{\mathrm{L}^{2}}+\underbrace{\min _{\substack{ }}^{\mathcal{R}_{0}}|\Phi-\tilde{E}-\Psi|_{\mathrm{L}_{\varepsilon}^{2}}}_{=\left|\pi_{\varepsilon^{-1} \text { rot }}(\Phi-\tilde{E})\right|_{\mathrm{L}_{\varepsilon}^{2}} \leq|\Phi-\tilde{E}|_{\mathrm{L}_{\varepsilon}^{2}}})
$$

$$
+\min _{\substack{\dot{\mathrm{H}^{1}, \Psi \in \mathrm{R}}}}\left|D-\tilde{E}-\nabla \phi-\varepsilon^{-1} \operatorname{rot} \Psi\right|_{\mathrm{L}_{\varepsilon}^{2}}^{2}
$$

$\leq 3|e|_{L_{\varepsilon}^{2}}^{2}$.

$$
=\left|\pi_{\mathrm{D}} e_{\mathrm{L}_{\varepsilon}^{2}}=\left|D-\pi_{\mathrm{D}} \tilde{E}\right|_{\mathrm{L}_{\varepsilon}^{2}} \quad\left(\nabla \phi+\varepsilon^{-1} \operatorname{rot} \psi=\left(\pi_{\mathrm{D}}-1\right) \tilde{E}\right)\right.
$$

put $\Phi=E$; note: Γ connected $\Rightarrow \pi_{\mathrm{D}}=0$ and $\stackrel{\circ}{\mathrm{R}}_{0}=\nabla \stackrel{\circ}{\mathrm{H}}^{1}$ and $\mathrm{D}_{0}=\operatorname{rot} \mathrm{R}$ note: Ω convex $\stackrel{\varepsilon=\mu=1}{\Rightarrow} c_{\mathrm{p}, \circ} \leq c_{\mathrm{m}, \mathrm{t}} \leq \frac{\operatorname{diam}_{\Omega}}{\pi} \Rightarrow$ everything is computable!

UNIVERSITÁT

DESSEBNURG

Electro-Static Maxwell: Upper Bounds

Corollary (sharp upper bounds II)

Let Γ be connected and $\tilde{E} \in \mathrm{~L}_{\varepsilon}^{2}$ (non-conforming!) and $e:=E-\tilde{E}$. Then

$$
\leq 2|e|_{L_{\varepsilon}^{2}}^{2} .
$$

put $\Phi=E$
note: Ω convex $\stackrel{\varepsilon=\mu=1}{\Rightarrow} c_{\mathrm{p}, \mathrm{o}} \leq c_{\mathrm{m}, \mathrm{t}} \leq \frac{\operatorname{diam}_{\Omega}}{\pi} \Rightarrow$ everything is computable!

$$
\begin{aligned}
& |e|_{L_{\varepsilon}^{2}}^{2}=\left|\pi_{\circ} e\right|_{L_{\varepsilon}^{2}}^{2}+\left|\pi_{\varepsilon^{-1} \text { rot }} e\right|_{L_{\varepsilon}^{2}}^{2} \\
& =\min _{\Phi \in \varepsilon^{-1} \mathrm{D}}(c_{\mathrm{p}, \mathrm{o}}|G+\operatorname{div} \varepsilon \Phi|_{\mathrm{L}^{2}}+\underbrace{(\psi=0)}_{\left.=\left|\pi_{\circ}(\Phi-\tilde{E})\right|_{L_{\varepsilon}^{2} \leq|\Phi-\tilde{E}|_{L_{\varepsilon}^{2}}}^{\min _{\psi \in \mathrm{R}}\left|\Phi-\tilde{E}-\varepsilon^{-1} \operatorname{rot} \psi\right|_{L_{\varepsilon}^{2}}}\right)^{2}}
\end{aligned}
$$

Magneto-Static Maxwell

$\Omega \subset \mathbb{R}^{3}$ bounded domain with Lipschitz (or weaker) boundary $\Gamma=\partial \Omega$

$$
\begin{aligned}
\operatorname{rot} H & =F \in \operatorname{rot} \mathrm{R} & & \text { in } \Omega \\
-\operatorname{div} \varepsilon H & =G \in \operatorname{div} \stackrel{\circ}{\mathrm{D}}=\mathrm{L}^{2} \cap \mathbb{R}^{\perp} & & \text { in } \Omega \\
\nu \cdot \varepsilon H & =0 & & \text { at } \Gamma \\
\pi_{\mathrm{N}} H & =N \in \mathcal{H}_{\mathrm{N}, \varepsilon}=\mathrm{R}_{0} \cap \varepsilon^{-1} \stackrel{\circ}{\mathrm{D}}_{0} & &
\end{aligned}
$$

$\Rightarrow H \in \mathrm{R} \cap \varepsilon^{-1} \stackrel{\circ}{\mathrm{D}}$
set $i:=1$

$$
\begin{array}{cl}
\mathrm{A}_{i-1}:=\nabla: \mathrm{H}^{1} \subset \mathrm{~L}^{2} \rightarrow \mathrm{~L}_{\varepsilon}^{2}, & \mathrm{~A}_{i}:=\mathrm{rot}: \mathrm{R} \subset \mathrm{~L}_{\varepsilon}^{2} \rightarrow \mathrm{~L}^{2} \\
\mathrm{~A}_{i-1}^{*}=-\stackrel{\circ}{\operatorname{div} \varepsilon}: \varepsilon^{-1} \stackrel{\circ}{\mathrm{D}} \subset \mathrm{~L}_{\varepsilon}^{2} \rightarrow \mathrm{~L}^{2}, & \mathrm{~A}_{i}^{*}=\varepsilon^{-1} \mathrm{\circ} \mathrm{\circ} \mathrm{ot}: \stackrel{\circ}{\mathrm{R}} \subset \mathrm{~L}^{2} \rightarrow \mathrm{~L}_{\varepsilon}^{2}
\end{array}
$$

Applications to First Order Systems

Magneto-Static Maxwell

compact embeddings:

$$
\begin{array}{clrl}
N\left(\mathcal{A}_{i-1}\right) \leftrightarrow \mathrm{H}_{i-1} & \Leftrightarrow & \mathrm{H}^{1} \hookrightarrow \mathrm{~L}^{2} & \text { (Rellich's selection theorem) } \\
N\left(\mathcal{A}_{i}\right) \leftrightarrow \mathrm{H}_{i} & \Leftrightarrow & \mathrm{R} \cap \varepsilon^{-1} \operatorname{rot} \stackrel{\circ}{\mathrm{R}} \leftrightarrow \mathrm{~L}_{\varepsilon}^{2} & \text { (nor. Maxwell cpt property) }
\end{array}
$$

$$
c_{i-1}=c_{\mathrm{p}} \text { (Poincaré } / \text { Friedrichs constant) and } c_{i}=c_{\mathrm{m}, \mathrm{n}} \text { (normal Maxwell constant) }
$$

$$
\forall \varphi \in N\left(\mathcal{A}_{i-1}\right) \quad|\varphi|_{\mathrm{H}_{i-1}} \leq c_{i-1}\left|\mathrm{~A}_{i-1} \varphi\right|_{\mathrm{H}_{i}} \quad \Leftrightarrow \quad \forall \varphi \in \mathrm{H}^{1} \quad|\varphi|_{\mathrm{L}^{2}} \leq c_{\mathrm{p}}|\nabla \varphi|_{\mathrm{L}_{\varepsilon}^{2}}
$$

$$
\forall \phi \in N\left(\mathcal{A}_{i-1}^{*}\right) \quad|\phi|_{\mathrm{H}_{i}} \leq c_{i-1}\left|\mathrm{~A}_{i-1}^{*} \phi\right|_{\mathrm{H}_{i-1}} \quad \Leftrightarrow \quad \forall \Phi \in \varepsilon^{-1} \stackrel{\circ}{\mathrm{D}} \cap \nabla \mathrm{H}^{1} \quad|\Phi|_{\mathrm{L}_{\varepsilon}^{2}} \leq c_{\mathrm{p}}|\stackrel{\circ}{\operatorname{div} \varepsilon} \Phi|_{\mathrm{L}^{2}}
$$

$$
\forall \varphi \in N\left(\mathcal{A}_{i}\right) \quad|\varphi|_{\mathrm{H}_{i}} \leq c_{i}\left|\mathrm{~A}_{i} \varphi\right|_{\mathrm{H}_{i+1}} \quad \Leftrightarrow \quad \forall \Phi \in \mathrm{R} \cap \varepsilon^{-1} \operatorname{rot} \stackrel{\circ}{\mathrm{R}} \quad|\Phi|_{\mathrm{L}_{\varepsilon}^{2}} \leq c_{\mathrm{m}, \mathrm{n}}|\operatorname{rot} \Phi|_{\mathrm{L}^{2}}
$$

$$
\forall \psi \in N\left(\mathcal{A}_{i}^{*}\right) \quad|\psi|_{\mathrm{H}_{i+1}} \leq c_{i}\left|\mathrm{~A}_{i}^{*} \psi\right|_{\mathrm{H}_{i}} \quad \Leftrightarrow \quad \forall \Psi \in \stackrel{\circ}{\mathrm{R}} \cap \operatorname{rot} \mathrm{R} \quad|\Psi|_{\mathrm{L}^{2}} \leq c_{\mathrm{m}, \mathrm{n}}|\stackrel{\circ}{\operatorname{rot}} \Psi|_{\mathrm{L}_{\varepsilon}^{2}}
$$

Helmholtz decomposition:

$$
\mathrm{H}_{i}=R\left(\mathrm{~A}_{i-1}\right) \oplus_{\mathrm{H}_{i}} \mathcal{H}_{i} \oplus_{\mathrm{H}_{i}} R\left(\mathrm{~A}_{i}^{*}\right) \quad \Leftrightarrow \quad \mathrm{L}_{\varepsilon}^{2}=\nabla \mathrm{H}^{1} \oplus_{\mathrm{L}_{\varepsilon}^{2}} \mathcal{H}_{\mathrm{N}, \varepsilon} \oplus_{\mathrm{L}_{\varepsilon}^{2}} \varepsilon^{-1} \operatorname{rot} \stackrel{\circ}{\mathrm{R}}
$$

orthonormal projectors:

$$
\begin{array}{rlrl}
& \pi_{\mathrm{A}_{i-1}}: \mathrm{H}_{i} & \rightarrow R\left(\mathrm{~A}_{i-1}\right), & \pi_{\mathrm{A}_{i}^{*}}: \mathrm{H}_{i} \rightarrow R\left(\mathrm{~A}_{i}^{*}\right), \quad \pi_{i}: \mathrm{H}_{i} \rightarrow \mathcal{H}_{i} \\
\Leftrightarrow \quad \pi_{\nabla}: \mathrm{L}_{\varepsilon}^{2} \rightarrow \nabla \mathrm{H}^{1}, & \pi_{\varepsilon^{-1} \text { rot }}: \mathrm{L}_{\varepsilon}^{2} \rightarrow \varepsilon^{-1} \operatorname{rot} \stackrel{\circ}{\mathrm{R}}, \quad \pi_{\mathrm{N}}: \mathrm{L}_{\varepsilon}^{2} \rightarrow \mathcal{H}_{\mathrm{N}, \varepsilon}
\end{array}
$$

Applications to First Order Systems

Magneto-Static Maxwell: Upper Bounds

Theorem (sharp upper bounds I)

Let $\tilde{H} \in \mathrm{~L}_{\varepsilon}^{2}$ (very non-conforming!) and $e:=H-\tilde{H}$. Then

$$
\begin{aligned}
& |e|_{\mathrm{L}_{\varepsilon}^{2}}^{2}=\left|\pi_{\nabla} e\right|_{\mathrm{L}_{\varepsilon}^{2}}^{2}+\left|\pi_{\varepsilon^{-1} \text { rot }}^{\circ} e\right|_{\mathrm{L}_{\varepsilon}^{2}}^{2}+\left|\pi_{\mathrm{N}} e\right|_{\mathrm{L}_{\varepsilon}^{2}}^{2} \\
& =\min _{\Phi \in \varepsilon^{-1} \stackrel{\circ}{\mathrm{D}}}(c_{\mathrm{p}}|G+\operatorname{div} \varepsilon \Phi|_{\mathrm{L}^{2}}+\underbrace{(\Psi=0)}_{\left.=\left|\pi \nabla_{\nabla}(\Phi-\tilde{H})\right|_{\mathrm{L}_{\varepsilon}^{2} \leq|\Phi-\tilde{H}|_{L_{\varepsilon}^{2}}}^{\min _{\Psi \in \varepsilon^{-1} \stackrel{\circ}{\mathrm{D}}_{0}}|\Phi-\tilde{H}-\Psi|_{\mathrm{L}_{\varepsilon}^{2}}}\right)^{2}} \\
& +\min _{\Phi \in \mathrm{R}}\left(c_{\mathrm{m}, \mathrm{n}}|F-\operatorname{rot} \Phi|_{\mathrm{L}^{2}}+\quad \min _{\psi \in \mathrm{R}_{0}}|\Phi-\tilde{H}-\Psi|_{\mathrm{L}_{\varepsilon}^{2}} \quad\right)^{2} \\
& =\mid \pi_{\left.\varepsilon^{-1} \underset{\text { rot }}{\circ}(\Phi-\tilde{H})\right|_{L_{\varepsilon}^{2}} \leq|\Phi-\tilde{H}|_{L_{\varepsilon}^{2}}^{2} \quad(\Psi=0), ~} \\
& +\min _{\phi \in \mathrm{H}^{1}, \Psi \in \mathrm{R}}\left|N-\tilde{H}-\nabla \phi-\varepsilon^{-1} \operatorname{rot} \Psi\right|_{\mathrm{L}_{\varepsilon}^{2}}^{2} \\
& =\left|\pi_{N} e\right|_{L_{\varepsilon}^{2}}=\left|N-\pi_{N} \tilde{H}\right|_{L_{\varepsilon}^{2}} \quad\left(\nabla \phi+\varepsilon^{-1} \operatorname{rot} \psi=\left(\pi_{N}-1\right) \tilde{H}\right)
\end{aligned}
$$

put $\Phi=H$; note: Ω simply connected $\Rightarrow \pi_{N}=0$ and $\mathrm{R}_{0}=\nabla \mathrm{H}^{1}$ and $\stackrel{\circ}{\mathrm{D}}_{0}=\operatorname{rot} \stackrel{\circ}{\mathrm{R}}$
note:
Ω convex $\stackrel{\varepsilon=\mu=1}{\Rightarrow} c_{\mathrm{m}, \mathrm{n}} \leq c_{\mathrm{p}} \leq \frac{\operatorname{diam}_{\Omega}}{\pi} \Rightarrow$ everything is computable!

Magneto-Static Maxwell: Upper Bounds

Corollary (sharp upper bounds II)

Let Ω be simply connected and $\tilde{H} \in \mathrm{~L}_{\varepsilon}^{2}$ (non-conforming!) and $e:=H-\tilde{H}$. Then

$$
\begin{align*}
|e|_{\mathrm{L}_{\varepsilon}^{2}}^{2} & =\left|\pi_{\nabla} e\right|_{\mathrm{L}_{\varepsilon}^{2}}^{2}+\left|\pi_{\varepsilon^{-1} \operatorname{\circ ot}} e\right|_{\mathrm{L}_{\varepsilon}^{2}}^{2} \\
& =\min _{\Phi \in \varepsilon^{-1} \stackrel{\circ}{\mathrm{D}}}(c_{\mathrm{p}}|G+\operatorname{div} \varepsilon \Phi|_{\mathrm{L}^{2}}+\underbrace{\left.\min _{\psi \in \mathrm{R}}^{\circ}\left|\Phi-\tilde{H}-\varepsilon^{-1} \operatorname{rot} \psi\right|_{\mathrm{L}_{\varepsilon}^{2}}\right)^{2}}_{=\left|\pi_{\nabla}(\Phi-\tilde{H})\right|_{\mathrm{L}_{\varepsilon}^{2}} \leq|\Phi-\tilde{H}|_{\mathrm{L}_{\varepsilon}^{2}} \quad(\psi=0)}
\end{align*}
$$

$+\min _{\Phi \in \mathrm{R}}\left(c_{\mathrm{m}, \mathrm{n}}|F-\operatorname{rot} \Phi|_{\mathrm{L}^{2}}+\right.$ $\min _{\psi \in \mathrm{H}^{1}}|\Phi-\tilde{H}-\nabla \psi|_{\mathrm{L}_{\varepsilon}^{2}}$

$$
=\mid \pi_{\left.\left.\varepsilon^{-1} \underset{\text { rot }}{\circ}(\Phi-\tilde{H})\right|_{L_{\varepsilon}^{2}} \leq|\Phi-\tilde{H}|_{L_{\varepsilon}^{2}} \quad(\psi=0), 0\right)}
$$

$$
\leq 2|e|_{L_{\varepsilon}^{2}}^{2} .
$$

put $\Phi=H$
note: Ω convex $\stackrel{\varepsilon=\mu=1}{\Rightarrow} c_{\mathrm{m}, \mathrm{n}} \leq c_{\mathrm{p}} \leq \frac{\text { diam }_{\Omega}}{\pi} \Rightarrow$ everything is computable!
universitãt

Dirichlet Laplace

$\Omega \subset \mathbb{R}^{3}$ bounded domain with Lipschitz (or weaker) boundary $\Gamma=\partial \Omega$

$$
\begin{array}{rlrl}
-\operatorname{div} \varepsilon \nabla u & =f \in \mathrm{~L}^{2} & & \text { in } \Omega \\
u=0 & & \text { at } \Gamma \\
\Leftrightarrow & & & \\
& & \operatorname{rot} E & =0 \\
& -\operatorname{div} \varepsilon E & =f \in \mathrm{~L}^{2} & \text { in } \Omega \\
u & =0 & & \text { in } \Omega \\
\nu \times E & =0 & & \text { at } \Gamma \\
& \pi_{\mathrm{D}} E & =0 \in \mathcal{H}_{\mathrm{D}, \varepsilon} &
\end{array}
$$

$\Rightarrow(u, E) \in \stackrel{\circ}{\mathrm{H}}^{1} \times\left(\varepsilon^{-1} \mathrm{D} \cap \nabla \stackrel{\circ}{\mathrm{H}}^{1}\right)$
set $i:=0$

$$
\begin{array}{rr}
\stackrel{\mathrm{A}_{i}:=\stackrel{\circ}{\nabla}}{ }: \stackrel{\circ}{\mathrm{H}}^{1} \subset \mathrm{~L}^{2} \rightarrow \mathrm{~L}_{\varepsilon}^{2}, & \mathrm{~A}_{i+1}:=\stackrel{\circ}{\operatorname{rot}: \stackrel{\circ}{\mathrm{R}} \subset \mathrm{~L}_{\varepsilon}^{2} \rightarrow \mathrm{~L}^{2}} \\
\mathrm{~A}_{i}^{*}=-\operatorname{div} \varepsilon: \varepsilon^{-1} \mathrm{D} \subset \mathrm{~L}_{\varepsilon}^{2} \rightarrow \mathrm{~L}^{2}, & \mathrm{~A}_{i+1}^{*}=\varepsilon^{-1} \operatorname{rot}: \mathrm{R} \subset \mathrm{~L}^{2} \rightarrow \mathrm{~L}_{\varepsilon}^{2}
\end{array}
$$

Dirichlet Laplace: Upper Bounds

Theorem (sharp upper bounds)

Let $(\tilde{u}, \tilde{E}) \in \mathrm{L}^{2} \times \mathrm{L}_{\varepsilon}^{2}$ (very non-conforming!) and $e:=(u, E)-(\tilde{u}, \tilde{E}) \in \mathrm{L}^{2} \times \mathrm{L}_{\varepsilon}^{2}$.
Then $\pi_{i}=0, \pi_{- \text {div }}=$ id and $\left(1-\pi_{\circ}\right) e_{E}=-\left(1-\pi_{\circ}\right) \tilde{E}$ and

$$
\begin{aligned}
& \left|\pi_{\nabla} e_{E}\right|_{L_{\varepsilon}^{2}}=\min _{\Phi \in \varepsilon^{-1} \mathrm{D}}(c_{\mathrm{p}, \mathrm{o}}|f+\operatorname{div} \varepsilon \Phi|_{\mathrm{L}^{2}}+\underbrace{\min _{\Psi \in \varepsilon^{-1} D_{0}}|\Phi-\tilde{E}-\Psi|_{L_{\varepsilon}^{2}}}_{=\left|\pi_{\circ}(\Phi-\tilde{E})\right|_{L_{\varepsilon}^{2}}}), \\
& \left|\left(1-\pi_{\nabla}\right) e_{E}\right|_{L_{\varepsilon}^{2}}=\left|\left(1-\pi_{\nabla}\right) \tilde{E}\right|_{L_{\varepsilon}^{2}}=\min _{\varphi \in \mathrm{H}^{1}}|\tilde{E}-\nabla \varphi|_{L_{\varepsilon}^{2}}, \\
& \left|e_{u}\right|_{\mathrm{L}^{2}}=\min _{\varphi \in \mathrm{H}^{1}}\left(|\varphi-\tilde{u}|_{\mathrm{L}^{2}}\right. \\
& \left.+c_{\mathrm{p}, \circ} \min _{\Phi \in \varepsilon^{-1} \mathrm{D}}\left(c_{\mathrm{P}, \mathrm{o}}|f+\operatorname{div} \varepsilon \Phi|_{\mathrm{L}^{2}}+\min _{\Psi \in \varepsilon^{-1} \mathrm{D}_{0}}|\Phi-\stackrel{\circ}{\nabla} \varphi-\Psi|_{\mathrm{L}_{\varepsilon}^{2}}\right)\right) . \\
& =\left|\pi_{\nabla} \Phi-\stackrel{\circ}{\nabla} \varphi\right|_{L_{\varepsilon}^{2}}
\end{aligned}
$$

recall

$$
\left|e_{E}\right|_{\mathrm{L}_{\varepsilon}^{2}}^{2}=\left|\pi_{\nabla} e_{E}\right|_{\mathrm{L}_{\varepsilon}^{2}}^{2}+\left|\left(1-\pi_{\circ}\right) e_{E}\right|_{\mathrm{L}_{\varepsilon}^{2}}^{2}
$$

note: $\tilde{E} \in \mathrm{~L}_{\varepsilon}^{2}$ approx. of $\nabla u \Rightarrow$ applicable to any DG-method

Neumann Laplace

$\Omega \subset \mathbb{R}^{3}$ bounded domain with Lipschitz (or weaker) boundary $\Gamma=\partial \Omega$

$$
\begin{aligned}
-\operatorname{div} \varepsilon \nabla u & =f \in \mathrm{~L}^{2} & & \text { in } \Omega \\
\nu \cdot \varepsilon \nabla u & =0 & & \text { at } \Gamma \\
\pi_{\mathbb{R}} u & =\alpha \in \mathbb{R} & &
\end{aligned}
$$

$$
\Leftrightarrow \quad \nabla u=H \in \nabla H^{1}
$$

$$
\begin{aligned}
\operatorname{rot} H & =0 & & \text { in } \Omega \\
-\operatorname{div} \varepsilon H & =f \in \mathrm{~L}^{2} & & \text { in } \Omega \\
\nu \cdot \varepsilon H & =0 & & \text { at } \Gamma
\end{aligned}
$$

$$
\pi_{\mathbb{R}} u=\alpha \in \mathbb{R}
$$

$$
\pi_{\mathrm{N}} H=0 \in \mathcal{H}_{\mathrm{N}, \varepsilon}
$$

$\Rightarrow(u, H) \in \mathrm{H}^{1} \times\left(\varepsilon^{-1} \stackrel{\circ}{\mathrm{D}} \cap \nabla \mathrm{H}^{1}\right)$
set $i:=0$

$$
\left.\begin{array}{cc}
\mathrm{A}_{i}:=\nabla & : \mathrm{H}^{1} \subset \mathrm{~L}^{2} \rightarrow \mathrm{~L}_{\varepsilon}^{2},
\end{array} \quad \mathrm{~A}_{i+1}:=\operatorname{rot}: \mathrm{R} \subset \mathrm{~L}_{\varepsilon}^{2} \rightarrow \mathrm{~L}^{2}\right)
$$

Neumann Laplace: Upper Bounds

Theorem (sharp upper bounds)

Let $(\tilde{u}, \tilde{H}) \in \mathrm{L}^{2} \times \mathrm{L}_{\varepsilon}^{2}$ (very non-conforming!) and $\mathrm{e}:=(u, H)-(\tilde{u}, \tilde{H}) \in \mathrm{L}^{2} \times \mathrm{L}_{\varepsilon}^{2}$. Then

$$
\begin{aligned}
& \left|\pi_{\nabla} e_{H}\right|_{L_{\varepsilon}^{2}}=\min _{\Phi \in \varepsilon^{-1} \mathrm{D}}(c_{\mathrm{P}}|f+\operatorname{div} \varepsilon \Phi|_{\mathrm{L}^{2}}+\underbrace{\min _{\psi \in \varepsilon^{-1} \mathrm{D}_{0}}|\Phi-\tilde{H}-\Psi|_{L_{\varepsilon}^{2}}}_{=\left|\pi_{\nabla}(\Phi-\tilde{H})\right|_{L_{\varepsilon}^{2}}}), \\
& \left|\left(1-\pi_{\nabla}\right) e_{H}\right|_{L_{\varepsilon}^{2}}=\left|\left(1-\pi_{\nabla}\right) \tilde{H}\right|_{L_{\varepsilon}^{2}}=\min _{\varphi \in \mathrm{H}^{1}}|\tilde{H}-\nabla \varphi|_{L_{\varepsilon}^{2}} .
\end{aligned}
$$

Again, also estimate for $\left|e_{u}\right|_{L^{2}}$.
recall

$$
\left|e_{H}\right|_{L_{\varepsilon}^{2}}^{2}=\left|\pi_{\nabla} e_{H}\right|_{L_{\varepsilon}^{2}}^{2}+\left|\left(1-\pi_{\nabla}\right) e_{H}\right|_{L_{\varepsilon}^{2}}^{2}
$$

note: $\tilde{H} \in \mathrm{~L}_{\varepsilon}^{2}$ approx. of $\nabla u \Rightarrow$ applicable to any DG-method

First Order Systems

$\Omega \subset \mathbb{R}^{3}$ bounded domain with Lipschitz (or weaker) boundary $\Gamma=\partial \Omega$
Electro/Magneto-Static Maxwell with mixed boundary conditions:

$$
\begin{aligned}
\operatorname{rot} E & =F & & \text { in } \Omega \\
-\operatorname{div} \varepsilon E & =G & & \text { in } \Omega \\
\nu \times E & =0 & & \text { at } \Gamma_{t} \\
\nu \cdot \varepsilon E & =0 & & \text { at } \Gamma_{n} \\
\pi_{\mathrm{D}, \mathrm{~N}} E & =D & &
\end{aligned}
$$

First Order Systems

$\Omega \subset \mathbb{R}^{3}$ bounded differentiable Riemannian manifold with Lipschitz boundary $\Gamma=\partial \Omega$
Electro-Static Maxwell:

$$
\begin{aligned}
\operatorname{rot}_{\Omega} E & =F \\
-\operatorname{div}_{\Omega} \varepsilon E & =G \\
\tau E & =0 \\
\pi_{\mathrm{D}} E & =D \in \mathcal{H}_{\mathrm{D}, \varepsilon}
\end{aligned}
$$

$$
\begin{aligned}
& \text { on } \Omega \\
& \text { on } \Omega \\
& \text { at } \Gamma
\end{aligned}
$$

Magneto-Static Maxwell:

$$
\begin{aligned}
\operatorname{rot}_{\Omega} H & =F & & \text { on } \Omega \\
-\operatorname{div}_{\Omega} \varepsilon H & =G & & \text { on } \Omega \\
\nu \varepsilon H & =0 & & \text { at } \Gamma \\
\pi_{\mathrm{N}} H & =N \in \mathcal{H}_{\mathrm{N}, \varepsilon} & &
\end{aligned}
$$

First Order Systems

Ω differentiable Riemannian manifold with cpt closure and Lipschitz boundary $\Gamma=\partial \Omega$
Generalized Electro-Static Maxwell:

$$
\begin{aligned}
\mathrm{d} E & =F \\
-\delta \varepsilon E & =G \\
\tau E & =0 \\
\pi_{\mathrm{D}} E & =D \in \mathcal{H}_{\mathrm{D}, \varepsilon}
\end{aligned}
$$

Generalized Magneto-Static Maxwell:

$$
\begin{aligned}
\mathrm{d} H & =F & & \text { on } \Omega \\
-\delta \varepsilon H & =G & & \text { on } \Omega \\
\nu \varepsilon H & =0 & & \text { on } \Gamma \\
\pi_{\mathrm{N}} H & =N \in \mathcal{H}_{\mathrm{N}, \varepsilon} & &
\end{aligned}
$$

Second Order Systems

$\Omega \subset \mathbb{R}^{n}$ bounded domain with Lipschitz (or weaker) boundary $\Gamma=\partial \Omega$
Dirichlet Laplace:

$$
\begin{aligned}
-\operatorname{div} \varepsilon \nabla u & =f & & \text { in } \Omega \\
u & =0 & & \text { at } \Gamma
\end{aligned}
$$

Neumann Laplace:

$$
\begin{aligned}
-\operatorname{div} \varepsilon \nabla u & =f & & \text { in } \Omega \\
\nu \cdot \varepsilon \nabla u & =0 & & \text { at } \Gamma \\
\pi_{\mathbb{R}} u & =\alpha & &
\end{aligned}
$$

Dirichlet/Neumann Laplace with mixed boundary conditions:

$$
\begin{aligned}
-\operatorname{div} \varepsilon \nabla u & =f \\
u & =0 \\
\nu \cdot \varepsilon \nabla u & =0 \\
\pi_{\mathbb{R}} u & =\alpha \quad\left(\text { if } \Gamma_{t}=\varnothing\right)
\end{aligned}
$$

Second Order Systems

$\Omega \subset \mathbb{R}^{n}$ bounded differentiable Riemannian manifold with Lipschitz (or weaker) boundary $\Gamma=\partial \Omega$

Dirichlet/Neumann Laplace:

$$
-\operatorname{div}_{\Omega} \varepsilon \nabla_{\Omega} u=f
$$

$$
\text { on } \Omega
$$

Second Order Systems

$\Omega \subset \mathbb{R}^{3}$ bounded domain with Lipschitz (or weaker) boundary $\Gamma=\partial \Omega$
Electro-Static double-rot:

$$
\begin{aligned}
\operatorname{rot} \mu^{-1} \operatorname{rot} E & =F & & \text { in } \Omega \\
-\operatorname{div} \varepsilon E & =G & & \text { in } \Omega \\
\nu \times E & =0 & & \text { at } \Gamma \\
\pi_{\mathrm{D}} E & =D \in \mathcal{H}_{\mathrm{D}, \varepsilon} & &
\end{aligned}
$$

Magneto-Static double-rot:

$$
\begin{aligned}
\operatorname{rot} \varepsilon^{-1} \operatorname{rot} H & =F & & \text { in } \Omega \\
-\operatorname{div} \mu H & =G & & \text { in } \Omega \\
\nu \cdot \mu H & =0 & & \text { at } \Gamma \\
\pi_{\mathrm{N}} H & =N \in \mathcal{H}_{\mathrm{N}, \varepsilon} & &
\end{aligned}
$$

Second Order Systems

Ω bounded differentiable Riemannian manifold with Lipschitz (or weaker) boundary $\Gamma=\partial \Omega$

Generalized Electro-Magneto-Static:

$$
\begin{array}{rlrl}
-\delta \mu \mathrm{d} E & =F \\
-\delta \varepsilon E & =G \\
\tau E=0 & \text { or } & \nu \varepsilon E & =0 \\
\pi_{\mathrm{D}} E=D & & \text { or } & \pi_{\mathrm{N}} E
\end{array}=N
$$

on Ω
on Ω
on Γ
more results:

- Stokes $\sqrt{ }$
- unbounded like exterior domains \Rightarrow estimates in polynomially weighted normes $\sqrt{ }$
- mixed boundary conditions $\sqrt{ }$
- inhomogeneous boundary conditions $\sqrt{ }$

Thank You

Computation of Projections

universitãt

DES'SSBN URG

