Hilbert Complexes and PDEs

Dirk Pauly

Institut für Analysis

Austrian Numerical Analysis Day 20202022
and Colloquium dedicated to Ulrich Langer and Walter Zulehner on the occasion of their Retirement

RICAM, JKU-ICM
May 4-6 2022, Linz
Hosts: Herbert Egger, Clemens Hofreither, Stefan Takacs

May the Force

Some Hilbert Complexes

PDEs: de Rham complex 3D

grad-complex

PDEs

$$
\partial_{t}^{n}-\underbrace{\text { div grad }}_{=\Delta_{\mathrm{D}}}, \quad \partial_{t}^{n}-\underbrace{\text { div grad }}_{=\Delta_{N}}, \quad \partial_{t}^{n}+\underbrace{\text { rot root }}_{=\vec{\square}_{\mathrm{t}}}, \quad \partial_{t}^{n}+\underbrace{\text { rot root - grad div }}_{=-\vec{\Delta}_{\mathrm{t}}}
$$

elliptic $(n=0) /$ parabolic $(n=1) /$ hyperbolic $(n=2)$
or FOSs $\quad \partial_{t}^{m}-\underbrace{\left[\begin{array}{cc}0 & \operatorname{div} \\ \operatorname{grad} & 0\end{array}\right]}_{=\text {Maxwell }_{\mathrm{D}, \text { acoustic }}}, \quad \partial_{t}^{m}-\underbrace{\left[\begin{array}{cc}0 & -\operatorname{rot} \\ \text { ro̊t } & 0\end{array}\right]}_{=\text {Maxwell }_{\mathrm{t}, \text { electromagnetic }}}$

PDEs: de Rham complex ND / manifolds

d-complex (mother of all complexes)

$$
\{0\} \quad \stackrel{\iota_{0}}{\underset{\pi_{0}}{\rightleftarrows}} \cdots \quad \mathrm{~L}^{2, q-1} \underset{-\delta_{q}}{\stackrel{\stackrel{\mathrm{~d}}{q-1}^{\rightleftarrows}}{\rightleftarrows}} \mathrm{L}^{2, q} \underset{-\delta_{q+1}}{\stackrel{\stackrel{\circ}{\mathrm{~d}}_{q}}{\rightleftarrows}} \mathrm{~L}^{2, q+1} \cdots \frac{\iota_{* \mathbb{R}}}{\stackrel{\pi_{*}}{\rightleftarrows}} * \mathbb{R}
$$

PDEs

$$
\partial_{t}^{n}-\delta \mathrm{d}, \quad \partial_{t}^{n}-\delta \dot{d}, \quad \partial_{t}^{n}-\delta \dot{\mathrm{d}}, \quad \partial_{t}^{n} \underbrace{-\delta \mathrm{d}-\mathrm{d} \delta}_{=-\Delta_{\mathrm{t}}}
$$

elliptic $(n=0) /$ parabolic $(n=1) /$ hyperbolic $(n=2)$
or FOS $\partial_{t}^{m}-\underbrace{\left[\begin{array}{ll}0 & \delta \\ 0 & 0\end{array}\right]}_{=\text {Maxwell }_{\mathrm{t}}}$

Some Hilbert Complexes

PDEs: elasticity complex 3D

symGrad-complex

PDEs

$\partial_{t}^{n}+\underbrace{{\operatorname{Rot} \operatorname{Rot}_{\mathbb{S}}^{\top}}^{\operatorname{Rot}^{\circ} \mathrm{Rot}_{\mathbb{S}}}{ }^{\top}}_{4 \text { th order }}-\underbrace{\text { symGْrad Div }}_{2 \text { nd order }}$
(apparently mixed order type, but NOT compact perturbation!)
elliptic $(n=0) /$ parabolic $(n=1) /$ hyperbolic $(n=2)$

PDEs: 1st and 2nd biharmonic / general relativity complexes 3D

Gradgrad-complex

$\{0\} \underset{\pi_{0}}{\stackrel{\iota_{0}}{\rightleftarrows}} L^{2} \underset{\text { divDiv }}{\stackrel{\text { Gradgrad }}{\rightleftarrows}} L_{\mathbb{S}}^{2} \underset{\text { symRot }_{\mathbb{T}}}{\stackrel{\text { Rot}_{\mathbb{S}}}{\rightleftarrows}} \mathrm{L}_{\mathbb{T}}^{2} \underset{-\operatorname{devGrad}}{\stackrel{\text { Div }}{\mathbb{T}}} \boldsymbol{\rightleftarrows} L^{2} \underset{\iota_{\mathbb{R} \mathbb{T}}}{\stackrel{\pi_{\mathbb{R} \mathbb{T}}}{\rightleftarrows}} \mathbb{R T}$
devGrad-complex
$\{0\} \underset{\pi_{0}}{\stackrel{\iota_{0}}{\rightleftarrows}} L^{2} \underset{- \text { Div }_{\mathbb{T}}}{\stackrel{\text { devGंrad }}{\rightleftarrows}} L_{\mathbb{T}}^{2} \underset{\text { Rot }_{\mathbb{S}}}{\stackrel{\text { symRot }_{\mathbb{T}}}{\rightleftarrows}} L_{\mathbb{S}}^{2} \underset{\text { Gradgrad }}{\stackrel{\text { divDiv }_{\mathbb{S}}}{\rightleftarrows}} L^{2} \underset{\iota_{\mathbb{P}_{1}}}{\stackrel{\pi_{\mathbb{P}_{1}}}{\rightleftarrows}} \mathbb{P}_{1}$

PDEs

$$
\partial_{t}^{n}+\underbrace{\operatorname{divDiv}_{\mathbb{S}} \operatorname{Grad} \text { grad }}_{=\Delta_{D}^{2}}, \quad \partial_{t}^{n}-\underbrace{\operatorname{Div}_{\mathbb{T}}^{\circ} \operatorname{devGrad}}_{=\Delta_{\mathbb{D}, \mathrm{N}}}, \quad \partial_{t}^{n}+\operatorname{Rot}_{\mathbb{S}} \operatorname{sym}^{\circ} \operatorname{Rot}_{\mathbb{T}},
$$

$$
\partial_{t}^{n}+\underbrace{\operatorname{symRot}_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}}^{\circ}}_{\text {2nd order }}+\underbrace{\text { Gradgrad divDiv }_{\mathbb{S}}}_{\text {4th order }}
$$

(apparently mixed order type, but NOT compact perturbation!)
elliptic $(n=0) /$ parabolic $(n=1) /$ hyperbolic $(n=2)$

BGG

whole zoo more ...

BGG

Eastwood, Arnold, Falk, Winther, ...

also important for FEM, DEC, ... (construction and analysis)

Some Hilbert Complexes

General Complex / \rightsquigarrow FA-ToolBox

densely defined and closed (unbounded) linear operators

$$
\begin{array}{ll}
\mathrm{A}_{0}: D\left(\mathrm{~A}_{0}\right) \subset \mathrm{H}_{0} \rightarrow \mathrm{H}_{1}, & \mathrm{~A}_{1}: D\left(\mathrm{~A}_{1}\right) \subset \mathrm{H}_{1} \rightarrow \mathrm{H}_{2} \\
\mathrm{~A}_{0}^{*}: D\left(\mathrm{~A}_{0}^{*}\right) \subset \mathrm{H}_{1} \rightarrow \mathrm{H}_{0}, & \mathrm{~A}_{1}^{*}: D\left(\mathrm{~A}_{1}^{*}\right) \subset \mathrm{H}_{2} \rightarrow \mathrm{H}_{1}
\end{array}
$$

general complex property $\mathrm{A}_{1} \mathrm{~A}_{0}=0$, i.e., $\quad R\left(\mathrm{~A}_{0}\right) \subset N\left(\mathrm{~A}_{1}\right) \quad\left(\Leftrightarrow R\left(\mathrm{~A}_{1}^{*}\right) \subset N\left(\mathrm{~A}_{0}^{*}\right)\right)$

Hilbert complex

$N\left(\mathrm{~A}_{0}\right) \underset{\pi_{N\left(\mathrm{~A}_{0}\right)}}{\stackrel{\iota_{N\left(\mathrm{~A}_{0}\right)}}{\rightleftarrows} \cdots \quad \mathrm{H}_{0} \underset{\mathrm{~A}_{0}^{*}}{\stackrel{\mathrm{~A}_{0}}{\rightleftarrows}} \mathrm{H}_{1} \underset{\mathrm{~A}_{1}^{*}}{\stackrel{\mathrm{~A}_{1}}{\rightleftarrows}} \mathrm{H}_{2}} \cdots \cdots \underset{\iota_{N\left(\mathrm{~A}_{n}^{*}\right)}^{\stackrel{\iota_{n}}{\rightleftarrows}}}{\stackrel{\pi_{N\left(\mathrm{~A}_{n}^{*}\right)}}{\rightleftarrows}} N\left(\mathrm{~A}_{n}^{*}\right)$

General Complex \rightsquigarrow FA-ToolBox

Hilbert complex

$$
N\left(\mathrm{~A}_{0}\right) \underset{\pi_{N\left(\mathrm{~A}_{0}\right)}}{\stackrel{\iota_{N\left(\mathrm{~A}_{0}\right)}}{\rightleftarrows}} \cdots \quad \mathrm{H}_{0} \underset{\mathrm{~A}_{0}^{*}}{\stackrel{\mathrm{~A}_{0}}{\rightleftarrows}} \mathrm{H}_{1} \underset{\mathrm{~A}_{1}^{*}}{\stackrel{\mathrm{~A}_{1}}{\rightleftarrows}} \mathrm{H}_{2} \quad \cdots \underset{\iota_{N\left(\mathrm{~A}_{n}^{*}\right)}^{\rightleftarrows}}{\stackrel{\pi_{N\left(\mathrm{~A}_{n}^{*}\right)}^{\rightleftarrows}}{\rightleftarrows}} N\left(\mathrm{~A}_{n}^{*}\right)
$$

some equations

$$
\partial_{t}^{n}+\mathrm{A}_{0}^{*} \mathrm{~A}_{0}, \quad \partial_{t}^{n}+\mathrm{A}_{1} \mathrm{~A}_{1}^{*}, \quad \partial_{t}^{n}+\mathrm{A}_{1}^{*} \mathrm{~A}_{1}+\mathrm{A}_{0} \mathrm{~A}_{0}^{*}, \quad \partial_{t}^{m}-\left[\begin{array}{cc}
0 & -\mathrm{A}_{1}^{*} \\
\mathrm{~A}_{1} & 0
\end{array}\right], \quad\left[\begin{array}{cc}
\partial_{t}^{m} & \mathrm{~A}_{1}^{*} \\
-\mathrm{A}_{1} & \partial_{t}^{\ell}
\end{array}\right]
$$

elliptic $(n=0) /$ parabolic $(n=1) /$ hyperbolic $(n=2) \quad m, \ell \in\{0,1\}$
ell $(m=\ell=0) /$ para $(m=1, \ell=0$ or $m=0, \ell=1) /$ hyper $(m=\ell=1)$

Hilbert Complexes and PDEs

Getting in Touch with Walter and Ulrich

Getting in Touch with Walter and Ulrich

August 2011 1st contact Ulrich
October 2012 1st contact Walter
April 2013 1st longer discussion Walter
November 2014 2nd longer discussion Walter

AANMPDE 4, Euler MI, St. Petersburg DK Statusseminar, Strobl
Korn's inequalities
duals of H_{0} (div) and H_{0} (rot)
note: known in 2D for simply connected domains

$$
\mathrm{H}_{0}(\mathrm{div})^{\prime}=\mathrm{H}^{-1}(\text { rot }) \quad \text { eq } \quad \mathrm{H}_{0}(\text { rot })^{\prime}=\mathrm{H}^{-1}(\text { div })
$$

- What if the domain is not simply connected?
- What about ND?
- What about duals of $\mathrm{H}($ div $)$ and $\mathrm{H}($ rot $)$?
\Rightarrow 2014: starting point of long, fruitful, and wonderful cooperation with Walter

Getting in Touch with Walter and Ulrich

August 2011 1st contact Ulrich
October 2012 1st contact Walter
April 2013 1st longer discussion Walter November 2014 1st project with Walter 2016 2nd project with Walter

AANMPDE 4, Euler MI, St. Petersburg DK Statusseminar, Strobl
Korn's inequalities duals of H_{0} (div) and H_{0} (rot) kernel of divDiv

$$
N\left(\operatorname{divDiv}_{\mathbb{S}}\right)=R\left(\operatorname{symRot}_{\mathbb{T}}\right)
$$

more precisely, if Ω topologically trivial (simply connected and connected boundary) $S \in \mathrm{~L}^{2}\left(\Omega, \mathbb{R}^{3 \times 3}\right)$ symmetric with $\operatorname{div} \operatorname{Div} S=0$
$\Rightarrow \quad \exists T L^{2}\left(\Omega, \mathbb{R}^{3 \times 3}\right)$ trace-free with symRot $T=S$

$$
N\left(\operatorname{symRot}_{\mathbb{T}}\right)=R(\operatorname{devGrad})
$$

more precisely, if Ω topologically trivial (simply connected and connected boundary) $T \in \mathrm{~L}^{2}\left(\Omega, \mathbb{R}^{3 \times 3}\right)$ trace-free with symRot $T=0$ $\Rightarrow \quad \exists v \mathrm{~L}^{2}\left(\Omega, \mathbb{R}^{33}\right)$ with $\operatorname{devGrad} v=T$

Getting in Touch with Walter and Ulrich

August 2011 1st contact Ulrich October 2012 1st contact Walter

April 2013 1st longer discussion Walter
November 2014 1st project with Walter
2016 2nd project with Walter
2016 3rd project with Walter

AANMPDE 4, Euler MI, St. Petersburg DK Statusseminar, Strobl
Korn's inequalities
duals of H_{0} (div) and H_{0} (rot)
kernel of divDiv
1st biharmonic complex

Getting in Touch with Walter and Ulrich

August 2011 1st contact Ulrich
October 2012 1st contact Walter
April 2013 1st longer discussion Walter November 2014 1st project with Walter 2016 2nd project with Walter 2016 3rd project with Walter 2018 4th project with Walter

AANMPDE 4, Euler MI, St. Petersburg DK Statusseminar, Strobl
Korn's inequalities
duals of H_{0} (div) and H_{0} (rot)
kernel of divDiv
biharmonic complex
elasticity complex

$$
\{0\} \underset{\pi_{0}}{\stackrel{\iota_{0}}{\rightleftarrows}} L^{2} \underset{-\operatorname{Div}_{\mathbb{S}}}{\stackrel{\text { symGirad }}{\rightleftarrows}} L_{\mathbb{S}}^{2} \underset{\operatorname{Rot}^{2} \operatorname{Rot}_{\mathbb{S}}^{\top}}{\stackrel{\operatorname{Rot}^{\circ} \operatorname{Rot}_{\mathbb{S}}^{\top}}{\rightleftarrows}} \mathrm{L}_{\mathbb{S}}^{2} \underset{- \text { symGrad }}{\stackrel{\operatorname{Div}_{\mathbb{S}}}{\rightleftarrows}} \mathrm{L}^{2} \underset{\iota_{\mathbb{R M}}}{\stackrel{\pi_{\mathbb{R M}}}{\rightleftarrows}} \mathbb{R M}
$$

Hilbert Complexes and PDEs

Some Results from the Joint Work with Walter

Theorem (compact complexes)

All the latter Hilbert complexes are compact, i.e., for all n

$$
D\left(\mathrm{~A}_{n}\right) \cap D\left(\mathrm{~A}_{n-1}^{*}\right) \hookrightarrow \mathrm{H}_{n} \text { compact. }
$$

Corollary (closed complexes)
All the latter Hilbert complexes are closed, i.e., for all n

$$
R\left(\mathrm{~A}_{n}\right), R\left(\mathrm{~A}_{n}^{*}\right) \text { closed. }
$$

Corollary (Friedrichs/Poincaré estimates)

All the latter operators admit Friedrichs/Poincaré type estimates.

mini FA-ToolBox

Corollary (compact resolvents)

All the latter corresponding inverses (of the reduced operators) are compact, i.e., for all n

$$
\mathcal{A}_{n}^{-1},\left(\mathcal{A}_{n}^{*}\right)^{-1} \text { compact. }
$$

Corollary (spectra)

All the latter operators have discrete point spectra with finite eigenspaces, i.e., for all n

$$
\sigma\left(\left[\begin{array}{cc}
0 & \mathrm{~A}_{n}^{*} \\
\mathrm{~A}_{n} & 0
\end{array}\right]\right) \backslash\{0\}= \pm \sqrt{\sigma\left(\mathrm{A}_{n}^{*} \mathrm{~A}_{n}\right)} \backslash\{0\}= \pm \sqrt{\sigma\left(\mathrm{A}_{n} \mathrm{~A}_{n}^{*}\right)} \backslash\{0\}
$$

and $\sigma\left(\mathrm{A}_{n}^{*} \mathrm{~A}_{n}\right) \backslash\{0\}=\left\{0<\lambda_{1}^{2}<\lambda_{2}^{2}<\cdots<\lambda_{\ell}^{2} \rightarrow \infty\right\}$ and λ_{ℓ}^{2} finite multiplicity.

mini FA-ToolBox

Corollary (spectral theorems)

All the latter operators admit a spectral representation, i.e., for all n there exist orthonormal bases $\left(\xi_{n}\right)$ and $\left(\zeta_{n}\right)$ with, e.g.,

$$
\begin{array}{lll}
x=\sum_{\ell} x_{\ell} \xi_{\ell}, & \mathrm{A}_{n} x=\sum_{\ell} \lambda_{\ell} x_{\ell} \zeta_{\ell}, & \mathrm{A}_{n}^{*} \mathrm{~A}_{n} x=\sum_{\ell} \lambda_{\ell}^{2} x_{\ell} \xi_{\ell}, \\
y=\sum_{\ell} y_{\ell} \zeta_{\ell}, & \mathrm{A}_{n}^{*} y=\sum_{\ell} \lambda_{\ell} y_{\ell} \xi_{\ell}, & \mathrm{A}_{n} \mathrm{~A}_{n}^{*} y=\sum_{\ell} \lambda_{\ell}^{2} y_{\ell} \zeta_{\ell}
\end{array}
$$

Corollary (Friedrichs/Poincaré estimates)

Friedrichs/Poincaré estimates type for higher eigenspaces.

```
key ingredients
```


Lemma (bounded regular decompositions)

All the latter Hilbert complexes admit for all n bounded regular decompositions

$$
D\left(\mathrm{~A}_{n}\right)=\mathrm{H}_{n}^{+}+\mathrm{A}_{n-1} \mathrm{H}_{n-1}^{+} .
$$

Corollary (bounded regular potentials)

All the latter Hilbert complexes admit for all n bounded regular potentials

$$
R\left(\mathrm{~A}_{n}\right)=\mathrm{A}_{n} \mathrm{H}_{n}^{+} .
$$

Corollary (bounded regular potential operators)
All the latter Hilbert complexes admit for all n bounded lin regular potential operators

$$
P_{\mathrm{A}_{n}}: R\left(\mathrm{~A}_{n}\right) \rightarrow \mathrm{H}_{n}^{+} \quad \text { with } \quad \mathrm{A}_{n} P_{\mathrm{A}_{n}}=\operatorname{id}_{R\left(\mathrm{~A}_{n}\right)} .
$$

mini FA-ToolBox

application: characterisation of duals

Theorem (characterisation of dual spaces)

Define regular dual spaces $\mathrm{H}_{n}^{-}:=\left(\mathrm{H}_{n}^{+}\right)^{\prime}$. Then:

regular decomposition	dual space
$D\left(\mathrm{~A}_{1}\right)=\mathrm{H}_{1}^{+}+\mathrm{A}_{0} \mathrm{H}_{0}^{+}$	$D\left(\mathrm{~A}_{1}\right)^{\prime}=\left\{\Phi \in \mathrm{H}_{1}^{-}: \mathrm{A}_{0}^{\prime} \Phi \in \mathrm{H}_{0}^{-}\right\}$
$D\left(\mathrm{~A}_{0}^{*}\right)=\mathrm{H}_{1}^{+}+\mathrm{A}_{1}^{*} \mathrm{H}_{2}^{+}$	$D\left(\mathrm{~A}_{1}^{*}\right)^{\prime}=\left\{\Phi \in \mathrm{H}_{1}^{-}:\left(\mathrm{A}_{1}^{*}\right)^{\prime} \Phi \in \mathrm{H}_{2}^{-}\right\}$

application: Dirichlet-Neumann fields

Theorem (Dirichlet-Neumann fields / cohomology groups)

The cohomology groups (generalised Dirichlet-Neumann fields) are independent of metric and Sobolev order and admit a duality. In particular, they possess finite C^{∞}-smooth per-bases (bases after projection).

mini FA-ToolBox

application: biharmonic split

biharmonic equation equivalent to 3 elliptic 2 nd order problems

$$
\begin{aligned}
\Delta_{\mathrm{D}}^{2} u=f \quad \Leftrightarrow \quad \operatorname{divDiv}_{\mathbb{S}} \operatorname{Gradgrad} u & =f \\
\Leftrightarrow \quad p & =\Delta_{\mathrm{D}}^{-1} f, \\
E & =\left(\operatorname{Rot}_{\mathbb{S}}^{\circ} \operatorname{symRot}_{\mathbb{T}}\right)_{\operatorname{Div}_{\mathbb{T}}=0}^{-1} \operatorname{spn} \operatorname{grad} p, \\
u & =\Delta_{\mathrm{D}}^{-1}\left(3 p+\operatorname{tr} \operatorname{symRot}_{\mathbb{T}} E\right)
\end{aligned}
$$

FE for symRot ${ }_{\mathbb{T}}$ needed!

```
some recent literature
```

- DP and Walter Zulehner: Applicable Analysis 2020

The divDiv-Complex and Applications to Biharmonic Equations

- DP and Walter Zulehner: Applicable Analysis 2022

The Elasticity Complex: Compact Embeddings and Regular Decompositions

- DP and Michael Schomburg: Mathematical Methods in the Applied Sciences 2022 Hilbert Complexes with Mixed Boundary Conditions - Part 1: De Rham Complex
- DP and Michael Schomburg: Mathematical Methods in the Applied Sciences 2022 Hilbert Complexes with Mixed Boundary Conditions - Part 2: Elasticity Complex
- DP and Marcus Waurick: Mathematische Zeitschrift 2022

The Index of some Mixed Order Dirac-Type Operators and Generalised Dirichlet-Neumann Tensor Fields

- Ralf Hiptmair, DP, and Erick Schulz: submitted 2022

Traces for Hilbert Complexes
. . . working on our complexes . . .

Hilbert Complexes and PDEs

Appendix
more and more detailed results

mini FA-ToolBox

Theorem (mini FAT)

Let $D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \hookrightarrow \mathrm{H}_{1}$ be compact. Then:
(i) $R\left(\mathrm{~A}_{n}\right)=R\left(\mathcal{A}_{n}\right), R\left(\mathrm{~A}_{n}^{*}\right)=R\left(\mathcal{A}_{n}^{*}\right), n=0,1$, are closed. (ranges closed)
(ii) $\mathcal{A}_{n}^{-1},\left(\mathcal{A}_{n}^{*}\right)^{-1}, n=0,1$, are compact.
(iii) $\operatorname{dim}\left(N\left(\mathrm{~A}_{1}\right) \cap N\left(\mathrm{~A}_{0}^{*}\right)\right)<\infty$ (inverse operators compact)
(iv) $\mathrm{H}_{1}=R\left(\mathrm{~A}_{0}\right) \oplus_{\mathrm{H}_{1}} N_{0,1} \oplus_{\mathrm{H}_{1}} R\left(\mathrm{~A}_{1}^{*}\right)$ (cohomology group finite dim) (orthogonal Helmholtz-type deco)
(v) For $n=0,1: \exists c_{n}>0$ such that
(Friedrichs/Poincaré-type est)

$$
\begin{array}{ll}
\forall x \in D\left(\mathcal{A}_{n}\right)=D\left(\mathrm{~A}_{n}\right) \cap N\left(\mathrm{~A}_{n}\right)^{\perp} \mathrm{H}_{0}=D\left(\mathrm{~A}_{n}\right) \cap R\left(\mathrm{~A}_{n}^{*}\right) & |x|_{\mathrm{H}_{n}} \leq c_{n}\left|\mathrm{~A}_{n} x\right|_{\mathrm{H}_{n+1}}, \\
\forall y \in D\left(\mathcal{A}_{n}^{*}\right)=D\left(\mathrm{~A}_{n}^{*}\right) \cap N\left(\mathrm{~A}_{n}^{*}\right)^{{ }^{H_{n+1}}}=D\left(\mathrm{~A}_{n}^{*}\right) \cap R\left(\mathrm{~A}_{n}\right) & |y|_{\mathrm{H}_{n+1}} \leq c_{n}\left|\mathrm{~A}_{n}^{*} y\right|_{\mathrm{H}_{n}} .
\end{array}
$$

(v') $\forall y \in D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \cap N_{0,1}^{\perp \mathrm{H}_{1}} \quad|y|_{\mathrm{H}_{1}}^{2} \leq c_{0}^{2}\left|\mathrm{~A}_{0}^{*} y\right|_{\mathrm{H}_{0}}^{2}+c_{1}^{2}\left|\mathrm{~A}_{1} y\right|_{\mathrm{H}_{2}}^{2}$
think of $\quad A_{0}=\operatorname{grad}_{\gamma_{\mathrm{t}}}, \quad A_{0}^{*}=-\operatorname{div}_{\gamma_{\mathrm{n}}}, \quad \mathrm{A}_{1}=\operatorname{rot}_{\gamma_{\mathrm{t}}}, \quad \mathrm{A}_{1}^{*}=\operatorname{rot}_{\gamma_{\mathrm{n}}} \quad$ and

$$
D\left(\operatorname{rot}_{\gamma_{\mathrm{t}}}\right) \cap D\left(\operatorname{div}_{\gamma_{\mathrm{n}}}\right) \hookrightarrow \mathrm{L}^{2} \quad \text { compact }
$$

mini FA-ToolBox

one key ingredient

$$
\text { bounded regular decomposition } \quad D\left(\mathrm{~A}_{1}\right)=\mathrm{H}_{1}^{+}+\mathrm{A}_{0} \mathrm{H}_{0}^{+}
$$

Lemma (regular potentials, regular decompositions, and compact embeddings)

Let $\mathrm{H}_{n}^{+} \hookrightarrow \mathrm{H}_{n}, n=0,1$, be compact embeddings, and let $D\left(\mathrm{~A}_{1}\right)=\mathrm{H}_{1}^{+}+\mathrm{A}_{0} \mathrm{H}_{0}^{+}$be a bounded regular decomposition. Then:
(i) $D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right) \hookrightarrow \mathrm{H}_{1}$ is compact. (crucial compact embedding)
(ii) $R\left(\mathrm{~A}_{1}\right)=\mathrm{A}_{1} \mathrm{H}_{1}^{+}$ (bd reg pot representation)
(ii') $\exists P_{\mathrm{A}_{1}}: R\left(\mathrm{~A}_{1}\right) \rightarrow \mathrm{H}_{1}^{+}$with $\mathrm{A}_{1} P_{\mathrm{A}_{1}}=\mathrm{id}_{R\left(\mathrm{~A}_{1}\right)}$ (bd lin reg pot operator)
think of $\quad A_{0}=\operatorname{grad}_{\gamma_{\mathrm{t}}}, \quad \mathrm{A}_{0}^{*}=-\operatorname{div}_{\gamma_{\mathrm{n}}}, \quad \mathrm{A}_{1}=\operatorname{rot}_{\gamma_{\mathrm{t}}} \quad$ and $D\left(\operatorname{rot}_{\gamma_{\mathrm{t}}}\right)=\mathrm{H}_{\gamma_{\mathrm{t}}}^{1}+\operatorname{grad}_{\gamma_{\mathrm{t}}} \mathrm{H}_{\gamma_{\mathrm{t}}}^{1}$
another key ingredient
bounded regular potentials,,\Rightarrow " bounded regular decompositions

mini FA-ToolBox

simple idea of solving equations holds true

$$
\begin{array}{rll}
\mathrm{A}_{0} x & =f \in R\left(\mathrm{~A}_{0}\right) \quad+\text { condition on kernel } & \Leftrightarrow \quad x=\mathcal{A}_{0}^{-1} f \\
\mathrm{~A}_{0}^{*} \mathrm{~A}_{0} x & =f \in R\left(\mathrm{~A}_{0}^{*}\right) \quad & + \text { condition on kernel }
\end{array} \quad \Leftrightarrow \quad x=\mathcal{A}_{0}^{-1}\left(\mathcal{A}_{0}^{*}\right)^{-1} f
$$

with \mathcal{A}_{0}^{-1} and $\left(\mathcal{A}_{0}^{*}\right)^{-1}$ bounded
think of

$$
\begin{gathered}
\operatorname{rot}_{\gamma_{\mathrm{t}}} E=F \quad \Leftrightarrow \quad E=\operatorname{rot}_{\gamma_{\mathrm{t}}}^{-1} F \\
-\Delta_{\epsilon, \gamma_{\mathrm{t}}} u=-\operatorname{div}_{\gamma_{\mathrm{n}}} \epsilon \operatorname{grad}_{\gamma_{\mathrm{t}}} u=f \quad \Leftrightarrow \quad u=-\operatorname{grad}_{\gamma_{\mathrm{t}}}^{-1}\left(\operatorname{div}_{\gamma_{\mathrm{n}}} \epsilon\right)^{-1} f=-\Delta_{\epsilon, \gamma_{\mathrm{t}}}^{-1} f \\
\Rightarrow \Delta_{\epsilon, \gamma_{\mathrm{t}}}^{-1}=\operatorname{grad}_{\gamma_{\mathrm{t}}}^{-1}\left(\operatorname{div}_{\gamma_{\mathrm{n}}} \epsilon\right)^{-1}=\operatorname{grad}_{\gamma_{\mathrm{t}}}^{-1} \epsilon^{-1} \operatorname{div}_{\gamma_{\mathrm{n}}}^{-1}
\end{gathered}
$$

Appendix

mini FA-ToolBox

solving

think of

$$
\begin{aligned}
\mathrm{A}_{0}^{*} \mathrm{~A}_{0} x=f \in R\left(\mathrm{~A}_{0}^{*}\right), \quad x & =\mathcal{A}_{0}^{-1}\left(\mathcal{A}_{0}^{*}\right)^{-1} f, \\
|x|_{\mathrm{H}_{0}} & \leq c_{0}^{2}|f|_{\mathrm{H}_{0}}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{A}_{1} x & =f \in R\left(\mathrm{~A}_{1}\right), & x=\mathcal{A}_{1}^{-1} f+\left(\mathcal{A}_{0}^{*}\right)^{-1} g+h, \\
\mathrm{~A}_{0}^{*} x & =g \in R\left(\mathrm{~A}_{0}^{*}\right), & |x|_{\mathrm{H}_{1}} \leq c_{1}|f|_{\mathrm{H}_{2}}+c_{0}|g|_{\mathrm{H}_{0}}+|h|_{\mathrm{H}_{1}} \\
\pi_{N_{0,1}} x & =h \in N_{0,1}, &
\end{aligned}
$$

$\operatorname{rot}_{\gamma_{\mathrm{t}}} E=F$,
$-\operatorname{div}_{\gamma_{n}} \varepsilon E=g$,
$\pi_{\mathrm{DN}} E=H$

$$
\mathrm{A}_{1}^{*} \mathrm{~A}_{1} x=f \in R\left(\mathrm{~A}_{1}^{*}\right), \quad x=\mathcal{A}_{1}^{-1}\left(\mathcal{A}_{1}^{*}\right)^{-1} f+\left(\mathcal{A}_{0}^{*}\right)^{-1} \mathcal{A}_{0}^{-1} g+h, \quad \varepsilon^{-1} \operatorname{rot}_{\gamma_{n}} \mu^{-1} \operatorname{rot}_{\gamma_{\mathrm{t}}} E=F
$$

$$
\mathrm{A}_{0} \mathrm{~A}_{0}^{*} x=g \in R\left(\mathrm{~A}_{0}\right), \quad|x|_{\mathrm{H}_{1}} \leq c_{1}^{2}|f|_{\mathrm{H}_{1}}+c_{0}^{2}|g|_{\mathrm{H}_{1}}+|h|_{\mathrm{H}_{1}}, \quad-\operatorname{grad}_{\gamma_{\mathrm{t}}} \operatorname{div}_{\gamma_{\mathrm{n}}} \varepsilon E=G
$$

$$
\pi_{N_{0,1}} x=h \in N_{0,1}
$$

$$
\pi_{\mathrm{DN}} E=H
$$

$$
\begin{aligned}
& \mathrm{A}_{1}^{*} \mathrm{~A}_{1} x=f \in R\left(\mathrm{~A}_{1}^{*}\right), \quad x=\mathcal{A}_{1}^{-1}\left(\mathcal{A}_{1}^{*}\right)^{-1} f+\left(\mathcal{A}_{0}^{*}\right)^{-1} g+h, \quad \varepsilon^{-1} \operatorname{rot}_{\gamma_{\mathrm{n}}} \mu^{-1} \operatorname{rot}_{\gamma_{\mathrm{t}}} E=F, \\
& \mathrm{~A}_{0}^{*} x=g \in R\left(\mathrm{~A}_{0}^{*}\right), \quad|x|_{\mathrm{H}_{1}} \leq c_{1}^{2}|f|_{\mathrm{H}_{1}}+c_{0}|g|_{\mathrm{H}_{0}}+|h|_{\mathrm{H}_{1}}, \\
& \pi_{N_{0,1}} x=h \in N_{0,1} \text {, } \\
& \begin{aligned}
\varepsilon^{-1} \operatorname{rot}_{\gamma_{\mathrm{n}}} \mu^{-1} \operatorname{rot}_{\gamma_{\mathrm{t}}} E & =F, \\
-\operatorname{div}_{\gamma_{\mathrm{n}}} \varepsilon E & =g, \\
\pi_{\mathrm{DN}} E & =H
\end{aligned}
\end{aligned}
$$

mini FA-ToolBox

regular dual spaces: $\mathrm{H}_{n}^{-}:=\left(\mathrm{H}_{n}^{+}\right)^{\prime}$

Lemma (characterisation of dual spaces)

regular decomposition ${ }^{\text {dual space }}$

$$
D\left(\mathrm{~A}_{1}\right)=\mathrm{H}_{1}^{+}+\mathrm{A}_{0} \mathrm{H}_{0}^{+} \quad D\left(\mathrm{~A}_{1}\right)^{\prime}=\left\{\Phi \in \mathrm{H}_{1}^{-}: \mathrm{A}_{0}^{\prime} \Phi \in \mathrm{H}_{0}^{-}\right\}
$$

$$
D\left(\mathrm{~A}_{0}^{*}\right)=\mathrm{H}_{1}^{+}+\mathrm{A}_{1}^{*} \mathrm{H}_{2}^{+} \mid \quad D\left(\mathrm{~A}_{1}^{*}\right)^{\prime}=\left\{\Phi \in \mathrm{H}_{1}^{-}:\left(\mathrm{A}_{1}^{*}\right)^{\prime} \Phi \in \mathrm{H}_{2}^{-}\right\}
$$

with $\mathrm{H}_{\gamma_{\mathrm{n}}}^{-1}$:= $\left(\mathrm{H}_{\gamma_{\mathrm{t}}}^{1}\right)^{\prime}$ think of
regular decomposition

characterisation of dual space

$$
D\left(\operatorname{rot}_{\gamma_{\mathrm{t}}}\right)=\mathrm{H}_{\gamma_{\mathrm{t}}}^{1}+\operatorname{grad}_{\gamma_{\mathrm{t}}} \mathrm{H}_{\gamma_{\mathrm{t}}}^{1} \quad D\left(\operatorname{rot}_{\gamma_{\mathrm{t}}}\right)^{\prime}=\left\{\Phi \in \mathrm{H}_{\gamma_{\mathrm{n}}}^{-1}: \operatorname{div} \Phi \in \mathrm{H}_{\gamma_{\mathrm{n}}}^{-1}\right\}
$$

$$
D\left(\operatorname{div}_{\gamma_{\mathrm{n}}}\right)=\mathrm{H}_{\gamma_{\mathrm{n}}}^{1}+\operatorname{rot}_{\gamma_{\mathrm{n}}} \mathrm{H}_{\gamma_{\mathrm{n}}}^{1} \mid \quad D\left(\operatorname{div}_{\gamma_{\mathrm{n}}}\right)^{\prime}=\left\{\Phi \in \mathrm{H}_{\gamma_{\mathrm{t}}}^{-1}: \operatorname{rot} \Phi \in \mathrm{H}_{\gamma_{\mathrm{t}}}^{-1}\right\}
$$

mini FA-ToolBox

number of Dirichlet-Neumann fields

$$
\mathcal{H}_{\epsilon, \gamma_{\mathrm{t}}, \gamma_{\mathrm{n}}}:=N\left(\operatorname{rot}_{\gamma_{\mathrm{t}}}\right) \cap N\left(\operatorname{div}_{\gamma_{\mathrm{n}}} \epsilon\right)
$$

is independent of Sobolev order, i.e.,

Lemma (Dirichlet-Neumann fields / cohomology groups)

For all Sobolev order k

$$
\operatorname{dim} N\left(\operatorname{rot}_{\gamma_{\mathrm{t}}}^{k}\right) / R\left(\operatorname{grad}_{\gamma_{\mathrm{t}}}^{k}\right)=\operatorname{dim} N\left(\operatorname{div}_{\gamma_{\mathrm{n}}}^{k}\right) / R\left(\operatorname{rot}_{\gamma_{\mathrm{n}}}^{k}\right)=\operatorname{dim} \mathcal{H}_{\epsilon, \gamma_{\mathrm{t}}, \gamma_{\mathrm{n}}}<\infty .
$$

mini FA-ToolBox

More precisely:
Lemma (Dirichlet-Neumann fields / cohomology groups)
There exist smooth pre-bases of Dirichlet-Neumann fields

$$
\begin{aligned}
& \mathcal{B}_{\text {rot }, \gamma_{\mathrm{t}}} \subset N\left(\operatorname{rot}_{\gamma_{\mathrm{t}}}^{\infty}\right)=\mathrm{C}_{\gamma_{\mathrm{t}}}^{\infty}(\bar{\Omega}) \cap N(\mathrm{rot}), \\
& \mathcal{B}_{\mathrm{div}, \gamma_{\mathrm{n}}} \subset N\left(\operatorname{div}_{\gamma_{\mathrm{n}}}^{\infty}\right)=\mathrm{C}_{\gamma_{\mathrm{n}}}^{\infty}(\bar{\Omega}) \cap N(\operatorname{div}),
\end{aligned}
$$

(finite set)
(finite set)
such that

$$
\begin{equation*}
\mathcal{H}_{\epsilon, \gamma_{\mathrm{t}}, \gamma_{\mathrm{n}}}=\operatorname{lin} \pi_{N\left(\operatorname{div}_{\left.\gamma_{\mathrm{n}}\right)} \epsilon\right.} \mathcal{B}_{\mathrm{rot}, \gamma_{\mathrm{t}}}=\operatorname{lin} \pi_{N\left(\text { rot }_{\gamma_{\mathrm{t}}}\right)} \mathcal{B}_{\text {div }, \gamma_{\mathrm{n}}} \tag{bases}
\end{equation*}
$$

Corollary (Dirichlet-Neumann fields / cohomology groups)

For all Sobolev order k

$$
N\left(\operatorname{rot}_{\gamma_{\mathrm{t}}}^{k}\right) / R\left(\operatorname{grad}_{\gamma_{\mathrm{t}}}^{k}\right) \cong \operatorname{lin} \mathcal{B}_{\mathrm{rot}, \gamma_{\mathrm{t}}} \cong \mathcal{H}_{\epsilon, \gamma_{\mathrm{t}}, \gamma_{\mathrm{n}}} \cong \operatorname{lin} \mathcal{B}_{\operatorname{div}, \gamma_{\mathrm{n}}} \cong N\left(\operatorname{div}_{\gamma_{\mathrm{n}}}^{k}\right) / R\left(\operatorname{rot}_{\gamma_{\mathrm{n}}}^{k}\right)
$$

Lemma (biharmonic equation)

The biharmonic Dirichlet equation splits equivalently into 3 elliptic (positive) 2nd order problems.
More precisely: 2 Dirichlet Laplace problems and 1 saddle point problem for Rot $_{S} \operatorname{symRot}_{\mathbb{T}}$.

mini FA-ToolBox

biharmonic split

biharmonic equation

$$
\Delta_{\mathrm{D}}^{2} u=f \quad \Leftrightarrow \quad \operatorname{divDiv}_{\mathbb{S}} \text { Gradggrad } u=f
$$

variant of devGrad-complex

$$
\mathbb{R T} \quad \xrightarrow{\iota_{\mathbb{R}}} \quad \mathrm{L}^{2} \quad \xrightarrow{\text { devGrad }} \mathrm{L}_{\mathbb{T}}^{2} \xrightarrow{\text { symRot }_{\mathbb{T}}} \mathrm{L}_{\mathbb{S}}^{2} \xrightarrow{\operatorname{divDiv}_{\mathbb{S}}} \mathrm{H}^{-1} \xrightarrow{\pi_{0}}\{0\}
$$

with regular type decomposition

$$
D\left(\operatorname{div}^{D i v_{\mathbb{S}}^{0}}{ }^{0,-1}\right)=\underbrace{D(\mathrm{grad})}_{=\mathrm{H}_{0}^{1}} \text { id } \dot{+} N\left(\operatorname{divDiv}_{\mathbb{S}}\right)
$$

solve sequentially

$$
\begin{aligned}
\Delta_{\mathrm{D}} p=f & \Leftrightarrow p=\Delta_{\mathrm{D}}^{-1} f \\
\operatorname{Rot}_{\mathbb{S}}^{\circ} \operatorname{symRot}_{\mathbb{T}} E=-\operatorname{Rot}_{\mathbb{S}}^{\circ}(p \mathrm{id})=\operatorname{spn} \operatorname{grad} p=: P & \Leftrightarrow \quad E=\left(\operatorname{Rot}_{\mathbb{S}}^{\circ} \operatorname{symRot}_{\mathbb{T}}\right)_{\operatorname{Div}_{\mathbb{T}}=0}^{-1} P
\end{aligned}
$$

$$
\operatorname{Div}_{\mathbb{T}} E=0
$$

$$
\Delta_{\mathrm{D}} u=3 p+\operatorname{tr} \operatorname{symRot}_{\mathbb{T}} E=: g \quad \Leftrightarrow \quad u=\Delta_{\mathrm{D}}^{-1} g
$$

mini FA-ToolBox

biharmonic split

$$
\begin{aligned}
& \Delta_{\mathrm{D}}^{2} u=f \quad \Leftrightarrow \quad\left[\begin{array}{ccc}
3 & \operatorname{tr~symRot}_{\mathbb{T}} & -\Delta_{\mathrm{D}} \\
\operatorname{Rot}_{\mathbb{S}}^{\circ}(\cdot \mathrm{id}) & \left(\operatorname{Rot}_{\mathbb{S}} \operatorname{symRot}_{\mathbb{T}}\right)_{\operatorname{Div}_{\mathbb{T}}=0} & 0 \\
-\Delta_{\mathrm{D}} & 0
\end{array}\right]\left[\begin{array}{l}
p \\
E \\
u
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
-f
\end{array}\right] \\
& \Leftrightarrow \quad\left[\begin{array}{cccc}
3 & \operatorname{tr~symRot}_{\mathbb{T}} & 0 & -\Delta_{\mathrm{D}} \\
\operatorname{Rot}_{\mathbb{S}}(\cdot \mathrm{id}) & \operatorname{Rot}_{\mathbb{S}} \operatorname{sym}^{\circ} \operatorname{Rot}_{\mathbb{T}} & \operatorname{devGrad}_{\mathbb{R T}^{\perp}} & 0 \\
0 & -\operatorname{Div}_{\mathbb{T}} & 0 & 0 \\
-\Delta_{\mathrm{D}} & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
p \\
E \\
v \\
u
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0 \\
-f
\end{array}\right] \\
& \Leftrightarrow\left[\begin{array}{ccccc}
3 & \text { tr symRot }_{\mathbb{T}} & 0 & 0 & -\Delta_{\mathrm{D}} \\
\operatorname{Rot}_{\mathbb{S}}(\cdot \mathrm{id}) & \mathrm{Rot}_{\mathbb{S}} \operatorname{symRot}_{\mathbb{T}} & \operatorname{devGrad} & 0 & 0 \\
0 & -\operatorname{Div}_{\mathbb{T}} & 0 & \iota_{\mathbb{R} \mathbb{T}} & 0 \\
0 & 0 & \pi_{\mathbb{R} \mathbb{T}} & 0 & 0 \\
-\Delta_{\mathrm{D}} & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
p \\
E \\
v \\
r \\
u
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
-f
\end{array}\right]
\end{aligned}
$$

FE for $\operatorname{symRot}_{\mathbb{T}}$ needed!

