Functional A Posteriori Error Estimates for Static Maxwell Problems

Dirk Pauly
Universität Duisburg-Essen, Campus Essen
(joint work with Sergey Repin, Steklov Institute, St. Petersburg)

(4th ANMPDEA)
4th Workshop on Advanced Numerical Methods for Partial Differential Equation Analysis for Junior Scientists

Euler Institute, St. Petersburg
August 22, 2011

Introduction: Static Maxwell Problem

n $\Omega \subset \mathbb{R}^{3}$ bounded domain with Lipschitz boundary $\Gamma=\partial \Omega$

- $\varepsilon, \mu: \Omega \rightarrow \mathbb{R}^{3 \times 3}$ medium properties:
- F given right hand side (current),
- E electric field,
- τ tangential trace, i.e., $\tau E=\nu \times\left. E\right|_{r}$
$=1$ orthogonality w.r.t. $L^{2}(\Omega)$-scalar product $\langle E, H\rangle_{\Omega}:=\int_{\Omega} E \cdot H$
- $\mathcal{H}_{\varepsilon}(\Omega)$ Dirichlet fields; $H \in \mathcal{H}_{\varepsilon}(\Omega)$, iff curl $H=0$ and $\operatorname{div} \varepsilon H=0$ and $\tau H=0$
electro-magneto static problem


```
1. goal: error estimates for e:=E - \tilde{E}\mathrm{ and h:= }HH-\tilde{H}\mathrm{ , where }\tilde{E},\tilde{H}\mathrm{ approx. of}
    E,\muH
|- method: pioneering work of Sergey Repin since late 1990's
    similar estimates (elliptic, elastic, ...)
owvesmitr
    DEU'ISENRG
- first static Maxwell (conforming): Sergey Repin and P. 2009

\section*{Introduction: Static Maxwell Problem}
- \(\Omega \subset \mathbb{R}^{3}\) bounded domain with Lipschitz boundary \(\Gamma=\partial \Omega\)

■ \(\varepsilon, \mu: \Omega \rightarrow \mathbb{R}^{3 \times 3}\) medium properties:
- \(F\) given right hand side (current),
- E electric field,
- \(\tau\) tangential trace, i.e., \(\tau E=\nu \times\left. E\right|_{r}\)
\(=1\) orthogonality w.r.t. \(L^{2}(\Omega)\)-scalar product \(\langle E, H\rangle_{\Omega}:=\int_{\Omega} E \cdot H\)
- \(\mathcal{H}_{\varepsilon}(\Omega)\) Dirichlet fields; \(H \in \mathcal{H}_{\varepsilon}(\Omega)\), iff curl \(H=0\) and \(\operatorname{div} \varepsilon H=0\) and \(\tau H=0\)
electro-magneto static problem
\[
\begin{aligned}
\operatorname{curl} \mu^{-1} \text { curl } E & =F & & \text { in } \Omega \\
\operatorname{div} \varepsilon E & =0 & & \text { in } \Omega \\
\tau E & =G & & \text { on } \Gamma
\end{aligned}
\]
- goal: error estimates for \(e:=E-\tilde{E}\) and \(h:=\mu H-\tilde{H}\), where \(\tilde{E}, \tilde{H}\) approx. of \(E, \mu H\)
- method: pioneering work of Sergey Repin since late 1990's similar estimates (elliptic, elastic, ...)
- first static Maxwell (conforming): Sergey Repin and P. 2009

\section*{Introduction: Static Maxwell Problem}
n \(\Omega \subset \mathbb{R}^{3}\) bounded domain with Lipschitz boundary \(\Gamma=\partial \Omega\)
■ \(\varepsilon, \mu: \Omega \rightarrow \mathbb{R}^{3 \times 3}\) medium properties:
- \(F\) given right hand side (current),
- E electric field,
- \(\tau\) tangential trace, i.e., \(\tau E=\nu \times\left. E\right|_{r}\)
\(=1\) orthogonality w.r.t. \(L^{2}(\Omega)\)-scalar product \(\langle E, H\rangle_{\Omega}:=\int_{\Omega} E \cdot H\)
- \(\mathcal{H}_{\varepsilon}(\Omega)\) Dirichlet fields; \(H \in \mathcal{H}_{\varepsilon}(\Omega)\), iff curl \(H=0\) and \(\operatorname{div} \varepsilon H=0\) and \(\tau H=0\)
electro-magneto static problem
\[
\begin{aligned}
\operatorname{curl} \mu^{-1} \operatorname{curl} E & =F & & \text { in } \Omega \\
\operatorname{div} \varepsilon E & =0 & & \text { in } \Omega
\end{aligned}
\]
- goal: error estimates for \(e:=E-\tilde{E}\) and \(h:=\mu H-\tilde{H}\), where \(\tilde{E}, \tilde{H}\) approx. of \(E, \mu H\)
- method: pioneering work of Sergey Repin since late 1990's similar estimates (elliptic, elastic, ...)
- first static Maxwell (conforming): Sergey Repin and P. 2009

\section*{Introduction: Static Maxwell Problem}
n \(\Omega \subset \mathbb{R}^{3}\) bounded domain with Lipschitz boundary \(\Gamma=\partial \Omega\)
■ \(\varepsilon, \mu: \Omega \rightarrow \mathbb{R}^{3 \times 3}\) medium properties:
- \(F\) given right hand side (current),
- E electric field,
- \(\tau\) tangential trace, i.e., \(\tau E=\nu \times\left. E\right|_{r}\)
- 1 orthogonality w.r.t. \(L^{2}(\Omega)\)-scalar product \(\langle E, H\rangle_{\Omega}:=\int_{\Omega} E \cdot H\)
- \(\mathcal{H}_{\varepsilon}(\Omega)\) Dirichlet fields; \(H \in \mathcal{H}_{\varepsilon}(\Omega)\), iff curl \(H=0\) and \(\operatorname{div} \varepsilon H=0\) and \(\tau H=0\)
electro-magneto static problem
\[
\begin{aligned}
\operatorname{curl} \mu^{-1} \operatorname{curl} E & =F & & \text { in } \Omega \\
\operatorname{div} \varepsilon E & =0 & & \text { in } \Omega \\
\tau E & =G & & \text { on } \Gamma
\end{aligned}
\]
- goal: error estimates for \(e:=E-\tilde{E}\) and \(h:=\mu H-\tilde{H}\), where \(\tilde{E}, \tilde{H}\) approx. of \(E, \mu H\)
- method: pioneering work of Sergey Repin since late 1990's similar estimates (elliptic, elastic, ...)
- first static Maxwell (conforming): Sergey Repin and P. 2009

\section*{Introduction: Static Maxwell Problem}
n \(\Omega \subset \mathbb{R}^{3}\) bounded domain with Lipschitz boundary \(\Gamma=\partial \Omega\)
■ \(\varepsilon, \mu: \Omega \rightarrow \mathbb{R}^{3 \times 3}\) medium properties:
- \(F\) given right hand side (current),
- E electric field,
- \(\tau\) tangential trace, i.e., \(\tau E=\nu \times\left. E\right|_{r}\)
- 1 orthogonality w.r.t. \(L^{2}(\Omega)\)-scalar product \(\langle E, H\rangle_{\Omega}:=\int_{\Omega} E \cdot H\)
- \(\mathcal{H}_{\varepsilon}(\Omega)\) Dirichlet fields; \(H \in \mathcal{H}_{\varepsilon}(\Omega)\), iff curl \(H=0\) and \(\operatorname{div} \varepsilon H=0\) and \(\tau H=0\)
electro-magneto static problem
\[
\begin{aligned}
\operatorname{curl} \mu^{-1} \operatorname{curl} E & =F & & \text { in } \Omega \\
\operatorname{div} \varepsilon E & =0 & & \text { in } \Omega \\
\tau E & =G & & \text { on } \Gamma \\
\varepsilon E & \perp \mathcal{H}_{\varepsilon}(\Omega) & &
\end{aligned}
\]
- goal: error estimates for \(e:=E-\tilde{E}\) and \(h:=\mu H-\tilde{H}\), where \(\tilde{E}, \tilde{H}\) approx. of \(E, \mu H\)
- method: pioneering work of Sergey Repin since late 1990's similar estimates (elliptic, elastic, ...)

\section*{Introduction：Static Maxwell Problem}
\(■ \Omega \subset \mathbb{R}^{3}\) bounded domain with Lipschitz boundary \(\Gamma=\partial \Omega\)
■ \(\varepsilon, \mu: \Omega \rightarrow \mathbb{R}^{3 \times 3}\) medium properties：
－\(F\) given right hand side（current），
－E electric field
w \(\tau\) tangential trace，i．e．，\(\tau E=\nu \times\left. E\right|_{\Gamma}\)
－\(\perp\) orthogonality w．r．t． \(\mathrm{L}^{2}(\Omega)\)－scalar product \(\langle E, H\rangle_{\Omega}:=\int_{\Omega} E \cdot H\)
－ \(\mathcal{H}_{s}(\Omega)\) Dirichlet fields；\(H \in \mathcal{H}_{s}(\Omega)\) ，iff curl \(H=0\) and \(\operatorname{div} \varepsilon H=0\) and \(\tau H=0\)
electro－magneto static problem
\[
\begin{aligned}
\text { curl } \mu^{-1} \operatorname{curl} E & =F & & \text { in } \Omega \\
\operatorname{div} \varepsilon E & =0 & & \text { in } \Omega \\
\tau E & =G & & \text { on } \Gamma \\
\varepsilon E & \perp \mathcal{H}_{\varepsilon}(\Omega) & &
\end{aligned}
\]
－goal：error estimates for \(e:=E-\tilde{E}\) and \(h:=\mu H-\tilde{H}\) ，where \(\tilde{E}, \tilde{H}\) approx．of

睹 method：pioneering work of Sergey Repin since late 1990＇s similar estimates（elliptic，elastic，．．．）
－first static Maxwell（conforming）：Sergey Repin and P． 2009

\section*{Introduction: Static Maxwell Problem}
\(■ \Omega \subset \mathbb{R}^{3}\) bounded domain with Lipschitz boundary \(\Gamma=\partial \Omega\)
- \(\varepsilon, \mu: \Omega \rightarrow \mathbb{R}^{3 \times 3}\) medium properties: bd., sym., unif. pos. def. matrices
- F given right hand side (current),
- \(E\) electric field,
- \(\tau\) tangential trace, i.e., \(\tau E=\nu \times\left. E\right|_{\Gamma}\)
- \(\perp\) orthogonality w.r.t. \(L^{2}(\Omega)\)-scalar product \(\langle E, H\rangle_{\Omega}:=\int_{\Omega} E \cdot H\)
- \(\mathcal{H}_{\varepsilon}(\Omega)\) Dirichlet fields; \(H \in \mathcal{H}_{\varepsilon}(\Omega)\), iff curl \(H=0\) and \(\operatorname{div} \varepsilon H=0\) and \(\tau H=0\)
electro-magneto static problem
\[
\begin{aligned}
\text { curl } \mu^{-1} \operatorname{curl} E & =F & & \text { in } \Omega \\
\operatorname{div} \varepsilon E & =0 & & \text { in } \Omega \\
\tau E & =G & & \text { on } \Gamma \\
\varepsilon E & \perp \mathcal{H}_{\varepsilon}(\Omega) & &
\end{aligned}
\]
- goal: error estimates for \(e:=E-\tilde{E}\) and \(h:=\mu H-\tilde{H}\), where \(\tilde{E}, \tilde{H}\) approx. of

回 method: pioneering work of Sergey Repin since late 1990's similar estimates (elliptic, elastic, ...)
- first static Maxwell (conforming): Sergey Repin and P. 2009

\section*{Introduction: Static Maxwell Problem}

■ \(\Omega \subset \mathbb{R}^{3}\) bounded domain with Lipschitz boundary \(\Gamma=\partial \Omega\)
- \(\varepsilon, \mu: \Omega \rightarrow \mathbb{R}^{3 \times 3}\) medium properties: bd., sym., unif. pos. def. matrices
- \(F\) given right hand side (current),
- E electric field,
- \(\tau\) tangential trace, i.e., \(\tau E=\nu \times E \mid r\)
- \(\perp\) orthogonality w.r.t. \(L^{2}(\Omega)\)-scalar product \(\langle E, H\rangle_{\Omega}:=\int_{\Omega} E \cdot H\)
- \(\mathcal{H}_{\varepsilon}(\Omega)\) Dirichlet fields; \(H \in \mathcal{H}_{\varepsilon}(\Omega)\), iff curl \(H=0\) and \(\operatorname{div} \varepsilon H=0\) and \(\tau H=0\)
electro-magneto static problem
\[
\begin{aligned}
\operatorname{curl} \mu^{-1} \text { curl } E & =F & & \text { in } \Omega \\
\operatorname{div} \varepsilon E & =0 & & \text { in } \Omega \\
\tau E & =G & & \text { on } \Gamma \\
\varepsilon E & \perp \mathcal{H}_{\varepsilon}(\Omega) & &
\end{aligned}
\]
- goal: error estimates for \(e:=E-\tilde{E}\) and \(h:=\mu H-\tilde{H}\), where \(\tilde{E}, \tilde{H}\) approx. of
- method: pioneering work of Sergey Repin since late 1990's similar estimates (elliptic, elastic, ...)
a first static Maxwell (conforming): Sergey Repin and P. 2009

\section*{Introduction: Static Maxwell Problem}

■ \(\Omega \subset \mathbb{R}^{3}\) bounded domain with Lipschitz boundary \(\Gamma=\partial \Omega\)
- \(\varepsilon, \mu: \Omega \rightarrow \mathbb{R}^{3 \times 3}\) medium properties: bd., sym., unif. pos. def. matrices
- \(F\) given right hand side (current), \(G\) given boundary data (boundary current)
- E electric field,
- \(\tau\) tangential trace, i.e., \(\tau E=\nu \times\left. E\right|_{r}\)
- 1 orthogonality w.r. \(L^{2}(\Omega)\)-scalar product \(\langle E, H)_{\Omega}:=\int_{\Omega} E \cdot H\)
- \(\mathcal{H}_{\varepsilon}(\Omega)\) Dirichlet fields; \(H \in \mathcal{H}_{\varepsilon}(\Omega)\), iff curl \(H=0\) and \(\operatorname{div} \varepsilon H=0\) and \(\tau H=0\)
electro-magneto static problem
\[
\begin{aligned}
\operatorname{curl} \mu^{-1} \operatorname{curl} E & =F & & \text { in } \Omega \\
\operatorname{div} \varepsilon E & =0 & & \text { in } \Omega \\
\tau E & =G & & \text { on } \Gamma \\
\varepsilon E & \perp \mathcal{H}_{\varepsilon}(\Omega) & &
\end{aligned}
\]
- goal: error estimates for \(e:=E-\tilde{E}\) and \(h:=\mu H-\tilde{H}\), where \(\tilde{E}, \tilde{H}\) approx. of

睹 method: pioneering work of Sergey Repin since late 1990's similar estimates (elliptic, elastic, ...)
a first static Maxwell (conforming): Sergey Repin and P. 2009

\section*{Introduction: Static Maxwell Problem}

■ \(\Omega \subset \mathbb{R}^{3}\) bounded domain with Lipschitz boundary \(\Gamma=\partial \Omega\)
- \(\varepsilon, \mu: \Omega \rightarrow \mathbb{R}^{3 \times 3}\) medium properties: bd., sym., unif. pos. def. matrices
- \(F\) given right hand side (current), \(G\) given boundary data (boundary current)
- E electric field,
- \(\tau\) tangential trace, i.e., \(\tau E=\nu \times\left. E\right|_{r}\)
- 1 orthogonality w.r. \(L^{2}(\Omega)\)-scalar product \(\langle E, H)_{\Omega}:=\int_{\Omega} E \cdot H\)
- \(\mathcal{H}_{\varepsilon}(\Omega)\) Dirichlet fields; \(H \in \mathcal{H}_{\varepsilon}(\Omega)\), iff curl \(H=0\) and \(\operatorname{div} \varepsilon H=0\) and \(\tau H=0\)
electro-magneto static problem
\[
\begin{aligned}
\operatorname{curl} \mu^{-1} \operatorname{curl} E & =F & & \text { in } \Omega \\
\operatorname{div} \varepsilon E & =0 & & \text { in } \Omega \\
\tau E & =G & & \text { on } \Gamma \\
\varepsilon E & \perp \mathcal{H}_{\varepsilon}(\Omega) & &
\end{aligned}
\]
- goal: error estimates for \(e:=E-\tilde{E}\) and \(h:=\mu H-\tilde{H}\), where \(\tilde{E}, \tilde{H}\) approx. of

睹 method: pioneering work of Sergey Repin since late 1990's similar estimates (elliptic, elastic, ...)
- first static Maxwell (conforming): Sergey Repin and P. 2009

\section*{Introduction: Static Maxwell Problem}

■ \(\Omega \subset \mathbb{R}^{3}\) bounded domain with Lipschitz boundary \(\Gamma=\partial \Omega\)
- \(\varepsilon, \mu: \Omega \rightarrow \mathbb{R}^{3 \times 3}\) medium properties: bd., sym., unif. pos. def. matrices
- \(F\) given right hand side (current), \(G\) given boundary data (boundary current)
- \(E\) electric field,
- \(\tau\) tangential trace, i.e., \(\tau E=\nu \times\left. E\right|_{\text {r }}\)
- \(\perp\) orthogonality w.r.t. \(L^{2}(\Omega)\)-scalar product \(\langle E, H\rangle_{\Omega}:=\int_{\Omega} E \cdot H\)
. \(\mathcal{H}_{\varepsilon}(\Omega)\) Dirichlet fields; \(H \in \mathcal{H}_{\varepsilon}(\Omega)\), iff curl \(H=0\) and \(\operatorname{div} \varepsilon H=0\) and \(\tau H=0\)
electro-magneto static problem
\[
\begin{aligned}
\operatorname{curl} \mu^{-1} \operatorname{curl} E & =F & & \text { in } \Omega \\
\operatorname{div} \varepsilon E & =0 & & \text { in } \Omega \\
\tau E & =G & & \text { on } \Gamma \\
\varepsilon E & \perp \mathcal{H}_{\varepsilon}(\Omega) & &
\end{aligned}
\]
- goal: error estimates for \(e:=E-\tilde{E}\) and \(h:=\mu H-\tilde{H}\), where \(\tilde{E}, \tilde{H}\) approx. of

睹 method: pioneering work of Sergey Repin since late 1990's similar estimates (elliptic, elastic, ...)
- first static Maxwell (conforming): Sergey Repin and P. 2009

\section*{Introduction: Static Maxwell Problem}
\(■ \Omega \subset \mathbb{R}^{3}\) bounded domain with Lipschitz boundary \(\Gamma=\partial \Omega\)
- \(\varepsilon, \mu: \Omega \rightarrow \mathbb{R}^{3 \times 3}\) medium properties: bd., sym., unif. pos. def. matrices
- \(F\) given right hand side (current), \(G\) given boundary data (boundary current)
- \(E\) electric field, \(H:=\mu^{-1}\) curl \(E\) magnetic field
- \(\tau\) tangential trace, i.e., \(\tau E=\nu \times\left.\right|_{\Gamma}\)
- \(\perp\) orthogonality w.r.t. \(L^{2}(\Omega)\)-scalar product \(\langle E, H\rangle_{\Omega}:=\int_{\Omega} E \cdot H\)
. \(\mathcal{H}_{\varepsilon}(\Omega)\) Dirichlet fields; \(H \in \mathcal{H}_{\varepsilon}(\Omega)\), iff curl \(H=0\) and \(\operatorname{div} \varepsilon H=0\) and \(\tau H=0\)
electro-magneto static problem
\[
\begin{aligned}
\operatorname{curl} \mu^{-1} \operatorname{curl} E & =F & & \text { in } \Omega \\
\operatorname{div} \varepsilon E & =0 & & \text { in } \Omega \\
\tau E & =G & & \text { on } \Gamma \\
\varepsilon E & \perp \mathcal{H}_{\varepsilon}(\Omega) & &
\end{aligned}
\]

回 method: pioneering work of Sergey Repin since late 1990's similar estimates (elliptic, elastic, ...)
- first static Maxwell (conforming): Sergey Repin and P. 2009

\section*{Introduction: Static Maxwell Problem}
\(■ \Omega \subset \mathbb{R}^{3}\) bounded domain with Lipschitz boundary \(\Gamma=\partial \Omega\)
- \(\varepsilon, \mu: \Omega \rightarrow \mathbb{R}^{3 \times 3}\) medium properties: bd., sym., unif. pos. def. matrices
- \(F\) given right hand side (current), \(G\) given boundary data (boundary current)
- \(E\) electric field, \(H:=\mu^{-1}\) curl \(E\) magnetic field
- \(\tau\) tangential trace, i.e., \(\tau E=\nu \times\left. E\right|_{\Gamma}\)
= \(\perp\) orthogonality w.r.t. \(L^{2}(\Omega)\)-scalar product \(\langle E, H\rangle_{\Omega}:=\int_{\Omega} E \cdot H\)
- \(\mathcal{H}_{\varepsilon}(\Omega)\) Dirichlet fields; \(H \in \mathcal{H}_{\varepsilon}(\Omega)\), iff curl \(H=0\) and \(\operatorname{div} \varepsilon H=0\) and \(\tau H=0\)
electro-magneto static problem
\[
\begin{aligned}
\operatorname{curl} \mu^{-1} \operatorname{curl} E & =F & & \text { in } \Omega \\
\operatorname{div} \varepsilon E & =0 & & \text { in } \Omega \\
\tau E & =G & & \text { on } \Gamma \\
\varepsilon E & \perp \mathcal{H}_{\varepsilon}(\Omega) & &
\end{aligned}
\]

回 method: pioneering work of Sergey Repin since late 1990's similar estimates (elliptic, elastic, ...)

\section*{Introduction: Static Maxwell Problem}
\(■ \Omega \subset \mathbb{R}^{3}\) bounded domain with Lipschitz boundary \(\Gamma=\partial \Omega\)
- \(\varepsilon, \mu: \Omega \rightarrow \mathbb{R}^{3 \times 3}\) medium properties: bd., sym., unif. pos. def. matrices
- \(F\) given right hand side (current), \(G\) given boundary data (boundary current)
- \(E\) electric field, \(H:=\mu^{-1}\) curl \(E\) magnetic field
- \(\tau\) tangential trace, i.e., \(\tau E=\nu \times\left. E\right|_{\Gamma}\)
- \(\perp\) orthogonality w.r.t. \(L^{2}(\Omega)\)-scalar product \(\langle E, H\rangle_{\Omega}:=\int_{\Omega} E \cdot H\)
\(=\mathcal{H}_{\varepsilon}(\Omega)\) Dirichlet fields; \(H \in \mathcal{H}_{\varepsilon}(\Omega)\), iff curl \(H=0\) and \(\operatorname{div} \varepsilon H=0\) and \(\tau H=0\)
electro-magneto static problem
\[
\begin{aligned}
\operatorname{curl} \mu^{-1} \operatorname{curl} E & =F & & \text { in } \Omega \\
\operatorname{div} \varepsilon E & =0 & & \text { in } \Omega \\
\tau E & =G & & \text { on } \Gamma \\
\varepsilon E & \perp \mathcal{H}_{\varepsilon}(\Omega) & &
\end{aligned}
\]
- goal: error estimates for \(e:=E-\tilde{E}\) and \(h:=\mu H-\tilde{H}\), where \(\tilde{E}, \tilde{H}\) approx. of
- method: pioneering work of Sergey Repin since late 1990's similar estimates (elliptic, elastic, ...) unvesarit
- first static Maxwell (conforming): Sergey Repin and P. 2009

\section*{Introduction: Static Maxwell Problem}
\(■ \Omega \subset \mathbb{R}^{3}\) bounded domain with Lipschitz boundary \(\Gamma=\partial \Omega\)
- \(\varepsilon, \mu: \Omega \rightarrow \mathbb{R}^{3 \times 3}\) medium properties: bd., sym., unif. pos. def. matrices
- \(F\) given right hand side (current), \(G\) given boundary data (boundary current)
- \(E\) electric field, \(H:=\mu^{-1}\) curl \(E\) magnetic field
- \(\tau\) tangential trace, i.e., \(\tau E=\nu \times\left. E\right|_{\Gamma}\)
- \(\perp\) orthogonality w.r.t. \(L^{2}(\Omega)\)-scalar product \(\langle E, H\rangle_{\Omega}:=\int_{\Omega} E \cdot H\)
- \(\mathcal{H}_{\varepsilon}(\Omega)\) Dirichlet fields; \(H \in \mathcal{H}_{\varepsilon}(\Omega)\), iff curl \(H=0\) and \(\operatorname{div} \varepsilon H=0\) and \(\tau H=0\) electro-magneto static problem
\[
\begin{aligned}
\operatorname{curl} \mu^{-1} \text { curl } E & =F & & \text { in } \Omega \\
\operatorname{div} \varepsilon E & =0 & & \text { in } \Omega \\
\tau E & =G & & \text { on } \Gamma \\
\varepsilon E & \perp \mathcal{H}_{\varepsilon}(\Omega) & &
\end{aligned}
\]
- goal: error estimates for \(e:=E-\tilde{E}\) and \(h:=\mu H-\tilde{H}\), where \(\tilde{E}, \tilde{H}\) approx. of

回 method: pioneering work of Sergey Repin since late 1990's
similar estimates (elliptic, elastic, ...) unvesirit
.- first static Maxwell (conforming): Sergey Repin and P. 2009

\section*{Introduction: Static Maxwell Problem}
\(■ \Omega \subset \mathbb{R}^{3}\) bounded domain with Lipschitz boundary \(\Gamma=\partial \Omega\)
- \(\varepsilon, \mu: \Omega \rightarrow \mathbb{R}^{3 \times 3}\) medium properties: bd., sym., unif. pos. def. matrices
- \(F\) given right hand side (current), \(G\) given boundary data (boundary current)
- \(E\) electric field, \(H:=\mu^{-1}\) curl \(E\) magnetic field
- \(\tau\) tangential trace, i.e., \(\tau E=\nu \times\left. E\right|_{\Gamma}\)
- \(\perp\) orthogonality w.r.t. \(L^{2}(\Omega)\)-scalar product \(\langle E, H\rangle_{\Omega}:=\int_{\Omega} E \cdot H\)
- \(\mathcal{H}_{\varepsilon}(\Omega)\) Dirichlet fields; \(H \in \mathcal{H}_{\varepsilon}(\Omega)\), iff curl \(H=0\) and \(\operatorname{div} \varepsilon H=0\) and \(\tau H=0\) electro-magneto static problem
\[
\begin{aligned}
\operatorname{curl} \mu^{-1} \operatorname{curl} E & =F & & \text { in } \Omega \\
\operatorname{div} \varepsilon E & =0 & & \text { in } \Omega \\
\tau E & =G & & \text { on } \Gamma \\
\varepsilon E & \perp \mathcal{H}_{\varepsilon}(\Omega) & &
\end{aligned}
\]

■ goal: error estimates for \(e:=E-\tilde{E}\) and \(h:=\mu H-\tilde{H}\), where \(\tilde{E}, \tilde{H}\) approx. of \(E, \mu H\)
- method: pioneering work of Sergey Repin since late 1990's
similar estimates (elliptic, elastic, ...) unvesthr
- first static Maxwell (conforming): Sergey Repin and P. 2009

\section*{Introduction: Static Maxwell Problem}

■ \(\Omega \subset \mathbb{R}^{3}\) bounded domain with Lipschitz boundary \(\Gamma=\partial \Omega\)
- \(\varepsilon, \mu: \Omega \rightarrow \mathbb{R}^{3 \times 3}\) medium properties: bd., sym., unif. pos. def. matrices
- \(F\) given right hand side (current), \(G\) given boundary data (boundary current)
- \(E\) electric field, \(H:=\mu^{-1}\) curl \(E\) magnetic field
- \(\tau\) tangential trace, i.e., \(\tau E=\nu \times\left. E\right|_{\Gamma}\)
- \(\perp\) orthogonality w.r.t. \(L^{2}(\Omega)\)-scalar product \(\langle E, H\rangle_{\Omega}:=\int_{\Omega} E \cdot H\)
- \(\mathcal{H}_{\varepsilon}(\Omega)\) Dirichlet fields; \(H \in \mathcal{H}_{\varepsilon}(\Omega)\), iff curl \(H=0\) and \(\operatorname{div} \varepsilon H=0\) and \(\tau H=0\) electro-magneto static problem
\[
\begin{aligned}
\operatorname{curl} \mu^{-1} \operatorname{curl} E & =F & & \text { in } \Omega \\
\operatorname{div} \varepsilon E & =0 & & \text { in } \Omega \\
\tau E & =G & & \text { on } \Gamma \\
\varepsilon E & \perp \mathcal{H}_{\varepsilon}(\Omega) & &
\end{aligned}
\]
- goal: error estimates for \(e:=E-\tilde{E}\) and \(h:=\mu H-\tilde{H}\), where \(\tilde{E}, \tilde{H}\) approx. of \(E, \mu H\)
- method: pioneering work of Sergey Repin since late 1990's similar estimates (elliptic, elastic, ...)

\section*{UNivERSITAT}


\section*{Introduction: Static Maxwell Problem}

■ \(\Omega \subset \mathbb{R}^{3}\) bounded domain with Lipschitz boundary \(\Gamma=\partial \Omega\)
- \(\varepsilon, \mu: \Omega \rightarrow \mathbb{R}^{3 \times 3}\) medium properties: bd., sym., unif. pos. def. matrices
- \(F\) given right hand side (current), \(G\) given boundary data (boundary current)
- \(E\) electric field, \(H:=\mu^{-1}\) curl \(E\) magnetic field
- \(\tau\) tangential trace, i.e., \(\tau E=\nu \times\left. E\right|_{\Gamma}\)
- \(\perp\) orthogonality w.r.t. \(L^{2}(\Omega)\)-scalar product \(\langle E, H\rangle_{\Omega}:=\int_{\Omega} E \cdot H\)
- \(\mathcal{H}_{\varepsilon}(\Omega)\) Dirichlet fields; \(H \in \mathcal{H}_{\varepsilon}(\Omega)\), iff curl \(H=0\) and \(\operatorname{div} \varepsilon H=0\) and \(\tau H=0\) electro-magneto static problem
\[
\begin{aligned}
\operatorname{curl} \mu^{-1} \operatorname{curl} E & =F & & \text { in } \Omega \\
\operatorname{div} \varepsilon E & =0 & & \text { in } \Omega \\
\tau E & =G & & \text { on } \Gamma \\
\varepsilon E & \perp \mathcal{H}_{\varepsilon}(\Omega) & &
\end{aligned}
\]
- goal: error estimates for \(e:=E-\tilde{E}\) and \(h:=\mu H-\tilde{H}\), where \(\tilde{E}, \tilde{H}\) approx. of \(E, \mu H\)
- method: pioneering work of Sergey Repin since late 1990's similar estimates (elliptic, elastic, ...)
■ first static Maxwell (conforming): Sergey Repin and P. 2009
universitat


\section*{Introduction: Sobolev Spaces}

\section*{spaces:}
\[
\begin{aligned}
\mathrm{H}(\text { curl } ; \Omega)) & :=\left\{E \in \mathrm{~L}^{2}(\Omega): \operatorname{curl} E \in \mathrm{~L}^{2}(\Omega)\right\} \\
\mathrm{H}\left(\text { curl }_{0} ; \Omega\right) & :=\{E \in \mathrm{H}(\text { curl } ; \Omega): \operatorname{curl} E=0\} \\
\stackrel{\circ}{\mathrm{H}}(\text { curl } \Omega) & :=\{E \in \mathrm{H}(\text { curl } ; \Omega): \tau E=0\}=\stackrel{\circ}{\mathrm{C}} \infty(\Omega) \\
\mathrm{H}\left(\text { curl }_{0} ; \Omega\right) & :=\stackrel{\circ}{\mathrm{H}}(\text { curl } ; \Omega) \cap \mathrm{H}\left(\text { curl }_{0} ; \Omega\right)
\end{aligned}
\]
analogously:
```

 \(H(\operatorname{div} ; \Omega):=\left\{E \in L^{2}(\Omega): \operatorname{div} E \in L^{2}(\Omega)\right\}\)
 \(H\left(\operatorname{div}_{0} ; \Omega\right):=\{E \in H(\operatorname{div} ; \Omega): \operatorname{div} E=0\}\)
 $E \in \varepsilon^{-1} \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right) \Leftrightarrow \varepsilon E \in \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right)$
and:

```
```

$\mathcal{H}_{\varepsilon}(\Omega):=\mathrm{H}\left(\operatorname{curl}_{0} ; \Omega\right) \cap \varepsilon^{-1} \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right)$
$=\left\{E \in \mathrm{~L}^{2}(\Omega): \operatorname{curl} E=0, \operatorname{div} \varepsilon E=0, \tau E=0\right\}$

```

\section*{Introduction: Sobolev Spaces}

\section*{spaces:}
\(\mathrm{H}(\) curl \(; \Omega):=\left\{E \in \mathrm{~L}^{2}(\Omega):\right.\) curl \(\left.E \in \mathrm{~L}^{2}(\Omega)\right\}\)
\(H(\) curlo \(; \Omega):=\{E \in H(\) curl \(; \Omega):\) curl \(E=0\}\)
\(\stackrel{\circ}{\mathrm{H}}(\) curl \(; \Omega):=\{E \in \mathrm{H}(\) curl \(; \Omega): \tau E=0\}=\bar{\circ}{ }^{\circ}(\Omega)\)
\(H(\) curlo: \(\Omega):=H(\) curl: \(\Omega) \cap \mathrm{H}(\) curlo: \(\Omega)\)
analogously:
\(H(\operatorname{div} ; \Omega):=\left\{E \in L^{2}(\Omega): \operatorname{div} E \in L^{2}(\Omega)\right\}\)
\(H\left(\operatorname{div}_{0} ; \Omega\right):=\{E \in \mathrm{H}(\operatorname{div} ; \Omega): \operatorname{div} E=0\}\)
\(E \in \varepsilon^{-1} \mathrm{H}\left(\operatorname{div}_{n} ; \Omega\right) \Leftrightarrow \varepsilon E \in \mathrm{H}\left(\operatorname{div}_{n} ; \Omega\right)\)
and:
\(\mathcal{H}_{\varepsilon}(\Omega):=\dot{H}\left(\operatorname{curl}_{0} ; \Omega\right) \cap \varepsilon^{-1} \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right)\)

\section*{Introduction: Sobolev Spaces}

\section*{spaces:}
\[
\begin{aligned}
\mathrm{H}(\operatorname{curl} ; \Omega) & :=\left\{E \in \mathrm{~L}^{2}(\Omega): \operatorname{curl} E \in \mathrm{~L}^{2}(\Omega)\right\} \\
\mathrm{H}\left(\text { curl }_{0} ; \Omega\right) & :=\{E \in \mathrm{H}(\operatorname{curl} ; \Omega): \operatorname{curl} E=0\}
\end{aligned}
\]
\(\mathrm{H}(\) curl \(; \Omega):=\{E \in \mathrm{H}(\) curl \(; \Omega): \tau E=0\}=\mathrm{C}^{\infty}(\Omega)\)
\(H(\) curlo: \(\Omega):-H(\) curl \(; \Omega) \cap H(\) curl \(0: \Omega)\)
analogously:
\(H(\operatorname{div} ; \Omega):=\left\{E \in L^{2}(\Omega): \operatorname{div} E \in L^{2}(\Omega)\right\}\)
\(\mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right):=\{E \in \mathrm{H}(\operatorname{div} ; \Omega): \operatorname{div} E=0\}\)
\(E \in \varepsilon^{-1} \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right) \Leftrightarrow \varepsilon E \in \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right)\)
and:
\(\mathcal{H}_{\varepsilon}(\Omega):=\mathrm{H}\left(\operatorname{curl}_{0} ; \Omega\right) \cap \varepsilon^{-1} \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right)\)

\section*{Introduction: Sobolev Spaces}
spaces:
\[
\begin{aligned}
\mathrm{H}(\operatorname{curl} ; \Omega) & :=\left\{E \in \mathrm{~L}^{2}(\Omega): \operatorname{curl} E \in \mathrm{~L}^{2}(\Omega)\right\} \\
\mathrm{H}\left(\operatorname{curl}_{0} ; \Omega\right) & :=\{E \in \mathrm{H}(\operatorname{curl} ; \Omega): \operatorname{curl} E=0\} \\
\stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega) & :=\{E \in \mathrm{H}(\operatorname{curl} ; \Omega): \tau E=0\}=\bar{\circ} \stackrel{\circ}{C}^{\circ}(\Omega)
\end{aligned}
\]

\section*{Introduction: Sobolev Spaces}
spaces:
\[
\begin{aligned}
\mathrm{H}(\text { curl } ; \Omega) & :=\left\{E \in \mathrm{~L}^{2}(\Omega): \text { curl } E \in \mathrm{~L}^{2}(\Omega)\right\} \\
\mathrm{H}\left(\text { curl }_{0} ; \Omega\right) & :=\{E \in \mathrm{H}(\text { curl } ; \Omega): \text { curl } E=0\} \\
\mathrm{H}(\text { curl } ; \Omega) & :=\{E \in \mathrm{H}(\text { curl } ; \Omega): \tau E=0\}=\overline{\mathrm{C}^{\circ} \infty(\Omega)} \mathrm{H}(\text { curl } ; \Omega)
\end{aligned}
\]
(Gauß' theorem)
analogously:
\(\mathrm{H}(\operatorname{div} ; \Omega):=\left\{E \in \mathrm{~L}^{2}(\Omega): \operatorname{div} E \in \mathrm{~L}^{2}(\Omega)\right\}\) \(\mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right):=\{E \in \mathrm{H}(\operatorname{div} ; \Omega): \operatorname{div} E=0\}\) \(E \in \varepsilon^{-1} H\left(\operatorname{div}_{0} ; \Omega\right) \Leftrightarrow \varepsilon E \in H\left(\operatorname{div}_{0} ; \Omega\right)\)
and
\(\mathcal{H}_{\varepsilon}(\Omega):=\mathrm{H}\left(\operatorname{curl}_{0} ; \Omega\right) \cap \varepsilon^{-1} \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right)\) \(=\left\{E \in \mathrm{~L}^{2}(\Omega): \operatorname{curl} E=0, \operatorname{div} \varepsilon E=0, \tau E=0\right\}\)

\section*{Introduction: Sobolev Spaces}
spaces:
\[
\begin{aligned}
& \mathrm{H}(\operatorname{curl} ; \Omega):=\left\{E \in \mathrm{~L}^{2}(\Omega): \operatorname{curl} E \in \mathrm{~L}^{2}(\Omega)\right\} \\
& \mathrm{H}\left(\text { curl }_{0} ; \Omega\right):=\{E \in \mathrm{H}(\text { curl } ; \Omega): \operatorname{curl} E=0\} \\
& \stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega):=\{E \in \mathrm{H}(\operatorname{curl} ; \Omega): \tau E=0\}=\stackrel{\circ}{\mathrm{C}} \infty(\Omega) \\
& \mathrm{H}\left(\text { curl }^{\prime} \Omega\right) \\
& \mathrm{H}\left(\operatorname{curl}_{0} ; \Omega\right):=\stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega) \cap \mathrm{H}\left(\operatorname{curl}_{0} ; \Omega\right)
\end{aligned}
\]
analogously:
\[
\begin{aligned}
\mathrm{H}(\operatorname{div} ; \Omega) & :=\left\{E \in \mathrm{~L}^{2}(\Omega): \operatorname{div} E \in \mathrm{~L}^{2}(\Omega)\right\} \\
\mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right) & :=\{E \in \mathrm{H}(\operatorname{div} ; \Omega): \operatorname{div} E=0\}
\end{aligned}
\]
\(E \in \varepsilon^{-1} H\left(\operatorname{div}_{0} ; \Omega\right) \Leftrightarrow \varepsilon E \in H\left(\operatorname{div}_{0} ; \Omega\right)\)
and
\(\mathcal{H}_{\varepsilon}(\Omega):=\mathrm{H}\left(\right.\) curl \(\left._{0} ; \Omega\right) \cap \varepsilon^{-1} \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right)\) \(=\left\{E \in \mathrm{~L}^{2}(\Omega): \operatorname{curl} E=0, \operatorname{div} \varepsilon E=0, \tau E=0\right\}\)

\section*{Introduction: Sobolev Spaces}
spaces:
\[
\begin{aligned}
\mathrm{H}(\text { curl } ; \Omega) & :=\left\{E \in \mathrm{~L}^{2}(\Omega): \operatorname{curl} E \in \mathrm{~L}^{2}(\Omega)\right\} \\
\mathrm{H}\left(\text { curl }_{0} ; \Omega\right) & :=\{E \in \mathrm{H}(\text { curl } ; \Omega): \operatorname{curl} E=0\} \\
\mathrm{H}(\text { curl } ; \Omega) & :=\{E \in \mathrm{H}(\text { curl } ; \Omega): \tau E=0\}=\overline{\mathrm{C}^{\infty}(\Omega)} \mathrm{H}(\text { curl } ; \Omega)
\end{aligned}
\]
(Gauß' theorem)
analogously:
\[
\begin{aligned}
\mathrm{H}(\operatorname{div} \Omega) & :=\left\{E \in \mathrm{~L}^{2}(\Omega): \operatorname{div} E \in \mathrm{~L}^{2}(\Omega)\right\} \\
\mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right) & :=\{E \in \mathrm{H}(\operatorname{div} ; \Omega): \operatorname{div} E=0\} \\
E \in \varepsilon^{-1} \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right) & \Leftrightarrow \varepsilon E \in \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right)
\end{aligned}
\]
and:

\title{
\(\mathcal{H}_{\varepsilon}(\Omega):=\mathrm{H}\left(\operatorname{curl}_{0} ; \Omega\right) \cap \varepsilon^{-1} \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right)\)
}

\section*{Introduction: Sobolev Spaces}
spaces:
\[
\begin{aligned}
\mathrm{H}(\operatorname{curl} ; \Omega) & :=\left\{E \in \mathrm{~L}^{2}(\Omega): \operatorname{curl} E \in \mathrm{~L}^{2}(\Omega)\right\} \\
\mathrm{H}\left(\text { curl }_{0} ; \Omega\right) & :=\{E \in \mathrm{H}(\text { curl } ; \Omega): \operatorname{curl} E=0\} \\
\mathrm{O}(\operatorname{curl} ; \Omega) & :=\{E \in \mathrm{H}(\text { curl } ; \Omega): \tau E=0\}=\overline{\mathrm{C}^{\circ} \infty(\Omega)} \mathrm{H}(\text { curl } ; \Omega) \\
\mathrm{H}\left(\operatorname{curl}_{0} ; \Omega\right) & :=\stackrel{\circ}{\mathrm{H}}\left(\operatorname{curl}^{\prime} ; \Omega\right) \cap \mathrm{H}\left(\operatorname{curl}_{0} ; \Omega\right)
\end{aligned}
\]
(Gauß' theorem)
analogously:
\[
\begin{aligned}
& \mathrm{H}(\operatorname{div} \Omega):=\left\{E \in \mathrm{~L}^{2}(\Omega): \operatorname{div} E \in \mathrm{~L}^{2}(\Omega)\right\} \\
& \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right):=\{E \in \mathrm{H}(\operatorname{div} ; \Omega): \operatorname{div} E=0\} \\
& E \in \varepsilon^{-1} \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right) \Leftrightarrow \varepsilon E \in \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right) \\
& \text { and: }
\end{aligned}
\]
\[
\begin{aligned}
\mathcal{H}_{\varepsilon}(\Omega) & :=\stackrel{\circ}{\mathrm{H}}\left(\operatorname{curl}_{0} ; \Omega\right) \cap \varepsilon^{-1} \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right) \\
& =\left\{E \in \mathrm{~L}^{2}(\Omega): \operatorname{curl} E=0, \operatorname{div} \varepsilon E=0, \tau E=0\right\}
\end{aligned}
\]
(finite dimension)

\section*{Variational Formulation}
testing curl \(\mu^{-1}\) curl \(E=F\) with \(\Phi \in \stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega)\)
\[
\varphi(\Phi):=\langle F, \Phi\rangle_{\Omega}=\left\langle\mu^{-1} \operatorname{curl} E, \operatorname{curl} \Phi\right\rangle_{\Omega}=: b(E, H)
\]
unfortunately: H (curl; \(\Omega\) ) is not the proper Hilbert space! (kernel of curl)


special case: \(\forall E \in \mathbb{H}:=\mathrm{H}(\operatorname{curl} ; \Omega) \cap \varepsilon^{-1} \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right) \cap \mathcal{H}_{\varepsilon}(\Omega)^{\perp_{\varepsilon}}\)

\(\Rightarrow b\) bilinear, continuous and coercive over \(\mathbb{H}, \varphi\) linear and continuous over \(\mathbb{H}\)
Lax-Mitgram \(\Rightarrow\) unique solution \(E \in \mathbb{H}+\check{\tau} G\) with proper tang. ext. operator \(\asymp\)
key tool: compact embedding of \(H(\operatorname{curl} ; \Omega) \cap H(\operatorname{div} ; \Omega)\) into \(L^{2}(\Omega)\)

\section*{Variational Formulation}
testing curl \(\mu^{-1}\) curl \(E=F\) with \(\Phi \in \stackrel{\circ}{\mathrm{H}}(\) curl \(; \Omega)\)
\[
\varphi(\Phi):=\langle F, \Phi\rangle_{\Omega}=\left\langle\mu^{-1} \operatorname{curl} E, \operatorname{curl} \Phi\right\rangle_{\Omega}=: b(E, H)
\]
unfortunately: H (curl; \(\Omega\) ) is not the proper Hilbert space! (kernel of curl)
Poincaré-Friedrichs inequality: \(\exists \mathrm{cpp}>0 \quad \forall E \in H(c u r i ; \Omega) \cap \varepsilon^{-1} H(d i v ; \Omega)\)

special case: \(\forall E \in \mathbb{H}:=\mathrm{H}(\operatorname{curl} ; \Omega) \cap \varepsilon^{-1} \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right) \cap \mathcal{H}_{\varepsilon}(\Omega)^{\perp_{\varepsilon}}\)
\(\qquad\)
\(\Rightarrow b\) bilinear, continuous and coercive over \(\mathbb{H}, \varphi\) linear and continuous over \(\mathbb{H}\)
Lax-Milgram \(\Rightarrow\) unique solution \(E \in \pi \Pi+\varkappa G\) with proper tang. ext. operator \(\nsucc\)
key tool: compact embedding of \(\mathrm{H}(\operatorname{curl} ; \Omega) \cap \mathrm{H}(\operatorname{div} ; \Omega)\) into \(\mathrm{L}^{2}(\Omega)\)

\section*{Variational Formulation}
testing curl \(\mu^{-1}\) curl \(E=F\) with \(\Phi \in \stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega)\)
\[
\varphi(\Phi):=\langle F, \Phi\rangle_{\Omega}=\left\langle\mu^{-1} \text { curl } E, \operatorname{curl} \Phi\right\rangle_{\Omega}=: b(E, H)
\]
unfortunately: \(\stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega)\) is not the proper Hilbert space! (kernel of curl)
Poincaré-Friedrichs inequality: \(\exists C_{\mathrm{PF}}>0 \quad \forall E \in H(\operatorname{curl} ; \Omega) \cap \varepsilon^{-1} H(\operatorname{div} ; \Omega)\)

special case: \(\forall E \in \mathbb{H}:=\mathrm{H}(\operatorname{curl} ; \Omega) \cap \varepsilon^{-1} \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right) \cap \mathcal{H}_{\varepsilon}(\Omega)^{\perp \varepsilon}\)
\(\square\)
\(\Rightarrow b\) bilinear, continuous and coercive over \(\mathbb{H}, \varphi\) linear and continuous over \(\mathbb{H}\)
Lax-Milgram \(\Rightarrow\) unique solution \(E \in \mathbb{H}+千 G\) with proper tang. ext. operator \(\not \subset\)
key tool: compact embedding of \(\mathrm{H}(\operatorname{curl} ; \Omega) \cap \mathrm{H}(\operatorname{div} ; \Omega)\) into \(\mathrm{L}^{2}(\Omega)\)

\section*{Variational Formulation}
testing curl \(\mu^{-1}\) curl \(E=F\) with \(\Phi \in \stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega)\)
\[
\varphi(\Phi):=\langle F, \Phi\rangle_{\Omega}=\left\langle\mu^{-1} \text { curl } E, \operatorname{curl} \Phi\right\rangle_{\Omega}=: b(E, H)
\]
unfortunately: \(\stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega)\) is not the proper Hilbert space! (kernel of curl)
Poincaré-Friedrichs inequality: \(\exists C_{p F}>0 \quad \forall E \in H(\) curl \(; \Omega) \cap \varepsilon^{-1} H(\operatorname{div} ; \Omega)\)

special case: \(\forall E \in \mathbb{H}:=\mathrm{H}(\operatorname{curl} ; \Omega) \cap \varepsilon^{-1} \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right) \cap \mathcal{H}_{\varepsilon}(\Omega)^{\perp_{\varepsilon}}\) \(\|E\|_{L^{2}(\Omega)} \leq C_{P F}\|c u r \mid E\|_{L^{2}(\Omega)}\)
\(\Rightarrow b\) bilinear, continuous and coercive over \(\mathbb{H}, \varphi\) linear and continuous over \(\mathbb{H}\)
Lax-Milgram \(\Rightarrow\) unique solution \(E \in \mathbb{H}+千 G\) with proper tang. ext. operator \(\not \subset\)
key tool: compact embedding of \(\mathrm{H}(\operatorname{curl} ; \Omega) \cap \mathrm{H}(\operatorname{div} ; \Omega)\) into \(\mathrm{L}^{2}(\Omega)\)

\section*{Variational Formulation}
testing curl \(\mu^{-1}\) curl \(E=F\) with \(\Phi \in \stackrel{\circ}{\mathrm{H}}(\) curl \(; \Omega)\)
\[
\varphi(\Phi):=\langle F, \Phi\rangle_{\Omega}=\left\langle\mu^{-1} \text { curl } E, \text { curl } \Phi\right\rangle_{\Omega}=: b(E, H)
\]
unfortunately: \(\stackrel{\circ}{\mathrm{H}}\) (curl; \(\Omega\) ) is not the proper Hilbert space! (kernel of curl)
Poincaré-Friedrichs inequality: \(\exists c_{\mathrm{PF}}>0 \quad \forall E \in \mathrm{H}(\operatorname{curl} ; \Omega) \cap \varepsilon^{-1} \mathrm{H}(\operatorname{div} ; \Omega)\)
\[
c_{\mathrm{PF}}^{-1}\|E\|_{\mathrm{L}^{2}(\Omega)} \leq\|\operatorname{curl} E\|_{\mathrm{L}^{2}(\Omega)}+\|\operatorname{div} \varepsilon E\|_{\mathrm{L}^{2}(\Omega)}+\|\tau E\|_{\text {trace }}+\sum_{\ell \text { finite }}\left|\left\langle\varepsilon E, E_{\ell}\right\rangle_{\Omega}\right|
\]
special case: \(\forall E \in \mathbb{H}:=\mathrm{H}\left(\operatorname{curl}_{1} ; \Omega\right) \cap \varepsilon^{-1} \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right) \cap \mathcal{H}_{\varepsilon}(\Omega)^{\perp_{\varepsilon}}\)

\section*{Variational Formulation}
testing curl \(\mu^{-1}\) curl \(E=F\) with \(\Phi \in \stackrel{\circ}{\mathrm{H}}(\) curl \(; \Omega)\)
\[
\varphi(\Phi):=\langle F, \Phi\rangle_{\Omega}=\left\langle\mu^{-1} \text { curl } E, \text { curl } \Phi\right\rangle_{\Omega}=: b(E, H)
\]
unfortunately: \(\stackrel{\circ}{\mathrm{H}}\) (curl; \(\Omega\) ) is not the proper Hilbert space! (kernel of curl)
Poincaré-Friedrichs inequality: \(\exists c_{\mathrm{PF}}>0 \quad \forall E \in \mathrm{H}(\operatorname{curl} ; \Omega) \cap \varepsilon^{-1} \mathrm{H}(\operatorname{div} ; \Omega)\)
\[
c_{\mathrm{PF}}^{-1}\|E\|_{\mathrm{L}^{2}(\Omega)} \leq\|\operatorname{curl} E\|_{L^{2}(\Omega)}+\|\operatorname{div} \varepsilon E\|_{L^{2}(\Omega)}+\|\tau E\|_{\text {trace }}+\sum_{\ell \text { finite }}\left|\left\langle\varepsilon E, E_{\ell}\right\rangle_{\Omega}\right|
\]
special case: \(\forall E \in \mathbb{H}:=\stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega) \cap \varepsilon^{-1} \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right) \cap \mathcal{H}_{\varepsilon}(\Omega)^{\perp_{\varepsilon}}\)
\[
\|E\|_{L^{2}(\Omega)} \leq c_{\mathrm{PF}}\|\operatorname{curl} E\|_{\mathrm{L}^{2}(\Omega)}
\]
\(\Rightarrow b\) bilinear, continuous and coercive over \(\mathbb{H}, \varphi\) linear and continuous over \(\mathbb{H}\)
Lax-Milgram \(\Rightarrow\) unique solution \(E \in \mathbb{H}+\check{\tau} G\) with proper tang. ext. operator \(\check{\tau}\)
key tool: compact embedding of \(\mathrm{H}(\operatorname{curl} ; \Omega) \cap \mathrm{H}(\operatorname{div} ; \Omega)\) into \(\mathrm{L}^{2}(\Omega)\)

\section*{Variational Formulation}
testing curl \(\mu^{-1}\) curl \(E=F\) with \(\Phi \in \stackrel{\circ}{\mathrm{H}}(\) curl \(; \Omega)\)
\[
\varphi(\Phi):=\langle F, \Phi\rangle_{\Omega}=\left\langle\mu^{-1} \text { curl } E, \text { curl } \Phi\right\rangle_{\Omega}=: b(E, H)
\]
unfortunately: \(\stackrel{\circ}{\mathrm{H}}\) (curl; \(\Omega\) ) is not the proper Hilbert space! (kernel of curl)
Poincaré-Friedrichs inequality: \(\exists c_{\mathrm{PF}}>0 \quad \forall E \in \mathrm{H}(\operatorname{curl} ; \Omega) \cap \varepsilon^{-1} \mathrm{H}(\operatorname{div} ; \Omega)\)
\[
c_{\mathrm{PF}}^{-1}\|E\|_{\mathrm{L}^{2}(\Omega)} \leq\|\operatorname{curl} E\|_{L^{2}(\Omega)}+\|\operatorname{div} \varepsilon E\|_{L^{2}(\Omega)}+\|\tau E\|_{\text {trace }}+\sum_{\ell \text { finite }}\left|\left\langle\varepsilon E, E_{\ell}\right\rangle_{\Omega}\right|
\]
special case: \(\forall E \in \mathbb{H}:=\stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega) \cap \varepsilon^{-1} \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right) \cap \mathcal{H}_{\varepsilon}(\Omega)^{\perp_{\varepsilon}}\)
\[
\|E\|_{L^{2}(\Omega)} \leq c_{\mathrm{PF}}\|\operatorname{curl} E\|_{\mathrm{L}^{2}(\Omega)}
\]
\(\Rightarrow b\) bilinear, continuous and coercive over \(\mathbb{H}, \varphi\) linear and continuous over \(\mathbb{H}\)
Lax-Milgram \(\Rightarrow\) unique solution \(E \in \mathbb{H}+\check{\tau} G\) with proper tang. ext. operator \(\check{\tau}\)
key tool: compact embedding of \(\mathrm{H}(\) curl \(; \Omega) \cap \mathrm{H}(\operatorname{div} ; \Omega)\) into \(\mathrm{L}^{2}(\Omega)\)

\section*{Variational Formulation}
testing curl \(\mu^{-1}\) curl \(E=F\) with \(\Phi \in \stackrel{\circ}{\mathrm{H}}(\) curl \(; \Omega)\)
\[
\varphi(\Phi):=\langle F, \Phi\rangle_{\Omega}=\left\langle\mu^{-1} \text { curl } E, \text { curl } \Phi\right\rangle_{\Omega}=: b(E, H)
\]
unfortunately: \(\stackrel{\circ}{\mathrm{H}}\) (curl; \(\Omega\) ) is not the proper Hilbert space! (kernel of curl)
Poincaré-Friedrichs inequality: \(\exists c_{\mathrm{PF}}>0 \quad \forall E \in \mathrm{H}(\operatorname{curl} ; \Omega) \cap \varepsilon^{-1} \mathrm{H}(\operatorname{div} ; \Omega)\)
\[
c_{\mathrm{PF}}^{-1}\|E\|_{\mathrm{L}^{2}(\Omega)} \leq\|\operatorname{curl} E\|_{L^{2}(\Omega)}+\|\operatorname{div} \varepsilon E\|_{L^{2}(\Omega)}+\|\tau E\|_{\text {trace }}+\sum_{\ell \text { finite }}\left|\left\langle\varepsilon E, E_{\ell}\right\rangle_{\Omega}\right|
\]
special case: \(\forall E \in \mathbb{H}:=\stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega) \cap \varepsilon^{-1} \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right) \cap \mathcal{H}_{\varepsilon}(\Omega)^{\perp_{\varepsilon}}\)
\[
\|E\|_{L^{2}(\Omega)} \leq c_{\mathrm{PF}}\|\operatorname{curl} E\|_{\mathrm{L}^{2}(\Omega)}
\]
\(\Rightarrow b\) bilinear, continuous and coercive over \(\mathbb{H}, \varphi\) linear and continuous over \(\mathbb{H}\)
Lax-Milgram \(\Rightarrow\) unique solution \(E \in \mathbb{H}+\check{\tau} G\) with proper tang. ext. operator \(\check{\tau}\)
key tool: compact embedding of \(\mathrm{H}(\mathrm{curl} ; \Omega) \cap \mathrm{H}(\operatorname{div} ; \Omega)\) into \(\mathrm{L}^{2}(\Omega)\)

\section*{Variational Formulation}
testing curl \(\mu^{-1}\) curl \(E=F\) with \(\Phi \in \stackrel{\circ}{\mathrm{H}}(\) curl \(; \Omega)\)
\[
\varphi(\Phi):=\langle F, \Phi\rangle_{\Omega}=\left\langle\mu^{-1} \text { curl } E, \text { curl } \Phi\right\rangle_{\Omega}=: b(E, H)
\]
unfortunately: \(\stackrel{\circ}{\mathrm{H}}(\mathrm{curl} ; \Omega)\) is not the proper Hilbert space! (kernel of curl)
Poincaré-Friedrichs inequality: \(\exists c_{\mathrm{PF}}>0 \quad \forall E \in \mathrm{H}(\mathrm{curl} ; \Omega) \cap \varepsilon^{-1} \mathrm{H}(\operatorname{div} ; \Omega)\)
\[
c_{\mathrm{PF}}^{-1}\|E\|_{\mathrm{L}^{2}(\Omega)} \leq\|\operatorname{curl} E\|_{\mathrm{L}^{2}(\Omega)}+\|\operatorname{div} \varepsilon E\|_{\mathrm{L}^{2}(\Omega)}+\|\tau E\|_{\text {trace }}+\sum_{\ell \text { finite }}\left|\left\langle\varepsilon E, E_{\ell}\right\rangle_{\Omega}\right|
\]
special case: \(\forall E \in \mathbb{H}:=\stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega) \cap \varepsilon^{-1} \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right) \cap \mathcal{H}_{\varepsilon}(\Omega)^{\perp_{\varepsilon}}\)
\[
\|E\|_{L^{2}(\Omega)} \leq c_{\mathrm{PF}}\|\operatorname{curl} E\|_{\mathrm{L}^{2}(\Omega)}
\]
\(\Rightarrow b\) bilinear, continuous and coercive over \(\mathbb{H}, \varphi\) linear and continuous over \(\mathbb{H}\)
Lax-Milgram \(\Rightarrow\) unique solution \(E \in \mathbb{H}+\check{\tau} G\) with proper tang. ext. operator \(\check{\tau}\)
key tool: compact embedding of \(\mathrm{H}(\operatorname{curl} ; \Omega) \cap \mathrm{H}(\operatorname{div} ; \Omega)\) into \(\mathrm{L}^{2}(\Omega)\)
universitat
\(D_{E S S}^{U_{S}} S_{E N} S_{N}\) UR

\section*{Upper and Lower Bounds for Non-Conforming Approximations}
\(\tilde{H} \in \mathrm{~L}^{2}(\Omega)\) approximation of curl \(E=\mu H\) (first, only approximation of magnetic field)
Theorem 1 For all \(H \in L^{2}(\Omega)\) the estimates


\section*{hold. Here,}
\[
\begin{aligned}
& M_{+}(\tilde{H} ; Y, \operatorname{curl} Y):=c_{\mu, 1}\left(c_{\mathrm{PF}}\|F-\operatorname{curl} Y\|_{\mathrm{L}^{2}(\Omega)}+\left\|\mu^{-1} \tilde{H}-Y\right\|_{L^{2}(\Omega)}\right. \\
& m_{+}(\tilde{H} ; \operatorname{curl} X):=c_{\mu, 2}\|\operatorname{curl} X-\tilde{H}\|_{\mathrm{L}^{2}(\Omega)} \\
& M_{-}(\tilde{H}: X, \operatorname{curl} X):=2\langle F, X\rangle_{L^{2}(\Omega)}-\left\langle\mu^{-1}(\operatorname{curl} X+2 \tilde{H}), \operatorname{curl} X\right\rangle_{L^{2}(\Omega)} \\
& m_{-}(\tilde{H} ; Y, \operatorname{curl} Z):=2\left\langle\mu^{-1}(\operatorname{curl} Z-\tilde{H}), Y\right\rangle_{\mathrm{L}^{2}(\Omega)}-\|Y\|_{\mathrm{L}^{2}(\Omega)}^{2} \\
& \text { Niversitat } \\
& D_{E} U_{S} S_{S E} S_{N} \text { URG }
\end{aligned}
\]

\section*{Upper and Lower Bounds for Non-Conforming Approximations}
\(\tilde{H} \in \mathrm{~L}^{2}(\Omega)\) approximation of curl \(E=\mu H\) (first, only approximation of magnetic field)
Theorem 1 For all \(\tilde{H} \in \mathrm{~L}^{2}(\Omega)\) the estimates
\[
\begin{aligned}
& \|\mu H-\tilde{H}\|_{L^{2}(\Omega)} \leq \inf _{Y \in \mathrm{H}(\operatorname{curl} ; \Omega)} M_{+}(\tilde{H} ; Y, \operatorname{curl} Y)+\inf _{\substack{X \in \mathrm{H}(\operatorname{curl} ; \Omega) \\
\tau X=G}} m_{+}(\tilde{H} ; \operatorname{curl} X), \\
& \|\mu H-\tilde{H}\|_{L^{2}(\Omega)}^{2} \geq \sup _{\substack{\circ \\
X \in \mathrm{H}(\operatorname{curl} ; \Omega)}} M_{-}(\tilde{H} ; X, \operatorname{curl} X)+\sup _{\substack{\mu^{-1} Y, Z \in \mathrm{H}(\operatorname{curl} ; \Omega) \\
\operatorname{curl} \mu^{-1} Y=0 \\
\tau Z=G}} m_{-}(\tilde{H} ; Y, \operatorname{curl} Z)
\end{aligned}
\]
hold.
Here,
\(\square\)

\section*{Upper and Lower Bounds for Non-Conforming Approximations}
\(\tilde{H} \in \mathrm{~L}^{2}(\Omega)\) approximation of curl \(E=\mu H\) (first, only approximation of magnetic field)
Theorem 1 For all \(\tilde{H} \in \mathrm{~L}^{2}(\Omega)\) the estimates
\[
\begin{aligned}
& \|\mu H-\tilde{H}\|_{L^{2}(\Omega)} \leq \inf _{Y \in H(\operatorname{curl} ; \Omega)} M_{+}(\tilde{H} ; Y, \operatorname{curl} Y)+\inf _{\substack{x \in H(\operatorname{curl} ; \Omega) \\
\tau X=G}} m_{+}(\tilde{H} ; \operatorname{curl} X), \\
& \|\mu H-\tilde{H}\|_{L^{2}(\Omega)}^{2} \geq \sup _{\substack{\dot{\circ}(\operatorname{cur} \mid \Omega)}} M_{-}(\tilde{H} ; X, \operatorname{curl} X)+\sup _{\substack{\mu^{-1} Y, Z \in H(\operatorname{cur} ; \Omega) \\
\operatorname{cur} \mid{ }^{-1} Y=0 \\
\tau Z=G}} m_{-}(\tilde{H} ; Y, \text { curl } Z)
\end{aligned}
\]
hold. Here,
\[
\begin{aligned}
M_{+}(\tilde{H} ; Y, \operatorname{curl} Y) & :=c_{\mu, 1}\left(c_{\mathrm{PF}}\|F-\operatorname{curl} Y\|_{\mathrm{L}^{2}(\Omega)}+\left\|\mu^{-1} \tilde{H}-Y\right\|_{\mathrm{L}^{2}(\Omega)}\right), \\
\quad m_{+}(\tilde{H} ; \operatorname{curl} X) & :=c_{\mu, 2}\|\operatorname{curl} X-\tilde{H}\|_{\mathrm{L}^{2}(\Omega)}, \\
M_{-}(\tilde{H} ; X, \operatorname{curl} X) & :=2\langle F, X\rangle_{\mathrm{L}^{2}(\Omega)}-\left\langle\mu^{-1}(\operatorname{curl} X+2 \tilde{H}), \operatorname{curl} X\right\rangle_{\mathrm{L}^{2}(\Omega)}, \\
m_{-}(\tilde{H} ; Y, \operatorname{curl} Z) & :=2\left\langle\mu^{-1}(\operatorname{curl} Z-\tilde{H}), Y\right\rangle_{\mathrm{L}^{2}(\Omega)}-\|Y\|_{\mathrm{L}^{2}(\Omega)}^{2} .
\end{aligned}
\]

\section*{Upper and Lower Bounds for (Very) Conforming Approximations}
\(\tilde{E} \in \mathrm{H}(\) curl \(; \Omega)\) approx. of \(E\) and \(\tilde{H}:=\operatorname{curl} \tilde{E} \in \mathrm{~L}^{2}(\Omega)\) approx. of curl \(E=\mu H\)
Corollary \(\mathbf{1}\) For all \(\tilde{E} \in H(c u r l ; \Omega)\)


Corollary 2 For all \(\tilde{E} \in \mathrm{H}(\operatorname{curl} ; \Omega)\) with \(\tau \tilde{E}=G\), i.e., \(E-\tilde{E} \in \mathrm{H}(\) curl \(; \Omega)\)
sup
\(X \in H(\) curl \(; \Omega)\)

universitat


\section*{Upper and Lower Bounds for (Very) Conforming Approximations}
\(\tilde{E} \in \mathrm{H}(\) curl \(; \Omega)\) approx. of \(E\) and \(\tilde{H}:=\operatorname{curl} \tilde{E} \in \mathrm{~L}^{2}(\Omega)\) approx. of curl \(E=\mu H\)
Corollary 1 For all \(\tilde{E} \in \mathrm{H}(\) curl \(; \Omega)\)
\[
\begin{aligned}
\|\operatorname{curl}(E-\tilde{E})\|_{L^{2}(\Omega)} \leq & \inf _{Y \in \mathrm{H}(\operatorname{curl} ; \Omega)} M_{+}(\tilde{H} ; Y, \operatorname{curl} Y)+c_{\mu, 2} c_{\tau}\|G-\tau \tilde{E}\|_{\text {trace }} \\
\|\operatorname{curl}(E-\tilde{E})\|_{L^{2}(\Omega)}^{2} \geq & \sup _{X \in \mathrm{H}(\operatorname{curl} ; \Omega)} M_{-}(\tilde{H} ; X, \operatorname{curl} X) \\
& \quad+\sup _{Y \in \mu \mathrm{H}\left(\operatorname{curl}_{0} ; \Omega\right)}\left(2\left\langle G-\tau \tilde{E}, \mu^{-1} Y\right\rangle_{\text {trace }}-\|Y\|_{L^{2}(\Omega)}^{2}\right) .
\end{aligned}
\]

\section*{Corollary 2 For all \(\tilde{E} \in \mathrm{H}(\operatorname{curl} ; \Omega)\) with \(\tau \tilde{E}=G\), i.e., \(E-\tilde{E} \in \mathrm{H}(\) curl \(; \Omega)\)}

\section*{Upper and Lower Bounds for (Very) Conforming Approximations}
\(\tilde{E} \in \mathrm{H}(\) curl \(; \Omega)\) approx. of \(E\) and \(\tilde{H}:=\operatorname{curl} \tilde{E} \in \mathrm{~L}^{2}(\Omega)\) approx. of curl \(E=\mu H\)
Corollary 1 For all \(\tilde{E} \in \mathrm{H}(\) curl \(; \Omega)\)
\[
\begin{aligned}
\|\operatorname{curl}(E-\tilde{E})\|_{L^{2}(\Omega)} \leq & \inf _{Y \in \mathrm{H}(\operatorname{curl} ; \Omega)} M_{+}(\tilde{H} ; Y, \operatorname{curl} Y)+c_{\mu, 2} c_{\tau}\|G-\tau \tilde{E}\|_{\text {trace }} \\
\|\operatorname{curl}(E-\tilde{E})\|_{L^{2}(\Omega)}^{2} \geq & \sup _{X \in \mathrm{H}(\operatorname{curl} ; \Omega)} M_{-}(\tilde{H} ; X, \operatorname{curl} X) \\
& \quad+\sup _{Y \in \mu \mathrm{H}(\operatorname{curl} ; \Omega)}\left(2\left\langle G-\tau \tilde{E}, \mu^{-1} Y\right\rangle_{\text {trace }}-\|Y\|_{L^{2}(\Omega)}^{2}\right) .
\end{aligned}
\]

Corollary 2 For all \(\tilde{E} \in \mathrm{H}(\operatorname{curl} ; \Omega)\) with \(\tau \tilde{E}=G\), i.e., \(E-\tilde{E} \in \stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega)\)
\[
\sup _{X \in \mathrm{H}(\operatorname{curl} ; \Omega)} M_{-}(\tilde{H} ; X, \operatorname{curl} X) \leq\|\operatorname{curl}(E-\tilde{E})\|_{L^{2}(\Omega)}^{2} \leq \inf _{Y \in H(\operatorname{curl} ; \Omega)} M_{+}^{2}(\tilde{H} ; Y, \operatorname{curl} Y) .
\]

\section*{Norm Estimates}
- norm estimates for \(h=\mu H-\tilde{H}\)
- \(E \mapsto \|\) curl \(E \|_{L^{2}(\Omega)}\) semi-norm but not norm on \(H(\) curl \(; \Omega)\) or \(H(c u r l ; \Omega)\) (not controlling \(\|\operatorname{div} E\|_{L^{2}(\Omega)}\) and projection on Dirichlet fields)
- for conforming anproximations \(E \in \mathrm{H}(\) curl \(; \Omega) \cap \varepsilon^{-1} \mathrm{H}(\) div \(; \Omega)\) the semi-norm

is well defined and a norm on \(\mathrm{H}(\) curl \(; \Omega) \cap \varepsilon^{-1} \mathrm{H}(\operatorname{div} ; \Omega)\)
- \(\Rightarrow\) norm estimates for \(e=E-\tilde{E}\)

\section*{Norm Estimates}
- norm estimates for \(h=\mu H-\tilde{H}\)
- \(E \mapsto \|\) curl \(E \|_{L^{2}(\Omega)}\) semi-norm but not norm on \(\mathrm{H}(\) curl \(; \Omega)\) or \(\mathrm{H}(\) curl \(; \Omega)\) (not controlling \(\|\operatorname{div} E\|_{L^{2}(\Omega)}\) and projection on Dirichlet fields)
- for conforming approximations \(E \in H(\operatorname{curl} ; \Omega) \cap \varepsilon^{-1} H(\operatorname{div} ; \Omega)\) the semi-norm

is well defined and a norm on \(\mathrm{H}(\operatorname{curl} ; \Omega) \cap \varepsilon^{-1} \mathrm{H}(\) div \(; \Omega)\)
. \(\Rightarrow\) norm estimates for \(e=F-\tilde{F}\)

\section*{Norm Estimates}
- norm estimates for \(h=\mu H-\tilde{H}\)
- \(E \mapsto \|\) curl \(E \|_{L^{2}(\Omega)}\) semi-norm but not norm on \(\mathrm{H}(\) curl \(; \Omega)\) or \(\stackrel{\circ}{\mathrm{H}}(\) curl \(; \Omega)\) (not controlling \(\|\operatorname{div} E\|_{L^{2}(\Omega)}\) and projection on Dirichlet fields)
- for conforming approximations \(E \in \mathrm{H}(\operatorname{curl} ; \Omega) \cap \varepsilon^{-1} \mathrm{H}(\operatorname{div} ; \Omega)\) the semi-norm
\[
E \mapsto\|E\|:=\|\operatorname{curl} E\|_{L^{2}(\Omega)}+\|\operatorname{div} \varepsilon E\|_{L^{2}(\Omega)}+\sum_{\ell=1}^{d}\left|\left\langle\varepsilon E, E_{\ell}\right\rangle_{L^{2}(\Omega)}\right|
\]
is well defined and a norm on \(\stackrel{\circ}{\mathrm{H}}(\mathrm{curl} ; \Omega) \cap \varepsilon^{-1} \mathrm{H}(\operatorname{div} ; \Omega)\)

\section*{Norm Estimates}
- norm estimates for \(h=\mu H-\tilde{H}\)
- \(E \mapsto \|\) curl \(E \|_{L^{2}(\Omega)}\) semi-norm but not norm on \(\mathrm{H}(\) curl \(; \Omega)\) or \(\stackrel{\circ}{\mathrm{H}}(\) curl \(; \Omega)\) (not controlling \(\|\operatorname{div} E\|_{L^{2}(\Omega)}\) and projection on Dirichlet fields)
- for conforming approximations \(E \in \mathrm{H}(\operatorname{curl} ; \Omega) \cap \varepsilon^{-1} \mathrm{H}(\operatorname{div} ; \Omega)\) the semi-norm
\[
E \mapsto\|E\|:=\|\operatorname{curl} E\|_{L^{2}(\Omega)}+\|\operatorname{div} \varepsilon E\|_{L^{2}(\Omega)}+\sum_{\ell=1}^{d} \mid\left\langle\varepsilon E, E_{\ell\rangle_{L^{2}(\Omega)} \mid}\right|
\]
is well defined and a norm on \(\stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega) \cap \varepsilon^{-1} \mathrm{H}(\operatorname{div} ; \Omega)\)
\(■ \Rightarrow\) norm estimates for \(e=E-\tilde{E}\)
Corollary 3 For all \(\tilde{E} \in H(\operatorname{curl} ; \Omega) \cap \varepsilon^{-1} \mathrm{H}(\operatorname{div} ; \Omega)\) with \(\tau \tilde{E}=G\) and \(\operatorname{div} \varepsilon \tilde{E}=0\) and \(\varepsilon \tilde{E} \perp \mathcal{H}_{\varepsilon}(\Omega)\), i.e., \(E-\tilde{E} \in \mathbb{H}\),
\(X \in \mathrm{H}(\) curl \(; \Omega)\)


\section*{Norm Estimates}
- norm estimates for \(h=\mu H-\tilde{H}\)
- \(E \mapsto \|\) curl \(E \|_{L^{2}(\Omega)}\) semi-norm but not norm on \(\mathrm{H}(\) curl \(; \Omega)\) or \(\stackrel{\circ}{\mathrm{H}}(\) curl \(; \Omega)\) (not controlling \(\|\operatorname{div} E\|_{L^{2}(\Omega)}\) and projection on Dirichlet fields)
- for conforming approximations \(E \in \mathrm{H}(\operatorname{curl} ; \Omega) \cap \varepsilon^{-1} \mathrm{H}(\operatorname{div} ; \Omega)\) the semi-norm
\[
E \mapsto\|E\|:=\|\operatorname{curl} E\|_{L^{2}(\Omega)}+\|\operatorname{div} \varepsilon E\|_{L^{2}(\Omega)}+\sum_{\ell=1}^{d}\left|\left\langle\varepsilon E, E_{\ell}\right\rangle_{L^{2}(\Omega)}\right|
\]
is well defined and a norm on \(\stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega) \cap \varepsilon^{-1} \mathrm{H}(\operatorname{div} ; \Omega)\)
- \(\Rightarrow\) norm estimates for \(e=E-\tilde{E}\), e.g.,

Corollary 3 For all \(\tilde{E} \in \mathrm{H}(\tilde{\operatorname{curl}} ; \Omega) \cap \varepsilon^{-1} \mathrm{H}(\operatorname{div} ; \Omega)\) with \(\tau \tilde{E}=G\) and \(\operatorname{div} \varepsilon \tilde{E}=0\) and \(\varepsilon \tilde{E} \perp \mathcal{H}_{\varepsilon}(\Omega)\), i.e., \(E-\tilde{E} \in \mathbb{H}\),
\[
\sup _{X \in \stackrel{H}{(c u r l} ; \Omega)} M_{-}(\tilde{H} ; X, \operatorname{curl} X) \leq\|E-\tilde{E}\|^{2} \leq \inf _{Y \in H(\operatorname{curl} ; \Omega)} M_{+}^{2}(\tilde{H} ; Y, \text { curl } Y)
\]

\section*{Constants and Sharpness}
typical features of functional a posteriori error estimates
- estimates for errors: basic (integral) relations, constants for embedding inequalities \(C_{\text {PF }}, c_{\mu, i}, c_{\tau}\)
- recall e.g.: For \(\tilde{E} \in H(\operatorname{curl} ; \Omega) \cap \varepsilon^{-1} H\left(\operatorname{div}_{0} ; \Omega\right) \cap \mathcal{H}_{\varepsilon}(\Omega)^{\perp_{\varepsilon}}\) with \(\tau \tilde{E}=G\) \(\|E-\tilde{E}\| \leq \inf _{Y \in H(\operatorname{curl} ; \Omega)} M_{+}(\tilde{H} ; Y, \operatorname{curl} Y)\)


\section*{Constants and Sharpness}
typical features of functional a posteriori error estimates
- estimates for errors: basic (integral) relations, constants for embedding inequalities \(c_{\mathrm{PF}}, c_{\mu, i}, c_{\tau}\)
- recall e.g.: For \(\tilde{E} \in H\left(\right.\) curl \(\left.^{\prime} \Omega\right) \cap \varepsilon^{-1} H\left(\operatorname{div}_{0} ; \Omega\right) \cap \mathcal{H}_{\varepsilon}(\Omega)^{\perp_{\varepsilon}}\) with \(\tau \tilde{E}=G\)


\section*{Constants and Sharpness}
typical features of functional a posteriori error estimates
- estimates for errors: basic (integral) relations, constants for embedding inequalities \(c_{\mathrm{PF}}, c_{\mu, i}, c_{\tau}\)
- recall e.g.: For \(\tilde{E} \in \mathrm{H}(\operatorname{curl} ; \Omega) \cap \varepsilon^{-1} \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right) \cap \mathcal{H}_{\varepsilon}(\Omega)^{\perp}\) with \(\tau \tilde{E}=G\)
\[
\begin{aligned}
\|E-\tilde{E}\| & \leq \inf _{Y \in \mathrm{H}(\operatorname{curl} ; \Omega)} M_{+}(\tilde{H} ; Y, \operatorname{curl} Y) \\
& =\inf _{Y \in \mathrm{H}(\operatorname{curl} ; \Omega)} c_{\mu, 1}\left(\operatorname{cpF}\|F-\operatorname{curl} Y\|_{L^{2}(\Omega)}+\left\|\mu^{-1} \tilde{H}-Y\right\|_{L^{2}(\Omega)}\right) .
\end{aligned}
\]
\(\Rightarrow \quad M_{+}(\tilde{H} ; Y, \operatorname{curl} Y)=0 \quad \Leftrightarrow \quad \mu Y=H=\tilde{H}=\operatorname{curl} \tilde{E} \wedge \tilde{E}=E \quad\) sharp

\section*{universitat}

DEMSSESNRG

\section*{Constants and Sharpness}
typical features of functional a posteriori error estimates
- estimates for errors: basic (integral) relations, constants for embedding inequalities \(c_{\mathrm{PF}}, c_{\mu, i}, c_{\tau}\)
- recall e.g.: For \(\tilde{E} \in \mathrm{H}(\operatorname{curl} ; \Omega) \cap \varepsilon^{-1} \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right) \cap \mathcal{H}_{\varepsilon}(\Omega)^{\perp}\) with \(\tau \tilde{E}=G\)
\[
\begin{aligned}
& \|E-\tilde{E}\| \leq \inf _{Y \in \mathrm{H}(\operatorname{curl} ; \Omega)} M_{+}(\tilde{H} ; Y, \operatorname{curl} Y) \\
& =\inf _{Y \in \mathrm{H}(\operatorname{curl} ; \Omega)} c_{\mu, 1}\left(c_{\mathrm{PF}}\|F-\operatorname{curl} Y\|_{\mathrm{L}^{2}(\Omega)}+\left\|\mu^{-1} \tilde{H}-Y\right\|_{\mathrm{L}^{2}(\Omega)}\right) \\
& \Rightarrow \quad M_{+}(\tilde{H} ; Y, \operatorname{curl} Y)=0 \quad \Leftrightarrow \quad \mu Y=H=\tilde{H}=\operatorname{curl} \tilde{E} \wedge \tilde{E}=E \quad \text { sharp }
\end{aligned}
\]

\section*{UNIVERSITAT}

DEUSSEEN R G

\section*{Proofs (Helmholtz Decomposition)}
main tools: standard techniques and Helmholtz decomposition
\(\tilde{H}\) approximation of \(\mu H=\operatorname{curl} E, h:=\mu H-\tilde{H}\) error simplicity \(\varepsilon=\mu=\mathrm{id}\)
\[
\begin{aligned}
\mathrm{L}^{2}(\Omega) \ni h & =\operatorname{curl} E_{\mathrm{c}} \oplus H_{d} \\
\text { curl } E_{\mathrm{c}} & \in \operatorname{curl} \stackrel{\circ}{\mathrm{H}}(\mathrm{curl} ; \Omega) \\
H_{\mathrm{d}} & \in \mathrm{H}\left(\text { curl }_{0} ; \Omega\right)
\end{aligned}
\]

\section*{Proofs (Helmholtz Decomposition)}
main tools: standard techniques and Helmholtz decomposition
\(\tilde{H}\) approximation of \(\mu H=\operatorname{curl} E, h:=\mu H-\tilde{H}\) error simplicity \(\varepsilon=\mu=\mathrm{id}\)
\[
\begin{aligned}
\mathrm{L}^{2}(\Omega) \ni h & =\operatorname{curl} E_{\mathrm{c}} \oplus H_{\mathrm{d}} \\
\text { curl } E_{\mathrm{c}} & \in \operatorname{curl} \stackrel{\circ}{\mathrm{H}}(\mathrm{curl} ; \Omega) \\
H_{\mathrm{d}} & \in \mathrm{H}\left(\operatorname{curl}_{0} ; \Omega\right)
\end{aligned}
\]

\section*{Proofs (Helmholtz Decomposition)}
main tools: standard techniques and Helmholtz decomposition
\(\tilde{H}\) approximation of \(\mu H=\operatorname{curl} E, h:=\mu H-\tilde{H}\) error simplicity \(\varepsilon=\mu=\) id
\[
\begin{aligned}
\mathrm{L}^{2}(\Omega) \ni h & =\operatorname{curl} E_{\mathrm{c}} \oplus H_{\mathrm{d}} \\
\text { curl } E_{\mathrm{c}} & \in \operatorname{curl} \stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega) \\
H_{\mathrm{d}} & \in \mathrm{H}\left(\text { curl }_{0} ; \Omega\right)
\end{aligned}
\]

\section*{Proofs (Helmholtz Decomposition)}
main tools: standard techniques and Helmholtz decomposition
\(\tilde{H}\) approximation of \(\mu H=\operatorname{curl} E, h:=\mu H-\tilde{H}\) error simplicity \(\varepsilon=\mu=\mathrm{id}\)
\[
\begin{aligned}
\mathrm{L}^{2}(\Omega) \ni h & =\operatorname{curl} E_{\mathrm{c}} \oplus H_{\mathrm{d}} \\
\text { curl } E_{\mathrm{c}} & \in \operatorname{curl} \stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega) \\
H_{\mathrm{d}} & \in \mathrm{H}\left(\text { curl }_{0} ; \Omega\right)
\end{aligned}
\]

\section*{Proofs (Helmholtz Decomposition)}
main tools: standard techniques and Helmholtz decomposition
\(\tilde{H}\) approximation of \(\mu H=\operatorname{curl} E, h:=\mu H-\tilde{H}\) error simplicity \(\varepsilon=\mu=\mathrm{id}\)
\[
\begin{aligned}
\mathrm{L}^{2}(\Omega) \ni h & =\operatorname{curl} E_{\mathrm{c}} \oplus H_{\mathrm{d}} \\
\operatorname{curl} E_{\mathrm{c}} & \in \operatorname{curl} \stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega) \\
H_{\mathrm{d}} & \in \mathrm{H}\left(\operatorname{curl}_{0} ; \Omega\right)
\end{aligned}
\]
recall \(\mathbb{H}=H(\) curl \(; \Omega) \cap H\left(\operatorname{div}_{0} ; \Omega\right) \cap \mathcal{H}(\Omega)^{\perp}\) curl \(E_{c} \quad\) regular/conforming error \(H_{d}\) non-conforming error (bounclary error) orthogonality \(\Rightarrow\|h\|_{\mathrm{L}^{2}(\Omega)}^{2}=\|\) curl \(E_{\mathrm{c}}\left\|_{\mathrm{L}^{2}(\Omega)}^{2}+\right\| H_{d} \|_{\mathrm{L}^{2}(\Omega)}^{2}\)

\section*{Proofs (Helmholtz Decomposition)}
main tools: standard techniques and Helmholtz decomposition
\(\tilde{H}\) approximation of \(\mu H=\operatorname{curl} E, h:=\mu H-\tilde{H}\) error simplicity \(\varepsilon=\mu=\mathrm{id}\)
\[
\begin{aligned}
\mathrm{L}^{2}(\Omega) \ni h & =\operatorname{curl} E_{\mathrm{c}} \oplus H_{\mathrm{d}} \\
\text { curl } E_{\mathrm{c}} & \in \operatorname{curl} \stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega)=\operatorname{curl} \mathbb{H} \\
H_{\mathrm{d}} & \in \mathrm{H}\left(\operatorname{curl}_{0} ; \Omega\right) \\
\text { recall } \mathbb{H} & =\stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega) \cap \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right) \cap \mathcal{H}(\Omega)^{\perp}
\end{aligned}
\]
curl \(E_{c} \quad\) regular/conforming error
\(H_{\mathrm{d}}\) non-conforming error (boundary error)
orthogonality \(\Rightarrow\left\|h_{L^{2}(\Omega)}^{\|^{2}}=\right\| \operatorname{curl} E_{C}\left\|_{L^{2}(\Omega)}^{2}+\right\| \boldsymbol{H}_{\mathrm{d}} \|_{L^{2}(\Omega)}^{2}\)

\section*{Proofs (Helmholtz Decomposition)}
main tools: standard techniques and Helmholtz decomposition
\(\tilde{H}\) approximation of \(\mu H=\operatorname{curl} E, h:=\mu H-\tilde{H}\) error simplicity \(\varepsilon=\mu=\mathrm{id}\)
\[
\begin{aligned}
\mathrm{L}^{2}(\Omega) \ni h & =\operatorname{curl} E_{\mathrm{c}} \oplus H_{\mathrm{d}} \\
\text { curl } E_{\mathrm{c}} & \in \operatorname{curl} \stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega)=\operatorname{curl} \mathbb{H} \\
H_{\mathrm{d}} & \in \mathrm{H}\left(\operatorname{curl}_{0} ; \Omega\right) \\
\text { recall } \mathbb{H} & =\stackrel{\circ}{\mathrm{H}}(\text { curl } ; \Omega) \cap \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right) \cap \mathcal{H}(\Omega)^{\perp} \\
\text { curl } E_{\mathrm{c}} \quad & \text { regular/conforming error }
\end{aligned}
\]
orthogonality \(\Rightarrow\|h\|_{\mathrm{L}^{2}(\Omega)}^{2}=\|\) curl \(E_{\mathrm{c}}\left\|_{\mathrm{L}^{2}(\Omega)}^{2}+\right\| H_{\mathrm{d}} \|_{\mathrm{L}^{2}(\Omega)}^{2}\)

\section*{Proofs (Helmholtz Decomposition)}
main tools: standard techniques and Helmholtz decomposition
\(\tilde{H}\) approximation of \(\mu H=\operatorname{curl} E, h:=\mu H-\tilde{H}\) error simplicity \(\varepsilon=\mu=\mathrm{id}\)
\[
\begin{gathered}
\qquad \begin{aligned}
\mathrm{L}^{2}(\Omega) \ni h & =\operatorname{curl} E_{\mathrm{c}} \oplus H_{\mathrm{d}} \\
\operatorname{curl} E_{\mathrm{c}} & \in \operatorname{curl} \stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega)=\operatorname{curl} \mathbb{H} \\
H_{\mathrm{d}} & \in \mathrm{H}\left(\operatorname{curl}_{0} ; \Omega\right) \\
\text { recall } \mathbb{H} & =\stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega) \cap \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right) \cap \mathcal{H}(\Omega)^{\perp} \\
\operatorname{curl} E_{\mathrm{c}} & \text { regular/conforming error } \\
H_{\mathrm{d}} & \text { non-conforming error (boundary error) } \\
\text { orthogonality } \Rightarrow h_{L^{2}(\Omega)}^{2} & =\| \text { curl } E_{\mathrm{c}}\left\|_{L^{2}(\Omega)}^{2}+\right\| H_{\mathrm{d}} \|_{L^{2}(\Omega)}^{2}
\end{aligned}
\end{gathered}
\]

\section*{universitat}

DESSESNRG

\section*{Proofs (Helmholtz Decomposition)}
main tools: standard techniques and Helmholtz decomposition
\(\tilde{H}\) approximation of \(\mu H=\operatorname{curl} E, h:=\mu H-\tilde{H}\) error simplicity \(\varepsilon=\mu=\mathrm{id}\)
\[
\begin{gathered}
\qquad \begin{aligned}
& \mathrm{L}^{2}(\Omega) \ni h=\operatorname{curl} E_{\mathrm{c}} \oplus H_{\mathrm{d}} \\
& \operatorname{curl} E_{\mathrm{c}} \in \operatorname{curl} \stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega)=\operatorname{curl} \mathbb{H} \\
& H_{\mathrm{d}} \in \mathrm{H}\left(\operatorname{curl}_{0} ; \Omega\right) \\
& \text { recall } \quad \mathbb{H}=\stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega) \cap \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right) \cap \mathcal{H}(\Omega)^{\perp} \\
& \operatorname{curl} E_{\mathrm{c}} \text { regular/conforming error } \\
& H_{\mathrm{d}} \quad \text { non-conforming error (boundary error) } \\
& \text { orthogonality } \Rightarrow \quad\|h\|_{\mathrm{L}^{2}(\Omega)}^{2}=\| \text { curl } E_{\mathrm{c}}\left\|_{\mathrm{L}^{2}(\Omega)}^{2}+\right\| H_{\mathrm{d}} \|_{\mathrm{L}^{2}(\Omega)}^{2}
\end{aligned}
\end{gathered}
\]

\section*{Proofs (Upper Bounds)}
recall \(h=H-\tilde{H}=\) curl \(E_{\mathrm{c}} \oplus H_{\mathrm{d}} \in \operatorname{curl} \mathbb{H} \oplus \mathrm{H}\left(\right.\) curl \(\left._{0} ; \Omega\right)\)
standard argument for curl \(E_{c}\) : for all \(\Phi \in \mathbb{H}\)

since \(\langle\text { curl } Y, \Phi\rangle_{L^{2}(\Omega)}=\langle Y, \operatorname{curl} \Phi\rangle_{L^{2}(\Omega)}\) for all \(Y \in \mathrm{H}(\) curl; \(\Omega)\); note \(\mathbb{H} \subset \mathrm{H}(\) curl \(; \Omega)\).
Cauchy-Schwarz and Poincaré-Friedrichs and \(\Phi:=E_{c} \in \mathbb{H} \quad \Rightarrow\)


\section*{Proofs (Upper Bounds)}
recall \(h=H-\tilde{H}=\) curl \(E_{\mathrm{c}} \oplus H_{\mathrm{d}} \in \operatorname{curl} \mathbb{H} \oplus \mathrm{H}\left(\right.\) curl \(\left._{0} ; \Omega\right)\)
standard argument for curl \(E_{\mathrm{c}}\) :

since \(\langle\text { curl } Y, \Phi\rangle_{L^{2}(\Omega)}=\langle Y, \operatorname{curl} \Phi\rangle_{L^{2}(\Omega)}\) for all \(Y \in \mathrm{H}(\) curl; \(\Omega)\); note \(\mathbb{H} \subset \mathrm{H}(\) curl \(; \Omega)\).
Cauchy-Schwarz and Poincaré-Friedrichs and \(\Phi:=E_{c} \in \mathbb{H} \quad \Rightarrow\)


\section*{Proofs (Upper Bounds)}
recall \(h=H-\tilde{H}=\) curl \(E_{\mathrm{c}} \oplus H_{\mathrm{d}} \in \operatorname{curl} \mathbb{H} \oplus \mathrm{H}\left(\right.\) curl \(\left._{0} ; \Omega\right)\)
standard argument for curl \(E_{\mathrm{c}}\) : for all \(\Phi \in \mathbb{H}\)
\[
\left\langle\operatorname{curl} E_{\mathrm{c}}, \operatorname{curl} \Phi\right\rangle_{\mathrm{L}^{2}(\Omega)}=\langle h, \operatorname{curl} \Phi\rangle_{L^{2}(\Omega)} \quad\left(H_{d} \perp \operatorname{curl} \Phi\right)
\]

since \(\langle\text { curl } Y, \Phi\rangle_{L^{2}(\Omega)}=\langle Y, \operatorname{curl} \Phi\rangle_{L^{2}(\Omega)}\) for all \(Y \in \mathrm{H}(\) curl \(; \Omega)\); note \(\mathbb{H} \subset \mathrm{H}(\) curl \(; \Omega)\)
Cauchy-Schwarz and Poincaré-Friedrichs and \(\Phi:=E_{c} \in \mathbb{H} \quad \Rightarrow\)


\section*{Proofs (Upper Bounds)}
recall \(h=H-\tilde{H}=\) curl \(E_{\mathrm{c}} \oplus H_{\mathrm{d}} \in \operatorname{curl} \mathbb{H} \oplus \mathrm{H}\left(\right.\) curl \(\left._{0} ; \Omega\right)\)
standard argument for curl \(E_{\mathrm{c}}\) : for all \(\Phi \in \mathbb{H}\)
\[
\left\langle\operatorname{curl} E_{\mathrm{c}}, \operatorname{curl} \Phi\right\rangle_{\mathrm{L}^{2}(\Omega)}=\langle h, \operatorname{curl} \Phi\rangle_{\mathrm{L}^{2}(\Omega)} \quad\left(H_{\mathrm{d}} \perp \operatorname{curl} \Phi\right)
\]

since \(\langle\text { curl } Y, \Phi\rangle_{L^{2}(\Omega)}=\langle Y, \operatorname{curl} \Phi\rangle_{L^{2}(\Omega)}\) for all \(Y \in \mathrm{H}(\) curl \(; \Omega)\); note \(\mathbb{H} \subset \mathrm{H}(\) curl \(; \Omega)\).
Cauchy-Schwarz and Poincaré-Friedrichs and \(\Phi:=E_{c} \in \mathbb{H} \quad \Rightarrow\)


\section*{Proofs (Upper Bounds)}
recall \(h=H-\tilde{H}=\) curl \(E_{\mathrm{c}} \oplus H_{\mathrm{d}} \in \operatorname{curl} \mathbb{H} \oplus \mathrm{H}\left(\right.\) curl \(\left._{0} ; \Omega\right)\)
standard argument for curl \(E_{\mathrm{c}}\) : for all \(\Phi \in \mathbb{H}\)
\[
\begin{aligned}
\left\langle\operatorname{curl} E_{\mathrm{c}}, \operatorname{curl} \Phi\right\rangle_{\mathrm{L}^{2}(\Omega)} & =\langle h, \operatorname{curl} \Phi\rangle_{\mathrm{L}^{2}(\Omega)} \quad\left(H_{\mathrm{d}} \perp \operatorname{curl} \Phi\right) \\
& =\langle F, \Phi\rangle_{\mathrm{L}^{2}(\Omega)}-\langle\tilde{H}, \operatorname{curl} \Phi\rangle_{\mathrm{L}^{2}(\Omega)}
\end{aligned}
\]

since \(\langle\text { curl } Y, \Phi\rangle_{L^{2}(\Omega)}=\langle Y, \operatorname{curl} \Phi\rangle_{L^{2}(\Omega)}\) for all \(Y \in H(\operatorname{curl} ; \Omega)\); note \(\mathbb{H} \subset H(\) curl \(; \Omega)\).
Cauchy Schwarz and Poincaré Friedrichs and \(\infty:=E_{\mathrm{c}} \in \mathbb{H} \quad \rightarrow\)
\(\left\|\operatorname{curl} E_{c}\right\|_{L^{2}(\Omega)} \leq c_{\text {PF }}\|F-\operatorname{curl} Y\|_{L^{2}(\Omega)}+\|\tilde{H}-Y\|_{L^{2}(\Omega)}=M_{+}(\tilde{H} ; Y, \operatorname{curl} Y)\)

\section*{Proofs (Upper Bounds)}
recall \(h=H-\tilde{H}=\) curl \(E_{\mathrm{c}} \oplus H_{\mathrm{d}} \in \operatorname{curl} \mathbb{H} \oplus \mathrm{H}\left(\right.\) curl \(\left._{0} ; \Omega\right)\)
standard argument for curl \(E_{\mathrm{c}}\) : for all \(\Phi \in \mathbb{H}\)
\[
\begin{aligned}
\left\langle\operatorname{curl} E_{\mathrm{c}}, \operatorname{curl} \Phi\right\rangle_{\mathrm{L}^{2}(\Omega)} & =\langle h, \operatorname{curl} \Phi\rangle_{\mathrm{L}^{2}(\Omega)} \quad\left(H_{\mathrm{d}} \perp \operatorname{curl} \Phi\right) \\
& =\langle F, \Phi\rangle_{\mathrm{L}^{2}(\Omega)}-\langle\tilde{H}, \operatorname{curl} \Phi\rangle_{\mathrm{L}^{2}(\Omega)} \\
& =\langle F-\operatorname{curl} Y, \Phi\rangle_{\mathrm{L}^{2}(\Omega)}-\langle\tilde{H}-Y, \operatorname{curl} \Phi\rangle_{\mathrm{L}^{2}(\Omega)}
\end{aligned}
\]
since \(\langle\text { curl } Y, \Phi\rangle_{L^{2}(\Omega)}=\langle Y, \operatorname{curl} \Phi\rangle_{L^{2}(\Omega)}\) for all \(Y \in \mathrm{H}(\) curl \(; \Omega) ;\) note \(\mathbb{H} \subset \stackrel{\circ}{\mathrm{H}}(\) curl \(; \Omega)\).
Cauchy-Schwarz and Poincaré-Friedrichs and \(\Phi:=E_{c} \in \mathbb{H} \quad \Rightarrow\)
\[
\| \text { curl } E_{\mathrm{c}}\left\|_{L^{2}(\Omega)} \leq c_{\mathrm{PF}}\right\| F-\operatorname{curl} Y\left\|_{L^{2}(\Omega)}+\right\| \tilde{H}-Y \|_{L^{2}(\Omega)}=M_{+}(\tilde{H} ; Y, \text { curl } Y)
\]

\section*{universitat}


\section*{Proofs (Upper Bounds)}
recall \(h=H-\tilde{H}=\) curl \(E_{\mathrm{c}} \oplus H_{\mathrm{d}} \in \operatorname{curl} \mathbb{H} \oplus \mathrm{H}\left(\right.\) curl \(\left._{0} ; \Omega\right)\)
standard argument for curl \(E_{\mathrm{c}}\) : for all \(\Phi \in \mathbb{H}\)
\[
\begin{aligned}
\left\langle\operatorname{curl} E_{\mathrm{c}}, \operatorname{curl} \Phi\right\rangle_{\mathrm{L}^{2}(\Omega)} & =\langle h, \operatorname{curl} \Phi\rangle_{\mathrm{L}^{2}(\Omega)} \quad\left(H_{\mathrm{d}} \perp \operatorname{curl} \Phi\right) \\
& =\langle F, \Phi\rangle_{\mathrm{L}^{2}(\Omega)}-\langle\tilde{H}, \operatorname{curl} \Phi\rangle_{\mathrm{L}^{2}(\Omega)} \\
& =\langle F-\operatorname{curl} Y, \Phi\rangle_{\mathrm{L}^{2}(\Omega)}-\langle\tilde{H}-Y, \operatorname{curl} \Phi\rangle_{\mathrm{L}^{2}(\Omega)}
\end{aligned}
\]
since \(\langle\text { curl } Y, \Phi\rangle_{L^{2}(\Omega)}=\langle Y, \operatorname{curl} \Phi\rangle_{L^{2}(\Omega)}\) for all \(Y \in \mathrm{H}(\) curl \(; \Omega)\); note \(\mathbb{H} \subset \stackrel{\circ}{\mathrm{H}}(\) curl \(; \Omega)\).
Cauchy-Schwarz and Poincaré-Friedrichs and \(\Phi:=E_{c} \in \mathbb{H} \quad \Rightarrow\)
\[
\left\|\operatorname{curl} E_{\mathrm{c}}\right\|_{\mathrm{L}^{2}(\Omega)} \leq c_{\mathrm{PF}}\|F-\operatorname{curl} Y\|_{\mathrm{L}^{2}(\Omega)}+\|\tilde{H}-Y\|_{\mathrm{L}^{2}(\Omega)}=M_{+}(\tilde{H} ; Y, \operatorname{curl} Y)
\]

\section*{Proofs (Upper Bounds Continued)}
recall \(h=H-\tilde{H}=\operatorname{curl} E_{\mathrm{c}} \oplus H_{\mathrm{d}} \in \operatorname{curl} \mathbb{H} \oplus \mathrm{H}\left(\right.\) curl \(\left._{0} ; \Omega\right)\)
argument for \(H_{d}\) : for all \(\psi \in H(\) curlo; \(\Omega)\)

\(\in \mathrm{H}(\) curl \(; \Omega)\)
for all \(X \in \mathrm{H}(\) curl \(; \Omega)\) with \(\tau X=G\).
Cauchy-Schwarz and \(\psi:=H_{d} \Rightarrow\)
\[
\left\|H_{\mathrm{d}}\right\|_{\mathrm{L}^{2}(\Omega)} \leq\|\operatorname{curl} X-\tilde{H}\|_{\mathrm{L}^{2}(\Omega)}=m_{+}(\tilde{H} ; \operatorname{curl} X)
\]
\(\Rightarrow\) finally
\[
\left\|h_{L^{2}(\Omega)}^{2}=\right\| \operatorname{cur} \mid E_{c}\left\|_{L^{2}(\Omega)}^{2}+\right\| H_{d} \|_{L^{2}(\Omega)}^{2} \leq M_{+}^{2}(\tilde{H} ; Y, \operatorname{curl} Y)+m^{2}(\tilde{H} ; \operatorname{curl} X)
\]
for all \(Y \in H(\operatorname{curl} ; \Omega)\) and all \(X \in H(\operatorname{curl} ; \Omega)\) with \(\tau X=G\).

if \(\tilde{H}=\operatorname{curl} \tilde{E}\) with \(\tilde{E} \in \mathrm{H}(\operatorname{curl} ; \Omega)\)

(then \(\tau X=G\) )

三

\section*{Proofs (Upper Bounds Continued)}
recall \(h=H-\tilde{H}=\operatorname{curl} E_{\mathrm{c}} \oplus H_{\mathrm{d}} \in \operatorname{curl} \mathbb{H} \oplus \mathrm{H}\left(\right.\) curl \(\left._{0} ; \Omega\right)\)
argument for \(H_{d}\) : for all \(\psi \in H(\) curlo; \(\Omega)\)

\(\in H(\) curl \(; \Omega)\)
for all \(X \in \mathrm{H}(\) curl \(; \Omega)\) with \(\tau X=G\).
Cauchy-Schwarz and \(\psi:=H_{d} \Rightarrow\)
\[
\left\|H_{\mathrm{d}}\right\|_{\mathrm{L}^{2}(\Omega)} \leq\|\operatorname{curl} X-\tilde{H}\|_{\mathrm{L}^{2}(\Omega)}=m_{+}(\tilde{H} ; \operatorname{curl} X)
\]
\(\Rightarrow\) finally
\[
\|h\|_{L^{2}(\Omega)}^{2}=\left\|\operatorname{curl} E_{c}\right\|_{L^{2}(\Omega)}^{2}+\left\|H_{d}\right\|_{L^{2}(\Omega)}^{2} \leq M_{+}^{2}(\tilde{H} ; Y, \operatorname{curl} Y)+m^{2}(\tilde{H} ; \operatorname{curl} X)
\]
for all \(Y \in H(\operatorname{curl} ; \Omega)\) and all \(X \in H(\operatorname{curl} ; \Omega)\) with \(\tau X=G\).

if \(\tilde{H}=\operatorname{curl} \tilde{E}\) with \(\tilde{E} \in \mathrm{H}(\operatorname{curl} ; \Omega)\)

(then \(\tau X=G\) )

\section*{Proofs (Upper Bounds Continued)}
recall \(h=H-\tilde{H}=\operatorname{curl} E_{c} \oplus H_{\mathrm{d}} \in \operatorname{curl} \mathbb{H} \oplus \mathrm{H}\left(\right.\) curl \(\left._{0} ; \Omega\right)\)
argument for \(H_{d}\) : for all \(\Psi \in \mathrm{H}\left(\right.\) curl \(\left._{0} ; \Omega\right)\)
\(\left\langle H_{\mathrm{d}}, \Psi\right\rangle_{\mathrm{L}^{2}(\Omega)}\)

for all \(X \in \mathrm{H}(\) curl \(; \Omega)\) with \(\tau X=G\).
Cauchy-Schmarz and \(\Psi:=H_{a} \quad \Rightarrow\)
\[
\left\|H_{d}\right\|_{L^{2}(\Omega)} \leq\|\operatorname{curl} X-\tilde{H}\|_{L^{2}(\Omega)}=m_{+}(\tilde{H} ; \operatorname{curl} X)
\]
\(\Rightarrow\) finally
\[
\|h\|_{L^{2}(\Omega)}^{2}=\| \text { curl } E_{d}\left\|_{L^{2}(\Omega)}^{2}+\right\| H_{d} \|_{L^{2}(\Omega)}^{2} \leq M_{+}^{2}(\tilde{H} ; Y, \text { curl } Y)+m^{2}(\tilde{H} ; \text { curl } X)
\]
for all \(Y \in H(c u r l ; \Omega)\) and all \(X \in H(\) curl \(; \Omega)\) with \(\tau X=G\).

if \(\tilde{H}=\operatorname{curl} \tilde{E}\) with \(\tilde{E} \in \mathrm{H}(\operatorname{curl} ; \Omega)\)
and we choose \(X:=\tilde{E}-\check{\tau} \tau \tilde{E}+\check{\tau} G \in H(c u r l ; \Omega)\)
wimestrit
(then \(\tau X=G\) )


\section*{Proofs (Upper Bounds Continued)}
recall \(h=H-\tilde{H}=\operatorname{curl} E_{\mathrm{c}} \oplus H_{\mathrm{d}} \in \operatorname{curl} \mathbb{H} \oplus \mathrm{H}\left(\right.\) curl \(\left._{0} ; \Omega\right)\)
argument for \(H_{d}\) : for all \(\Psi \in \mathrm{H}\left(\right.\) curl \(\left._{0} ; \Omega\right)\)
\[
\left\langle H_{\mathrm{d}}, \Psi\right\rangle_{\mathrm{L}^{2}(\Omega)}=\langle\operatorname{curl} X-\tilde{H}, \Psi\rangle_{\mathrm{L}^{2}(\Omega)} \quad(H_{\mathrm{d}}+\tilde{H}-\operatorname{curl} X=\operatorname{curl}(\underbrace{E-X-E_{\mathrm{c}}}_{\in \dot{\mathrm{H}}(\mathrm{curl} ; \Omega)}) \perp \Psi)
\]
for all \(X \in \mathrm{H}(\) curl \(; \Omega)\) with \(\tau X=G\).
Cauchy-Schwarz and \(\psi:=H_{d}\)
\[
\left\|H_{d}\right\|_{L^{2}(\Omega)} \leq\|\operatorname{curl} X-\tilde{H}\|_{L^{2}(\Omega)}=m_{+}(\tilde{H} ; \operatorname{curl} X)
\]
\(\Rightarrow\) finally
\[
\|h\|_{L^{2}(\Omega)}^{2}=\| \text { curl } E_{d}\left\|_{L^{2}(\Omega)}^{2}+\right\| H_{d} \|_{L^{2}(\Omega)}^{2} \leq M_{+}^{2}(\tilde{H} ; Y, \text { curl } Y)+m^{2}(\tilde{H} ; \text { curl } X)
\]
for all \(Y \in H(c u r l ; \Omega)\) and all \(X \in H(c u r l ; \Omega)\) with \(\tau X=G\).
\(\square\) \(m_{+}(\tilde{H} ; \operatorname{curl} X)=\|\operatorname{curl}(X-\tilde{E})\|_{L^{2}(\Omega)}=\|\operatorname{curl} \check{\tau}(G-\tau \tilde{E})\|_{L^{2}(\Omega)} \leq c_{\tau}\|G-\tau \tilde{E}\|\) trace
if \(\tilde{H}=\operatorname{curl} \tilde{E}\) with \(\tilde{E} \in \mathrm{H}(\operatorname{curl} ; \Omega)\)
and we choose \(X:=\tilde{E}-\check{\tau} \tau \tilde{E}+\check{\tau} G \in H(c u r l ; \Omega)\)
UNIVERSITAT
(then \(\tau X=G\) )

\section*{Proofs (Upper Bounds Continued)}
recall \(h=H-\tilde{H}=\operatorname{curl} E_{\mathrm{c}} \oplus H_{\mathrm{d}} \in \operatorname{curl} \mathbb{H} \oplus \mathrm{H}\left(\right.\) curl \(\left._{0} ; \Omega\right)\)
argument for \(H_{d}\) : for all \(\Psi \in \mathrm{H}\left(\right.\) curl \(\left._{0} ; \Omega\right)\)
\[
\left\langle H_{\mathrm{d}}, \Psi\right\rangle_{\mathrm{L}^{2}(\Omega)}=\langle\operatorname{curl} X-\tilde{H}, \Psi\rangle_{\mathrm{L}^{2}(\Omega)} \quad(H_{\mathrm{d}}+\tilde{H}-\operatorname{curl} X=\operatorname{curl}(\underbrace{E-X-E_{\mathrm{c}}}_{\in \mathrm{H}(\mathrm{curl} ; \Omega)}) \perp \Psi)
\]
for all \(X \in \mathrm{H}(\) curl \(; \Omega)\) with \(\tau X=G\).
Cauchy-Schwarz and \(\Psi:=H_{d} \quad \Rightarrow\)
\[
\left\|H_{d}\right\|_{L^{2}(\Omega)} \leq\|\operatorname{curl} X-\tilde{H}\|_{L^{2}(\Omega)}=m_{+}(\tilde{H} ; \operatorname{curl} X)
\]
\(\Rightarrow\) finally
\[
\|h\|_{L^{2}(\Omega)}^{2}=\| \text { curl } E_{d}\left\|_{L^{2}(\Omega)}^{2}+\right\| H_{d} \|_{L^{2}(\Omega)}^{2} \leq M_{+}^{2}(\tilde{H} ; Y, \text { curl } Y)+m^{2}(\tilde{H} ; \text { curl } X)
\]
for all \(Y \in H(c u r l ; \Omega)\) and all \(X \in H(c u r l ; \Omega)\) with \(\tau X=G\)
\(\square\) \(m_{+}(\tilde{H} ; \operatorname{curl} X)=\|\operatorname{curl}(X-\tilde{E})\|_{L^{2}(\Omega)}=\|\operatorname{curl} \check{\tau}(G-\tau \tilde{E})\|_{L^{2}(\Omega)} \leq c_{\tau}\|G-\tau \tilde{E}\|\) trace
if \(\tilde{H}=\) curl \(\tilde{E}\) with \(\tilde{E} \in \mathrm{H}(\) curl \(\Omega)\)
and we choose \(X:=\tilde{E}-\check{\tau} \tau \tilde{E}+\check{\tau} G \in H(\operatorname{curl} ; \Omega)\)
UNIVERSITAT
(then \(\tau X=G\) )

\section*{Proofs (Upper Bounds Continued)}
recall \(h=H-\tilde{H}=\operatorname{curl} E_{\mathrm{c}} \oplus H_{\mathrm{d}} \in \operatorname{curl} \mathbb{H} \oplus \mathrm{H}\left(\right.\) curl \(\left._{0} ; \Omega\right)\)
argument for \(H_{d}\) : for all \(\Psi \in \mathrm{H}\left(\right.\) curl \(\left._{0} ; \Omega\right)\)
\[
\left\langle H_{\mathrm{d}}, \Psi\right\rangle_{\mathrm{L}^{2}(\Omega)}=\langle\operatorname{curl} X-\tilde{H}, \Psi\rangle_{\mathrm{L}^{2}(\Omega)} \quad(H_{\mathrm{d}}+\tilde{H}-\operatorname{curl} X=\operatorname{curl}(\underbrace{E-X-E_{\mathrm{c}}}_{\in \dot{\mathrm{H}}(\mathrm{curl} ; \Omega)}) \perp \Psi)
\]
for all \(X \in \mathrm{H}(\) curl \(; \Omega)\) with \(\tau X=G\).
Cauchy-Schwarz and \(\Psi:=H_{d} \quad \Rightarrow\)
\[
\left\|H_{d}\right\|_{L^{2}(\Omega)} \leq\|\operatorname{curl} X-\tilde{H}\|_{L^{2}(\Omega)}=m_{+}(\tilde{H} ; \operatorname{curl} X)
\]
\(\Rightarrow\) finally
\[
\|h\|_{L^{2}(\Omega)}^{2}=\left\|\operatorname{curl} E_{\mathrm{c}}\right\|_{\mathrm{L}^{2}(\Omega)}^{2}+\left\|H_{d}\right\|_{\mathrm{L}^{2}(\Omega)}^{2} \leq M_{+}^{2}(\tilde{H} ; Y, \operatorname{curl} Y)+m_{+}^{2}(\tilde{H} ; \operatorname{curl} X)
\]
for all \(Y \in \mathrm{H}(\operatorname{curl} ; \Omega)\) and all \(X \in \mathrm{H}(\operatorname{curl} ; \Omega)\) with \(\tau X=G\).

\section*{Proofs (Upper Bounds Continued)}
recall \(h=H-\tilde{H}=\operatorname{curl} E_{\mathrm{c}} \oplus H_{\mathrm{d}} \in \operatorname{curl} \mathbb{H} \oplus \mathrm{H}\left(\right.\) curl \(\left._{0} ; \Omega\right)\)
argument for \(H_{d}\) : for all \(\Psi \in \mathrm{H}\left(\right.\) curl \(\left._{0} ; \Omega\right)\)
\[
\left\langle H_{\mathrm{d}}, \Psi\right\rangle_{\mathrm{L}^{2}(\Omega)}=\langle\operatorname{curl} X-\tilde{H}, \Psi\rangle_{\mathrm{L}^{2}(\Omega)} \quad(H_{\mathrm{d}}+\tilde{H}-\operatorname{curl} X=\operatorname{curl}(\underbrace{E-X-E_{\mathrm{c}}}_{\in \dot{\mathrm{H}}(\mathrm{curl} ; \Omega)}) \perp \Psi)
\]
for all \(X \in \mathrm{H}(\) curl \(; \Omega)\) with \(\tau X=G\).
Cauchy-Schwarz and \(\Psi:=H_{d} \quad \Rightarrow\)
\[
\left\|H_{d}\right\|_{L^{2}(\Omega)} \leq\|\operatorname{curl} X-\tilde{H}\|_{L^{2}(\Omega)}=m_{+}(\tilde{H} ; \operatorname{curl} X)
\]
\(\Rightarrow\) finally
\[
\|h\|_{L^{2}(\Omega)}^{2}=\left\|\operatorname{curl} E_{\mathrm{c}}\right\|_{\mathrm{L}^{2}(\Omega)}^{2}+\left\|H_{d}\right\|_{\mathrm{L}^{2}(\Omega)}^{2} \leq M_{+}^{2}(\tilde{H} ; Y, \operatorname{curl} Y)+m_{+}^{2}(\tilde{H} ; \operatorname{curl} X)
\]
for all \(Y \in \mathrm{H}(\operatorname{curl} ; \Omega)\) and all \(X \in \mathrm{H}(\operatorname{curl} ; \Omega)\) with \(\tau X=G\).
\(\Rightarrow \quad m_{+}(\tilde{H} ; \operatorname{curl} X)=\|\operatorname{curl}(X-\tilde{E})\|_{L^{2}(\Omega)}=\|\operatorname{curl} \check{\tau}(G-\tau \tilde{E})\|_{L^{2}(\Omega)} \leq c_{\tau}\|G-\tau \tilde{E}\|_{\text {trace }}\)
if \(\tilde{H}=\operatorname{curl} \tilde{E}\) with \(\tilde{E} \in \mathrm{H}(\) curl \(; \Omega)\)
and we choose \(X:=\tilde{E}-\check{\tau} \tau \tilde{E}+\check{\tau} G \in \mathrm{H}(\) curl \(; \Omega)\)
(then \(\tau X=G\) )

\section*{Proofs (Lower Bounds)}
recall \(h=H-\tilde{H}=\operatorname{curl} E_{\mathrm{c}} \oplus H_{\mathrm{d}} \in \operatorname{curl} \mathbb{H} \oplus \mathrm{H}\left(\right.\) curl \(\left._{0} ; \Omega\right)\)
standard argument for curl \(E_{c}\) : for all \(X \in \mathrm{H}(\) curl \(; \Omega)\)
\(\left\|\operatorname{cur}\left|E_{C}\left\|_{L^{2}(\Omega)}^{2} \geq 2\langle\operatorname{cur}| E_{C}, \operatorname{cur}|X\rangle_{L^{2}(\Omega)}-\right\| \operatorname{cur}\right| X\right\|_{L^{2}(\Omega)}^{2} \quad\left(H_{d} \perp \operatorname{cur} \mid X\right)\) \(=\langle h, \operatorname{curl} X\rangle_{L^{2}(\Omega)}\)
\(=2\langle F, \Phi\rangle_{L^{2}(\Omega)}-\langle\operatorname{curl} X+2 \tilde{H}, \operatorname{curl} X\rangle_{L^{2}(\Omega)}=M_{-}(\tilde{H} ; X, \operatorname{curl} X)\)
similar for \(H_{d}\) : for all \(Y \in H\left(\right.\) curl \(\left._{0} ; \Omega\right)\) and for all \(Z \in H(\operatorname{curl} ; \Omega)\) with \(\tau Z=G\)

\(=m_{-}(\tilde{H} ; Y, \operatorname{curl} Z)\)

\section*{Proofs (Lower Bounds)}
recall \(h=H-\tilde{H}=\operatorname{curl} E_{\mathrm{c}} \oplus H_{\mathrm{d}} \in \operatorname{curl} \mathbb{H} \oplus \mathrm{H}\left(\right.\) curl \(\left._{0} ; \Omega\right)\)
standard argument for curl \(E_{\mathrm{c}}\) : for all \(X \in H(\) curl \(; \Omega)\)
\(\left\|\operatorname{curl} E_{\mathrm{C}}\right\|_{\mathrm{L}^{2}(\Omega)}^{2} \geq 2\left\langle\operatorname{curl} E_{\mathrm{C}}, \operatorname{curl} X\right\rangle_{\mathrm{L}^{2}(\Omega)}-\|\operatorname{curl} X\|_{L^{2}(\Omega)}^{2} \quad\left(H_{\mathrm{d}} \perp \operatorname{curl} X\right)\)

similar for \(H_{d}:\) for all \(Y \in H\left(\right.\) curl \(\left._{0} ; \Omega\right)\) and for all \(Z \in H(\operatorname{curl} ; \Omega)\) with \(\tau Z=G\)


\section*{Proofs (Lower Bounds)}
recall \(h=H-\tilde{H}=\operatorname{curl} E_{\mathrm{c}} \oplus H_{\mathrm{d}} \in \operatorname{curl} \mathbb{H} \oplus \mathrm{H}\left(\right.\) curl \(\left._{0} ; \Omega\right)\)
standard argument for curl \(E_{\mathrm{c}}\) : for all \(X \in H(\) curl \(; \Omega)\) \(\|\) curl \(E_{c} \|_{L^{2}(\Omega)}^{2} \geq 2\left\langle\text { curl } E_{\mathrm{c}}, \text { curl } X\right\rangle_{L^{2}(\Omega)}-\|\) curl \(X \|_{L^{2}(\Omega)}^{2} \quad\left(H_{d} \perp\right.\) curl \(\left.X\right)\) \(=2\langle F, \Phi\rangle_{L^{2}(\Omega)}-\langle\operatorname{curl} X+2 \tilde{H}, \operatorname{curl} X\rangle_{L^{2}(\Omega)}=M_{-}(\tilde{H} ; X, \operatorname{curl} X)\)
similar for \(H_{d}\) : for all \(\gamma \in H(c u r l o ; \Omega)\) and for all \(Z \in H(c u r i ; \Omega)\) with \(\tau Z=G\)

\(=m_{-}(\tilde{H} ; Y, \operatorname{curl} Z)\)

\section*{Proofs (Lower Bounds)}
recall \(h=H-\tilde{H}=\operatorname{curl} E_{\mathrm{c}} \oplus H_{\mathrm{d}} \in \operatorname{curl} \mathbb{H} \oplus \mathrm{H}\left(\right.\) curl \(\left._{0} ; \Omega\right)\)
standard argument for curl \(E_{c}\) : for all \(X \in \stackrel{\circ}{\mathrm{H}}(\) curl \(; \Omega)\)
\[
\left\|\operatorname{curl} E_{\mathrm{c}}\right\|_{\mathrm{L}^{2}(\Omega)}^{2} \geq 2 \underbrace{\left\langle\operatorname{curl} E_{\mathrm{c}}, \operatorname{curl} X\right\rangle_{\mathrm{L}^{2}(\Omega)}}_{=\langle h, \operatorname{curl} X\rangle_{\mathrm{L}^{2}(\Omega)}}-\|\operatorname{curl} X\|_{\mathrm{L}^{2}(\Omega)}^{2} \quad\left(H_{\mathrm{d}} \perp \operatorname{curl} X\right)
\]

similar for \(H_{d}\) : for all \(Y \in H\left(\right.\) curl \(\left._{0} ; \Omega\right)\) and for all \(Z \in H(\operatorname{curl} ; \Omega)\) with \(\tau Z=G\)

\(=m_{-}(\tilde{H} ; Y, \operatorname{curl} Z)\)
DESSSEBNRG

\section*{Proofs (Lower Bounds)}
recall \(h=H-\tilde{H}=\operatorname{curl} E_{\mathrm{c}} \oplus H_{\mathrm{d}} \in \operatorname{curl} \mathbb{H} \oplus \mathrm{H}\left(\right.\) curl \(\left._{0} ; \Omega\right)\)
standard argument for curl \(E_{\mathrm{c}}\) : for all \(X \in \stackrel{\circ}{\mathrm{H}}(\) curl \(; \Omega)\)
\[
\begin{aligned}
\left\|\operatorname{curl} E_{\mathrm{c}}\right\|_{\mathrm{L}^{2}(\Omega)}^{2} & \geq 2 \underbrace{\left\langle\operatorname{curl} E_{\mathrm{c}}, \operatorname{curl} X\right\rangle_{\mathrm{L}^{2}(\Omega)}}_{=\langle h, \operatorname{curl} X\rangle_{\mathrm{L}^{2}(\Omega)}}-\|\operatorname{curl} X\|_{\mathrm{L}^{2}(\Omega)}^{2} \quad\left(H_{\mathrm{d}} \perp \operatorname{curl} X\right) \\
& =2\langle F, \Phi\rangle_{\mathrm{L}^{2}(\Omega)}-\langle\operatorname{curl} X+2 \tilde{H}, \operatorname{curl} X\rangle_{\mathrm{L}^{2}(\Omega)}=M_{-}(\tilde{H} ; X, \operatorname{curl} X)
\end{aligned}
\]
similar for \(H_{d}\) : for all \(Y \in H(\) curlo; \(\Omega)\) and for all \(Z \in H(c u r l ; \Omega)\) with \(\tau Z=G\)


\section*{Proofs (Lower Bounds)}
recall \(h=H-\tilde{H}=\operatorname{curl} E_{\mathrm{c}} \oplus H_{\mathrm{d}} \in \operatorname{curl} \mathbb{H} \oplus \mathrm{H}\left(\right.\) curl \(\left._{0} ; \Omega\right)\)
standard argument for curl \(E_{\mathrm{c}}\) : for all \(X \in \stackrel{\circ}{\mathrm{H}}(\) curl \(; \Omega)\)
\[
\begin{aligned}
\left\|\operatorname{curl} E_{\mathrm{c}}\right\|_{\mathrm{L}^{2}(\Omega)}^{2} & \geq 2 \underbrace{}_{=\langle h, \operatorname{curl} X\rangle_{\mathrm{L}^{2}(\Omega)}\left\langle\operatorname{curl} E_{\mathrm{c}}, \operatorname{curl} X\right\rangle_{\mathrm{L}^{2}(\Omega)}}-\|\operatorname{curl} X\|_{\mathrm{L}^{2}(\Omega)}^{2} \quad\left(H_{\mathrm{d}} \perp \operatorname{curl} X\right) \\
& =2\langle F, \Phi\rangle_{\mathrm{L}^{2}(\Omega)}-\langle\operatorname{curl} X+2 \tilde{H}, \operatorname{curl} X\rangle_{\mathrm{L}^{2}(\Omega)}=M_{-}(\tilde{H} ; X, \operatorname{curl} X)
\end{aligned}
\]
similar for \(H_{d}\) : for all \(Y \in H(\) curlo; \(\Omega)\) and for all \(Z \in H(\) curl \(; \Omega)\) with \(\tau Z=G\)


\section*{Proofs (Lower Bounds)}
recall \(h=H-\tilde{H}=\operatorname{curl} E_{\mathrm{c}} \oplus H_{\mathrm{d}} \in \operatorname{curl} \mathbb{H} \oplus \mathrm{H}\left(\right.\) curl \(\left._{0} ; \Omega\right)\)
standard argument for curl \(E_{c}\) : for all \(X \in \stackrel{\circ}{\mathrm{H}}(\) curl \(; \Omega)\)
\[
\begin{aligned}
\left\|\operatorname{curl} E_{\mathrm{c}}\right\|_{\mathrm{L}^{2}(\Omega)}^{2} & \geq 2 \underbrace{}_{=\langle h, \operatorname{curl} X\rangle_{\mathrm{L}^{2}(\Omega)}\left\langle\operatorname{curl} E_{\mathrm{c}}, \operatorname{curl} X\right\rangle_{\mathrm{L}^{2}(\Omega)}}-\|\operatorname{curl} X\|_{\mathrm{L}^{2}(\Omega)}^{2} \quad\left(H_{\mathrm{d}} \perp \operatorname{curl} X\right) \\
& =2\langle F, \Phi\rangle_{\mathrm{L}^{2}(\Omega)}-\langle\operatorname{curl} X+2 \tilde{H}, \operatorname{curl} X\rangle_{\mathrm{L}^{2}(\Omega)}=M_{-}(\tilde{H} ; X, \operatorname{curl} X)
\end{aligned}
\]
similar for \(H_{d}\) : for all \(Y \in H(\) curlo; \(\Omega)\) and for all \(Z \in H(\) curl \(; \Omega)\) with \(\tau Z=G\)


\section*{Proofs (Lower Bounds)}
recall \(h=H-\tilde{H}=\operatorname{curl} E_{\mathrm{c}} \oplus H_{\mathrm{d}} \in \operatorname{curl} \mathbb{H} \oplus \mathrm{H}\left(\right.\) curl \(\left._{0} ; \Omega\right)\)
standard argument for curl \(E_{\mathrm{c}}\) : for all \(X \in \stackrel{\circ}{\mathrm{H}}(\) curl \(; \Omega)\)
\[
\begin{aligned}
\left\|\operatorname{curl} E_{\mathrm{c}}\right\|_{\mathrm{L}^{2}(\Omega)}^{2} & \geq 2 \underbrace{\left\langle\operatorname{curl} E_{\mathrm{c}}, \operatorname{curl} X\right\rangle_{\mathrm{L}^{2}(\Omega)}}_{=\langle h, \operatorname{curl} X\rangle_{\mathrm{L}^{2}(\Omega)}}-\|\operatorname{curl} X\|_{\mathrm{L}^{2}(\Omega)}^{2} \quad\left(H_{\mathrm{d}} \perp \operatorname{curl} X\right) \\
& =2\langle F, \Phi\rangle_{\mathrm{L}^{2}(\Omega)}-\langle\operatorname{curl} X+2 \tilde{H}, \operatorname{curl} X\rangle_{\mathrm{L}^{2}(\Omega)}=M_{-}(\tilde{H} ; X, \operatorname{curl} X)
\end{aligned}
\]
similar for \(H_{d}\) : for all \(Y \in \mathrm{H}\left(\operatorname{curl}_{0} ; \Omega\right)\) and for all \(Z \in \mathrm{H}(\) curl \(; \Omega)\) with \(\tau Z=G\)
\[
\left\|H_{d}\right\|_{L^{2}(\Omega)}^{2} \geq 2 \underbrace{\left\langle H_{d}, Y\right\rangle_{L^{2}(\Omega)}}_{=\langle h, Y\rangle_{L^{2}(\Omega)}}-\|Y\|_{L^{2}(\Omega)}^{2}
\]
\[
\text { (curl } E_{c} \perp Y \text { ) }
\]


\section*{Proofs (Lower Bounds)}
recall \(h=H-\tilde{H}=\operatorname{curl} E_{\mathrm{c}} \oplus H_{\mathrm{d}} \in \operatorname{curl} \mathbb{H} \oplus \mathrm{H}\left(\right.\) curl \(\left._{0} ; \Omega\right)\)
standard argument for curl \(E_{\mathrm{c}}\) : for all \(X \in \stackrel{\circ}{\mathrm{H}}(\) curl \(; \Omega)\)
\[
\begin{aligned}
\left\|\operatorname{curl} E_{\mathrm{c}}\right\|_{\mathrm{L}^{2}(\Omega)}^{2} & \geq 2 \underbrace{}_{=\langle h, \operatorname{curl} X\rangle_{\mathrm{L}^{2}(\Omega)}\left\langle\operatorname{curl} E_{\mathrm{c}}, \operatorname{curl} X\right\rangle_{\mathrm{L}^{2}(\Omega)}}-\|\operatorname{curl} X\|_{\mathrm{L}^{2}(\Omega)}^{2} \quad\left(H_{\mathrm{d}} \perp \operatorname{curl} X\right) \\
& =2\langle F, \Phi\rangle_{\mathrm{L}^{2}(\Omega)}-\langle\operatorname{curl} X+2 \tilde{H}, \operatorname{curl} X\rangle_{\mathrm{L}^{2}(\Omega)}=M_{-}(\tilde{H} ; X, \operatorname{curl} X)
\end{aligned}
\]
similar for \(H_{d}\) : for all \(Y \in \mathrm{H}\left(\operatorname{curl}_{0} ; \Omega\right)\) and for all \(Z \in \mathrm{H}(\) curl \(; \Omega)\) with \(\tau Z=G\)
\[
\begin{array}{rlr}
\left\|H_{d}\right\|_{L^{2}(\Omega)}^{2} & \geq 2 \underbrace{}_{=\langle h, Y\rangle_{L^{2}(\Omega)}\left\langle H_{d}, Y\right\rangle_{L^{2}(\Omega)}}-\|Y\|_{L^{2}(\Omega)}^{2} & \quad\left(\operatorname{curl} E_{c} \perp Y\right) \\
& =2\langle\operatorname{curl} Z-\tilde{H}, Y\rangle_{L^{2}(\Omega)}-\|Y\|_{L^{2}(\Omega)}^{2} \quad(\operatorname{curl} \underbrace{(E-Z)}_{\in \dot{H}(\text { curl } ; \Omega)} \perp Y)
\end{array}
\]

\section*{Proofs (Lower Bounds)}
recall \(h=H-\tilde{H}=\operatorname{curl} E_{\mathrm{c}} \oplus H_{\mathrm{d}} \in \operatorname{curl} \mathbb{H} \oplus \mathrm{H}\left(\right.\) curl \(\left._{0} ; \Omega\right)\)
standard argument for curl \(E_{\mathrm{c}}\) : for all \(X \in \stackrel{\circ}{\mathrm{H}}(\) curl \(; \Omega)\)
\[
\begin{aligned}
\left\|\operatorname{curl} E_{\mathrm{c}}\right\|_{\mathrm{L}^{2}(\Omega)}^{2} & \geq 2 \underbrace{}_{=\langle h, \operatorname{curl} X\rangle_{\mathrm{L}^{2}(\Omega)}\left\langle\operatorname{curl} E_{\mathrm{c}}, \operatorname{curl} X\right\rangle_{\mathrm{L}^{2}(\Omega)}}-\|\operatorname{curl} X\|_{\mathrm{L}^{2}(\Omega)}^{2} \quad\left(H_{\mathrm{d}} \perp \operatorname{curl} X\right) \\
& =2\langle F, \Phi\rangle_{\mathrm{L}^{2}(\Omega)}-\langle\operatorname{curl} X+2 \tilde{H}, \operatorname{curl} X\rangle_{\mathrm{L}^{2}(\Omega)}=M_{-}(\tilde{H} ; X, \operatorname{curl} X)
\end{aligned}
\]
similar for \(H_{d}\) : for all \(Y \in \mathrm{H}\left(\right.\) curl \(\left._{0} ; \Omega\right)\) and for all \(Z \in \mathrm{H}(\) curl \(; \Omega)\) with \(\tau Z=G\)
\[
\begin{aligned}
\left\|H_{d}\right\|_{L^{2}(\Omega)}^{2} & \geq 2 \underbrace{\left\langle H_{d}, Y\right\rangle_{L^{2}(\Omega)}}_{=\langle h, Y\rangle_{L^{2}(\Omega)}}-\|Y\|_{L^{2}(\Omega)}^{2} \\
& =2\langle\operatorname{curl} Z-\tilde{H}, Y\rangle_{L^{2}(\Omega)}-\|Y\|_{L^{2}(\Omega)}^{2} \\
& =m_{-}(\tilde{H} ; Y, \operatorname{curl} Z)
\end{aligned}
\]
\[
(\operatorname{curl} \underbrace{(E-Z)}_{\substack{\circ \\ \in(\operatorname{curl} ; \Omega)}} \perp Y)
\]

\section*{Proofs (Lower Bounds Continued)}
\(\Rightarrow\) finally
\[
\|h\|_{\mathrm{L}^{2}(\Omega)}^{2}=\left\|\operatorname{curl} E_{\mathrm{c}}\right\|_{\mathrm{L}^{2}(\Omega)}^{2}+\left\|H_{d}\right\|_{\mathrm{L}^{2}(\Omega)}^{2} \geq M_{-}(\tilde{H} ; X, \operatorname{curl} X)+m_{-}(\tilde{H} ; Y, \operatorname{curl} Z)
\]
for all \(Y \in \mathrm{H}\left(\right.\) curl \(\left._{0} ; \Omega\right)\) and all \(Z \in \mathrm{H}(\operatorname{curl} ; \Omega)\) with \(\tau Z=G\).
if \(\tilde{H}=\operatorname{curl} \tilde{E}\) with \(\tilde{E} \in H(c u r l ; \Omega) \Rightarrow\)


\section*{Proofs (Lower Bounds Continued)}
\(\Rightarrow\) finally
\[
\|h\|_{\mathrm{L}^{2}(\Omega)}^{2}=\left\|\operatorname{curl} E_{\mathrm{c}}\right\|_{\mathrm{L}^{2}(\Omega)}^{2}+\left\|H_{d}\right\|_{\mathrm{L}^{2}(\Omega)}^{2} \geq M_{-}(\tilde{H} ; X, \operatorname{curl} X)+m_{-}(\tilde{H} ; Y, \operatorname{curl} Z)
\]
for all \(Y \in \mathrm{H}\left(\right.\) curl \(\left._{0} ; \Omega\right)\) and all \(Z \in \mathrm{H}(\) curl \(; \Omega)\) with \(\tau Z=G\).
if \(\tilde{H}=\operatorname{curl} \tilde{E}\) with \(\tilde{E} \in \mathrm{H}(\) curl \(; \Omega) \Rightarrow\)
\[
\begin{aligned}
m_{-}(\tilde{H} ; Y, \operatorname{curl} Z)= & 2\langle\operatorname{curl}(Z-\tilde{E}), Y\rangle_{\mathrm{L}^{2}(\Omega)}-\|Y\|_{\mathrm{L}^{2}(\Omega)}^{2} \\
= & 2 \underbrace{\left\langle G-\tau \tilde{E}, \tau_{n} Y\right\rangle_{\text {trace }}}-\|Y\|_{\mathrm{L}^{2}(\Omega)}^{2} \\
& =\int_{\Gamma}(G-\nu \times \tilde{E}) Y "
\end{aligned}
\]

\section*{Remarks}
- \(\Omega\) exterior domain or bounded in one direction

\section*{- differential forms, \(\mathbb{R}^{N}\), Riemannian manifolds}
- hyperbolic problems

\section*{Thank You!}

\section*{Remarks}
- \(\Omega\) exterior domain or bounded in one direction
- differential forms, \(\mathbb{R}^{N}\), Riemannian manifolds
- hyperbolic problems

\section*{Thank You!}

\section*{Remarks}
- \(\Omega\) exterior domain or bounded in one direction
- differential forms, \(\mathbb{R}^{N}\), Riemannian manifolds
- hyperbolic problems

\section*{Thank You!}

\section*{Remarks}
- \(\Omega\) exterior domain or bounded in one direction
- differential forms, \(\mathbb{R}^{N}\), Riemannian manifolds
- hyperbolic problems

\section*{Thank You!}```

