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TWO MAXWELL INEQUALITIES
Q C RS bounded, weak Lipschitz (even weaker possible)

= R(Q)N1otR(Q) — L2(Q) < R(Q)NrotR(Q) < L2(Q)
= Maxwell estimates:
3em >0 VE € R(Q) NrotR(Q) |El 2(q) < Cm| rot El2(q
o
Jdem >0 VHeR(Q)NrotR(Q) |H|L2(Q) < cm| rot H\LZ(Q)

note: best constants

1 - \rotE|L2(Q) 1 - |rotH|L2(Q)
= in _ — = in _
Cm  ozecR@nmotr@) | Eliz@) Cn oHER@NrotR(Q) 1Hl 2 ()
Theorem
o
(i) cm=c¢cm (ii) Qconvex = cm < ¢
Poincaré estimate: d¢p >0 YueH (Q)NR Ul 2(q) < %IVUl 2 (g
1 |VU| 2
best constant: — = inf __r@

n
Cp 0#£ucH! (Q)NRL ‘Ung(Q)
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PROOF OF MAXWELL INEQUALITIES

step one: two lin., cl., dens. def. op. and their reduced op.
A:DA)C X =Y, A : D(A) := D(A) N R(A*) C R(A*) — R(A),
A" DA*) C Y = X, A* : D(A*) := D(A*) N R(A) C R(A) — R(A*)
crucial assumption: D(A) < X (& D(A*) <= Y)
0

gen. Poincaré estimates:

3¢y >0 Vx € D(A) x| < calAx|
Jcar >0 Vy € D(A") ly| < cax|A™y]|
note: best constants
L. A1y A
Ca  0#xeD(A) |x| = cax  O#yeD(A*) |y|

Theorem
Ca = Cpx
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PROOF OF MAXWELL INEQUALITIES
step two: two lin., cl., den. def. op. and their reduced op.

A:DA)C X =Y, A': D(A) := D(A) N R(A*) C R(A*) — R(A),
A" DA*)C Y X, A" :D(A*) = D(A*) N R(A) C R(A) — R(A*)
choose
A:=rot: R(Q) C L2(Q) — LA(Q), rot : R(Q) N1otR(Q) C rotR(R2) — rotR(Q),

* * o o
rot=rot : R(Q) C L2(Q) — L2(Q), rot=rot : R(Q)NrotR(R) C rotR(Q) — rotR(Q)

o o
crucial assumption: R(Q) NrotR(Q) — L2(Q) (& R(Q) NrotR(Q) — L2(Q))
(!
gen. Poincaré estimates (Maxwell estimates):

3em >0 VE € R(Q) NrotR(Q) |El 2(q) < Cm| rot El\2(q
o
Jem >0 VH e R(Q2)NrotR(Q2) |H|L2(Q) < Cm| rot H\LZ(Q)
Theorem
o

Cm = Cm
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PROOF OF MAXWELL INEQUALITIES

step three:

Proposition (integration by parts (Grisvard’s book and older...))
LetQ C R® be piecewise C2. Then for all E € C*®(Q)

i 2 2
|d|vE\L2(Q)+|ro'[E\L2 \VE|L2(Q
L L
:Z/ (dive |Eaf + (V) E) - B) + Z/ (EadivrE, — E, - VEn).
=171 curvature, sign! e=17Te boundary conditions, no sign!

. > 0, if Q convex.

approx. convex 2 from inside by convex and smooth (Qk)x =

Corollary (Gaffney’s inequality)
LetQ C R® be convex and E € I%(Q) ND(Q) orE € R(Q)N B(Q).
Then E € H'(Q) and

2 2
|rotE\ +\d|vE| |VE\L2(Q)20.

L2(Q)
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PROOF OF MAXWELL INEQUALITIES
step_four:
. 7 1 1
(Poincaré) >0 YueH (Q)NR \u|L2(Q) < cp|Vu|L2(Q)
Let © be convex and E & R(R2) N D,y(Q). Note D, () = rot R(R).

Cor. (Gaffney) = E € H'(Q)and E = rot H with H € R(Q).

= EcHY(Q)nR3}LN BO(Q), since (E, a) 5 o) = (rotH, &) 5 = 0forae RS

4
|E|L2(Q) < CP|VE||_2(Q) < CPI rOtE‘LZ(Q)
U
tm < G
O

Theorem
Q convex = gp < ém =ctm <G
Here:

(Poincaré/Friedrichs) 3 gp >0 VueH'(Q) |u|L2(Q) < 3p|Vu|L2(Q)
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MATRICES
Let A € RNxN,
syma_laiany id= Mg A—A-id devA—A—id
skw’' T ( )7 104 : WI7 trA:=A-id, evA:=A—id4s

(pointwise orthogonality) =
1 1
|A? = |devA|2+N\ trA2, |A? = |sym A2+ |skw A2, |symA|? = |devsym A\2+N|trA|2

= |devA|, N~"2|trA|,|sym A|, | skw A] < |A]

QcRVNandA:=Vv:=J] forve H'(Q) = (pointwise)
1
| skw Vv|? = 5| rotv|?, trvv =divv,

1, 1
[Vv|? = |devsym Vv|? + ldv v + é\rotv|2 (1)
Moreover

[VvZ =rotv]? + (Vv,(VVv)T)

, 1
since 2|skav\2=§\V — (V)T = Vv - (Vv,(VV)T).
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KORN’S FIRST INEQUALITY: STANDARD BOUNDARY CONDITIONS

[e]
Lemma (Korn’s first inequality: H-version)
Let Q be an open subset of RN with2 < N € N. Then for all v € HI (Q)

[Vv[]2,  =2|devsym Vv|? 7|dlv v[? < 2|devsymVv|?

L2(Q) L2(Q) L2(Q) L2(Q)

and equality holds if and only ifdivv =0 or N = 2.

Proof.
note: —A = rot*rot—Vdiv (vector Laplacian)

]
= VYveC®(Q) |Vv|ﬁ2(ﬂ) = |rot V‘iz(ﬂ) + | div V|i2(9) (Gaffney’s equality) (2)

(2) extends to all v € H'(Q) by continuity. Then

7N|divv|2

2
2
\VV\LZ = |devsym Vv|? L2(@) W L2(@)

L2y T \V 2

1 1
follows by (1), i.e., [Vv|? = |devsym Vv|? + ldiv v+ 5lrot v|?, and (2). O
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KORN’S FIRST INEQUALITY: TANGENTIAL/NORMAL BOUNDARY CONDITIONS

main result:

Theorem (Korn’s first inequality: tangential/normal version)

LetQ C RN be piecewise C?-concave and v € H{ (Q). Then Korn's first inequality
VV]2(q) < V2| devsym VW2
holds. If Q is a polyhedron, even

2 —
Vv,  =2|devsym Vv|f2(m + —| divv]?, < 2|devsymVv|?

L2(Q) L2(Q) L2(Q)

is true and equality holds if and only ifdivv =0 or N = 2.
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KORN’S FIRST INEQUALITY: TANGENTIAL/NORMAL BOUNDARY CONDITIONS
tools:
Proposition (integration by parts (Grisvard’s book and older...))
LetQ c RN be piecewise C2. Then
| div v\ o T Irot v|L2(Q |vV\ﬁ2 Z/ (dive a2 + (V) 1) - »)
curvature, sign!

+Z/ Vndinthvt Vrvn)
=1

boundary conditions, no sign!

L
|divv]?, +|rotv|L2(Q |vV\f2 Z/ dive [wl? + (V) w) - w).
=1 £

holds for all v € C*(Q) resp. v € C °(Q).

Corollary (Gaffney’s inequalities)
o
LetQ C RN pe piecewise C? and v € H{ (Q). Then

<0 ,ifQ is piecewise C2-concave,
IVviZ, @ =0 - % isapolyhedron,
>0 ,IifQ is piecewise C2-convex.

| rot v||_2(Q + | div v|L2(Q
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KORN’S FIRST INEQUALITY: TANGENTIAL/NORMAL BOUNDARY CONDITIONS

Proof. ]
(1), i.e., |[VV|? = |devsym Vv|? + —|div v|2+§|rotv\2,and the corollary =
IVv[?

< | devsym Vv|? \V | + 7|d|v v|

12(Q) = L2(Q

= first estimate

Q polyhedron = equality holds O
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HOW ONE CANNOT APPLY THE CLOSED GRAPH THEOREM!

generally: compact embedding or regularity + closed graph theorem

= Poincaré type estimate

(hard analysis to do!)

surprisingly: 3 people closed graph / open mapping / bounded inverse theorem

= Poincaré type estimate

(example on next slide)

I THIS IS WRONG !!!
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HOW ONE CANNOT APPLY THE CLOSED GRAPH THEOREM!

4. Our primary goal was to obtain fully explicit lower bounds for K () in terms of simple geometrical information
about ; to ve this completely with our method, we would have to give quantitative estimates on Cy.
Unfortunately, we have been unable to find explicit estimates about C'y in the literature, although it seems
unlikely that nobody has been interested in this problem. Of course, when N = 3 and € is simply conn
estimate (10) is equivalent to

[VullZzi0) < Ca @IV - ullfz@) + IV Aulfa). (13)

ment of Cjy by Cyr + 1. This is an estimate which is well-known to many people, but for
which it seems very difficult to find an accurate reference. Inequality (10) can be seen as a consequence of the
closed graph theorem; for instance, in the case of a simply connected domain, one just needs to note that (i)
|IV2u[|32 + |V - ul|3 is bounded by ||Vu/|?,, (ii) the identities V - u = 0, V*u = 0, u-n = 0 (on the boundary),
together imply u = 0; so in fact the norms appearing on the left and on the right-hand side of (10) have to be
equivalent. The proof of point (ii) is as follows: from Poincaré’s lemma in a simply connected domain, there
exists a real-valued function ¢ such that Vi = u; then 4 is a harmonic function with homogeneous Neumann
boundary condition, so it has to be a constant, and u = 0.

Of course this argument gives no insight on how to estimate the constants. As pointed out to us independently
by Druet and by Serre, one can choose Cy () = 1 if Q is convex, but the general case seems to be much harder.
sue which has nothing to do with axisymmetry; all the relevant information about

up to possible replac

Anyway this is a separate
axisymmetry lies in our estimates on G(Q)~1.

o Cy = Cy(Q) is a constant related to the homology of Q and the Hodge decomposition, defined by the
inequality

V™0l F2 () vy < Cn (HV o7 + HV'}VHiZ(m) 5 (10)

or (almost) equivalently by inequality (13) below. Here V - v stands for the divergence of the vector field
v, Vv =13,00/0z;, and Vy(Q) is the space of all vector fields vy € H* (4 RY) such that

Vv =0, Ve = 0.

We recall that Vy is a finite-dimensional vector space whose dimension depends only on the topology of ;

(copies from original paper...) .

o)
I
u

it
S


Dirk Pauly


Dirk Pauly


Dirk Pauly


Dirk Pauly


Dirk Pauly


Dirk Pauly


Dirk Pauly


Dirk Pauly


Dirk Pauly


Dirk Pauly


Dirk Pauly


Dirk Pauly


Dirk Pauly



	Maxwell inequalities
	two Maxwell inequalities
	proofs

	Korn's first inequalities
	standard homogeneous scalar boundary conditions
	non-standard homogeneous tangential or normal boundary conditions

	references
	disturbing consequences for Villani's work (fields medal)
	citations
	some fun...


