VERFEINERTE PARTIELLE INTEGRATION: AUSWIRKUNGEN AUF DIE KONSTANTEN IN MAXWELL- UND KORN-UNGLEICHUNGEN

CARL VON OSSIETZKY UNIVERSITÄT OLDENBURG

37. NORDWESTDEUTSCHES FUNKTIONALANALYSIS-KOLLOQUIUM GASTGEBER: Andreas Defant, Peter Harmand, Michael Langenbruch

Dirk Pauly Universität Duisburg-Essen

Open-Minded :-)

14. November 2015

OVERVIEW

MAXWELL INEQUALITIES
TWO MAXWELL INEQUALITIES
PROOFS

KORN'S FIRST INEQUALITIES
STANDARD HOMOGENEOUS SCALAR BOUNDARY CONDITIONS
NON-STANDARD HOMOGENEOUS TANGENTIAL OR NORMAL BOUNDARY CONDITIONS

REFERENCES

disturbing consequences for Villani's work (fields medal) citations some fun...

TWO MAXWELL INEQUALITIES

 $\Omega \subset \mathbb{R}^3$ bounded, weak Lipschitz (even weaker possible)

$$\Rightarrow \qquad \overset{\circ}{\mathsf{R}}(\Omega) \cap \mathsf{rot}\,\mathsf{R}(\Omega) \hookrightarrow \mathsf{L}^2(\Omega) \quad \Leftrightarrow \quad \mathsf{R}(\Omega) \cap \mathsf{rot}\,\overset{\circ}{\mathsf{R}}(\Omega) \hookrightarrow \mathsf{L}^2(\Omega)$$

⇒ Maxwell estimates:

$$\begin{split} \exists \stackrel{\circ}{c}_m > 0 & \forall \, \textit{E} \in \stackrel{\circ}{R}(\Omega) \cap \mathsf{rot} \, R(\Omega) & |\textit{E}|_{\mathsf{L}^2(\Omega)} \leq \stackrel{\circ}{c}_m |\, \mathsf{rot} \, \textit{E}|_{\mathsf{L}^2(\Omega)} \\ \exists \, \textit{c}_m > 0 & \forall \, \textit{H} \in \mathsf{R}(\Omega) \cap \mathsf{rot} \, \stackrel{\circ}{R}(\Omega) & |\textit{H}|_{\mathsf{L}^2(\Omega)} \leq \textit{c}_m |\, \mathsf{rot} \, \textit{H}|_{\mathsf{L}^2(\Omega)} \end{split}$$

note: best constants

$$\frac{1}{\overset{\circ}{C}_{m}} = \inf_{0 \neq E \in \overset{\circ}{\mathbf{R}}(\Omega) \cap \mathsf{rot} \, \mathbf{R}(\Omega)} \frac{|\operatorname{rot} E|_{\mathsf{L}^{2}(\Omega)}}{|E|_{\mathsf{L}^{2}(\Omega)}}, \quad \frac{1}{c_{m}} = \inf_{0 \neq H \in \mathbf{R}(\Omega) \cap \mathsf{rot} \, \overset{\circ}{\mathbf{R}}(\Omega)} \frac{|\operatorname{rot} H|_{\mathsf{L}^{2}(\Omega)}}{|H|_{\mathsf{L}^{2}(\Omega)}}$$

Theorem

(i)
$$\overset{\circ}{c}_{\mathsf{m}} = c_{\mathsf{m}}$$

(ii)
$$\Omega$$
 convex $\Rightarrow c_{\mathsf{m}} \leq c_{\mathsf{p}}$

Poincaré estimate:
$$\exists \ c_{\mathsf{p}} > 0 \qquad \forall \ u \in \mathsf{H}^1(\Omega) \cap \mathbb{R}^\perp \qquad |u|_{\mathsf{L}^2(\Omega)} \leq c_{\mathsf{p}} |\nabla u|_{\mathsf{L}^2(\Omega)}$$
 best constant: $\frac{1}{} = \inf \qquad \frac{|\nabla u|_{\mathsf{L}^2(\Omega)}}{|\nabla u|_{\mathsf{L}^2(\Omega)}}$

step one: two lin., cl., dens. def. op. and their reduced op.

$$A: D(A) \subset X \to Y,$$
 $A: D(A) := D(A) \cap R(A^*) \subset R(A^*) \to R(A),$ $A^*: D(A^*) \subset Y \to X.$ $A^*: D(A^*) := D(A^*) \cap R(A) \subset R(A) \to R(A^*)$

crucial assumption: $D(A) \hookrightarrow X \iff D(A^*) \hookrightarrow Y$

1

gen. Poincaré estimates:

$$\exists c_A > 0 \qquad \forall x \in D(A) \qquad |x| \le c_A |Ax|$$

$$\exists c_{A^*} > 0 \qquad \forall y \in D(A^*) \qquad |y| \le c_{A^*} |A^*y|$$

note: best constants

$$\frac{1}{C_{\Delta}} = \inf_{0 \neq x \in D(\mathcal{A})} \frac{|Ax|}{|x|}, \quad \frac{1}{C_{\Delta^*}} = \inf_{0 \neq y \in D(\mathcal{A}^*)} \frac{|A^*y|}{|y|}$$

Theorem

$$c_A = c_{A^*}$$

step two: two lin., cl., den. def. op. and their reduced op.

$$A: D(A) \subset X \to Y,$$
 $A: D(A) := D(A) \cap R(A^*) \subset R(A^*) \to R(A),$ $A^*: D(A^*) \subset Y \to X,$ $A^*: D(A^*) := D(A^*) \cap R(A) \subset R(A) \to R(A^*)$

choose

$$A := \overset{\circ}{\text{rot}} : \overset{\circ}{\mathsf{R}}(\Omega) \subset \mathsf{L}^2(\Omega) \to \mathsf{L}^2(\Omega), \qquad \qquad \overset{\circ}{\textit{rot}} : \overset{\circ}{\mathsf{R}}(\Omega) \cap \mathsf{rot}\,\mathsf{R}(\Omega) \subset \mathsf{rot}\,\mathsf{R}(\Omega) \to \mathsf{rot}\,\overset{\circ}{\mathsf{R}}(\Omega),$$

$$\mathsf{rot} = \overset{\circ}{\mathsf{rot}}^* : \mathsf{R}(\Omega) \subset \mathsf{L}^2(\Omega) \to \mathsf{L}^2(\Omega), \qquad \mathsf{rot} = \overset{\circ}{\textit{rot}}^* : \mathsf{R}(\Omega) \cap \mathsf{rot}\,\overset{\circ}{\mathsf{R}}(\Omega) \subset \mathsf{rot}\,\overset{\circ}{\mathsf{R}}(\Omega) \to \mathsf{rot}\,\mathsf{R}(\Omega)$$

 $\text{crucial assumption:} \ \ \overset{\circ}{\mathsf{R}}(\Omega) \cap \mathsf{rot}\,\mathsf{R}(\Omega) \hookrightarrow \mathsf{L}^2(\Omega) \ (\Leftrightarrow \ \ \mathsf{R}(\Omega) \cap \mathsf{rot}\,\overset{\circ}{\mathsf{R}}(\Omega) \hookrightarrow \mathsf{L}^2(\Omega))$

 $\downarrow \downarrow$

gen. Poincaré estimates (Maxwell estimates):

$$\exists \stackrel{\circ}{c}_{m} > 0 \qquad \forall E \in \stackrel{\circ}{R}(\Omega) \cap \operatorname{rot} R(\Omega) \qquad |E|_{L^{2}(\Omega)} \leq \stackrel{\circ}{c}_{m} |\operatorname{rot} E|_{L^{2}(\Omega)}$$

$$\exists c_{m} > 0 \qquad \forall H \in R(\Omega) \cap \operatorname{rot} \stackrel{\circ}{R}(\Omega) \qquad |H|_{L^{2}(\Omega)} \leq c_{m} |\operatorname{rot} H|_{L^{2}(\Omega)}$$

Theorem

$$C_{\rm m} = c_{\rm m}$$

step three:

Proposition (integration by parts (Grisvard's book and older...)) Let $\Omega \subset \mathbb{R}^3$ be piecewise \mathbb{C}^2 . Then for all $E \in \mathbb{C}^{\infty}(\overline{\Omega})$

$$\begin{split} &|\operatorname{div} E|^2_{L^2(\Omega)} + |\operatorname{rot} E|^2_{L^2(\Omega)} - |\nabla E|^2_{L^2(\Omega)} \\ &= \sum_{\ell=1}^L \int_{\Gamma_\ell} \underbrace{\left(\operatorname{div} \nu \, |E_n|^2 + \left((\nabla \nu)\, E_t\right) \cdot E_t\right)}_{\text{curvature, sign!}} + \sum_{\ell=1}^L \int_{\Gamma_\ell} \underbrace{\left(E_n \, \operatorname{div}_\Gamma E_t - E_t \cdot \nabla_\Gamma E_n\right)}_{\text{boundary conditions, no sign!}}. \end{split}$$

approx. convex Ω from inside by convex and smooth $(\Omega_k)_k$

Corollary (Gaffney's inequality)

Let $\Omega \subset \mathbb{R}^3$ be convex and $E \in \overset{\circ}{\mathsf{R}}(\Omega) \cap \mathsf{D}(\Omega)$ or $E \in \mathsf{R}(\Omega) \cap \overset{\circ}{\mathsf{D}}(\Omega)$. Then $E \in H^1(\Omega)$ and

$$|\operatorname{\mathsf{rot}} E|_{\mathsf{L}^2(\Omega)}^2 + |\operatorname{\mathsf{div}} E|_{\mathsf{L}^2(\Omega)}^2 - |\nabla E|_{\mathsf{L}^2(\Omega)}^2 \geq 0.$$

step four:

$$(\text{Poincar\'e}) \qquad \exists \ \textit{c}_p > 0 \quad \forall \ \textit{u} \in \mathsf{H}^1(\Omega) \cap \mathbb{R}^\perp \qquad |\textit{u}|_{\mathsf{L}^2(\Omega)} \leq \textit{c}_p |\nabla \textit{u}|_{\mathsf{L}^2(\Omega)}$$

Let Ω be convex and $E \in \mathsf{R}(\Omega) \cap \overset{\circ}\mathsf{D}_0(\Omega)$. Note $\overset{\circ}\mathsf{D}_0(\Omega) = \mathsf{rot}\,\overset{\circ}\mathsf{R}(\Omega)$.

Cor. (Gaffney)
$$\Rightarrow$$
 $E \in H^1(\Omega)$ and $E = \operatorname{rot} H$ with $H \in \overset{\circ}{R}(\Omega)$.

$$\Rightarrow \quad E \in \mathsf{H}^1(\Omega) \cap (\mathbb{R}^3)^\perp \cap \overset{\circ}{\mathsf{D}}_0(\Omega), \, \mathsf{since} \, \left\langle E, a \right\rangle_{\mathsf{L}^2(\Omega)} = \left\langle \mathsf{rot} \, H, a \right\rangle_{\mathsf{L}^2(\Omega)} = 0 \, \, \mathsf{for} \, \, a \in \mathbb{R}^3$$

 \Downarrow

$$|E|_{\mathsf{L}^2(\Omega)} \le c_\mathsf{p} |\nabla E|_{\mathsf{L}^2(\Omega)} \le c_\mathsf{p} |\operatorname{rot} E|_{\mathsf{L}^2(\Omega)}$$

 \Downarrow

$$\textit{c}_{\text{m}} \leq \textit{c}_{\text{p}}$$

Theorem

$$\Omega$$
 convex \Rightarrow $\overset{\circ}{c}_{\mathsf{p}} \leq \overset{\circ}{c}_{\mathsf{m}} = c_{\mathsf{m}} \leq c_{\mathsf{p}}$

Here:

$$(\text{Poincar\'e/Friedrichs}) \qquad \exists \stackrel{\circ}{c}_p > 0 \quad \forall \, u \in \stackrel{\circ}{H}^1(\Omega) \qquad |u|_{L^2(\Omega)} \leq \stackrel{\circ}{c}_p |\nabla u|_{L^2(\Omega)}$$

MAXWELL INEQUALITIES

Let
$$A \in \mathbb{R}^{N \times N}$$
.

(pointwise orthogonality) \Rightarrow

$$|A|^2 = |\det A|^2 + \frac{1}{N}|\operatorname{tr} A|^2, \quad |A|^2 = |\operatorname{sym} A|^2 + |\operatorname{skw} A|^2, \quad |\operatorname{sym} A|^2 = |\operatorname{dev} \operatorname{sym} A|^2 + \frac{1}{N}|\operatorname{tr} A|^2$$

$$\Rightarrow |\operatorname{dev} A|, N^{-1/2}|\operatorname{tr} A|, |\operatorname{sym} A|, |\operatorname{skw} A| \leq |A|$$

$$\Omega \subset \mathbb{R}^N$$
 and $A := \nabla v := J_v^\top$ for $v \in \mathsf{H}^1(\Omega) \quad \Rightarrow \quad \text{(pointwise)}$

$$|\operatorname{skw} \nabla v|^2 = \frac{1}{2} |\operatorname{rot} v|^2, \quad \operatorname{tr} \nabla v = \operatorname{div} v,$$

$$|\nabla v|^2 = |\operatorname{dev} \operatorname{sym} \nabla v|^2 + \frac{1}{N} |\operatorname{div} v|^2 + \frac{1}{2} |\operatorname{rot} v|^2$$
 (1)

Moreover

$$|\nabla v|^2 = |\operatorname{rot} v|^2 + \langle \nabla v, (\nabla v)^{\top} \rangle$$

since
$$2|\operatorname{skw} \nabla v|^2 = \frac{1}{2}|\nabla v - (\nabla v)^\top|^2 = |\nabla v|^2 - \langle \nabla v, (\nabla v)^\top \rangle.$$

KORN'S FIRST INEQUALITY: STANDARD BOUNDARY CONDITIONS

Lemma (Korn's first inequality: H1-version)

Let Ω be an open subset of \mathbb{R}^N with $2 \leq N \in \mathbb{N}$. Then for all $v \in \overset{\circ}{H}^1(\Omega)$

$$|\nabla v|_{\mathsf{L}^2(\Omega)}^2 = 2|\operatorname{dev}\operatorname{sym}\nabla v|_{\mathsf{L}^2(\Omega)}^2 + \frac{2-\textit{N}}{\textit{N}}|\operatorname{div}v|_{\mathsf{L}^2(\Omega)}^2 \leq 2|\operatorname{dev}\operatorname{sym}\nabla v|_{\mathsf{L}^2(\Omega)}^2$$

and equality holds if and only if div v = 0 or N = 2.

Proof.

note: $-\Delta = \text{rot}^* \text{ rot } -\nabla \text{ div}$ (vector Laplacian)

$$\Rightarrow \quad \forall \ v \in \overset{\circ}{C}^{\infty}(\Omega) \quad |\nabla v|^2_{L^2(\Omega)} = |\operatorname{rot} v|^2_{L^2(\Omega)} + |\operatorname{div} v|^2_{L^2(\Omega)} \quad \text{(Gaffney's equality)} \quad \text{(2)}$$

(2) extends to all $v \in \overset{\circ}{H}{}^{1}(\Omega)$ by continuity. Then

$$|\nabla \nu|_{\mathsf{L}^2(\Omega)}^2 = |\operatorname{dev}\operatorname{sym}\nabla \nu|_{\mathsf{L}^2(\Omega)}^2 + \frac{1}{2}|\nabla \nu|_{\mathsf{L}^2(\Omega)}^2 + \frac{2-N}{2N}|\operatorname{div}\nu|_{\mathsf{L}^2(\Omega)}^2$$

follows by (1), i.e., $|\nabla v|^2 = |\operatorname{dev} \operatorname{sym} \nabla v|^2 + \frac{1}{N} |\operatorname{div} v|^2 + \frac{1}{2} |\operatorname{rot} v|^2$, and (2).

KORN'S FIRST INEQUALITY: TANGENTIAL/NORMAL BOUNDARY CONDITIONS

main result:

MAXWELL INFOLIALITIES

Theorem (Korn's first inequality: tangential/normal version)

Let $\Omega \subset \mathbb{R}^N$ be piecewise C^2 -concave and $v \in \overset{\circ}{\mathrm{H}}^1_{t,n}(\Omega)$. Then Korn's first inequality

$$|\nabla v|_{\mathsf{L}^2(\Omega)} \leq \sqrt{2} |\operatorname{dev}\operatorname{sym} \nabla v|_{\mathsf{L}^2(\Omega)}$$

holds. If Ω is a polyhedron, even

$$|\nabla v|_{L^2(\Omega)}^2 = 2|\operatorname{dev}\operatorname{sym}\nabla v|_{L^2(\Omega)}^2 + \frac{2-N}{N}|\operatorname{div} v|_{L^2(\Omega)}^2 \leq 2|\operatorname{dev}\operatorname{sym}\nabla v|_{L^2(\Omega)}^2$$

is true and equality holds if and only if div v = 0 or N = 2.

KORN'S FIRST INEQUALITY: TANGENTIAL/NORMAL BOUNDARY CONDITIONS

tools:

Proposition (integration by parts (Grisvard's book and older...))

Let $\Omega \subset \mathbb{R}^N$ be piecewise C^2 . Then

$$\begin{split} |\operatorname{div} v|_{\mathsf{L}^2(\Omega)}^2 + |\operatorname{rot} v|_{\mathsf{L}^2(\Omega)}^2 - |\nabla v|_{\mathsf{L}^2(\Omega)}^2 &= \sum_{\ell=1}^L \int_{\Gamma_\ell} \underbrace{\left(\operatorname{div} \nu \left| v_{\mathsf{n}} \right|^2 + \left(\left(\nabla \nu \right) \mathsf{v}_{\mathsf{1}} \right) \cdot \mathsf{v}_{\mathsf{1}} \right)}_{\text{curvature, sign!}} \\ &+ \sum_{\ell=1}^L \int_{\Gamma_\ell} \underbrace{\left(v_{\mathsf{n}} \operatorname{div}_{\Gamma} \mathsf{v}_{\mathsf{1}} - \mathsf{v}_{\mathsf{1}} \cdot \nabla_{\Gamma} v_{\mathsf{n}} \right)}_{\text{boundary conditions, no sign!}} \\ |\operatorname{div} v|_{\mathsf{L}^2(\Omega)}^2 + |\operatorname{rot} v|_{\mathsf{L}^2(\Omega)}^2 - |\nabla v|_{\mathsf{L}^2(\Omega)}^2 = \sum_{\ell=1}^L \int_{\Gamma_\ell} \left(\operatorname{div} \nu \left| v_{\mathsf{n}} \right|^2 + \left(\left(\nabla \nu \right) \mathsf{v}_{\mathsf{1}} \right) \cdot \mathsf{v}_{\mathsf{1}} \right). \end{split}$$

holds for all $v \in C^{\infty}(\overline{\Omega})$ resp. $v \in \overset{\circ}{C}^{\infty}_{t,n}(\Omega)$.

Corollary (Gaffney's inequalities)

Let $\Omega \subset \mathbb{R}^N$ be piecewise C^2 and $v \in \overset{\circ}{H}^1_{t,n}(\Omega)$. Then

$$|\operatorname{rot} v|_{\mathsf{L}^2(\Omega)}^2 + |\operatorname{div} v|_{\mathsf{L}^2(\Omega)}^2 - |\nabla v|_{\mathsf{L}^2(\Omega)}^2 \begin{cases} \leq 0 & \text{, if } \Omega \text{ is piecewise C^2-concave,} \\ = 0 & \text{, if } \Omega \text{ is a polyhedron,} \\ \geq 0 & \text{, if } \Omega \text{ is piecewise C^2-convex.} \end{cases}$$

KORN'S FIRST INEQUALITY: TANGENTIAL/NORMAL BOUNDARY CONDITIONS

Proof.

MAXWELL INEQUALITIES

(1), i.e.,
$$|\nabla v|^2 = |\operatorname{dev} \operatorname{sym} \nabla v|^2 + \frac{1}{N} |\operatorname{div} v|^2 + \frac{1}{2} |\operatorname{rot} v|^2$$
, and the corollary \Rightarrow

$$|\nabla v|_{\mathsf{L}^2(\Omega)}^2 \leq |\operatorname{dev}\operatorname{sym} \nabla v|_{\mathsf{L}^2(\Omega)}^2 + \frac{1}{2}|\nabla v|_{\mathsf{L}^2(\Omega)}^2 + \frac{2-N}{2N}|\operatorname{div} v|_{\mathsf{L}^2(\Omega)}^2$$

⇒ first estimate

$$\Omega$$
 polyhedron \Rightarrow equality holds

REFERENCES

MAXWELL INEQUALITIES

- Pauly, D.: Zapiski POMI, (2014)
 On Constants in Maxwell Inequalities for Bounded and Convex Domains
- Pauly, D.: Discrete Contin. Dyn. Syst. Ser. S, (2015) On Maxwell's and Poincaré's Constants
- Pauly, D.: Math. Methods Appl. Sci., (2015) On the Maxwell Constants in 3D

- Bauer, S. and Pauly, D.: submitted, (2015)
 On Korn's First Inequality for Tangential or Normal Boundary Conditions with Explicit Constants
- Bauer, S. and Pauly, D.: submitted, (2015)
 On Korn's First Inequality for Tangential or Normal Boundary Conditions

- Desvillettes, L. and Villani, C.: ESAIM Control Optim. Calc. Var., (2002)
 On a variant of Korn's inequality arising in statistical mechanics.
 A tribute to J.L. Lions.
- Desvillettes, L. and Villani, C.: Invent. Math., (2005) On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation

CITATIONS

- Desvillettes, L. and Villani, C.: ESAIM Control Optim. Calc. Var., (2002)
 On a variant of Korn's inequality arising in statistical mechanics.
 A tribute to J.L. Lions.
 - page 607
 - page 608
 - page 609
 - Proposition 5
 - (end of) Theorem 3 (continued)
 - page 609 (closed graph theorem)

- ► Desvillettes, L. and Villani, C.: Invent. Math., (2005)

 On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation
 - page 306

 $\begin{tabular}{ll} ${\tt generally:}$ & {\tt compact embedding} & {\tt or} & {\tt regularity + closed graph theorem} \\ \Rightarrow & {\tt Poincar\'e type estimate} \\ \end{tabular}$

(hard analysis to do!)

<u>surprisingly:</u> ∃ people closed graph / open mapping / bounded inverse theorem⇒ Poincaré type estimate

(example on next slide)

!!! THIS IS WRONG !!!

HOW ONE CANNOT APPLY THE CLOSED GRAPH THEOREM!

4. Our primary goal was to obtain fully explicit lower bounds for K(Ω) in terms of simple geometrical information about Ω; to achieve this completely with our method, we would have to give quantitative estimates on C_H. Unfortunately, we have been unable to find explicit estimates about C_H in the literature, although it seems unlikely that nobody has been interested in this problem. Of course, when N = 3 and Ω is simply connected, estimate (10) is equivalent to

$$\|\nabla u\|_{L^{2}(\Omega)}^{2} \le C_{H}(\Omega)(\|\nabla \cdot u\|_{L^{2}(\Omega)}^{2} + \|\nabla \wedge u\|_{L^{2}(\Omega)}^{2}),$$
 (13)

up to possible replacement of C_H by $C_H + 1$. This is an estimate which is well-known to many people, but for which it seems very difficult to find an accurate reference. Inequality (10) can be seen as a consequence of the closed graph theorem; for instance, in the case of a simply connected domain, one just needs to note that (i) $\|\nabla^{\mathbf{a}} \|_{L^2}^2 + \|\nabla \cdot \mathbf{u}\|_{L^2}^2 + \|\nabla \cdot$

Of course this argument gives no insight on how to estimate the constants. As pointed out to us independently by Druet and by Serre, one can choose $C_H(\Omega) = 1$ if Ω is convex, but the general case seems to be much harder. Anyway this is a separate issue which has nothing to do with axisymmetry; all the relevant information about axisymmetry lies in our estimates on $G(\Omega)^{-1}$.

• $C_H = C_H(\Omega)$ is a constant related to the homology of Ω and the Hodge decomposition, defined by the inequality

$$\|\nabla^{\text{sym}}v\|_{L^{2}(\Omega)/V_{0}(\Omega)}^{2} \le C_{H}\left(\|\nabla \cdot v\|_{L^{2}(\Omega)}^{2} + \|\nabla^{a}v\|_{L^{2}(\Omega)}^{2}\right),$$
 (10)

or (almost) equivalently by inequality (13) below. Here $\nabla \cdot v$ stands for the divergence of the vector field $v, \nabla \cdot v = \sum_i \partial v_i / \partial x_i$, and $V_0(\Omega)$ is the space of all vector fields $v_0 \in H^1(\Omega; \mathbb{R}^N)$ such that

$$\nabla \cdot v_0 = 0, \quad \nabla^a v_0 = 0.$$

We recall that V_0 is a finite-dimensional vector space whose dimension depends only on the topology of Ω :