
Chapter 8
On an Extension of the First Korn
Inequality to Incompatible Tensor Fields
on Domains of Arbitrary Dimensions

Patrizio Neff, Dirk Pauly and Karl-Josef Witsch

Abstract For a bounded domain Ω in RN with Lipschitz boundary Γ = ∂Ω and a
relatively open and non-empty subset Γt of Γ , we prove the existence of a pos-
itive constant c such that inequality c∥T ∥L2(Ω,RN×N ) ≤ ∥ sym T ∥L2(Ω,RN×N ) +
∥ Curl T ∥L2(Ω,RN×N (N−1)/2) holds for all tensor fields T ∈

◦
H(Curl;Γt ,Ω,RN×N ),

this is, for all T : Ω → RN×N which are square-integrable and possess a row-wise
square-integrable rotation tensor field Curl T : Ω → RN×N (N−1)/2 and vanish-
ing row-wise tangential trace on Γt . For compatible tensor fields T = ∇v with
v ∈ H1(Ω,RN ) having vanishing tangential Neumann trace on Γt the inequality
reduces to a non-standard variant of the first Korn inequality since Curl T = 0, while
for skew-symmetric tensor fields T the Poincaré inequality is recovered. If Γt = ∅,
our estimate still holds at least for simply connected Ω and for all tensor fields
T ∈ H(Curl;Ω,RN×N ) which are L2(Ω,RN×N )-perpendicular to so(N ), i.e., to
all skew-symmetric constant tensors.

8.1 Introduction and Main Results

We extend the Korn-type inequalities from [15] presented earlier in less general
settings in [11–14] to the N -dimensional case. For this, let N ∈ N and Ω be a
bounded domain inRN as well as Γt be an open and non-empty subset of its boundary
Γ := ∂Ω . Our main result reads:
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Theorem 8.1 (Main theorem) Let the pair (Ω,Γt ) be admissible.1 There exists a
constant ĉ > 0 such that the inequality

∥T ∥L2(Ω) ≤ ĉ(∥ sym T ∥L2(Ω) + ∥ Curl T ∥L2(Ω))

holds for all tensor fields T ∈
◦
H(Curl;Γt ,Ω). In other words, on

◦
H(Curl;Γt ,Ω)

the right-hand side defines a norm equivalent to the standard norm in H(Curl;Ω).

Remark 8.1 Here, the differential operator Curl denotes the row-wise application
of the standard curl in RN and a tensor field T belongs to the Hilbert Sobolev-type

space
◦
H(Curl;Γt ,Ω) if T and its distributional Curl T belong both to the standard

Lebesgue spaces L2(Ω) and the row-wise weak tangential trace of T vanishes at the
boundary part Γt . Exact definitions of all spaces and operators used will be given in
Sect. 8.2. The constant ĉ is given by (8.8) and depends in a simply algebraic way
only on the constants ck, cm in the first Korn and Maxwell inequality.

For the proof of Theorem 8.1 we follow in close lines the proofs from [15].
Therefore, again we need to combine three crucial tools, namely

• a Maxwell estimate, Corollary 8.6;
• a Helmholtz decomposition, Corollary 8.7;
• a generalized version of the first Korn inequality, Lemma 8.5.

Our assumptions on the domain Ω and the part of the boundary Γt , i.e., on the pair
(Ω,Γt ), are precisely made for this three major tools to hold. We will present these
assumptions in Sect. 8.2 and a pair (Ω,Γt ) satisfying those will be called admissible.

Theorem 8.1 can be looked at as a common generalization and formulation of
two well-known and very important classical inequalities, namely the first Korn and
Poincaré inequality. This is, taking irrotational tensor fields T , i.e., Curl T = 0, then
a non-standard version of the first Korn inequality

∥T ∥L2(Ω) ≤ ĉ∥ sym T ∥L2(Ω)

holds for all T ∈
◦
H(Curl0;Γt ,Ω). Another, less general choice, is T = ∇v yielding

∥∇v∥L2(Ω) ≤ ĉ∥ sym ∇v∥L2(Ω)

with some vector field v belonging to
◦
H1(Γt ;Ω) or just to H1(Ω) with ∇vn , n =

1, . . . , N , normal at Γt . Note that

∇
◦
H1(Γt ;Ω), ∇{v ∈ H1(Ω) | ∇vn normal at Γt ∀n = 1, . . . , N } ⊂

◦
H(Curl0;Γt ,Ω).

1 The precise meaning of ‘admissible’ will be given in Definition 8.5.
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1. Maxwell
|v| ≤ cm(|∇ × v|+ |∇ · v|)

2. Poincaré
|u| ≤ cp|∇u|

3. First Korn
|∇v| ≤ ck| sym∇v|

I. Poincaré-type
|E| ≤ cp,q(|dE|+ |δE|)

II. our new inequality
|T | ≤ ĉ(| symT |+ |CurlT |)

q = 1, N = 3
E ∼= v vector field

d = curl = ∇×, δ = div = ∇·

q = 0
E ∼= u function
d = ∇, δ = 0

T ∈ so(N)
(T skew)

T = ∇v = Jv
(T compatible)

Fig. 8.1 The three fundamental inequalities are implied by two. For the constants we have cp =
cp,0, cm = cp,1 and ck, cp ≤ ĉ

On the other hand, taking a skew-symmetric tensor field T , i.e., sym T = 0, then
the Poincaré inequality in disguise

∥T ∥L2(Ω) ≤ ĉ∥ Curl T ∥L2(Ω)

appears. We note that since T can be identified with a vector field v and the Curl is
as good as the gradient ∇ on v we have

∥v∥L2(Ω) ≤ c∥∇v∥L2(Ω).

These connections between the first Korn and Poincaré inequalities and also to the
Maxwell inequalities and the more general Poincaré-type inequalities are illustrated
in Fig. 8.1.

8.2 Definitions and Preliminaries

As mentioned before, let generally N ∈ N and Ω be a bounded domain in RN as
well as ∅ ̸= Γt be an open subset of the boundary Γ = ∂Ω . We will use the notations
from our earlier papers [11–15].

8.2.1 Differential Forms

In particular, we denote the Lebesgue spaces of square-integrable q-forms2 by
L2,q(Ω). Moreover, we have the standard Sobolev-type spaces for the exterior deriv-
ative d and co-derivative δ := (−1)(q−1)N ∗ d∗ (acting on q-forms)

Dq(Ω) := {E ∈ L2,q(Ω) | dE ∈ L2,q+1(Ω)},
%q(Ω) := {H ∈ L2,q(Ω) | δH ∈ L2,q−1(Ω)},

2 alternating differential forms of rank q ∈ {0, . . . , N }
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where as usual ∗ denotes the Hodge star isomorphism.
◦
C∞,q(Ω) is the space of

smooth and compactly supported q-forms on Ω , often called test space. Due to the
more complex geometry and topology of the domain Ω and its boundary parts Γ ,
Γt we need some more test spaces

◦
C∞,q(Γt ,Ω) :=

{
E ∈ C∞,q(Ω) | dist(supp E,Γt ) > 0

}
,

C∞,q(Ω) :=
{

E |Ω | E ∈
◦
C∞,q(RN )

}
.

Then, we define
◦
Dq(Γt ,Ω) :=

◦
C∞,q(Γt ,Ω)

taking the closure in Dq(Ω) and note that a q-form in
◦
Dq(Γt ,Ω) has generalized

vanishing tangential trace on Γt , which can be seen easily by the Stokes theorem. If

Γt = Γ we can identify
◦
C∞,q(Γt ,Ω) with

◦
C∞,q(Ω) and write

◦
Dq(Γt ,Ω) =

◦
C∞,q(Γt ,Ω) =

◦
C∞,q(Ω) =:

◦
Dq(Ω).

An index 0 at the lower right corner indicates vanishing derivatives, e.g.,

◦
Dq

0(Γt ,Ω) :=
{

E ∈
◦
Dq(Γt ,Ω) | dE = 0

}
.

Analogously, we introduce the corresponding Sobolev-type spaces for the co-
derivative δ which are usually assigned to the boundary complement Γn := Γ \ Γt
of Γt . We have, e.g.,

∆
q
0(Ω) = {H ∈ ∆q(Ω) | δH = 0},

◦
∆q(Γn,Ω),

◦
∆

q
0(Γn,Ω),

where in the latter spaces a vanishing normal trace on Γn is generalized. Moreover,
we define the spaces of so-called ‘harmonic Dirichlet-Neumann forms’

H q(Ω) :=
◦
Dq

0(Γt ,Ω) ∩
◦
∆

q
0(Γn,Ω). (8.1)

We note that in classical terms a harmonic Dirichlet-Neumann q-form E satisfies

dE = 0, δE = 0, ι∗E |Γt = 0, ι∗ ∗ E |Γn = 0,

where ι∗ denotes the pullback of the canonical embedding ι : Γ ↪→ Ω and the
restrictions to Γt and Γn should be understood as pullbacks as well. Equipped with
their natural graph norms all these spaces are Hilbert spaces.

Now, we can begin to introduce our regularity assumptions on the boundary Γ

and the interface γ := Γt ∩ Γn . We start with the following:
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Definition 8.1 The pair (Ω,Γt ) has the ‘Maxwell compactness property’ (MCP),
if for all q the embeddings

◦
Dq(Γt ,Ω) ∩

◦
∆q(Γn,Ω) ↪→ L2(Ω)

are compact.

Remark 8.2 1. There exists a substantial amount of literature and different proofs
for the MCP. See, for example, the papers and books of Costabel, Kuhn, Leis,
Pauly, Picard, Saranen, Weber, Weck, Witsch [2, 7–10, 16–25, 27–31]. All these
papers are concerned with the special cases Γt = Γ resp. Γt = ∅. For the case
N = 3, q = 1, i.e., Ω ⊂ R3, we refer to [2, 8–10, 21, 23, 25, 27–29, 31],
whereas for the general case, i.e., Ω ⊂ RN or even Ω a Riemannian manifold,
we correspond to [7, 16–20, 22, 24, 30]. We note that even weaker regularity
of Γ than Lipschitz is sufficient for the MCP to hold. The first proof of the
MCP for non-smooth domains and even for smooth Riemannian manifolds with
non-smooth boundaries (cone property) was given in 1974 by Weck in [30]. To
the best of our knowledge, the strongest result so far can be found in [25]. See
also our discussion in [15]. An interesting proof has been given by Costabel in
[2]. He made the detour of showing more fractional Sobolev regularity for the
vector fields. More precisely, he was able to prove that for Lipschitz domains
Ω ⊂ R3 and q = 1 the embedding

◦
Dq(Ω) ∩ ∆q(Ω) ↪→ H1/2(Ω) (8.2)

is continuous. Then, for all 0 ≤ k < 1/2 the embeddings

◦
Dq(Ω) ∩ ∆q(Ω) ↪→ Hk(Ω)

are compact, especially for k = 0, where Hk(Ω) = L2(Ω) holds.
2. For the general case ∅ ⊂ Γt ⊂ Γ with possibly ∅ ! Γt ! Γ , Jochmann gave

a proof for the MCP in [5], where he considered the special case of a bounded
domain Ω ⊂ R3. He can admit Ω to be Lipschitz and γ to be a Lipschitz inter-
face. Generalizing the ideas of Weck in [30], Kuhn showed in his dissertation
[6] that the MCP holds for smooth domains Ω ⊂ RN or even for smooth Rie-
mannian manifolds Ω with smooth boundary and admissible interface γ . See
also our discussion in [15].

A result, which meets our needs, has been proved quite recently by M. Mitrea
and his collaborators. More precisely, we will use results by Gol’dshtein and
Mitrea (I. & M.) from [3]. In the language of this paper we assume Ω to be
a weakly Lipschitz domain, this is, Ω is a Lipschitz manifold with boundary,
see [3, Definition 3.6], and Γt ⊂ Γ to be an admissible patch (yielding γ

to be an admissible path), i.e., Γt is a Lipschitz submanifold with boundary,
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see [3, Definition 3.7]. Roughly speaking, Ω and Γt are defined by Lipschitz
functions. Here, the main point in proving the MCP, i.e., [3, Proposition 4.4,
(4.21)], is that then Ω is locally Lipschitz diffeomorphic to a ‘creased domain’
in RN , first introduced by Brown in [1]. See [3, Sect. 3.6] for more details and
to find the statement ‘Informally speaking, the pieces in which the boundary
is partitioned are admissible patches which meet at an angle < π . In particu-
lar, creased domains are inherently non-smooth’. Whereas in [3] everything is
defined in the more general framework of manifolds, in [4] the MCP is proved
by Jakab and Mitrea (I. & M.) for creased domains Ω ⊂ RN . By the Lipschitz
diffeomorphisms, the MCP holds then for general manifolds/domains Ω as well.
In [4] the authors follow and generalize the idea (8.2) of Costabel from [2]. Par-
ticularly, in [4, (1.2), Theorem 1.1, (1.9)] the following regularity result has been
proved: For all q the embeddings

◦
Dq(Γt ,Ω) ∩

◦
∆q(Γn,Ω) ↪→ H1/2(Ω)

are continuous. Therefore, as before, for all q and for all 0 ≤ k < 1/2 the
embeddings

◦
Dq(Γt ,Ω) ∩

◦
∆q(Γn,Ω) ↪→ Hk(Ω)

are compact, giving the MCP for k = 0.
By [3, Proposition 4.4, (4.21)] and Remark 8.2 we have:

Theorem 8.2 Let Ω be a weakly Lipschitz domain and Γt be an admissible patch,
i.e., let Ω be a (weakly) Lipschitz domain and Γt be an Lipschitz patch of Γ . Then
the pair (Ω,Γt ) has the MCP.

Corollary 8.1 Let the pair (Ω,Γt ) have the MCP. Then, for all q the spaces of
harmonic Dirichlet-Neumann forms H q(Ω) are finite dimensional.

Proof The MCP implies immediately that the unit ball in H q(Ω) is compact.

For details about the particular dimensions see [21] or [3]. We note that the
dimensions of H q(Ω) depend only on topological properties of the pair (Ω,Γt ).

Lemma 8.1 (Poincaré-type estimate for differential forms) Let the pair (Ω,Γt )

have the MCP. Then, for all q there exist positive constants cp,q , such that

∥E∥L2,q (Ω) ≤ cp,q
(
∥dE∥2

L2,q+1(Ω)
+ ∥δE∥2

L2,q−1(Ω)

)1/2

holds for all E ∈
◦
Dq(Γt ,Ω) ∩

◦
%q(Γn,Ω) ∩ H q(Ω)⊥. Moreover,

∥∥(
id −πq

)
E

∥∥
L2,q (Ω)

≤ cp,q
(
∥dE∥2

L2,q+1(Ω)
+ ∥δE∥2

L2,q−1(Ω)

)1/2
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holds for all E ∈
◦
Dq(Γt ,Ω)∩

◦
%q(Γn,Ω), where πq : L2,q(Ω) → H q(Ω) denotes

the L2,q(Ω)-orthogonal projection onto the Dirichlet-Neumann forms H q(Ω).

Here and throughout the paper, ⊥ denotes orthogonality in L2,q(Ω).

Proof A standard indirect argument utilizing the MCP yields the desired estimates.

By the Stokes theorem and approximation always

◦
Dq

0(Γt ,Ω) ⊂
(

δ
◦
∆q+1(Γn,Ω)

)⊥
,

◦
∆

q
0(Γn,Ω) ⊂

(
d

◦
Dq−1(Γt ,Ω)

)⊥

hold. Equality in the latter relations is not clear and needs another assumption on the
pair (Ω,Γt ).

Definition 8.2 The pair (Ω,Γt ) has the ‘Maxwell approximation property’ (MAP),
if for all q

◦
Dq

0(Γt ,Ω) =
(

δ
◦
∆q+1(Γn,Ω)

)⊥
,

◦
∆

q
0(Γn,Ω) =

(
d

◦
Dq−1(Γt ,Ω)

)⊥
.

Remark 8.3 By ∗-duality the pair (Ω,Γt )has the MAP, if and only if the pair (Ω,Γn)

has the MAP, i.e., if and only if for all q

◦
Dq

0(Γn,Ω) =
(

δ
◦
%q+1(Γt ,Ω)

)⊥
,

◦
%

q
0(Γt ,Ω) =

(
d

◦
Dq−1(Γn,Ω)

)⊥
.

Remark 8.4 If Γt = Γ or Γt = ∅, the MAP is simply given by the projection
theorem in Hilbert spaces and by the definitions of the respective Sobolev spaces.
For the general case ∅ ⊂ Γt ⊂ Γ with possibly ∅ ! Γt ! Γ , Jochmann proved the
MAP in [5] considering the special case of a bounded domain Ω ⊂ R3. As in Remark
8.2 he needs Ω to be Lipschitz and γ to be a Lipschitz interface. Kuhn showed the
MAP in [6] for smooth domains Ω ⊂ RN or even for smooth Riemannian manifolds
Ω with smooth boundary and admissible interface γ . Again, a sufficient result for
us has been given recently by Gol’dshtein and Mitrea (I. & M.) in [3, Theorem 4.3,
(4.16)]. Like in Remark 8.2, for this Ω has to be a weakly Lipschitz domain and
Γt ⊂ Γ to be an admissible patch.

By [3, Theorem 4.3, (4.16)] and Remark 8.4 we have:

Theorem 8.3 Let Ω be a weakly Lipschitz domain and Γt be an admissible patch,
i.e., let Ω be a (weakly) Lipschitz domain and Γt be an Lipschitz patch of Γ . Then
the pair (Ω,Γt ) has the MAP.

Lemma 8.2 [Hodge-Helmholtz decomposition for differential forms] Let the pair
(Ω,Γt ) have the MAP. Then, the orthogonal decompositions
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L2,q(Ω) = d
◦
Dq−1(Γt ,Ω) ⊕

◦
∆

q
0(Γn,Ω)

=
◦
Dq

0(Γt ,Ω) ⊕ δ
◦
∆q+1(Γn,Ω)

= d
◦
Dq−1(Γt ,Ω) ⊕ H q(Ω) ⊕ δ

◦
∆q+1(Γn,Ω)

hold. If the pair (Ω,Γt ) has additionally the MCP, then

d
◦
Dq−1(Γt ,Ω) = d

( ◦
Dq−1(Γt ,Ω) ∩ δ

◦
∆q(Γn,Ω)

)
=

◦
Dq

0(Γt ,Ω) ∩ H q(Ω)⊥,

δ
◦
∆q+1(Γn,Ω) = δ

( ◦
∆q+1(Γn,Ω) ∩ d

◦
Dq(Γt ,Ω)

)
=

◦
∆

q
0(Γn,Ω) ∩ H q(Ω)⊥

and these are closed subspaces of L2,q(Ω). Moreover, then the orthogonal decom-
positions

L2,q(Ω) = d
◦
Dq−1(Γt ,Ω) ⊕

◦
∆

q
0(Γn,Ω)

=
◦
Dq

0(Γt ,Ω) ⊕ δ
◦
∆q+1(Γn,Ω)

= d
◦
Dq−1(Γt ,Ω) ⊕ H q(Ω) ⊕ δ

◦
∆q+1(Γn,Ω)

hold.

Here,⊕denotes the L2,q(Ω)-orthogonal sum and all closures are taken in L2,q (Ω).

Proof By the projection theorem in Hilbert space and the MAP we obtain immedi-
ately the two L2,q(Ω)-orthogonal decompositions

d
◦
Dq−1(Γt ,Ω) ⊕

◦
∆

q
0(Γn,Ω) = L2,q(Ω) =

◦
Dq

0(Γt ,Ω) ⊕ δ
◦
∆q+1(Γn,Ω),

where the closures are taken in L2,q(Ω). Since

d
◦
Dq−1(Γt ,Ω) ⊂

◦
Dq

0(Γt ,Ω), δ
◦
∆q+1(Γn,Ω) ⊂

◦
∆

q
0(Γn,Ω)

and applying the latter decompositions separately to
◦
∆

q
0(Γn,Ω) or

◦
Dq

0(Γt ,Ω) we
get a refined decomposition, namely

L2,q(Ω) = d
◦
Dq−1(Γt ,Ω) ⊕ H q(Ω) ⊕ δ

◦
∆q+1(Γn,Ω).

Applying this decomposition to
◦
Dq−1(Γt ,Ω) and

◦
∆q+1(Γn,Ω) yields also
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d
◦
Dq−1(Γt ,Ω) = d

( ◦
Dq−1(Γt ,Ω) ∩ δ

◦
∆q(Γn,Ω)

)
,

δ
◦
∆q+1(Γn,Ω) = δ

(
◦
∆q+1(Γn,Ω) ∩ d

◦
Dq(Γt ,Ω)

)

.

Now, Lemma 8.1 shows that d
◦
Dq−1(Γt ,Ω) and δ

◦
%q+1(Γn,Ω) are even closed sub-

spaces of L2,q(Ω). Hence, we obtain the asserted Hodge-Helmholtz decompositions
of L2,q(Ω).

8.2.2 Functions and Vector Fields

We turn to the special case q = 1, the case of vector fields, and use the notations and
identifications from [11, 13–15]. Especially, L2,q(Ω) can be identified with the usual
Lebesgue spaces of square integrable functions or vector fields on Ω with values in
Rn , n := nN ,q :=

(N
q

)
, and will be denoted by L2(Ω) := L2(Ω,Rn). We have the

standard Sobolev spaces

H(grad;Ω) :=
{

u ∈ L2 (Ω,R) | grad u ∈ L2
(
Ω,RN

)}
,

H(div;Ω) :=
{

v ∈ L2
(
Ω,RN

)
| div v ∈ L2(Ω,R)

}
,

H(curl;Ω) :=
{

v ∈ L2
(
Ω,RN

)
| curl v ∈ L2

(
Ω,RN (N−1)/2

)}

and by natural isomorphic identification

D0(Ω) ∼= H(grad;Ω), ∆1(Ω) ∼= H(div;Ω), D1(Ω) ∼= H(curl;Ω).

Generally, Dq(Ω) ∼= ∆N−q(Ω) holds by the Hodge star duality. For v ∈ C∞(Ω)

and N = 3, 4

curl v =

⎡

⎣
∂2v3 − ∂3v2
∂3v1 − ∂1v3
∂1v2 − ∂2v1

⎤

⎦ ∈ R3, curl v =

⎡

⎢⎢⎢⎢⎢⎢⎣

∂1v2 − ∂2v1
∂1v3 − ∂3v1
∂1v4 − ∂4v1
∂2v3 − ∂3v2
∂2v4 − ∂4v2
∂3v4 − ∂4v3

⎤

⎥⎥⎥⎥⎥⎥⎦
∈ R6

hold, whereas curl v = ∂1v2 − ∂2v1 ∈ R or curl v ∈ R10 for N = 2 or N = 5,
respectively (Table 8.1).
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Table 8.1 Identification table for q-forms and vector proxies in R3

q 0 1 2 3

d grad curl div 0
δ 0 div − curl grad
◦
Dq (Γt ,Ω)

◦
H(grad;Γt ,Ω)

◦
H(curl;Γt ,Ω)

◦
H(div;Γt ,Ω) L2(Ω)

◦
%q (Γn,Ω) L2(Ω)

◦
H(div;Γn,Ω)

◦
H(curl;Γn,Ω)

◦
H(grad;Γn,Ω)

ι∗Γt
E E |Γt ν × E |Γt ν · E |Γt 0

!ι∗Γn
∗ E 0 ν · E |Γn −ν × (ν × E)|Γn E |Γn

Moreover, we have the closed subspaces

◦
H(grad;Γt ,Ω),

◦
H(curl;Γt ,Ω),

◦
H(div;Γn,Ω),

in which the homogeneous scalar, tangential and normal boundary conditions

u|Γt = 0, ν × v|Γt = 0, ν · v|Γn = 0

are generalized, as reincarnations of
◦
D0(Γt ,Ω),

◦
D1(Γt ,Ω) and

◦
∆1(Γn,Ω), respec-

tively. Here ν denotes the outer unit normal at Γ . If Γt = Γ (and Γn = ∅) we obtain
the usual Sobolev spaces

◦
H(grad;Ω),

◦
H(curl;Ω), H(div;Ω).

We note that H(grad;Ω) and
◦
H(grad;Ω) coincide with the usual standard Sobolev

spaces H1(Ω) and
◦
H1(Ω), respectively. As before, the index 0, now attached to the

symbols curl or div, indicates vanishing curl or div, e.g.,
◦
H(curl0;Γt ,Ω) =

{
v ∈

◦
H(curl;Γt ,Ω) | curl v = 0

}
,

H(div0;Ω) = {v ∈ H(div;Ω) | div v = 0} .

Finally, we denote the ‘harmonic Dirichlet-Neumann fields’ by

H 1(Ω) ∼= H (Ω) :=
◦
H(curl0;Γt ,Ω) ∩

◦
H(div0;Γn,Ω).

Assuming the MCP for the pair (Ω,Γt ), then H (Ω) is finite dimensional by Corol-
lary 8.1 and we have the two (out of four) compact embeddings



8 On an Extension of the First Korn Inequality to Incompatible Tensor 149

◦
H(grad;Γt ,Ω) ↪→ L2(Ω), (8.3)

◦
H(curl;Γt ,Ω) ∩

◦
H(div;Γn,Ω) ↪→ L2(Ω), (8.4)

i.e., the Rellich selection theorem (q = 0) and the vectorial Maxwell compactness
property (q = 1). Moreover, by Lemma 8.1 we get the following Poincaré and
Maxwell estimates:

Corollary 8.2 [Poincaré estimate for functions] Let the pair (Ω,Γt ) have the MCP
and cp := cp,0. Then

∥u∥L2(Ω) ≤ cp∥ grad u∥L2(Ω)

holds for all u ∈
◦
H(grad;Γt ,Ω).

We note that H 0(Ω) = {0}.

Corollary 8.3 [Maxwell estimate for vector fields] Let the pair (Ω,Γt ) have the
MCP and cm := cp,1. Then

∥v∥L2(Ω) ≤ cm
(
∥ curl v∥2

L2(Ω)
+ ∥ div v∥2

L2(Ω)

)1/2

holds for all v ∈
◦
H(curl;Γt ,Ω) ∩

◦
H(div;Γn,Ω) ∩ H (Ω)⊥ as well as

∥(id −π1)v∥L2(Ω) ≤ cm
(
∥ curl v∥2

L2(Ω)
+ ∥ div v∥2

L2(Ω)

)1/2

holds for all v ∈
◦
H(curl;Γt ,Ω)∩

◦
H(div;Γn,Ω), where again π1 : L2(Ω) → H (Ω)

denotes the L2(Ω)-orthogonal projection onto the Dirichlet-Neumann fields H (Ω).

Lemma 8.2 yields:

Corollary 8.4 [Helmholtz decompositions for vector fields] Let the pair (Ω,Γt )

have the MCP and the MAP.
Then, the orthogonal decompositions

L2(Ω) = grad
◦
H(grad;Γt ,Ω) ⊕

◦
H(div0;Γn,Ω)

=
◦
H(curl0;Γt ,Ω) ⊕

( ◦
H(div0;Γn,Ω) ∩ H (Ω)⊥

)

hold.
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8.2.3 Tensor Fields

Next, we extend our calculus to tensor fields, i.e., matrix fields. For vector fields v
with components in H(grad;Ω) and tensor fields T with rows in H(curl;Ω) resp.
H(div;Ω), i.e.,

v =

⎡

⎢⎣

v1
...

vN

⎤

⎥⎦ , vn ∈ H(grad;Ω), T =

⎡

⎢⎣

T ⊤
1
...

T ⊤
N

⎤

⎥⎦ , Tn ∈ H(curl;Ω) resp. H(div;Ω)

for n = 1, . . . , N we define (in the weak sense)

Grad v :=

⎡

⎢⎣
grad⊤ v1

...

grad⊤ vN

⎤

⎥⎦ = Jv, Curl T :=

⎡

⎢⎣
curl⊤ T1

...

curl⊤ TN

⎤

⎥⎦ , Div T :=

⎡

⎢⎣
div T1

...

div TN

⎤

⎥⎦ ,

where Jv
3 denotes the Jacobian of v and ⊤ the transpose. We note that v and Div T

are N -vector fields, T and Grad v are (N × N )-tensor fields, whereas Curl T is a
(N × N (N − 1)/2)-tensor field. The corresponding Sobolev spaces will be denoted
by

H(Grad;Ω), H(Curl;Ω), H(Curl0;Ω), H(Div;Ω), H(Div0;Ω)

and

◦
H(Grad;Γt ,Ω),

◦
H(Curl;Γt ,Ω),

◦
H(Curl0;Γt ,Ω),

◦
H(Div;Γn,Ω),

◦
H(Div0;Γn,Ω),

again with the usual notations if Γt = Γ .
From Corollaries 8.2, 8.3, and 8.4 we obtain immediately:

Corollary 8.5 [Poincaré estimate for vector fields] Let the pair (Ω,Γt ) have the
MCP. Then

∥v∥L2(Ω) ≤ cp∥ Grad v∥L2(Ω)

holds for all v ∈
◦
H(Grad;Γt ,Ω).

Corollary 8.6 [Maxwell estimate for tensor fields] Let the pair (Ω,Γt ) have the
MCP. Then

∥T ∥L2(Ω) ≤ cm
(
∥ Curl T ∥2

L2(Ω)
+ ∥ Div T ∥2

L2(Ω)

)1/2

holds for all T ∈
◦
H(Curl;Γt ,Ω) ∩

◦
H(Div;Γn,Ω) ∩ (H (Ω)N )⊥ as well as

3 Sometimes, the Jacobian Jv is also denoted by ∇v.
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∥∥∥
(

id −π N
1

)
T

∥∥∥
L2(Ω)

≤ cm
(
∥ Curl T ∥2

L2(Ω)
+ ∥ Div T ∥2

L2(Ω)

)1/2

holds for all T ∈
◦
H(Curl;Γt ,Ω)∩

◦
H(Div;Γn,Ω), where π N

1 : L2(Ω) → H (Ω)N

denotes the L2(Ω)-orthogonal projection onto the (N-times)-Dirichlet-Neumann
fields H (Ω)N .

Corollary 8.7 [Helmholtz decompositions for tensor fields] Let the pair (Ω,Γt )

have the MCP and the MAP.
Then, the orthogonal decompositions

L2(Ω) = Grad
◦
H(Grad;Γt ,Ω) ⊕

◦
H(Div0;Γn,Ω)

=
◦
H(Curl0;Γt ,Ω) ⊕

( ◦
H(Div0;Γn,Ω) ∩ (H (Ω)N )⊥

)

hold.

We also need the first Korn inequality.

Definition 8.3 [Second Korn inequality] The domain Ω has the ‘Korn property’
(KP), if

(i) the second Korn inequality holds, this is, there exists a constant c > 0 such that
for all vector fields v ∈ H(Grad;Ω)

c∥ Grad v∥L2(Ω) ≤ ∥v∥L2(Ω) + ∥ sym Grad v∥L2(Ω),

(ii) and the Rellich selection theorem holds for H(grad;Ω), this is, the embedding
H(grad;Ω) ↪→ L2(Ω) is compact.

Here, we introduce the symmetric and skew-symmetric parts

sym T := 1
2

(
T + T ⊤

)
, skew T := T − sym T = 1

2

(
T − T ⊤

)

of a tensor field T = skew T + sym T .4

Remark 8.5 There exists a rich amount of literature for the KP, which we do not
intend to list here. We refer to our overview on the Korn inequalities in [15].

Theorem 8.4 The second Korn inequality holds for domains Ω having the strict
cone property. For domains Ω with the segment property, the Rellich selection the-
orem for H(grad;Ω) is valid. Thus, e.g., Lipschitz domains Ω possess the KP.

4 Note that sym T and skew T are point-wise orthogonal with respect to the standard inner product
in RN×N .
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Proof Book of Leis [10].

By a standard indirect argument we immediately obtain:

Corollary 8.8 [First Korn inequality: standard version] Let Ω have the KP. Then,
there exists a constant ck,s > 0 such that

(
1 + c2

p

)−1/2
∥v∥H1(Ω) ≤ ∥ Grad v∥L2(Ω) ≤ ck,s∥ sym Grad v∥L2(Ω) (8.5)

holds for all vector fields v ∈
◦
H(Grad;Γt ,Ω).

8.2.4 Sliceable and Admissible Domains

The essential tools to prove our main result Theorem 8.1 are

1. the Maxwell estimate for tensor fields (Corollary 8.6),
2. the Helmholtz decomposition for tensor fields (Corollary 8.7),
3. and a generalized version of the first Korn inequality (Corollary 8.8).

For the first two tools the pair (Ω,Γt ) needs to have the MCP and the MAP. The third
tool will be provided in Lemma 8.5 and needs at least the KP. As already pointed out,
these three properties hold, e.g., for Lipschitz domains Ω and admissible boundary
patches Γt . Moreover, we will make use of the fact that any irrotational vector field
is already a gradient if the underlying domain is simply connected. For this, we
present a trick, the concept of sliceable domains, which we have used already in [15]
(Fig. 8.2).

Definition 8.4 The pair (Ω,Γt ) is called ‘sliceable’, if there exist J ∈ N and Ω j ⊂
Ω , j = 1, . . . , J , such that Ω \ (Ω1 ∪ . . . ∪ ΩJ ) has zero Lebesgue-measure and
for j = 1, . . . , J

(i) Ω j are open, disjoint and simply connected subdomains of Ω having the KP,
(ii) Γt, j := intrel(Ω j ∩ Γt ) ̸= ∅.

Here, intrel denotes the interior with respect to the topology on Γ .

Remark 8.6 From a practical point of view, all domains considered in applications
are sliceable, but it is unclear whether every Lipschitz pair (Ω,Γt ) is already slice-
able.

Now, we can introduce our general assumptions on the domain and its boundary
parts.

Definition 8.5 The pair (Ω,Γt ) is called ‘admissible’, if

(i) the pair (Ω,Γt ) possesses the MCP and the MAP, and
(ii) the pair (Ω,Γt ) is sliceable.
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Fig. 8.2 Some ways to ‘cut’ sliceable domains Ω in R3 and R2 into two (J = 2) or more (J = 3, 4)
‘pieces’. The boundary part Γt is colored in light gray. Roughly speaking, a domain is sliceable
if it can be cut into finitely many simply connected Lipschitz pieces Ω j , i.e., any closed curve
inside some piece Ω j is homotop to a point, this is, one has to cut all ‘handles’. In three and higher
dimensions, holes inside Ω are permitted, but this is forbidden in the two-dimensional case. Note
that, in these examples it is always possible to slice Ω into two (J = 2) pieces

Remark 8.7 In particular, the pair (Ω,Γt ) is admissible if

• Ω has a Lipschitz boundary Γ ,
• Γt is a Lipschitz patch,
• (Ω,Γt ) is sliceable.

8.3 Proofs

Let the pair (Ω,Γt ) be admissible. On our way to prove our main result we follow
in close lines the arguments of [15, Sect. 3]. First we prove a non-standard version
of the first Korn inequality Corollary 8.8, which will be presented as Lemma 8.5.
Then, we prove our main result. Although, all subsequent proofs are very similar to
the ones given in [15, Lemmas 8, 9, 12, Theorem 14], we will repeat them here for
the convenience of the reader.

Lemma 8.3 Let u ∈ H(grad;Ω) with grad u ∈
◦
H(curl0;Γt ,Ω). Then, u is constant

on any connected component of Γt .
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Proof Let x ∈ Γt and B2r := B2r (x) be the open ball of radius 2r > 0 around x such
that B2r is covered by a Lipschitz-chart domain and Γ ∩B2r ⊂ Γt . Moreover, we pick

a cut-off function ϕ ∈
◦
C∞(B2r ) with ϕ|Br = 1. Then, ϕ grad u ∈

◦
H(curl;Ω ∩ B2r ).

Thus, the extension by zero v of ϕ grad u to B2r belongs to H(curl; B2r ). Hence,
v|Br ∈ H(curl0; Br ). Since Br is simply connected, there exists a ũ ∈ H(grad; Br )

with grad ũ = v in Br . In Br \ Ω we have v = 0. Therefore, ũ|Br\Ω = c̃ with some
c̃ ∈ R. Moreover, grad u = v = grad ũ holds in Br ∩ Ω , which yields u = ũ + c
in Br ∩ Ω with some c ∈ R. Finally, u|Br ∩Γt = c̃ + c is constant. Therefore, u is
locally constant and hence the assertion follows.

Lemma 8.4 [First Korn inequality: tangential version] There exists a constant ck,t ≥
ck,s , such that

∥ Grad v∥L2(Ω) ≤ ck,t∥ sym Grad v∥L2(Ω)

holds for all v ∈ H(Grad;Ω) with Grad v ∈
◦
H(Curl0;Γt ,Ω).

In classical terms, Grad v ∈
◦
H(Curl0;Γt ,Ω) means that grad vn = ∇vn , n =

1, . . . , N , are normal at Γt .

Proof We pick a relatively open connected component Γ̃ ̸= ∅ of Γt . Then, there

exists a constant vector cv ∈ R3 such that v − cv belongs to
◦
H(Grad; Γ̃ ,Ω) by

Lemma 8.3 applied to each component of v. Corollary 8.8 (i) (with Γt = Γ̃ and a
possibly larger ck,t ) completes the proof.

Now, we extend the first Korn inequality from gradient to merely irrotational
tensor fields.

Lemma 8.5 (First Korn inequality: irrotational version) There exists ck ≥ ck,t > 0,

such that for all tensor fields T ∈
◦
H(Curl0;Γt ,Ω)

∥T ∥L2(Ω) ≤ ck∥ sym T ∥L2(Ω). (8.6)

Again we note that in classical terms a tensor T ∈
◦
H(Curl0;Γt ,Ω) is irrotational

and the vector field T τ |Γt vanishes for all tangential vector fields τ at Γ . Moreover,
the sliceability of (Ω,Γt ) is precisely needed for Lemma 8.5 to hold.

Proof Let T ∈
◦
H(Curl0;Γt ,Ω). We choose a sequence (T ℓ) ⊂

◦
C∞(Γt ;Ω) con-

verging to T in H(Curl;Ω). According to Definition 8.4 we decompose Ω into
Ω1 ∪ . . . ∪ ΩJ and pick some 1 ≤ j ≤ J . Then, the restriction Tj := T |Ω j belongs

to H(Curl0;Ω j ) and (T ℓ|Ω j
) ⊂

◦
C∞(Γt, j ;Ω) converges to Tj in H(Curl;Ω j ). Thus,

Tj ∈
◦
H(Curl0;Γt, j ,Ω j ). Since Ω j is simply connected, there exists a potential vec-

tor field v j in H(Grad;Ω j ) with Grad v j = Tj and Lemma 8.4 yields
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∥Tj∥L2(Ω j )
≤ ck,t, j∥ sym Tj∥L2(Ω j )

, ck,t, j > 0.

This can be done for each j . Summing up, we obtain

∥T ∥L2(Ω) ≤ ck∥ sym T ∥L2(Ω), ck := max
j=1,...,J

ck,t, j ,

which completes the proof.

We are ready to prove our main theorem.

Proof (Theorem 8.1) Let T ∈
◦
H(Curl;Γt ,Ω). By Corollary 8.7 we have the orthog-

onal decomposition

T = R + S ∈
◦
H(Curl0;Γt ,Ω) ⊕

( ◦
H(Div0;Γn,Ω) ∩ (H (Ω)N )⊥

)
.

Moreover, by Corollary 8.6 we obtain

∥S∥L2(Ω) ≤ cm∥ Curl T ∥L2(Ω) (8.7)

since Curl S = Curl T and S ∈
◦
H(Curl;Γt ,Ω) ∩

◦
H(Div0;Γn,Ω) ∩ (H (Ω)N )⊥.

Then, by orthogonality, Lemma 8.5 (i) for R and (8.7)

∥T ∥2
L2(Ω)

= ∥R∥2
L2(Ω)

+ ∥S∥2
L2(Ω)

≤ c2
k∥ sym R∥2

L2(Ω)
+ ∥S∥2

L2(Ω)

≤ 2c2
k∥ sym T ∥2

L2(Ω)
+

(
1 + 2c2

k

)
∥S∥2

L2(Ω)

≤ ĉ2
(
∥ sym T ∥2

L2(Ω)
+ ∥ Curl T ∥2

L2(Ω)

)

with

ĉ := max
{√

2ck, cm
√

1 + 2c2
k

}
(8.8)

holds.

8.4 One Additional Result

As in [15, Sect. 3.4] we can prove a generalization for media with structural changes.
To apply the main result from [26], letµ ∈ C0(Ω)be a (N×N )-matrix field satisfying
det µ ≥ µ̂ > 0.

Corollary 8.9 Let the pair (Ω,Γt ) be admissible. Then there exists c > 0 such that

c∥T ∥L2(Ω) ≤ ∥ sym(µT )∥L2(Ω) + ∥ Curl T ∥L2(Ω)
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holds for all tensor fields T ∈
◦
H(Curl;Γt ,Ω). In other words, on

◦
H(Curl;Γt ,Ω)

the right-hand side defines a norm equivalent to the standard norm in H(Curl;Ω).

Acknowledgments We heartily thank Kostas Pamfilos for the beautiful pictures of 3D sliceable
domains.

Appendix: Construction of Hodge-Helmholtz Projections

We want to point out how to compute the projections in the Hodge-Helmholtz decom-
positions in Lemma 8.2. Recalling from Lemma 8.2 the orthogonal decompositions

L2,q(Ω) = d
◦
Dq−1(Γt ,Ω) ⊕

◦
%

q
0(Γn,Ω)

=
◦
Dq

0(Γt ,Ω) ⊕ δ
◦
%q+1(Γn,Ω)

= d
◦
Dq−1(Γt ,Ω) ⊕ H q(Ω) ⊕ δ

◦
%q+1(Γn,Ω),

we denote the corresponding L2,q(Ω)-orthogonal projections by πd, πδ and πH .
Then, we have

πH = id −πd − πδ

and

πdL2,q (Ω) = d
◦
Dq−1(Γt ,Ω) = dXq−1(Ω), Xq−1(Ω) :=

◦
Dq−1(Γt ,Ω) ∩ δ

◦
%q (Γn,Ω),

πδL2,q (Ω) = δ
◦
%q+1(Γn,Ω) = δYq+1(Ω), Yq+1(Ω) :=

◦
%q+1(Γn,Ω) ∩ d

◦
Dq (Γt ,Ω),

πH L2,q (Ω) = H q (Ω).

By the Poincaré estimate, i.e., Lemma 8.1, we have

∀E ∈ Xq−1(Ω) ∥E∥L2,q−1(Ω) ≤ cp,q−1∥dE∥L2,q (Ω), (8.9)

∀H ∈ Yq+1(Ω) ∥H∥L2,q+1(Ω) ≤ cp,q+1∥δH∥L2,q (Ω). (8.10)

Hence, the bilinear forms

(
Ẽ, E

)
7→

〈
dẼ, dE

〉

L2,q (Ω)
,

(
H̃ , H

)
7→

〈
δ H̃ , δH

〉

L2,q (Ω)

are continuous and coercive over Xq−1(Ω) and Yq+1(Ω), respectively. Moreover,
for any F ∈ L2,q(Ω) the linear functionals

E 7→ ⟨F, dE⟩L2,q (Ω), H 7→ ⟨F, δH⟩L2,q (Ω)
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are continuous over Xq−1(Ω), respectively Yq+1(Ω). Thus, by the Lax-Milgram
theorem we get unique solutions Ed ∈ Xq−1(Ω) and Hδ ∈ Yq+1(Ω) of the two
variational problems

⟨dEd, dE⟩L2,q (Ω) = ⟨F, dE⟩L2,q (Ω) ∀E ∈ Xq−1(Ω), (8.11)

⟨δHδ, δH⟩L2,q (Ω) = ⟨F, δH⟩L2,q (Ω) ∀H ∈ Yq+1(Ω) (8.12)

and the corresponding solution operators, mapping F to Ed and Hδ , respectively, are
continuous. In fact, we have as usual

∥dEd∥L2,q (Ω) ≤ ∥F∥L2,q (Ω), ∥δHδ∥L2,q (Ω) ≤ ∥F∥L2,q (Ω),

respectively, and therefore together with (8.9) and (8.10)

∥Ed∥Xq−1(Ω) = ∥Ed∥Dq−1(Ω) ≤
√

1 + c2
p,q−1∥F∥L2,q (Ω),

∥Hδ∥Yq+1(Ω) = ∥Hδ∥∆q+1(Ω) ≤
√

1 + c2
p,q+1∥F∥L2,q (Ω).

Since d
◦
Dq−1(Γt ,Ω) = dXq−1(Ω) and δ

◦
∆q+1(Γn,Ω) = δYq+1(Ω) we see that

(8.11) and (8.12) hold also for E ∈
◦
Dq−1(Γt ,Ω) and H ∈

◦
∆q+1(Γn,Ω), respec-

tively, and that

F − dEd ∈
(
dXq−1(Ω)

)⊥ =
(
d

◦
Dq−1(Γt ,Ω)

)⊥ =
◦
∆

q
0(Γn,Ω),

F − δHδ ∈
(
δYq+1(Ω)

)⊥ =
(
δ

◦
∆q+1(Γn,Ω)

)⊥ =
◦
Dq

0(Γt ,Ω).

Hence, we have found our projections since

πd F := dEd ∈ dXq−1(Ω) ⊂
◦
Dq

0(Γt ,Ω),

πδ F := δHδ ∈ δYq+1(Ω) ⊂
◦
∆

q
0(Γn,Ω)

and

πH F := F − dEd − δHδ ∈
◦
Dq

0(Γt ,Ω) ∩
◦
%

q
0(Γn,Ω) = H q(Ω).

Explicit formulas for the dimensions ofH q(Ω) or explicit constructions of bases
of H q(Ω) depending on the topology of the pair (Ω,Γt ) can be found, e.g., in [21]
for the case Γt = Γ or Γt = ∅, or in [3] for the general case.
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