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A POSTERIORI ESTIMATES FOR THE STATIONARY STOKES

PROBLEM IN EXTERIOR DOMAINS

D. PAULY AND S. REPIN

Dedicated to the memory of S. G. Mikhlin

Abstract. This paper is concerned with the analysis of the inf-sup condition aris-
ing in the stationary Stokes problem in exterior domains and applications to the
derivation of computable bounds for the distance between the exact solution of the
exterior Stokes problem and a certain approximation (which may be of a rather gen-
eral form). In the first part, guaranteed bounds are deduced for the constant in the
stability lemma associated with the exterior domain. These bounds depend only on
known constants and the stability constant related to bounded domains that arise
after suitable truncations of the unbounded domains. The lemma in question implies
computable estimates of the distance to the set of divergence free fields defined in
exterior domains. Such estimates are crucial for the derivation of computable majo-
rants of the difference between the exact solution of the Stokes problem in exterior
domains and an approximation from the admissible (energy) class of functions satisfy-
ing the Dirichlet boundary condition but not necessarily divergence free (solenoidal).
Estimates of this type are often called a posteriori estimates of functional type. The
constant in the stability lemma (or equivalently in the inf-sup or LBB condition)
serves as a penalty factor at the term that controls violations of the divergence free
condition. In the last part of the paper, similar estimates are deduced for the distance
to the exact solution for nonconforming approximations, i.e., for those that may vio-
late some continuity and boundary conditions. The case where the dimension of the
domain equals 2 requires a special consideration because the corresponding weighted
spaces differ from those natural for the dimension 3 (or larger). This special case is
briefly discussed at the end of the paper where similar estimates are deduced for the
distance to the exact solution of the exterior Stokes problem.

§1. Introduction

1.1. Notation and nomenclature. Throughout the paper we consider domains in R
d,

d ≥ 2, with Lipschitz boundaries. The symbol ω is used for bounded domains and the
boundary of such a domain is denoted by γ (typically, the latter is composed of two
open and disjoint parts γD and γN associated with the Dirichlet and Neumann parts).
Exterior domains (i.e., those having the form R

d \ω) are denoted by Ω. By the letter D,
we denote domains which may be bounded or unbounded depending on the context (if
this property is not necessary to outline).

For Lebesgue and Sobolev spaces of functions (scalar, vector, or tensor valued) with
generalised square integrable derivatives of the first order we use the standard notation
L2(ω) and H1(ω) (or L2(Ω) and H1(Ω)), respectively. The standard inner product, norm,
and orthogonality in L2(ω) will be denoted by 〈 · , · 〉0,ω, ‖ · ‖0,ω, and ⊥0,ω. If γD 6= ∅,
then the homogeneous Dirichlet boundary conditions are encoded in the space H1

γD
(D),
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which is defined as the closure of compactly supported smooth functions vanishing on
γD in the norm of H1.

Also, for bounded domains we use spaces with vanishing mean values1

L
2
⊥(ω) := L

2(ω) ∩ R
⊥0,ω =

{
φ ∈ L

2(ω) : 〈φ, 1〉0,ω = 0
}
=

{
φ ∈ L

2(ω) :

∫

ω

φ = 0
}
,

H
1
⊥(ω) := H

1(ω) ∩ L
2
⊥(ω) =

{
φ ∈ H

1(ω) :

∫

ω

φ = 0
}
.

To handle the special case of γD = ∅ using a unified notation, we introduce the space

L
2
γD

(ω) :=

{
L2(ω) if γD 6= γ,

L2⊥(ω) if γD = γ,

and for the case where γD = ∅ redefine H1
γD

(ω) by setting

H
1
γD

(ω) = H
1
⊥(ω).

To further unify our definitions and extend them to exterior domains, we consider a
domain (an open and connected set) D ⊂ R

d, d ≥ 2. This domain may be bounded
or unbounded. It has a Lipschitz boundary B, which consists of two relatively open
and disjoint parts BD,BN ⊂ B (such that B = BD ∪ BN ) associated with Dirichlet
and Neumann boundary conditions. As before, we denote the standard Lebesgue and
Sobolev spaces by L

2(D) and H
1(D), respectively. If BD 6= ∅, we introduce homogeneous

Dirichlet boundary conditions in H1
BD

(D) defined as the closure of

C
∞
BD

(D) :=
{
φ|D : u ∈ C

∞(Rd), suppφ is compact, dist(suppφ,BD) > 0
}

in H1(D). As above we utilise the notations L2B(D) = L2⊥(D), L2BD
(D), and H1

∅
(D) =

H1
⊥(D) provided that D is bounded. Next, we introduce polynomially weighted spaces

L
2
±1(D) :=

{
φ ∈ L

2
loc(D) : ρ±1φ ∈ L

2(D)
}
,

H
1
−1(D) :=

{
φ ∈ L

2
−1(D) : ∇φ ∈ L

2(D)
}
,

where the weight function ρ is defined by ρ(r) := (1 + r2)1/2, and r(x) := |x|. The inner
product, norm, and orthogonality in L2±1(D) are denoted by

〈 · , · 〉±1,D :=
〈
ρ±2 · , ·

〉
0,D

, ‖ · ‖±1,D, and ⊥±1,D,

respectively. In the case of a bounded domain, there is no difference between the un-
weighted and weighted spaces (if we mean that the spaces coincide as sets and possess
different inner products). However, in analysis of problems in exterior domains a proper
selection of weights is important (in §4.6 devoted to the case of d = 2 we define the
weighted spaces differently). As before, if BD 6= ∅, then the homogeneous Dirichlet
boundary conditions are encoded in H1

−1,BD
(D), the closure of C∞

BD
(D) in H1

−1(D). Fi-
nally, for the Stokes equations, we introduce spaces of solenoidal fields

S(D) :=
{
ϕ ∈ H

1(D) : divϕ = 0
}
, SBD

(D) := H
1
BD

(D) ∩ S(D),

S−1(D) :=
{
ϕ ∈ H

1
−1(D) : divϕ = 0

}
, S−1,BD

(D) := H
1
−1,BD

(D) ∩ S−1(D).

1Throughout this paper, we do not express the respective measure in the notation of integrals, so
that, e.g., we often use the notation like this:

∫

ω

f =

∫

ω

f dλ =

∫

ω

f dx,

∫

γ

f =

∫

γ

f do =

∫

γ

f ds.
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1.2. Stability lemma and the Stokes problem in bounded domains. The clas-
sical stationary Stokes problem consists of finding a vector field u (velocity) and a scalar
valued function p (pressure) that solve the system

−ν∆u+∇p = f in ω,(1)

div u = 0 in ω,(2)

u = uD on γD,(3)

σn = 0 on γN ,(4)

where σ := ν∇u − p I, ν (viscosity) is a positive constant or a positive function taking
values in [ν⊖, ν⊕], ν⊖, ν⊕ > 0, and f ∈ L2(ω). The boundary conditions are defined by
the vector valued function uD. Henceforth, we assume that uD is given by a solenoidal
vector field uD, i.e., the Dirichlet boundary condition is defined by uD ∈ S(ω) in the
sense that u = uD on γD, i.e.,

u− uD ∈ H
1
γD

(ω).

If γ = γD, then we additionally assume that
∫

γ

n · uD =

∫

ω

div uD = 〈uD, 1〉0,ω = 0.(5)

The existence of the corresponding generalised solution follows from the well-known
solution theory for uniformly elliptic linear equations and the stability lemma, which
plays an important role in the theory of incompressible flows.

Lemma 1.1 (stability lemma, [22, 1, 3, 13, 14]). There exists c > 0 such that for any
g ∈ L2γD

(ω) there is a vector field ug ∈ H1
γD

(ω) with

div ug = g and ‖∇ug‖0,ω ≤ c‖g‖0,ω.(6)

Henceforth, the best constants in (6) and similar inequalities for unbounded domains
are denoted by the letter κ, i.e., κ(ω, γD) is the smallest c in (6). For u ∈ H1

γD
(ω) we

also have the Friedrichs/Poincaré inequality

‖u‖0,ω ≤ c‖∇u‖0,ω,
and cFP(ω, γD) denotes the best constant c. Hence from Lemma 1.1, we conclude that
ug satisfies the inequalities

1

cFP(ω, γD)
‖ug‖0,ω ≤ ‖∇ug‖0,ω ≤ κ(ω, γD)‖ div ug‖0,ω.

We notice that in the theory of electrodynamics the function ug is called a regular
potential as it admits (for Maxwell’s equations) an unphysical (high) regularity and
boundary condition, which is much stronger than the usual normal boundary condition
related to the divergence operator.

Lemma 1.1 yields several important corollaries. First, it guarantees the solvability of
the stationary Stokes problem (in the velocity-pressure posing). By setting g = div ug,
Lemma 1.1 immediately yields the well-known inf-sup (or LBB) condition:

(7) inf
g∈L2

γD
(ω)

sup
u∈H1

γD
(ω)

〈g, div u〉0,ω
‖g‖0,ω‖∇u‖0,ω

≥ 1

κ(ω, γD)
=: cLBB.

Another direct corollary to Lemma 1.1 is an estimate of the distance between a vector
field u ∈ H

1
γD

(ω) and the set SγD
(ω) (see [35, 36]),

dist
(
u, SγD

(ω)
)
:= inf

v∈SγD
(ω)

∥∥∇(u− v)
∥∥
0,ω
.
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Corollary 1.2. For any u ∈ H1
γD

(ω) there exists u0 ∈ SγD
(ω) such that

dist
(
u, SγD

(ω)
)
≤

∥∥∇(u − u0)
∥∥
0,ω

≤ κ(ω, γD)‖ div u‖0,ω.

Proof. For u ∈ H1
γD

(ω), solve the equation

div ũ = div u ∈ L
2
γD

(ω)

with ũ ∈ H1
γD

(ω) and the stability estimate

‖∇ũ‖0,ω ≤ κ(ω, γD)‖ div u‖0,ω
by Lemma 1.1. Note that for γD = γ we have

∫

γ

n · u =

∫

ω

div u = 〈u, 1〉0,ω = 0.(8)

Then

u0 := u− ũ ∈ SγD
(ω) and

∥∥∇(u − u0)
∥∥
0,ω

=
∥∥∇ũ

∥∥
0,ω

≤ κ(ω, γD)‖ div u‖0,ω. �

In [38, 39, 40], this result was extended to vector fields satisfying nonhomogeneous
Dirichlet boundary conditions (and also for vector fields in W1,q(Ω) for q ∈ (1,∞))
provided that such a vector field u satisfies div u ∈ L2γD

(Ω), i.e., the mean value con-
dition (8), if γD = γ. Moreover, it was shown that if the mean value conditions hold
true for a collection of subdomains whose union of closures coincides with the closure
of ω, then estimates of the distance can be based on local constants associated with
subdomains. In the case of nonhomogeneous boundary conditions, a modified version of
Corollary 1.2 reads as follows.

Corollary 1.3. For any u ∈ H1(ω) with div u ∈ L2γD
(ω) there exists a solenoidal u0 ∈

S(ω) such that u0 − u ∈ H
1
γD

(ω), i.e., u0|γD
= u|γD

, and
∥∥∇(u0 − u)

∥∥
0,ω

≤ κ(ω, γD)‖ div u‖0,ω.

It should be noted that Corollary 1.3 can be also viewed as a lifting lemma, because
a boundary datum u|γD

is lifted to the domain ω. In this case lifting is performed with
the help of a solenoidal representative.

Estimates of the constant κ(ω, γD) have been studied in [10, 25, 29, 44, 6] and some
other publications. It is not difficult to see that the constant cLBB in (7) is nonnegative
and cannot exceed 1 so that κ(ω, γD) ≥ 1. It is known that cLBB > 0 for any bounded

Lipschitz domain (e.g., cLBB = 1/
√
d for a ball in R

d). However, the exact values of
this constant are unknown except some for very special cases (for example, we do not
know the constant even for a cube!). In [6], simply computable and sufficiently accurate
estimates of the constant were obtained for domains in R

2 that are included in a ball of
radius R and are star-shaped with respect to a concentric ball of radius ρ. It was shown
that

(9) κ(ω, γ) ≤
√
2

ζ

(
1 +

√
1− ζ2

)1/2

,

where ζ = ρ/R. For d = 3, estimates of cLBB are known only for domains with sufficiently
regular boundaries (see [29]). A systematic numerical analysis of constants in the inf-
sup condition (7) was performed in [11], where approximate values of the constants
were computed for a wide collection of bounded domains. Computational approaches
to the evaluation of the distance to the set of divergence free fields based on domain
decomposition were suggested in [38, 39, 40]. In our subsequent analysis, we assume
that, using the results and methods mentioned above, we are able to find a majorant of
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the constant κ(ω, γD) for bounded domains ω that arise as truncations of an unbounded
domain Ω.

1.3. A posteriori estimates. Estimates of the distance to SγD
(ω) are not merely of

theoretical value. They are important for the quantitative analysis of boundary value
problems generated by incompressible media models (e.g., in the theory of viscous in-
compressible fluids). First, estimates of this type are necessary for getting computable
bounds for the difference between the exact solution of a boundary value problem and
an approximation obtained by some computational procedure. The term “computable”
means that the corresponding estimates do not involve unknown functions and constants
and can indeed be computed by means of an approximate solution only. Estimates of
this type are often called a posteriori error estimates and nowadays are widely used in
the quantitative analysis of mathematical problems. Unlike the a priori (asymptotic)
convergence estimates, a posteriori estimates provide an explicit verification of the ac-
curacy of a particular numerical solution. First methods of a posteriori error control for
PDEs originates from the works of W. Prager and J. L. Synge [33] and S. G. Mikhlin [19].
The latter monograph contains a pioneering idea of a new approach to error estimation,
which differs principally from asymptotic rate convergence estimates dominated at that
time and several decades subsequently. For variational problems generated by quadratic
type functionals

(10) J(v) =
1

2
a(v, v)− 〈f, v〉, f ∈ V,

where V is a Hilbert space and a : V × V → R is a V -elliptic bilinear form, S. Mikhlin
deduced the principal relation

(11)
1

2
a(u− v, u − v) = J(v)− J(u).

Here u is the minimizer that satisfies

J(u) = min
w∈V

J(w) and v ∈ V

is any function compared with u. Since the exact infimum is unknown, it is impossible
to use (11) directly. In [19], it was suggested to estimate J(u) from below using a dual
variational problem and further apply the orthogonal projection method of H. Weyl [48].
Certainly, these first estimates were derived for a rather limited set of problems and
suffered from serious restrictions imposed on the set of functions that are admissible in
the dual setting. For these reasons, they were rarely used in computational practice.
Moreover, the methods developed in 1970–1980 for measuring errors of finite element
approximations (such as the “gradient averaging” and “residual” methods, see, e.g., [47]
and the references therein) were based on different grounds. These methods strongly
exploit properties of a particular approximation computed on a particular mesh. In
essence, they provide certain error indicators (for mesh adaptive procedures) rather than
guaranteed error bounds. Subsequent studies focused on the problem of guaranteed
error control (performed in the 1990s) confirmed the idea (encompassed in (11)) that the
corresponding methods should be justified on the functional level by means of the same
mathematical tools that are used in analysis of PDEs without attracting specific features
of approximations and numerical methods. If we have a general (universal) estimate
of the distance between a function and the exact solution of a boundary value problem,
then it can be used with any approximation and requires no changes if one approximation
(mesh) is replaced by another. In the last two decades computable bounds of this type has
been derived and tested for a wide spectrum of problems (see [34, 23, 37, 17] and many
other publications cited in these monographs). For clear reasons, they are often called
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a posteriori estimates of functional type. They differ from others due to two important
properties: the estimates

(a) do not contain constants associated with a particular finite dimensional subspace
(mesh) and a method used to solve the problem and

(b) are valid for any approximation in the energy space and do not use special condi-
tions required for the exact solution (e.g., extra regularity) or its approximation
(e.g., Galerkin orthogonality, quasi–uniformity of meshes).

A posteriori estimates of functional type involve only global constants generated by
functional inequalities such as various embedding estimates, trace inequalities, Poincaré,
Maxwell, Korn inequalities, etc. It should be noted that although constants of this type
do not appear in (11) (and in the estimates derived in [33]), the importance of studying
them was already understood by Mikhlin (see [20]). The reader can find an overview of
the history of a posteriori error estimation methods and a subsequent exposition of the
functional approach to the problem in [37].

First estimates of the distance between a function in the energy space and the exact
solution of the stationary Stokes problem in a bounded domain were derived in [35]
(by means of the variational duality method) and in [36] (by transformations of the
integral identity that defines the corresponding weak solution). It is worth starting a
short overview of these results with the error identity

(12) ν
∥∥∇(v − u)

∥∥2 + ν−1‖τf − σ‖2 = 2(I(v)− I∗(τf )),

which can be viewed as an analog of (11) for the stationary Stokes problem. Here
v ∈ Sγ(ω) and

τf ∈ L
2
f (ω) :=

{
τ ∈ L

2(ω) : 〈τ,∇w〉0,ω = 〈f, w〉0,ω ∀w ∈ Sγ(ω)
}

are regarded as approximations of the exact velocity field u and exact stress fiels σ,
respectively. Identity (12) is fulfilled for any v ∈ Sγ(ω) and any τf ∈ L2f (ω). However,

it is not very useful for practice for the same reasons as (11), namely, the functions in
Sγ(ω) and L2f (ω) are subject to differential relations. In [35] (see also [37]), a way was
shown to overcome these difficulties by using computable estimates of distances to the
sets Sγ(ω) and L2f (ω). As a result, the following estimates for the velocity and pressure
fields were derived:

ν
∥∥∇(u − ũ)

∥∥
0,ω

≤ ‖τ + p̃ I− ν∇ũ‖0,ω + cFP(ω, γ)‖ div τ + f‖0,ω
+ 2νκ(ω, γ)‖ div ũ‖0,ω,

(13)

1

2κ(ω, γ)
‖p− p̃‖0,ω ≤ ‖τ + p̃ I− ν∇ũ‖0,ω + cFP(ω, γ)‖ div τ + f‖0,ω

+ νκ(ω, γ)‖ div ũ‖0,ω.
(14)

Here ν is a positive constant and ũ ∈ H1(ω) is a vector-valued function satisfying the
Dirichlet boundary conditions. The function ũ is regarded as an approximation of the
exact velocity u. Similarly, p̃ is a square integrable function (with zero mean value if the
Dirichlet conditions are imposed on the whole boundary γ) viewed as an approximation
of p and τ ∈ L2(ω) is an approximation of the exact stress field σ. The right-hand sides
of (13) and (14) have a clear meaning: they contain three nonnegative terms that vanish
if the approximations coincide with the exact velocity, pressure, and stress, respectively.
In other cases, the terms can be viewed as penalties for possible violations of the three
basic relations that form (1) and (2).

It is easy to see that the constant κ(ω, γ) plays an important role in (13) and (14)
and, therefore, it is indeed necessary to have guaranteed majorants of this constant.
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These constants arise in the a posteriori analysis of a numerical solution if it satisfies the
divergence free condition only approximately. If the constant κ(ω, γD) is known, then
by using Corollary 1.2 we can deduce guaranteed and fully computable error estimates.
For problems in bounded Lipschitz domains the respective results were presented in
[35, 36, 37, 39] and other publications cited therein. Also, it should be mentioned that
explicit bounds of the constant κ(ω, γ) are required not only for Stokes type problems.
They arise in other continuous media problems, which are not related to viscous fluids
(e.g., see [42]).

Subsequently analogous estimates for the velocity and pressure fields were obtained
for the Stokes problem in the velocity-vorticity-pressure formulation [18] and for the gen-
eralised Stokes problem [41]. In [7], such estimates were derived for a class of stationary
problems associated with nonlinear viscous fluids and in [24] for the evolutionary Stokes
problem. We note that the approach used in these publications and in the present paper
differs essentially from the so-called residual method often used in the finite element
community for getting indicators of approximation errors (see, e.g., [46]).

1.4. Outline of the paper. In the first part of the paper, we recall some known results
related to the analysis of boundary value problems in exterior domains, paying a special
attention to the stability Lemma 2.3 and the corresponding corollaries.

§3 is devoted to computable bounds κ⊕(Ω,ΓD) for the stability constant κ(Ω,ΓD). In
Lemma 3.2, we obtain a desired estimate for κ⊕(Ω,ΓD), which involves known constants
and the constant κ(ω, γD) associated with a bounded domain ω (which is a suitable
truncation of Ω). Estimates of the last constant have been derived in several publications
cited above, so that we view this problem as solvable (at least in the sense that a certain
guaranteed bound of κ(ω, γD) can be derived). As a result, we obtain estimates of the
distance between a vector field in Ω and the respective set of solenoidal fields defined in Ω
and satisfying the same boundary conditions (Lemma 3.4). These estimates are used in
§4, we derive a posteriori error estimates of functional type, which are valid for a wide
class of approximate solutions to the stationary Stokes problem in exterior domains.

Estimates for the velocity are obtained in three different forms. The first (and the sim-
plest) form is valid for approximations in S(Ω), i.e., for solenoidal vector-valued functions
that satisfy the Dirichlet boundary condition exactly (Theorem 4.1). These estimates
do not contain the constant κ(Ω,ΓD). Estimates of the second type are valid for ap-
proximations in H1(Ω) still satisfying the boundary condition exactly but admit possibly
nonsolenoidal functions (Theorem 4.2). They involve a term that penalises possible vio-
lation of the solenoidality condition and has the constant κ(Ω,ΓD) as a penalty factor.
Finally, the most general form of the estimate is applicable for nonconforming approxi-
mations, which even may not belong to the energy class H1(Ω) (Theorem 4.6). It involves
one more term that can be viewed as a measure of the distance to the energy class natural
for the velocity function. Also, we deduce estimates for approximations of the pressure
(Theorem 4.4 and Theorem 4.6) and the stress field (Subsection 4.4). In §4.5 we consider
lower bounds and in §4.6 we adapt our results to the special case of space dimension
d = 2.

§2. Preliminaries

2.1. Exterior domain and main functional inequalities. We consider an exterior
domain Ω ⊂ R

d, where d ≥ 3 (the special case of d = 2 is studied in Subsection 4.6),
with a (strong) Lipschitz boundary Γ, which is composed of two open and disjoint parts
ΓD,ΓN ⊂ Γ (Dirichlet and Neumann parts) with Γ = ΓD ∪ ΓN . Moreover, we assume
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that there exist 0 < r1 < r2 such that Rd \ Ω ⊂ Br1 and denote (see Figure 1)

(15) ω := Ωr2 := Ω ∩Br2 , γ = Γ ∪ Sr2 , γD := ΓD ∪ Sr2 ,

where Br and Sr denote the open ball and the sphere of radius r centered at the origin
in R

d. By η we denote a Lipschitz continuous cut-off function, which vanishes in the
ball2 Br1 , equals 1 in R

d \Br2 , and takes values in [0, 1].

ω

Ω

η = 1

η = 0

∇η 6= 0

R
d \ Ω

Γ

Γ
ΓD

ΓDSr2

Sr1

Figure 1. R
d \ Ω (gray) surrounded by the boundary Γ (thin black

lines), the boundary part ΓD (thick black lines), and the artificial bound-
ary spheres (dashed lines).

The two main ingredients for our proofs are Lemma 1.1 and a few elementary results
from the theory of ∇-curl-div–systems in exterior domains and especially R

d (see, e.g.,
[16, 43] or [12, 26] and in particular [28] as well as references therein), which can be
summarised in the two subsequent lemmas as follows.

Lemma 2.1 (Friedrichs/Poincaré lemma for exterior domains). The following weighted
Friedrichs/Poincaré estimates hold true.

(i) There exists c > 0 such that for all v ∈ H1
−1,ΓD

(Ω) we have

‖v‖−1,Ω ≤ c‖∇v‖0,Ω.
The best constant c is called the Friedrichs/Poincaré constant and we denote it
by cFP(Ω,ΓD).

(ii) If ΓD = Γ, then cFP(Ω,Γ) = cF(Ω) (the Friedrichs constant) and

cF(Ω) ≤ cd :=
2

d− 2
.

Hence for all v ∈ H1
−1,Γ(Ω) the Friedrichs estimate ‖v‖−1,Ω ≤ cd‖∇v‖0,Ω holds

true. If ΓD = ∅, then cFP(Ω,∅) is replaced by the Poincaré constant cP(Ω). In
this case, the Poincaré estimate

‖v‖−1,Ω ≤ cP(Ω)‖∇v‖0,Ω
is fulfilled for all v ∈ H1

−1(Ω).

2For the sake of simplicity we henceforth operate with the balls Br1
and Br2

. However, if necessary

Br1
can be replaced by a Lipschitz domain containing R

2 \ Ω and Br2
by another Lipschitz domain

containing Br1
.
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(iii) If Ω = R
d, then the Friedrichs and Poincaré constants coincide and, moreover,

cFP(R
d) = cF(R

d) = cP(R
d) ≤ cd.

Hence for all v ∈ H
1
−1(R

d) we have ‖v‖−1,Rd ≤ cd‖∇v‖0,Rd .

Note that no boundary or mean value conditions are needed in Lemma 2.1 (because
constant functions are not integrable in L2−1(Ω)).

Lemma 2.2 (∇-curl-div lemma for exterior domains). Suppose that Ω = R
d and h ∈

L2(Rd). Then there exists a unique v ∈ H1
−1(R

d) such that curl v = 0 and div v = h.
Moreover,

1

cd
‖v‖−1,Rd ≤ ‖∇v‖0,Rd = ‖ div v‖0,Rd = ‖h‖0,Rd .

The results of Lemma 2.2 are well known and follow directly by Fourier analysis,
see, e.g., [30, 31, 32, 16] or [12, 26]. Notice that the well-known equation −∆ =
curl∗ curl−∇ div implies the identity

‖∇v‖20,Rd = ‖ curl v‖20,Rd + ‖ div v‖20,Rd(16)

for all v ∈ C∞(Rd) having compact support. By density and continuity arguments it can
be extended to all v ∈ H

1
−1(R

d). Hence the relation

‖∇v‖0,Rd = ‖ div v‖0,Rd

in Lemma 2.2 follows immediately.

2.2. Stability lemma and Stokes problem in exterior domains. For exterior do-
mains we have a result similar to Lemma 1.1 (see [9]).

Lemma 2.3 (stability lemma for exterior domains). There exists c > 0 such that for
any h ∈ L2(Ω) there is a vector field

uh ∈ H
1
−1,ΓD

(Ω)

with
div uh = h and ‖∇uh‖0,Ω ≤ c‖h‖0,Ω.

The best constant is denoted by κ(Ω,ΓD).

In the subsequent Lemma 3.2 we present computable upper bounds for κ(Ω,ΓD).

Remark 2.4. In [9] only the case of ΓD = Γ was considered, but it is trivial that then the
stability lemma is true for general ΓD as well. It should be noted that unlike the case of
a bounded domain, no mean value condition is imposed on h even if ΓD = Γ.

Lemma 2.3 immediately implies the inf-sup condition.

Corollary 2.5 (inf-sup lemma for exterior domains). We have

inf
h∈L2(Ω)

sup
u∈H1

−1,ΓD
(Ω)

〈h, div u〉0,Ω
‖h‖0,Ω‖∇u‖0,Ω

≥ 1

κ(Ω,ΓD)
.

From now on, let f ∈ L21(Ω), uD ∈ S−1(Ω) be given data. The classical Stokes problem
in an exterior domain Ω consists of finding a vector-valued function u (velocity) and a
scalar valued function p (pressure) satysfying the system

− div σ = f in Ω,(17)

σ = ν∇u− p I in Ω,(18)

div u = 0 in Ω,(19)

u = uD on ΓD,(20)

σn = 0 on ΓN ,(21)



10 D. PAULY AND S. REPIN

where u additionally satisfies a proper decay conditions at infinity, so that u ∈ S−1(Ω)
or u ∈ H1

−1(Ω), i.e.,

u ∈ L
2
−1(Ω) and ∇u ∈ L

2(Ω).

The classical (pointwise) condition reads

(22) u(x)
|x|→∞−−−−→ 0.

The corresponding generalised solution

u ∈ uD + S−1,ΓD
(Ω)

is defined by the integral identity (see, e.g., [13, 9])

(23) 〈ν∇u,∇ϕ〉0,Ω = 〈f, ϕ〉0,Ω ∀ϕ ∈ S−1,ΓD
(Ω).

Note that, since
〈f, ϕ〉0,Ω =

〈
ρ f, ρ−1ϕ

〉
0,Ω
,

the right-hand side of (23) is well defined. Using the Ansatz u = uD + û with û ∈
S−1,ΓD

(Ω), we reduce this formulation to find û ∈ S−1,ΓD
(Ω) such that for all ϕ ∈

S−1,ΓD
(Ω) we have

〈ν∇û,∇ϕ〉0,Ω = 〈f, ϕ〉0,Ω − 〈ν∇uD,∇ϕ〉0,Ω.
Another formulation taking the pressure into account leads to the following saddle point
formulation: find

(u, p) ∈
(
uD + H

1
−1,ΓD

(Ω)
)
× L

2(Ω)

such that for all (ϕ, φ) ∈ H1
−1,ΓD

(Ω)× L2(Ω) we have

〈ν∇u,∇ϕ〉0,Ω − 〈p, divϕ〉0,Ω = 〈f, ϕ〉0,Ω,(24)

〈div û, φ〉0,Ω = 0.(25)

By standard arguments (see, e.g., [8, 9, 13]) and the inf-sup lemma, we know that
for f ∈ L21(Ω) and uD ∈ S−1(Ω) the Stokes system is uniquely solvable with u ∈ uD +
S−1,ΓD

(Ω) and p ∈ L
2(Ω). Moreover, the solution meets the estimates

ν‖∇û‖0,Ω ≤ cFP(Ω,ΓD)‖f‖1,Ω + ν‖∇uD‖0,Ω,
ν‖∇u‖0,Ω ≤ cFP(Ω,ΓD)‖f‖1,Ω + 2ν‖∇uD‖0,Ω,

‖p‖0,Ω ≤ 2κ(Ω,ΓD)
(
cFP(Ω,ΓD)‖f‖1,Ω + ν‖∇uD‖0,Ω

)
.

§3. Estimates of κ(Ω,ΓD)

Our goal is to deduce majorants for the constant in Lemma 2.3 that involve only
known constants (such as cd) and stability constants for a bounded domain ω generated
by a certain truncation of Ω.

First we discuss the simplest case of a compactly supported right-hand side.

Lemma 3.1. There exists c > 0 such that for all h ∈ L2(Ω) with supph ⊂ ω and
h ∈ L2γD

(ω), i.e.,
∫
Ω h =

∫
ω h = 0 if ΓD = Γ, there exists a vector field uh ∈ H1

−1,ΓD
(Ω)

such that
div uh = h and ‖∇uh‖0,Ω ≤ c‖h‖0,Ω.

The function uh can be chosen with compact support in ω, in particular,

uh ∈ H
1
γD

(ω) ⊂ H
1
ΓD

(Ω).

In this case, κ(Ω,ΓD) ≤ κ(ω, γD).

Hence we arrive at the rather obvious conclusion that for a compactly supported h
the constant κ(Ω,ΓD) can be estimated by κ(ω, γD).
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Proof of Lemma 3.1. Set

g := h|ω ∈ L
2
γD

(ω).

By Lemma 1.1 there exist κ(ω, γD) > 0 and ug ∈ H1
γD

(ω), ug = 0 on Sr2 such that
div ug = g and ‖∇ug‖0,ω ≤ κ(ω, γD)‖g‖0,ω. Let uh be the extension by zero of ug to Ω.
Then uh ∈ H1

ΓD
(Ω) and suppuh = suppug ⊂ ω. Moreover, div uh = h and

‖∇uh‖0,Ω = ‖∇ug‖0,ω ≤ κ(ω, γD)‖g‖0,ω = κ(ω, γD)‖h‖0,Ω,
completing the proof. �

Now we present the main result, which provides an upper bound for the best constant
κ(Ω,ΓD) in the stability Lemma 2.3 for exterior domains as well as an alternative proof
of this lemma.

Lemma 3.2. Let Ω and ω be defined by (15). Then

κ(Ω,ΓD) ≤ κ⊕(Ω,ΓD) := (1 + κ)
(
1 + cd α ρ(r2)

)

with κ(Ω,ΓD) from Lemma 2.3, where α and κ are defined in (29) and (31), i.e.,

α = α(r1, r2, η) = max
x∈Br2

\Br1

∣∣∇η(x)
∣∣, κ = min

{
κ(ω, γD), κ(ω, γ)

}
.

Remark 3.3. It should be noted that κ ≤ κ(ω, γD) and κ ≤ κ(ω, γ), where the second
bound means that κ can be estimated independently of the boundary part ΓD of Γ.
Moreover, the constant κ⊕(Ω,ΓD) depends on the dimension d, the radii r1, r2, and
the Lipschitz continuous cut-off function η. Optimal values of these parameters (which
minimise the constant) are not known a priori and should be defined by solving an
additional algebraic problem. If η is constructed, e.g., by a simple affine function with
r2 = r1 + 1, then α = 1 and we have one possible upper bound

κ⊕(Ω,ΓD) ≤ (1 + κ)
(
1 + cd

√
1 + r22

)
≤

(
1 + κ(ω, γ)

)(
1 +

2
√
2

d− 2
r2

)
.

In some cases, this bound may be rather coarse, but, anyhow, it presents a guaranteed
upper bound of the stability constant κ⊕(Ω,ΓD) associated with the exterior domain Ω.

Proof of Lemma 3.2. We extend h by 0 to R
d \ Ω and identify the extended function

with h ∈ L2(Rd). By Lemma 2.2 we have a vector field v ∈ H1
−1(R

d) with curl v = 0 and

div v = h in R
d as well as

(26)
1

cd
‖v‖−1,Rd ≤ ‖∇v‖0,Rd = ‖ div v‖0,Rd = ‖h‖0,Ω.

We recall that our cut-off function η satisfies η|Br1
= 0 and η|Rd\Br2

= 1. Therefore,

ηv ∈ H1
−1,Γ(Ω) and supp(ηv) ⊂ R

d \ Br1 . In view of Lemma 2.3, our goal is to find

a vector-valued function vh ∈ H1
−1,ΓD

(Ω) such that div vh = h in Ω and the stability
inequality holds true. We suggest to construct it in the form

(27) vh := ηv + vω ,

where vω ∈ H
1
ΓD

(Ω) with supp vω ⊂ ω is the extension by zero to Ω of some vector-valued

function uω ∈ H1
γD

(ω) that is supported in ω̄ and vanishes on Sr2 .
The relation

h = div vh = ηh+∇η · v + div vω in Ω

imposes a condition on vω and uω. Let

g := (1− η)h−∇η · v ∈ L
2(ω) in ω.
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Notice that supp(1− η) ⊂ Br2 , supp∇η ⊂ Br2 \Br1 and hence supp g ⊂ ω (if we view g
as a function in Ω). Since

g = (1− η)h+∇(1− η) · v = div
(
(1− η)v

)
,

by the properties of η we have by the Gauss or Stokes theorem
∫

ω

g =

∫

γ

(1− η)n · v =

∫

Γ

n · v = −
∫

Rd\Ω

div v = −
∫

Rd\Ω

h = 0.

Hence g has zero mean value independent of the boundary part γ = γD, i.e., we always
have

(28)

∫

ω

g = 0.

Now, the existence of uω = ug,γD
∈ H1

γD
(ω), respectively, uω = ug,γ ∈ H1

γ(ω) such that
div uω = g together with the stability estimate

(29) ‖∇uω‖0,ω ≤ κ‖g‖0,ω, κ := min
{
κ(ω, γD), κ(ω, γ)

}

is provided by Lemma 1.1. Note that uω ∈ H1
γ(ω) can also be regarded as a suitable

function if the homogeneous Dirichlet boundary conditions are imposed only on a part
ΓD of Γ, so that we can operate with one and the same constant κ(ω, γ). Since uω = 0
on Sr2 ,

vω :=

{
uω in ω,

0 in R
d \Br2

meets our needs. Then vh = ηv + vω ∈ H1
−1,ΓD

(Ω) and

div vh = ηh+∇η · v + g = h in Ω.

It remains to estimate ‖∇vh‖0,Ω. By the properties of η we have

(30) ‖∇η ⊗ v‖0,Rd , ‖∇η · v‖0,Rd ≤ α‖v‖0,Br2
\Br1

,

where

(31) α := α(r1, r2, η) := max
x∈Rd

∣∣∇η(x)
∣∣ = max

x∈Br2
\Br1

∣∣∇η(x)
∣∣.

Since

‖g‖0,ω ≤
∥∥(1− η)h

∥∥
0,ω

+ ‖∇η · v‖0,ω,
by (30) we find

‖∇vω‖0,Ω = ‖∇uω‖0,ω
≤ κ ‖g‖0,ω ≤ κ

(∥∥(1 − η)h
∥∥
0,ω

+ α ‖v‖0,Br2
\Br1

)

≤ κ
(
‖h‖0,Ω + α ‖v‖0,Br2

\Br1

)
,

∥∥∇(ηv)
∥∥
0,Ω

≤ ‖h‖0,Ω + α ‖v‖0,Br2
\Br1

.

(32)

By (26), the second terms on the right-hand sides can be estimated as follows:

(33) ‖v‖0,Br2
\Br1

≤ ρ(r2)‖v‖−1,Rd ≤ cd ρ(r2)‖∇v‖0,Rd = cd ρ(r2)‖h‖0,Ω.

Finally, by (27), (32), and (33), we conclude that

‖∇vh‖0,Ω ≤ (1 + κ)
(
‖h‖0,Ω + cd αρ(r2)‖h‖0,Ω

)
= κ⊕(Ω,ΓD)‖h‖0,Ω,

finishing the proof. �
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3.1. Estimates of the distance to the set S−1,ΓD
(Ω). As in the case of bounded

domains, the stability Lemma 2.3 implies estimates of the quantity

dist
(
u, S−1,ΓD

(Ω)
)
= inf

ϕ∈S
−1,ΓD

(Ω)

∥∥∇(u− ϕ)
∥∥
0,Ω
,

which is a measure of the distance between u ∈ H1
−1,ΓD

(Ω) and the corresponding set of
divergence free vector fields.

Lemma 3.4. For any u ∈ H1
−1,ΓD

(Ω) there exists a solenoidal u0 ∈ S−1,ΓD
(Ω) such that

dist
(
u, S−1,ΓD

(Ω)
)
≤

∥∥∇(u− u0)
∥∥
0,Ω

≤ κ(Ω,ΓD)‖ div u‖0,Ω.

Proof. Let h = div u ∈ L
2(Ω). By Lemma 2.3 there exists uh ∈ H

1
−1,ΓD

(Ω) such that
div uh = h and

‖∇uh‖0,Ω ≤ κ(Ω,ΓD)‖h‖0,Ω.
Then u0 := u− uh ∈ S−1,ΓD

(Ω) and we have
∥∥∇(u− u0)

∥∥
0,Ω

=
∥∥∇uh

∥∥
0,Ω

≤ κ(Ω,ΓD)‖ div u‖0,Ω. �

It is easy to extend this result to the case where v satisfies inhomogeneous Dirichlet
boundary conditions on a part of the boundary.

Corollary 3.5. For any u ∈ H1
−1(Ω) there exists a solenoidal u0 ∈ S−1(Ω) such that

u− u0 ∈ H1
−1,ΓD

(Ω), i.e., u0|ΓD
= u|ΓD

, and
∥∥∇(u − u0)

∥∥
0,Ω

≤ κ(Ω,ΓD)‖ div u‖0,Ω.

The last assertion shows the existence of a continuous lifting operator that lifts the
boundary datum u|ΓD

to the domain Ω with a solenoidal representative.

§4. A posteriori estimates

A posteriori estimates of functional type for various elliptic problems in exterior do-
mains were derived in [27]. In this section, we derive estimates of the difference between
the exact solution of the exterior Stokes problem (17)–(21), respectively, (24)–(25) (pre-
sented by the fields of velocity u, pressure p, and stress σ) and the respective approxi-
mations ũ, p̃, and σ̃.

First, we introduce two more weighted spaces for tensor valued functions:

D(Ω) :=
{
τ ∈ L

2(Ω) : div τ ∈ L
2
1(Ω)

}
,

where div is the divergence operator for tensor fields acting as the usual row-wise diver-
gence. D(Ω) is a Hilbert space with norm defined by

‖τ‖2
D
:= ‖τ‖20,Ω + ‖ div τ‖21,Ω.

By DΓN
(Ω) we denote the closure of C∞

ΓN
(Ω)-tensor fields in the norm of D(Ω). Then for

all ϕ ∈ H1
−1,ΓD

(Ω) and all τ ∈ DΓN
(Ω), we observe that

〈τ,∇ϕ〉0,Ω + 〈div τ, ϕ〉0,Ω = 0.(34)

Notice that

〈div τ, ϕ〉0,Ω = 〈ρ div τ, ρ−1ϕ〉0,Ω,
so that the second term in the above relation is well defined.
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4.1. Estimates for the velocity. From now on,

ũ ∈ L
2
−1(Ω) and p̃ ∈ L

2(Ω)

are viewed as approximations of our exact solutions

u = uD + û ∈ uD + S−1,ΓD
(Ω) ⊂ S−1(Ω) and p ∈ L

2(Ω)

to our exterior Stokes problem (24)–(25), respectively. By

σ̃ ∈ L
2(Ω)

we denote an approximation of the tensor field

σ = ν∇u− pI,

which can be constructed by a certain reconstruction of ũ and p̃ or computed indepen-
dently.

First, we consider the simplest case where

ũ ∈ uD + S−1,ΓD
(Ω) ⊂ S−1(Ω).

Then by (24) for all solenoidal ϕ ∈ S−1,ΓD
(Ω) we have

〈
ν∇(u − ũ),∇ϕ

〉
0,Ω

= 〈f, ϕ〉0,Ω − 〈ν∇ũ,∇ϕ〉0,Ω.

Let τ ∈ DΓN
(Ω) and q ∈ L2(Ω). Using Lemma 2.1, identity (34), and the relation

〈q I,∇ϕ〉0,Ω = 0

(which is true for all ϕ ∈ S−1(Ω) because I : ∇ϕ = divϕ), we find
〈
ν∇(u − ũ),∇ϕ

〉
0,Ω

= 〈div τ + f, ϕ〉0,Ω + 〈τ + q I− ν∇ũ,∇ϕ〉0,Ω
≤ ‖ div τ + f‖1,Ω‖ϕ‖−1,Ω +

∥∥ν−1/2(τ + q I− ν∇ũ)
∥∥
0,Ω

‖ν1/2∇ϕ‖0,Ω

≤
(
ν
−1/2
⊖ cFP(Ω,ΓD)‖ div τ + f‖1,Ω +

∥∥ν−1/2(τ + q I− ν∇ũ)
∥∥
0,Ω

)
‖ν1/2∇ϕ‖0,Ω.

(35)

Choosing ϕ = u− ũ ∈ S−1,ΓD
(Ω), we arrive at the following estimate.

Theorem 4.1. Let ũ ∈ uD + S−1,ΓD
(Ω). Then for all τ ∈ DΓN

(Ω) and all q ∈ L2(Ω) we
have

∥∥ν1/2∇(u− ũ)
∥∥
0,Ω

≤ ν
−1/2
⊖ cFP(Ω,ΓD)‖ div τ + f‖1,Ω +

∥∥ν−1/2(τ + q I− ν∇ũ)
∥∥
0,Ω
.

The upper bound coincides with the norm of the error on the left-hand side if τ = σ
(i.e., τ coincides with the exact stress tensor) and q = p (i.e., q represents the exact
pressure p). In other words, we have the principal error identity

∥∥ν1/2∇(u − ũ)
∥∥
0,Ω

= min
τ∈DΓN

(Ω),

q∈L
2(Ω)

(
ν
−1/2
⊖ cFP(Ω,ΓD)‖ div τ + f‖1,Ω +

∥∥ν−1/2(τ + q I− ν∇ũ)
∥∥
0,Ω

)

and the minimum is attained at τ = σ and q = p. Similar identities are fulfilled for many
other linear elliptic problems. However, Theorem 4.1 has a drawback: the estimate
is valid only for those approximate vector fields ũ that exactly satisfy the solenoidal
condition and the boundary condition. In practice, the solenoidal requirement is difficult
to fulfil and approximations arising in ‘real life’ computations often satisfy the solenoidal
condition only approximately. Therefore, our next goal is to extend the estimate to a
wider class of nonsolenoidal vector fields. Below we extend the last estimate to a wider
class including nonsolenoidal vector functions and assume only that

ũ ∈ uD + H
1
−1,ΓD

(Ω) ⊂ H
1
−1(Ω),
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i.e., ũ is possibly nonsolenoidal but satisfies the boundary condition exactly. Corollary 3.5
guarantees the existence of

u0 ∈ S−1(Ω)

such that
u0 − ũ ∈ H

1
−1,ΓD

(Ω)

and

‖∇(u0 − ũ)‖0,Ω ≤ κ(Ω,ΓD)‖ div ũ‖0,Ω.(36)

Hence u0 = ũ+u0− ũ ∈ uD+H1
−1,ΓD

(Ω), i.e., u0 ∈ uD+S−1,ΓD
(Ω), and by Theorem 4.1

we have ∥∥ν1/2∇(u − ũ)
∥∥
0,Ω

≤
∥∥ν1/2∇(u− u0)

∥∥
0,Ω

+
∥∥ν1/2∇(u0 − ũ)

∥∥
0,Ω

≤ ν
−1/2
⊖ cFP(Ω,ΓD)‖ div τ + f‖1,Ω

+
∥∥ν−1/2(τ + q I− ν∇u0)

∥∥
0,Ω

+
∥∥ν1/2∇(u0 − ũ)

∥∥
0,Ω

≤ ν
−1/2
⊖ cFP(Ω,ΓD)‖ div τ + f‖1,Ω

+
∥∥ν−1/2(τ + q I− ν∇ũ)

∥∥
0,Ω

+ 2ν
1/2
⊕

∥∥∇(u0 − ũ)
∥∥
0,Ω
.

(37)

In view of (36), we obtain the following result.

Theorem 4.2. Let ũ ∈ uD + H1
−1,ΓD

(Ω). Then for all τ ∈ DΓN
(Ω) and all q ∈ L2(Ω)

we have
∥∥ν1/2∇(u − ũ)

∥∥
0,Ω

≤ ν
−1/2
⊖ cFP(Ω,ΓD)‖ div τ + f‖1,Ω

+
∥∥ν−1/2(τ + q I− ν∇ũ)

∥∥
0,Ω

+ 2ν
1/2
⊕ κ(Ω,ΓD)‖ div ũ‖0,Ω.

If the approximation ũ is solenoidal, we recover Theorem 4.1 and, again, the upper
bound coincides with the norm of the error on the left-hand side if τ = σ, q = p. If the
approximation ũ is solenoidal only in, e.g., Rd \ Br2 , then we trivially get an estimate
by Theorem 4.2, replacing the term ‖ div ũ‖0,Ω by ‖ div ũ‖0,ω. But with a moderate
additional assumption on the decay of the approximation we can even do better in this
case, replacing the constant κ(Ω,ΓD) by a stability constant κ(ω, γD) of the bounded
domain ω.

For this let
ũ = uD + w ∈ uD + H

1
−1,ΓD

(Ω)

with div ũ = divw = 0 in R
d \ Br2 and if γD = γ (i.e., ΓD = Γ), then ũ satisfies

div ũ ∈ L2⊥(ω). To meet the last condition, we additionally assume for the case of
ΓD = Γ that

|w| ≤ c r−m, m > d− 1(38)

as r → ∞ with some c > 0 independent of r (notice that r−m ∈ L2−1(R
d \ B1) if

m > d/2− 1). Indeed, it is easy to see that
∣∣∣∣
∫

ω

div ũ

∣∣∣∣ =
∣∣∣∣
∫

ω

divw
∣∣ =

∣∣∣∣
∫

Sr

n · w
∣∣∣∣ ≤ c rd−1−m r→∞−−−→ 0

for r > r2. Now we consider the Ansatz

u0 := ũ+

{
uω in ω,

0 in R
d \Br2 ,

where uω ∈ H1
γD

(ω). Utilising Lemma 1.1, we find uω ∈ H1
γD

(ω) such that

div uω = − div ũ in ω
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together with the stability estimate

‖∇uω‖0,ω ≤ κ(ω, γD)‖ div ũ‖0,ω.
The function u0 so constructed satisfies the boundary condition on ΓD and it is a
solenoidal field, i.e.,

u0 ∈ uD + S−1,ΓD
(Ω).

Using u0 as an admissible vector field in (37) yields the estimate
∥∥ν1/2∇(u− ũ)

∥∥
0,Ω

≤ ν
−1/2
⊖ cFP(Ω,ΓD)‖ div τ + f‖1,Ω

+
∥∥ν−1/2(τ + q I− ν∇ũ)

∥∥
0,Ω

+ 2ν
1/2
⊕

∥∥∇(u0 − ũ)
∥∥
0,Ω︸ ︷︷ ︸

=‖∇uω‖0,ω

.

Hence we have the following improved estimate for the case of a partially solenoidal
approximation.

Corollary 4.3. Let ũ ∈ uD + H1
−1,ΓD

(Ω) and let

div ũ = 0 in R
d \Br2 .

If ΓD = Γ, then we additionally impose condition (38). Then for all τ ∈ DΓN
(Ω) and all

q ∈ L2(Ω) we have
∥∥ν1/2∇(u− ũ)

∥∥
0,Ω

≤ ν
−1/2
⊖ cFP(Ω,ΓD)‖ div τ + f‖1,Ω

+
∥∥ν−1/2(τ + q I− ν∇ũ)

∥∥
0,Ω

+ 2ν
1/2
⊕ κ(ω, γD)‖ div ũ‖0,ω.

Here the last term on the right-hand side is a penalty for a possible violation of the
solenoidal condition in ω.

4.2. Estimates for the pressure. By Lemma 2.3 there exists a vector field ψ ∈
H1

−1,ΓD
(Ω) such that

divψ = p− p̃ and ‖∇ψ‖0,Ω ≤ κ(Ω,ΓD)‖p− p̃‖0,Ω.(39)

For all ũ ∈ uD + H1
−1,ΓD

(Ω) and all τ ∈ DΓN
(Ω) we have

‖p− p̃‖20,Ω = 〈p− p̃, divψ〉0,Ω
=

〈
ν∇(u − ũ),∇ψ

〉
0,Ω

− 〈div τ + f, ψ〉0,Ω + 〈ν∇ũ − p̃ I− τ,∇ψ〉0,Ω

≤
(∥∥ν∇(u− ũ)

∥∥
0,Ω

+ cFP(Ω,ΓD)‖ div τ + f‖1,Ω

+ ‖ν∇ũ− p̃ I− τ‖0,Ω
)
‖∇ψ‖0,Ω,

where we have used Lemma 2.1 for ψ and the relation divψ = I : ∇ψ. By (39) we obtain

‖p− p̃‖0,Ω ≤ κ(Ω,ΓD)
(
ν
1/2
⊕

∥∥ν1/2∇(u − ũ)
∥∥
0,Ω

+ cFP(Ω,ΓD)‖ div τ + f‖1,Ω + ν
1/2
⊕

∥∥ν−1/2(τ + p̃ I− ν∇ũ)
∥∥
0,Ω

)
.

In order to estimate the first term on the right-hand side, we use Theorem 4.2 with q = p̃
and arrive at the desired estimate for the pressure field.

Theorem 4.4. Let p̃ ∈ L2(Ω). Then for all τ ∈ DΓN
(Ω) and all

ũ ∈ uD + H
1
−1,ΓD

(Ω)
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we have

‖p− p̃‖0,Ω ≤ κ(Ω,ΓD)
(
(ν

−1/2
⊖ ν

1/2
⊕ + 1)cFP(Ω,ΓD)‖ div τ + f‖1,Ω

+ 2ν
1/2
⊕

∥∥ν−1/2(τ + p̃ I− ν∇ũ)
∥∥
0,Ω

+ 2ν⊕κ(Ω,ΓD)‖ div ũ‖0,Ω
)
.

(40)

Remark 4.5. The upper bound (40) consists of the same terms as the upper bound
of Theorem 4.2 and vanishes if ũ = u, τ = σ, p̃ = p. However, in this case, the
estimate stronger depends on the stability constant κ(Ω,ΓD). A similar effect occurs in
the estimates related to bounded domains (see [35, 36]).

4.3. Estimates for nonconforming approximations. The term nonconforming is
usually applied to approximations that belong to a functional class wider than the nat-
ural energy class of the problem in question. For example, nonconformity of approxima-
tions may arise due to violation of continuity conditions or main boundary conditions.
Nowadays such type approximations are widely used in computational practice (e.g.,
mortar, finite volume, and discontinuous Galerkin approximations) because they offer
more freedom for various mesh adaptive procedures. Application of functional type a
posteriori estimates to nonconforming approximations of elliptic problems was studied
earlier in [4, 15, 37, 45]. In this section, we briefly discuss this question in the context of
the exterior Stokes problem.

Let us now assume that we have a nonconforming approximation

Υ̃ ∈ L
2(Ω)

of the exact strain tensor field

Υ := ∇u, u = uD + û ∈ uD + S−1,ΓD
(Ω) ⊂ S−1(Ω).

For example, Υ̃ as a “broken gradient” tensor field, the output of some discontinuous
Galerkin method. By the triangle inequality, we estimate the difference between these
tensor fields using a certain conforming approximation ũ ∈ uD + H1

−1,ΓD
(Ω) and obtain

∥∥ν1/2(Υ− Υ̃)
∥∥
0,Ω

≤
∥∥ν1/2∇(u− ũ)

∥∥
0,Ω

+
∥∥ν1/2(∇ũ− Υ̃)

∥∥
0,Ω
.

Theorem 4.2 implies the estimate
∥∥ν1/2(Υ− Υ̃)

∥∥
0,Ω

≤ ν
−1/2
⊖ cFP(Ω,ΓD)‖ div τ + f‖1,Ω +

∥∥ν−1/2(τ + q I− ν∇ũ)
∥∥
0,Ω

+ 2ν
1/2
⊕ κ(Ω,ΓD)‖ div ũ‖0,Ω +

∥∥ν1/2(∇ũ− Υ̃)
∥∥
0,Ω
.

Using the triangle inequality and Theorem 4.4, we obtain a posteriori error estimates for
nonconforming approximations.

Theorem 4.6. Let Υ̃ ∈ L2(Ω) and let p̃ ∈ L2(Ω). Then for all τ ∈ DΓN
(Ω), q ∈ L2(Ω),

and ũ ∈ uD + H1
−1,ΓD

(Ω) we have

∥∥ν1/2(Υ− Υ̃)
∥∥
0,Ω

≤ ν
−1/2
⊖ cFP(Ω,ΓD)‖ div τ + f‖1,Ω +

∥∥ν−1/2(τ + q I− νΥ̃)
∥∥
0,Ω

+ 2ν
1/2
⊕ κ(Ω,ΓD)‖ div ũ‖0,Ω + 2

∥∥ν1/2(∇ũ− Υ̃)
∥∥
0,Ω

and

‖p− p̃‖0,Ω ≤ κ(Ω,ΓD)
(
(ν

−1/2
⊖ ν

1/2
⊕ + 1)cFP(Ω,ΓD)‖ div τ + f‖1,Ω

+ 2ν
1/2
⊕

∥∥ν−1/2(τ + p̃ I− νΥ̃)
∥∥
0,Ω

+ 2ν⊕κ(Ω,ΓD)‖ div ũ‖0,Ω

+ 2ν
1/2
⊕

∥∥ν1/2(∇ũ− Υ̃)
∥∥
0,Ω

)
.
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It is easy to see that in the case where Υ̃ = ∇ũ is generated by the conforming
approximation ũ ∈ uD +H1

−1,ΓD
(Ω), the last term vanishes and we recover Theorem 4.2

and Theorem 4.4.

4.4. Estimates for the stress field. Error estimates for the stress tensor field follow
directly from the estimates derived above for the velocity vector field and the pressure
function. Indeed, let σ̃ ∈ L

2(Ω) be an approximation of the exact stress tensor

σ = ν∇u − p I = νΥ − p I.

Moreover, let Υ̃ ∈ L2(Ω) and p̃ ∈ L2(Ω). Then, the respective error estimate follows from
the triangle inequality

‖σ̃ − σ‖0,Ω ≤ ‖σ̃ − νΥ̃ + p̃ I‖0,Ω + ν
1/2
⊕

∥∥ν1/2(Υ − Υ̃)
∥∥
0,Ω

+ d1/2‖p− p̃‖0,Ω.

In particular, we can set Υ̃ = ∇ũ, where ũ ∈ uD+H1
−1,ΓD

(Ω). The first term on the right-
hand side involves only known tensor fields and the second and third ones are estimated
by, e.g., Theorem 4.2, Theorem 4.4, and Theorem 4.6.

4.5. Lower bounds of the error. Let

ũ ∈ uD + H
1
−1,ΓD

(Ω),

i.e., u − ũ ∈ H
1
−1,ΓD

(Ω). Obviously (since the subsequent max-property is true for any

Hilbert3 space), by (24) we have
∥∥ν1/2∇(u− ũ)

∥∥2
0,Ω

= max
ϕ∈H1

−1,ΓD
(Ω)

(
2
〈
ν∇(u − ũ),∇ϕ

〉
0,Ω

− ‖ν1/2∇ϕ‖20,Ω
)

≥ 2〈ν∇u,∇ϕ〉0,Ω − 2〈ν∇ũ,∇ϕ〉0,Ω − ‖ν1/2∇ϕ‖20,Ω
= 2〈f, ϕ〉0,Ω + 2〈q, divϕ〉0,Ω −

〈
ν∇(2ũ+ ϕ),∇ϕ

〉
0,Ω

+ 2〈p− q, divϕ〉0,Ω

and the maximum is attained at ϕ = u−ũ ∈ H1
−1,ΓD

(Ω). The last term can be simply (but

rather coarsly) estimated by Theorem 4.4 (p̃ = q), what yields the estimate presented
below.

Theorem 4.7. For all ũ, v ∈ uD +H1
−1,ΓD

(Ω) and all ϕ ∈ H1
−1,ΓD

(Ω), τ ∈ DΓN
(Ω), and

q ∈ L2(Ω) we have
∥∥ν1/2∇(u− ũ)

∥∥2
0,Ω

≥ 2〈f, ϕ〉0,Ω + 2〈q, divϕ〉0,Ω −
〈
ν∇(2ũ+ ϕ),∇ϕ

〉
0,Ω

− 2κ(Ω,ΓD)‖ divϕ‖0,Ω
(
(ν

−1/2
⊖ ν

1/2
⊕ + 1)cFP(Ω,ΓD)‖ div τ + f‖1,Ω

+ 2ν
1/2
⊕

∥∥ν−1/2(τ + q I− ν∇v)
∥∥
0,Ω

+ 2ν⊕κ(Ω,ΓD)‖ div v‖0,Ω
)
.

In particular, v = ũ is possible. If ϕ ∈ S−1,ΓD
(Ω), then the simple lower bound

∥∥ν1/2∇(u− ũ)
∥∥2
0,Ω

≥ 2〈f, ϕ〉0,Ω −
〈
ν∇(2ũ + ϕ),∇ϕ

〉
0,Ω

is true. Moreover, equality occurs for ϕ = u − ũ, provided that the approximation ũ is
also solenoidal, i.e., ũ ∈ uD + S−1,ΓD

(Ω).

To handle a nonconforming approximation Υ̃ ∈ L2(Ω), we can simply utilise the
triangle inequality and apply Theorem 4.7.

3In any Hilbert space H it is true that ‖x‖2 = maxy∈H

(

2〈x, y〉 − ‖y‖2
)

, in our case we can set

H = L2(Ω).
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Theorem 4.8. Let Υ̃ ∈ L2(Ω). Then for all ϕ ∈ H1
−1,ΓD

(Ω), τ ∈ DΓN
(Ω), q ∈ L2(Ω),

and ũ, v ∈ uD + H
1
−1,ΓD

(Ω), we have
∥∥ν1/2(Υ− Υ̃)

∥∥
0,Ω

≥
∥∥ν1/2∇(u− ũ)

∥∥
0,Ω

−
∥∥ν1/2(∇ũ− Υ̃)

∥∥
0,Ω
,

∥∥ν1/2∇(u − ũ)
∥∥2

0,Ω
≥ 2〈f, ϕ〉0,Ω + 2〈q, divϕ〉0,Ω −

〈
ν∇(2ũ + ϕ),∇ϕ

〉
0,Ω

− 2κ(Ω,ΓD)‖ divϕ‖0,Ω
(
(ν

−1/2
⊖ ν

1/2
⊕ + 1)cFP(Ω,ΓD)‖ div τ + f‖1,Ω

+ 2ν
1/2
⊕

∥∥ν−1/2(τ + q I− ν∇v)
∥∥
0,Ω

+ 2ν⊕κ(Ω,ΓD)‖ div v‖0,Ω
)
.

4.6. Special case: 2D exterior domains. For a Lipschitz domain D ⊂ R
2 we intro-

duce somewhat different weighted spaces by using logarithmic weights, namely,

L
2
±1,ln(D) :=

{
φ ∈ L

2
loc(D) :

(
ρ ln(e + ρ)

)±1
φ ∈ L

2(D)
}
,

H
1
−1,ln(D) :=

{
φ ∈ L

2
−1,ln(D) : ∇φ ∈ L

2(D)
}
,

where e is the Euler number, see, e.g., [16, 43, 9]. We notice that at infinity
(
ρ ln(e+ρ)

)±1

behaves like (r ln r)±1. The inner product in L2±1,ln(D) is defined by the relation

〈φ , ψ 〉±1,ln,D :=
〈(
ρ ln(e+ ρ)

)±2
φ , ψ

〉
0,D

.

All other weighted spaces and norms are modified and defined in a similar way.
The sets Ω ⊂ R

2 and ω ⊂ R
2 are defined as in §2, i.e., Ω ⊂ R

2 is an exterior Lipschitz
domain and ω is a certain truncation of Ω. The situation is now different from the case of
d ≥ 3 because the constants4 will be integrable in our weighted spaces, i.e., 1 ∈ L

2
−1,ln(Ω).

Introducing additionally

H
1
−1,ln,∅(Ω) := H

1
−1,ln(Ω) ∩ R

⊥
−1,ln,Ω

we have the following Friedrichs/Poincaré estimate for exterior domains.

Lemma 4.9. There exists c > 0 such that

‖v‖−1,ln,Ω ≤ c‖∇v‖0,Ω
for all v ∈ H1

−1,ln,ΓD
(Ω). The best constant c is denoted by cFP(Ω,ΓD). In the special

case where Be ⊂ R
d \ Ω and ΓD = Γ, we have cFP(Ω,Γ) ≤ 2.

This theorem follows from [27, Appendix 4.2, Lemma 4.1, Corollary 4.2, Remark 4.3],
see also [43, Lemma 4.1] and [28, 16]. It should be noted that in this case we need
boundary or mean value conditions as in the case of a bounded domain. Now, all results
from the sections for d ≥ 3 follow with obvious modifications. In particular, the stability
Lemma 3.2 reads as follows.

Lemma 4.10. There exists c > 0 such that for any h ∈ L2(Ω) there exists uh ∈
H1

−1,ln,ΓD
(Ω) with

div uh = h and ‖∇uh‖0,Ω ≤ c‖h‖0,Ω.
The best constant is denoted by κ(Ω,ΓD) and satisfies the estimate

κ(Ω,ΓD) ≤ κ⊕(Ω,ΓD) := (1 + κ)
(
1 + cP(R

2)αρ(r2) ln(e + ρ(r2))
)

with

α = α(r1, r2, η) = max
x∈Br2

\Br1

∣∣∇η(x)
∣∣ and κ = min

{
κ(ω, γD), κ(ω, γ)

}
.

4Specifically, (r ln r)−1 ∈ L2(Bǫ), (r ln r)−1 /∈ L2(B1+ǫ \ B1−ǫ), (r ln r)−1 ∈ L2(R2 \ B1+ǫ) for
0 < ǫ < 1.
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If h has compact support in ω and (if ΓD = Γ) additionally
∫
Ω
h =

∫
ω
h = 0, then uh can

be chosen with a compact support in ω as well, in particular uh ∈ H1
γD

(ω) ⊂ H1
ΓD

(Ω). In
this case, κ(Ω,ΓD) ≤ κ(ω, γD).

Estimates of the distance to the set of solenoidal fields are derived quite similarly.

Corollary 4.11. For any u ∈ H1
−1,ln,ΓD

(Ω) there exists a solenoidal u0 ∈ S−1,ln,ΓD
(Ω)

such that

dist
(
u, S−1,ln,ΓD

(Ω)
)
≤

∥∥∇(u − u0)
∥∥
0,Ω

≤ κ(Ω,ΓD)‖ div u‖0,Ω.

For any u ∈ H
1
−1,ln(Ω) there exists a solenoidal u0 ∈ S−1,ln(Ω) such that

u− u0 ∈ H
1
−1,ln,ΓD

(Ω),

i.e., u0|ΓD
= u|ΓD

, and
∥∥∇(u − u0)

∥∥
0,Ω

≤ κ(Ω,ΓD)‖ div u‖0,Ω.

Another obvious corollary is the inf-sup lemma for 2D exterior domains.

Corollary 4.12. We have

inf
h∈L2(Ω)

sup
u∈H1

−1,ln,ΓD
(Ω)

〈h, div u〉0,Ω
‖h‖0,Ω‖∇u‖0,Ω

≥ 1

κ(Ω,ΓD)
.

As in the case of d ≥ 3, the solvability of the Stokes problem and respective energy
estimates follow. Below we recall these results. Let

L
2
1,ln,ΓN

(Ω) :=

{
L21,ln(Ω) if ΓD 6= ∅,

L
2
1,ln,⊥(Ω) if ΓD = ∅,

and

L
2
1,ln,⊥(Ω) := L

2
1,ln(Ω) ∩ (R2)⊥0,Ω =

{
φ ∈ L

2
1,ln(Ω) :

∫

Ω

φi = 0
}
.

Corollary 4.13. For ν, f ∈ L21,ln,ΓN
(Ω), and uD ∈ S−1,ln(Ω), the 2D Stokes system is

uniquely solvable with a solenoidal vector field u = uD+û ∈ uD+S−1,ln,ΓD
(Ω) ⊂ S−1,ln(Ω)

and p ∈ L2(Ω). Moreover,

ν‖∇û‖0,Ω ≤ cFP(Ω,ΓD)‖f‖1,ln,Ω + ν‖∇uD‖0,Ω,
ν‖∇u‖0,Ω ≤ cFP(Ω,ΓD)‖f‖1,ln,Ω + 2ν‖∇uD‖0,Ω,

‖p‖0,Ω ≤ 2κ(Ω,ΓD)
(
cFP(Ω,ΓD)‖f‖1,ln,Ω + ν‖∇uD‖0,Ω

)
.

Now we address the subject of a posteriori error estimation and introduce the sets

D(Ω) :=
{
τ ∈ L

2(Ω) : div τ ∈ L
2
1,ln(Ω)

}

and DΓN
(Ω) as the closure of C∞

ΓN
(Ω)-tensor fields in the norm of D(Ω). For errors

encompassed in approximation of the velocity field we have the following results, which
repeat (with some modifications) those derived for d ≥ 3. First, we present an analog of
Theorem 4.2.

Theorem 4.14. Let ũ ∈ uD + H1
−1,ln,ΓD

(Ω). Then for all τ ∈ DΓN
(Ω) and q ∈ L2(Ω)

we have
∥∥ν1/2∇(u − ũ)

∥∥
0,Ω

≤ ν
−1/2
⊖ cFP(Ω,ΓD)‖ div τ + f‖1,ln,Ω

+
∥∥ν−1/2(τ + q I− ν∇ũ)

∥∥
0,Ω

+ 2ν
1/2
⊕ κ(Ω,ΓD)‖ div ũ‖0,Ω.
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As in the case of d ≥ 3, the estimate is simplified if div ṽ = 0 in R
2 \ Br2 and

additionally (if ΓD = Γ) condition (38) is satisfied. Then, in Theorem 4.14 we can
replace the constant κ(Ω,ΓD) by κ(ω, γD). If the approximation ũ is solenoidal in Ω,
then the last term vanishes and we arrive at estimates similar to Theorem 4.1. They
possess the same property: the upper bound coincides with the norm of the error on the
left-hand side if τ = σ and p = q (i.e., the estimate is sharp in the sense that there is no
“gap” between its left- and right-hand sides).

For the approximation of the pressure function, Theorem 4.4 is modified as follows.

Theorem 4.15. Let p̃ ∈ L2(Ω). Then for all τ ∈ DΓN
(Ω) and all ũ ∈ uD +H1

−1,ln,ΓD
(Ω)

we have

‖p− p̃‖0,Ω ≤ κ(Ω,ΓD)
(
(ν

−1/2
⊖ ν

1/2
⊕ + 1)cFP(Ω,ΓD)‖ div τ + f‖1,ln,Ω

+ 2ν
1/2
⊕

∥∥ν−1/2(τ + p̃ I− ν∇ũ)
∥∥
0,Ω

+ 2ν⊕κ(Ω,ΓD)‖ div ũ‖0,Ω
)
.

Finally, we consider a nonconforming approximation ũ and obtain analogs of the
theorems exposed in Subsection 4.3.

Theorem 4.16. Suppose that Υ̃ ∈ L2(Ω) and p̃ ∈ L2(Ω). Then for all ũ ∈ uD +
H

1
−1,ln,ΓD

(Ω), τ ∈ DΓN
(Ω), and q ∈ L

2(Ω) we have
∥∥ν1/2(Υ − Υ̃)

∥∥
0,Ω

≤ ν
−1/2
⊖ cFP(Ω,ΓD)‖ div τ + f‖1,ln,Ω +

∥∥ν−1/2(τ + q I− ν∇ũ)
∥∥
0,Ω

+ 2ν
1/2
⊕ κ(Ω,ΓD)‖ div ũ‖0,Ω +

∥∥ν1/2(∇ũ− Υ̃)
∥∥
0,Ω

≤ ν
−1/2
⊖ cFP(Ω,ΓD)‖ div τ + f‖1,ln,Ω +

∥∥ν−1/2(τ + q I− νΥ̃)
∥∥
0,Ω

+ 2ν
1/2
⊕ κ(Ω,ΓD)‖ div ũ‖0,Ω + 2

∥∥ν1/2(∇ũ − Υ̃)
∥∥
0,Ω

and

‖p− p̃‖0,Ω ≤ κ(Ω,ΓD)
(
(ν

−1/2
⊖ ν

1/2
⊕ + 1)cFP(Ω,ΓD)‖ div τ + f‖1,ln,Ω

+ 2ν
1/2
⊕

∥∥ν−1/2(τ + p̃ I− νΥ̃)
∥∥
0,Ω

+ 2ν⊕κ(Ω,ΓD)‖ div ũ‖0,Ω

+ 2ν
1/2
⊕ ‖ν1/2(∇ũ − Υ̃)‖0,Ω

)
.

For Υ̃ = ∇ũ, where ũ ∈ uD + H
1
−1,ln,ΓD

(Ω), we recover Theorem 4.14 and The-
orem 4.15. As in Subsection 4.4, error estimates for the stress tensor field σ follow
immediately by the triangle inequality.

Finally, we briefly present lower bounds of the error derived in the spirit of Subsec-
tion 4.5.

Theorem 4.17. For all ũ, v ∈ uD+H1
−1,ln,ΓD

(Ω) and all ϕ ∈ H1
−1,ln,ΓD

(Ω), τ ∈ DΓN
(Ω),

and q ∈ L2(Ω) we have
∥∥ν1/2∇(u− ũ)

∥∥2
0,Ω

≥ 2〈f, ϕ〉0,Ω + 2〈q, divϕ〉0,Ω −
〈
ν∇(2ũ+ ϕ),∇ϕ

〉
0,Ω

− 2κ(Ω,ΓD)‖ divϕ‖0,Ω
(
(ν

−1/2
⊖ ν

1/2
⊕ + 1)cFP(Ω,ΓD)‖ div τ + f‖1,ln,Ω

+ 2ν
1/2
⊕

∥∥ν−1/2(τ + q I− ν∇v)
∥∥
0,Ω

+ 2ν⊕κ(Ω,ΓD)‖ div v‖0,Ω
)
.

In particular, v = ũ is possible. If ϕ ∈ S−1,ln,ΓD
(Ω), the estimate simplifies to

∥∥ν1/2∇(u− ũ)
∥∥2
0,Ω

≥ 2〈f, ϕ〉0,Ω −
〈
ν∇(2ũ + ϕ),∇ϕ

〉
0,Ω

and equality occurs for ϕ = u− ũ, provided that ũ ∈ uD + S−1,ln,ΓD
(Ω).
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Finally, to handle nonconforming approximations Υ̃ ∈ L2(Ω) we use again the triangle
inequality to estimate

∥∥ν1/2(Υ− Υ̃)
∥∥
0,Ω

≥
∥∥ν1/2∇(u− ũ)

∥∥
0,Ω

−
∥∥ν1/2(∇ũ− Υ̃)

∥∥
0,Ω
,

whenever ũ ∈ uD + H1
−1,ln,ΓD

(Ω). Theorem 4.17 applied to the first term on the right-
hand side yields an estimate similar to Theorem 4.8.
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