
Reports of the Department of Mathematical Information Technology
Series B. Scientific Computing
No. B. 11/2007

Generalized Maxwell Equations
in

Exterior Domains V:
Low Frequency Asymptotics

Dirk Pauly

University of Jyväskylä
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1 Introduction and main results

We continue (and finish) our studies started in [25] and [26] on the low frequency
behaviour of the solution operator

Lω : L2,q,q+1
s (Ω) −→ L2,q,q+1

t (Ω)
(F,G) 7−→ (E,H)

, ∀ s,−t > 1/2

of the generalized1 time-harmonic Maxwell equation

divH + iωεE = F , rotE + iωµH = G

shortly written as
(M + iωΛ)(E,H) = (F,G) (1.1)

with homogeneous (Dirichlet) electric boundary condition

ΓtE = 0

(modeling a perfect conductor) in an exterior domain Ω ⊂ RN of dimension N ∈ N
(i.e. a connected open set with compact complement), where Γt := ι∗ denotes the
tangential trace and ι : ∂ Ω ↪→ Ω the natural embedding of the boundary. We note

that the range of Lω is even contained in
◦
Rq
t (Ω)× Dq+1

t (Ω) . Here (E,H) , (F,G) are

pairs of alternating differential forms of rank q resp. q + 1 and M =

[
0 div

rot 0

]
,

where following Weyl [55] and to remind of the electro-magnetic background rot
resp. div denotes the exterior derivative resp. co-derivative

rot = d resp. div = (−1)qN ∗ d∗
1Here ‘generalized’ means the framework of alternating differential forms.
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on q- resp. (q+1)-forms and ∗ the usual Hodge star isomorphism . Furthermore, the
frequencies ω will be taken from the upper half plane C+ = {z ∈ C : Im z ≥ 0} . We
define

L2,q,p
s (Ω) := L2,q

s (Ω)× L2,p
s (Ω) , q, p ∈ Z , s ∈ R ,

where L2,q
s (Ω) is the Hilbert space of all differential forms E ∈ L2,q

loc(Ω) satisfying
ρsE ∈ L2,q(Ω)2 , equipped with the scalar product

〈E,H〉L2,q
s (Ω) :=

∫
Ω

ρ2sE ∧ ∗H̄ .

Here ∧ denotes the exterior product and the bar complex conjugation.
We are going to model inhomogeneous, anisotropic and nonsmooth media by

Λ =

[
ε 0
0 µ

]
and linear L∞-transformations ε and µ on q- and (q + 1)-forms, i.e.

dielectricity and permeability. Moreover, our right hand sides (F,G) from L2,q,q+1
s (Ω)

under consideration do not have to be necessarily compactly supported.
The study of wave scattering at low frequencies was pioneered by Lord Rayleigh

[36]. His contributions provide the foundation on which almost all subsequent work
is based. Low frequency asymptotics for Maxwell’s boundary value problem have
been given, for instance, by Müller and Niemeyer [23], Stevenson [37], Kleinman
[11], Werner [49, 50, 51, 52, 54], Kress [12], Ramm [33], Kriegsmann and Reiss [13],
Ramm, Weaver, Weck and Witsch [35], Athanasiadis, Costakis and Stratis [5] as well
as by Picard [30] and Weck and Witsch [40]. We also should mention the book of
Dassios and Kleinman [7]. Ramm and Somersalo [34] and Lassas [15] considered
the low frequency limit from the point of view of inverse problems.

In none of the works cited above the calculation of the higher order terms in
a suitable expansion in terms of the frequency is analyzed. Ammari and Nédélec
proved in [2, 4] such expansions. They reformulated the exterior boundary value
problem in a truncated bounded domain using an ‘exterior electromagnetic opera-
tor’, called by Monk [19] the ‘electric to magnetic Calderon operator’ or by Colton
and Kress [6] the ‘electric to magnetic boundary component map’, which is the
counterpart of the Dirichlet to Neumann operator for Helmholtz’ equation. Unfor-
tunately due to the asymptotic expansion of the exterior electromagnetic operator
their method requires exact nonlocal radiation conditions, which leads to nonlocal
boundary conditions on a sphere. Thus, it is not possible to identify the expected
Neumann series part of the corresponding static solution operator in the solution.
Furthermore, they discuss only the case

( [ 0 − curl
curl 0

]
− iω(Id +Λ̂)

)
(E,H) = − iωΛ̂(F,G) ,

where (F,G) is the time independent part of a time-harmonic incoming wave and Λ̂
some compactly supported perturbation.

2Here ρ(r) := (1 + r2)1/2 and r(x) = |x| for x ∈ RN .
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To overcome these problems and limitations and to identify the usual Neumann
series part of a static solution operator Weck and Witsch started in [41, 42, 43, 44]
an detailed analysis of the low frequency behavior of solutions of Helmholtz’ equa-
tion. In [45] their new method was completed. They identified degenerate correc-
tion operators in terms of special ‘polynomially growing’ solutions to a correspond-
ing static problem, which must be added to the ‘usual’ Neumann series in order to
describe the low frequency asymptotic adequately. With the help of [46], where a
calculus for spherical coordinates suited for differential forms has been established,
they were able to apply and extend their methods to the case of generalized linear
elasticity.

Now in this paper we transfer their ‘Weck-Witsch-method’ to the case of gener-
alized Maxwell equations. Hereby we again utilize [46] as an important tool and
also the preliminary works [25, 26, 27]. Thus, throughout this paper we will use the
notations introduced in these papers.

All these low frequency investigations are not only motivated by the problem in
its own right, but also by its applications to the large time behavior of solutions to
the initial boundary value problems for the (generalized) wave equation and to the
existence proofs for nonlinear (generalized) wave equations. In this context we may
refer to Eidus’ principle of limiting amplitude [9] and, for instance, the papers of
Werner [53] as well as Morgenröther and Werner [20, 21].

In [25] we studied the time-harmonic solutions of (1.1). Since the linear operator

M :
◦
Rq(Ω)× Dq+1(Ω) ⊂ ΛL2,q,q+1(Ω) −→ ΛL2,q,q+1(Ω)

(E,H) 7−→ i Λ−1M(E,H)

is selfadjoint, we were able to obtain radiation solutions (E,H) for nonvanishing
real frequencies and right hand sides (F,G) ∈ L2,q,q+1

> 1
2

(Ω) by means of Eidus’ lim-
iting absorption principle [8] (approaching from the upper half plane C+). These
solutions are elements of L2,q,q+1

<− 1
2

(Ω) and satisfy the Maxwell radiation condition, i.e.

(S̃ + Id)(E,H) ∈ L2,q,q+1

>− 1
2

(Ω) , S̃ =

[
0 (−1)qN ∗ R̃∗
R̃ 0

]
, R̃ = dr∧

(
see [25, section 2] for details

)
. In other words the resolvent (M − ω)−1 of M and

hence also Lω = i(M−ω)−1Λ−1 may be extended continuously to the real axis. Then
using the fundamental solution of Helmholtz’ equation in the whole space RN we
showed that eventually eigenvalues of M do not accumulate even at ω = 0 . This
makes Lω well defined on the whole of L2,q,q+1

s (Ω) for small frequencies 0 6= ω ∈ C+ .
Finally we proved in [25, Corollary 4.5] that Lω restricted to the closed subspace
Regq,0s (Ω)3 of L2,q,q+1

s (Ω) converges to the static solution operator L0 as ω tends to

zero in the norm of bounded linear operators from Regq,0s (Ω) to
◦
Rq
t (Ω)×Dq+1

t (Ω) for
all s ∈ (1/2, N/2) and t < s− (N + 1)/2 . Here Regq,0s (Ω) consists of solenoidal resp.

3See Definition 2.1
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irrotational forms and

L0 : Regq,0(Ω) −→
( ◦
Rq
−1(Ω)× Dq+1

−1 (Ω)
)
∩ Λ−1 Regq,0−1(Ω)

(F,G) 7−→ (E,H)
,

where (E,H) ∈ L2,q,q+1
−1 (Ω) is the unique solution of the (decoupled) static Maxwell

problem

rotE = G , div εE = 0 , ι∗E = 0 , εE⊥
◦
Bq(Ω) ,

divH = F , rotµH = 0 , ι∗µH = 0 , µH⊥Bq+1(Ω) ,

which may be written shortly as

(E,H) ∈
( ◦
Rq
−1(Ω)× Dq+1

−1 (Ω)
)
∩ Λ−1 Regq,0−1(Ω) ∧ M(E,H) = (F,G) .

The special forms from
◦
Bq(Ω) resp. Bq+1(Ω) possess compact resp. bounded sup-

ports in Ω and they play the role of the Dirichlet forms εH
q(Ω) resp. µ−1Hq+1(Ω) ,

where νH
q(Ω) = νH

q
0(Ω) and for t ∈ R (in classical or strong terms)

νH
q
t (Ω) =

{
E ∈ L2,q

t (Ω) : rotE = 0 , div νE = 0 , ι∗E = 0
}

.

Due to the existence of a nontrivial kernel of the Maxwell operator these (or other)
orthogonality constraints are necessary.

In the bounded domain case it is just an easy exercise to show that Lω is approx-
imated by Neumann’s series of L0 or L = ΛL0 for small frequencies ω , i.e.

Lω = −(− iω)−1Π +
∞∑
j=0

(− iω)j L0 Lj Πreg , (1.2)

where Π and Πreg = Id−ΛΠ are projections onto the kernel of M and its orthogo-
nal complement in L2,q,q+1(Ω) . In the case of an exterior domain this low frequency
asymptotic holds no longer true, because due to Poincare’s estimate for Maxwell
equations the static solution operator maps data from a polynomially weighted
Sobolev space to solutions belonging to a less weighted Sobolev space. So a pri-
ori it is not clear, in which way one may define higher powers of a static solution
operator.

In [26] we took care of some electro-magneto static problems and were able to
prove that an (not obvious and relatively complicated) iteration process of a suitable
static solution operator L still holds true [26, Theorem 5.10]. This gives meaning to
the powers Lj of L as continuous linear operators on subspaces of Regq,0loc(Ω) even
for exterior domains. As a byproduct we proved a generalized spherical harmonics
expansion suited for Maxwell equations, which will be used frequently in this paper
as well.
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Now in this paper, which is the third and last one of our little series, we analyze
the solution formula (1.2) and try to give meaning to it in exterior domains in the
sense of an asymptotic expansion

Lω +(− iω)−1Π−
J−1∑
j=0

(− iω)j L0 Lj Πreg = O
(
|ω|J

)
, J ∈ N0 . (1.3)

Thereby we follow closely the ideas of Weck and Witsch [45] and [47, 48]. Due to
our exterior boundary value problems there arise three major complications:

1. With growing J we have to use stronger norms for the data and obtain esti-
mates in weaker norms for the solutions.

2. As Π and Πreg already indicate we need weighted Hodge-Helmholtz decom-
positions of L2,q,q+1

s (Ω) respecting inhomogeneities Λ . In [27] we presented
results, which will meet our needs. In fact we proved topological direct de-
compositions

L2,q,q+1
s (Ω) =

(
Λ Triqs(Ω)u Regq,−1

s (Ω)
)
∩ L2,q,q+1

s (Ω) ,

where Triqs(Ω) = Π L2,q,q+1
s (Ω) and Regq,−1

s (Ω) = ΠregL2,q,q+1
s (Ω) . We note

Triqs(Ω) ⊂ 0

◦
Rq
t (Ω)× 0Dq+1

t (Ω) ,

Regq,−1
s (Ω) ⊂ Regq,0t (Ω) ⊂ 0Dq

t (Ω)× 0

◦
Rq+1
t (Ω)

are only subspaces of L2,q,q+1
t (Ω) with t ≤ s and t < N/2 and even not of

L2,q,q+1
s (Ω) if s ≥ N/2 .

(
See Lemma 3.8, [27]

)
3. We have to correct (1.3) by special operators Γj .

More precisely for J ∈ N0 and s,−t > 1/2 we shall look for asymptotic estimates
like

∣∣∣∣Lω(F,G) + (− iω)−1Π(F,G)−
J−1∑
j=0

(− iω)j L0 Lj Πreg(F,G)

−
J−N∑
j=0

(− iω)j+N−1Γj(F,G)
∣∣∣∣

L2,q,q+1
t (Ω)

= O
(
|ω|J

)∣∣∣∣(F,G)
∣∣∣∣

L2,q,q+1
s (Ω)

.

(1.4)

Hereby the O-symbols are always meant for ω → 0 and uniformly with respect to
ω ∈ C+,ω̂ \ {0} and (F,G) , where C+,ω̂ :=

{
ω ∈ C+ : |ω| ≤ ω̂

}
for some ω̂ > 0 .
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Throughout this paper we will make the following

General Assumptions:

• We restrict our considerations to ranks of forms

1 ≤ q ≤ N − 2

and odd space dimensions N 3 N ≥ 3 . Hence, of course the most interesting
case of the classical Maxwell equations, N = 3 and q = 1 , is covered. The
treatment of even dimensions (especially N = 2) would increase the complex-
ity of our calculations considerably due to the appearance of logarithmic terms
in the fundamental solution for Helmholtz’ equation (Hankel functions). But
there is no reasonable doubt that our methods can be used to obtain similar
results in any even dimension as well.

• We fix a radius r0 > 0 and some radii rn := 2nr0 , n ∈ N , such that

RN \ Ω ⊂ Ur0 .

Moreover, we remind of the cut-off functions η , η̂ and η from [14, (3.1), (3.2),
(3.3)]. η satisfies supp η = Ar1 , supp∇η = Ar1 ∩ Ur2 . Here for r > 0

Ur :=
{
x ∈ RN : |x| < r

}
, Ar :=

{
x ∈ RN : |x| > r

}
.

• For simplicity Ω ⊂ RN may have a Lipschitz boundary. In fact, Ω only needs to
have the Maxwell local compactness property MLCP from [14, Definition 3.1,
Remark 3.2], i.e. the inclusions

◦
Rq(Ω) ∩ Dq(Ω) ↪→ L2,q

loc(Ω)

have to be compact for all q , as well as the static Maxwell property SMP from

[26, section 4], i.e. the existence of special forms
◦
Bq(Ω) and Bq+1(Ω) must be

guaranteed. Anyhow, Lipschitz domains possess these properties.

• We assume ε = Id +ε̂ and µ = Id +µ̂ to be τ -C1-admissible
(
see [25, Definitions

2.1, 2.2]
)

linear transformations on q- resp. (q + 1)-forms with some rate of
decay τ > 0 , which will vary throughout this paper. The greek letter τ always
stands for the order of decay of the perturbations ε̂ and µ̂ . Clearly we then
have Λ = Id +Λ̂ . Hence, our transformations may have L∞-entries, which
are only assumed to be C1 in Ar0 and asymptotically homogeneous, i.e. ∂α Λ̂
decays like r−τ−|α| for all multi-indices α with |α| ≤ 1 with some order τ at
infinity.
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We may describe our results shortly as follows:

1. We shall identify degenerate correction operators Γj by a recursion which in-
volves only special solutions E+

σ,m and H+
σ,n as well as their powers

E+,k
σ,m = Lk Λ(E+

σ,m, 0) , H+,k
σ,n = Lk Λ(0, H+

σ,n)

of L of our homogeneous static boundary value problems

rotE+
σ,m = 0 , div εE+

σ,m = 0 , ι∗E+
σ,m = 0 , εE+

σ,m⊥
◦
Bq(Ω) ,

divH+
σ,n = 0 , rotµH+

σ,n = 0 , ι∗µH+
σ,n = 0 , µH+

σ,n⊥ Bq+1(Ω) ,

but with inhomogeneities at infinity, namely

E+
σ,m − +Dq,0

σ,m ‘decays’, i.e. belongs to L2,q

>−N
2

(Ω) ,

H+
σ,n − +Rq+1,0

σ,n ‘decays’, i.e. belongs to L2,q+1

>−N
2

(Ω) ,

where the special growing tower forms +Dq,k
σ,m and +Rq+1,k

σ,n from [26, section 2]
behave like rk+σ at infinity.

(
See Lemma 2.4, Remark 2.5, Lemma 2.6, Defini-

tion 3.4, Definition 3.12
)

2. On the ‘trivial’ subspace Triqs(Ω) the solution operator Lω behaves like the di-
vision by the frequency, i.e.

iωLω Λ(F,G) = (F,G) , ∀ (F,G) ∈ Triqs(Ω) .(
See (3.40)

)
3. We shall identify closed subspaces Regq,Js (Ω) of L2,q,q+1

s (Ω)
(
and of Regq,0s (Ω)

)
,

the ‘spaces of regular convergence’, for whose elements (F,G) the ‘usual’ Neu-
mann expansion

∣∣∣∣Lω(F,G)−
J−1∑
j=0

(− iω)j L0 Lj(F,G)
∣∣∣∣

L2,q,q+1
t (Ω)

= O
(
|ω|J

)∣∣∣∣(F,G)
∣∣∣∣

L2,q,q+1
s (Ω)

holds true. We are also able to characterize the spaces of regular convergence
by orthogonality relations with the aid of the special static solutions E+,k

σ,m and
H+,k
σ,n .

(
See Theorem 2.3, Lemma 2.15

)
4. For (F,G) ∈ Regq,−1

s (Ω) we obtain the corrected Neumann expansion

∣∣∣∣Lω(F,G)−
J−1∑
j=0

(− iω)j L0 Lj(F,G)−
J−N∑
j=0

(− iω)j+N−1Γj(F,G)
∣∣∣∣

L2,q,q+1
t (Ω)

= O
(
|ω|J

)∣∣∣∣(F,G)
∣∣∣∣

L2,q,q+1
s (Ω)

and for general (F,G) ∈ L2,q,q+1
s (Ω) we get the fully corrected Neumann ex-

pansion (1.4). (See Main Theorem)
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5. Concerning our media Λ = Id +Λ̂ we shall distinguish between two kinds of
assumptions on our inhomogeneities:

(a) Λ̂ has compact support. Then we may always choose r0 , such that

supp Λ̂ ⊂ Ur0 .

(b) Λ̂ ‘decays’ with a rate τ > 0 at infinity in the sense of Λ is τ -C1-admissible.

In the first case our results will hold for any J , whereas in the second case only
J ≤ Ĵ with some Ĵ depending on τ are allowed.

Due to [26], [46] and originally [18] we have to exclude a discrete set of ‘bad’
weights, namely

I := (N0 +N/2) ∪ (1−N/2− N0) = {n+N/2, 1− n−N/2 : n ∈ N0} .

Our main result of this paper reads as follows:

Main Theorem Let J ∈ N and s ∈ R \ I as well as

s > J + 1/2 ,

t < min{N/2− J− 2 , −1/2} ,

τ > max
{

(N + 1)/2 , s− t
}

.

Then there exists some ω̂ > 0 , such that the asymptotic

Lω +(− iω)−1Π−
J−1∑
j=0

(− iω)j L0 Lj Πreg −
J−N∑
j=0

(− iω)j+N−1Γj = O
(
|ω|J

)
holds uniformly with respect to C+,ω̂ \{0} 3 ω → 0 in the norm of bounded linear operators
from L2,q,q+1

s (Ω) to L2,q,q+1
t (Ω) . This asymptotic also holds true for J = 0 , if we replace the

assumptions on t and τ by

t ≤ s− (N + 1)/2 , t < −1/2

and
τ > max

{
(N + 1)/2, s+ 1−N/2

}
.
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Remark A These asymptotics remain valid even in stronger norms. In the norm of bounded

linear operators from L2,q,q+1
s (Ω) to

◦
Rq
t (Ω)× Dq+1

t (Ω) we obtain the estimate if we assume
additionally t ≤ s − (N + 1)/2 in the case J = 1 . In the (strongest) norm of bounded

linear operators from L2,q,q+1
s (Ω) to

◦
Rq
t (Ω) × Dq+1

t (Ω) the estimate holds true if we assume
additionally t < −3/2 and moreover t ≤ s− (N + 3)/2 if J ∈ {0, 1} .

Remark B Using the estimate (ii) instead of (i) from Theorem 2.3 during our considerations
in section 3 we would achieve asymptotics with the small o-symbol instead of O . As an
example we obtain (for nearly the same s , t and τ )

Lω +(− iω)−1Π−
J∑
j=0

(− iω)j L0 Lj Πreg −
J−N+1∑
j=0

(− iω)j+N−1Γj = o
(
|ω|J

)
.

Choosing here J = 1 we may easily conclude the differentiability of Lω in ω = 0
as an operator acting on Regq,−1

s (Ω) = ΠregL2,q,q+1
s (Ω) . We obtain

Corollary Let s ∈ (3/2,∞) \ I and t < min{N/2− 3,−1/2} as well as

τ > max
{

(N + 1)/2 , s− t
}

.

Then
C+,ω̂ 3 ω 7−→ iLω ∈ B

(
Regq,−1

s (Ω),
◦
Rq
t (Ω)× Dq+1

t (Ω)
)

is differentiable in ω = 0 with derivative Λ−1 L2 .

Remark C Formally our solution of (1.1) satisfies the perturbed Helmholtz type equation([ε−1 div µ−1 rot 0
0 µ−1 rot ε−1 div

]
+ ω2

)
(E,H) = (Λ−1M − iω)Λ−1(F,G)

and
iω div εE = divF , iω rotµH = rotG ,

which imply([ε−1 div µ−1 rot + rot div ε 0
0 µ−1 rot ε−1 div + div rotµ

]
+ ω2

)
(E,H)

=
( 1

iω

[
rot div 0

0 div rot

]
Λ + Λ−1M − iω

)
Λ−1(F,G) .

We note ∆ = div rot + rot div . Due to this formula and under certain regularity restric-
tions on (F,G) the cases q = 0 and q = N−1 are equivalent to scalar (perturbed) Helmholtz
problems for E andH , since E for q = 0 andH for q = N−1 are scalar functions. The first
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case q = 0 , i.e. a Helmholtz equation with homogeneous Dirichlet boundary condition for
E , has already been discussed in [45] or [48] and even for the most complicated case N = 2
in [29]. The other case q = N−1 corresponds to a Helmholtz equation with homogeneous or
inhomogeneous Dirichlet boundary condition iωµH = G on ∂ Ω for H and can be handled
analogously to the case q = 0 using an adequate extension operator.
However, also in the case q = N − 1 our techniques work. The only difference is that
now some exceptional ‘tower forms’ occur. Due to their appearance we have to tackle some
additional difficulties and the correction operators occur already at the power ωN−2 instead of
ωN−1 in the case 1 ≤ q ≤ N−2 . At this point we note in passing that for more regular data
from Regq,0s (Ω) the correction operators appear primarily at the power ωN for 1 ≤ q ≤ N−2
and at ωN−1 if q = N − 1 .

2 The spaces of regular convergence

First let us remind of the special tower forms

±Dq,k
σ,m , ±Rq,k

σ,m

and their properties from [26, section 2], which will be used frequently throughout
this paper. The main tool for their construction is the spherical coordinate calculus
developed in [46]. Hence, we shall use also many notations and results from this
paper. From this point of view the paper at hand demonstrates also an application
of [46].

Utilizing [26, Corollary 5.12] we define some special data spaces recursively by

Definition 2.1 Let J ∈ N and s ∈ (J−N/2,∞) \ I as well as τ > max{0, s−N/2} and
τ ≥ J− s− 1 . For j = 1, . . . ,J we define the ‘spaces of regular convergence’ via

Regq,0s (Ω) := 0Dq
s(Ω)× 0

◦
Rq+1
s (Ω) ,

Regq,js (Ω) :=
{

(F,G) ∈ Regq,j−1
s (Ω) : Lj(F,G) ∈ Regq,0s−j(Ω)

}
.

We will denote Regq,js (Ω) the ‘space of regular convergence of order j’.

Remark 2.2 We have

Regq,js (Ω) =
{

(F,G) ∈ Regq,0s (Ω) : Lj(F,G) ∈ L2,q,q+1
s−j (Ω)

}
.

In words, the space of regular convergence Regq,Js (Ω) is characterized by the following prop-
erty: For (F,G) ∈ Regq,Js (Ω) and j = 0, . . . ,J no tower-forms ηDq

I or ηRq+1
J appear in the

powers Lj(F,G) .

Clearly for the selfadjoint operator M introduced in [25] the resolvent-formula
hold for nonreal frequencies. Our next step is to show that this formula still holds
true for real frequencies and Lω acting on Regq,Js (Ω) up to the order J . Then Lω is
approximated by the usual Neumann sum up to the order J .
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For the purpose of a short notation let us put for J ∈ N0

Lω,J := Lω−
J∑
j=0

(− iω)j L0 Lj , Lω,−1 := Lω .

Theorem 2.3 Let J ∈ N0 and s ∈ (J + 1/2,∞) \ I as well as

τ > max
{

(N + 1)/2, s−N/2
}

.

Moreover, let ω̂ be as in [25, Lemma 4.2]. Then for all ω ∈ C+,ω̂ \ {0} on Regq,Js (Ω)

Lω,J−1 = (− iω)J Lω LJ , Lω,J = (− iω)J(Lω−L0)LJ .

Furthermore, for s ∈ (J + 1/2,J +N/2) \ I and t̃ < t := s− J− (N + 1)/2

(i)
∣∣∣∣Lω,J−1(F,G)

∣∣∣∣
L2,q,q+1
t (Ω)

= O
(
|ω|J

)∣∣∣∣(F,G)
∣∣∣∣

L2,q,q+1
s (Ω)

,

(ii)
∣∣∣∣Lω,J(F,G)

∣∣∣∣
L2,q,q+1

t̃
(Ω)

= o
(
|ω|J

)∣∣∣∣(F,G)
∣∣∣∣

L2,q,q+1
s (Ω)

hold uniformly with respect to (F,G) ∈ Regq,Js (Ω) .

Proof: Lω LJ(F,G) is well defined by [25, Theorem 2.17], since

Lj(F,G) ∈ Regq,0s−j(Ω) ⊂ L2,q,q+1

> 1
2

(Ω)

holds for j = 0, . . . ,J . Thus, also

(E,H) :=
J−1∑
j=0

(− iω)j L0 Lj(F,G) + (− iω)J Lω LJ(F,G)

is well defined. Because of s > J + 1/2 > J + 1 − N/2 even J + 1 powers of L may
be applied to (F,G) by [26, Corollary 5.12]. We get

(E,H) =
J∑
j=0

(− iω)j L0 Lj(F,G) + (− iω)J(Lω−L0)LJ(F,G) .

Furthermore, (E,H) ∈
◦
Rq

<− 1
2

(Ω) × Dq+1

<− 1
2

(Ω) satisfies the radiation condition. Since
M L0 = Id and (M + iωΛ)Lω = Id we obtain (M + iωΛ)(E,H) = (F,G) , which
yields (E,H) = Lω(F,G) .

Noting s− J ∈ (1/2, N/2) we may apply [25, Lemma 4.2 (iv)] to

LJ(F,G) ∈ Regq,0s−J(Ω)

and obtain uniformly in ω ∈ C+,ω̂ \ {0} and (F,G) ∈ Regq,Js (Ω) the estimate∣∣∣∣Lω LJ(F,G)
∣∣∣∣

L2,q,q+1
t (Ω)

≤ c
∣∣∣∣LJ(F,G)

∣∣∣∣
L2,q,q+1
s−J (Ω)

≤ c
∣∣∣∣(F,G)

∣∣∣∣
L2,q,q+1
s (Ω)

.
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(
We observe that LJ is continuous by [26, Corollary 5.12].

)
Analogously using [25,

Corollary 4.5] we may estimate∣∣∣∣(Lω−L0)LJ(F,G)
∣∣∣∣

L2,q,q+1

t̃
(Ω)
≤ || Lω−L0 ||Bs−J,t̃

∣∣∣∣LJ(F,G)
∣∣∣∣

L2,q,q+1
s−J (Ω)

≤ c|| Lω−L0 ||Bs−J,t̃

∣∣∣∣(F,G)
∣∣∣∣

L2,q,q+1
s (Ω)

again uniformly in ω ∈ C+,ω̂\{0} and (F,G) ∈ Regq,Js (Ω) , which completes the proof
since || Lω−L0 ||Bs−J,t̃

ω→0−−→ 0 . �

Now our aim is to characterize Regq,Js (Ω) utilizing orthogonality constraints. To
realize this we need special growing Dirichlet-forms, which will be defined in the
following lemma. Let us remind of the topological isomorphisms

Maxε := ε Maxqs−1 , M̃axµ := µ Maxq+1
s−1

for some s ∈ (1−N/2,∞) \ I introduced in [26, Theorem 4.6].

Lemma 2.4 Let σ ∈ N0 as well as τ > σ and τ ≥ N/2− 1 . Then for the counting indices
(m,n) ∈ {1, . . . , µqσ} × {1, . . . , µq+1

σ } the ‘special growing Dirichlet-forms’

E+
σ,m := (Id−Max−1

ε Maxε)η
+Dq,0

σ,m ,

H+
σ,n := (Id−M̃ax

−1

µ M̃axµ)η +Rq+1,0
σ,n

are well defined and belong to L2,q

<−N
2
−σ(Ω) resp. L2,q+1

<−N
2
−σ(Ω) . These are the unique solutions

of the electro-magneto static problems

MaxεE
+
σ,m = (0, 0, 0) , E+

σ,m − +Dq,0
σ,m decays ,

M̃axµH
+
σ,n = (0, 0, 0) , H+

σ,n − +Rq+1,0
σ,n decays .

Remark 2.5 To be more precise: E+
σ,m and H+

σ,n are the unique solutions of

E+
σ,m ∈ εH

q
loc(Ω) ∩

◦
Bq(Ω)⊥ε , E+

σ,m − +Dq,0
σ,m ∈ L2,q

>−N
2

(Ω) ,

µH+
σ,n ∈ µ−1H

q+1
loc (Ω) ∩ Bq+1(Ω)⊥ , H+

σ,n − +Rq+1,0
σ,n ∈ L2,q+1

>−N
2

(Ω) .

Here on one hand we used Maxε resp. M̃axµ as formal mappings, e.g.

Maxε =
(

div ε · , rot · , 〈ε · ,
◦
Bq

1〉, . . . , 〈ε · ,
◦
Bq
dq〉
)

,

and on the other hand Max−1
ε resp. M̃ax

−1

µ as the inverse operators.

13



Proof: Uniqueness is clear by [26, Lemma 3.8] and the properties of
◦
Bq(Ω) , Bq+1(Ω) ,

see [26, section 4]. Let us assume the well definedness of E+
σ,m for a moment. Since

MaxεE
+
σ,m = (0, 0, 0)

holds we obtain E+
σ,m ∈ εH

q
loc(Ω) ∩

◦
Bq(Ω)⊥ε . Moreover, E+

σ,m − +Dq,0
σ,m ∈ L2,q

>−N
2

(Ω)

because Max−1
ε maps in fact to L2,q

>−N
2

(Ω) and finally the integrability of E+
σ,m is de-

termined by the form η+Dq,0
σ,m , which belongs to L2,q

<−N
2
−σ(Ω) by [26, Remark 2.5].

Analogously we may handle H+
σ,n , which would prove the lemma.

So it remains to show that E+
σ,m is well defined. (Then surely H+

σ,n is well defined

as well by similar arguments.) With supp η ∩ supp
◦
bq` = ∅ and [26, Remark 2.5]

Maxε η
+Dq,0

σ,m =
(

div(εη+Dq,0
σ,m), rot(η+Dq,0

σ,m), 0
)

=
(
Cdiv,η

+Dq,0
σ,m + div(ε̂η+Dq,0

σ,m), Crot,η
+Dq,0

σ,m, 0
)

∈ 0Dq−1

<−σ−N
2

+τ+1
(Ω)× 0

◦
Rq+1

vox (Ω)× Cdq

holds. Now −σ −N/2 + τ + 1 > 1−N/2 since τ > σ and thus

Maxε η
+Dq,0

σ,m ∈Wq

>1−N
2

(Ω) .

Because also τ ≥ N/2 − 1 and using [26, Theorem 4.6] we get the well definedness
of Max−1

ε Maxε η
+Dq,0

σ,m and thus of E+
σ,m . We note

Maxε η
+Dq,0

σ,m ∈Wq
s(Ω) , (2.1)

if τ > s+ σ +N/2− 1 . �

Our next step is to define powers of L on the special forms

Λ(E+
σ,m, 0) , Λ(0, H+

σ,n)

using [26, Theorem 5.10]. Let us introduce a new notation. For k ∈ N0 we define

E+,k
σ,m := Lk Λ(E+

σ,m, 0) , H+,k
σ,m := Lk Λ(0, H+

σ,m) .

The next lemma shows that these definitions are well defined.
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Lemma 2.6 Let J, σ ∈ N0 , s ∈ (J + 1−N/2,∞) \ I as well as τ > σ + s+N/2− 1 and
τ ≥ J− s . Moreover, let (m,n) ∈ {1, . . . , µqσ} × {1, . . . , µq+1

σ } and j ∈ {0, . . . ,J} . Then
J powers of L on E+,0

σ,m and H+,0
σ,n are well defined and for even j

E+,j
σ,m − η(+Dq,j

σ,m, 0) ∈
(
Dq
s−j−1(Ω)� ηDq(Ī

q,≤j
s−j−1)

)
× {0} ,

H+,j
σ,n − η(0, +Rq+1,j

σ,n ) ∈ {0} ×
( ◦
Rq+1
s−j−1(Ω)� ηRq+1(J̄

q+1,≤j
s−j−1 )

)
as well as for odd j

E+,j
σ,m − η(0, +Rq+1,j

σ,m ) ∈ {0} ×
( ◦
Rq+1
s−j−1(Ω)� ηRq+1(J̄

q+1,≤j
s−j−1 )

)
,

H+,j
σ,n − η(+Dq,j

σ,n, 0) ∈
(
Dq
s−j−1(Ω)� ηDq(Ī

q,≤j
s−j−1)

)
× {0}

hold. Furthermore,
E+,j
σ,m, H

+,j
σ,n ∈ L2,q,q+1

<−σ−j−N
2

(Ω)

and thus
E+,j
σ,m, H

+,j
σ,n ∈ L2,q,q+1

−t (Ω) ⇐⇒ t > σ + j +N/2 .

More precisely: There exist unique constants ξj,σ,, ζj,σ, ∈ C and unique forms

ejσ, ∈
(
ε
◦
Rq
s−j−1(Ω)

)
∩ Dq

s−j−1(Ω) ∩
◦
Bq(Ω)⊥ ,

hjσ, ∈
(
µDq+1

s−j−1(Ω)
)
∩
◦
Rq+1
s−j−1(Ω) ∩ Bq+1(Ω)⊥ ,

such that for even j

E+,j
σ,m = η(+Dq,j

σ,m, 0) +
∑

I∈Ī
q,≤j
s−j−1

ξj,σ,mI η(Dq
I , 0) + (ejσ,m, 0) ,

H+,j
σ,n = η(0, +Rq+1,j

σ,n ) +
∑

J∈J̄
q+1,≤j
s−j−1

ζj,σ,nJ η(0, Rq+1
J ) + (0, hjσ,n)

and for odd j

E+,j
σ,m = η(0, +Rq+1,j

σ,m ) +
∑

J∈J̄
q+1,≤j
s−j−1

ζj,σ,mJ η(0, Rq+1
J ) + (0, hjσ,m) ,

H+,j
σ,n = η(+Dq,j

σ,n, 0) +
∑

I∈Ī
q,≤j
s−j−1

ξj,σ,nI η(Dq
I , 0) + (ejσ,n, 0) .
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Remark 2.7 By [26, Remark 2.4] we even have for odd j ≤ J

E+,j
σ,m − η(0, +Rq+1,j

σ,m ) ∈ {0} × 0

◦
Rq+1
s−j−1(J̄

q+1,≤j
s−j−1 ,Ω) ,

H+,j
σ,n − η(+Dq,j

σ,n, 0) ∈ 0Dq
s−j−1(Ī

q,≤j
s−j−1,Ω)× {0} ,

since then also η+Rq+1,j
σ,m is irrotational and η+Dq,j

σ,n solenoidal. Moreover, the coefficients
satisfy the following recursion:

ζj+1,σ,`

1I
= ξj,σ,`I , I ∈ Ī

q,≤j
s−j−1 , ` = m,n ,

ξj+1,σ,`

1J
= ζj,σ,`J , J ∈ J̄

q+1,≤j
s−j−1 , ` = m,n

Then clearly the next recursion holds as well:

ξj+2,σ,`

2I
= ξj,σ,`I , I ∈ Ī

q,≤j
s−j−1 , ` = m,n ,

ζj+2,σ,`

2J
= ζj,σ,`J , J ∈ J̄

q+1,≤j
s−j−1 , ` = m,n

Proof: We only have to show that E+,0
σ,m and H+,0

σ,n are elements of the domain of defi-
nition of L (and then clearly of Lj) from [26, Theorem 5.10]. Then all our assertions
follow by [26, Theorem 5.10] , [26, Remark 5.11] and [26, Remark 2.5]. We note that
the integrability of the forms is always determined by the integrability of the tower
forms with positive sign. Again we only discuss E+,0

σ,m = (εE+
σ,m, 0) , for example.

By Lemma 2.4 and (2.1) as well as [26, Theorem 4.6] we observe

εE+
σ,m ∈ 0Dq

s−1

(
{I} ∪ Ī

q,0
s−1,Ω

)
, I := (+, 0, σ,m) (2.2)

by [26, Remark 2.5] since τ > σ + s + N/2 − 1 . Hence, utilizing [26, Theorem 5.10]
Lj may be applied to E+,0

σ,m and the lemma would be proved.
Unfortunately we ignored a trifle in this argument. Here the same problem oc-

curs as in [26], namely the appearance of the exceptional tower forms, which was
solved by a second order approach in this paper. A similar approach will help here.
The point is that (2.2) only holds true for q 6= 1 in the first sight. In fact for q = 1 and
s ≥ N/2 we have to deal with the exceptional tower form Ď1,1

s−1 = −R1,1
0,1 = R1

Ǐ
with

Ǐ := (−, 1, 0, 1) , which would cancel our iteration process in the case of appearance.
Now in this special case (2.2) reads correctly as: εE+

σ,m is an element of 0D1
loc(Ω) and

contained in(
ε−1

◦
R1
s−1(Ω) ∩ D1

s−1(Ω)
)
� ηD1

(
{I} ∪ Ī

q,0
s−1

)
� ηR1

(
{Ǐ}
)

.

It remains to show that R1
Ǐ

does not occur even in the exceptional case. We try the
ansatz

Uσ,m := η+R2,1
σ,m + uσ,m ,

to find a solution of the problem

rot ε−1 divUσ,m = 0 , Uσ,m − +R2,1
σ,m ∈ L2,2

>−N
2

(Ω) .
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Thus, we are led to search a solution of

rot ε−1 div uσ,m = − rot ε−1 div η+R2,1
σ,m , uσ,m ∈ L2,2

>−N
2

(Ω) . (2.3)

Using once more τ > σ + s+N/2− 1 and [26, Remark 2.5] we obtain that

rot ε−1 div η+R2,1
σ,m = Crot div,η

+R2,1
σ,m + rot ˆ̂ε div η+R2,1

σ,m

is an element of L2,2

<−σ−N
2

+τ+1
(Ω) ⊂ L2,2

s (Ω) , where ε−1 = Id + ˆ̂ε is τ -C1-admissible

as well. Therefore, rot ε−1 div η+R2,1
σ,m ∈ 0

◦
R2
s(Ω) lies in the range of rot∆

2
s−2 from [26,

Lemma 7.1] and we get some uσ,m ∈ D(rot∆
2
s−2) solving (2.3). But then

Ẽσ,m := divUσ,m ∈
(

D1
s−1(Ω)� ηD1

(
{I} ∪ Ī

q,0
s−1

))
∩ 0D1

loc(Ω)

= 0D1
s−1

(
{I} ∪ Ī

q,0
s−1,Ω

)
(
Compare to [26, Remark 7.4].

)
and

ε−1Ẽσ,m ∈ εH
1
<−N

2
−σ(Ω) ∩

◦
B1(Ω)⊥ε , ε−1Ẽσ,m − +D1,0

σ,m ∈ L2,1

>−N
2

(Ω) ,

i.e. ε−1Ẽσ,m = E+
σ,m by Lemma 2.4 and Remark 2.5. So in fact E+

σ,m and εE+
σ,m do not

feature exceptional tower forms. �

2.1 Compactly supported inhomogeneities

In this subsection we develop some results especially for compactly supported in-
homogeneities Λ . In fact we assume r0 to be so large, such that

supp Λ̂ ⊂ Ur0 (2.4)

holds. Then in particular Λ = Id on supp η .
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Corollary 2.8 Let J, σ ∈ N0 as well as (m,n) ∈ {1, . . . , µqσ}×{1, . . . , µq+1
σ } and moreover

j ∈ {0, . . . ,J} . Then there exist unique constants ξj,σ,, ζj,σ, ∈ C , such that in supp η for
even j

E+,j
σ,m = (+Dq,j

σ,m, 0) +
∑

I∈Ī
q,≤j

ξj,σ,mI (Dq
I , 0) ,

H+,j
σ,n = (0, +Rq+1,j

σ,n ) +
∑

J∈J̄
q+1,≤j

ζj,σ,nJ (0, Rq+1
J )

and for odd j

E+,j
σ,m = (0, +Rq+1,j

σ,m ) +
∑

J∈J̄
q+1,≤j

ζj,σ,mJ (0, Rq+1
J ) ,

H+,j
σ,n = (+Dq,j

σ,n, 0) +
∑

I∈Ī
q,≤j

ξj,σ,nI (Dq
I , 0)

hold. These series converge uniformly in supp η together with all their derivatives even after
multiplication by arbitrary powers of r . (Compare with [46, p. 1033], [48, Theorem 1] and
[26, Theorem 2.6].) The constants ξj,σ, and ζj,σ, coincide with those of Lemma 2.6, whenever
they co-exist.

Proof: We show the representation for some even j and (E, 0) := E+,j
σ,m . The other

representations may be proved in a similar way.
We have divE = 0 and (MΛ−1)j+1(E, 0) = (0, 0) in Ω . Hence, M j+1(E, 0) van-

ishes in supp η . For J +N/2 ≤ s /∈ I we see by Lemma 2.6

Ẽ := E − +Dq,j
σ,m −

∑
I∈Ī

q,≤j
s−j−1

ξj,σ,mI Dq
I ∈ L2,q

s−j−1(supp η) ⊂ L2,q
N
2
−1

(supp η)

and
div Ẽ

∣∣∣
supp η

= 0 , M j+1 (Ẽ, 0)
∣∣∣
supp η

= (0, 0) .

Now the generalized spherical harmonics expansion [26, Theorem 2.6] yields with
unique constants ξj,σ,m ∈ C the representation

Ẽ
∣∣∣
supp η

=
∑

I∈Ī
q,≤j\Īq,≤js−j−1

ξj,σ,mI Dq
I

and therefore the assertion follows immediately. �

Next we want to characterize

Regq,Js (Ω)

by orthogonality constraints using the growing Dirichlet-forms. For this we need
some special properties of the tower-forms. As in [26] we introduce the first order
differential operator with compactly supported coefficients C := C∆,η := ∆η − η∆ ,
the commutator of ∆ and the multiplication by η .
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Lemma 2.9 Let u and v be regular tower-forms corresponding to some finite set of indices.
Then the cut-off function η may be chosen, such that

〈Cu, v〉L2,q = 0

holds, except for the special cases〈
C θDq,k

σ,m,
ϑDq,`

γ,n

〉
L2,q 6= 0 ⇔

〈
C θRq,k

σ,m,
ϑRq,`

γ,n

〉
L2,q 6= 0

⇔ σ = γ , m = n , θϑ = − , (k, `) ∈
{

(0, 2), (1, 1), (2, 0)
}

and 〈
C θDq,k

σ,m,
ϑRq,`

γ,n

〉
L2,q 6= 0

⇔ σ = γ , m = n , θϑ = − , (k, `) ∈
{

(0, 2), (2, 0)
}

.

Remark 2.10 In the special cases we have〈
C −Dq,k

σ,m,
+Dq,`

σ,m

〉
L2,q = −

〈
C +Dq,`

σ,m,
−Dq,k

σ,m

〉
L2,q =

〈
C −Rq,`

σ,m,
+Rq,k

σ,m

〉
L2,q

= −
〈
C +Rq,k

σ,m,
−Rq,`

σ,m

〉
L2,q =


− q+σ
N+2σ

, (k, `) = (0, 2)

1 , (k, `) = (1, 1)

− q′+σ
N+2σ

, (k, `) = (2, 0)

and 〈
C −Dq,k

σ,m,
+Rq,`

σ,m

〉
L2,q =

〈
C +Dq,k

σ,m,
−Rq,`

σ,m

〉
L2,q =

〈
C −Rq,`

σ,m,
+Dq,k

σ,m

〉
L2,q

=
〈
C +Rq,`

σ,m,
−Dq,k

σ,m

〉
L2,q = i

ωq−1
σ

N + 2σ

{
−1 , (k, `) = (0, 2)

1 , (k, `) = (2, 0)
.

Proof: From [48, (31)] with a = b = 1 we have 〈Cu, v〉L2,q = −〈u,Cv〉L2,q for suitable
q-forms u, v . Using the spherical calculus presented in [46] we compute for tower-
forms u, v

〈Cu, v〉L2,q =

∫
R+

rN−1〈Cu, v〉(r) dr

=

∫
R+

rN−1
(〈
ρC ρ̌ ρu(r), ρv(r)

〉
L2,q−1(SN−1)

+
〈
τC τ̌ τu(r), τv(r)

〉
L2,q(SN−1)

)
dr

=

∫
R+

rN−1(Γη̂r
α)rβ

(〈
ρu(1), ρv(1)

〉
L2,q−1(SN−1)

+
〈
τu(1), τv(1)

〉
L2,q(SN−1)

)
dr

= 〈u, v〉(1)

∫
R+

rN−1+βΓη̂r
α dr = (α− β)〈u, v〉(1)

∫
R+

rN−2+α+β η̂′(r) dr .

(2.5)

Here we put

〈u, v〉(r) :=
〈
ρu(r), ρv(r)

〉
L2,q−1(SN−1)

+
〈
τu(r), τv(r)

〉
L2,q(SN−1)
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and α := hom(u) , β := hom(v) . We note that ρu and τu are homogeneous of degree
α as functions of r , i.e. ρu(r) = rαρu(1) and τu(r) = rβτu(1) . Furthermore, we
denote by Γφ for suitable φ, ϕ the first order ordinary differential operator

Γφϕ(t) := 2φ′(t)ϕ′(t) + φ′(t) + (N − 1)t−1φ′(t) .

Since the spherical eigenforms T qσ,m and Sqσ,m present an orthonormal system in
L2,q(SN−1) , the expression 〈u, v〉(1) only may differ from zero in the cases

u = θDq,k
σ,m , v = ϑDq,`

σ,m , k − ` even ,

u = θRq,k
σ,m , v = ϑRq,`

σ,m , k − ` even ,

u = θDq,k
σ,m , v = ϑRq,`

σ,m , k, ` even ,

u = θRq,k
σ,m , v = ϑDq,`

σ,m , k, ` even

with θ, ϑ ∈ {+,−} . We may assume additionally that our tower forms under con-
sideration are at most of height K and index Z . According to [45, Lemma 2 (i)] we
may choose the cut-off function η (resp. η̂ , η), such that for given ĵ ∈ N0∫

R
η̂′(r) rj dr = δ0,j , − ĵ ≤ j ≤ ĵ , j ∈ Z , (2.6)

holds. Let us pick some ĵ ≥ N + 2(1 + K + Z) . In the four cases above we have
degrees of homogeneities α = θhkσ and β = ϑh`σ . Because of

N − 2 + α + β ∈ [−ĵ, ĵ]

and (2.6) the integral (2.5) can only differ from zero, if N − 2 + α + β = 0 . But if
θϑ = + , then either

N − 2 + +hkσ + +h`σ = N − 2 + k + `+ 2σ 6= 0

or

N − 2 + −hkσ + −h`σ = N − 2 + k + `− 2σ − 2N 6= 0

since k + ` is even and N odd. So only θϑ = − is possible and we get

N − 2 + −hkσ + +h`σ = N − 2 + +hkσ + −h`σ = −2 + k + ` = 0

⇔ (k, `) ∈
{

(0, 2), (1, 1), (2, 0)
}

,

where the possibility of k = ` = 1 has to be excluded in the two last cases, where k, `
are even. Thus, we have proved the essential assertions of the lemma.
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Let us calculate one of the special integrals as an example:〈
C −Dq,k

σ,m,
+Dq,`

σ,m

〉
L2,q =

(−hkσ − +h`σ
)〈−Dq,k

σ,m,
+Dq,`

σ,m

〉
(1)

= (k − `− 2σ −N)
−αq,0σ

+αq,1σ
(
(ωq−1

σ )2 + (q′ + −h0
σ)(q′ + +h2

σ)
)

, (k, `) = (0, 2)
−αq+1,0

σ
+αq+1,0

σ , (k, `) = (1, 1)
−αq,1σ

+αq,0σ
(
(ωq−1

σ )2 + (q′ + −h2
σ)(q′ + +h0

σ)
)

, (k, `) = (2, 0)

=


(−2−2σ−N)((ωq−1

σ )2+(q′−σ−N)(q′+2+σ))
2(2+2σ+N)(−2σ−N)

= − q+σ
N+2σ

, (k, `) = (0, 2)

−−2σ−N
2σ+N

= 1 , (k, `) = (1, 1)
(2−2σ−N)((ωq−1

σ )2+(q′+2−σ−N)(q′+σ))
2(2−2σ−N)(−2σ−N)

= − q′+σ
N+2σ

, (k, `) = (2, 0)

�

Lemma 2.11 In the same sense Lemma 2.9 holds for all tower-forms, if one pays attention
to −D0,0

0,1 = 0 and −RN,0
0,1 = 0 . Besides in the special cases we get for the exceptional tower-

forms 〈
C −D0,2

0,1,
+D0,0

0,1

〉
L2 = −

〈
C +D0,0

0,1,
−D0,2

0,1

〉
L2 =

〈
C −RN,2

0,1 ,
+RN,0

0,1

〉
L2,N

= −
〈
C +RN,0

0,1 ,
−RN,2

0,1

〉
L2,N = −

〈
C −R1,1

0,1,
+R1,1

0,1

〉
L2,1 =

〈
C +R1,1

0,1,
−R1,1

0,1

〉
L2,1

= −
〈
C −DN−1,1

0,1 , +DN−1,1
0,1

〉
L2,N−1 =

〈
C +DN−1,1

0,1 , −DN−1,1
0,1

〉
L2,N−1 = 1 .

Summing up we obtain

Remark 2.12 For tower-forms u, v the scalar product 〈Cu, v〉L2,q can only differ from zero,
if u and v possess different signs ± as well as equal eigenvalue and counting indices σ and
m . Additionally in the cases u = ±Dq,k

σ,m , v = ∓Dq,`
σ,m or u = ±Rq,k

σ,m , v = ∓Rq,`
σ,m the heights

(k, `) must belong to
{

(0, 2), (1, 1), (2, 0)
}

as well as in the cases u = ±Dq,k
σ,m , v = ∓Rq,`

σ,m

or in reverse order even to
{

(0, 2), (2, 0)
}

.

Now let us return to our static solutions. We put

L̃2,q,q+1(Ω) := Λ−1L2,q,q+1(Ω) := ε−1L2,q(Ω)× µ−1L2,q+1(Ω)

with scalar product 〈 · , · 〉L̃2,q,q+1(Ω) = 〈Λ−1 · , · 〉L2,q,q+1(Ω) , see [25, section 2].
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Lemma 2.13 Let s ∈ (2−N/2,∞) \ I and (F,G) ∈ Regq,0s (Ω) with representation

L0(F,G) = (E,H) +
∑
I∈Ī

q,0
s−1

eIη(Dq
I , 0) +

∑
J∈J̄

q+1,0
s−1

hJη(0, Rq+1
J ) ,

where (E,H) ∈
( ◦
Rq
s−1(Ω) ∩ ε−1Dq

s−1(Ω)
)
×
(
µ−1

◦
Rq+1
s−1(Ω) ∩ Dq+1

s−1(Ω)
)

and eI , hJ ∈ C .
Then for all I = (−, 0, σ,m) ∈ Ī

q,0
s−1 and J = (−, 0, γ, n) ∈ J̄

q+1,0
s−1

(i)
〈
(F,G), E+,0

σ,m

〉
L̃2,q,q+1(Ω)

=
〈
(F,G), H+,0

γ,n

〉
L̃2,q,q+1(Ω)

= 0 ,

(ii)
〈
(F,G), E+,1

σ,m

〉
L̃2,q,q+1(Ω)

= eI ,

(iii)
〈
(F,G), H+,1

γ,n

〉
L̃2,q,q+1(Ω)

= hJ .

Remark 2.14 It is sufficient to choose ĵ ≥ 2(s+ 1) in (2.6).

Proof: We set

(0, H̃+
σ,m) := Λ−1E+,1

σ,m = L0E
+,0
σ,m , (Ẽ+

γ,n, 0) := Λ−1H+,1
γ,n = L0H

+,0
γ,n .

Let us look at E+
σ,m and H̃+

σ,m . For (−, 0, σ,m) ∈ Ī
q,0
s−1 we have s > σ + 1 + N/2 and

thus only weights s larger than 1+N/2 have to be considered. According to Lemma
2.6

E+
σ,m ∈ εH

q
−s+1(Ω) ⊂ 0

◦
Rq
−s+1(Ω) , H̃+

σ,m ∈ Dq+1
−s (Ω) . (2.7)

Therefore all scalar products under consideration are well defined. By [25, Lemma
2.13, Remark 2.14] and Lemma 2.4 we get〈

M(E,H), E+,0
σ,m

〉
L̃2,q,q+1(Ω)

= 〈divH,E+
σ,m〉L2,q(Ω) = 0

and thus with (0, Rq+1
J ) = M(Dq

1J
, 0)〈

(F,G), E+,0
σ,m

〉
L̃2,q,q+1(Ω)

=
〈
M L0(F,G), (E+

σ,m, 0)
〉

L2,q,q+1(Ω)

=
∑
I∈Ī

q,0
s−1

eI
〈
Mη(Dq

I , 0), (E+
σ,m, 0)

〉
L2,q,q+1(Ω)︸ ︷︷ ︸

=〈(0,rot ηDqI ),(E+
σ,m,0)〉L2,q,q+1(Ω)=0

+
∑

J∈J̄
q+1,0
s−1

hJ
〈
M2η(Dq

1J
, 0), (E+

σ,m, 0)
〉

L2,q,q+1(Ω)

−
∑

J∈J̄
q+1,0
s−1

hJ
〈
MCM,η(D

q

1J
, 0), (E+

σ,m, 0)
〉

L2,q,q+1(Ω)︸ ︷︷ ︸
=〈divCrot,ηD

q

1J
,E+
σ,m〉L2,q(Ω)=0

.

For J = (−, 0, γ, n) ∈ J̄
q+1,0
s−1 we have div ηDq

1J
= div η−Dq,1

γ,n = 0 by [26, Remark 2.4]
and therefore div rot ηDq

1J
= ∆ηDq

1J
= CDq

1J
. This shows〈

(F,G), E+,0
σ,m

〉
L̃2,q,q+1(Ω)

=
∑

J∈J̄
q+1,0
s−1

hJ〈CDq

1J
, E+

σ,m〉L2,q(Ω)
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recalling M2(e, h) = (div rot e, rot div h) .
According to [26, Theorem 5.10, Remark 5.11, Corollary 5.12] under the present

assumptions L0 L(F,G) is also well defined and has the representation

L0 L(F,G) = (Ẽ, H̃) +
∑

I∈Ī
q,≤1
s−2

ẽIη(Dq
I , 0) +

∑
J∈J̄

q+1,≤1
s−2

h̃Jη(0, Rq+1
J )

with (Ẽ, H̃) ∈
( ◦
Rq
s−2(Ω) ∩ ε−1Dq

s−2(Ω)
)
×
(
µ−1

◦
Rq+1
s−2(Ω) ∩ Dq+1

s−2(Ω)
)

and ẽI , h̃J ∈ C .
Moreover, h̃1I = eI and ẽ1J = hJ hold for I ∈ Ī

q,0
s−1 and J ∈ J̄

q+1,0
s−1 . From

Λ−1M(Ẽ, H̃) ∈
( ◦
Rq
s−1(Ω) ∩ ε−1

0Dq
s−1(Ω)

)
×
(
µ−1

0

◦
Rq+1
s−1(Ω) ∩ Dq+1

s−1(Ω)
)

as well as by (2.7) and [25, Lemma 2.13, Remark 2.14] we get〈
MΛ−1M(Ẽ, H̃),L0 Λ(E+

σ,m, 0)
〉

L2,q,q+1(Ω)

= −
〈
M(Ẽ, H̃), (E+

σ,m, 0)
〉

L2,q,q+1(Ω)
= 0 .

Using this and (F,G) = MΛ−1M L0 L(F,G) we derive〈
(F,G), E+,1

σ,m

〉
L̃2,q,q+1(Ω)

=
∑

I∈Ī
q,≤1
s−2

ẽI
〈
M2η(Dq

I , 0), (0, H̃+
σ,m)

〉
L2,q,q+1(Ω)︸ ︷︷ ︸

=0

+
∑

J∈J̄
q+1,≤1
s−2

h̃J
〈
M2η(0, Rq+1

J ), (0, H̃+
σ,m)

〉
L2,q,q+1(Ω)

=
∑

J∈J̄
q+1,0
s−2

h̃J
〈
M2η(0, Rq+1

J ), (0, H̃+
σ,m)

〉
L2,q,q+1(Ω)

+
∑
I∈Ī

q,0
s−1

h̃1I

〈
M2η(0, Rq+1

1I
), (0, H̃+

σ,m)
〉

L2,q,q+1(Ω)

because J̄
q+1,≤1
s−2 = J̄

q+1,0
s−2 ∪̇ J̄

q+1,1
s−2 = J̄

q+1,0
s−2 ∪̇ 1(Ī

q,0
s−1) . Applying once more [26, Remark

2.4] we obtain M2η(0, Rq+1

1I
) = ∆η(0, Rq+1

1I
) = C(0, Rq+1

1I
) as well as

M2η(0, Rq+1
J ) = M2ηM(Dq

1J
, 0) = MM2η(Dq

1J
, 0)−M2CM,η(D

q

1J
, 0)

and thus
M2η(0, Rq+1

J ) = MC(Dq

1J
, 0)−M2CM,η(D

q

1J
, 0) .

Partial integration yields〈
MC(Dq

1J
, 0), (0, H̃+

σ,m)
〉

L2,q,q+1(Ω)
= −

〈
C(Dq

1J
, 0), (E+

σ,m, 0)
〉

L2,q,q+1(Ω)

and clearly all terms of the sum like〈
M2CM,η(D

q

1J
, 0), (0, H̃+

σ,m)
〉

L2,q,q+1(Ω)
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vanish by (two times) partial integration. Finally we get for (−, 0, σ,m) ∈ Ī
q,0
s−1〈

(F,G), E+,0
σ,m

〉
L̃2,q,q+1(Ω)

=
∑

J∈J̄
q+1,0
s−1

hJ〈CDq

1J
, E+

σ,m〉L2,q(Ω) ,

〈
(F,G), E+,1

σ,m

〉
L̃2,q,q+1(Ω)

= −
∑

J∈J̄
q+1,0
s−2

h̃J〈CDq

1J
, E+

σ,m〉L2,q(Ω)

+
∑
I∈Ī

q,0
s−1

eI〈CRq+1

1I
, H̃+

σ,m〉L2,q+1(Ω) .

Analogously for (−, 0, γ, n) ∈ J̄
q+1,0
s−1 one sees

〈
(F,G), H+,0

γ,n

〉
L̃2,q,q+1(Ω)

=
∑
I∈Ī

q,0
s−1

eI〈CRq+1

1I
, H+

γ,n〉L2,q+1(Ω) ,

〈
(F,G), H+,1

γ,n

〉
L̃2,q,q+1(Ω)

= −
∑
I∈Ī

q,0
s−2

ẽI〈CRq+1

1I
, H+

γ,n〉L2,q+1(Ω)

+
∑

J∈J̄
q+1,0
s−1

hJ〈CDq

1J
, Ẽ+

γ,n〉L2,q(Ω) .

Now all integrals on the right hand sides only extend over supp∇η . Thus, we may
insert the expansions from Corollary 2.8 for

E+
σ,m , H̃

+
σ,m , H

+
γ,n , Ẽ

+
γ,n .

Using the orthogonality properties from Lemma 2.9 and Remark 2.10 we finally
obtain

〈CDq

1J
, E+

σ,m〉L2,q(Ω) = 〈CRq+1

1I
, H+

γ,n〉L2,q+1(Ω) = 0

and

〈CRq+1

1I
, H̃+

σ,m〉L2,q+1(Ω) = δI,(−,0,σ,m) , 〈CDq

1J
, Ẽ+

γ,n〉L2,q(Ω) = δJ,(−,0,γ,n) .

We note that by [26, Remark 2.5] we only have to consider tower-forms with maxi-
mal heights K = 1 and maximal eigenvalue index Z ≤ s− 1−N/2 . Thus,

ĵ ≥ 2(s+ 1) ≥ N + 2(1 +K + Z)

is sufficient according to (2.6). �
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Now we are ready to characterize the spaces of regular convergence by orthogo-
nality constraints.

Lemma 2.15 Let J ∈ N and s ∈ (J + 1 − N/2,∞) \ I as well as (F,G) ∈ Regq,0s (Ω) .
Then (F,G) ∈ Regq,Js (Ω) , if and only if〈

(F,G), E+,k+1
σ,m

〉
L̃2,q,q+1(Ω)

=
〈
(F,G), H+,`+1

γ,n

〉
L̃2,q,q+1(Ω)

= 0

holds for all (k, σ,m) ∈ Θq,J
s and (`, γ, n) ∈ Θq+1,J

s , where

Θq,J
s :=

{
(k, σ,m) ∈ N3

0 : k ≤ J− 1 ∧ σ < s−N/2− k − 1 ∧ 1 ≤ m ≤ µqσ
}

.

Moreover, Regq,Js (Ω) is a closed subspace of Regq,0s (Ω) and L2,q,q+1
s (Ω) .

Remark 2.16 We have the characterizations

Θq,J
s =

{
(k, σ,m) ∈ {0, . . . ,J− 1} × N0 × N : E+,k+1

σ,m ∈ L2,q,q+1
−s (Ω)

}
,

Θq+1,J
s =

{
(`, γ, n) ∈ {0, . . . ,J− 1} × N0 × N : H+,`+1

γ,n ∈ L2,q,q+1
−s (Ω)

}
.

Proof: The assertions of the remark follow by Lemma 2.6. The proof of the lemma
is a straightforward induction over J . The start is given by Lemma 2.13 since

Θq,1
s =

{
(0, σ,m) : (−, 0, σ,m) ∈ Ī

q,0
s−1

}
,

Θq+1,1
s =

{
(0, γ, n) : (−, 0, γ, n) ∈ J̄

q+1,0
s−1

}
.

For the step we note by definition

Regq,J+1
s (Ω) =

{
(F,G) ∈ Regq,Js (Ω) : LJ+1(F,G) ∈ Regq,0s−J−1(Ω)

}
=
{

(F,G) ∈ Regq,Js (Ω) : LJ(F,G) ∈ Regq,1s−J(Ω)
}

and according to the start we obtain (F,G) ∈ Regq,J+1
s (Ω) , if and only if

(F,G) ∈ Regq,Js (Ω)

and 〈
LJ(F,G), E+,1

σ,m

〉
L̃2,q,q+1(Ω)

=
〈
LJ(F,G), H+,1

γ,n

〉
L̃2,q,q+1(Ω)

= 0

holds for all (0, σ,m) ∈ Θq,1
s−J and (0, γ, n) ∈ Θq+1,1

s−J . Since LJ(F,G) ∈ Regq,1s−J(Ω) we
get

L0 LJ−1(F,G) ∈
◦
Rq
s−J(Ω)× Dq+1

s−J(Ω)

and with Lemma 2.6

Λ−1 L2 ΛE+,0
σ,m ∈

◦
Rq
−s−1+J(Ω)× {0} ,

because (0, σ,m) ∈ Θq,1
s−J implies σ < s− 1− J−N/2 , i.e. s + 1− J > σ + 2 + N/2 .

Using partial integration, i.e. [25, Lemma 2.13, Remark 2.14], we compute
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〈
LJ(F,G), E+,1

σ,m

〉
L̃2,q,q+1(Ω)

=
〈
L0 LJ−1(F,G),MΛ−1 L2E+,0

σ,m

〉
L2,q,q+1(Ω)

= −
〈
LJ−1(F,G), E+,2

σ,m

〉
L̃2,q,q+1(Ω)

and therefore repeating this argument〈
LJ(F,G), E+,1

σ,m

〉
L̃2,q,q+1(Ω)

= (−1)J
〈
(F,G), E+,J+1

σ,m

〉
L̃2,q,q+1(Ω)

.

Analogously we conclude〈
LJ(F,G), H+,1

γ,n

〉
L̃2,q,q+1(Ω)

= (−1)J
〈
(F,G), H+,J+1

γ,n

〉
L̃2,q,q+1(Ω)

.

Finally we obtain (F,G) ∈ Regq,J+1
s (Ω) , if and only if (F,G) ∈ Regq,Js (Ω) and〈

(F,G), E+,J+1
σ,m

〉
L̃2,q,q+1(Ω)

=
〈
(F,G), H+,J+1

γ,n

〉
L̃2,q,q+1(Ω)

= 0

holds for all (0, σ,m) ∈ Θq,1
s−J and (0, γ, n) ∈ Θq+1,1

s−J and the induction hypothesis for
Regq,Js (Ω) completes the proof. �

We are looking for projectors onto Regq,Js (Ω) and thus for a dual basis of

E+,k
σ,m , H+,k

σ,m .

For `, σ ∈ N0 and (m,n) ∈ {1, . . . , µqσ} × {1, . . . , µq+1
σ } let us define

e±σ,n := η±Dq,1
σ,n , h±σ,m := η±Rq+1,1

σ,m ,

e±,`σ,n := M `(e±σ,n, 0) , h±,`σ,m := M `(0, h±σ,m) .

Lemma 2.17 Let `, k ∈ N0 . Then e±,`σ,n and h±,`σ,m are C∞-forms on RN and belong to
Regq,0

<∓(N
2

+σ)−1+`
(Ω) . Furthermore, e±,`+2

σ,n and h±,`+2
σ,m are compactly supported and thus

elements of Regq,0vox(Ω) as well as Regq,`s (Ω) for s ∈ (`−N/2,∞) \ I . Moreover, for ` ≥ 2

Lk e±,k+`
σ,n = e±,`σ,n , Lk h±,k+`

σ,m = h±,`σ,m

hold and these equations even remain valid for the negative forms e−,`σ,n and h−,`σ,m if ` = 0, 1 .

Proof: According to [26, Remark 2.4] we have div e±σ,n = 0 and roth±σ,m = 0 and
hence by [26, Remark 2.5] e±,0σ,n , h

±,0
σ,m ∈ Regq,0

<∓(N
2

+σ)−1
(Ω) . Furthermore,

e±,1σ,n = η(0, ±Rq+1,0
σ,n ) + CM,η(

±Dq,1
σ,n, 0) , (2.8)

e±,2σ,n = C(±Dq,1
σ,n, 0) = CM,η(0,

±Rq+1,0
σ,n ) +MCM,η(

±Dq,1
σ,n, 0) , (2.9)

h±,1σ,m = η(±Dq,0
σ,m, 0) + CM,η(0,

±Rq+1,1
σ,m ) , (2.10)

h±,2σ,m = C(0, ±Rq+1,1
σ,m ) = CM,η(

±Dq,0
σ,m, 0) +MCM,η(0,

±Rq+1,1
σ,m ) . (2.11)
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Thus, e±,1σ,n , h
±,1
σ,m ∈ Regq,0

<∓(N
2

+σ)
(Ω) and for all ` ∈ N0

supp e±,`+2
σ,n ∪ supph±,`+2

σ,m ⊂ supp∇η ,

i.e. e±,`+2
σ,n , h±,`+2

σ,m ∈ Regq,0vox(Ω) . By [26, Theorem 5.10] resp. [26, Corollary 5.12] any
power of L is well defined on e±,`+2

σ,n , h±,`+2
σ,m . Because of the compact supports we

obtain for ` ≥ 2
L e±,`+1

σ,n = e±,`σ,n , Lh±,`+1
σ,m = h±,`σ,m (2.12)

and a short induction shows

Lk e±,k+`
σ,n = e±,`σ,n , Lk h±,k+`

σ,m = h±,`σ,m (2.13)

for all k ∈ N0 . The forms e−,0σ,n , h−,0σ,m and by (2.8), (2.10) also e−,1σ,n , h−,1σ,m possess the
‘right shape’, such that for the negative forms according to [26, Corollary 5.12] the
equations (2.12) and (2.13) hold true for ` = 0, 1 as well. Once more taking into
account the compact supports of e±,2σ,n and h±,2σ,m we get

e±,`+2
σ,n , h±,`+2

σ,m ∈ Regq,`s (Ω)

for all ` ∈ N0 and s ∈ (`−N/2,∞) \ I . �

Lemma 2.18 Let K,Z ∈ N0 . Then for all σ ∈ {0, . . . , Z} and k ∈ {−1, . . . , K} as well
as all (`, γ) ∈ N2

0 and appropriate m,n〈
e−,`+2
γ,n , E+,k+1

σ,m

〉
L2,q,q+1(Ω)

=
〈
h−,`+2
γ,n , H+,k+1

σ,m

〉
L2,q,q+1(Ω)

= 0 ,〈
e−,`+2
γ,n , H+,k+1

σ,m

〉
L2,q,q+1(Ω)

=
〈
h−,`+2
γ,n , E+,k+1

σ,m

〉
L2,q,q+1(Ω)

= (−1)`δk,`δσ,γδm,n .

Remark 2.19 It suffices to choose ĵ ≥ N + 2(2 +K + Z) in (2.6).

Proof: We note again that e−,2γ,n and h−,2γ,n have compact supports. For all ` ∈ N0 partial
integration and (2.9) yield

Sk,`σ,γ :=
〈
e−,`+2
γ,n , E+,k+1

σ,m

〉
L2,q,q+1(Ω)

=
〈
M `e−,2γ,n , E

+,k+1
σ,m

〉
L2,q,q+1(Ω)

= (−1)`
〈
C(−Dq,1

γ,n, 0),M `E+,k+1
σ,m

〉
L2,q,q+1(Ω)

.

Since M L = M L0 = Id on supp η and M(E+
σ,m, 0) = (0, 0) the scalar products Sk,`σ,γ

vanish for ` ≥ k + 2 . However, for ` ≤ k + 1 we get

Sk,`σ,γ = (−1)`
〈
C(−Dq,1

γ,n, 0), E+,k+1−`
σ,m

〉
L2,q,q+1(Ω)

and these scalar products can only differ from zero if k+ 1− ` is even. The integrals
range only over supp∇η . Thus, we may insert the representations from Corollary
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2.8 for E+,k+1−`
σ,m and see that Sk,`σ,γ = 0 holds by Lemma 2.9 even in these cases. The

same arguments force

S̃
k,`

σ,γ :=
〈
e−,`+2
γ,n , H+,k+1

σ,m

〉
L2,q,q+1(Ω)

to vanish for ` ≥ k + 2 . If ` ≤ k + 1 we get

S̃
k,`

σ,γ = (−1)`
〈
C(−Dq,1

γ,n, 0), H+,k+1−`
σ,m

〉
L2,q,q+1(Ω)

.

These scalar products can only differ from zero, if k + 1− ` is odd. Again we insert
the representations from Corollary 2.8 forH+,k+1−`

σ,m . But now in the case k = `we get
a term +Dq,1

σ,m , whose scalar product with C −Dq,1
γ,n does not vanish if (σ,m) = (γ, n)

according to Lemma 2.9. Therefore, we obtain

S̃
k,`

σ,γ = (−1)`
〈
C(−Dq,1

γ,n, 0), (+Dq,k+1−`
σ,m , 0)

〉
L2,q,q+1(Ω)

= (−1)`δk,`δσ,γδm,n .

Similarly the assertions about the remaining two scalar products may be shown. �

We have found our projections.

Theorem 2.20 Let J ∈ N and s ∈ (J + 1−N/2,∞) \ I . Then

Regq,0s (Ω) = Regq,Js (Ω)uΥq,J
s ,

where Υq,J
s := Lin

{
e−,k+2
σ,m , h−,`+2

γ,n : (k, σ,m) ∈ Θq+1,J
s , (`, γ, n) ∈ Θq,J

s

}
.

More precisely: Each (F,G) ∈ Regq,0s (Ω) can be decomposed uniquely as

(F,G) = (Freg, Greg) + (FΥ, GΥ) ,

where (Freg, Greg) ∈ Regq,Js (Ω) and (FΥ, GΥ) ∈ Υq,J
s are defined by

(FΥ, GΥ) :=
∑

(k,σ,m)∈Θq,Js

(−1)k
〈
(F,G), E+,k+1

σ,m

〉
L̃2,q,q+1(Ω)

h−,k+2
σ,m

+
∑

(k,σ,m)∈Θq+1,J
s

(−1)k
〈
(F,G), H+,k+1

σ,m

〉
L̃2,q,q+1(Ω)

e−,k+2
σ,m .

Remark 2.21 Υq,J
s are finite dimensional subspaces of

( ◦
C∞,q(Ω)×

◦
C∞,q+1(Ω)

)
∩Regq,0vox(Ω)

and the projections (F,G) 7→ (FΥ, GΥ) resp. (F,G) 7→ (Freg, Greg) are continuous. More-
over, the choice ĵ ≥ 2(s+ J + 1) in (2.6) is sufficient.

Proof: According to Lemma 2.17 we have the inclusion Υq,J
s ⊂ Regq,0vox(Ω) . Thus,

(F,G) ∈ Regq,0s (Ω) implies (Freg, Greg) , (FΥ, GΥ) ∈ Regq,0s (Ω) . Applying Lemma 2.18
we obtain for all (k, σ,m) ∈ Θq,J

s and (`, γ, n) ∈ Θq+1,J
s〈

(Freg, Greg), E+,k+1
σ,m

〉
L̃2,q,q+1(Ω)

=
〈
(Freg, Greg), H+,`+1

γ,n

〉
L̃2,q,q+1(Ω)

= 0
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and therefore (Freg, Greg) ∈ Regq,Js (Ω) by Lemma 2.15, which yields

Regq,0s (Ω) ⊂ Regq,Js (Ω) + Υq,J
s ⊂ Regq,0s (Ω) .

So it remains to show the directness of the sum. Let us pick an element

(F,G) =
∑

(k,σ,m)∈Θq+1,J
s

fk,σ,me
−,k+2
σ,m +

∑
(k,σ,m)∈Θq,Js

gk,σ,mh
−,k+2
σ,m

of the intersection Regq,Js (Ω) ∩Υq,J
s . Applying L yields that

L(F,G) =
∑

(k,σ,m)∈Θq+1,J
s

fk,σ,me
−,k+1
σ,m +

∑
(k,σ,m)∈Θq,Js

gk,σ,mh
−,k+1
σ,m

belongs to Regq,J−1
s−1 (Ω) ⊂ L2,q,q+1

s−1 (Ω) by Lemma 2.17. If k > 0 the forms e−,k+1
σ,m resp.

h−,k+1
σ,m have compact supports. But for k = 0 with (2.8), (2.10) the forms e−,1σ,m , h−,1σ,m are

no longer compactly supported. However, they belong to L2,q,q+1

<N
2

+σ
(Ω) but even not

to L2,q,q+1
N
2

+σ
(Ω) . Thus, e−,1σ,m , h−,1σ,m are not elements of L2,q,q+1

s−1 (Ω) since (0, σ,m) ∈ Θq+1,J
s

resp. (0, σ,m) ∈ Θq,J
s implies N/2 + σ < s − 1 . The forms e−,1σ,m and h−,1σ,m are linear

independent. Consequently the coefficients f0,σ,m , g0,σ,m have to vanish. Repeating
this argument with Lj(F,G) for j = 2, . . . ,J finally shows fk,σ,m = gk,σ,m = 0 for all
(k, σ,m) ∈ Θq+1,J

s and (k, σ,m) ∈ Θq,J
s . �

We are ready to approach our desired low frequency asymptotics.

3 Low frequency asymptotics

We will prove the desired asymptotic expansion in four steps, which are:

step one: proof in the reduced case, i.e.:
compactly supported perturbations Λ̂ ;
right hand sides from Regq,0s (Ω) ;
estimates in local norms

step two: replacing Regq,0s (Ω) by L2,q,q+1
s (Ω)

step three: replacing local norms by weighted norms

step four: replacing compactly supported perturbations ε̂ , µ̂ by asymptotically van-
ishing perturbations

Following this program we only drop the assumption of compactly supported per-
turbations of the medium in the last step. Thus, (2.4) may be assumed during the
first three steps.
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3.1 First step

Lemma 3.1 Let J ∈ N0 , s ∈ (J + 1/2,J +N/2) \ I and t := s− J− (N + 1)/2 . Then∣∣∣∣∣∣Lω,J−1(F,G)−
∑

(k,σ,m)∈Θq,Js

(iω)k
〈
(F,G), E+,k+1

σ,m

〉
L̃2,q,q+1(Ω)

Lω,J−1−k h
−,2
σ,m

−
∑

(k,σ,m)∈Θq+1,J
s

(iω)k
〈
(F,G), H+,k+1

σ,m

〉
L̃2,q,q+1(Ω)

Lω,J−1−k e
−,2
σ,m

∣∣∣∣∣∣
L2,q,q+1
t (Ω)

= O
(
|ω|J

)∣∣∣∣(F,G)
∣∣∣∣

L2,q,q+1
s (Ω)

holds uniformly in ω ∈ C+,ω̂ \ {0} and (F,G) ∈ Regq,0s (Ω) .

Proof: According to Theorem 2.20 we decompose (F,G) ∈ Regq,0s (Ω)

(F,G) = (Freg, Greg) + (FΥ, GΥ) ∈ Regq,Js (Ω)uΥq,J
s

and obtain by Theorem 2.3 uniformly in ω and (Freg, Greg)∣∣∣∣Lω,J−1(Freg, Greg)
∣∣∣∣

L2,q,q+1
t (Ω)

= O
(
|ω|J

)∣∣∣∣(Freg, Greg)
∣∣∣∣

L2,q,q+1
s (Ω)

.

By Remark 2.21 the projections are continuous and thus∣∣∣∣Lω,J−1(F,G)− Lω,J−1(FΥ, GΥ)
∣∣∣∣

L2,q,q+1
t (Ω)

= O
(
|ω|J

)∣∣∣∣(F,G)
∣∣∣∣

L2,q,q+1
s (Ω)

.

This shows that we only have to determine the asymptotics of the special forms
e−,k+2
σ,m , h−,k+2

σ,m for k ≤ J− 1 , which belong to Regq,ks (Ω) using Lemma 2.17. Theorem
2.3 and Lemma 2.17 yield

Lω,k−1 e
−,k+2
σ,m = (− iω)k Lω Lk e−,k+2

σ,m = (− iω)k Lω e−,2σ,m ,

Lω,k−1 h
−,k+2
σ,m = (− iω)k Lω Lk h−,k+2

σ,m = (− iω)k Lω h−,2σ,m .

Then for 1 ≤ k ≤ J− 1 we obtain

Lω,J−1 e
−,k+2
σ,m = Lω,k−1 e

−,k+2
σ,m −

J−1∑
j=k

(− iω)j L0 Lj e−,k+2
σ,m

= (− iω)k Lω,J−1−k e
−,2
σ,m

since Lj e−,k+2
σ,m = Lj−k e−,2σ,m . Analogously we compute

Lω,J−1 h
−,k+2
σ,m = (− iω)k Lω,J−1−k h

−,2
σ,m .

�
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According to the latter lemma we only have to calculate the asymptotics of the
special forms

Lω,J−1−k e
−,2
σ,m , Lω,J−1−k h

−,2
σ,m

for ω ∈ C+,ω̂ \ {0} , 0 ≤ k ≤ J− 1 and σ < s−N/2− 1 .
For this we will use a technique introduced by Weck and Witsch in [42, 43, 44],

which was completed in [45] resp. [48]. The idea is to compare the forms

Lω e−,2σ,m , Lω h−,2σ,m

with special radiating solutions of the homogeneous problem in RN \ {0} and then
to identify the proper static terms in their asymptotic expansions. For this procedure
it is essential that the perturbation Λ̂ has got a compact support.

Let us define for q ∈ {0, . . . , N − 1} , σ ∈ N0 , m = 1, . . . as well as ω ∈ C+ \ {0}
and νσ := N/2 + σ

E1,ω
σ,m :=

∞∑
k=0

(− iω)2k −Dq,2k+1
σ,m + κq+1

σ ω2νσ

∞∑
k=0

(− iω)2k +Dq,2k+1
σ,m , (3.1)

H1,ω
σ,m :=

i

ω
rot E1,ω

σ,m

=
∞∑
k=0

(− iω)2k−1 −Rq+1,2k
σ,m + κq+1

σ ω2νσ

∞∑
k=0

(− iω)2k−1 +Rq+1,2k
σ,m

(3.2)

and

H2,ω
σ,m :=

∞∑
k=0

(− iω)2k −Rq+1,2k+1
σ,m + κqσ ω

2νσ

∞∑
k=0

(− iω)2k +Rq+1,2k+1
σ,m , (3.3)

E2,ω
σ,m :=

i

ω
div H2,ω

σ,m

=
∞∑
k=0

(− iω)2k−1 −Dq,2k
σ,m + κqσ ω

2νσ

∞∑
k=0

(− iω)2k−1 +Dq,2k
σ,m ,

(3.4)

where κqσ := 2 i νσ4−νσ Γ(1−νσ)
Γ(1+νσ)

(−1)νσ+1/2+δq,0+δq,N and Γ denotes the gamma-function.
These series of q- resp. (q + 1)-forms converge uniformly on compact subsets of

RN \ {0} and there they define C∞-forms. Moreover, they solve

(M + iω)(E,H) = (0, 0) and hence (∆ + ω2)(E,H) = (0, 0)

in RN \ {0} since clearly (divE, rotH) = (0, 0) . For real frequencies ω 6= 0 they
fulfill Sommerfeld’s (componentwise for the Helmholtz’ equation) and Maxwell’s
radiation condition and for nonreal frequencies ω ∈ C+ \ R they decay exponen-
tially at infinity. Moreover, (En,ω

σ,m,Hn,ω
σ,m) , n = 1, 2 , belong to the Sobolev spaces

Hk,q,q+1

<− 1
2

(
A(1)

)
for any k ∈ N0 as well as
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E1,ω
σ,m =

ωνσ

βσ
r1−N

2 H1
νσ(ωr) τ̌ T qσ,m ,

H1,ω
σ,m =

ωνσ−1

βσ
r−

N
2

(
− ωqσH1

νσ(ωr) τ̌ Sq+1
σ,m (3.5)

+ i
((
N/2− (q + 1)′

)
H1
νσ(ωr) + ωr(H1

νσ)′(ωr)
)
ρ̌ T qσ,m

)
and

E2,ω
σ,m =

ωνσ−1

βσ
r−

N
2

(
ωq−1
σ H1

νσ(ωr) ρ̌ T q−1
σ,m

+ i
(
(N/2− q)H1

νσ(ωr) + ωr(H1
νσ)′(ωr)

)
τ̌ Sqσ,m

)
, (3.6)

H2,ω
σ,m =

ωνσ

βσ
r1−N

2 H1
νσ(ωr) ρ̌ Sqσ,m

hold, where H1
νσ denotes Hankel’s first function and βσ := i 2νσ

Γ(1−νσ)
(−1)νσ+1/2 . For

details and proofs we refer to [24, Sektion 5.5]. Compare also with [45, (84)] and [48,
section 4].

Now let us turn to the calculation of the asymptotics of Lω e−,2σ,m .

η(E1,ω
σ,m,H1,ω

σ,m) ∈
◦
H∞,q,q+1

<− 1
2

(Ω)

(using an obvious notation) fulfills the radiation condition and solves

(M + iωΛ)η(E1,ω
σ,m,H1,ω

σ,m) = (M + iω)η(E1,ω
σ,m,H1,ω

σ,m) = CM,η(E1,ω
σ,m,H1,ω

σ,m) .

Hence,
Lω CM,η(E1,ω

σ,m,H1,ω
σ,m) = η(E1,ω

σ,m,H1,ω
σ,m) . (3.7)

Since CM,η has compactly supported coefficients

Lω(M + iωΛ)CM,η(
−Dq,1

σ,m, 0) = CM,η(
−Dq,1

σ,m, 0)

holds and therefore

LωMCM,η(
−Dq,1

σ,m, 0) = (Id− iωLω)CM,η(
−Dq,1

σ,m, 0) . (3.8)
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With (2.9) we compute

Lω e−,2σ,m = LωMCM,η(
−Dq,1

σ,m, 0) + Lω CM,η(0,
−Rq+1,0

σ,m )
(3.8)
= CM,η(

−Dq,1
σ,m, 0) + Lω CM,η

(
(0, −Rq+1,0

σ,m )− iω(−Dq,1
σ,m, 0)

)
(2.8),(3.7)

= e−,1σ,m − η(0, −Rq+1,0
σ,m )− iωη(E1,ω

σ,m,H1,ω
σ,m)

+ iωLω CM,η

(
(E1,ω

σ,m,H1,ω
σ,m)− i

ω
(0, −Rq+1,0

σ,m )− (−Dq,1
σ,m, 0)

)
= e−,1σ,m − iωη(−Dq,1

σ,m, 0)

+ iω(Lω CM,η − η)
(
(E1,ω

σ,m,H1,ω
σ,m)

− i

ω
(0, −Rq+1,0

σ,m )− (−Dq,1
σ,m, 0)

)
.

According to Lemma 2.17 we may write

e−,1σ,m = L0 e
−,2
σ,m , η(−Dq,1

σ,m, 0) = e−,0σ,m = L0 L e−,2σ,m

and obtain

Lω,1 e−,2σ,m

= iω(Lω CM,η − η)
(
(E1,ω

σ,m,H1,ω
σ,m)− i

ω
(0, −Rq+1,0

σ,m )− (−Dq,1
σ,m, 0)

)
.

Now inserting the expansions (3.1) and (3.2) in each case the first term of the (−)-
series of E1,ω

σ,m resp. H1,ω
σ,m is killed and we achieve

Lω,1 e−,2σ,m = (η − Lω CM,η)
( ∞∑
k=1

(− iω)2k(M − iω)(−Dq,2k+1
σ,m , 0)

+ κσ ω
N+2σ

∞∑
k=0

(− iω)2k(M − iω)(+Dq,2k+1
σ,m , 0)

) (3.9)

with κσ := κq+1
σ = 2 i νσ4−νσ Γ(1−νσ)

Γ(1+νσ)
(−1)νσ+1/2 .

Since the series converge locally uniformly for ω ∈ C+,ω̂ \ {0} in RN \ {0} , they
converge in particular in L2,q,q+1

loc

(
Ω
)

. Consequently the series CM,η

∑
. . . converge

in L2,q,q+1
s (Ω) for all s ∈ R because of the compact support of CM,η . The continuity of

Lω yields the convergence of the series Lω CM,η

∑
· · · =

∑
Lω CM,η . . . in L2,q,q+1

<− 1
2

(Ω) .
Let Ωb denote a bounded subdomain of Ω with supp∇η ⊂ Ωb . We look at

(f, g) := CM,η(M − iω)(±Dq,2k+1
σ,m , 0) = (Cdiv,η

±Rq+1,2k
σ,m ,− iωCrot,η

±Dq,2k+1
σ,m ) .

By [26, Remark 2.4] we get

div f = − div η±Dq,2k−1
σ,m = 0 , rot g = iω rot η±Rq+1,2k

σ,m = iωCrot,η
±Rq+1,2k

σ,m

and moreover (f, g) is perpendicular to
◦
Bq(Ω)×Bq+1(Ω) because supp(f, g) ⊂ supp∇η .

Furthermore, every || · ||L2,q,q+1
s (Ω)-norm is equivalent to the || · ||L2,q,q+1(Ωb)-norm for
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(f, g) . [26, Remark 2.2 (v)] and [25, Lemma 4.2 (iii)] yield (with generic constants
c > 0) ∣∣∣∣Lω(f, g)

∣∣∣∣
L2,q,q+1(Ωb)

≤ c
(∣∣∣∣(f, g)

∣∣∣∣
L2,q,q+1
s (Ω)

+ ||Crot,η
±Rq+1,2k

σ,m ||L2,q,q+1
s (Ω)

)
≤ c

(
||±Dq,2k+1

σ,m ||L2,q,q+1(Ωb) + ||±Rq+1,2k
σ,m ||L2,q,q+1(Ωb)

)
≤ c

and thus also ∣∣∣∣(η − Lω CM,η)(M − iω)(±Dq,2k+1
σ,m , 0)

∣∣∣∣
L2,q,q+1(Ωb)

≤ c

all uniformly in k and σ,m as well as ω
(
See [26, Remark 2.2 (v)]

)
. For K > J we

obtain by (3.9)∣∣∣∣∣∣∣∣Lω,1 e−,2σ,m − (η − Lω CM,η)
(K−1∑
k=1

(− iω)2k(M − iω)(−Dq,2k+1
σ,m , 0)

+κσ ω
N+2σ

K−1∑
k=0

(− iω)2k(M − iω)(+Dq,2k+1
σ,m , 0)

)∣∣∣∣∣∣∣∣
L2,q,q+1(Ωb)

≤ c
∞∑
k=K

|ω|2k ≤ c |ω|2K .

Once again let us introduce a new short notation:

u
`∼ v :⇔ ||u− v||L2,q,q+1(Ωb) ≤ c |ω|` uniformly w. r. t. ω ∈ C+,ω̂ \ {0}

Using this new notation we have shown so far

Lω,1 e−,2σ,m
2K∼

K−1∑
k=1

(− iω)2k(η − Lω CM,η)(M − iω)(−Dq,2k+1
σ,m , 0)

+ κσ ω
N+2σ

K−1∑
k=0

(− iω)2k(η − Lω CM,η)(M − iω)(+Dq,2k+1
σ,m , 0)

(3.10)

and the only unknown ω-behavior is hidden in the terms

Lω CM,η(M − iω)(±Dq,2k+1
σ,m , 0) .

Using CM2,η = MCM,η + CM,ηM and [26, Remark 2.4] we compute

Lω CM,η(M − iω)(±Dq,2k+1
σ,m , 0)

= Lω CM2,η(
±Dq,2k+1

σ,m , 0)− Lω(M + iω)CM,η(
±Dq,2k+1

σ,m , 0)

= Lω C(±Dq,2k+1
σ,m , 0)− Lω(M + iωΛ)CM,η(

±Dq,2k+1
σ,m , 0)

= Lω C(±Dq,2k+1
σ,m , 0)− CM,η(

±Dq,2k+1
σ,m , 0)
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and then for k ∈ N0

(η − Lω CM,η)(M − iω)(±Dq,2k+1
σ,m , 0)

= −Lω C(±Dq,2k+1
σ,m , 0) + (M − iω)η(±Dq,2k+1

σ,m , 0) .
(3.11)

If k ≥ 1 we have

M2η(±Dq,2k+1
σ,m , 0) = CM2,η(

±Dq,2k+1
σ,m , 0) + η(±Dq,2k−1

σ,m , 0)

= C(±Dq,2k+1
σ,m , 0) + η(±Dq,2k−1

σ,m , 0) ∈ Regq,0loc(Ω) .

We note once more
η(±Dq,2k+1

σ,m , 0) ∈ Regq,0loc(Ω) (3.12)

by [26, Remark 2.4] . Thus, according to [26, Theorem 5.10] L2 may be applied to
M2η(±Dq,2k+1

σ,m , 0) and we obtain

η(±Dq,2k+1
σ,m , 0) = L2

(
C(±Dq,2k+1

σ,m , 0) + η(±Dq,2k−1
σ,m , 0)

)
.

By (3.12) L and L2 are even well defined on η(±Dq,2k−1
σ,m , 0) , such that

η(±Dq,2k+1
σ,m , 0) = L2C(±Dq,2k+1

σ,m , 0) + L2 η(±Dq,2k−1
σ,m , 0)

holds. A short induction shows

η(±Dq,2k+1
σ,m , 0) =

k∑
`=1

L2`C(±Dq,2k+3−2`
σ,m , 0) + L2k η(±Dq,1

σ,m, 0) ,

and hence using Λ−1 = Id on supp η

η(±Dq,2k+1
σ,m , 0) =

k∑
`=1

L0 L2`−1C(±Dq,2k+3−2`
σ,m , 0) + L0 L2k−1 η(±Dq,1

σ,m, 0) ,

Mη(±Dq,2k+1
σ,m , 0) =

k∑
`=1

L0 L2`−2C(±Dq,2k+3−2`
σ,m , 0) + L0 L2k−2 η(±Dq,1

σ,m, 0) .

We remind of η(±Dq,1
σ,m, 0) = e±,0σ,m and C(±Dq,1

σ,m, 0) = e±,2σ,m . Putting all together yields
for k ≥ 1

(M − iω)η(±Dq,2k+1
σ,m , 0)

= (L0 L2k−2− iωL0 L2k−1)e±,0σ,m (3.13)

+
k∑
`=1

(L0 L2`−2− iωL0 L2`−1)C(±Dq,2k+3−2`
σ,m , 0) .
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Inserting this formula into (3.11) and all this together into (3.10) we obtain

Lω,1 e−,2σ,m

2K∼ S− + κσ ω
N+2σS+ + κσ ω

N+2σ
(
− Lω e±,2σ,m + (M − iω)e±,0σ,m

)
,

(3.14)

where S± := −S±I + S±II + S±III and

S±I :=
K−1∑
k=1

(− iω)2k Lω C(±Dq,2k+1
σ,m , 0) ,

S±II :=
K−1∑
k=1

(− iω)2k(L0 L2k−2− iωL0 L2k−1)e±,0σ,m ,

S±III :=
K−1∑
k=1

(− iω)2k

k∑
`=1

(L0 L2`−2− iωL0 L2`−1)C(±Dq,2k+3−2`
σ,m , 0) .

Obviously

S±II =
2K−1∑
k=2

(− iω)k L0 Lk−2 e±,0σ,m . (3.15)

In the double sums S±III we substitute ` by j(`) := k − ` + 1 , interchange the sums
and again substitute k by i(k) := k−j . Then we denote the pair (j, i) again by (k, `) .
We get

S±III =
K−1∑
k=1

(− iω)2k

2K−2k−1∑
`=0

(− iω)` L0 L`C(±Dq,2k+1
σ,m , 0)

and thus

S±I − S±III =
K−1∑
k=1

(− iω)2k Lω,2K−2k−1C(±Dq,2k+1
σ,m , 0) .

We have C(±Dq,2k+1
σ,m , 0) ∈ Regq,0vox(Ω) and also for all k ≥ 1 and j ≤ 2K as well as

s̃ ∈ (2K −N/2,∞) \ I according to Lemma 2.15

C(±Dq,2k+1
σ,m , 0) ∈ Regq,js̃ (Ω) ,

because for all (`, γ, n) with ` ≤ 2K we may compute〈
C(±Dq,2k+1

σ,m , 0), E+,`
γ,n

〉
L̃2,q,q+1(Ω)

=
〈
C(±Dq,2k+1

σ,m , 0), H+,`
γ,n

〉
L̃2,q,q+1(Ω)

= 0

using Lemma 2.9, the expansions from Corollary 2.8 and observing 2k + 1 ≥ 3 . In
particular for 1 ≤ k ≤ K − 1

C(±Dq,2k+1
σ,m , 0) ∈ Regq,2K−2k

s̃ (Ω)
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holds. Therefore, Theorem 2.3 (i) yields uniformly in ω
(
and k, σ,m by [26, Remark

2.2 (v)]
)

∣∣∣∣Lω,2K−2k−1C(±Dq,2k+1
σ,m , 0)

∣∣∣∣
L2,q,q+1(Ωb)

≤ c |ω|2K−2k
∣∣∣∣C(±Dq,2k+1

σ,m , 0)
∣∣∣∣

L2,q,q+1
s̃ (Ω)

≤ c |ω|2K−2k

and we obtain
S±I − S±III

2K∼ (0, 0) .

Since e−,0σ,m = L2 e−,2σ,m by Lemma 2.17 we see from (3.15)

S−II =
2K−1∑
k=2

(− iω)k L0 Lk e−,2σ,m

and inserting all in (3.14)
(
using (3.15) again

)
we arrive at

Lω,2K−1 e
−,2
σ,m = Lω,1 e−,2σ,m − S−II

2K∼ κσ ω
N+2σ

(( 2K−1∑
k=2

(− iω)k L0 Lk−2 +(M − iω)
)
e+,0
σ,m − Lω e+,2

σ,m

)
.

For each N 3 j ≤ J + 1 choosing some K ∈ N0 with 2K ≥ j we finally obtain

Lω,j−1 e
−,2
σ,m

j∼ κσ ω
N+2σ

(( j−N−2σ−1∑
k=2

(− iω)k L0 Lk−2 +(M − iω)
)
e+,0
σ,m − Lω e+,2

σ,m

)
.

(3.16)

It remains to identify the terms. The equation

e+,1
σ,m = Mη(+Dq,1

σ,m, 0) = CM,η(
+Dq,1

σ,m, 0) + η(0, +Rq+1,0
σ,m ) ,

(3.12) and [26, Theorem 5.10] show

L0 e
+,1
σ,m = e+,0

σ,m . (3.17)

Using (3.17) in (3.16) we get

Lω,j−1 e
−,2
σ,m

j∼ κσ ω
N+2σ

( j−N−2σ−1∑
k=0

(− iω)kΛ−1 Lk e+,1
σ,m − Lω e+,2

σ,m

)
.

(3.18)

37



Since e+,2
σ,m ∈ Regq,0vox(Ω) we may look at

(0, h) := e+,1
σ,m − L0 e

+,2
σ,m

utilizing [26, Corollary 5.12]. With M(0, h) = (0, 0) and rotµh = 0 we have

µh ∈ µ−1H
q+1

<−N
2
−σ(Ω) ∩ Bq+1(Ω)⊥ , h− +Rq+1,0

σ,m ∈ L2,q+1

>−N
2

(Ω) .

Hence, H+
σ,m = h by Lemma 2.4 . Finally (3.18) turns to

Lω,j−1 e
−,2
σ,m

j∼ κσ ω
N+2σ

( j−N−2σ−1∑
k=0

(− iω)kΛ−1H+,k
σ,m − Lω,j−N−2σ−1 e

+,2
σ,m

)
(3.19)

=: κσ ω
N+2σAj−N−2σ−1

ω,σ,m .

Similar calculations using the forms (E2,ω
σ,m,H2,ω

σ,m) from (3.4), (3.3) and looking at
(0, ±Rq+1,2k+1

σ,m ) yield a corresponding estimate for Lω h−,2σ,m , i.e.

Lω,j−1 h
−,2
σ,m

j∼ κσω
N+2σ

( j−N−2σ−1∑
k=0

(− iω)kΛ−1E+,k
σ,m − Lω,j−N−2σ−1 h

+,2
σ,m

)
(3.20)

=: κσ ω
N+2σBj−N−2σ−1

ω,σ,m .

Lemma 3.2 Let J ∈ N0 and s ∈ (J + 1/2,J +N/2) \ I . Then for all bounded subdomains
Ωb of Ω ∣∣∣∣∣∣Lω,J−1(F,G)

−
∑

(k,σ,m)∈Θ̃qJ−1−N

(− iω)N+kκk,σ
〈
(F,G), E+,k−2σ+1

σ,m

〉
L̃2,q,q+1(Ω)

BJ−1−N−k
ω,σ,m

−
∑

(k,σ,m)∈Θ̃q+1
J−1−N

(− iω)N+kκk,σ
〈
(F,G), H+,k−2σ+1

σ,m

〉
L̃2,q,q+1(Ω)

AJ−1−N−k
ω,σ,m

∣∣∣∣∣∣
L2,q,q+1(Ωb)

= O
(
|ω|J

)∣∣∣∣(F,G)
∣∣∣∣

L2,q,q+1
s (Ω)

holds uniformly with respect to ω ∈ C+,ω̂ \ {0} and (F,G) ∈ Regq,0s (Ω) .
Here κk,σ := i2k−2σ+N κσ and

Θ̃q
j :=

{
(k, σ,m) ∈ N3

0 : 2σ ≤ k ≤ j ∧ 1 ≤ m ≤ µqσ
}

.

In particular for j ≤ min{J, N}∣∣∣∣Lω,j−1(F,G)
∣∣∣∣

L2,q,q+1(Ωb)
= O

(
|ω|j
)
·
∣∣∣∣(F,G)

∣∣∣∣
L2,q,q+1
s (Ω)

.
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Proof: We insert the asymptotics of (3.19), (3.20) in the estimates of Lemma 3.1 with
j := J − k . The sums range over Θq,J

s and Θq+1,J
s . In particular for (k, σ,m) ∈ Θq,J

s

we get

0 ≤ k ≤ J− 1 , 0 ≤ σ < s−N/2− k − 1 , 1 ≤ m ≤ µqσ .

Additionally we have the condition k + 2σ + N ≤ J − 1 since higher order terms
may be swallowed by the O-term. Because J + 1/2 < s < J +N/2 we only sum over

0 ≤ k ≤ J− 1−N ,

0 ≤ σ ≤ min
{
s− N

2
− k − 1,

J− 1−N − k
2

}
=

J− 1−N − k
2

,

1 ≤ m ≤ µqσ .

We interchange the sums over k and σ , set `(k) := k + 2σ , interchange σ and ` and
finally denote ` again by k . This proves the first assertion. Once more recalling

e+,2
σ,m , h

+,2
σ,m ∈ Regq,0vox(Ω) (3.21)

we apply [25, Lemma 4.2 (iv)] and get

Lω e+,2
σ,m , Lω h+,2

σ,m
0∼ (0, 0) .

Thus, A`ω,σ,m , B`ω,σ,m
0∼ (0, 0) , which yields the second assertion. �

In the following we often use without further reference an uniqueness result for
asymptotic expansions.

Lemma 3.3 Let L̃, L ∈ N0 and x−L̃, . . . , xL be elements of some normed space X . More-
over, let

||
L∑

`=−L̃

ω`x`||X = o
(
|ω|L

)
hold uniformly with respect to C+ \ {0} 3 ω → 0 . Then all x` vanish.

According to (3.19), (3.20) we have

Akω,σ,m = Xk
σ,m(ω)− Lω,k e+,2

σ,m , Bkω,σ,m = Yk
σ,m(ω)− Lω,k h+,2

σ,m

with polynomials

Xk
σ,m(ω) :=

k∑
`=0

(− iω)`Λ−1H+,`
σ,m , Yk

σ,m(ω) :=
k∑
`=0

(− iω)`Λ−1E+,`
σ,m (3.22)

of degree k in ω . By (3.21) we may apply Lemma 3.2 with J := j to

(F,G) := e+,2
γ,n , h

+,2
γ,ν ,
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which yields the asymptotics

Lω,j−1 e
+,2
γ,n

j∼ (− iω)N
∑

(k,σ,m)∈Θ̃qj−1−N

(− iω)kβk,σ,me,γ,n

(
Yj−1−N−k
σ,m (ω)− Lω,j−1−N−k h

+,2
σ,m

)
(3.23)

+ (− iω)N
∑

(k,σ,m)∈Θ̃q+1
j−1−N

(− iω)kαk,σ,me,γ,n

(
Xj−1−N−k
σ,m (ω)− Lω,j−1−N−k e

+,2
σ,m

)
and

Lω,j−1 h
+,2
γ,ν

j∼ (− iω)N
∑

(k,σ,m)∈Θ̃qj−1−N

(− iω)kβk,σ,mh,γ,ν

(
Yj−1−N−k
σ,m (ω)− Lω,j−1−N−k h

+,2
σ,m

)
(3.24)

+ (− iω)N
∑

(k,σ,m)∈Θ̃q+1
j−1−N

(− iω)kαk,σ,mh,γ,ν

(
Xj−1−N−k
σ,m (ω)− Lω,j−1−N−k e

+,2
σ,m

)
,

where

βk,σ,me,γ,n := κk,σ〈e+,2
γ,n , E

+,k−2σ+1
σ,m 〉L̃2,q,q+1(Ω) , (3.25)

αk,σ,me,γ,n := κk,σ〈e+,2
γ,n , H

+,k−2σ+1
σ,m 〉L̃2,q,q+1(Ω) , (3.26)

βk,σ,mh,γ,ν := κk,σ〈h+,2
γ,ν , E

+,k−2σ+1
σ,m 〉L̃2,q,q+1(Ω) , (3.27)

αk,σ,mh,γ,ν := κk,σ〈h+,2
γ,ν , H

+,k−2σ+1
σ,m 〉L̃2,q,q+1(Ω) . (3.28)

Thus, there exist polynomials X̃`
γ,n(ω) and Ỹ`

γ,ν(ω) of degree ` in ω , such that

Lω,j−1 e
+,2
γ,n

j∼ X̃j−1
γ,n (ω) , Lω,j−1 h

+,2
γ,ν

j∼ Ỹj−1
γ,ν (ω)

hold. Since

Lω,j e+,2
γ,n

j∼ Lω,j−1 e
+,2
γ,n , Lω,j h+,2

γ,ν

j∼ Lω,j−1 h
+,2
γ,ν

the coefficients of X̃`
γ,n(ω) and Ỹ`

γ,ν(ω) do not depend on ` . Consequently there exist
forms

X`
γ,n , Y

`
γ,ν ∈ L2,q,q+1

loc (Ω) ,

such that

Aj−1
ω,γ,n

j∼ Xj−1
γ,n (ω)− X̃j−1

γ,n (ω) =:

j−1∑
`=0

(− iω)`X`
γ,n , (3.29)

Bj−1
ω,γ,ν

j∼ Yj−1
γ,ν (ω)− Ỹj−1

γ,ν (ω) =:

j−1∑
`=0

(− iω)`Y `
γ,ν . (3.30)
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We obtain immediately

Lω,j−1 e
−,2
σ,m

j∼ κσ ω
N+2σ

j−N−2σ−1∑
`=0

(− iω)`X`
σ,m ,

Lω,j−1 h
−,2
σ,m

j∼ κσ ω
N+2σ

j−N−2σ−1∑
`=0

(− iω)`Y `
σ,m

and

Lω,j−1 e
+,2
γ,n

j∼ X̃j−1
γ,n (ω) , Lω,j−1 h

+,2
γ,ν

j∼ Ỹj−1
γ,n (ω) .

(3.23) and (3.24) yield for 1 ≤ j ≤ N

Lω,j−1 e
+,2
γ,n , Lω,j−1 h

+,2
γ,ν

j∼ (0, 0) (3.31)

and therefore we get for ` = 0, . . . , N − 1

X`
γ,n = Λ−1H+,`

γ,n , Y `
γ,ν = Λ−1E+,`

γ,ν . (3.32)

The higher order coefficientsX`
γ,n, Y

`
γ,ν may be computed recursively utilizing (3.23),

(3.24). In particular we have for j ≥ N

X̃j
γ,n(ω) = (− iω)N

∑
(k,σ,m)∈Θ̃qj−N

(− iω)kβk,σ,me,γ,n

j−N−k∑
`=0

(− iω)`Y `
σ,m

+ (− iω)N
∑

(k,σ,m)∈Θ̃q+1
j−N

(− iω)kαk,σ,me,γ,n

j−N−k∑
`=0

(− iω)`X`
σ,m ,

(3.33)

Ỹj
γ,ν(ω) = (− iω)N

∑
(k,σ,m)∈Θ̃qj−N

(− iω)kβk,σ,mh,γ,ν

j−N−k∑
`=0

(− iω)`Y `
σ,m

+ (− iω)N
∑

(k,σ,m)∈Θ̃q+1
j−N

(− iω)kαk,σ,mh,γ,ν

j−N−k∑
`=0

(− iω)`X`
σ,m .

(3.34)
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Using (3.22) and (3.29), (3.30) we get the following recursion for the forms X`
γ,n ,

Y `
γ,ν and ` ≥ N

X`
γ,n = Λ−1H+,`

γ,n −
∑

(k,σ,m)∈Θ̃q`−N

βk,σ,me,γ,n Y
`−N−k
σ,m

−
∑

(k,σ,m)∈Θ̃q+1
`−N

αk,σ,me,γ,n X
`−N−k
σ,m ,

(3.35)

Y `
γ,ν = Λ−1E+,`

γ,ν −
∑

(k,σ,m)∈Θ̃q`−N

βk,σ,mh,γ,ν Y
`−N−k
σ,m

−
∑

(k,σ,m)∈Θ̃q+1
`−N

αk,σ,mh,γ,ν X
`−N−k
σ,m .

(3.36)

Additionally we obtain

X`
γ,n , Y

`
γ,ν ∈ Lin{Λ−1H+,`

γ,n ,Λ
−1E+,`

γ,ν }

+ Lin
{
X`−N−k
σ,m , Y `−N−k̃

σ̃,m̃ : (k, σ,m) ∈ Θ̃q+1
`−N ∧ (k̃, σ̃, m̃) ∈ Θ̃q

`−N
}

⊂ Lin{Λ−1H+,`
γ,n ,Λ

−1E+,`
γ,ν }+ Lin{Xk

σ,m , Y
k
σ,m̃ : k + 2σ ≤ `−N}

and a short induction shows

X`
γ,n , Y

`
γ,ν ∈ Lin{Λ−1H+,`

γ,n ,Λ
−1E+,`

γ,ν }
+ Lin{Λ−1E+,k

σ,m,Λ
−1H+,k

σ,m̃ : k + 2σ ≤ `−N} .
(3.37)

Moreover, our coefficient forms satisfy

MX0
γ,n = MY 0

γ,ν = (0, 0) (3.38)

and for ` ≤ N − 1

Λ−1MX`
γ,n = X`−1

γ,n , Λ−1MY `
γ,ν = Y `−1

γ,ν . (3.39)

Once again by induction these equations hold true for all ` ≥ N .
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We may formulate the main result of step one. For this let the coefficients X`
γ,n

and Y `
γ,ν be defined recursively by (3.32), (3.35), (3.36) and

Definition 3.4 Let J ∈ N0 , s ∈ (J + 1/2,∞) \ I and (F,G) ∈ L2,q,q+1
s (Ω) . Then for

j = 0, . . . ,J− 1−N we define the ‘correction operators’

Γ̂j(F,G) :=
∑

(k,σ,m)∈Θ̃qj

κk,σ
〈
(F,G), E+,k−2σ+1

σ,m

〉
L̃2,q,q+1(Ω)

Y j−k
σ,m

+
∑

(k,σ,m)∈Θ̃q+1
j

κk,σ
〈
(F,G), H+,k−2σ+1

σ,m

〉
L̃2,q,q+1(Ω)

Xj−k
σ,m .

Theorem 3.5 Let J ∈ N0 and s ∈ (J + 1/2,∞) \ I . Then for all bounded subdomains
Ωb ⊂ Ω the asymptotic

∣∣∣∣Lω,J−1(F,G)− (− iω)N
J−1−N∑
j=0

(− iω)jΓ̂j(F,G)
∣∣∣∣

L2,q,q+1(Ωb)

= O
(
|ω|J

)∣∣∣∣(F,G)
∣∣∣∣

L2,q,q+1
s (Ω)

holds uniformly with respect to (F,G) ∈ Regq,0s (Ω) and ω ∈ C+,ω̂ \ {0} .

Remark 3.6

(i) The coefficients X`
γ,n , Y `

γ,ν have to be computed only for `, 2γ ≤ J − 1 − N and
n = 1, . . . , µq+1

γ , ν = 1, . . . , µqγ .

(ii) Because of (3.38), (3.39) the correction operators satisfy

Λ−1M Γ̂j = Γ̂j−1 ,

where Γ̂−1 := 0 .

(iii) By (3.37) we have

Γ̂j(F,G) ∈ Corq,j(Ω) := Lin{Λ−1E+,k
σ,m , Λ−1H+,k

σ,n : k + 2σ ≤ j} .

Hence, the correction operators

Γ̂j : L2,q,q+1
s (Ω) −→ Corq,j(Ω)

are degenerated (and clearly continuous).

(iv) Γ̂j(F,G) = (0, 0) for (F,G) ∈ Regq,Js (Ω) .
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Remark 3.7 Utilizing the representations of E+,k
σ,m , H

+,k
σ,m from Corollary 2.8 and the or-

thogonality properties from Lemma 2.9 we may obtain a more detailed recursive definition of
the coefficient forms X`

γ,n , Y
`
γ,ν . Namely looking at (3.25) and keeping in mind k − 2σ ≥ 0

we see that βk,σ,me,γ,n vanishes for odd k − 2σ + 1 , i.e. even k . However, for even k − 2σ + 1 ,
i.e. odd k , we get by Corollary 2.8 and Lemma 2.9

βk,σ,me,γ,n = −κk,σ ξk−2σ+1,σ,m
(1,γ,n,−) .

Accordingly we achieve for odd k

αk,σ,mh,γ,ν = −κk,σ ζk−2σ+1,σ,m
(1,γ,ν,−) , αk,σ,me,γ,n = βk,σ,mh,γ,ν = 0

and for even k

αk,σ,mh,γ,ν = 0 , αk,σ,me,γ,n = −κk,σ ξk−2σ+1,σ,m
(1,γ,n,−) , βk,σ,mh,γ,ν = −κk,σ ζk−2σ+1,σ,m

(1,γ,ν,−) .

Now our recursion (3.35), (3.36) appears in a more explicit shape

X`
γ,n := Λ−1H+,`

γ,n +
∑

(k,σ,m)∈Θ̃q`−N
k odd

κk,σ ξ
k−2σ+1,σ,m
(1,γ,n,−) Y `−N−k

σ,m

+
∑

(k,σ,m)∈Θ̃q+1
`−N

k even

κk,σ ξ
k−2σ+1,σ,m
(1,γ,n,−) X`−N−k

σ,m ,

Y `
γ,ν := Λ−1E+,`

γ,ν +
∑

(k,σ,m)∈Θ̃q`−N
k even

κk,σ ζ
k−2σ+1,σ,m
(1,γ,ν,−) Y `−N−k

σ,m

+
∑

(k,σ,m)∈Θ̃q+1
`−N

k odd

κk,σ ζ
k−2σ+1,σ,m
(1,γ,ν,−) X`−N−k

σ,m .

Proof: W. l. o. g. let s ∈ (J + 1/2,J + N/2) \ I . We insert the asymptotics (3.29),
(3.30) into the estimates of Lemma 3.2. Introducing the new variable j(`) := ` + k
and ordering the sums according to j , k , σ , m we have proved the theorem. The as-
sertions of the two remarks are easy consequences of the definition of the correction
operators and (3.37), (3.38), (3.39). �

The first step is completed.
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3.2 Second step

By the results obtained in [27, section 3] we get the following essential decomposi-
tion of L2,q,q+1

s (Ω) :

Lemma 3.8 Let s > 1−N/2 and s+ 1 /∈ I as well as t ≤ s and t < N/2 . Then every

(F,G) ∈ L2,q,q+1
s (Ω)

may be uniquely decomposed into

(F,G) = Λ(Fr, Gd) + (Fd, Gr) ,

where (Fr, Gd) and (Fd, Gr) are uniquely decomposed into

(Fr, Gd) = (
◦
b, b) + (F̃r, G̃d) +

( ∑
I∈Ī

q,0
s

ϕI(ϑ
q
I)
−1ηRq

I ,
∑

I∈Ī
q+1,0
s

ψIϑ
q+1
I ηDq+1

I

)
,

(Fd, Gr) = (F̃d, G̃r) +
( ∑
I∈Ī

q,0
s

ϕI div ηRq+1

1I
,
∑

I∈Ī
q+1,0
s

ψI rot ηDq

1I

)

with constants ϕI , ψI ∈ C , where ϑqI := i
(
q′ + e(I)

)1/2(
q + e(I)

)−1/2 . Moreover

(
◦
b, b) ∈ Lin

◦
Bq × Lin Bq+1 ⊂ 0

◦
Rq

vox(Ω)× 0Dq+1
vox (Ω) ,

(F̃r, G̃d) ∈
◦
Rq
s(Ω)× Dq+1

s (Ω) ,

(Fr, Gd) ∈ Triqs(Ω) := (Lin
◦
Bq × Lin Bq+1)u

(
0

◦
Rq
s(Ī

q,0
s ,Ω)× 0Dq+1

s (Ī
q+1,0
s ,Ω)

)
⊂ 0

◦
Rq
t (Ω)× 0Dq+1

t (Ω) ,

(F̃d, G̃r) ∈ Regq,0s (Ω) ,

(Fd, Gr) ∈ Regq,−1
s (Ω) := 0Dq

s(Ī
q,0
s ,Ω)× 0

◦
Rq+1
s (Ī

q+1,0
s ,Ω)

= Regq,0s (Ω)u
(

div ηRq+1(1Ī
q,0
s )× rot ηDq(1Ī

q+1,0
s )

)
⊂ Regq,0t (Ω)

and all projections are continuous. We denote the projection (F,G) → (Fr, Gd) by Π and
the projection (F,G)→ (Fd, Gr) by Πreg = Id−ΛΠ .

Shortly written we get

L2,q,q+1
s (Ω) =

(
Λ Triqs(Ω)u Regq,−1

s (Ω)
)
∩ L2,q,q+1

s (Ω) ,

where Triqs(Ω) = Π L2,q,q+1
s (Ω) and Regq,−1

s (Ω) = ΠregL2,q,q+1
s (Ω) .

Remark 3.9 This lemma still holds true for τ -C1-admissible transformations Λ , if τ > 0 ,
τ > s+ 1−N/2 and τ ≥ −s− 1 .
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Let us consider for J ∈ N0 and s ∈ (J + 1/2,∞) \ I some (F,G) ∈ L2,q,q+1
s (Ω) . We

decompose (F,G) according to the latter lemma. (Fr, Gd) solves

(M + iωΛ)(Fr, Gd) = iωΛ(Fr, Gd)

and satisfies the boundary, integrability and radiation condition since t > −1/2 .
Thus, for the ‘trivial projection’ we have

iωLω Λ(Fr, Gd) = (Fr, Gd) , i.e. iωLω ΛΠ = Π . (3.40)

Looking at the ‘regular projection’ we see that Theorem 3.5 determines the asymp-
totic of (F̃d, G̃r) completely. Therefore, it remains to compute the asymptotics of

(fd, gr) :=
( ∑
I∈Ī

q,0
s

ϕI div ηRq+1

1I
,
∑

J∈J̄
q+1,0
s

ψJ rot ηDq

1J

)
.

We note for I = (−, 0, σ,m) and J = (−, 0, σ, n)

ηRq+1

1I
= h−σ,m , ηDq

1J
= e−σ,n .

Thus, we have to calculate the asymptotics of

(div ηRq+1

1I
, 0) = Mh−,0σ,m = h−,1σ,m , (0, rot ηDq

1J
) = Me−,0σ,n = e−,1σ,n .

But this is quite easy since e−,1σ,n and h−,1σ,m inherit the asymptotics of e−,2σ,n , h−,2σ,m derived
in the first step. We discuss for example e−,1σ,n . e−,1σ,n satisfies the boundary, integrabil-
ity and radiation condition as well as solves

(M + iωΛ)e−,1σ,n = e−,2σ,n + iωe−,1σ,n .

This yields
e−,1σ,n = Lω e−,2σ,n + iωLω e−,1σ,n .

By Lemma 2.17 we get

Lω e−,1σ,n =
1

iω
(e−,1σ,n − Lω e−,2σ,n ) =

1

− iω
Lω,0 e−,2σ,n

=
1

− iω

(
Lω,j e−,2σ,n +

j∑
`=1

(− iω)` L0 L` e−,2σ,n

)
=

1

− iω

(
Lω,j e−,2σ,n +

j−1∑
`=0

(− iω)`+1 L0 L` e−,1σ,n

)
and hence

Lω,j−1 e
−,1
σ,n =

1

− iω
Lω,j e−,2σ,n .
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By (3.19) and (3.29) we obtain

Lω,j−1 e
−,1
σ,n

j∼ iκσω
N+2σ−1

j−N−2σ∑
`=0

(− iω)`X`
σ,n

= κ0,σ(− iω)N−1

j−N−2σ∑
`=0

(− iω)`+2σX`
σ,n

(3.41)

and similarly

Lω,j−1 h
−,1
σ,m = κ0,σ(− iω)N−1

j−N−2σ∑
`=0

(− iω)`+2σY `
σ,m . (3.42)

In order to compute the coefficients ϕI , ψJ in terms of (F,G) we have the following
lemma. Please compare to Lemma 2.13.

Lemma 3.10 Let s ∈ (1−N/2,∞) \ I and (F,G) ∈ L2,q,q+1
s (Ω) . Then for all appropriate

σ,m and ` ≥ 1

(i)
〈
(F,G), E+,0

σ,m

〉
L̃2,q,q+1(Ω)

= 〈F,E+
σ,m〉L2,q(Ω) = −ϕI ,〈

(F,G), H+,0
σ,m

〉
L̃2,q,q+1(Ω)

= 〈G,H+
σ,m〉L2,q+1(Ω) = −ψJ ,

(ii)
〈
(F,G), E+,`

σ,m

〉
L̃2,q,q+1(Ω)

=
〈
(F̃d, G̃r), E

+,`
σ,m

〉
L̃2,q,q+1(Ω)

,〈
(F,G), H+,`

σ,m

〉
L̃2,q,q+1(Ω)

=
〈
(F̃d, G̃r), H

+,`
σ,m

〉
L̃2,q,q+1(Ω)

hold, where I = (−, 0, σ,m) resp. J = (−, 0, σ,m) .

Remark 3.11 Here of course ‘appropriate’ means that all E+,0
σ,m , H+,0

σ,m , E+,`
σ,m , H+,`

σ,m are
elements of L2,q,q+1

−s (Ω) . More precisely we may pick indices I = (−, 0, σ,m) ∈ Ī
q,0
s resp.

J = (−, 0, σ,m) ∈ Ī
q+1,0
s and (`, σ,m) ∈ Θq,`

s resp. (`, σ,m) ∈ Θq+1,`
s .

Proof: Let us first discuss (i) and ϕI . During the proof we denote I = (−, 0, σ,m) .
The representation of F in Lemma 3.8 may be written as

(
see [27, Theorem 3.2 (iv)]

)
F = ε

◦
b+ εF̂r + F̂d − i

∑
I∈Ī

q,0
s

ϕI(q
′ + σ)−1/2ε∆εηP

q
I , (3.43)

where P q
I := (q + σ)1/2Rq

2I
+ i(q′ + σ)1/2Dq

2I
is a potential form and by [27, section 3]

F̂r ∈ 0

◦
Rq
s(Ω) = rot

◦
Rq−1
s−1(Ω) , F̂d ∈ 0Dq

s(Ω) = div Dq+1
s−1(Ω) .

Since ε∆ε = ε rot div + div rot = ∆ on supp η and ∆P q
I = 0 we obtain

ε∆εηP
q
I = CP q

I .
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Clearly we have

〈F,E+
γ,n〉L2,q(Ω) = − i

∑
I∈Ī

q,0
s

ϕI(q
′ + σ)−1/2〈CP q

I , E
+
γ,n〉L2,q(Ω)

and utilizing the expansion of E+
σ,m from Corollary 2.8 as well as Lemma 2.9 and

Remark 2.10 we get

〈F,E+
γ,n〉L2,q(Ω) =

∑
I∈Ī

q,0
s

ϕI
(
(ϑqσ)−1〈CRq

2I
, E+

γ,n〉L2,q(Ω) + 〈CDq

2I
, E+

γ,n〉L2,q(Ω)

)
= −ϕ(−,0,γ,n) ,

since the sums vanish except for Rq

2I
= −Rq,2

γ,n resp. Dq

2I
= −Dq,2

γ,n . The other assertion
of (i) for ψJ may be shown in a similar way.

To prove (ii) we write

F = ε
◦
b+ εF̌r + F̃d +

∑
I∈Ī

q,0
s

ϕI
(
(ϑqσ)−1 rot ηDq−1

1I
+ div ηRq+1

1I

)

with some F̌r ∈ 0

◦
Rq
s(Ω) . For any ` we have〈

(ε
◦
b, 0), E+,`

σ,m

〉
L̃2,q,q+1(Ω)

=
〈
(εF̌r, 0), E+,`

σ,m

〉
L̃2,q,q+1(Ω)

= 0 .

Thus, it remains to show for all I〈
(Qq

I , 0), E+,`
σ,m

〉
L̃2,q,q+1(Ω)

= 0 ,

where Qq
I := (ϑqσ)−1 rot ηDq−1

1I
+ div ηRq+1

1I
. In order to prove this we compute

i(q′ + σ)1/2Qq
I = CP q

I − divCrot,ηP
q
I − rotCdiv,ηP

q
I

and obtain directly
〈
(rotCdiv,ηP

q
I , 0), E+,`

σ,m

〉
L̃2,q,q+1(Ω)

= 0 . With the second term on
the right hand side we proceed as follows. We write E+,`

σ,m = MΛ−1E+,`+1
σ,m and since

Crot,η is compactly supported partial integration yields〈
(divCrot,ηP

q
I , 0), E+,`

σ,m

〉
L̃2,q,q+1(Ω)

= −
〈
(0, rot divCrot,ηP

q
I ), E+,`+1

σ,m

〉
L̃2,q,q+1(Ω)

= −
〈
(0, rotCP q

I ), E+,`+1
σ,m

〉
L̃2,q,q+1(Ω)

+ i(q′ + σ)1/2
〈
(0, rot div ηRq+1

1I
), E+,`+1

σ,m

〉
L̃2,q,q+1(Ω)

=
〈
(CP q

I , 0), E+,`
σ,m

〉
L̃2,q,q+1(Ω)

+ i(q′ + σ)1/2
〈
(0, CRq+1

1I
), E+,`+1

σ,m

〉
L̃2,q,q+1(Ω)

,
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where the last equation follows once more by [26, Remark 2.4]. Consequently〈
(Qq

I , 0), E+,`
σ,m

〉
L̃2,q,q+1(Ω)

= −
〈
(0, CRq+1

1I
), E+,`+1

σ,m

〉
L̃2,q,q+1(Ω)

.

Once again by Corollary 2.8, Lemma 2.9 and Remark 2.10 the scalar products〈
(0, CRq+1

1I
), E+,`+1

σ,m

〉
L̃2,q,q+1(Ω)

vanish because ` ≥ 1 . Besides also the scalar products
〈
(CP q

I , 0), E+,`
σ,m

〉
L̃2,q,q+1(Ω)

van-
ish since ` ≥ 1 , though this is not necessary for the proof. The other assertions of
(ii) are shown analogously. �

Putting all together we obtain the main result of step two.

Definition 3.12 Let J ∈ N0 , s ∈ (J + 1/2,∞) \ I and (F,G) ∈ L2,q,q+1
s (Ω) . For

j = 0, . . . ,J−N we define the ‘correction operators’

Γ̃j(F,G) := −
∑

2σ≤j ,m

κ0,σ

〈
(F,G), E+,0

σ,m

〉
L̃2,q,q+1(Ω)

Y j−2σ
σ,m

−
∑

2σ≤j ,m

κ0,σ

〈
(F,G), H+,0

σ,m

〉
L̃2,q,q+1(Ω)

Xj−2σ
σ,m

as well as Γ0 := Γ̃0 and Γj := Γ̂j−1 + Γ̃j for j = 1, . . . ,J−N .

Theorem 3.13 Let J ∈ N0 and s ∈ (J + 1/2,∞) \ I . Then for all bounded subdomains
Ωb ⊂ Ω the asymptotic

∣∣∣∣Lω(F,G) + (− iω)−1Π(F,G)−
J−1∑
j=0

(− iω)j L0 Lj Πreg(F,G)

−(− iω)N−1

J−N∑
j=0

(− iω)jΓj(F,G)
∣∣∣∣

L2,q,q+1(Ωb)
= O

(
|ω|J

)∣∣∣∣(F,G)
∣∣∣∣

L2,q,q+1
s (Ω)

holds uniformly with respect to (F,G) ∈ L2,q,q+1
s (Ω) and ω ∈ C+,ω̂ \ {0} .
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Remark 3.14

(i) By Lemma 2.13 on Regq,0s (Ω) we have Γ̃j = 0 and thus Γj = Γ̂j−1 for j ≥ 1 as well
as Γ0 = 0 .

(ii) Π(F,G) = 0 and Πreg(F,G) = (F̃d, G̃r) = (F,G) hold for (F,G) ∈ Regq,0s (Ω) .

(iii) Because of (3.38), (3.39) the correction operators satisfy Λ−1M Γ̃j = Γ̃j−1 , where
Γ̃−1 := 0 . Thus, we have Λ−1M Γj = Γj−1 .

(iv) From Definition 3.12 we get

Γ̃j(F,G) ∈ Lin{Xj−2σ
σ,m , Y j−2σ

σ,m : 2σ ≤ j}
and thus the correction operators

Γ̃j , Γj : L2,q,q+1
s (Ω) −→ Corq,j(Ω)

are degenerated (and clearly continuous).

Proof: From the arguments above and the continuity of the projections from Lemma
3.8

Lω(F,G) + (− iω)−1(Fr, Gd)

−
J−1∑
j=0

(− iω)j L0 Lj(F̃d, G̃r)−
J−1∑
j=0

(− iω)j L0 Lj(fd, gr)

−(− iω)N
J−1−N∑
j=0

(− iω)jΓ̂j(F̃d, G̃r)

+(− iω)N−1
∑

σ≤s−N/2 ,m

κ0,σ

〈
(F,G), E+,0

σ,m

〉
L̃2,q,q+1(Ω)

J−N−2σ∑
`=0

(− iω)`+2σY `
σ,n

+(− iω)N−1
∑

σ≤s−N/2 ,m

κ0,σ

〈
(F,G), H+,0

σ,m

〉
L̃2,q,q+1(Ω)

J−N−2σ∑
`=0

(− iω)`+2σX`
σ,n

may be estimated by c|ω|J
∣∣∣∣(F,G)

∣∣∣∣
L2,q,q+1
s (Ω)

in the L2,q,q+1(Ωb)-norm uniformly in ω

and (F,G) . We note I = (−, 0, σ,m) ∈ Ī
q,0
s , if and only if J = (−, 0, σ,m) ∈ J̄

q+1,0
s , if

and only if σ ≤ s−N/2 and m = 1, . . . . By Lemma 3.10 and Definition 3.4 we have
Γ̂j(F̃d, G̃r) = Γ̂j(F,G) . Rearranging the latter two terms we obtain∣∣∣∣∣∣Lω(F,G) + (− iω)−1(Fr, Gd)−

J−1∑
j=0

(− iω)j L0 Lj(Fd, Gr)

−(− iω)N−1
( J−N∑
j=1

(− iω)jΓ̂j−1(F,G) +
J−N∑
j=0

(− iω)jΓ̃j(F,G)
)∣∣∣∣∣∣

L2,q,q+1(Ωb)

= O
(
|ω|J

)∣∣∣∣(F,G)
∣∣∣∣

L2,q,q+1
s (Ω)

,

which completes the proof. �
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3.3 Third step

Now we approach estimates in weighted norms. For this we compare our solutions
with the solutions of the homogeneous whole space case. Let us denote

Lω := Lω

in the special case Ω = RN and Λ = Id . Lω is well defined on L2,q,q+1

> 1
2

for all C+ \ {0}
by [25, Theorem 2.17] since there are no eigensolutions in this case. We obtain

Lemma 3.15 Let J ∈ N and s > J − 1/2 as well as t < min{s,N/2} − J − 1 . Then for
j = 0, . . . ,J− 1 there exist bounded linear operators

Φj ∈ B(L2,q,q+1
s ,L2,q,q+1

t ) , Ψj ∈ B(L2,q−1,q+2
s ,L2,q,q+1

t )

and a constant c > 0 , such that∣∣∣∣∣∣Lω(F,G)−
J−1∑
j=0

(− iω)j
(
Φj(F,G) + (− iω)−1Ψj(divF, rotG)

)∣∣∣∣∣∣
L2,q,q+1
t

≤ c|ω|J
(∣∣∣∣(F,G)

∣∣∣∣
L2,q,q+1
s

+
1

|ω|
∣∣∣∣(divF, rotG)

∣∣∣∣
L2,q−1,q+2
s

)
holds uniformly with respect to ω ∈ C+ \{0} and (F,G) ∈ Dq

s×Rq+1
s . The assertion holds

also true for J = 0 and s,−t > 1/2 , t ≤ s− (N + 1)/2 .

Proof: Using the fundamental solution for the scalar Helmholtz equation in RN

Φω,ν(x) = ϕω,ν
(
|x|
)

with ϕω,ν(t) = cNω
νt−νH1

ν (ωt) ,

where the constant cN only depends on the dimension N and H1
ν (z) denotes Han-

kel’s first function of index ν := (N − 2)/2 , see [25, section 4], we may represent
(E,H) := Lω(F,G) by [25, Theorem 4.1], i.e.

EI = G ? rot ΦI
ω,ν + (− iω)F ? ΦI

ω,ν − (− iω)−1 divF ? div ΦI
ω,ν , (3.44)

HJ = F ? div ΦJ
ω,ν + (− iω)G ? ΦJ

ω,ν − (− iω)−1 rotG ? rot ΦJ
ω,ν , (3.45)

if E = EI dxI and H = HJ dxJ as well as ΦI
ω,ν := Φω,ν dxI . Here ? is the con-

volution in RN for forms, which simply is the sum of the scalar convolutions of
their Euclidean components. Utilizing Taylor’s expansion theorem we get constants
cj, c

′
j ∈ C and functions remJ, r̃emJ , such that for t ∈ R+ and ω ∈ C+ the expansions

ϕω,ν(t) = t2−N
J−2∑
j=0

cj(ωt)
j + remJ(ωt)t1−N+JωJ−1 ,

ϕ′ω,ν(t) = t1−N
J−1∑
j=0

c′j(ωt)
j + r̃emJ(ωt)t1−N+JωJ
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hold. The remainder functions remJ(z) and r̃emJ(z) are uniformly bounded with
respect to z ∈ C+ and the bounds only depend on N and J . Inserting these Taylor
representations into (3.44), (3.45) we obtain

(E,H) =
J−1∑
j=0

(− iω)j
(
Φj(F,G) + (− iω)−1Ψj(divF, rotG)

)
+ ωJ

(
Remω,J(F,G) +

1

ω
R̃emω,J(divF, rotG)

)
,

(3.46)

where Φj and Ψj resp. Remω,J and R̃emω,J are convolution operators with integral
kernels of shape bj(x, y)|x−y|j+1−N for j = 0, . . . ,J−1 resp. bRem(x, y, ω)|x−y|J+1−N .
The kernel parts bj(x, y) are uniformly bounded with respect to x, y ∈ RN and inde-
pendent of ω . Moreover, the kernel parts bRem(x, y, ω) are uniformly bounded with
respect to x, y ∈ RN and ω ∈ C+ . Thus, it remains to show that the kernels

|x− y|j+1−N , j = 0, . . . ,J ,

generate bounded linear operators from L2
s to L2

t . All kernels belong to L1
loc and

grow with j if |x − y| > 1 . Therefore, we only have to discuss the worst kernel
|x − y|J+1−N . The assertion follows now by [18, Lemma 1] and [48, Lemma 13] as
well as some case studies. For a more detailed proof we refer to [24, Sektionen 5.1-
5.3]. �

According to [46, Theorem 4] there exist continuous projections

π : L2,q,q+1
s → 0Rq

s × 0Dq+1
s ; (F,G) 7→ (FR, GD) ,

πreg : L2,q,q+1
s → 0Dq

s × 0Rq+1
s ; (F,G) 7→ (FD, GR) ,

πS : L2,q,q+1
s → Sqs × Sq+1

s ; (F,G) 7→ (FS, GS) ,

such that each (F,G) ∈ L2,q,q+1
s may be uniquely decomposed as

(F,G) = (FR, GD) + (FD, GR) + (FS, GS) .

Corollary 3.16 Let J ∈ N and s > J− 1/2 as well as t < min{s,N/2− 1}−J− 1 . Then

∣∣∣∣Lω(F,G)−
J−1∑
j=0

(− iω)jΦj(FD + FS, GR +GS) + (− iω)−1(FR, GD)

−
J−1∑
j=−1

(− iω)jΨj+1(divFS, rotGS)
∣∣∣∣

L2,q,q+1
t

= O
(
|ω|J

)∣∣∣∣(F,G)
∣∣∣∣

L2,q,q+1
s

holds uniformly with respect to ω ∈ C+\{0} and (F,G) ∈ L2,q,q+1
s , if ω ranges in a bounded

set. The estimate remains valid even for J = 0 and s,−t > 1/2 , t ≤ s− (N + 1)/2 .
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Proof: We easily see Lω(FR, GD) = −(− iω)−1(FR, GD) .
(
Compare to (3.40).

)
More-

over, Lemma 3.15 may be applied to (FD, GR) and we get

∣∣∣∣Lω(FD, GR)−
J−1∑
j=0

(− iω)jΦj(FD, GR)
∣∣∣∣

L2,q,q+1
t

= O
(
|ω|J

)∣∣∣∣(F,G)
∣∣∣∣

L2,q,q+1
s

.

Furthermore, Lemma 3.15 may also be applied to (FS, GS) but with J + 1 instead of
J as well as s̃ := s+ 1 and t̃ := t . We achieve

∣∣∣∣Lω(FS, GS)−
J∑
j=0

(− iω)jΦj(FS, GS)−
J−1∑
j=−1

(− iω)jΨj+1(divFS, rotGS)
∣∣∣∣

L2,q,q+1
t

≤ c|ω|J+1
(∣∣∣∣(FS, GS)

∣∣∣∣
L2,q,q+1
s̃

+
1

|ω|
∣∣∣∣(divFS, rotGS)

∣∣∣∣
L2,q−1,q+2
s̃

)
≤ c|ω|J

∣∣∣∣(FS, GS)
∣∣∣∣

Dqs̃×Rq+1
s̃

.

Now the L2,q,q+1
t -norm of the term (− iω)JΦj(FS, GS) may be swallowed by the right

hand side, which itself can be further estimated by O
(
|ω|J

)∣∣∣∣(F,G)
∣∣∣∣

L2,q,q+1
s

since Sqs

are finite dimensional subspaces of
◦
C∞,q for all q and s . Putting all together yields

the desired assertion. �

We are able to formulate the main result of this section:

Theorem 3.17 Let J ∈ N and s ∈ (J+1/2,∞)\I as well as t < min{s,N/2−1}−J−1 .
Then the asymptotic

∣∣∣∣Lω(F,G) + (− iω)−1Π(F,G)−
J−1∑
j=0

(− iω)j L0 Lj Πreg(F,G)

−(− iω)N−1

J−N∑
j=0

(− iω)jΓj(F,G)
∣∣∣∣

L2,q,q+1
t (Ω)

= O
(
|ω|J

)∣∣∣∣(F,G)
∣∣∣∣

L2,q,q+1
s (Ω)

holds uniformly with respect to (F,G) ∈ L2,q,q+1
s (Ω) and ω ∈ C+,ω̂ \ {0} .

This asymptotic holds for J = 0 as well, if we replace the assumptions on t by t < −1/2
and t ≤ s− (N + 1)/2 .

Proof: Let us define operators Kj via

K−1 := −Π ,

Kj := L0 Lj Πreg , j = 0, . . . , N − 2 ,

Kj := L0 Lj Πreg + Γj−N+1 , j = N − 1, . . . ,J− 1
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and for J ≤ J− 1

LK
ω,J := Lω−

J∑
j=−1

(− iω)jKj . (3.47)

Then we have to show uniformly with respect to ω and (F,G)∣∣∣∣LK
ω,J−1(F,G)

∣∣∣∣
L2,q,q+1
t (Ω)

= O
(
|ω|J

)∣∣∣∣(F,G)
∣∣∣∣

L2,q,q+1
s (Ω)

.

From now on all estimates are to be understood uniformly with respect to ω and
(F,G) . We want to combine the asymptotics in local norms proved in the second
step with the whole space asymptotics in weighted norms from the latter corollary.
Since we have by Theorem 3.13 for every bounded subdomain Ωb of Ω∣∣∣∣LK

ω,J−1(F,G)
∣∣∣∣

L2,q,q+1(Ωb)
= O

(
|ω|J

)∣∣∣∣(F,G)
∣∣∣∣

L2,q,q+1
s (Ω)

, (3.48)

we get immediately∣∣∣∣(1− η)LK
ω,J−1(F,G)

∣∣∣∣
L2,q,q+1
t (Ω)

= O
(
|ω|J

)∣∣∣∣(F,G)
∣∣∣∣

L2,q,q+1
s (Ω)

and it remains to estimate
∣∣∣∣ηLK

ω,J−1(F,G)
∣∣∣∣

L2,q,q+1
t

.
To do so let ω ∈ C+,ω̂ \ {0} and (F,G) ∈ L2,q,q+1

s (Ω) . According to [27, Theorem
3.2 (iv)]

(
compare with Lemma 3.8 and (3.43)

)
we decompose

(F,G) = Λ
(

(
◦
b, b) + (F̂r, Ĝd)︸ ︷︷ ︸

=: Π̂(F,G)

)
+ (F̂d, Ĝr)︸ ︷︷ ︸

=: Π̂reg(F,G)

+
( ∑
I∈Ī

q,0
s

ϕ̂ICP
q
I ,

∑
J∈Ī

q+1,0
s

ψ̂JCP
q+1
J

)
︸ ︷︷ ︸

=: Π̂C(F,G)

with continuous projections, where CP q
I ∈

◦
C∞,q and (

◦
b, b) ∈ Lin

◦
Bq×Lin Bq+1 as well

as
(F̂r, Ĝd) ∈ 0

◦
Rq
s(Ω)× 0Dq+1

s (Ω) , (F̂d, Ĝr) ∈ Regq,0s (Ω) .

By Lemma 3.10 we have

|ϕ̂I |+ |ψ̂J | ≤ c
∣∣∣∣(F,G)

∣∣∣∣
L2,q,q+1
s (Ω)

.

The trick is to apply this decomposition using another cut-off function η̃ , which
satisfies supp∇η̃ ⊂ Zr3,r4 , whereas supp∇η ⊂ Zr1,r2 . More precisely we set

η̃ := η̌ ◦ r , η̌(t) := η
(
1 +

t− r3

r4 − r3

)
and note C = C∆,η̃ in this case. Since

Lω ΛΠ̂(F,G) = −(− iω)−1Π̂(F,G)
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it suffices to discuss ηLω(F̂ , Ĝ) with (F̂ , Ĝ) := (Π̂reg + Π̂C)(F,G) .
ηLω(F̂ , Ĝ) ∈ Rq

<− 1
2

× Dq+1

<− 1
2

satisfies the radiation condition and solves

(M + iω)ηLω(F̂ , Ĝ) = (M + iωΛ)ηLω(F̂ , Ĝ) = (f, g) (3.49)

with (f, g) := (η + CM,η Lω)(F̂ , Ĝ) ∈ L2,q,q+1
s . (Without further comments here and

in the following we often identify forms with their extensions by zero to RN .) Thus,
ηLω(F̂ , Ĝ) = Lω(f, g) or in another notation

ηLω = Lω(η Id +CM,η Lω) (3.50)

holds even on L2,q,q+1
s (Ω) . By Corollary 3.16 there exist bounded linear operators

Ξ−1, . . . ,ΞJ−1 mapping L2
s to L2

t , which satisfy∣∣∣∣Lω,J−1(f, g)
∣∣∣∣

L2,q,q+1
t

= O
(
|ω|J

)∣∣∣∣(f, g)
∣∣∣∣

L2,q,q+1
s

, (3.51)

where

Lω,J−1 := Lω −
J−1∑
j=−1

(− iω)jΞj . (3.52)

Moreover,
∣∣∣∣(f, g)

∣∣∣∣
L2,q,q+1
s

can be further estimated by∣∣∣∣(f, g)
∣∣∣∣

L2,q,q+1
s

≤ c
(∣∣∣∣(F,G)

∣∣∣∣
L2,q,q+1
s (Ω)

+
∣∣∣∣CM,η Lω(F̂ , Ĝ)

∣∣∣∣
L2,q,q+1(supp∇η)

)
.

Using [25, Lemma 4.2 (iv)] we can estimate∣∣∣∣Lω Π̂reg(F,G)
∣∣∣∣

L2,q,q+1(supp∇η)
≤ c
∣∣∣∣Π̂reg(F,G)

∣∣∣∣
L2,q,q+1
s (Ω)

≤ c
∣∣∣∣(F,G)

∣∣∣∣
L2,q,q+1
s (Ω)

.

Looking at some term of Π̂C(F,G) we see

CM,η Lω(CP q
I , CP

q+1
J ) = CM,η Lω(div rot η̃P q

I , rot div η̃P q+1
J )

because

Lω(rot div η̃P q
I , div rot η̃P q+1

J ) =
1

iω
(rot div η̃P q

I , div rot η̃P q+1
J ) ∈ L2,q,q+1

<N
2

and thus CM,η Lω(rot div η̃P q
I , div rot η̃P q+1

J ) = 0 since supp∇η ∩ supp η̃ = ∅ . With
some s̃ ∈ (1/2, N/2) we have (div rot η̃P q

I , rot div η̃P q+1
J ) ∈ Regq,0s̃ (Ω) and therefore

we may utilize [25, Lemma 4.2 (iv)] once more to estimate∣∣∣∣CM,η Lω(CP q
I , CP

q+1
J )

∣∣∣∣
L2,q,q+1(supp∇η)

≤ c
∣∣∣∣(div rot η̃P q

I , rot div η̃P q+1
J )

∣∣∣∣
L2,q,q+1
s̃ (Ω)

≤ c .

Hence, we obtain∣∣∣∣CM,η Lω Π̂C(F,G)
∣∣∣∣

L2,q,q+1(supp∇η)
≤ c
∣∣∣∣(F,G)

∣∣∣∣
L2,q,q+1
s (Ω)

.
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Putting all together yields∣∣∣∣(f, g)
∣∣∣∣

L2,q,q+1
s

≤ c
∣∣∣∣(F,G)

∣∣∣∣
L2,q,q+1
s (Ω)

and after inserting in (3.51)∣∣∣∣Lω,J−1(f, g)
∣∣∣∣

L2,q,q+1
t

= O
(
|ω|J

)∣∣∣∣(F,G)
∣∣∣∣

L2,q,q+1
s (Ω)

.

Now using (3.52) and (3.49), (3.50) we obtain

ηLω(F̂ , Ĝ) = Lω,J−1(f, g) +
J−1∑
j=−1

(− iω)jΞj(η + CM,η Lω)(F̂ , Ĝ) .

Collecting terms and utilizing (3.47) gives

ηLω(F,G) + (− iω)−1Π̂(F,G)−
J−1∑
j=−1

(− iω)jΞjη(Π̂reg + Π̂C)(F,G)

−
J−1∑
j=−1

J−1−j∑
k=−1

(− iω)j+kΞjCM,ηKk(Π̂reg + Π̂C)(F,G) (3.53)

= Lω,J−1(f, g) +
J−1∑
j=−1

(− iω)jΞjCM,η LK
ω,J−1−j(F̂ , Ĝ) .

Moreover, the continuity of the operators Ξj from L2
s to L2

t as well as Theorem 3.13
yield ∣∣∣∣ΞjCM,η LK

ω,J−1−j(F̂ , Ĝ)
∣∣∣∣

L2,q,q+1
t

≤ c
∣∣∣∣LK

ω,J−1−j(F̂ , Ĝ)
∣∣∣∣

L2,q,q+1(supp∇η)

≤ c|ω|J−j
∣∣∣∣(F̂ , Ĝ)

∣∣∣∣
L2,q,q+1
s (Ω)

.

Therefore, the right hand side of (3.53) behaves in the L2,q,q+1
t -norm like

O
(
|ω|J

)∣∣∣∣(F,G)
∣∣∣∣

L2,q,q+1
s (Ω)

and thus so does the left hand side. By (3.48)∣∣∣∣ηLK
ω,J−1(F,G)

∣∣∣∣
L2,q,q+1(Ωb)

= O
(
|ω|J

)∣∣∣∣(F,G)
∣∣∣∣

L2,q,q+1
s (Ω)

holds also for every bounded domain Ωb ⊂ RN . Applying Lemma 3.3 we find that
the left hand side of (3.53) equals ηLK

ω,J−1(F,G) and this yields finally∣∣∣∣ηLK
ω,J−1(F,G)

∣∣∣∣
L2,q,q+1
t

= O
(
|ω|J

)∣∣∣∣(F,G)
∣∣∣∣

L2,q,q+1
s (Ω)

,

which completes our proof. �
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3.4 Fourth step

We are ready to face the proof of the Main Theorem. This last step may be done by
an abstract argument similar to [45, Lemma 12]. Thus, our aim is to identify two
Banach spaces X and Y , such that all operators involved in our asymptotic belong
to B(X, Y ) , which denotes the space of all bounded linear operators from X to Y .
Good candidates are X = L2,q,q+1

s (Ω) and Y = L2,q,q+1
t (Ω) as well as for some s > t

B(X, Y ) = Bs,t := B
(
L2,q,q+1
s (Ω),L2,q,q+1

t (Ω)
)

.

By Theorem 3.17 and (3.47) the ingredients of our asymptotic are the linear op-
erators Lω and Kj , j = −1, . . . ,J− 1 , i.e. the operators

Λ , Π , Lω and Lj , j = 0, . . . ,J

as well as the correction operators

Γj , j = 0, . . . ,J−N .

Moreover, the correction operators Γj map to Corq,j(Ω) and their coefficients are
given by the scalar products

sE,`σ,m(F,G) :=
〈
(F,G), E+,`

σ,m

〉
L̃2,q,q+1(Ω)

, sH,`σ,m(F,G) :=
〈
(F,G), H+,`

σ,m

〉
L̃2,q,q+1(Ω)

and the numbers ξ`,σ,m1,γ,n,− , ζ`,σ,m1,γ,n,− . (See the definitions and remarks around Theorem
3.5 and Theorem 3.13.)

Let us assume ω to be small enough and still for the moment the perturbation Λ̂
to be compactly supported. Then clearly Λ ∈ Bs,t for all s ≥ t . By Lemma 3.8

Π ∈ B
(
L2,q,q+1
s (Ω), 0

◦
Rq
t (Ω)× 0D

q+1
t (Ω)

)
⊂ Bs,t ,

Πreg ∈ B
(
L2,q,q+1
s (Ω),Regq,−1

s (Ω)
)
⊂ Bs,t

(3.54)

for all s ∈ (1−N/2,∞) \ I and t ≤ s , t < N/2 , since the embedding

Regq,−1
s (Ω) ⊂ Regq,0t (Ω)

is continuous. By [25, Theorem 2.17]
(
see also [25, Theorem 2.24]

)
for s,−t > 1/2

Lω ∈ B
(
L2,q,q+1
s (Ω),

◦
Rq
t (Ω)× Dq+1

t (Ω)
)
⊂ Bs,t . (3.55)

By [26, Theorem 5.10]

Lj ∈ B
(

Regq,−1
s (Ω),Regq,0t (Ω)

)
(3.56)

and therefore

Lj Πreg ∈ Bs,t (3.57)
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for s ∈ (j −N/2,∞) \ I and t ≤ s− j , t < N/2− j . By Lemma 2.6

E+,k
σ,m , H

+,k
σ,m ∈ L2,q,q+1

t (Ω) (3.58)

for t < −k − σ −N/2 and thus

Corq,j(Ω) = Lin{Λ−1E+,k
σ,m , Λ−1H+,k

σ,n : k + 2σ ≤ j} ⊂ L2,q,q+1
t (Ω) (3.59)

for all t < −j − N/2 . Moreover, sE,k−2σ+1
σ,m , sH,k−2σ+1

σ,m and sE,0σ,m , sH,0σ,m are continuous
linear functionals on L2,q,q+1

s (Ω) for s ∈ (j + 1 + N/2,∞) \ I since again by Lemma
2.6

E+,k−2σ+1
σ,m , H+,k−2σ+1

σ,m , E+,0
σ,m , H

+,0
σ,m ∈ L2,q,q+1

<σ−k−1−N
2

(Ω) ⊂ L2,q,q+1
−s (Ω)

for 0 ≤ 2σ ≤ k ≤ j . This yields for s ∈ (j + 1 +N/2,∞) \ I and t < −j −N/2

Γj ∈ B
(
L2,q,q+1
s (Ω),Corq,j(Ω)

)
⊂ Bs,t . (3.60)

Now we weaken our assumptions on the perturbations Λ̂ , such that they do
not have to be compactly supported anymore. Thus, let us assume Λ to be τ -C1-
admissible. By [25, Lemma 4.2] P , the generalized point spectrum of M , does not
accumulate at zero for

τ > (N + 1)/2 ,

i.e. Lω is well defined for small ω . Furthermore, the following assertions still hold
true:

(3.54) for τ > 0 , τ > s+ 1−N/2 and τ ≥ −s− 1
(3.55) for τ > 1
(3.56) for τ > 0 , τ > s−N/2 and τ ≥ j − s− 1
(3.57) if (3.54) and (3.56)
(3.58) for τ > k + σ and τ ≥ N/2− 1
(3.59) for τ > j and τ ≥ N/2− 1
(3.60) for τ > j + 1 and τ ≥ N/2− 1

Collecting the values for s, t and τ we obtain

Lemma 3.18 Let J ∈ N0 and I 63 s > max{1/2,J + 1 − N/2} as well as t ≤ s − J and
t < min{−1/2, N/2 − J} . Moreover, let τ > max

{
(N + 1)/2, s + 1 − N/2

}
. Then for

j = 0, . . . ,J− 1 and i = 0, . . . ,J−N

Lω , Π , L0 Lj Πreg , Γi ∈ Bs,t

and thus also for j = −1, . . . ,J− 1

Kj , LK
ω,j ∈ Bs,t .

Now we approximate Λ̂ by compactly supported perturbations. For this purpose
we define ϕn := (1− η)(r/n) , n ∈ N and

Λn := Id +ϕnΛ̂ .
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(We note ϕn|Un ≡ 1 and ϕn|A2n
≡ 0 .) Then Λn converges to Λ for n → ∞ pointwise

a.e. and also in the operator norm of Bt,t for all t ∈ R since τ > 0 . Moreover, if
τ > s− t this convergence also holds true in Bt,s .

From now on all operators, forms and numbers carrying an index n correspond
to the truncated transformation Λn .

By a short calculation and a regularity result, e.g. [14, Corollary 3.8 (ii)], we
obtain

Lemma 3.19 Let τ > 0 . For all s ∈ R and r2 ≤ n ∈ N
◦
Rq
s(Ω) ∩ ε−1Dq

s(Ω) ⊂
◦
Rq
s(Ω) ∩ ε−1

n Dq
s(Ω) ,

µ−1
◦
Rq+1
s (Ω) ∩ Dq+1

s (Ω) ⊂ µ−1
n

◦
Rq+1
s (Ω) ∩ Dq+1

s (Ω)

hold with continuous embeddings, whose norms do not depend on n .

Let s, t and τ satisfy the assumptions of Lemma 3.18 and τ > s − t . Apply-
ing the latter lemma our static operators ε Maxqs−1 and εn Maxqs−1 from [26, Theorem
4.6] are well defined on their common domain of definition D(ε Maxqs−1) . A long
but straight forward computation shows that εn Maxqs−1 converges to ε Maxqs−1 in
the operator norm of B

(
D(ε Maxqs−1),Wq

s(Ω)
)

. Therefore, also the inverse operators
converge in the operator norm and clearly the same holds true for µ Maxq+1

s−1 and
µn Maxq+1

s−1 .
Since L0 consists of the inverses of ε Maxqs−1 and µ Maxq+1

s−1 also n L0 converges
to L0 in the operator norm. Thus, n L converges to L in the operator norm and
the same holds true for their powers. By Lemma 2.4 and Lemma 2.6 nE

+,k
σ,m resp.

nH
+,k
σ,m converge to E+,k

σ,m resp. H+,k
σ,m in the corresponding L2,q,q+1

t (Ω) . Looking at the
representations in Lemma 2.6 the coefficients nξ

k,σ, and nζ
k,σ, of nE

+,k
σ,m and nH

+,k
σ,m

converge to ξk,σ, and ζk,σ, in C . Hence, also the correction operators nΓj converge to
Γj in the operator norm. Furthermore, it follows that the projections Πn and Πreg,n

converge to Π and Πreg in the respective operator norms.
It remains to discuss the time-harmonic solution operator. For ω small enough

and (F,G) ∈ L2,q,q+1

> 1
2

(Ω)

(E,H) := Lω(F,G) , (En, Hn) := n Lω(F,G) ∈
◦
Rq

<− 1
2

(Ω)× Dq+1

<− 1
2

(Ω) .

Consequently the difference form (e, h) := (E,H) − (En, Hn) satisfies the radiation
condition and solves

(M + iωΛ)(e, h) = iω(Λn − Λ)(En, Hn) .

For τ > 1 we have (Λn − Λ)(En, Hn) ∈ L2,q,q+1

> 1
2

(Ω) and thus

(e, h) = iωLω(Λn − Λ)(En, Hn) ,
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i.e.
Lω− n Lω = iωLω(Λn − Λ) n Lω .

Interchanging Λ and Λn yields also

Lω(Λn − Λ) n Lω = n Lω(Λn − Λ)Lω .

Since Λn → Λ in Bt,s we obtain n Lω → Lω in Bs,t .
Summing up and using Theorem 3.17 we finally achieve

Lemma 3.20 Let J ∈ N and s ∈ (J+1/2,∞)\ I as well as t < min{−1/2, N/2−J−2} .
Moreover, let τ > max

{
(N + 1)/2, s− t

}
. Then for ω ∈ C+,ω̂ \{0} and j = −1, . . . ,J−1

n Lω
n→∞−−−→ Lω in Bs,t , Λn

n→∞−−−→ Λ in Bt,s ,

nKj
n→∞−−−→ Kj in Bs,t

as well as for all n
Lω− n Lω = iωLω(Λn − Λ) n Lω

and
||n LK

ω,J−1 ||Bs,t = O
(
|ω|J

)
.

Now we have to modify the result [45, Lemma 12] slightly.

Lemma 3.21 Let J ∈ N0 , ω̂ > 0 , ω ∈ C+,ω̂ \ {0} and X, Y be Banach spaces. Moreover,
let for n ∈ N

Lω , L(n)
ω

and
Kj , K(n)

j , j = −1, . . . ,J− 1

resp.
N (n)

be families of bounded linear operators from X to Y resp. Y to X . Furthermore, let

N (n) → 0 , K(n)
j → Kj , j = −1, . . . ,J− 1

with convergence in the respective operator norms and

Lω − L(n)
ω = ωLωN (n)L(n)

ω (3.61)

as well as for all n

L(n)
ω −

J−1∑
j=−1

K(n)
j = O

(
|ω|J

)
as ω → 0 with respect to the operator norm in B(X, Y ) . Then also

Lω −
J−1∑
j=−1

Kj = O
(
|ω|J

)
holds as ω → 0 with respect to the operator norm in B(X, Y ) .
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Proof: The proof is quite similar to the one of [45, Lemma 12] and hence may be
omitted here. We just note that in the Maxwell case it is indispensable that (3.61)
contains a term ωN (n) contrary to justN (n) in the case of the (generalized) perturbed
Helmholtz equation or the (generalized) perturbed equations of linear elasticity. �

We are ready for the

Proof of the Main Theorem: If we set

X := L2,q,q+1
s (Ω) , Y := L2,q,q+1

t (Ω) ,

then a combination of Lemma 3.20 and Lemma 3.21 yields our desired asymptotic

|| LK
ω,J−1 ||Bs,t = O

(
|ω|J

)
,

which proves the main theorem for J ≥ 1 . If J = 0 we have by Lemma 3.8 and (3.40)

LK
ω,−1 = Lω +(− iω)−1Π = Lω Πreg .

Hence, [25, Lemma 4.2 (iv)] yields the stated assertion.
To prove the first remark we compute

M LK
ω,j = − iωΛLK

ω,j−1

for 0 ≤ j ≤ J− 1 and

M LK
ω,−1 = M Lω = M Lω Πreg = Πreg − iωΛLω Πreg .

Moreover, we set s̃ := s , t̃ := t or t̃ := t+ 1 . Then for J ≥ 2 we may utilize the main
theorem with J − 1 , s̃ , t̃ and for J ∈ {0, 1} once more [25, Lemma 4.2 (iv)], which
completes the proof of Remark A. �

Using the Main Theorem as well as Definitions 3.4 and 3.12 and the correspond-
ing remarks we note two final observations concerning the correction operators.

Remark 3.22 Let J ∈ N0 and s, t as well as τ be as in the Main Theorem. Moreover, let
(F,G) ∈ Regq,0s (Ω) .

(i) For J ≤ N we have the noncorrected asymptotic∣∣∣∣∣∣(Lω− J−1∑
j=0

(− iω)j L0 Lj
)
(F,G)

∣∣∣∣∣∣
L2,q,q+1
t (Ω)

= O
(
|ω|J

)∣∣∣∣(F,G)
∣∣∣∣

L2,q,q+1
s (Ω)

.

(3.62)

(ii) For J ≥ N + 1 we know by Theorem 2.3 and Lemma 2.15 that the noncorrected
asymptotic (3.62) holds true for all (F,G) ∈ Regq,Js (Ω) , i.e. for (F,G) perpendicular(
in L2,q,q+1(Ω)

)
to all special growing forms Λ−1E+,k

σ,m,Λ
−1H+,k

σ,n ∈ L2,q,q+1
−s (Ω) with

1 ≤ k ≤ J . Albeit this condition is sufficient for (3.62) to hold it is not sharp. Of
course, the noncorrected asymptotic (3.62) holds, if and only if the correction opera-
tors Γj(F,G) = Γ̂j−1(F,G) vanish for all j = 1, . . . ,J − N , i.e. (F,G) must be
perpendicular only to all Λ−1E+,k

σ,m,Λ
−1H+,k

σ,n ∈ L2,q,q+1
−s (Ω) with 1 ≤ k ≤ J−N .
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Remark 3.23 Let J ∈ N0 and s, t as well as τ be as in the Main Theorem. Moreover, let
(F,G) ∈ L2,q,q+1

s (Ω) .

(i) For J ≤ N − 1 we have the noncorrected asymptotic

∣∣∣∣∣∣(Lω +(− iω)−1Π−
J−1∑
j=0

(− iω)j L0 Lj Πreg

)
(F,G)

∣∣∣∣∣∣
L2,q,q+1
t (Ω)

= O
(
|ω|J

)∣∣∣∣(F,G)
∣∣∣∣

L2,q,q+1
s (Ω)

.

(3.63)

(ii) For J ≥ N the noncorrected asymptotic (3.63) holds true, if and only if Γj(F,G) = 0
for all j = 0, . . . ,J−N , i.e. if and only if (F,G) is perpendicular to all special forms
Λ−1E+,k

σ,m,Λ
−1H+,k

σ,n ∈ L2,q,q+1
−s (Ω) with 0 ≤ k ≤ J−N .

4 Inhomogeneous boundary data

Let us finish this report by briefly pointing out how one may easily obtain a low
frequency asymptotic for inhomogeneous boundary data as well. For this purpose
let Ω be a C3-domain. Then we may utilize the linear and continuous tangential
trace and extension operators Γt and Γ̌t from [14, section 3.3].

Let us remind of the continuous solution operator

Sω : L2,q,q+1
s (Ω)×Rq(∂ Ω) −→ Rq

t (Ω)× Dq+1
t (Ω) ⊂ L2,q,q+1

t (Ω)
(F,G, λ) 7−→ (E,H)

for s,−t > 1/2 from [25, section 5] of the Maxwell system

(M + iωΛ)(E,H) = (F,G) ∈ L2,q,q+1
s (Ω) , ΓtE = λ ∈ Rq(∂ Ω) ,

where
Rq(∂ Ω) =

{
κ ∈ H−

1
2
,q(∂ Ω) : Rot κ ∈ H−

1
2
,q+1(∂ Ω)

}
and Rot := ddenotes the exterior derivative on the boundary manifold ∂ Ω . Again
Sω is well defined for small frequencies ω and connected to Lω via

Sω(F,G, λ) = (Γ̌tλ, 0) + Lω(F,G)− iωLω(εΓ̌tλ, 0)− Lω(0, rot Γ̌tλ) .

Thus, Sω inherits its low frequency behavior from Lω .
By [14, Theorem 3.14, Remark 3.15] for slightly more regular coefficients, i.e.

ε ∈ C1(Ar1 ∩ Ur2) , the extension

Γ̌tλ ∈
◦
Rq

vox(Ω) ∩ ε−1Dq
vox(Ω)

may be chosen in a way, such that (for the first component!)

(εΓ̌tλ, rot Γ̌tλ) ∈
(

0Dq
vox(Ω) ∩

◦
Bq(Ω)⊥

)
×
(

0Rq+1
vox (Ω) ∩ H̃q+1(Ω)⊥

)
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holds, where H̃q(Ω) := 0Rq(Ω) ∩ 0

◦
Dq(Ω) denotes the finite dimensional vector space

of (generalized) Neumann forms. Hence, in any case we have

(εΓ̌tλ, 0) ∈ Regq,0vox(Ω) .

Due to Γt rot = Rot Γt the condition Rotλ = 0 would imply homogeneous boundary

data for rot Γ̌tλ , i.e. rot Γ̌tλ ∈ 0

◦
Rq+1

vox (Ω) . Furthermore, for b ∈ Bq+1(Ω)

〈rot Γ̌tλ, b〉L2,q+1(Ω) = 〈λ, γnb〉L2,q(∂ Ω)

holds by Stokes’ theorem in the sense of the H−
1
2
,q(∂ Ω)-H

1
2
,q(∂ Ω)-duality. Here we

denote by γt = ι∗ and γn := ± ~ γt∗ the usual tangential and normal traces on
H1,q(Ω) , by ι : ∂ Ω→ Ω the natural embedding of the boundary and by~ the Hodge
star operator on the boundary manifold ∂ Ω . By the regularity assumptions on the
boundary we have b ∈ Bq+1(Ω) ⊂ H1,q+1(Ω) and thus γnb ∈ H

1
2
,q(∂ Ω) . (For this

∂ Ω ∈ C2 would be enough!) Hence, rot Γ̌tλ ∈ Bq+1(Ω)⊥ , if λ⊥γn Bq+1(Ω) . Thus, for
λ ∈ Rq(∂ Ω) perpendicular to γn Bq+1(Ω) and with vanishing rotation we also have

rot Γ̌tλ ∈ 0

◦
Rq+1

vox (Ω) ∩ Bq+1(Ω)⊥ , i.e. (0, rot Γ̌tλ) ∈ Regq,0vox(Ω) . Consequently for this
extension operator Γ̌t and λ ∈ Rq(∂ Ω) we get

(εΓ̌tλ, rot Γ̌tλ) ∈ Regq,0vox(Ω) ⇔ λ ∈ 0Rq(∂ Ω) ∩
(
γn Bq+1(Ω)

)⊥L2,q(∂ Ω) ,

which would enhance the asymptotic since then (εΓ̌tλ, rot Γ̌tλ) would be an element
of the kernels of Π and Γ̃ (See Definition 3.12 and Remark 3.14).

Moreover, it may be of interest to have conditions on the extension operator Γ̌t
and λ , which also would imply

(εΓ̌tλ, rot Γ̌tλ) ∈ Regq,Jvox(Ω) .

That would enhance the asymptotic of Sω once more because then all correction
operators would vanish on the extended boundary forms.

To reach this aim we have to modify our extension operator again. For this we
recall from [14, section 3.3] the constructions of the extension operators Γ̌t and 0Γ̌t .
Their construction is based on the extension operator Γ̌b

t mapping to forms defined
in the bounded domain

Ωb = Ω ∩ Ur3 .

Using the notations from there we have for some λ ∈ Rq(∂ Ω)

Eb
λ := Γ̌b

t λ̃ ∈ Rq(Ωb) ∩ ε−1 div Dq+1(Ωb) ,

where λ̃ ∈ Rq(∂ Ωb) , ∂ Ωb = ∂ Ω ∪̇Sr3 , is the extension by zero of λ as a linear and
continuous functional. Let us introduce the linear and continuous solution operator

Lb,0 : Regq,0(Ωb) −→
( ◦
Rq(Ωb)× Dq+1(Ωb)

)
∩ Λ−1 Regq,0(Ωb)

(f, g) 7−→ (e, h)
,
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where
Regq,0(Ωb) := div Dq+1(Ωb)× rot

◦
Rq(Ωb)

and (e, h) denotes the unique solution of the static Maxwell problem

M(e, h) = (f, g) , (e, h) ∈
( ◦
Rq(Ωb)× Dq+1(Ωb)

)
∩ Λ−1 Regq,0(Ωb) .

Then Lb := ΛLb,0 may be iterated on (εEb
λ, 0) . This defines arbitrary powers of Lb

on (εEb
λ, 0) . We noteMLb = Id on Regq,0(Ωb) , whereM := MΛ−1 . Then for any

` ∈ N0 and appropriate Λ an extension operator Γ̌t may also be defined by

(Γ̌`tλ, 0) := Λ−1M`ϕL`b(εEb
λ, 0) = Λ−1M`ϕL`b(εΓ̌b

t λ̃, 0) ,

where ϕ := ϕ̂◦r and ϕ̂ := 1− η̂ . We note suppϕ ⊂ Ω ∩ Ur2 and supp∇ϕ ⊂ Ar1 ∩ Ur2 .
Of course then Γ̌tλ has support in Ω ∩ Ur2 and εΓ̌tλ ∈ div Dq+1

vox (Ω) holds for ` ≥ 1 .
For ` = 0 and ` = 1 we get back our old extensions.

Before we proceed we have to make sure that Γ̌`t is well defined, i.e. that Γ̌tλ has
got a rotation and that its trace equals λ .

Lemma 4.1 Let ` ∈ N0 and Λ ∈ C`(Zδ) be 0-admissible with Zδ := Ar1−δ ∩ Ur2+δ for
some δ > 0 . Then for all λ ∈ Rq(∂ Ω)

Γ̌`tλ ∈ Rq
vox(Ω) ∩ ε−1Dq

vox(Ω) , ΓtΓ̌
`
tλ = λ .

Moreover, Γ̌tλ ∈ ε−1 div Dq+1
vox (Ω) , if ` ≥ 1 .

We note that for ` = 0 the additional assumption Λ ∈ C0(Zδ) is not needed. Further-
more, Zδ may be replaced by an arbitrarily thin shell Aρ−δ ∩ Uρ+δ using an appropriate
cut-off function ϕ .

Proof: First we note that the case ` = 0 has already been proved in [14, Theorem
3.13], since in fact Γ̌0

t is our old extension operator.
The form (e, h) := Λ−1 L`b(εEb

λ, 0) = Lb,0 L`−1
b (εEb

λ, 0) , which is even well defined

for 0-admissible ε , belongs to
( ◦
Rq(Ωb)× Dq+1(Ωb)

)
∩ Λ−1 Regq,0(Ωb) and solves

M(e, h) = L`−1
b (εEb

λ, 0) .

Thus, if L`−1
b (εEb

λ, 0) ∈ H`−1,q,q+1(Zδ) for any δ > 0 small enough we get by inner
regularity

(
for instance [14, Theorem 2.8] or [14, Theorem 3.6, Remark 3.7] in com-

bination with a usual cutting technique
)

(e, h) , L`b(εEb
λ, 0) ∈ H`,q,q+1(Zδ) (4.1)

for any δ > 0 small enough. Hence, a tiny induction argument shows (4.1). Now

MϕL`b(εEb
λ, 0) = MϕLb,0 L`−1

b (εEb
λ, 0)

= ϕL`−1
b (εEb

λ, 0) + ϕ̂′(r)r−1S Lb,0 L`−1
b (εEb

λ, 0) .
(4.2)
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Since the second term in the sum of the right hand side belongs to H`,q,q+1(Zδ) for
δ > 0 small enough, we obtain M`+1ϕL`b(εEb

λ, 0) is well defined, if and only if
M`ϕL`−1

b (εEb
λ, 0) is well defined. Another tiny induction showsM`+1ϕL`b(εEb

λ, 0)
is well defined, if and only ifMϕ(εEb

λ, 0) = Mϕ(Eb
λ, 0) = M(Γ̌0

tλ, 0) = (0, rot Γ̌0
tλ) is

well defined. But this has been proved in [14, Theorem 3.13]. Thus,

Γ̌`tλ , rot Γ̌`tλ

are well defined. Furthermore, we compute

(Γ̌`tλ, 0) = Λ−1M`−1MϕLb,0 L`−1
b (εEb

λ, 0)

= (Γ̌`−1
t λ, 0) + ϕ̂′(r)r−1Λ−1M`−1S Lb,0 L`−1

b (εEb
λ, 0) ,

which shows ΓtΓ̌
`
tλ = ΓtΓ̌

`−1
t λ since the second term of the sum on the right hand

side has compact support in Ωb . Finally again by [14, Theorem 3.13] we get

ΓtΓ̌
`
tλ = ΓtΓ̌

0
tλ = λ ,

which completes the proof. �

Remark 4.2 Repeating (4.2) shows for all k ≤ `

Λ−1MkϕL`b(εEb
λ, 0) = Λ−1ϕL`−kb (εEb

λ, 0) + (Ẽk, H̃k)

and therefore for all k ≤ `− 1

Λ−1MkϕL`b(εEb
λ, 0) = ϕLb,0 L`−k−1

b (εEb
λ, 0) + (Ẽk, H̃k) ,

where the (Ẽk, H̃k) are compactly supported. This shows for all 1 ≤ k ≤ `− 1

Λ−1MkϕL`b(εEb
λ, 0) ∈

( ◦
Rq

vox(Ω)× Dq+1
vox (Ω)

)
∩ Λ−1 Regq,0vox(Ω)

and

Λ−1ϕL`b(εEb
λ, 0) ∈

( ◦
Rq

vox(Ω)× Dq+1
vox (Ω)

)
∩ Λ−1

(
Dq

vox(Ω)×
◦
Rq+1

vox (Ω)
)

.

Now let
Γ̌t := Γ̌`t

for some ` ≥ J+ 1 , i.e. ` := J+ 1 , and J ≥ 1 . Then since 1 ≤ `−J ≤ `− 1 we obtain
by the latter remark

LJ Λ(Γ̌tλ, 0) = LJM`ϕL`b(εEb
λ, 0)

=M`−JϕL`b(εEb
λ, 0) ∈ Regq,0vox(Ω) ∩ Λ

( ◦
Rq

vox(Ω)× Dq+1
vox (Ω)

)
.
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Thus,
(εΓ̌tλ, 0) ∈ Regq,Jvox(Ω)

by Remark 2.2. Unfortunately (or maybe not) this argument holds not for the other
part (0, rot Γ̌tλ) = M(Γ̌tλ, 0) because

LJM(Γ̌tλ, 0) = LJMΛ(Γ̌tλ, 0) = LJM`+1ϕL`b(εEb
λ, 0)

and of courseM`ϕL`b(εEb
λ, 0) = Λ(Γ̌tλ, 0) does not satisfy the homogeneous bound-

ary condition as long as λ 6= 0 and thus

LM`+1ϕL`b(εEb
λ, 0) 6=M`ϕL`b(εEb

λ, 0) .

Hence, we have to use the other characterization of Regq,Jvox(Ω) using orthogonality
constraints. Since M(Γ̌tλ, 0) is already an element of Regq,0vox(Ω) , the correction oper-
ators Γ̃j vanish on M(Γ̌tλ, 0) . Thus, by Definition 3.12 and Definition 3.4, Remark
3.6 we have to show that also the correction operators Γ̂j , j = 0, . . . ,J − N − 1 ,
vanish on M(Γ̌tλ, 0) . Hence, we have to prove

Λ−1M(Γ̌tλ, 0)⊥E+,j
σ,m , H

+,j
σ,m

for all j = 1, . . . ,J and appropriate σ,m . Of course for even j we have〈
Λ−1M(Γ̌tλ, 0), E+,j

σ,m

〉
L2,q,q+1(Ω)

= 0 .

For odd j since Γ̌tλ is compactly supported we compute〈
Λ−1M(Γ̌tλ, 0), E+,j

σ,m

〉
L2,q,q+1(Ω)

= −
〈
(Γ̌tλ, 0),ME+,j

σ,m

〉
L2,q,q+1(Ω)

+ 〈λ, γnπ2Λ−1E+,j
σ,m〉L2,q(∂ Ω) ,

where π2 denotes the projection onto the second component. Moreover, since the
first partners have homogeneous boundary conditions respectively〈

(Γ̌tλ, 0),ME+,j
σ,m

〉
L2,q,q+1(Ω)

=
〈
Λ−1M`ϕL`b(εEb

λ, 0),Lj−1 Λ(E+
σ,m, 0)

〉
L2,q,q+1(Ω)

= (−1)`
〈
Λ−1ϕL`b(εEb

λ, 0),M` Lj−1 Λ(E+
σ,m, 0)

〉
L2,q,q+1(Ω)

= (−1)`
〈
Λ−1ϕL`b(εEb

λ, 0),M`−j+1Λ(E+
σ,m, 0)

〉
L2,q,q+1(Ω)

= (−1)`
〈
Λ−1ϕL`b(εEb

λ, 0),M`−jM(E+
σ,m, 0)︸ ︷︷ ︸

=0

〉
L2,q,q+1(Ω)

= 0

since ` − j ≥ ` − J ≥ 1 ≥ 0 . We note that for this argument ` ≥ J , i.e. ` := J , is
sufficient.
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Analogously we achieve for odd j〈
Λ−1M(Γ̌tλ, 0), H+,j

σ,m

〉
L2,q,q+1(Ω)

= 0

and for even j 〈
Λ−1M(Γ̌tλ, 0), H+,j

σ,m

〉
L2,q,q+1(Ω)

= −
〈
(Γ̌tλ, 0),MH+,j

σ,m

〉
L2,q,q+1(Ω)︸ ︷︷ ︸

=0

+〈λ, γnπ2Λ−1H+,j
σ,m〉L2,q(∂ Ω) .

Of course these arguments also work for Λ(Γ̌tλ, 0) = (εΓ̌tλ, 0) . Again we have to
show

(Γ̌tλ, 0)⊥E+,j
σ,m , H

+,j
σ,m

for all j = 1, . . . ,J and appropriate σ,m . But now〈
(Γ̌tλ, 0), E+,j

σ,m

〉
L2,q,q+1(Ω)

=
〈
Λ−1M`ϕL`b(εEb

λ, 0),Lj Λ(E+
σ,m, 0)

〉
L2,q,q+1(Ω)

= (−1)`
〈
Λ−1ϕL`b(εEb

λ, 0),M`−j−1M(E+
σ,m, 0)︸ ︷︷ ︸

=0

〉
L2,q,q+1(Ω)

= 0 ,

since `− j − 1 ≥ `− J− 1 ≥ 0 , and analogously〈
(Γ̌tλ, 0), H+,j

σ,m

〉
L2,q,q+1(Ω)

= 0 .

This shows once again (εΓ̌tλ, 0) ∈ Regq,Jvox(Ω) .
Summing up we receive the following result: For 0-admissible Λ ∈ CJ+1(Zδ)

with some δ > 0 we may choose our extension operator Γ̌t in a way, such that

(εΓ̌tλ, rot Γ̌tλ) ∈ Regq,Jvox(Ω) ,

if and only if
λ ∈ 0Rq(∂ Ω) ∩

(
γn Bq+1(Ω)

)⊥L2,q(∂ Ω)

as well as for all j = 1, . . . ,J and all appropriate σ,m

λ ⊥L2,q(∂ Ω) γnπ2Λ−1E+,j
σ,m , γnπ2Λ−1H+,j

σ,m .

Remark 4.3 It is an interesting and open question if these considerations may hold for
Lipschitz boundaries as well.
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5 Appendix: Special radiating solutions in the whole
space case

In this appendix we give an exact and easy derivation of the special radiating solu-
tions

(E1,ω
σ,m,H1,ω

σ,m) , (E2,ω
σ,m,H2,ω

σ,m)

presented in (3.5), (3.6). This means we try to find special solutions of the homoge-
neous Maxwell equation in RN \ {0}

(M + iω)(E,H) = (0, 0) , ω ∈ C+ \ {0} (5.1)

which satisfy the radiation condition. Using a separation of variables technique, i.e.
our spherical calculus from [46], and our well known eigenforms Sqσ,m and T qσ,m pre-
sented in [46] and further discussed in [26, section 2] we will reduce the calculation
to the solution of the well known Bessel differential equation. Since

(divE, rotH) = (0, 0)

(E,H) are C∞-forms by regularity [14]. Applying M − iω to (5.1) we get

(∆ + ω2)(E,H) = (0, 0) .

Hence, first let us try to find a solution of the system

divE = 0 and (∆ + ω2)E = 0 (5.2)

which will be translated utilizing [46, (21)] and [46, (25)] into the system

[ρ̌ τ̌ ]r−1

[
−Div 0

r−q
′+1 D rq

′
Div

] [
ρE
τE

]
= 0 ,

[ρ̌ τ̌ ]r−2

[
B +r2 R1 +r2ω2 −2 Div

2 Rot B +r2 R2 +r2ω2

] [
ρE
τE

]
= 0 ,

i.e. into the system

Div ρE = 0 , (5.3)

r1−q′ D rq
′
ρE + Div τE = 0 , (5.4)(

B +r2(R1 +ω2)
)
ρE − 2 Div τE = 0 , (5.5)

2 Rot ρE +
(

B +r2(R2 +ω2)
)
τE = 0 . (5.6)

The first two equations suggest the following two ‘ansätze’:

1. ansatz: ρE := 0 , τE := e(r)T qσ,m

2. ansatz: ρE := eρ(r)T
q−1
σ,m , τE := eτ (r)S

q
σ,m
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Let us discuss the first ansatz. Then (5.3), (5.4) and (5.5) are automatically fulfilled.
However (5.6) turns to(

B +r2(R2 +ω2)
)
e(r)T qσ,m = 0 ⇐⇒

(
− λqσ + r2(R2 +ω2)

)
e(r)T qσ,m = 0

using [46, (33)], i.e. Div T qσ,m = 0 and (B +λqσ)T qσ,m = 0 , and R2 := R2 from [46, p.
1024]. But this is equivalent to the second order ordinary differential equation

r2e′′(r) + (N − 1)re′(r) +
(
r2ω2 + q(q′ − 2)− λqσ

)
e(r) = 0 ,

which will be transformed by the substitution

e(r) := r`ϕ(ωr)

into the equation
ω2r2ϕ′′(ωr) + (2`+N − 1)ωrϕ′(ωr)

+
(
r2ω2 + q(q′ − 2)− λqσ + `(`+N − 2)

)
ϕ(ωr) = 0 .

Setting t := ωr and

2`+N − 1 := 1 ⇔ ` = 1−N/2

we obtain Bessel’s differential equation

t2ϕ′′(t) + tϕ′(t) +
(
t2 − ν2

σ

)
ϕ(t) = 0 , νσ := N/2 + σ . (5.7)

Consequently E fulfills Sommerfeld’s radiation condition for Helmholtz’ equation,
if ϕ is a multiple of H1

νσ , Hankel’s function of first kind for νσ . Hence we get a first
solution

E1,ω
σ,m := r1−N

2 H1
νσ(ωr) τ̌ T qσ,m .

Utilizing the second ansatz (5.3) is trivially fulfilled and (5.4), (5.5), (5.6) are trans-
lated into the system

r1−q′ d

dr

(
rq
′
eρ(r)T

q−1
σ,m

)
+ eτ (r) DivSqσ,m = 0 ,(

B +r2(R1 +ω2)
)
eρ(r)T

q−1
σ,m − 2 Div eτ (r)S

q
σ,m = 0 ,

2 Rot eρ(r)T
q−1
σ,m +

(
B +r2(R2 +ω2)

)
eτ (r)S

q
σ,m = 0 ,

which turns to the system

r e′ρ(r) + q′eρ(r) + iωq−1
σ eτ (r) = 0 , (5.8)

r2(R1 +ω2)eρ(r)− λq−1
σ eρ(r)− 2 iωq−1

σ eτ (r) = 0 , (5.9)
r2(R2 +ω2)eτ (r)− κqσeτ (r) + 2 iωq−1

σ eρ(r) = 0 (5.10)

using [46, (32), (33)], i.e.
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RotSqσ,m = 0 , Div T q−1
σ,m = 0 ,

(B +κqσ)Sqσ,m = 0 , (B +λq−1
σ )T q−1

σ,m = 0 ,

and [46, (34), (35)], i.e.

RotT q−1
σ,m = iωq−1

σ Sqσ,m , DivSqσ,m = iωq−1
σ T q−1

σ,m ,

and again Ri := Ri from [46, p. 1024]. Inserting (5.8) in (5.9) we obtain the equation

r2e′′ρ(r) + (N + 1)re′ρ(r) +
(
r2ω2 − σ(σ +N)

)
eρ(r) = 0 ,

which again with the substitution

eρ(r) := rkϕ(ωr) , t := ωr

is carried over to

t2ϕ′′(t) + (2k +N + 1)tϕ′(t) +
(
t2 + k(k +N)− σ(σ +N)

)
ϕ(t) = 0 .

The choice
2k +N + 1 := 1 ⇔ k = −N/2

yields once more Bessel’s differential equation (5.7) with the same νσ . From (5.8) we
get

eτ (r) =
i

ωq−1
σ

rk
(
(q′ + k)ϕ(ωr) + ωrϕ′(ωr)

)
.

A few lines later we will see by an easy argument that E fulfills Sommerfeld’s radi-
ation condition for Helmholtz’ equation, if ϕ is a multiple of H1

νσ . Please compare
also to Weck and Witsch [48, p. 1520]. Thus we obtain a second solution

E2,ω
σ,m := r−

N
2

(
H1
νσ(ωr) ρ̌ T q−1

σ,m +
i

ωq−1
σ

(
(N/2− q)H1

νσ(ωr) + ωr(H1
νσ)′(ωr)

)
τ̌ Sqσ,m

)
.

Then defining

Hn,ω
σ,m :=

i

ω
rotEn,ω

σ,m , n = 1, 2

we have
rotEn,ω

σ,m + iωHn,ω
σ,m = 0

by definition and moreover

divHn,ω
σ,m =

i

ω
div rotEn,ω

σ,m =
i

ω
∆En,ω

σ,m = − iωEn,ω
σ,m

since divEn,ω
σ,m = 0 and (∆ + ω2)En,ω

σ,m = 0 . Hence the forms

(En,ω
σ,m, H

n,ω
σ,m) , n = 1, 2
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are indeed solutions of (5.1). Let us calculate Hn,ω
σ,m more explicit:

H1,ω
σ,m =

i

ω
rotE1,ω

σ,m =
i

ω
[ρ̌ τ̌ ]r−1

[
−Rot r1−q D rq

0 Rot

] [
ρE1,ω

σ,m

τE1,ω
σ,m

]
=

i

ω
[ρ̌ τ̌ ]r−1

[
−Rot r1−q D rq

0 Rot

] [
0

r1−N
2 H1

νσ(ωr)T qσ,m

]
=

i

ω
[ρ̌ τ̌ ]

[
r−q D rq+1−N

2 H1
νσ(ωr)T qσ,m

iωqσr
−N

2 H1
νσ(ωr)Sq+1

σ,m

]
= −ω

q
σ

ω
r−

N
2

(
H1
νσ(ωr) τ̌ Sq+1

σ,m

+
i

ωqσ

(
(N/2− q − 1)H1

νσ(ωr)− ωr(H1
νσ)′(ωr)

)
ρ̌ T qσ,m

)

H2,ω
σ,m =

i

ω
rotE2,ω

σ,m =
i

ω
[ρ̌ τ̌ ]r−1

[
−Rot r1−q D rq

0 Rot

] [
ρE2,ω

σ,m

τE2,ω
σ,m

]
=

i

ω
[ρ̌ τ̌ ]r−1

[
−Rot r1−q D rq

0 Rot

] [
r−

N
2 H1

νσ(ωr)T q−1
σ,m

. . . Sqσ,m

]
=

i

ω

(
− iωq−1

σ r−1−N
2 H1

νσ(ωr)

+ r−q
d

dr

(
rq−

N
2

i

ωq−1
σ

(
(N/2− q)H1

νσ(ωr) + ωr(H1
νσ)′(ωr)

)))
ρ̌ Sqσ,m

=
i

ω

(
−
(

iωq−1
σ +

i

ωq−1
σ

(N/2− q)2
)
r−1−N

2 H1
νσ(ωr)

+
i

ωq−1
σ

(N/2− q + q −N/2 + 1)ωr−
N
2 (H1

νσ)′(ωr)

+
i

ωq−1
σ

ω2r1−N
2 (H1

νσ)′′(ωr)
)
ρ̌ Sqσ,m

= − 1

ωωq−1
σ

r−1−N
2

(
−
(
(ωq−1

σ )2 + (N/2− q)2
)
H1
νσ(ωr)

+ ωr(H1
νσ)′(ωr) + ω2 r2(H1

νσ)′′(ωr)
)
ρ̌ Sqσ,m

Here we insert Bessel’s differential equation (5.7) and obtain

H2,ω
σ,m = −r

−1−N
2

ωωq−1
σ

(
− ω2 r2 +

(
ν2
σ − (N/2− q)2 − (q + σ)(q′ + σ)︸ ︷︷ ︸

=0

))
H1
νσ(ωr) ρ̌ Sqσ,m

=
ω

ωq−1
σ

r1−N
2 H1

νσ(ωr) ρ̌ Sqσ,m .

Now also H2,ω
σ,m fulfills Sommerfeld’s radiation condition for Helmholtz’ equation as

the latter explicit formula shows. Therefore the choice of Hankel’s function is also
legitimated in the second case.
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Another way to compute the forms (En,ω
σ,m, H

n,ω
σ,m) is to solve the related dual prob-

lem
rotH = 0 and (∆ + ω2)H = 0 . (5.11)

Analogously to (5.2) this would lead to the system

−Rot ρH + r−q D rq+1τH = 0 ,

Rot τH = 0 ,(
B +r2(R1 +ω2)

)
ρH − 2 Div τH = 0 ,

2 Rot ρH +
(

B +r2(R2 +ω2)
)
τH = 0

for the (q + 1)-form H , which can be handled similar to (5.3)-(5.6) utilizing the fol-
lowing two ‘ansätze’:

1. ansatz: ρH := h(r)Sqσ,m , τH := 0

1. ansatz: ρH := hρ(r)T
q
σ,m , τH := hτ (r)S

q+1
σ,m

Let us summarize: Defining for σ ∈ N0 and m = 1, . . . as well as νσ = N/2 + σ
the forms

Ẽ1,ω
σ,m := ωr1−N

2 H1
νσ(ωr) τ̌ T qσ,m ,

H̃1,ω
σ,m := r−

N
2

(
− ωqσH1

νσ(ωr) τ̌ Sq+1
σ,m (5.12)

+ i
((
N/2− (q + 1)′

)
H1
νσ(ωr) + ωr(H1

νσ)′(ωr)
)
ρ̌ T qσ,m

)
and

Ẽ2,ω
σ,m := r−

N
2

(
ωq−1
σ H1

νσ(ωr) ρ̌ T q−1
σ,m

+ i
(
(N/2− q)H1

νσ(ωr) + ωr(H1
νσ)′(ωr)

)
τ̌ Sqσ,m

)
, (5.13)

H̃2,ω
σ,m := ωr1−N

2 H1
νσ(ωr) ρ̌ Sqσ,m

the forms
cn(Ẽn,ω

σ,m, H̃n,ω
σ,m) ∈ C∞,q,q+1

(
RN \ {0}

)
, n = 1, 2

are solutions of (5.1) for all constants c1, c2 ∈ C . For ω ∈ C+ \ R these forms decay
exponentially and for ω ∈ R\{0} they satisfy the radiation condition for Helmholtz’
equation. In particular we have

exp(− iωr)(Ẽn,ω
σ,m, H̃n,ω

σ,m) ∈ H1,q,q+1

>− 3
2

(
A(1)

)
and thus
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(M − iωr−1S)(Ẽn,ω
σ,m, H̃n,ω

σ,m) ∈ L2,q,q+1

>− 1
2

(
A(1)

)
(5.1)
= (− iω − iωr−1S)(Ẽn,ω

σ,m, H̃n,ω
σ,m) ,

i.e.
(r−1S + Id)(Ẽn,ω

σ,m, H̃n,ω
σ,m) ∈ L2,q,q+1

>− 1
2

(
A(1)

)
.

Hence these forms satisfy Maxwell’s radiation condition as well. Furthermore we
derive by the properties of Hankel’s function (N is odd!) uniformly with respect to
z ∈ C+ the estimate∣∣H1

ν (z)
∣∣ ≤ c

(
|z|−

1
2 + |z|−ν

)
, ν := ν−1 = N/2− 1 .

For this see for example [17, p. 72] or more detailed [24, Sektion 5.1] and compare
with [25, (4.1)]. Because ν ≥ 1/2 we obtain for ω ∈ C+ and uniformly with respect
to r ∈ (1,∞)∣∣H1

ν (ωr)
∣∣ ≤ cr−

1
2 , i.e. |Ẽ1,ω

σ,m|q, |H̃2,ω
σ,m|q+1 ≤ cr

1−N
2 .

Since the first derivative of Hankel’s function shows the same behaviour at infinity
as Hankel’s function itself we obtain∣∣(Ẽn,ω

σ,m, H̃n,ω
σ,m)

∣∣
q,q+1

≤ cr
1−N

2 , n = 1, 2

and hence
(Ẽn,ω

σ,m, H̃n,ω
σ,m) ∈ L2,q,q+1

<− 1
2

(
A(1)

)
.

By regularity, for example [14, Corollary 3.8 (i)], we finally get for all k ∈ N

(Ẽn,ω
σ,m, H̃n,ω

σ,m) ∈ Hk,q,q+1

<− 1
2

(
A(1)

)
. (5.14)

Our next aim is to expand both solutions into power series with respect to ω .
Using for example [17, p. 66] we have

H1
ν (z) =

− i

sin(πν)

(
J−ν(z)− e− iπν Jν(z)

)
with Bessel’s function

Jν(z) :=
∞∑
k=0

(−1)k

k!Γ(k + 1 + ν)
(z/2)2k+ν .
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This yields with the coefficients from [26, Remark 2.2 (v)]

H1
νσ(z) = i(−1)νσ+1/2 2νσ

Γ(1− νσ)

( ∞∑
k=0

(−1)k −αq,kσ z2k−νσ

+ i(−1)νσ−1/24−νσ
Γ(1− νσ)

Γ(1 + νσ)
(2σ +N)(−1)1+δq,0+δq,N

∞∑
k=0

(−1)k +αq,kσ z2k+νσ
)

.

We obtain the representation

r1−N
2 H1

νσ(ωr)

= βσ ω
−νσ
( ∞∑
k=0

(− iω)2k −αq,kσ r2k+1−N−σ + κqσ ω
2νσ

∞∑
k=0

(− iω)2k +αq,kσ r2k+1+σ
)

with constants

βσ := i
2νσ

Γ(1− νσ)
(−1)νσ+1/2 , κqσ := i 2νσ4−νσ

Γ(1− νσ)

Γ(1 + νσ)
(−1)νσ+1/2+δq,0+δq,N .

Looking at [26, Definition 2.1] we finally get the series representations

Ẽ1,ω
σ,m = βσω

1−νσ
( ∞∑
k=0

(− iω)2k −αq+1,k
σ r2k+1−N−σ τ̌ T qσ,m

+ κq+1
σ ω2νσ

∞∑
k=0

(− iω)2k +αq+1,k
σ r2k+1+σ τ̌ T qσ,m

)
= βσω

1−νσ
( ∞∑
k=0

(− iω)2k−Dq,2k+1
σ,m + κq+1

σ ω2νσ

∞∑
k=0

(− iω)2k+Dq,2k+1
σ,m

)
,

H̃2,ω
σ,m = βσω

1−νσ
( ∞∑
k=0

(− iω)2k −αq,kσ r2k+1−N−σ ρ̌ Sqσ,m

+ κqσ ω
2νσ

∞∑
k=0

(− iω)2k +αq,kσ r2k+1+σ ρ̌ Sqσ,m

)
= βσω

1−νσ
( ∞∑
k=0

(− iω)2k−Rq+1,2k+1
σ,m + κqσ ω

2νσ

∞∑
k=0

(− iω)2k+Rq+1,2k+1
σ,m

)
.
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Thus defining for q ∈ {0, . . . , N − 1} the series

E1,ω
σ,m :=

∞∑
k=0

(− iω)2k−Dq,2k+1
σ,m + κq+1

σ ω2νσ

∞∑
k=0

(− iω)2k+Dq,2k+1
σ,m ,

H1,ω
σ,m :=

i

ω
rot E1,ω

σ,m =
∞∑
k=0

(− iω)2k−1−Rq+1,2k
σ,m + κq+1

σ ω2νσ

∞∑
k=0

(− iω)2k−1+Rq+1,2k
σ,m

and

H2,ω
σ,m :=

∞∑
k=0

(− iω)2k−Rq+1,2k+1
σ,m + κqσ ω

2νσ

∞∑
k=0

(− iω)2k+Rq+1,2k+1
σ,m ,

E2,ω
σ,m :=

i

ω
div H2,ω

σ,m =
∞∑
k=0

(− iω)2k−1−Dq,2k
σ,m + κqσ ω

2νσ

∞∑
k=0

(− iω)2k−1+Dq,2k
σ,m

we can summarize the discussion about the solutions of (5.1) in the following way:

Remark 5.1 Let q ∈ {0, . . . , N − 1} , σ ∈ N0 , m = 1, . . . and ω ∈ C+ \ {0} as well as
νσ := N/2 + σ . The series (En,ω

σ,m,Hn,ω
σ,m) , n = 1, 2 , converge by the convergence properties

of Hankel’s function uniformly on compact subsets of RN \ {0} and there they define C∞-
forms. Moreover they are solutions of (5.1), which satisfy for ω ∈ R \ {0} both Maxwell’s
radiation condition and Sommerfeld’s radiation condition for Helmholtz’ equation and decay
exponentially for ω ∈ C+ \ R . Particularly we have div En,ω

σ,m = 0 and rot Hn,ω
σ,m = 0 as well

as with (5.12), (5.13) and (5.14) for all k ∈ N

(En,ω
σ,m,Hn,ω

σ,m) =
ωνσ−1

βσ
(Ẽn,ω

σ,m, H̃n,ω
σ,m) ∈ Hk,q,q+1

<− 1
2

(
A(1)

)
holds.
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