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On Korn’s First Inequality for Mixed Tangential and Normal Boundary Conditions
on Bounded Lipschitz-Domains in RN

SEBASTIAN BAUER AND DIRK PAULY

Abstract. We prove that for bounded Lipschitz domains in RN Korn’s first inequality holds for vector

fields satisfying homogeneous mixed normal and tangential boundary conditions.
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1. Introduction

Recently, motivated by [3, 4] and inspired by the ideas and techniques presented in [10, 12, 11] for
estimating the Maxwell constants, we have shown in [2] that Korn’s first inequality, i.e.,

| ∇ v|
L2(Ω)

≤ ck| sym∇ v|
L2(Ω)

,(1)

holds with ck =
√

2 for all vector fields v satisfying (possibly mixed) homogeneous normal or homogenous

tangential boundary conditions and for all piecewise C1,1-domains Ω ⊂ RN , N ≥ 2, with concave bound-
ary parts. In this contribution, we extend (1) to any bounded (strong) Lipschitz domain Ω ⊂ RN , N ≥ 2.
As pointed out in [4], this Korn inequality has an important application in statistical physics, more
precisely in the study of relaxation to equilibrium of rarefied gases modeled by Boltzmann’s equation.

2. Preliminaries

We will utilize the notations from [2]. Throughout this paper and unless otherwise explicitly stated,
let Ω ⊂ RN , N ≥ 2, be a bounded domain with Lipschitz boundary Γ := ∂ Ω, i.e., locally Γ can
be represented as a graph of a Lipschitz function. As in [2], we introduce the standard scalar valued

Lebesgue and Sobolev spaces by L2(Ω) and H1(Ω), respectively. These definitions extend component-
wise to vector or matrix, or more general tensor fields and we will use the same notations for these spaces.
Moreover, we will consistently denote functions by u and vector fields by v. We define the vector valued

H1-Sobolev space
◦
H1

t (Ω) resp.
◦
H1

n(Ω) as closure in H1(Ω) of the set of test vector fields

◦
C∞t (Ω) :=

{
v|Ω : v ∈

◦
C∞(RN ) ∧ vt = 0

}
,

◦
C∞n (Ω) :=

{
v|Ω : v ∈

◦
C∞(RN ) ∧ vn = 0

}
,(2)
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2 SEBASTIAN BAUER AND DIRK PAULY

respectively, generalizing homogeneous tangential resp. normal boundary conditions. Here, ν denotes
the a.e. defined outer unit normal at Γ giving a.e. the tangential resp. normal component

vn := ν · v|Γ, vt := v|Γ − vnν

of v on Γ. We assume additionally that Γ is decomposed into two relatively open subsets Γt and Γn := Γ\Γt

and introduce the vector valued H1-Sobolev space of mixed boundary conditions
◦
H1

t,n(Ω) as closure in

H1(Ω) of the set of test vector fields

◦
C∞t,n(Ω) :=

{
v|Ω : v ∈

◦
C∞(RN ) ∧ vt|Γt = 0 ∧ vn|Γn = 0

}
.(3)

3. Korn’s Second Inequality

It is well known that Korn’s second inequality can easily be proved by a simple H−1-argument. Let us

illustrate a simple and short proof: In the sense of distributions we have e.g. for all vector fields v ∈ L2(Ω)
that the components of ∇∇ vi consist only of components of ∇ sym∇ v, i.e.,

∀ i, j, k = 1, . . . , N ∂i ∂j vk = ∂i symj,k∇ v + ∂j symi,k∇ v − ∂k symi,j ∇ v,(4)

where symj,k T := (symT )j,k. By [7, Corollary 2.1] we obtain (for scalar functions) the Poincaré estimate

∃ c > 0 ∀u ∈ L2(Ω)
1

c
|u− πRu|L2(Ω)

≤ |∇u|
H−1(Ω)

≤ c|u|
L2(Ω)

, πRu =

∮
Ω

u :=
1

|Ω|

∫
Ω

u,(5)

where the original result for Lipschitz boundaries is due to Nec̆as from the 1960s, see [5] for the case of

a smooth domain. Here πRu denotes the L2(Ω)-orthogonal projection of u onto R.

Remark 1. The best constant for the first inequality in (5), i.e.,

∃ c > 0 ∀u ∈ L2
0(Ω) := {u ∈ L2(Ω) : 〈u, 1〉

L2(Ω)
= 0} |u|

L2(Ω)
≤ c| ∇u|

H−1(Ω)
,

is the inverse of the well known inf-sup- or LBB-constant

cLBB := inf
06=u∈L2

0(Ω)

sup

v∈
◦
H1(Ω)

〈u,div v〉
L2(Ω)

|u|
L2(Ω)

| ∇ v|
L2(Ω)

= inf
06=u∈L2

0(Ω)

| ∇u|
H−1(Ω)

|u|
L2(Ω)

.

We note that the LBB-constant can be bounded from below by the inverse of the continuity constant cA

of the H1-potential operator A : L2
0(Ω)→

◦
H1(Ω) with divAu = u, i.e.,

∀u ∈ L2
0(Ω) | ∇Au|

L2(Ω)
≤ cA|u|L2(Ω)

.

This follows directly by setting v := Au and

cLBB ≥ inf
06=u∈L2

0(Ω)

|u|2
L2(Ω)

|u|
L2(Ω)

| ∇Au|
L2(Ω)

≥ 1

cA
.

Alternatively, for 0 6= u ∈ L2
0(Ω) we have ∇Au 6= 0 and

|u|2
L2(Ω)

=
〈u,divAu〉

L2(Ω)

| ∇Au|
L2(Ω)

| ∇Au|
L2(Ω)

≤ cA|u|L2(Ω)
| ∇u|

H−1(Ω)
⇒ |u|

L2(Ω)
≤ cA| ∇u|H−1(Ω)

,

which also shows 1/cA ≤ cLBB.

Let v ∈ H1(Ω). Combining (4) and (5) we get with a generic constant c > 0

| ∇ v −Gv|L2(Ω)
≤ c| ∇∇ v|

H−1(Ω)
≤ c| ∇ sym∇ v|

H−1(Ω)
≤ c| sym∇ v|

L2(Ω)
, Gv :=

∮
Ω

∇ v,(6)

iWe denote by ∇ v the transpose of the Jacobian of v and by ∇∇ v the tensor of second derivatives of v.
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where Gv = πRN×N ∇ v is the L2(Ω)-orthogonal projection of ∇ v onto RN×N . By Gauß’ theorem and [8,
Theorem 1.5.1.10] we have for all ε > 0

|Gv|L2(Ω)
≤ ε| ∇ v|

L2(Ω)
+
c

ε
|v|

L2(Ω)
,

which together with (6) immediately yields:

Theorem 2 (Korn’s second inequality). There exists c > 0 such that for all v ∈ H1(Ω)

| ∇ v|
L2(Ω)

≤ c
(
| sym∇ v|

L2(Ω)
+ |v|

L2(Ω)

)
.

By standard mollification we see that the restrictions of
◦
C∞(RN )-vector fields to Ω are dense in

S(Ω) := {v ∈ L2(Ω) : sym∇ v ∈ L2(Ω)},

even if Ω just has the segment property. Especially H1(Ω) is dense in S(Ω). This shows immediately:

Theorem 3 (H1-regularity). It holds S(Ω) = H1(Ω).

Proof. Let v ∈ S(Ω). By density, there exists a sequence (vn) ⊂ H1(Ω) converging to v in S(Ω). By

Theorem 2 (vn) is a Cauchy sequence in H1(Ω) converging to v, yielding v ∈ H1(Ω). �

Remark 4. The latter arguments show, that any domain allowing for Poincaré’s (or Nec̆as’) estimate
(5) fulfills the Korn type inequality (6). If for the domain additionally Gauß theorem holds, Korn’s second

inequality Theorem 6 holds. In these domains we have also the H1-regularity Theorem 3, provided that
the segment property holds.

To apply standard solution theories for linear elasticity, such as Fredholm’s alternative for bounded
domains or Eidus’ limiting absorption principle [6] for exterior domains, it is most important to ensure
for bounded domains the compact embedding

S(Ω) ↪→ L2(Ω).(7)

As long as Korn’s second inequality, i.e., the continuous embedding S(Ω) ↪→ H1(Ω), holds true, this

follows easily by Rellich’s selection theorem, i.e., the compact embedding H1(Ω) ↪→ L2(Ω). As shown in
[13], there are bounded irregular domains, more precisely bounded domains with the p-cusp property, see
[14, Definition 3] or [13, Definition 2], with 1 < p < 2, for which Korn’s second inequality fails and so

the embedding S(Ω) ⊂ H1(Ω) by the closed graph theoremii, but the important compact embedding (7)
remains valid.

We emphasize that by [13, Theorem 2] the compact embedding (7) holds for bounded domains having
the p-cusp property with 1 ≤ p < 2iii, and that (7) implies immediately a Poincaré type inequality for
elasticity by a standard indirect argument. For this we define

S0(Ω) := {v ∈ S(Ω) : sym∇ v = 0} = {v ∈ L2(Ω) : sym∇ v = 0}.

It is well known that even for any domain Ω

S0(Ω) = R

holds, where R := {Sx + a : S ∈ so ∧ a ∈ RN} is the space rigid motions and so = so(N) the vector
space of constant skew-symmetric matrices. This follows easily for v ∈ S0(Ω) by approximating Ω by
smooth domains Ωn, in each of which vn := v|Ωn

equals to the same rigid motion r ∈ R.

iiThe identity mapping idS : S(Ω)→ H1(Ω) is continuous, if and only if idS is closed, if and only if S(Ω) ⊂ H1(Ω).
iiiFor p = 1 the 1-cusp property equals the strict cone property, which itself holds for strong Lipschitz domains.
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Theorem 5 (Poincaré inequality for elasticity). Let Ω be bounded and possess the p-cusp property with
some 1 ≤ p < 2. There exists c > 0 such that for all v ∈ S(Ω) ∩R⊥

|v|
L2(Ω)

≤ c| sym∇ v|
L2(Ω)

.

Equivalently, for all v ∈ S(Ω)

|v − rv|L2(Ω)
≤ c| sym∇ v|

L2(Ω)
, rv := πRv.

Here and throughout the paper, we denote orthogonality in L2(Ω) by ⊥. Moreover, πRv denotes the

L2(Ω)-orthogonal projection of v onto the rigid motions R.

Proof. If the assertion was wrong, there exists a sequence (vn) ⊂ S(Ω) ∩ R⊥ with |vn|L2(Ω)
= 1 and

| sym∇ vn|L2(Ω)
→ 0. By (7) we can assume without loss of generality that (vn) converges in L2(Ω) to

some v ∈ L2(Ω). But then v ∈ S0(Ω) ∩R⊥ = {0}, in contradiction to 1 = |vn|L2(Ω)
→ |v|

L2(Ω)
= 0. �

For bounded domains with the p-cusp property with some 1 ≤ p < 2 and by Lemma 5 the variational

static linear elasticity problem, for f ∈ L2(Ω) find v ∈ S(Ω) ∩R⊥ such that

∀ϕ ∈ S(Ω) ∩R⊥ 〈sym∇ v, sym∇ϕ〉
L2(Ω)

= 〈f, ϕ〉
L2(Ω)

,

is uniquely solvable with continuous resp. compact inverse L2(Ω) → S(Ω) resp. L2(Ω) → L2(Ω), which
shows that Fredholm’s alternative holds for the corresponding reduced operators.

4. Korn’s First Inequality

By Rellich’s selection theorem, Theorem 2 and an indirect argument we can easily prove:

Theorem 6 (Korn’s first inequality without boundary conditions). There exists c > 0 such that for all

v ∈ H1(Ω) with ∇ v⊥ so

| ∇ v|
L2(Ω)

≤ c| sym∇ v|
L2(Ω)

.(8)

Equivalently for all v ∈ H1(Ω)

| ∇ v − Sv|L2(Ω)
≤ c| sym∇ v|

L2(Ω)
, Sv := skw

∮
Ω

∇ v.

Here, Sv = πso∇ v is the L2(Ω)-orthogonal projection of ∇ v onto so.

Proof. The equivalence is clear by the orthogonal projection.iv If (8) was wrong, there exists a sequence

(vn) ⊂ H1(Ω) with ∇ vn⊥ so and | ∇ vn|L2(Ω)
= 1 and | sym∇ vn|L2(Ω)

→ 0. Without loss of generality

we can assume vn⊥RN . By Poincare’s inequality (vn) is bounded in H1(Ω). Thus, by Rellich’s selection

theorem we can assume without loss of generality that (vn) converges in L2(Ω) to some v ∈ L2(Ω). By

Theorem 2 (vn) is a Cauchy sequence in H1(Ω). Therefore (vn) converges in H1(Ω) to v ∈ H1(Ω)∩ (RN )⊥

with sym∇ v = 0 and ∇ v⊥ so. But then ∇ v is even constant and belongs to so. Hence ∇ v = 0v in
contradiction to 1 = | ∇ vn|L2(Ω)

→ |∇ v|
L2(Ω)

= 0. �

Using Poincare’s inequality we immediately obtain:

ivWe can also compute it by hand: For v ∈ H1(Ω) with ∇ v⊥ so we see

|Sv |2 =
1

|Ω|
〈skw

∫
Ω
∇ v, Sv〉 =

1

|Ω|
〈∇ v, Sv〉L2(Ω)

= 0

since Sv ∈ so. For v ∈ H1(Ω) and T ∈ so we have

〈∇ v − Sv , T 〉L2(Ω)
=

∫
Ω
〈skw∇ v, T 〉 − 〈Sv , T 〉L2(Ω)

= 〈
∫

Ω
skw∇ v, T 〉 − |Ω|〈Sv , T 〉 = 0,

implying v+sv ∈ H1(Ω) with∇(v+sv) = (∇ v−Sv)⊥ so and sym∇(v+sv) = sym(∇ v−Sv) = sym∇ v, where sv(x) := Svx.
vWe note that even v ∈ RN holds and thus v = 0.
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Corollary 7 (Korn’s first inequality without boundary conditions). There exists c > 0 such that for all

v ∈ H1(Ω) ∩ (RN )⊥ with ∇ v⊥ so

|v|
H1(Ω)

≤ c| sym∇ v|
L2(Ω)

.

In order to prove Korn’s first inequality in
◦
H1

t,n(Ω) we need a kind of Poincaré type estimate on this
space first. It should be noted that in general mixed boundary conditions are not sufficent to rule out
a kernel of the gradient operator. We consider, for example, the cube Ω = (0, 1)3 ⊂ R3 with Γt beeing
the union of top and bottom together with the constant vector field R(x) = (0, 0, 1)t. Then clearly

R ∈
◦
H1

t,n(Ω). On this account, such constant vector fields have to be excluded by hand.

Lemma 8 (Poincaré inequality with tangential or normal boundary conditions). There exists c > 0 such
that

|v|
L2(Ω)

≤ c| ∇ v|
L2(Ω)

for all v ∈
◦
H1

t,n(Ω) ∩
( ◦
H1

t,n(Ω) ∩ RN
)⊥
.

Proof. If the assertion was wrong, there exists some sequence (vn) ⊂
◦
H1

t,n(Ω) ∩
( ◦
H1

t,n(Ω) ∩ RN
)⊥

with
|vn|L2(Ω)

= 1 and | ∇ vn|L2(Ω)
→ 0. Thus, by Rellich’s selection theorem we can assume without loss of

generality that (vn) converges in L2(Ω) to some v ∈ L2(Ω). Hence, (vn) is a Cauchy sequence in H1(Ω)

and converges in H1(Ω) to v ∈
◦
H1

t,n(Ω) ∩
( ◦
H1

t,n(Ω) ∩ RN
)⊥

with ∇ v = 0. Therefore, v is a constant in
◦
H1

t,n(Ω) ∩ RN and must vanish in contradiction to 1 = |vn|L2(Ω)
→ |v|

L2(Ω)
= 0. �

As an easy consequence we get

Corollary 9. ∇
◦
H1

t,n(Ω) is a closed subspace of L2(Ω).

Proof. Let (vn) ⊂
◦
H1

t,n(Ω) such that ∇ vn → G ∈ L2(Ω) in L2(Ω). Without loss of generality we can

assume (vn) ⊂
◦
H1

t,n(Ω) ∩
( ◦
H1

t,n(Ω) ∩ RN
)⊥

, otherwise we replace vn by

ṽn := vn − π◦
H1

t,n(Ω)∩RN
vn ∈

◦
H1

t,n(Ω) ∩
( ◦
H1

t,n(Ω) ∩ RN
)⊥
,

where π◦
H1

t,n(Ω)∩RN
is the orthogonal projektor onto

◦
H1

t,n(Ω) ∩ RN . Because of Lemma 8 (vn) is a Cauchy

sequence in
◦
H1

t,n(Ω), which converges in H1(Ω) to v ∈
◦
H1

t,n(Ω). Hence, G← ∇ vn → ∇ v ∈ ∇
◦
H1

t,n(Ω). �

To exclude the kernel of the sym∇-operator on
◦
H1

t,n(Ω), we define

K := {∇ v : v ∈
◦
H1

t,n(Ω) ∧ sym∇ v = 0} = ∇
(
R∩

◦
H1

t,n(Ω)
)

= so ∩∇
◦
H1

t,n(Ω).

Theorem 10 (Korn’s first inequality with tangential or normal boundary conditions). There exists c > 0

such that for all v ∈
◦
H1

t,n(Ω) with ∇ v⊥K

|∇ v|
L2(Ω)

≤ c| sym∇ v|
L2(Ω)

.(9)

Equivalently, for all v ∈
◦
H1

t,n(Ω)

| ∇ v − πK∇ v|L2(Ω)
≤ c| sym∇ v|

L2(Ω)
.

Here, πK∇ v denotes the L2(Ω)-orthogonal projection of ∇ v onto K. For a proof we follow in close
lines the one of Theorem 6, but present it again in some detail for the convenience of the reader.
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Proof. Equivalence is again clear by the orthogonal projection. If (9) was wrong, there exists a sequence

(vn) ⊂
◦
H1

t,n(Ω) with ∇ vn⊥K and | ∇ vn|L2(Ω)
= 1 and | sym∇ vn|L2(Ω)

→ 0. Without loss of generality

we can assume (vn) ⊂
◦
H1

t,n(Ω) ∩
( ◦
H1

t,n(Ω) ∩ RN
)⊥

. By Lemma 8 (vn) is bounded in H1(Ω), and thus,

using Rellich’s selection theorem, we can assume without loss of generality that (vn) converges in L2(Ω)

to some v ∈ L2(Ω). By Theorem 2 (vn) is a Cauchy sequence in H1(Ω). Therefore, (vn) converges in

H1(Ω) to v ∈
◦
H1

t,n(Ω) with sym∇ v = 0 and ∇ v⊥K. But then, ∇ v is even a constant in so, i.e., ∇ v ∈ K,
in contradiction to 1 = | ∇ vn|L2(Ω)

→ |∇ v|
L2(Ω)

= 0. �

5. Discussing the Set K

In this chapter we shall discuss which combinations of domains Ω and boundary parts Γt allow for a

non-constant rigid motion R ∈
◦
H1

t,n(Ω) ∩R, i.e. K 6= {0}. We start with the case Γt = Γ.

Theorem 11. If Γt = Γ, then K = {0} and there is a constant c > 0 such that for all v ∈
◦
H1

t (Ω)

| ∇ v|
L2(Ω)

≤ c| sym∇ v|
L2 .

Proof. We give a proof by contradiction. Assume R ∈ R ∩
◦
H1

t (Ω) and R 6= 0. Let us define the null
space NR :=

{
x ∈ RN : R(x) = 0

}
. Then NR is an empty set or an affine plane in RN with dimension

dNR
≤ N − 2. We recall that ν is the outer normal at Γ defined a.e. on Γ w.r.t. (N − 1)-dimensional

Lebesgue-measure. Since R is normal on Γ, we conclude for almost all x ∈ Γ \ NR

ν(x) = ± R(x)

|R(x)|
.(10)

Because Ω is locally on one side of the boundary Γ, the unit normal ν can not change sign in (10) in
every connected component of Γ \ NR. But since dNR

≤ N − 2, it follows that Γ \ NR is connected, and

ν(x) =
R(x)

|R(x)|
for almost all x ∈ Γ \ NR, or ν(x) = − R(x)

|R(x)|
for almost all x ∈ Γ \ NR .(11)

Note that Γ∩NR has measure zero. From this, it follows that in (11) we can replace Γ \NR by Γ. Let’s

say ν(x) = R(x)
|R(x)| . With Gauss Theorem we conclude the contradiction

0 =

∫
Ω

divR =

∫
Γ

ν ·R =

∫
Γ

|R| > 0 .

�

Next we turn to the normal boundary condition, i.e. Γt = ∅. In [3] it is proved that for smooth

bounded domains Ω ⊂ RN Korn’s first inequality holds for all v ∈
◦
H1

n(Ω), i.e. K = {0}, if and only if Ω is
not axisymmetric. Furthermore an explicit upper bound on the constant is given.vi In that contribution
and here axisymmetry is defined as follows.

Definition 12. Ω is called axisymmetric if there is a non-trivial rigid motion R ∈ R tangential to the

boundary Γ of Ω, i.e. R ∈
◦
H1

n(Ω).

In a more elementary approach in R3 a domain is called axisymmetric w.r.t. to an axis a if it is a body
of rotation around this axis. In order to show that in R3 both concepts coincide for bounded Lipschitz
domains, we make use of the invariance of a Lipschitz boundary under the flow of a tangential vector
field.

viIn [3] a C1-boundary is assumed, but it seems that for the proof of [3, Lemma 4] actually a C2-boundary is needed in

order to guaranty H1-regularity of ∇φ, where φ is the solution of [3, (14)].
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Proposition 13. Let Ω ⊂ RN be a (not necessarily bounded) domain with a (strong) Lipschitz boundary
Γ := ∂ Ω and R : RN −→ RN a locally Lipschitz continuous vector field that is tangential on Γ a.e. w.r.t.
the (N − 1)-dimensional Lebesgue measure on Γ. Let p ∈ Γ and t 7→ γ(t) the maximal solution of the
ordinary differential equation

(12) γ̇ = R(γ) , γ(0) = p .

existing on the interval Ip. Then for all t ∈ Ip
(13) γ(t) ∈ Γ .

This proposition is a variant of Nagumo’s invariance theorem, see [1, Theorem 2, p. 180], c.f. also [9],
where the tangential condition on R is defined in terms of a so called ’Bouligand contigent cone’. As we
need this statement for a Lipschitz boundary we give a self-contained proof in the Appendix.

The next lemma states that for bounded domains in R3 both definitions of axisymmetry coincide. An
elementary proof is provided in the appendix.

Lemma 14. Let Ω ⊂ R3 be a bounded Lipschitz domain.

(i) Assume σ, b ∈ R3, |σ| = 1 and let g = {λσ + b : λ ∈ R}. Assume that Ω is axisymmetric w.r.t.
the axis g. Then the vector field R with R(x) := σ ∧ (x− b) is a rigid-motion which is tangential

on Γ, i.e. R ∈ R ∩
◦
H1

n(Ω).

(ii) Let R ∈ R ∩
◦
H1

n(Ω), R(x) = ωσ ∧ x + b for all x ∈ R3 with σ, b ∈ R3, |σ| = 1 and ω ∈ R. Then
ω 6= 0, 〈b, σ〉 = 0, and Ω is axisymmetric w.r.t. the axis g =

{
λσ + 1

wσ ∧ b : λ ∈ R
}

.

Remark 15. There are rigid motions tangential to the boundary of some unbounded domains in R3,
which do not exibit any axis of symmetry. Consider, for example, a domain built from a plane square
which simultanously is lifted along and rotated around the axis perpendicular to it, e.g.

Ω =
{(
x1 cos(t)− x2 sin(t), x1 sin(t) + x2 cos(t), t

)
: |x1|+ |x2| < 1, t ∈ R

}
.

Then R(x) = (−x2, x1, 1)t is tangential to Γ.

Using Definition 12, Korn’s first inequality for normal boundary conditions is more or less obvious.

Theorem 16. Let Γt = ∅. Then Korn’s first inequality holds for all v ∈
◦
H1

n(Ω), if and only if K = {0},
if and only if Ω is not axisymmetric.

Proof. The first ’if and only if’ is just the assertion of Theorem 10. For the second ’if and only if’ according
to the definition of ’axisymmetry’ the only remaining issue is to prove that there is no constant vector
field tangential to a bounded Lipschitz domain (in that case we would have a non-trivial rigid-motion,

which gives no contribution to K). Assume that a constant vector a ∈ RN tangential to Γ, i.e. a ∈
◦
H1

n(Ω),
and let x̂ ∈ Γ. According to Proposition 13 the unbounded curve t 7→ x̂ + ta would remain in Γ. This
contradicts the boundedness of Ω. �

Remark 17. The latter proof shows that a bounded domian is axissymmetric if and only if there is a
non-constant rigid motion tangential to the boundary.

For mixed boundary conditions there are domains of rather special type with K 6= {0}. Consider, for
example, a half cylinder

Ω =
{
x ∈ R3 : x1 > 0, x2

1 + x2
2 < 1, 0 < x3 < 1

}
,

or more generally, consider the domain

Ω =
{

(r cosφ, r sinφ, x3)t : φ1 < φ < φ2, 0 < x3 < 1, 0 < r < h(x3)
}

with Γt = Γ ∩
{

(r cos(φ1/2), r sin(φ1/2), x3)t : 0 ≤ r, 0 < x3 < 1
}

for some positive Lipschitz function
h : R → R and some −π < φ1 < φ2 < π. Define R(x) = (−x2, x1, 0)t. Then, R is a rigid motion and

R ∈
◦
H1

t,n(Ω). In the next theorem we will show that in R3 all bounded domains Ω with K 6= {0} are
compositions of subdomains of this kind.
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Theorem 18. Let Ω ⊂ R3 be a bounded Lipschitz domain and Γt 6= ∅ as well as Γt 6= Γ. Assume that

there is a non-constant rigid motion R ∈ R ∩
◦
H1

t,n(Ω), R(x) = wσ ∧ x+ b for all x ∈ R3 with w ∈ R and

|σ| = 1. Define gR ⊂ R3 by gR :=
{
λσ + 1

wσ ∧ b : λ ∈ R
}

. Then 〈σ, b〉 = 0, Γt is a subset of a union of
affine planes, where each of these planes contains gR. Every connected component of Γn is a subset of a
surface which is axisymmetric w.r.t. gR.

By this theorem the cube already mentioned, Ω = (0, 1)3 ⊂ R3, Γt beeing the union of top and bottom,

has a trivial kernel K, which means Korn’s first inequality holds on
◦
H1

t,n(Ω), while Poincaré’s inequality

only holds on
◦
H1

t,n(Ω) ∩ ((0, 0, 1)t)
⊥

.

Proof. First we note that the scalar-product 〈σ, b〉 is independent of the choosen cartesian coordinates,
i.e. if we chose another positively oriented euclidian coordinate system (y1, y2, y3) and represent the
vectorfield R by means of the y-coordinates, then there exist vectors σy, by ∈ R3 with |σy| = 1 and
R(y) = wσy ∧ y + by for all y ∈ R3. Furthermore 〈σy, by〉 = 〈σ, b〉. In the same way the representation of
the axis gR associated to R is independent of the cartesian coordiantes chosen; in y-coordinates we have
gR =

{
λσy + 1

wσy ∧ by : λ ∈ R
}

.

Suppose R ∈ R ∩
◦
H1

t,n(Ω) and R non-constant. We fix some p ∈ Γt together with a neighborhood

U ⊂ R3 of p, an open subset V ⊂ R2, euclidian coordinates (x1, x2, x3) = (x′, x3) and a Lipschitz map
h : V ⊂ R2 → R, such that for all x ∈ U we have x = (x′, x3) ∈ Γt iff x3 = h(x′). Since R is normal and
by Rademacher’s theorem, we have

R(x′, h(x′)) = f(x′) (∇x′ h(x′),−1)
t

(14)

with some function f : V ⊂ R2 → R a.e. in V .
In x-coordinates R can be represented by R(x) = wσ ∧ x+ b with some b, σ ∈ R3, |σ| = 1 and w ∈ R,

w 6= 0. From (14) we conclude

b1 + wσ2h(x′)− wσ3x2 = f(x′) ∂1 h(x′),(15)

b2 + wσ3x1 − wσ1h(x′) = f(x′) ∂2 h(x′),(16)

b3 + wσ1x2 − wσ2x1 = −f(x′).(17)

We differentiate (in the sense of distributions) (15) w.r.t. x2 and (16) w.r.t. x1, compute the difference
as well as the sum of the resulting equations, and conclude using (17)

σ3 = σ1 ∂1 h+ σ2 ∂2 h ,(18)

0 = f ∂1 ∂2 h .(19)

Differerentiating (15) w.r.t. x1 and (16) w.r.t. x2 yields

(20) f ∂2
1 h = f ∂2

2 h = 0 .

Now we multiply (15) by σ1, (16) by σ2, equate the resulting equations for σ1σ2h, use (17,18), and obtain

(21) 0 = 〈b, σ〉 .

From (19, 20) we conclude that ∇x′ h is constant on connected components of V ∩ {f 6= 0}. Therefore,
h is an affine function on each part and continuous on the whole of V . Note that {f = 0} is a subset
of the line Nσ,b :=

{
x′ ∈ R2 : b3 + wσ1x2 − wσ2x1 = 0

}
. Now we extend the affine function from one

connected component of V ∩ {f 6= 0} to R2 and call the resulting affine function h̃. Because of (18) the

plane Eh̃ :=
{(
x′, h̃(x′)

)
: x′ ∈ R2

}
is collinear to gR. Recalling 〈σ, b〉 = 0, it is straightforward to check

that gR is the affine null space of R. Now we use this fact together with the collinearity of Eh̃ and gR in
order to prove gR ⊂ Eh̃. It is sufficent to show that Eh̃ ∩ {R = 0} is not void. But in view of (17) and
(14) this is obvious.

Now let p ∈ Γn. Since 〈σ, b〉 = 0, the solutions γ of γ̇ = R(γ) are circles, contained in planes
perpendicular to gR and with centers on gR (see also the computations in the proof of Lemma 14).
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Hence, applying Proposition 13, every connected component is a subset of some hypersurface being
axisymmetric w.r.t. gR. �

6. Appendix

Proof of Proposition 13. Clearly, it is sufficient to prove the invariance locally. Since Γ is Lipschitz, after
rotation there is a neighborhood U = V × I of p with V ⊂ RN−1, I ⊂ R, orthornormal coordinates
(x1, . . . , xN ) = (x′, xN ) ∈ V × I, a point x′0 ∈ V and a Lipschitz continuous function h : V −→ I such
that p = (x′0, h(x′0)), and for all x ∈ U we have x ∈ Γ iff xN = h(x′). By Rademacher’s theorem h is
differentiable a.e. with respect to the N − 1-dimensional Lebegue-measure on V , and ∇x′ h ∈ L∞(V ).
Furthermore, the set of the N − 1 vectors

t1(x′) = (1, 0, . . . , 0, ∂1 h(x′))t, . . . , tN−1(x′) = (0, . . . , 0, 1, ∂N−1 h(x′))t

gives a basis of the tangential space of Γ in the point (x′, h(x′)) for almost all x′ ∈ V . Therefore, on
Γ ∩ U we have two representations of the vector field R, one representation in the coordinate vectors of
x1, . . . , xN holding on the whole of U ,

R(x) = RU (x) =
(
R1
U (x), . . . , RNU (x)

)t
,

and the functions RiU , i = 1, . . . N are Lipschitz continuous functions on U . On the other hand, for almost
all x′ ∈ V

R(x′, h(x′)) = R1
V (x′)t1(x′) + · · ·+RN−1

V (x′)tN−1(x′).

We define RV = (R1
V , . . . , R

N−1
V )t. Comparison yields a.e. on V

(22) RiU (x′, h(x′)) = RiV (x′) for all i = 1, . . . , N − 1 .

Hence, RV is Lipschitz continuous on V . Furthermore,

(23) RNU (x′, h(x′)) = R1
V (x′) ∂1 h(x′) + . . .+RN−1

V (x′) ∂N−1 h(x′) = RV (x′) · ∇x′ h(x′)

for almost all x′ ∈ V . Since h is Lipschitz on V and RNU is Lipschitz on U , RV · ∇x′ h is also Lipschitz on
V . Now we define the flow of RV : For x′ ∈ V we define ψ( · , x′) as the solution of the ordinary differential
equation

(24) ψ̇(t, x′) = RV (ψ(t, x′)) , ψ(0, x′) = x′ .

Since RV is Lipschitz on V , we can restrict the flow such that for some ε > 0 and some neighborhood
V̄ ⊂ V of x′0 the solution ψ is Lipschitz continuous on (−ε, ε) × V̄ . Next we lift up this flow to Γ and
define

γV (t) :=
(
ψ(t, x′0), h (ψ(t, x′0))

)t
.

By definition γV (0) = p and γV (t) ∈ Γ for all t ∈ (−ε, ε).
In the next step we have to prove that γV is also a solution of (12) on (−ε, ε). With regard to (22)

it only remains to prove that the mapping t 7→ h(ψ(t, x′0)) is classically differentiable with derivative
∂t (h(ψ(t, x′0)) = RNU

(
ψ(t, x′0), h(ψ(t, x′0))

)
. We denote the l-dimensional Lebesgue measure by Ll. For

all t ∈ (−ε, ε) it holds that ψ(t, · ) is a bi-Lipschitz homeomorphism with inverse Lipschitz transformation

ψ(t, · )−1 = ψ(−t, · ). Therefore, if LN−1(ψ(t, · )(Ṽ )) = 0 for some set Ṽ ⊂ V̄ , then also LN−1(Ṽ ) = 0,

because Ṽ = ψ(−t, · )
(
ψ(t, · )(Ṽ )

)
. Fix a measureable set V0 ⊂ V such that LN−1(V0) = 0 and h is

classically differentiable for every x′ ∈ V \ V0. Let us define

W0 :=
{

(t, x) ∈ (−ε, ε)× V̄ : ψ(t, x) ∈ V0

}
.

Then W0 is measureable and using Tonelli’ and Fubini’s theorems and the transformation formula we
obtain

LN (W0) =

∫
(−ε, ε)×V̄

1W0
≤ c

∫
(−ε, ε)

∫
V0

1 = 0.

Therefore, and since ψ is differentiable w.r.t. t everywhere, we have using (23)

(25) ∂t h(ψ(t, x′)) = ∇h(ψ(t, x′)) · ∂t ψ(t, x′) = RNU
(
ψ(t, x′), h(ψ(t, x′))

)
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for almost all (t, x′) ∈ (−ε, ε)× V̄ ; consequently this formula holds in the distributional sense.
Because h ◦ ψ is continuous and its distributional derivative w.r.t. t is continuous, too, it is also

differentiable w.r.t. t in the classical sense. This can be seen as follows: We define

v(t, x′) := h (ψ(0, x′)) +

∫ t

0

RN
(
ψ(τ, x′), h(ψ(τ, x′))

)
dτ .

Hence, the vector field v is classically differentiable w.r.t. t and ∂t v(t, x′) = RNU
(
ψ(t, x′), h(ψ(t, x′))

)
holds for all (t, x′) ∈ (−ε, ε)× V̄ . Furthermore,∫

(−ε, ε)×V̄
(v − h ◦ ψ) ∂t φ = 0 for all φ ∈

◦
C∞

(
(−ε, ε)× V̄

)
.

This yields
h ◦ ψ(t, x′) = v(t, x′) + w(x′).

Since for all x′ ∈ V̄ we have
h ◦ ψ(0, x′) = v(0, x′),

we finally conclude w = 0 on V̄ and hence v = h ◦ ψ. �

Proof of Lemma 14. For (i) we choose σ1, σ2 ∈ R3 such that the set {σ1, σ2, σ} gives an positively oriented
orthornormal base of R3. Let x ∈ Γ and define r := dist(g, x). Since Ω is axisymmetric w.r.t. g, for all
t ∈ R

γ(t) := 〈x, σ〉σ + (〈b, σ1〉+ r cos(t))σ1 + (〈b, σ2〉+ r sin(t))σ2 ∈ Γ .

Therefore, γ̇ (t) is a tangential vector to Γ located in x. On the other hand

R (x) = σ ∧ (x− b)
= σ2〈x− b, σ1〉 − σ1〈x− b, σ2〉
= σ2〈(〈b, σ1〉+ r cos(t))σ1 − b, σ1〉 − σ1〈(〈b, σ2〉+ r sin(t))σ2 − b, σ2〉
= σ2r cos (t)− σ1r sin (t)

= γ̇ (t) ,

which yields R ∈
◦
H1

n(Ω) ∩R.
No we turn to the proof of (ii). If ω = 0 then x(t) = x0 + tb remains in Γ for all t if x0 ∈ Γ (Proposition

13) and Ω would be unbounded. Therefore, we have ω 6= 0. Choose again σ1, σ2 ∈ R3 such that the set
{σ1, σ2, σ} gives an orthornormal base of R3 with positive orientation.

The solution of the ordinary differential equation system

ṡ1 = −ωs2 + 〈b, σ1〉, s1(0) = 〈x̂, σ1〉,
ṡ2 = ωs1 + 〈b, σ2〉, s2(0) = 〈x̂, σ2〉,
ṡ3 = 〈b, σ〉, s3(0) = 〈x̂, σ〉,

is given by

s1(t) = c1 cos(ωt)− c2 sin(ωt)− 1

w
〈b, σ2〉,

s2(t) = c1 sin(ωt) + c2 cos(ωt) +
1

w
〈b, σ1〉,

s3(t) = 〈x̂, σ〉+ t〈b, σ〉,
where c1 and c2 are uniquely definded by the initial conditons on s1 and s2. Then

x(t) := s1(t)σ1 + s2(t)σ2 + s3(t)σ

is the unique solution of

ẋ = R(x), with initial conditon x(0) = x̂ .
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Due to Proposition 13 and since R ∈
◦
H1

n(Ω), we have x(t) ∈ Γ for all t ∈ R. Because Ω is bounded, we
conclude 〈b, σ〉 = 0 . Therefore, the trajectory t 7→ x(t) is a circle lying in a plane perpendicular to σ
with center − 1

w 〈b, σ2〉σ1 + 1
w 〈b, σ1〉σ2 + 〈x̂, σ〉σ. Consequently, Ω is axisymmetric w.r.t. to g. �
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