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2 Dirk Pauly

1 Introduction and Preliminaries

Throughout this paper, let us fix a bounded domain  C R? with boundary I" := 99,
which is devided into two relatively open subsets Iy and its complement I}, := T'\ I}.
The letters t and n should remind on homogeneous tangential and normal boundary
conditions.

It is well known that the Poincaré (or Friedrichs) inequality, i.e., for all u € Hf, (Q)

|U‘L2(Q) < Cp,Ft,s|VU|L§(Q)> (1.1)

holds with some ¢y, . > 0, as long as Rellich’s selection theorem is valid, i.e., the embed-
ding

HY(Q) — L*(Q) (1.2)

is compact. Here, L*(Q) and H!(Q2) denote the usual Lebesgue- and Sobolev (Hilbert)
spaces, respectively. Moreover, ¢ : 2 — R3*? denotes a symmetric and uniformly positive
definite L*°-matrix field. We introduce L?(Q2) as L*(2) equipped with the weighted inner

product (-, - )12(q) = €+, - )12(q)- For Tt # 0 the Sobolev space Hf, (Q) is defined as the

closure (taken in H'(Q)) of test functions
CR(Q) = {¢la : ¢ € C*(R?), dist(supp ¢, It) > 0}.

Otherwise we set Hj(Q2) := H'(Q2) N R*. Let us assume that we have chosen the best
constant in (1.1), this is

1 Vu
- Ve
Cp,It e 0£ueH}, () |ul L2(Q)

Analogously, it is also well known that the (let’s call it) Maxwell inequality, i.e., for
all E € R, (Q) Ne™'Dr,(Q)

. 1
B —monEli2(0) < ane(|diveE]lzg) + 1ot Bliz(q)) ’

or equivalently for all E' € R, (Q2) Ne "Dy, (2) N Hpy ()4

. 1
Bl < care (| diveBf% g + 10t B[g) ", (1.3)

(@)

holds with some ¢y, > 0, as long as the Maxwell selection theorem or the Maxwell
compactness property is given, i.e., the embedding

Rr, () N 1D, (Q) — L2(Q) (1.4)

is compact, see Appendix A.2.1 for details. Here, we introduce the Sobolev (Hilbert)
spaces

R(Q) = {E € L2(Q) : ot E € L2(Q)}, D(Q):={E € LXQ) : divE € L}(Q)}

IThroughout this paper norms resp. scalar products will be denoted by | - |x resp. (-, - )x if X is a
normed space or a space featuring a scalar product.
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in the distributional sense. As above, if Iy # ), we define as closures (taken in R(Q)
resp. D(€2)) of test vector fields Ci°(Q2) the Sobolev spaces R, (Q2) and Dr, () (and of
course the same for I},). If Ty = ) we set Ry(2) := R(Q2) and Dy(R2) := D(Q2). Then, for

Iy # 0 in HE,(Q), Ry, (Q) and Dr, (2) homogeneous scalar, tangential and normal traces
at [y are generalized, respectively. Moreover, we define the closed subspaces

Ro(Q) :={EcL*(Q) : rot E =0}, Do(Q):={F € L*Q) : divE =0}

as well as R, () := R (©2) N Re(2) and Dr, ¢(€2) := D, (2) N Dy(£2). Finally, we have
the harmonic Dirichlet-Neumann fields

How () := R, 0(2) Ne™'Dr, (),

which are finite dimensional since by (1.4) the unit ball is compact in Hpy (2). The L2()-
orthogonal projector onto them will be denoted by 7y : L2(€2) — Hpy () and L. means

£

orthogonality in L%(Q). If Iy = I resp. I, = I' we have the classical Dirichlet resp. Neu-
mann fields and write H, _(€2) resp. Hy (2). We also need the Neumann-Dirichlet fields

Hyp - (Q2) == Rp, 0(2) Ne'Dr, 0(Q). In the case € = id we usually omit ¢ in our notations.
Again, we assume that also in (1.3) the best constant

1 (|diveE| )1/ ’
= inf
CaTie  O0ABERp (@)Ne—1Dry (NHpy . (2)Le 1Eli20)

2 2
L2y T | rot E]LQ(Q)

is taken.

The crucial property for (1.3) to hold is the Maxwell compactness property (1.4),
which holds, e.g., if 2 has a (strongly) Lipschitz continuous boundary I' with a (strongly)
Lipschitz continuous interface v := Iy NIy, see [8] for details. More precisely, the boundary
I' and the interface v can be described locally as graphs of Lipschitz functions. From now
on we assume this properties of I' and I}, I, as general assumption. Note that then
also (1.2) and (1.1) hold. Another successful approach proving the Maxwell compactness
property using a different technique from [21] has been shown in [9]. For the Maxwell
compactness property in the case of full boundary conditions we refer to [21, 13, 14, 15,
20, 10, 3, 16, 17, 18, 19, 22].

With the help of the L?(£2)-orthogonal Helmholtz decomposition

LZ(Q) = VHL, () &. Hpy () & e ' 1ot R, (), (1.5)
where
Rr.0(Q) = VHE, (Q) &: Hpu (), e'Dr,0(Q) = ™' rot Ry, (2) @: Hoy (),
see Appendix A.2.2 for details, we can split the estimate (1.3) into two, namely

VE € 5_1DFD(Q) N VH%‘t (Q) |E|L2(Q) S Cm71“n7div75| div €E|L2(Q)7 (16)
VE €Rp(Q)Ne'rot Ry (Q) |Eli2(0) < Calyroteia] TOU B 2(q), (1.7)
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where we again assume to use the best constants

1 diveFE
— inf ﬂ

- 7
Cn,I,div,e 0#E€e~1Dr, (QNVHY, (Q) ‘E‘ L2(Q)

1 rot B 2
—_— = inf w
Cn, T rot,e,id 0#FE€Rr, (2)Ne~! rot Ry, () ‘E| L2(Q)

By the assumptions on ¢ there exist £, > 0 such that for all £ € L*(1)
1 _
E|E|L2(Q) < |Eli2(0) < EE]2q)-
We note |E| 2y = |e¥/2E| 2(q) and |"/?E| >, = |¢E| 2(q). Thus, for all E € L*()
1 _
g’E|L§(Q) < |eEl20) < EE|2g)-
The inverse ¢! satisfies for all £ € L*(9)
| | B
g|E|L2(Q) < Bl (9) < lE| 2 g|E|L§,1(Q) < e Elizg) < elElz_ ()

which immediately follows by

<ele™2E|2(0) = £l Ela

E =[e’E
| |L371(Q) | |L2(Q) > §*1|871/2E|L§(Q) =z E|q

For later purposes let us also define ¢ := max{g,z}.
In this contribution we will study these different constants cyrc, e, Cnmdivie
Cm Ty rot,cid and their relations to each other. It turns out that

Cp.It,e = Cn T div,es Cn,I% rot,e,id — Cm,Iy,rot,id,e> Cnlye — maX{Cp,Ft,sv Cm,ﬂ,rot,s,id}

hold, see Lemmas 3, 10 and 6. The main result of this paper states that in the special case
of full boundary conditions, i.e., Iy =1 or I, =I', and for bounded and convexr domains
we have

C T " C N
P? < Cure < Ecp, gp < npe < EGp

and especially for ¢ = id
max{cpr; Cnrot} = Car < Cnp = Cp,
see Theorem 17. Here, we introduce for the special case ¢ = id
Co Iy, -— Cplvyidy Cp = Cppy  Caly = Culy,id

and

Cn i rot -— Cm Ty rot,id,id = Cm,I},rot,id,id = Cm,I},rot
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as well as
Cnrot += CmI'rot,id,id = Cm,0,rot,id,id -

The crucial point in our analysis is that for convex domains

Cn,rot < Cps  CmTrot,e,ids Cm,0,rot,e,id < ECp

hold, see Lemma 16. Some of these results have also been obtained recently in [11] utilizing
different and more elementary' methods. We note that in the convex case we can estimate
the Poincaré constant ¢, by the diameter of (2. More precisely, by the famous paper of
Payne and Weinberger [12] we have

diam(2)

™

cp <

In [12] also the optimality of this estimate has been shown. Furthermore, ¢, < ¢; is well
known even for non-convex domains, see e.g. [4] and the cited literature, yielding

1 _ 1 < diam(€2)
— =c Cp = ,
/—/\1 p.I' P Ty T

where A\ resp. po is the first Dirichlet resp. second Neumann eigenvalue of the negative
Laplacian.
At least some of our results extend in a natural way to bounded domains Q C R¥ or
even to Riemannian manifolds with compact closure, see Remark 5 and Appendix A.1.
Our new estimates have important applications e.g. to numerical analysis, where es-
pecially an upper bound for the Maxwell constants is needed e.g. for preconditioning and
for functional a posteriori error estimates in the framework of Maxwell’s equations.

(1.8)

2 An Abstract Setting

Let X and Y be Hilbert spaces and
A:DA)CX—=Y, A":DA")CY =X

be a closed and densely defined linear operator and its adjoint. Here, D denotes the
domain of definition and we introduce the kernel N and the range R. Since A is closed we
have (A*)* = A = A and sometimes (A, A*) is called a dual pair. The projection theorem
yields the orthogonal ‘Helmholtz’ decompositions

X =N(A)@ R(A"), Y=N(A")@ R(A). (2.1)

Now, we collect some well known facts. For the convenience of the reader we give simple
proofs of those in the Appendix A.3.

iTn the sense that no tools from functional analysis were used.
WA little mistake or inconsistency in [12] has been corrected later in [2].
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A*A and AA* are non-negative and self-adjoint and their spectra coincide if we exclude

{0}, i.e.,
a(ATA)\NA{0} = o (AAT)\ {0}, op(A"A)\ {0} = g (AA") \ {0}, (2.2)

Let us assume that the embedding

D(A)N R(A*) — X (2.3)
is compact.

Lemma 1 There exist ca,ca > 0, such that

Vo e D(A)NR(AY) |z|x < calAzly,
Vy e D(A") N R(A) lyly < ca-|A"ylx.

Moreover, R(A) and R(A*) are closed and
X=N(A)® R(A*), Y =N(A")® R(A).
Furthermore, D(A*) N R(A) < Y is compact as well.

We note that the same lemma can be proved assuming the compactness of the em-
bedding of D(A*) N R(A) — Y instead of (2.3). By Lemma 1 the restricted operator

A= Alp : D(A) C R(A") = R(A), D(A) := D(A) N R(A")

has a bounded inverse A~! : R(A) — D(A) with |A™! < (1+¢%)"?, which is compact as
an operator from R(A) to R(A*). Hence, A*A and AA* have pure point spectra which can
only accumulate at infinity and which coincide by (2.2). Especially, the second eigenvalues
equal and therefore (see Corollary 32 for details) we conclude:

Theorem 2 For the best constants in Lemma 1 it holds cx = ca~, this is

1 : [Azly _ - [ATylx 1
m

= min = = .
ca  0#zeD(A)NR(A®) |z|x 0£yeD(A*)NR(A) Y|y CA+

Hence, ¢,? = c,2 is the first positive eigenvalue of A*A as well as of AA*.

3 The Maxwell Estimates

We remind on €2 and its properties from the introduction.

3.1 General Lipschitz Domains

In this subsection we frequently use Lemma 1 and Theorem 2.
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3.1.1 Gradient and Divergence

Let us consider A as

V  HE () C L*(Q) — L2(Q).

Then A* equals
—dive : 7D, (Q) C L2(Q) — L*(Q).

More precisely, we have the following table:

A D(A) X Y N(A) R(A)
v HL(Q) L) [ L(Q) {0} | VHL(Q) = Re,0(2) N Hp ()
A* D(A%) Y X N(A¥) R(A¥)

—dive | e D () | L2(Q) | L*(Q) || e 'Dr,0(Q) div D, ()

We note that div D, (Q) = L*(Q) if I, # I' and div Dp(Q) = L*(Q) N R*. Moreover, we
emphasize that indeed D(A*) = &7 !'Dr, () holds, see e.g. [8]. Note that for this one has
to show the approximation property

Dr,(Q) = {H € D(Q) : (div H,u) 20y = —(H, V)2V u € Hp, ()},

which is not trivial at all for mixed boundary conditions. Only in the special cases of full
boundary conditions this is clear. D(A*) = ¢7'D(Q) holds for I, = ' by definition. For
I, = 0 we see that the closed operator

B := —div: Dp(Q) C L*(Q) — L*(Q)

has the adjoint
B* =V :HY(Q) Cc L*(Q) — L*(Q)

by definition. Since in this case A = B* we have D(A*) = D(B**) = D(B) = Dr(Q2). The

crucial compact embedding (2.3) reads
HE, (€2) N div D, (Q) < L*(Q)
and is just Rellich’s selection theorem since
HL (Q) N div Dr, (Q) € HL (Q) € H(Q) = LX(Q).

Theorem 2 yields

1 . V|2 . | diveE] 2(q) 1
0< — = mmn ——-—== min = .
O lie  OFueH] () |U|L2(Q) 0#E€e~!Dr, (QNVHE, () |E|Lg(9) Cu, Ty, div,e
We note that Ar, . = ¢, %ﬁa is the first positive Dirichlet-Neumann eigenvalue of the
weighted negative Laplacian —A, := —diveV. For ¢ = id and Iy = T resp. Iy, = ()
we see that Apjq =: A1 resp. A\pia =: o is the first Dirichlet resp. second Neumann
eigenvalue of the negative Laplacian. As Ap. = ¢ %n,div,e holds too, Ap, . is also the

first positive Neumann-Dirichlet eigenvalue of the weighted negative reduced grad-div-
operator —V div ¢, which can also be interpreted as the weighted negative vector Laplacian
—A, := =V dive + rotrot on a subspace of irrotational vector fields.
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Lemma 3 The Poincaré constant in Hi,(Q) and the Mazwell divergence constant in
e 'D () NVHL, (), i.e., the best constants in the inequalities

Vue Hh(Q) |u’L2(Q) < Cp,Ft,s|VU|L§(Q)7
VE € 5_1DFH<Q) N VHll—\t (Q) |E’L§(Q) S CIn,Fn,diV,6| div €E|L2(Q)7

coincide and correspond to the first positive Dirichlet-Neumann eigenvalue of the weighted
negative Laplacian —A., more precisely o1, = CaTydive = 1/v/ AL

Lemma 4 It holds e cpr, < core < ecpr, as well as cor < cpry, and core < Cory e

Proof For u € Hf, (©) we have

uli2(0) < Gl Vulzg) < eepn|Vulizg),
uli2(0) < cpnelVuliz) < Eepr |Vl 2,

which gives cp1, . < ecpry and cpr, < ECp e O

Remark 5 The results of this section estend to bounded domains @ C RN, N € N,
having the proper reqularity of the boundary.

3.1.2 Rotations

Now, let A be
ot Rp, () € L2(Q) — L2(€).

Then A* is
e~ rot : Ry, () C L2(Q) — LZ(),

where p is another matrix field similar to €. More precisely:

A D(A) X Y N(A) R(A)
ptrot || Rp () | L2(Q) | L2(Q) || Rpo(2) | g rot Ry ()

A* D(A*) | Y X N(AY) R(A¥)
e'rot | Rp(Q) | L2(Q) | L2() | Ry0() | e ' rot Ry (Q)

We note
R(A) = 5~ (Dro(2) N Hyp (), R(A*) = &' (Dr 0(2) N Hpu()*)

and that indeed D(A*) = Ry, (€2) holds, see again e.g. [8]. As before, for this one has to
show the approximation property

Re(Q) = {H € R(Q) : (rot H, E) 2y = (H,rot E)y20 ¥ E € Re, ()},
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which is not trivial at all for mixed boundary conditions. Again, only in the special
cases of full boundary conditions this is clear. Since D(A*) = R(Q2) holds for Iy = T" by

definition we have also D(B*) = D(A™) = D(A) = Rp(Q2) for B = A*, which shows the
result for I, = (). The crucial compact embedding (2.3) reads

Rr, () N e 'rot R, (Q) — L2(Q)
and is just the Maxwell compactness property (1.4) since

R, () Ne 1ot Ry, (Q) C Ry, (Q) Ne™'Dr, 0(2) C Ry(2) Ne™'Dr, () — L2(Q) C LA(Q).

£

By Theorem 2 we have

1 . | 1rOtE’L2(Q)
o< —— = min ®
Cn Ty rot,e,p 0#E€Rr, (2)Ne~1! rot Ry, (2) |E Lz ()
, e~ rot Hl 2 (g 1
= min = ,
0£HeRG @nu'rotRe (@) [H 20 Cu, Ty ot ju.e

which serves also as definition for the constants cnr rote, and o rot
-2

Khiepn = Cm,l"t,rot,e,,u

reduced double-rot-operator [, , := e~

e Therefore,
is the first positive Dirichlet-Neumann eigenvalue of the weighted
Lrot =t rot, which can also be interpreted as the
weighted negative vector Laplacian —&8# = —Vdive + e 'rot p~ ' rot on a subspace
of e-solenoidal vector fields. Since ke, = ¢ %nerty,UqE holds as well, kr, ., is also the
first positive Neumann-Dirichlet eigenvalue of the weighted reduced double-rot-operator
O,c = p'rot e~ ! rot, which can also be interpreted as the weighted negative vector Lapla-

cian on a subspace of u-solenoidal vector fields, i.e., _&w = —Vdivu + p~trot et rot.

Lemma 6 The tangential-normal and normal-tangential Maxwell rotation constants,
i.e., the best constants in the inequalities

VE € th<Q) N 5_1 rot RFD(Q) |E|L§(Q) S Cu, Ty rot,e, 1

rot E|Li,1(9)a

VH € Rp(Q)Np trot Ry (Q) |H|Li(9) < Ca ot ue| TOb H|L§71(Q),

coincide and correspond to the first positive Dirichlet-Neumann eigenvalue of the weighted
reduced double-rot-operator O, ,, more precisely cut, rot,en = CoTyrotye = 1/ /Rl ep-

Let us define for ¢ = p and for ¢ = p = id

Cn,Ii rot,e -— Cm Iy rot,e,e — Cm,Iyrote,e

and note

Cn,Iy,rot,e — CmIyrot,es  CmIy,rot — Cm, Iy rot- (31)
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Corollary 7 For all E € (R, (Q) Ne™'rot Ry, (2)) U (R, () Ne™' rot Ry, (Q))
|Eliz(0) < Gubrore| 06 Eli2_ () < £ rote| 1O Eli2(q) (3.2)

holds with sharp constants. Moreover, the inequalities

VE € Ry (Q) Ne ' rot Ry, () |20y < Caliroteid
VH < an (Q) N 5_1 rot Rpt (Q) |H|L§(Q) S Cm,Fn,rot,E,id

rot E|L2(Q)7 (33)
rot H’L2(Q) (34)

hold, where these sharp constants do not need to coincide if € # id.

Lemma 8 [t holds
i) ¢2 < <&
(1) € "Cpirot S CaTyrot,e > € CnI ot

S mln{écm,n;,rot,sagcm,n,rot} S gCm,l"t,rota

(11) Cn I} ,rot,e,ids Cn I4,rot,e,id
Lty <y yimy I=E) ——1 —1 -1
Z max{g Cn,It rot,es € Cm,l—‘t,rot} Z € "Cnly,rot-

Proof It is clear that cu1, roteid, CoTyroteid < ECm I rot,e DOlds. To prove the other esti-
mates, let E € R, () Ne ! rot R, (). We decompose (see Appendix A.2.2)

FE = EO + Erot € Rpt70<Q) ® rot RFH(Q)
Then E,ot € R, (©2) Nrot R, () and rot £ = rot Ey. Thus by orthogonality

|E|Eg(g) = (eE, Erot)12(0) < CaTurot [EE|12(0) [ TOt B 20
——

<ElBhz ()

and hence
|E]i2(0) < EcnTyrot| 10t B 2(g) < 22Ca 1 rot| TO E|L§,1(Q)~

This shows ¢y roteid < ECnnyrot aNd Cpnyrote < Ezcmft’wt. Interchanging Iy and I
PrOVes Cul roteid < ECnlurot = Ealrot- BY £ ' [El2() < |El 20 and (3.2) resp. (3.3)
resp. (3.4) we see Canrot < E2Calyrote TESP. € CaTiwot < Culroteids Colyroteid-  USING
| rot B2y < E| 1ot E|L§_1(Q) and (3.3), (3.4) we get £ 'ar, rote < Calyrote.ids CoTyrot.e.ids
which completes the proof. 0

3.1.3 The Full Maxwell Estimates

Theorem 9 For all E € R, (Q) Ne 'Dr,(Q) the tangential-normal Mazwell estimate

|E — 7TDNEﬁg(Q) < 0}2),1},5| div 5E|ﬁ2(g) + Ci,n,rot,s,id| rot Eﬁ?(g)

holds with sharp constants. Moreover, cpr, - < €Cpr, aNA Co Ty rot,eid < ECn,Ty rot -
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Proof By the Helmholtz decomposition (see Appendix A.2.2) we have
R[‘t (Q) N €—1D[‘n(Q) N HDN’E(Q)J—E SE—mywlk =FEy+ E.o € VH%t (Q) De 8_1 rot an(Q)
with

Eg € e 'Dr,(2) N VHL (Q) = Ry, 0(Q2) Ne™'Dr () N Hpy (), diveEy = diveE,
Bt € R (Q)Ne 1ot Ry (Q) = Rp, () Ne D, () N HDN’a(Q)ls, rot Fyo = rot E.

Thus, by Lemma 3 and Corollary 7 as well as orthogonality we obtain
|E— 7TDNE|E§(Q) = ’Ev‘ﬁg(ﬂ) + ’Erotﬁg(g) < Ci,n,a‘ div 5E’i2(g) + Cﬁ,n,rot,a,id’ rot E’ﬁ%g)-

Lemmas 4 and 8 show the two estimates for the constants, completing the proof. O

Lemma 10 [t holds

< max{ecprn,, En T rot } < EMax{Cory, CuTy rot }

Cm,Ft,s == ma‘X{cP,Ft,EJ Cm,Ft,rot,s,id} ——1 -1 ~A—1
> max{€ 'pn, € Canirot) > € max{Corn, Culyrotf

and for e = id

Cn Iy = max{cp,f‘t7 Cm,Ft,rot}'

Proof We have ¢,r,. < max{cyn e, Canrot,e;ia}- Inserting £ € ¢ 'Dr, () N VHL, (Q)

resp. E € Rp(Q) Ne'rotRy () into the tangential-normal Maxwell estimate (1.3)
shows cp 1 e, Colyrotyeid < Cony,e and the first equation follows. The other estimates are

given by Lemmas 4 and 8, completing the proof. U

By the latter theorem and lemma it remains to estimate only the two constants cpr,
and ¢y, rot for the various I%.

3.2 Full Boundary Conditions

We summarize our results for the two important extreme cases Iy = I" resp. I, = 0, i.e.,
the full tangential resp. the full normal case, and emphasize that in these two cases the
tangential and normal Maxwell rotation constants coincide by (3.1) and hence beside the
Poincaré constants we just have to estimate one constant, namely

Cn,rot,e += CnDyrot,e — CmOrotes  Cmrot = Cm,Iyrot = Cm,0,rot- (35)

For the convenience of the reader let us recall our estimates from the latter sections
in these two extreme cases. Lemmas 3 and 4 read:



12 Dirk Pauly

Corollary 11 The Poincaré constant co e in Hi.(Q) resp. oo in Hy(Q) and the Mazwell
divergence constant cug dgive in € D(2) N VHL(Q) resp. cardgive in e 'Dr(Q) N VHY(Q)
equal, 1.e., the inequalities

Vu € Hp(Q) [uli2i) < cprel Vuli2i),

VE € e 'D(Q) N VHL(Q) |Eli2(0) < Gpre| diveE| 2,
resp.

VueHY(Q)NR [uliz(@) < Gel Vulizi),

VE € 'Dr(Q) N VHY(Q) E|2) < Gpel diveE| 2

hold with sharp constants. Moreover, € 'cor < cpre < £¢pr and e, < ¢pe < £6p.
Here, ¢y := cpp.. Corollary 7 and Lemma 8 read:
Corollary 12 The tangential Mazwell rotation constant cur ot in Rp(Q)Ne ' rot R(Q)
and the normal Mazwell rotation constant cu g ore @ R(Q) Ne~trot Rp(Q) equal, i.e., for
all E € (Rr(Q) Ne ' rot R()) U (R(Q) Ne~'rot Rp(Q))
|E||_§(Q) < Cm,rot,a| rot E|L§71(Q) < §Cm,rot,a| rot E||_2(Q)
holds with sharp constants. Moreover, the inequalities
VE € RF(Q) N 5_1 rot R(Q) ’E’LE(Q) S Cm,l_‘,rot,a,id| rot E|L2(Q)7
VHe R(Q) N 871 rot RF(Q) |H’L2(Q) S Cm7@,rot’€,id’ rot H’LQ(Q)
hold, where these sharp constants do not need to coincide if € # id. Moreover, it holds
§720m,rot S Cm,rot,e S €2Cm,rot and
§_1Cm,r0t S max{g_lcmmot,a;é_lcm,rot} S Cm,Trot,e,id s Cm,0,rot,e,id
S min{gcm,rot,aa gcm,rot} S gcm,rot'

Theorem 9 and Lemma 10 read:

Corollary 13 For all E € Rp(Q)Ne™!'D(Q) and all H € R(Q)Ne™'Dr(Q) the tangential
and normal Maxwell estimates

B — WDE’%?(Q) < Cg,ne‘ div 5E’i2(g) + Cﬁ,F,rot,a,id’ rot E|i2(g)>

|H — 7TNH|E§(Q) < | div 5H|fz(ﬂ) + €2 rot.c.id] TOb H|i2(ﬂ)

hold with sharp constants. Furthermore, the estimates Eilcpvp < Cpre, Cpe < ECp and
-1 —
€ "Cnrot < Cm,Irot,e,idy Cm,0,rot,e,id < ECpyrot AS well as

< max{ecyr, Ecnrot } < € Max{cyr, Curot },

Cnre = Max{c Cn ; .
e { phe I’rOt’a’ld} {Z max{gilcp,f‘agilcm,rot} Z 571 maX{CPvF) cm,rot}a

S maX{§0p7 gcm,rot} S é maX{cp, cm,rot}v

Cof.e = MAX{Cp ¢, Cn ; .
e { P 7®7r0t7€71d} {Z max{gilcpvgilcm,rot} Z 571 maX{CP7 Cm,rot}
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hold. Therefore, in both cases

A1 -1 -1
€7 max{cor, Curot} < MAX{E "o, € Curot} < Culyes Cnfe

S max{gcp, gCm,rot} S émax{cp, Cm,rot}-
For e =1id 4t holds
CnI' = maX{CpI, Cm,rot}v Cnp = max{cp, Cm,rot}-

As the two Poincaré constants c,r < ¢, are more or less well known, by the latter
corollaries it remains only to estimate the Maxwell constant cpyot.

3.2.1 Convex Domains

Now, let Q C R? be a bounded and convex domain. Then () is strongly Lipschitz, see
e.g. [6, Corollary 1.2.2.3]. Moreover, there are no Dirichlet or Neumann fields since €2 is
simply connected and has a connected boundary. As noted before in (1.8), in the convex
case we can estimate the Poincaré constant ¢, by the diameter of €2, i.e.,

diam(£2)

r<c <
Cp, P -

We show that we can also estimate the Maxwell constant ¢y, in the two extreme cases

It = T resp. Iy = 0 by ¢,. In [1, Theorem 2.17] the following crucial lemma has been
proved, which is the key point in our investigations for convex domains.

Lemma 14 Let E belong to Rp(2) ND(Q) or R(Q) N Dr(Q). Then E € HY(Q) and

We note that the latter lemma has already been proved in [19] in the case Rp(2)ND(£2).

Remark 15 For E € HL.(Q) it is clear that for any domain Q C R? (or even in RY)
|VE|32(Q) = |rot E|i2(m + | div E|i2(m

holds since —A = rotrot —V div. In general, this formula is no longer valid if E has just
the tangential or normal boundary condition.

With the help of Lemma 14 we can now estimate cp yot.
Lemma 16 ¢y 01 < ¢. More precisely, for all E in Rp(€2) Nrot R(Q2) or R(2) Nrot Rp(2)
|Eli2(0) < cp| rot E 2.

Furth@rmor@, Cu,T,rot,&,id s Cm,@,rot,e,id < gCp~
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Proof By (3.5) the boundary condition does not matter. So, let
E € R(2) Nrot Rp(2) = R(©2) N Dro(2)
with F = rot H for some H € Rp(Q). Then, for any constant vector a € R?
(E,a)2(0) = (rot H,a) 2q) =0 (3.7)
holds. Thus, by Poincaré’s estimate and Lemma 14 we get E € HY(Q) N (R3)* and
|Eli2(0) < | VE] 2(q) < ¢p| 10t B2,
which shows cprot = Cngrot < Cp. O

We can now formulate the main result for convex domains, which follows immediately
from Corollary 13 and Lemma 16.

Theorem 17 For all E € Rp(Q)Ne™'D(Q) and all H € R(2)Ne~Dr(Q) the tangential
and normal Mazwell estimates
\E@(Q) < §20}2>,r| div eE\fz(Q) + E2C§| rot E[EQ(Q),
|H|fg(ﬂ) < ezl div 8H!i2(9) +&%¢| rot H\fz(ﬂ)

hold. Moreover,
Cp,l

? S Gre < éCp,

ol |

< Cppe < écp.

Especially, for e =id
max{cpr; Carot} = Cal < Cop = Cp-

Theorem 18 For all E € (Rp(Q2) Ne™'D(Q)) U (R(Q) Ne'Dr(Q))

R . 1/2
|E’L§(Q) S 5Cp(| legE‘ﬁQ(Q) + ’rOt E’i2(9))
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A Appendix

A.1 More General Operators

There are obvious generalizations to differential forms. Let {2 be a smooth Riemannian
manifold of dimension N > 2 with boundary I' and compact closure. We assume that the
boundary manifold I" is divided into two (N — 1)-dimensional Riemannian sub-manifolds
I, and I}, with boundaries. Let us denote by L*4(€) the usual Lebesgue (Hilbert) space
of g-forms. For the exterior derivative and co-derivative we define the well known Sobolev
spaces

DIQ) :={F € L*(Q) : dE € L (Q)}, AYQ):={Eecl*(Q):§Ec > (Q)}.

As before, we introduce weak homogeneous boundary conditions by closures of respective
test forms, yielding the Sobolev spaces

DL (), AL(Q).
Let A be
p~td DY (Q) C L2Y(Q) — L2HH(Q).
Then A* is
—e 10 ALTHQ) C L27HH(Q) — L2Y(Q),
where ¢ resp. pu are bounded, symmetric, real and uniformly positive definite linear trans-
formations on ¢- resp. (¢ + 1)-forms. More precisely:

A D(A) X Y N(A) R(A)
ptd | DE(Q) | L2U(Q) | L") | Df (@) | p'dDE ()
A* D(A®) Y X N(A®) R(A¥)
—e L6 | ARNQ) [ L) | L2YQ) | AEL(Q) | e ART(Q)
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Here,
qu“t,0<Q) ={F € D%t(Q) : dE =0}, A%mO(Q) ={F € A%H(Q) :0E =0}
and we note
R(A) = p~ (DR Q) NHE (1), R(A") = e (AL o) N HW(2)),
where Hpy(Q2) := DY, ((2) N AL (€2). Indeed D(A*) = Alqﬂ:rl(Q) holds. We have the same
remarks as in Section 3.1.2. Again, for this one has to show the approximation property
AP Q) = {H € AT™N(Q) : (0 H, E) 200y = —(H,d E) 2011y ¥V E € D ()},

which is not trivial at all for mixed boundary conditions. And again, only in the special
cases of full boundary conditions this is clear. Since D(A*) = A’ (Q) holds for Ty, =T
by definition we have also D(B*) = D(A**) = D(A) = DL(2) for B = A*, which shows
the result for I, = (). The crucial compact embedding (2.3) is

DL (Q) Ne™'0 AEH(Q) — L29(Q).

Both latter properties of €2, i.e., the approximation and the compactness property, hold,
e.g., if the boundary manifolds I'; Ty, I, are Lipschitz and the boundary manifolds I%,
I, are separated by a (N — 2)-dimensional Riemannian and Lipschitz sub-manifold, the
interface v := Iy N T}, see [5, 7] for details and proofs. We note that

DL () Ne "6 AL(Q) € DL (Q) ne ' AL () € DL (Q) N AL (Q)
holds and that even the compact embedding of the latter space into LQ’Q(Q), this is
DL () Ne ' AL (Q) — L>9(Q) C L2(Q),
has been shown in [7]"V. By Theorem 2 we have
|,LL_1 d E|Li,q+1(9)

‘ ) ‘5_15H|L§’q(ﬂ)
R ‘= min = min —_—
0#£E€DE (Q)ne~1 5 AL (Q) |E] L29(Q) 0£HEAE (Q)nu—1 dDE () |H| L2t (@)

and x? is the first positive Dirichlet-Neumann eigenvalue of the weighted reduced §-d-
operator —e 1 d u~td. Analogously x? is also the first positive Neumann-Dirichlet eigen-
value of the weighted reduced d-d-operator —pu=tde=14.

Lemma 19 The tangential-normal and normal-tangential generalized Mazwell constants,
1.e., the best constants in the inequalities

VE € D(Il‘t (Q) Ne 1§ A%:rl(Q) ‘E‘Lg’q(Q) < Cgm,Ft,d,E,,u‘ d E’LQ’ETl(Q)’
n

VH e Aqrjl(Q) Np ' dDE () ’H’Li"”'l(ﬁ) < Cn bl 5H’Ljf1 Q)

. . . _ _ -1
coincide and equal to 1/K, i.e., Cantydey = Conlyope = K -

Remark 20 [t is clear that more results of this contribution can be generalized to the
differential form setting.

VIn [7] it is proved that Df, (€2) N Af (Q) even embeds continuously to H'/2:4(Q) and hence compactly
to L>9(Q). We note that the compactness property is independent of ¢, see e.g. [9].
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A.2 Maxwell Tools

Let the general assumptions from the introduction be satisfied.

A.2.1 The Maxwell Estimates

By the Maxwell compactness property we get immediately the Maxwell estimate.

Lemma 21 There exists cur, > 0, such that for all E in Rr, (Q)Ne™ ' Dr, () NHpy ()

. 1
|E]i2(0) < Cae(|r0t E‘ﬁ%n) + |d1V€E|i2(Q)) "

Proof If the estimate would not hold, there would exist a sequence of vector fields

(En) € Ri(2) N e Dy (Q) N Hy ()4 with [Ey |2 = 1 and

) 1

By the Maxwell compactness property we can assume w.l.o.g. that (F,) converges in
L2(€2) to some E € LZ(2). By testing, E belongs to Ro(€2) Ne™'Do(2) N Hpy ()< and
(E,) converges to F also in R(Q)Ne™'D(Q). As Rp, () resp. Dr, () is a closed subspace
of R(Q) resp. D(2), E belongs even to Rr, o(2) N e "Dy, () = Hpy (). Hence, £ =0,
which contradicts 1 = |E,| 2(q) — 0. O

Corollary 22 For all E in Ry, () Ne 'Dr,(Q)
: 1
|<1 — WDN)E|L§(Q) S CﬂlItﬁ(| rot E|i2(Q) + |d1V 5E|ﬁ2(9)) 2.

Proof As H := (1—my)E € Ry () Ne D, (Q) NHpy (2)*+= with diveH = diveE and
rot H = rot F/, Lemma 21 completes the proof. 0

The same arguments show that the Maxwell estimate remains valid in any dimension
and even for compact Riemannian manifolds, as long as the crucial Maxwell compactness
property holds.

A.2.2 Helmholtz-Weyl Decompositions

By the projection theorem we have for the operator V
L2(2) = VHL (Q) ®. £ 'Dr, 0(Q),

where indeed (VHh(Q))L = Dr,,0(©2) holds by [8]. Note that VHf, (©2) is already closed
by Rellich’s selection theorem. Analogously, we obtain for the operator rot

L2(2) = Rr, 0(2) @ £ 'rot Ry, (), (A1)
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where again and indeed (rot RFH(Q))l = R, 0(€2) holds by [8]. For ¢ = id we get by (A.1)

Rr, (2) = Rr, 0(2) @ (Rr, () Nrot Ry, (2))

and therefore

rot Rpt (Q) = rot (RR (Q) N rot Rl"n(Q>) .

As 1ot Rp, () C Dr,0(2) N Hpy(2)*, the Maxwell estimate Lemma 21 implies that also
rot Rr, (2) is already closed. Moreover,

rot R, (Q) = rot R, (Q), Rp,(Q) := R, (2) Nrot Ry, () = Ry, (2) Nrot Ry, (£2).
Since VHL, () C Rp, 0(£2) and rot R, () C Dr, o(Q2) we obtain

Rr,0() = VHL (Q) @ (Rr, 0(2) Ne™'Dr, () ),

8_1DFD’Q(Q) = 6_1 rot RI‘H(Q) De ( Rpho(Q) N é‘_lDFn’()(Q) )
Finally, we have the well known Helmholtz decompositions:
Lemma 23 [t holds

L2(Q) = VHL,(Q) & ¢ 'Dr, 0(Q2) = Rp, () &. e ' 1ot Ry, (Q)
— VHE(Q) De HDN’E(Q) . e ' rot Ry, ()

as well as
VHE () = Ry 0(Q) N Hpy (Q), &' rot R, () = e "D, 0(Q) N Hypy ()

and Rl“t (Q) = Rn(Q) N Drmo(Q) N HDN(Q)l.
A.3 Functional Analytical Tools

Let us recall that for a self-adjoint operator T : D(T) € H — H, where H denotes
some Hilbert space,

C\RCp(T), o(T)=0x(T)Uo(T)CR, o.(T)=0

hold. Here, p(T), o(T), 0p(T), 0c(T), or(T) denote the resolvent set, the spectrum,
the point spectrum, the continuous spectrum and the residual spectrum, respectively.
Moreover, we have the ‘Helmholtz’ decompositions

H=N(T—-)\&R(T-N\).
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For X\ € p(T) the continuity of (T — \)™! is equivalent to
Je>0 Vue D(T) |ulp < (T —=Nuln.

Hence, as T is closed, R(T — A\) = H holds for A € p(T), see e.g. [23, VIIL.1, Theorem].
Thus the resolvent set p(T), i.e., the set of all A € C with N(T —\) ={0}, R(T—\)=H
and (T — \)~!': R(T — \) — D(T — \) bounded, is just given by

p(T)={Ae€C : (T-X)"":H— D(T) bounded}.

We note that for all A € C the norms in D(T — ) and D(T) are equivalent.

We give simple proofs of the results of section 2. For this, we recall the Hilbert spaces
X and Y and the closed and densely defined linear operator A : D(A) C X — Y with
adjoint A* : D(A*) CY — X. A*A: D(A*A) C X+— X and AA* : D(AA*) C Y — Y are
self-adjoint and non-negative. Furthermore, we introduce the Maxwell-type operator

M:D(M)CZ—Z, DM):=DA)x D(A*), Z:=XxY

by M(z,y) = (A*y, Az) and note that

0 AT . [AA O
M_{A 01’ M_{o AA*}

are self-adjoint as well and M? is non-negative. Moreover, we introduce two projections
mx :Z— Xand my : Z =Y by mxz := x and myz := y for z = (x,y) and two embeddings
ix : X—Zand ty : Y = Z by ixx := (2,0) and tyy := (0,y).

First we show a stronger version of (2.2).

Lemma 24 [t holds

(i) 0 €eo(M) < 0e€o(A*A)Ua(AAY),

(i) 0€0.(M) < 0€0.(A*A) < 0 € 0. (AA*),
(i”) 0 € 0,(M) & 0 € 0,(A*A) U o, (AA¥)
and for A € R\ {0}

(i) A€ p(M) < X2 € p(A*A) < X2 € p(AA*),
(ii’) A e o(M) & X2 € 0(A*A) & \? € 0(AAY),
(iii) A € 0. (M) & N2 € 0. (A*A) & \? € 0. (AAY),

(iv) A € 0,(M) & N? € 0,(A*A) & A2 € 0,(AA*). More precisely: If z == (z,y) is an
eigenvector to the eigenvalue X of M, then x is an eigenvector to the eigenvalue \* of
A*A andy is an eigenvector to the eigenvalue N2 of AA*. If x is an eigenvector to the
eigenvalue N\* of A*A, then zy := (x, £X\"1Ax) is an eigenvector to the eigenvalue
+\ of M, respectively. If y is an eigenvector to the eigenvalue \*> of AA*, then
2z = (£EXTTA*y, y) is an eigenvector to the eigenvalue £\ of M, respectively.
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Therefore,

(v) p(M) and o(M), 0c(M), 0,(M) are point symmetric to the origin.

Proof As (I')A(i”)=(i), (ii)=-(ii") and (ii’)A(iv)=>(iii), we only have to show (i), (i),
(ii) and (iv). Then (v) is clear.

(ii): We just show the assertions for A*A. The corresponding results for AA* can be
proven analogously.

=: Let A € p(M), i.e., N(M — A) = {0} and (M — \)~! : Z — D(M) is continuous.

e First we show N(A*A —\?) = {0}. Let x € N(A*A — )?). Then z := (x,y) € D(M)
with y ;= A"'Az € D(A*) belongs to N(M —\) since (M—\)z = (A*y— Az, Az —\y) = 0.
Hence z = 0, especially x = 0.

o Let f € X. We want to solve (A*A — \?)x = f with x € D(A*A). Defining the ‘dual
variable’ y := A 'Ax € D(A*) and 2z := (z,y) € D(M), the mixed formulation of this
problem is

MAy—dz)=f, Ar=Xy & (M-=MNz= (A% —Av,Az—\y) =A"'(f,0).

These heuristic considerations suggest to set z := mxz € D(A) and y := myz € D(A¥)
with z := A1 (M — )"l f € D(M). Then (A*y — Az, Az — \y) = (M — X)z = A7L(f,0),
ie., Az = Ay € D(A*) and (A*A — \?)z = f. Moreover, z depends continuously on f
since
l2lparay < Jalx + [A"Azlx < c(|zlz +[fIx) < ol fIx.
—  ——
<lzlz =lfIx+A[zlx

Therefore, (A*A — X))t = A lay(M — N\)7lix : X — D(A*A) is continuous and thus
A2 € p(A*A).

<: Let A2 € p(A*A), ie,, N(A*A — \?) = {0} and (A*A — X?)7' : X = D(A*A) is
continuous.

e First we show N(M — \) = {0}. Let z = (z,y) € N(M — \). As

(A'y — Az, Az — Ay) = (M — \)z =0,

Az = Ay € D(A*) with A*Az = AA*y = \z. Hence, z € N(A*A — \?) yields x = 0 and
y=20,1ie., z=0.

e Let h = (f,g) € Z. We want to solve (M — \)z = h with (z,y) = z € D(M).
As (A*y — Az, Az — \y) = (f,9), y € D(A*) is already given by the second equation
Ay = Az — g, if x is known. Hence, rewriting everything in terms of z, this is

(f.9) = (VA Az —g) = Az, Az — (Az — g)) = (A A" (Az — g) — Az, g),
we see that we need to solve A*(Az — g) — Mz = A\f. Since g does not belong to D(A*)
in general, we cannot apply (A*A — \?)~! directly. The ansatz x = & + 2 € D(A) with
z € D(A*A) leads to

A*(AZ — g) — 2T+ (A*A — A3 = \f. (A.2)
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By the Lax-Milgram lemma we can solve, e.g., A*(AZ — g) + £ = A\f. More precisely,
there exists a unique & € D(A) with

Vo e D(A) (AT, Ap)y + (T, 0)x = Mf, ©)x + (9, Ap)y (A.3)

depending continuously on f and g and hence on h, i.e., |Z|p@a) < [A|fIx + |9y < c|h|z.
Let us denote this bounded linear operator mapping h to z by L : Z — D(A). Now, (A.2)
turns to

(A*A — M3 = (1 + \)i.
The latter heuristic computations suggest to define z := (x,y) by
vi=F+ 1+ M)(A*A -7 € D(A), y:=)\1Ar—g)

with Z from (A.3). Z € D(A) is uniquely defined and depends continuously on h, i.e.,
1Z|pay < clh|z. Moreover, Az — g € D(A*) and A*(AZ — g) = Af — & by (A.3). As
r—7 € D(A*A), we get y = A (A(z — ) + AT — g) € D(A*). Thus, z belongs to D(M).
Since

MY = AA@— )+ A (AT —g) = 1+ A)E+ 2z —F) + A —F =N+ \f

we obtain

(M—=X)z= (A% — Ax,Az — \y) = (f,g9) = h.

Furthermore, z depends continuously on h, i.e., using
Vo e D(A'A)  |Apy = (A"Ap, o)x < [A"Aplx|plx < Jpfk + [A™Ap[
we have

|zlpeny < 12pay + Y] pas < c(|9C|D(A) + | flx + ’g’Y) < C(|$ — |pa)y + |Z|pea) + |h|Z)
< |z — Z|pasay + |[Zlpa) + [hlz) < c(|Z|pay + hlz) < clhlz.

Therefore, with x : D(A) — Z defined by x(x) := (z, \"'Az) we finally obtain that
M=XN""=x(1+ 1+ (AA-X)")L - X"y : Z—= D(M)

is bounded and hence A € p(M).

(iv): =: Let A € 0,(M) and z := (z, y) be an eigenvector to A, i.e., 0 # z € N(M—\).
As 0= (M — Nz = (A*y — Az, Ax — \y), neither = nor y can be zero. Moreover, since
Mz =Xz € D(M), z € N((M+ A)(M — X)) holds, this is

0=(M+A)(M—=XNz=(M—N)z=((A"A = N)z, (AA* — N)y).
Thus, 0 # 2 € N(A*A — %) and 0 # y € N(AA* — \?) yielding A\* € 0,(A*A) Noy(AA*).
<: Let A? € 0,(A*A) and x be an eigenvector to A%, i.e., 0 # 2 € N(A*A — \?). Then
2y = (z,£A\"'Az) € D(M) and

(M F Nz = (EXTA*Az F Ao, Ax — A T'Az) = £A7H(A*Az — \22,0) = 0.
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Hence, 0 # zy € N(M F \), ie., £A € 0,(M). Similar arguments apply to the case
M € o (AA¥).
(i’): Tt holds with (ii’)

0 € 0.(M) = 3 (\) Co(M)\ {0} A = 0
& 3 (\2) C o(A*A)\ {0} A2 50
= 0 € 0o(A*A)

and the same is valid for AA*.

(i”): If 0 € 0p(M), then there exists 0 # z = (z,y) € N(M), i.e., 0 = Mz = (A*y, Ax).
But then 0 # z € N(M?), i.e., 0 = M2z = (A*Az, AA*y). As either 2 # 0 or y # 0, we get
0 € 0,(A*A) U o, (AA*). Now, let e.g. 0 € 0,(A*A). Then, there exists 0 # x € N(A*A),

i.e., A*Ax = 0. This implies Az = 0 since
0= (A*Az,7)x = (Az, Az)y = |Az[3.
Thus 0 # z := (x,0) € N(M) because Mz = (A*0, Az) = 0. Therefore, 0 € o,(M). O

We recall the ‘Helmholtz” decompositions

X = N(A) @ R(A%), D(A)=N(A)@ (D(A) N R(A"))

and define the restricted operator

A:=Alp : D(A) C R(A*) = R(A), Ax:=Az, z¢€ D(A):=D(A)NR(A*).

Let us compute the adjoint A* : D(A*) C R(A) — R(A*). For y € D(A*) we have for all
v € D(A)

(Ap,y)y = (o, A"y)x-
Hence, for all ¢ =1y + ¢ € D(A) = N(A) @ D(A) we get with Ap = Ap = Ay and by

Aty € R(ALN(A)
(A, y)v = (Ap, y)v = (o, Ay)x = (¥, A"y)x.

Thus, y € D(A*) and A*y = A*y. This shows D(A*) = D(A*)NR(A) and A* := A*|p(a~),

ie.,

A* = A%|pasy : D(A") € R(A) = R(A"), A'y=A"y, ye D(A")=DA)NRA).

Moreover, we have (A*)* = A and the operators A*A : D(A*A) C R(A*) — R(A*)
and AA* : D(AA*) C R(A) — R(A) are self-adjoint and non-negative. Finally, also the
restriction

M :=M|pny : DIM) € R(M) = R(M), Mz =Mz, =€ D(M):=D(M)NRQ)

is self-adjoint and we have

oA , [AA 0
M_[A 01’ M—{o AA*]'
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Remark 25 Let us emphasize once more the ‘Helmholtz’ decompositions

X=N(A)® R(A"), D(A)=N(A)® D(A),
Y = N(A") @ R(A) D(A*) = N(A*) @ D(A),
Z=N(M)a® R( ) D(M) = N(M) & D(M).

We introduce the orthogonal projectors
T:Z— NM), n:Z— RM)
and note 7|pany : D(M) = D(M).
Lemma 26 We have 0 € op,(M) U 0p(A*A) U 0p,(AA*). Moreover:
(i) The inverse operators A~', (A*)~! and M~ emist.
(ii) R(A) = R(A), R(A*)=R(A*), R(M)= R(M)

(iii) Lemma 24 holds for A, A* and M as well, which follows immediately by replacing
X by R(A*) and Y by R(A) as well as A by A and A* by A*.

Lemma 27 It holds

(i) o(M)\ {0} = a(M) \ {0}, more precisely even o.(M) \ {0} = o.(M) \ {0} and
op(M) \ {0} = (M) \ {0},

(ii) p(M)\ {0} = p(M)\ {0},

-1 _ 1 : _ -1 -1
(iii) Zp:\g )\ {0} = W, more precisely N(M — ) = N(M~" = X1 for

Proof We start with proving (ii).

=: Let 0 # X\ € p(M). We note that R(M — \) = Z. For h € R(M) C Z we want solve
(M=XN)z=nh. z:= M-\ "th € DIM) with (M —\)z = h satisfies \z = Mz —h € R(M)
and thus z € D(M). As |z|pm) = [2[pany < ¢|h|z = c|h|gag, # depends continuously on
h. Hence A € p(M).

<: Let 0 # A € p(M). We note that R(M — \) = R(M). For h € Z we want solve
(M — \)z = h. Decomposing

h=ho+heZ=NM)®RM), z=z+2eDM)=NM)®DM)
shows with Mz € R(M)
A+ M—=NZ=ho+h < —Azx=hy A(M—=N\)Z=h.
This gives rise to define z € D(M) by
zi=204+%, Z:=(M=NTheDM), z:=-\A"Thye NM).
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Then (M — \)z = ho + h=hand z depends continuously on A, i.e.,
12lpany < |20l pawy + 12lpen) = 120lz + 1Zlpovwy < ¢(lholz + |B|z) < c|hlz.
Therefore, A € p(M). We note that the inverse (M — \)~! : Z — D(M) is given by
(M — A"t — A7,

(i): Since (ii) implies (M) \ {0} = (M) \ {0} we just have to show the assertion for
the point spectrum.

=: Let 0 # X € 0,(M). For 0 # 2z € N(M — \) we have Az = Mz € R(M). Hence,
z € D(M) and thus z € N(M — ), ie., A € 0p,(M).

<: Of course N(M —X) C N(M — A). Thus, A € 0,(M) implies A € o,(M).

(iii): For A # 0 we have

A € 0p(M) & J0#£ze NM =)
& 30#z€ DM) Mz=Aze R(M)
& F0#£zeRM) M lz=X'"M"Mz=)\"'z¢€ DM)
s 30 7A se N(M™ =)
= be o (M.
The proof is complete. O

The latter lemma holds true for A4*A and AA* we well. More precisely:
Lemma 28 [t holds
(i) o(A*A)\ {0} = o(A*A)\ {0}, more precisely even o.(A*A)\ {0} = o.(A*A) \ {0}
and op(A*A) \ {0} = op(A"A) \ {0},
(ii) p(A*A)\ {0} = p(A*A)\ {0},
() o3((4A) )\ 0} =
A #0.
The corresponding assertions are valid for AA* and AA* as well.
Proof With Lemma 24 (ii’), Lemma 27 (i) and Lemma 26 we have for A # 0
Meo(A*A) & AecoM) & AeoM) & N eo(AA).

and the corresponding results hold for oy, 0. and p as well. This shows (i) and (ii). To
prove (iii) we can follow the proof of Lemma 27 (iii) and see for A # 0

N € oy (A*A) J0#z € NA*A - \?)
J0#x € D(A*A) A*Ax = Nz € R(A)
J0#z € D(A*A) Az = N (A") 'z € R(A)
J0#£x € DA'A) o= N(A) A 2 € R(AY)
J0£ 2z € RA*) (AA)'z=X%z e DAA)
F0#z e N((AA) =177

A2 e o ((AA)TY),

and N(A*A — X?) = N((A"A)~ = A72) for

(R O
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which completes the proof. 0]

A.3.1 Results for Compact Resolvents

From now on we assume generally that the embedding
D(A) — X (A.4)
is compact.
Lemma 29 The following assertions hold:
(i) Jea >0 Vze D(A) |z|x < calAxly
(i) Jear >0 Vye DAY  |yly < ca
(i”) Jem >0 Vze DM) |z|z < emMzlz

A*ylx

(ii) R(A), R(A*) and R(M) are closed.

(iii) X = N(A) @ R(A*), Y = N(A*) @ R(A) and Z = N(M) & R(M).

(iv) A1 : R(A) — D(A) is continuous and A~" : R(A) — R(A*) is compact.

(iv’) (A*)7': R(A*) — D(A*) is continuous and (A*)~': R(A*) — R(A) is compact.
(iv?) M~ R(M) — D(M) is continuous and M~' : R(M) — R(M) is compact.

(v) D(A*) =Y is compact.

(v’) D(M) < Z is compact.

Proof (i): Let us assume that the estimate is wrong. Then there exists a sequence
(x,) C D(A) with |z,|x = 1 and |Az,|y — 0. As (x,) is bounded in D(.A), by the general
assumption (A.4) we can extract a subsequence, again denoted by (z,), with z,, - x € X.
Since A and R(A*) are closed, we have z € N(A) N N(A)* = {0}, in contradiction to
1= |ZEn|x — |ZE‘X =0.

(ii): For y € R(A) = R(A) there exists a sequence (z,) C D(A) with Az, — v.
By (i) (z,) is a Cauchy sequence in X. Hence, (x,) converges to some z € X. Since
A is closed, we obtain x € D(A) and Ax = y, showing that R(A) is closed. By the
closed range theorem, see e.g. [23, VII, 5, Theorem], R(A*) is closed as well. Hence, also
R(M) = R(A*) x R(A) is closed.

(iii) follows immediately by (ii).

(iv) follows directly by (i) and (A.4). Indeed, (i) is equivalent to the continuity of A",

(v): Let (y,) be a bounded sequence in D(A*). By (ii), (y,) € R(A) = R(A) and
hence there exists a sequence (x,,) C D(A) with Az, = y,. By (i), (x,) is bounded in
D(A). By (A.4), we can extract a subsequence, again denoted by (z,), such that (z,)
converges in X. Then, for z,, ,,, := x,, — T, and Y1, = Yp, — Y, We have

‘yn,m‘g( = <Axn,ma yn,m)Y = <xn,m7 A*yn,m>x S C‘xn,m‘x-
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Thus, (y,) is a Cauchy sequence in Y.
(v’) is clear by (A.4) and (v).
(i”)¥ follows by (v) analogously to (i).
(i”) follows by (i) and (i).
(iv’)"! follows by (i) and (v).
(iv) and (iv’) imply (iv”). O

1
1

Let us recall some facts: By Lemma 29 (v’) for all A € C
DM —-X) —=Z (A.5)
is compact. For A € p(M) D C\ R we have
NM-XN)={0}, RM—-A)=2Z, NM-X\)={0}, RM-A=RM)
and the boundedness of (M — \)~™! : Z — D(M) is equivalent to
deyyr >0 Vze DM) |zlz < emn|(M = N)zlz,

which holds for M as well. For 0 # A € o(M) C R we have

Z=N(M-X\)@R(M -\, R(M)=N(M =\ @ R(M —\).
Lemma 30 For A € R\ {0} the following assertions hold:
(i) N(M —\) € R(M) and N(M — \) = N(M — \) has finite dimension.

(i) Teyr >0 Vze DIM)NNM - N |zlz < eyl (M — A)z|z

(iii) R(M — \) is closed.
(iii’) R(M — \) is closed.
(iii”) R(M —)) = R(M — \) N R(M)

(iv) Z=NM =\ @ R(M — \) and R(M) = N(M — \) @ R(M — \).

(v) Let N(M — X) = {0}. Then (M — XN)~' : R(M) — D(M) is continuous and
(M =Xt RIM) — R(M) is compact. Especially X € p(M).

(v’) Let N(M — X\) = {0}. Then (M — \)~' : Z — D(M) is continuous. Especially
A€ p(M).

Corresponding results hold for A*A, AA* resp. A*A, AA* we well.

V(i) follows also by (iv’), since (i’) is equivalent to the continuity of (A*)~*.

Vi Another proof of (iv’) is the following: As A~1: R(A) — R(A*) is compact by (iv), so is the adjoint
(A")71 : R(A*) — R(A) by Schauder’s theorem, see e.g. [23, X, 4, Theorem]. Especially (A*)~! is
bounded and hence also (A*)~!: R(A*) — D(A*).
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Proof It is enough to consider 0 # A € o(M) C R.

(i): Of course, N(M —X) C N(M — \). For z € N(M — )\) we have Mz = Az. Thus
z € R(M), ie., z € D(M). Hence z € N(M — \). By (A.5) the unit ball in N(M — \)
is compact, i.e., dim N(M — \) < 0.

(ii): If the estimate is wrong, then there exists a sequence (z,) C D(M)NN(M — )+
with |z,]z = 1 and |(M — A)z,|z — 0. By (A.5) we can extract a subsequence, again
denoted by (z,), with z, — z € Z. Moreover, Mz, = (M — A)z, + Az, — Az. As M and
N(M — )+ are closed, z belongs to N(M — X) N N(M — X))+ = {0}, in contradiction to
1= |Zn|z — |Z|z = 0.

(iii): Let h € R(M — X). Then there exists a sequence (z,) C D(M) such that
(M — N)z, =t h, — h. Decomposing z, = 2,0+ 2, € N(M — \) & R(M — \) shows
(M =Xz, = h, and 2, € D(M)N N(M — \)*+. By (ii) (%,) is a Cauchy sequence in Z
converging to some z € Z. Moreover, Mz, = (M — \)Z,, + A\Z, — h + Az. As M is closed,
we obtain z € D(M) and (M — \)z = h, i.e., h € RIM — \).

(iii"): Let h € R(M — X). By (i) we have R(M) = N(M — ) & (R(M) N R(M — \))
and hence it holds

ROM)NRM—)\) = R(M — \) (A.6)

by (iii). Let us decompose h = hg+h € N(M)@R(M). As (M—\)ho = —Ahg € R(M—)),
we get h € R(IM)NR(M — \). Hence h € R(M —\) € R(M — \) and thus h € R(M —\).

(iii”) follows by (iii’) and (A.6).

(iv) follows by (iii) and (iii’).

(v): If N(M —A) = {0}, then R(M — \) = Z and R(M — \) = R(M). By (i)
M — XN R(M) — D(M) is continuous, more precisely, for h € R(M) we have

z:=(M—=X)"th € D(M) and hence |z|z < caalhlz.
(v)): By (i), (v) and Lemma 27 (ii) we get A € p(M) \ {0} = p(M) \ {0}. Hence,
(M —X)"':Z — D(M) is continuous. O

Theorem 31 M has a pure point spectrum, which is contained in R\ {0} and point
symmetric to the origin. More precisely,

—0p(M) = 0p(M) = (M) = a(M) \ {0} = (M) \ {0}

and
a(M)? = 0y (A"A) = o(A*A) = 0(A"A) \ {0} = g, (A"A) \ {0}
= 0p(AAY) = 0(AA") = g(AA") \ {0} = 0, (AAT) \ {0}
as well as
op(M) , if N(M) # {0},
pMS0e {p<M> - if NOM) = {0}

hold. Moreover, there exist sequences of eigenvalues and eigenvectors

()\n)nEN C (07 00)7 (Z;::)HEN = ((:Ena y:))neN - D(M)a
which might be finite or empty if (e.g.) A is bounded, such that the following holds:
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(i) o(M) = (\) U (=\,) and o(M)? = o(A*A) = 0 (AA*) = (\2).
(ii) (

A
(iii) (M F \,)zE = 0 holds for all n, i.e., Ax, = £\ y- and A*yr = £\, 2, and thus
f (Tn, :l:/\ 1A$n) (:l:)\T_LlA*yT:‘L:J yf)

(iii’) (M? — A2)2E = 0 holds for all n, i.e., A*Ax, = N2z, and AA*yF = \2y+.

n) 18 monotone increasing with A, — oo, if (\,) is not finite.

(iv) (xn) is a complete orthonormal system in R(A*), i.e.,

Ve R(A*) Tr = Z€n$m
n=1
and furthermore
Vi=xzo+zeX=N(A)® RAY r=Y &nin,

Vi =m0 +a € D(A) = N(A) @ D(A) AF=Az==% A&y,

n=1

V€ D(A*A) A*Ax = i N,
where &, = (1, 1,)x = (T, ,)x. Moreover, |2|% = |ro|% + |z|% and
P =D0€ IAaf =) A Ad = YoMl
n=1 n=1 n=1
(iv’) (yE) is a complete orthonormal system in R(A), i.e.,
Yy € R4 v=3 G,
n=1
and furthermore
Vi=yo+yeY=N(A")®DRA) y—i(fyff,

Vi=yt+y€DA)=NA)ODA)  AG=Ay==+) ANian,

n=1
Vy € D(AAY) ANy =) NGy
where G = (Y, Yn )y = (0, Y, )y Moreover, |g[3 = [yol§ + |y[§ and

lyly = Z(Cf)2, ATyl = A2(CE)? [AATY =D A (¢
n=1 n=1

n=1
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Proof By Lemma 29 (iv”) we have 0 € p(M). M = M holds if N(M) = {0}. By Lemma

0 (v) M has a pure point spectrum and by Lemma 30 (v’) o(M) \ {0} = (M) \ {0}.
By Lemma 27 (i) we have o,(M) = 0,(M) \ {0} = 0,(M) \ {0}. By Lemma 24 (v) the
spectra are point symmetric to the origin. The other assertions about the spectra follow
immediately by Lemmas 24, 27, 28 and Lemma 26.

As A7 : R(A) — R(A*) or (A*)™' : R(A*) — R(A) are compact by Lemma 29
(iv) or (iv’), so is e.g. (A*A)~! : R(A*) — R(A*). Moreover, (A*A)~! is self-adjoint
and positive. Let us assume that A is unbounded*. By the spectral theorem for self-
adjoint, compact and non-negative operators there exists a monotone decreasing sequence
(A, Dnen C (0,00) converging to zero and a sequence (xn)neN C R(A*), such that \,? is
an eigenvalue to the eigenvector z,, of (A*A)~! ie., (A*A)~ 'z, = A, %x,. Moreover, (mn)
is a complete orthonormal system in R(A*), 1.e., for all x € R(A*) we have

x—Zﬁn )T, &u(x) = (T, 2,)x.

(xn) C D(A*A) is also a complete orthonormal system of eigenvectors of A*A since
A*Azx, = A\2z,. Defining
yr =4\ Az, € D(AY)

we see A*yE = £\, € D(A). Hence, y= € D(AA*) with AA*yE = £\, Az, = \2yT,
i.e., y= is an eigenvector of AA* to the eigenvalue \2. For all y € R(A) with y = Az for
some x € D(A) we have

<yay7:i:>Y = <$a A*yi:))( = iAn<x7$n>X (A7>

This shows two things. First, putting y := y= = A(E£\ 12,,) we get

An
<y7:i:w y,ﬂv = )\—<Zlfm, xn)Xa

m

which shows that (y,;7) and (y;,) are both orthonormal systems in R(A), and second, that
they are even complete in R(A). Thus, for all y € R(A) we obtain

y=> G Wy ) =Wy
n=1

A little more careful inspection shows the following: For ally = Az € R(A) withz € D(A)
we have again with (A.7)

y=> Gy iZAnsn an )Az,,
n=1
oY) = Wy )y = :t)\n<w7$n>x = Al )-

VHTf A is bounded, the sequences ()\,) and (z;F) are finite.
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If even y = AA*y € R(AA*) with g € D(AA*) we see

y=> Gy Z/\QCi ZC* JAA" Y,
n=1
CEly) = (7, AA"yf)y = Ai(z/,yn by = AiC?f( ).

Analogously for some x = A*y € R(A*) with y € D(A*) it holds

T = an(l’)l’n ==+ Z )‘ngf@)xn = Z erzz(y>A*yer:7
n=1 n=1 n=1
én(x) = <x>xn>X = <y= Axn>Y = i)‘n@/:yfh = iAnCiE(y)

If even x = A*AZ € R(A*A) with £ € D(A*A) we have

=Y &(x)z, Z A2¢,(7) an JA*Az,,
n=1
En(x) = (T, A"Azy)x = An<w, Tp)x = Aién( ).
For 2% := (z,,yF) € D(M) we have
Mz = (A*yE, Ax,) = £\, (2, y5) = £A\2

+

Hence, 2= is an eigenvector to the eigenvalue £\, of M, i.e., zF € N(MF \,). Of course,
+

2 is also an eigenvector to the eigenvalue A2 of M? since

A*A — 22 0

. AT 2 = M2 =22 = (M A)(MEN).

The assertions about the norms follow immediately by orthogonality and the continuity
of the norms, concluding the proof. O

Corollary 32 [t holds

A 2 A* 2
= |Ax]3 = min Arly _ min | y2|x = A",
0£reD(A) |2 ozyeD(A") |y}
zlx{®1, w1} yLly{yi yEt_l}
especiall
pectatty Azf2 |A*yl%
M= m o = n —==.
0£z€D(A) |z|x 0£yeD(A)  [yly

Proof First, we emphasize that the dimensions of the eigenspaces N(A*A — \2) and
N(AA* — )?) equal. Using the latter theorem we can represent = € D(A) and Az by

T = i EnTn, Az = £ i /\ngny;t
n=1 n=1
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If additionally L x{z1,..., 241} wesee & = --- =1 = 0 and thus
olx =D& AR =) NG = ATy & = Nl
n=~{ n=>~¢ n=~¢
A 2
Therefore, % > )7 holds for all 0 # x € D(A) with L x{x1,...,2,1}. On the other
Llx

hand |Az]2 = (@, A*Azy)x = M|ze|)k and 0 # x, € D(A) with zyLx{zy,..., 201}
Thus,

A 2
M= Az} = min | x2|Y.
0£zeD(A) |z}
zlx{z1,Te1

The other assertion about y and A*y follows analogously. O



