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1 Introduction and Preliminaries

Throughout this paper, let us fix a bounded domain Ω ⊂ R3 with boundary Γ := ∂Ω,
which is devided into two relatively open subsets Γt and its complement Γn := Γ \ Γt.
The letters t and n should remind on homogeneous tangential and normal boundary
conditions.

It is well known that the Poincaré (or Friedrichs) inequality, i.e., for all u ∈ H1
Γt

(Ω)

|u|L2(Ω) ≤ cp,Γt,ε|∇u|L2
ε(Ω), (1.1)

holds with some cp,Γt,ε > 0, as long as Rellich’s selection theorem is valid, i.e., the embed-
ding

H1(Ω) ↪→ L2(Ω) (1.2)

is compact. Here, L2(Ω) and H1(Ω) denote the usual Lebesgue- and Sobolev (Hilbert)
spaces, respectively. Moreover, ε : Ω→ R3×3 denotes a symmetric and uniformly positive
definite L∞-matrix field. We introduce L2

ε(Ω) as L2(Ω) equipped with the weighted inner

product 〈 · , · 〉L2
ε(Ω) := 〈ε · , · 〉L2(Ω).

i For Γt 6= ∅ the Sobolev space H1
Γt

(Ω) is defined as the

closure
(
taken in H1(Ω)

)
of test functions

C∞Γt (Ω) := {ϕ|Ω : ϕ ∈ C∞(R3) , dist(suppϕ,Γt) > 0}.

Otherwise we set H1
∅(Ω) := H1(Ω) ∩ R⊥. Let us assume that we have chosen the best

constant in (1.1), this is
1

cp,Γt,ε
:= inf

06=u∈H1
Γt

(Ω)

|∇u|L2
ε(Ω)

|u|L2(Ω)

.

Analogously, it is also well known that the (let’s call it) Maxwell inequality, i.e., for

all E ∈ RΓt(Ω) ∩ ε−1DΓn(Ω)

|E − πDNE|L2
ε(Ω) ≤ cm,Γt,ε

(
| div εE|2L2(Ω) + | rotE|2L2(Ω)

)1/2

or equivalently for all E ∈ RΓt(Ω) ∩ ε−1DΓn(Ω) ∩HDN,ε(Ω)⊥ε

|E|L2
ε(Ω) ≤ cm,Γt,ε

(
| div εE|2L2(Ω) + | rotE|2L2(Ω)

)1/2
, (1.3)

holds with some cm,Γt,ε > 0, as long as the Maxwell selection theorem or the Maxwell
compactness property is given, i.e., the embedding

RΓt(Ω) ∩ ε−1DΓn(Ω) ↪→ L2(Ω) (1.4)

is compact, see Appendix A.2.1 for details. Here, we introduce the Sobolev (Hilbert)
spaces

R(Ω) := {E ∈ L2(Ω) : rotE ∈ L2(Ω)}, D(Ω) := {E ∈ L2(Ω) : divE ∈ L2(Ω)}
iThroughout this paper norms resp. scalar products will be denoted by | · |X resp. 〈 · , · 〉X if X is a

normed space or a space featuring a scalar product.
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in the distributional sense. As above, if Γt 6= ∅, we define as closures
(
taken in R(Ω)

resp. D(Ω)
)

of test vector fields C∞Γt (Ω) the Sobolev spaces RΓt(Ω) and DΓt(Ω) (and of

course the same for Γn). If Γt = ∅ we set R∅(Ω) := R(Ω) and D∅(Ω) := D(Ω). Then, for

Γt 6= ∅ in H1
Γt

(Ω), RΓt(Ω) and DΓt(Ω) homogeneous scalar, tangential and normal traces
at Γt are generalized, respectively. Moreover, we define the closed subspaces

R0(Ω) := {E ∈ L2(Ω) : rotE = 0}, D0(Ω) := {E ∈ L2(Ω) : divE = 0}

as well as RΓt,0(Ω) := RΓt(Ω) ∩ R0(Ω) and DΓt,0(Ω) := DΓt(Ω) ∩ D0(Ω). Finally, we have
the harmonic Dirichlet-Neumann fields

HDN,ε(Ω) := RΓt,0(Ω) ∩ ε−1DΓn,0(Ω),

which are finite dimensional since by (1.4) the unit ball is compact inHDN,ε(Ω). The L2
ε(Ω)-

orthogonal projector onto them will be denoted by πDN : L2
ε(Ω)→ HDN,ε(Ω) and ⊥ε means

orthogonality in L2
ε(Ω). If Γt = Γ resp. Γn = Γ we have the classical Dirichlet resp. Neu-

mann fields and write HD,ε(Ω) resp. HN,ε(Ω). We also need the Neumann-Dirichlet fields

HND,ε(Ω) := RΓn,0(Ω) ∩ ε−1DΓt,0(Ω). In the case ε = id we usually omit ε in our notations.
Again, we assume that also in (1.3) the best constant

1

cm,Γt,ε
:= inf

06=E∈RΓt (Ω)∩ε−1DΓn (Ω)∩HDN,ε(Ω)⊥ε

(
| div εE|2

L2(Ω)
+ | rotE|2

L2(Ω)

)1/2

|E|L2
ε(Ω)

is taken.
The crucial property for (1.3) to hold is the Maxwell compactness property (1.4),

which holds, e.g., if Ω has a (strongly) Lipschitz continuous boundary Γ with a (strongly)
Lipschitz continuous interface γ := Γt∩Γn, see [8] for details. More precisely, the boundary
Γ and the interface γ can be described locally as graphs of Lipschitz functions. From now
on we assume this properties of Γ and Γt, Γn as general assumption. Note that then
also (1.2) and (1.1) hold. Another successful approach proving the Maxwell compactness
property using a different technique from [21] has been shown in [9]. For the Maxwell
compactness property in the case of full boundary conditions we refer to [21, 13, 14, 15,
20, 10, 3, 16, 17, 18, 19, 22].

With the help of the L2
ε(Ω)-orthogonal Helmholtz decomposition

L2
ε(Ω) = ∇H1

Γt(Ω)⊕ε HDN,ε(Ω)⊕ε ε−1 rotRΓn(Ω), (1.5)

where

RΓt,0(Ω) = ∇H1
Γt(Ω)⊕ε HDN,ε(Ω), ε−1DΓn,0(Ω) = ε−1 rotRΓn(Ω)⊕ε HDN,ε(Ω),

see Appendix A.2.2 for details, we can split the estimate (1.3) into two, namely

∀E ∈ ε−1DΓn(Ω) ∩∇H1
Γt(Ω) |E|L2

ε(Ω) ≤ cm,Γn,div,ε| div εE|L2(Ω), (1.6)

∀E ∈ RΓt(Ω) ∩ ε−1 rotRΓn(Ω) |E|L2
ε(Ω) ≤ cm,Γt,rot,ε,id| rotE|L2(Ω), (1.7)
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where we again assume to use the best constants

1

cm,Γn,div,ε

:= inf
06=E∈ε−1DΓn (Ω)∩∇H1

Γt
(Ω)

| div εE|L2(Ω)

|E|L2
ε(Ω)

,

1

cm,Γt,rot,ε,id

:= inf
06=E∈RΓt (Ω)∩ε−1 rotRΓn (Ω)

| rotE|L2(Ω)

|E|L2
ε(Ω)

.

By the assumptions on ε there exist ε, ε > 0 such that for all E ∈ L2(Ω)

1

ε
|E|L2(Ω) ≤ |E|L2

ε(Ω) ≤ ε|E|L2(Ω).

We note |E|L2
ε(Ω) = |ε1/2E|L2(Ω) and |ε1/2E|L2

ε(Ω) = |εE|L2(Ω). Thus, for all E ∈ L2(Ω)

1

ε
|E|L2

ε(Ω) ≤ |εE|L2(Ω) ≤ ε|E|L2
ε(Ω).

The inverse ε−1 satisfies for all E ∈ L2(Ω)

1

ε
|E|L2(Ω) ≤ |E|L2

ε−1 (Ω) ≤ ε|E|L2(Ω),
1

ε
|E|L2

ε−1 (Ω) ≤ |ε−1E|L2(Ω) ≤ ε|E|L2
ε−1 (Ω),

which immediately follows by

|E|L2
ε−1 (Ω) = |ε−1/2E|L2(Ω)

{
≤ ε|ε−1/2E|L2

ε(Ω) = ε|E|Ω
≥ ε−1|ε−1/2E|L2

ε(Ω) = ε−1|E|Ω
.

For later purposes let us also define ε̂ := max{ε, ε}.
In this contribution we will study these different constants cp,Γt,ε, cm,Γt,ε, cm,Γn,div,ε,

cm,Γt,rot,ε,id and their relations to each other. It turns out that

cp,Γt,ε = cm,Γn,div,ε, cm,Γt,rot,ε,id = cm,Γn,rot,id,ε, cm,Γt,ε = max{cp,Γt,ε, cm,Γt,rot,ε,id}

hold, see Lemmas 3, 10 and 6. The main result of this paper states that in the special case
of full boundary conditions, i.e., Γt = Γ or Γn = Γ, and for bounded and convex domains
we have

cp,Γ
ε
≤ cm,Γ,ε ≤ ε̂cp,

cp
ε
≤ cm,∅,ε ≤ ε̂cp

and especially for ε = id

max{cp,Γ, cm,rot} = cm,Γ ≤ cm,∅ = cp,

see Theorem 17. Here, we introduce for the special case ε = id

cp,Γt := cp,Γt,id, cp := cp,∅, cm,Γt := cm,Γt,id

and
cm,Γt,rot := cm,Γt,rot,id,id = cm,Γn,rot,id,id = cm,Γn,rot
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as well as
cm,rot := cm,Γ,rot,id,id = cm,∅,rot,id,id.

The crucial point in our analysis is that for convex domains

cm,rot ≤ cp, cm,Γ,rot,ε,id, cm,∅,rot,ε,id ≤ εcp

hold, see Lemma 16. Some of these results have also been obtained recently in [11] utilizing
different and more elementaryii methods. We note that in the convex case we can estimate
the Poincaré constant cp by the diameter of Ω. More precisely, by the famous paper of
Payne and Weinberger [12]iii we have

cp ≤
diam(Ω)

π
.

In [12] also the optimality of this estimate has been shown. Furthermore, cp,Γ < cp is well
known even for non-convex domains, see e.g. [4] and the cited literature, yielding

1√
λ1

= cp,Γ < cp =
1
√
µ2

≤ diam(Ω)

π
, (1.8)

where λ1 resp. µ2 is the first Dirichlet resp. second Neumann eigenvalue of the negative
Laplacian.

At least some of our results extend in a natural way to bounded domains Ω ⊂ RN or
even to Riemannian manifolds with compact closure, see Remark 5 and Appendix A.1.

Our new estimates have important applications e.g. to numerical analysis, where es-
pecially an upper bound for the Maxwell constants is needed e.g. for preconditioning and
for functional a posteriori error estimates in the framework of Maxwell’s equations.

2 An Abstract Setting

Let X and Y be Hilbert spaces and

A : D(A) ⊂ X→ Y, A∗ : D(A∗) ⊂ Y → X

be a closed and densely defined linear operator and its adjoint. Here, D denotes the
domain of definition and we introduce the kernel N and the range R. Since A is closed we
have (A∗)∗ = Ā = A and sometimes (A,A∗) is called a dual pair. The projection theorem
yields the orthogonal ‘Helmholtz’ decompositions

X = N(A)⊕R(A∗), Y = N(A∗)⊕R(A). (2.1)

Now, we collect some well known facts. For the convenience of the reader we give simple
proofs of those in the Appendix A.3.

iiIn the sense that no tools from functional analysis were used.
iiiA little mistake or inconsistency in [12] has been corrected later in [2].
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A∗A and AA∗ are non-negative and self-adjoint and their spectra coincide if we exclude
{0}, i.e.,

σ(A∗A) \ {0} = σ(AA∗) \ {0}, σp(A
∗A) \ {0} = σp(AA∗) \ {0}. (2.2)

Let us assume that the embedding

D(A) ∩R(A∗) ↪→ X (2.3)

is compact.

Lemma 1 There exist cA, cA∗ > 0, such that

∀x ∈ D(A) ∩R(A∗) |x|X ≤ cA|Ax|Y,
∀ y ∈ D(A∗) ∩R(A) |y|Y ≤ cA∗|A∗y|X.

Moreover, R(A) and R(A∗) are closed and

X = N(A)⊕R(A∗), Y = N(A∗)⊕R(A).

Furthermore, D(A∗) ∩R(A) ↪→ Y is compact as well.

We note that the same lemma can be proved assuming the compactness of the em-
bedding of D(A∗) ∩R(A) ↪→ Y instead of (2.3). By Lemma 1 the restricted operator

A := A|D(A) : D(A) ⊂ R(A∗)→ R(A), D(A) := D(A) ∩R(A∗)

has a bounded inverse A−1 : R(A)→ D(A) with |A−1| ≤ (1 + c2
A)1/2, which is compact as

an operator from R(A) to R(A∗). Hence, A∗A and AA∗ have pure point spectra which can
only accumulate at infinity and which coincide by (2.2). Especially, the second eigenvalues
equal and therefore (see Corollary 32 for details) we conclude:

Theorem 2 For the best constants in Lemma 1 it holds cA = cA∗, this is

1

cA

= min
06=x∈D(A)∩R(A∗)

|Ax|Y
|x|X

= min
0 6=y∈D(A∗)∩R(A)

|A∗y|X
|y|Y

=
1

cA∗
.

Hence, c−2
A = c−2

A∗ is the first positive eigenvalue of A∗A as well as of AA∗.

3 The Maxwell Estimates

We remind on Ω and its properties from the introduction.

3.1 General Lipschitz Domains

In this subsection we frequently use Lemma 1 and Theorem 2.
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3.1.1 Gradient and Divergence

Let us consider A as
∇ : H1

Γt(Ω) ⊂ L2(Ω)→ L2
ε(Ω).

Then A∗ equals
− div ε : ε−1DΓn(Ω) ⊂ L2

ε(Ω)→ L2(Ω).

More precisely, we have the following table:

A D(A) X Y N(A) R(A)

∇ H1
Γt

(Ω) L2(Ω) L2
ε(Ω) {0} ∇H1

Γt
(Ω) = RΓt,0(Ω) ∩HDN(Ω)⊥

A∗ D(A∗) Y X N(A∗) R(A∗)

− div ε ε−1DΓn(Ω) L2
ε(Ω) L2(Ω) ε−1DΓn,0(Ω) divDΓn(Ω)

We note that divDΓn(Ω) = L2(Ω) if Γn 6= Γ and divDΓ(Ω) = L2(Ω) ∩ R⊥. Moreover, we

emphasize that indeed D(A∗) = ε−1DΓn(Ω) holds, see e.g. [8]. Note that for this one has
to show the approximation property

DΓn(Ω) = {H ∈ D(Ω) : 〈divH, u〉L2(Ω) = −〈H,∇u〉L2(Ω) ∀ u ∈ H1
Γt(Ω)},

which is not trivial at all for mixed boundary conditions. Only in the special cases of full
boundary conditions this is clear. D(A∗) = ε−1D(Ω) holds for Γt = Γ by definition. For
Γt = ∅ we see that the closed operator

B := − div : DΓ(Ω) ⊂ L2(Ω)→ L2(Ω)

has the adjoint
B∗ = ∇ : H1(Ω) ⊂ L2(Ω)→ L2(Ω)

by definition. Since in this case A = B∗ we have D(A∗) = D(B∗∗) = D(B) = DΓ(Ω). The
crucial compact embedding (2.3) reads

H1
Γt(Ω) ∩ divDΓn(Ω) ↪→ L2(Ω)

and is just Rellich’s selection theorem since

H1
Γt(Ω) ∩ divDΓn(Ω) ⊂ H1

Γt(Ω) ⊂ H1(Ω) ↪→ L2(Ω).

Theorem 2 yields

0 <
1

cp,Γt,ε
= min

06=u∈H1
Γt

(Ω)

|∇u|L2
ε(Ω)

|u|L2(Ω)

= min
06=E∈ε−1DΓn (Ω)∩∇H1

Γt
(Ω)

| div εE|L2(Ω)

|E|L2
ε(Ω)

=
1

cm,Γn,div,ε

.

We note that λΓt,ε := c−2
p,Γt,ε

is the first positive Dirichlet-Neumann eigenvalue of the
weighted negative Laplacian −∆ε := − div ε∇. For ε = id and Γt = Γ resp. Γt = ∅
we see that λΓ,id =: λ1 resp. λ∅,id =: µ2 is the first Dirichlet resp. second Neumann
eigenvalue of the negative Laplacian. As λΓt,ε = c−2

m,Γn,div,ε holds too, λΓt,ε is also the
first positive Neumann-Dirichlet eigenvalue of the weighted negative reduced grad-div-
operator−∇ div ε, which can also be interpreted as the weighted negative vector Laplacian
−~∆ε := −∇ div ε+ rot rot on a subspace of irrotational vector fields.
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Lemma 3 The Poincaré constant in H1
Γt

(Ω) and the Maxwell divergence constant in

ε−1DΓn(Ω) ∩∇H1
Γt

(Ω), i.e., the best constants in the inequalities

∀u ∈ H1
Γt(Ω) |u|L2(Ω) ≤ cp,Γt,ε|∇u|L2

ε(Ω),

∀E ∈ ε−1DΓn(Ω) ∩∇H1
Γt(Ω) |E|L2

ε(Ω) ≤ cm,Γn,div,ε| div εE|L2(Ω),

coincide and correspond to the first positive Dirichlet-Neumann eigenvalue of the weighted
negative Laplacian −∆ε, more precisely cp,Γt,ε = cm,Γn,div,ε = 1/

√
λΓt,ε.

Lemma 4 It holds ε−1cp,Γt ≤ cp,Γt,ε ≤ εcp,Γt as well as cp,Γ ≤ cp,Γt and cp,Γ,ε ≤ cp,Γt,ε.

Proof For u ∈ H1
Γt

(Ω) we have

|u|L2(Ω) ≤ cp,Γt|∇u|L2(Ω) ≤ εcp,Γt|∇u|L2
ε(Ω),

|u|L2(Ω) ≤ cp,Γt,ε|∇u|L2
ε(Ω) ≤ εcp,Γt,ε|∇u|L2(Ω),

which gives cp,Γt,ε ≤ εcp,Γt and cp,Γt ≤ εcp,Γt,ε. �

Remark 5 The results of this section extend to bounded domains Ω ⊂ RN , N ∈ N,
having the proper regularity of the boundary.

3.1.2 Rotations

Now, let A be

µ−1 rot : RΓt(Ω) ⊂ L2
ε(Ω)→ L2

µ(Ω).

Then A∗ is

ε−1 rot : RΓn(Ω) ⊂ L2
µ(Ω)→ L2

ε(Ω),

where µ is another matrix field similar to ε. More precisely:

A D(A) X Y N(A) R(A)

µ−1 rot RΓt(Ω) L2
ε(Ω) L2

µ(Ω) RΓt,0(Ω) µ−1 rotRΓt(Ω)

A∗ D(A∗) Y X N(A∗) R(A∗)

ε−1 rot RΓn(Ω) L2
µ(Ω) L2

ε(Ω) RΓn,0(Ω) ε−1 rotRΓn(Ω)

We note

R(A) = µ−1
(
DΓt,0(Ω) ∩HND(Ω)⊥

)
, R(A∗) = ε−1

(
DΓn,0(Ω) ∩HDN(Ω)⊥

)
and that indeed D(A∗) = RΓn(Ω) holds, see again e.g. [8]. As before, for this one has to
show the approximation property

RΓn(Ω) = {H ∈ R(Ω) : 〈rotH,E〉L2(Ω) = 〈H, rotE〉L2(Ω) ∀ E ∈ RΓt(Ω)},
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which is not trivial at all for mixed boundary conditions. Again, only in the special
cases of full boundary conditions this is clear. Since D(A∗) = R(Ω) holds for Γt = Γ by

definition we have also D(B∗) = D(A∗∗) = D(A) = RΓ(Ω) for B = A∗, which shows the
result for Γt = ∅. The crucial compact embedding (2.3) reads

RΓt(Ω) ∩ ε−1rotRΓn(Ω) ↪→ L2
ε(Ω)

and is just the Maxwell compactness property (1.4) since

RΓt(Ω) ∩ ε−1rotRΓn(Ω) ⊂ RΓt(Ω) ∩ ε−1DΓn,0(Ω) ⊂ RΓt(Ω) ∩ ε−1DΓn(Ω) ↪→ L2(Ω) ⊂ L2
ε(Ω).

By Theorem 2 we have

0 <
1

cm,Γt,rot,ε,µ

= min
06=E∈RΓt (Ω)∩ε−1 rotRΓn (Ω)

|µ−1 rotE|L2
µ(Ω)

|E|L2
ε(Ω)

= min
06=H∈RΓn (Ω)∩µ−1 rotRΓt (Ω)

|ε−1 rotH|L2
ε(Ω)

|H|L2
µ(Ω)

=
1

cm,Γn,rot,µ,ε

,

which serves also as definition for the constants cm,Γt,rot,ε,µ and cm,Γn,rot,µ,ε. Therefore,
κΓt,ε,µ := c−2

m,Γt,rot,ε,µ is the first positive Dirichlet-Neumann eigenvalue of the weighted
reduced double-rot-operator �ε,µ := ε−1 rotµ−1 rot, which can also be interpreted as the

weighted negative vector Laplacian −~∆ε,µ := −∇ div ε + ε−1 rotµ−1 rot on a subspace
of ε-solenoidal vector fields. Since κΓt,ε,µ = c−2

m,Γn,rot,µ,ε holds as well, κΓt,ε,µ is also the
first positive Neumann-Dirichlet eigenvalue of the weighted reduced double-rot-operator
�µ,ε = µ−1 rot ε−1 rot, which can also be interpreted as the weighted negative vector Lapla-

cian on a subspace of µ-solenoidal vector fields, i.e., −~∆µ,ε = −∇ div µ+ µ−1 rot ε−1 rot.

Lemma 6 The tangential-normal and normal-tangential Maxwell rotation constants,
i.e., the best constants in the inequalities

∀E ∈ RΓt(Ω) ∩ ε−1 rotRΓn(Ω) |E|L2
ε(Ω) ≤ cm,Γt,rot,ε,µ| rotE|L2

µ−1 (Ω),

∀H ∈ RΓn(Ω) ∩ µ−1 rotRΓt(Ω) |H|L2
µ(Ω) ≤ cm,Γn,rot,µ,ε| rotH|L2

ε−1 (Ω),

coincide and correspond to the first positive Dirichlet-Neumann eigenvalue of the weighted
reduced double-rot-operator �ε,µ, more precisely cm,Γt,rot,ε,µ = cm,Γn,rot,µ,ε = 1/

√
κΓt,ε,µ.

Let us define for ε = µ and for ε = µ = id

cm,Γt,rot,ε := cm,Γt,rot,ε,ε = cm,Γn,rot,ε,ε

and note

cm,Γt,rot,ε = cm,Γn,rot,ε, cm,Γt,rot = cm,Γn,rot. (3.1)
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Corollary 7 For all E ∈
(
RΓt(Ω) ∩ ε−1 rotRΓn(Ω)

)
∪
(
RΓn(Ω) ∩ ε−1 rotRΓt(Ω)

)
|E|L2

ε(Ω) ≤ cm,Γt,rot,ε| rotE|L2
ε−1 (Ω) ≤ εcm,Γt,rot,ε| rotE|L2(Ω) (3.2)

holds with sharp constants. Moreover, the inequalities

∀E ∈ RΓt(Ω) ∩ ε−1 rotRΓn(Ω) |E|L2
ε(Ω) ≤ cm,Γt,rot,ε,id| rotE|L2(Ω), (3.3)

∀H ∈ RΓn(Ω) ∩ ε−1 rotRΓt(Ω) |H|L2
ε(Ω) ≤ cm,Γn,rot,ε,id| rotH|L2(Ω) (3.4)

hold, where these sharp constants do not need to coincide if ε 6= id.

Lemma 8 It holds

(i) ε−2cm,Γt,rot ≤ cm,Γt,rot,ε ≤ ε2cm,Γt,rot,

(ii) cm,Γt,rot,ε,id, cm,Γn,rot,ε,id

{
≤ min{εcm,Γt,rot,ε, εcm,Γt,rot} ≤ εcm,Γt,rot,

≥ max{ε−1cm,Γt,rot,ε, ε
−1cm,Γt,rot} ≥ ε−1cm,Γt,rot.

Proof It is clear that cm,Γt,rot,ε,id, cm,Γn,rot,ε,id ≤ εcm,Γt,rot,ε holds. To prove the other esti-

mates, let E ∈ RΓt(Ω) ∩ ε−1 rotRΓn(Ω). We decompose (see Appendix A.2.2)

E = E0 + Erot ∈ RΓt,0(Ω)⊕ rotRΓn(Ω).

Then Erot ∈ RΓt(Ω) ∩ rotRΓn(Ω) and rotE = rotErot. Thus by orthogonality

|E|2L2
ε(Ω) = 〈εE,Erot〉L2(Ω) ≤ cm,Γt,rot |εE|L2(Ω)︸ ︷︷ ︸

≤ε|E|
L2
ε(Ω)

| rotE|L2(Ω)

and hence

|E|L2
ε(Ω) ≤ εcm,Γt,rot| rotE|L2(Ω) ≤ ε2cm,Γt,rot| rotE|L2

ε−1 (Ω).

This shows cm,Γt,rot,ε,id ≤ εcm,Γt,rot and cm,Γt,rot,ε ≤ ε2cm,Γt,rot. Interchanging Γt and Γn
proves cm,Γn,rot,ε,id ≤ εcm,Γn,rot = εcm,Γt,rot. By ε−1|E|L2(Ω) ≤ |E|L2

ε(Ω) and (3.2) resp. (3.3)
resp. (3.4) we see cm,Γt,rot ≤ ε2cm,Γt,rot,ε resp. ε−1cm,Γt,rot ≤ cm,Γt,rot,ε,id, cm,Γn,rot,ε,id. Using
| rotE|L2(Ω) ≤ ε| rotE|L2

ε−1 (Ω) and (3.3), (3.4) we get ε−1cm,Γt,rot,ε ≤ cm,Γt,rot,ε,id, cm,Γn,rot,ε,id,

which completes the proof. �

3.1.3 The Full Maxwell Estimates

Theorem 9 For all E ∈ RΓt(Ω) ∩ ε−1DΓn(Ω) the tangential-normal Maxwell estimate

|E − πDNE|2L2
ε(Ω) ≤ c2

p,Γt,ε| div εE|2L2(Ω) + c2
m,Γt,rot,ε,id| rotE|2L2(Ω)

holds with sharp constants. Moreover, cp,Γt,ε ≤ εcp,Γt and cm,Γt,rot,ε,id ≤ εcm,Γt,rot.
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Proof By the Helmholtz decomposition (see Appendix A.2.2) we have

RΓt(Ω) ∩ ε−1DΓn(Ω) ∩HDN,ε(Ω)⊥ε 3 E − πDNE = E∇ + Erot ∈ ∇H1
Γt(Ω)⊕ε ε−1 rotRΓn(Ω)

with

E∇ ∈ ε−1DΓn(Ω) ∩∇H1
Γt(Ω) = RΓt,0(Ω) ∩ ε−1DΓn(Ω) ∩HDN,ε(Ω)⊥ε , div εE∇ = div εE,

Erot ∈ RΓt(Ω) ∩ ε−1 rotRΓn(Ω) = RΓt(Ω) ∩ ε−1DΓn,0(Ω) ∩HDN,ε(Ω)⊥ε , rotErot = rotE.

Thus, by Lemma 3 and Corollary 7 as well as orthogonality we obtain

|E − πDNE|2L2
ε(Ω) = |E∇|2L2

ε(Ω) + |Erot|2L2
ε(Ω) ≤ c2

p,Γt,ε| div εE|2L2(Ω) + c2
m,Γt,rot,ε,id| rotE|2L2(Ω).

Lemmas 4 and 8 show the two estimates for the constants, completing the proof. �

Lemma 10 It holds

cm,Γt,ε = max{cp,Γt,ε, cm,Γt,rot,ε,id}

{
≤ max{εcp,Γt , εcm,Γt,rot} ≤ ε̂max{cp,Γt , cm,Γt,rot}
≥ max{ε−1cp,Γt , ε

−1cm,Γt,rot} ≥ ε̂−1 max{cp,Γt , cm,Γt,rot}

and for ε = id

cm,Γt = max{cp,Γt , cm,Γt,rot}.

Proof We have cm,Γt,ε ≤ max{cp,Γt,ε, cm,Γt,rot,ε,id}. Inserting E ∈ ε−1DΓn(Ω) ∩ ∇H1
Γt

(Ω)

resp. E ∈ RΓt(Ω) ∩ ε−1 rotRΓn(Ω) into the tangential-normal Maxwell estimate (1.3)
shows cp,Γt,ε, cm,Γt,rot,ε,id ≤ cm,Γt,ε and the first equation follows. The other estimates are
given by Lemmas 4 and 8, completing the proof. �

By the latter theorem and lemma it remains to estimate only the two constants cp,Γt
and cm,Γt,rot for the various Γt.

3.2 Full Boundary Conditions

We summarize our results for the two important extreme cases Γt = Γ resp. Γt = ∅, i.e.,
the full tangential resp. the full normal case, and emphasize that in these two cases the
tangential and normal Maxwell rotation constants coincide by (3.1) and hence beside the
Poincaré constants we just have to estimate one constant, namely

cm,rot,ε := cm,Γ,rot,ε = cm,∅,rot,ε, cm,rot = cm,Γ,rot = cm,∅,rot. (3.5)

For the convenience of the reader let us recall our estimates from the latter sections
in these two extreme cases. Lemmas 3 and 4 read:
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Corollary 11 The Poincaré constant cp,Γ,ε in H1
Γ(Ω) resp. cp,ε in H1

∅(Ω) and the Maxwell

divergence constant cm,∅,div,ε in ε−1D(Ω) ∩ ∇H1
Γ(Ω) resp. cm,Γ,div,ε in ε−1DΓ(Ω) ∩ ∇H1(Ω)

equal, i.e., the inequalities

∀u ∈ H1
Γ(Ω) |u|L2(Ω) ≤ cp,Γ,ε|∇u|L2

ε(Ω),

∀E ∈ ε−1D(Ω) ∩∇H1
Γ(Ω) |E|L2

ε(Ω) ≤ cp,Γ,ε| div εE|L2(Ω)

resp.

∀u ∈ H1(Ω) ∩ R⊥ |u|L2(Ω) ≤ cp,ε|∇u|L2
ε(Ω),

∀E ∈ ε−1DΓ(Ω) ∩∇H1(Ω) |E|L2
ε(Ω) ≤ cp,ε| div εE|L2(Ω)

hold with sharp constants. Moreover, ε−1cp,Γ ≤ cp,Γ,ε ≤ εcp,Γ and ε−1cp ≤ cp,ε ≤ εcp.

Here, cp,ε := cp,∅,ε. Corollary 7 and Lemma 8 read:

Corollary 12 The tangential Maxwell rotation constant cm,Γ,rot,ε in RΓ(Ω)∩ ε−1 rotR(Ω)

and the normal Maxwell rotation constant cm,∅,rot,ε in R(Ω) ∩ ε−1 rotRΓ(Ω) equal, i.e., for

all E ∈
(
RΓ(Ω) ∩ ε−1 rotR(Ω)

)
∪
(
R(Ω) ∩ ε−1 rotRΓ(Ω)

)
|E|L2

ε(Ω) ≤ cm,rot,ε| rotE|L2
ε−1 (Ω) ≤ εcm,rot,ε| rotE|L2(Ω)

holds with sharp constants. Moreover, the inequalities

∀E ∈ RΓ(Ω) ∩ ε−1 rotR(Ω) |E|L2
ε(Ω) ≤ cm,Γ,rot,ε,id| rotE|L2(Ω),

∀H ∈ R(Ω) ∩ ε−1 rotRΓ(Ω) |H|L2
ε(Ω) ≤ cm,∅,rot,ε,id| rotH|L2(Ω)

hold, where these sharp constants do not need to coincide if ε 6= id. Moreover, it holds
ε−2cm,rot ≤ cm,rot,ε ≤ ε2cm,rot and

ε−1cm,rot ≤ max{ε−1cm,rot,ε, ε
−1cm,rot} ≤ cm,Γ,rot,ε,id, cm,∅,rot,ε,id

≤ min{εcm,rot,ε, εcm,rot} ≤ εcm,rot.

Theorem 9 and Lemma 10 read:

Corollary 13 For all E ∈ RΓ(Ω)∩ε−1D(Ω) and all H ∈ R(Ω)∩ε−1DΓ(Ω) the tangential
and normal Maxwell estimates

|E − πDE|2L2
ε(Ω) ≤ c2

p,Γ,ε| div εE|2L2(Ω) + c2
m,Γ,rot,ε,id| rotE|2L2(Ω),

|H − πNH|2L2
ε(Ω) ≤ c2

p,ε| div εH|2L2(Ω) + c2
m,∅,rot,ε,id| rotH|2L2(Ω)

hold with sharp constants. Furthermore, the estimates ε−1cp,Γ ≤ cp,Γ,ε, cp,ε ≤ εcp and
ε−1cm,rot ≤ cm,Γ,rot,ε,id, cm,∅,rot,ε,id ≤ εcm,rot as well as

cm,Γ,ε = max{cp,Γ,ε, cm,Γ,rot,ε,id}

{
≤ max{εcp,Γ, εcm,rot} ≤ ε̂max{cp,Γ, cm,rot},
≥ max{ε−1cp,Γ, ε

−1cm,rot} ≥ ε̂−1 max{cp,Γ, cm,rot},

cm,∅,ε = max{cp,ε, cm,∅,rot,ε,id}

{
≤ max{εcp, εcm,rot} ≤ ε̂max{cp, cm,rot},
≥ max{ε−1cp, ε

−1cm,rot} ≥ ε̂−1 max{cp, cm,rot}
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hold. Therefore, in both cases

ε̂−1 max{cp,Γ, cm,rot} ≤ max{ε−1cp,Γ, ε
−1cm,rot} ≤ cm,Γ,ε, cm,∅,ε

≤ max{εcp, εcm,rot} ≤ ε̂max{cp, cm,rot}.

For ε = id it holds

cm,Γ = max{cp,Γ, cm,rot}, cm,∅ = max{cp, cm,rot}.

As the two Poincaré constants cp,Γ < cp are more or less well known, by the latter
corollaries it remains only to estimate the Maxwell constant cm,rot.

3.2.1 Convex Domains

Now, let Ω ⊂ R3 be a bounded and convex domain. Then Ω is strongly Lipschitz, see
e.g. [6, Corollary 1.2.2.3]. Moreover, there are no Dirichlet or Neumann fields since Ω is
simply connected and has a connected boundary. As noted before in (1.8), in the convex
case we can estimate the Poincaré constant cp by the diameter of Ω, i.e.,

cp,Γ < cp ≤
diam(Ω)

π
.

We show that we can also estimate the Maxwell constant cm,rot in the two extreme cases
Γt = Γ resp. Γt = ∅ by cp. In [1, Theorem 2.17] the following crucial lemma has been
proved, which is the key point in our investigations for convex domains.

Lemma 14 Let E belong to RΓ(Ω) ∩ D(Ω) or R(Ω) ∩ DΓ(Ω). Then E ∈ H1(Ω) and

|∇E|2L2(Ω) ≤ | rotE|2L2(Ω) + | divE|2L2(Ω). (3.6)

We note that the latter lemma has already been proved in [19] in the case RΓ(Ω)∩D(Ω).

Remark 15 For E ∈ H1
Γ(Ω) it is clear that for any domain Ω ⊂ R3 (or even in RN)

|∇E|2L2(Ω) = | rotE|2L2(Ω) + | divE|2L2(Ω)

holds since −∆ = rot rot−∇ div. In general, this formula is no longer valid if E has just
the tangential or normal boundary condition.

With the help of Lemma 14 we can now estimate cm,rot.

Lemma 16 cm,rot ≤ cp. More precisely, for all E in RΓ(Ω)∩rotR(Ω) or R(Ω)∩rotRΓ(Ω)

|E|L2(Ω) ≤ cp| rotE|L2(Ω).

Furthermore, cm,Γ,rot,ε,id, cm,∅,rot,ε,id ≤ εcp.



14 Dirk Pauly

Proof By (3.5) the boundary condition does not matter. So, let

E ∈ R(Ω) ∩ rotRΓ(Ω) = R(Ω) ∩ DΓ,0(Ω)

with E = rotH for some H ∈ RΓ(Ω). Then, for any constant vector a ∈ R3

〈E, a〉L2(Ω) = 〈rotH, a〉L2(Ω) = 0 (3.7)

holds. Thus, by Poincaré’s estimate and Lemma 14 we get E ∈ H1(Ω) ∩ (R3)⊥ and

|E|L2(Ω) ≤ cp|∇E|L2(Ω) ≤ cp| rotE|L2(Ω),

which shows cm,rot = cm,∅,rot ≤ cp. �

We can now formulate the main result for convex domains, which follows immediately
from Corollary 13 and Lemma 16.

Theorem 17 For all E ∈ RΓ(Ω)∩ ε−1D(Ω) and all H ∈ R(Ω)∩ ε−1DΓ(Ω) the tangential
and normal Maxwell estimates

|E|2L2
ε(Ω) ≤ ε2c2

p,Γ| div εE|2L2(Ω) + ε2c2
p| rotE|2L2(Ω),

|H|2L2
ε(Ω) ≤ ε2c2

p| div εH|2L2(Ω) + ε2c2
p| rotH|2L2(Ω)

hold. Moreover,
cp,Γ
ε
≤ cm,Γ,ε ≤ ε̂cp,

cp
ε
≤ cm,∅,ε ≤ ε̂cp.

Especially, for ε = id
max{cp,Γ, cm,rot} = cm,Γ ≤ cm,∅ = cp.

Theorem 18 For all E ∈
(
RΓ(Ω) ∩ ε−1D(Ω)

)
∪
(
R(Ω) ∩ ε−1DΓ(Ω)

)
|E|L2

ε(Ω) ≤ ε̂cp
(
| div εE|2L2(Ω) + | rotE|2L2(Ω)

)1/2
.

Acknowledgements The author is deeply indebted to Sergey Repin for bringing his
attention to the problem of the Maxwell constants in 3D and to Sebastian Bauer und
Karl-Josef Witsch for so many fruitful and nice discussions.

References

[1] C. Amrouche, C. Bernardi, M. Dauge, and V. Girault. Vector potentials in three-
dimensional non-smooth domains. Math. Methods Appl. Sci., 21(9):823–864, 1998.

[2] M. Bebendorf. A note on the Poincaré inequality for convex domains. Z. Anal.
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A Appendix

A.1 More General Operators

There are obvious generalizations to differential forms. Let Ω be a smooth Riemannian
manifold of dimension N ≥ 2 with boundary Γ and compact closure. We assume that the
boundary manifold Γ is divided into two (N − 1)-dimensional Riemannian sub-manifolds
Γt and Γn with boundaries. Let us denote by L2,q(Ω) the usual Lebesgue (Hilbert) space
of q-forms. For the exterior derivative and co-derivative we define the well known Sobolev
spaces

Dq(Ω) := {E ∈ L2,q(Ω) : dE ∈ L2,q+1(Ω)}, ∆q(Ω) := {E ∈ L2,q(Ω) : δ E ∈ L2,q−1(Ω)}.

As before, we introduce weak homogeneous boundary conditions by closures of respective
test forms, yielding the Sobolev spaces

Dq
Γt

(Ω), ∆q
Γn

(Ω).

Let A be
µ−1 d : Dq

Γt
(Ω) ⊂ L2,q

ε (Ω)→ L2,q+1
µ (Ω).

Then A∗ is
−ε−1 δ : ∆q+1

Γn
(Ω) ⊂ L2,q+1

µ (Ω)→ L2,q
ε (Ω),

where ε resp. µ are bounded, symmetric, real and uniformly positive definite linear trans-
formations on q- resp. (q + 1)-forms. More precisely:

A D(A) X Y N(A) R(A)

µ−1 d Dq
Γt

(Ω) L2,q
ε (Ω) L2,q+1

µ (Ω) Dq
Γt,0

(Ω) µ−1 dDq
Γt

(Ω)

A∗ D(A∗) Y X N(A∗) R(A∗)

−ε−1 δ ∆q+1
Γn

(Ω) L2,q+1
µ (Ω) L2,q

ε (Ω) ∆q+1
Γn,0

(Ω) ε−1 δ∆q+1
Γn

(Ω)
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Here,

Dq
Γt,0

(Ω) := {E ∈ Dq
Γt

(Ω) : dE = 0}, ∆q
Γn,0

(Ω) := {E ∈ ∆q
Γn

(Ω) : δ E = 0}

and we note

R(A) = µ−1
(
Dq+1

Γt,0
(Ω) ∩Hq+1

DN (Ω)⊥
)
, R(A∗) = ε−1

(
∆q

Γn,0
(Ω) ∩Hq

DN(Ω)⊥
)
,

where Hq
DN(Ω) := Dq

Γt,0
(Ω)∩∆q

Γn,0
(Ω). Indeed D(A∗) = ∆q+1

Γn
(Ω) holds. We have the same

remarks as in Section 3.1.2. Again, for this one has to show the approximation property

∆q+1
Γn

(Ω) = {H ∈ ∆q+1(Ω) : 〈δ H,E〉L2,q(Ω) = −〈H, dE〉L2,q+1(Ω) ∀ E ∈ Dq
Γt

(Ω)},

which is not trivial at all for mixed boundary conditions. And again, only in the special
cases of full boundary conditions this is clear. Since D(A∗) = ∆q+1(Ω) holds for Γt = Γ

by definition we have also D(B∗) = D(A∗∗) = D(A) = Dq
Γ(Ω) for B = A∗, which shows

the result for Γt = ∅. The crucial compact embedding (2.3) is

Dq
Γt

(Ω) ∩ ε−1δ∆q+1
Γn

(Ω) ↪→ L2,q
ε (Ω).

Both latter properties of Ω, i.e., the approximation and the compactness property, hold,
e.g., if the boundary manifolds Γ, Γt, Γn are Lipschitz and the boundary manifolds Γt,
Γn are separated by a (N − 2)-dimensional Riemannian and Lipschitz sub-manifold, the
interface γ := Γt ∩ Γn, see [5, 7] for details and proofs. We note that

Dq
Γt

(Ω) ∩ ε−1δ∆q+1
Γn

(Ω) ⊂ Dq
Γt

(Ω) ∩ ε−1∆q
Γn,0

(Ω) ⊂ Dq
Γt

(Ω) ∩ ε−1∆q
Γn

(Ω)

holds and that even the compact embedding of the latter space into L2,q(Ω), this is

Dq
Γt

(Ω) ∩ ε−1∆q
Γn

(Ω) ↪→ L2,q(Ω) ⊂ L2,q
ε (Ω),

has been shown in [7]iv. By Theorem 2 we have

κ := min
06=E∈DqΓt (Ω)∩ε−1 δ∆q+1

Γn
(Ω)

|µ−1 dE|L2,q+1
µ (Ω)

|E|L2,q
ε (Ω)

= min
06=H∈∆q+1

Γn
(Ω)∩µ−1 dDqΓt (Ω)

|ε−1 δ H|L2,q
ε (Ω)

|H|L2,q+1
µ (Ω)

and κ2 is the first positive Dirichlet-Neumann eigenvalue of the weighted reduced δ-d-
operator −ε−1 δ µ−1 d. Analogously κ2 is also the first positive Neumann-Dirichlet eigen-
value of the weighted reduced d-δ-operator −µ−1 d ε−1 δ.

Lemma 19 The tangential-normal and normal-tangential generalized Maxwell constants,
i.e., the best constants in the inequalities

∀E ∈ Dq
Γt

(Ω) ∩ ε−1 δ∆q+1
Γn

(Ω) |E|L2,q
ε (Ω) ≤ cgm,Γt,d,ε,µ| dE|L2,q+1

µ−1 (Ω),

∀H ∈ ∆q+1
Γn

(Ω) ∩ µ−1 dDq
Γt

(Ω) |H|L2,q+1
µ (Ω) ≤ cgm,Γn,δ,µ,ε| δ H|L2,q

ε−1 (Ω),

coincide and equal to 1/κ, i.e., cgm,Γt,d,ε,µ = cgm,Γn,δ,µ,ε = κ−1.

Remark 20 It is clear that more results of this contribution can be generalized to the
differential form setting.

ivIn [7] it is proved that Dq
Γt

(Ω)∩∆q
Γn

(Ω) even embeds continuously to H1/2,q(Ω) and hence compactly

to L2,q(Ω). We note that the compactness property is independent of ε, see e.g. [9].
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A.2 Maxwell Tools

Let the general assumptions from the introduction be satisfied.

A.2.1 The Maxwell Estimates

By the Maxwell compactness property we get immediately the Maxwell estimate.

Lemma 21 There exists cm,Γt,ε > 0, such that for all E in RΓt(Ω)∩ε−1DΓn(Ω)∩HDN,ε(Ω)⊥ε

|E|L2
ε(Ω) ≤ cm,Γt,ε

(
| rotE|2L2(Ω) + | div εE|2L2(Ω)

)1/2
.

Proof If the estimate would not hold, there would exist a sequence of vector fields
(En) ⊂ RΓt(Ω) ∩ ε−1DΓn(Ω) ∩HDN,ε(Ω)⊥ε with |En|L2

ε(Ω) = 1 and

| rotEn|L2(Ω) + | div εEn|L2(Ω) <
1

n
.

By the Maxwell compactness property we can assume w.l.o.g. that (En) converges in

L2
ε(Ω) to some E ∈ L2

ε(Ω). By testing, E belongs to R0(Ω) ∩ ε−1D0(Ω) ∩ HDN,ε(Ω)⊥ε and

(En) converges to E also in R(Ω)∩ ε−1D(Ω). As RΓt(Ω) resp. DΓn(Ω) is a closed subspace

of R(Ω) resp. D(Ω), E belongs even to RΓt,0(Ω) ∩ ε−1DΓn,0(Ω) = HDN,ε(Ω). Hence, E = 0,
which contradicts 1 = |En|L2(Ω) → 0. �

Corollary 22 For all E in RΓt(Ω) ∩ ε−1DΓn(Ω)

|(1− πDN)E|L2
ε(Ω) ≤ cm,Γt,ε

(
| rotE|2L2(Ω) + | div εE|2L2(Ω)

)1/2
.

Proof As H := (1− πDN)E ∈ RΓt(Ω)∩ ε−1DΓn(Ω)∩HDN,ε(Ω)⊥ε with div εH = div εE and
rotH = rotE, Lemma 21 completes the proof. �

The same arguments show that the Maxwell estimate remains valid in any dimension
and even for compact Riemannian manifolds, as long as the crucial Maxwell compactness
property holds.

A.2.2 Helmholtz-Weyl Decompositions

By the projection theorem we have for the operator ∇

L2
ε(Ω) = ∇H1

Γt
(Ω)⊕ε ε−1DΓn,0(Ω),

where indeed
(
∇H1

Γt
(Ω)
)⊥

= DΓn,0(Ω) holds by [8]. Note that ∇H1
Γt

(Ω) is already closed
by Rellich’s selection theorem. Analogously, we obtain for the operator rot

L2
ε(Ω) = RΓt,0(Ω)⊕ε ε−1rotRΓn(Ω), (A.1)
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where again and indeed
(

rotRΓn(Ω)
)⊥

= RΓt,0(Ω) holds by [8]. For ε = id we get by (A.1)

RΓt(Ω) = RΓt,0(Ω)⊕
(
RΓt(Ω) ∩ rotRΓn(Ω)

)
and therefore

rotRΓt(Ω) = rot
(
RΓt(Ω) ∩ rotRΓn(Ω)

)
.

As rotRΓn(Ω) ⊂ DΓn,0(Ω) ∩ HDN(Ω)⊥, the Maxwell estimate Lemma 21 implies that also

rotRΓt(Ω) is already closed. Moreover,

rotRΓt(Ω) = rotRΓt(Ω), RΓt(Ω) := RΓt(Ω) ∩ rotRΓn(Ω) = RΓt(Ω) ∩ rotRΓn(Ω).

Since ∇H1
Γt

(Ω) ⊂ RΓt,0(Ω) and rotRΓn(Ω) ⊂ DΓn,0(Ω) we obtain

RΓt,0(Ω) = ∇H1
Γt(Ω)⊕ε

(
RΓt,0(Ω) ∩ ε−1DΓn,0(Ω)︸ ︷︷ ︸

=HDN,ε(Ω)

)
,

ε−1DΓn,0(Ω) = ε−1 rotRΓn(Ω)⊕ε
( ︷ ︸︸ ︷
RΓt,0(Ω) ∩ ε−1DΓn,0(Ω)

)
.

Finally, we have the well known Helmholtz decompositions:

Lemma 23 It holds

L2
ε(Ω) = ∇H1

Γt(Ω)⊕ε ε−1DΓn,0(Ω) = RΓt,0(Ω)⊕ε ε−1 rotRΓn(Ω)

= ∇H1
Γt(Ω)⊕ε HDN,ε(Ω)⊕ε ε−1 rotRΓn(Ω)

as well as

∇H1
Γt(Ω) = RΓt,0(Ω) ∩HDN,ε(Ω)⊥ε , ε−1 rotRΓn(Ω) = ε−1DΓn,0(Ω) ∩HDN,ε(Ω)⊥ε

and RΓt(Ω) = RΓt(Ω) ∩ DΓn,0(Ω) ∩HDN(Ω)⊥.

A.3 Functional Analytical Tools

Let us recall that for a self-adjoint operator T : D(T) ⊂ H → H, where H denotes
some Hilbert space,

C \ R ⊂ ρ(T), σ(T) = σp(T) ∪ σc(T) ⊂ R, σr(T) = ∅

hold. Here, ρ(T), σ(T), σp(T), σc(T), σr(T) denote the resolvent set, the spectrum,
the point spectrum, the continuous spectrum and the residual spectrum, respectively.
Moreover, we have the ‘Helmholtz’ decompositions

H = N(T− λ̄)⊕R(T− λ).
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For λ ∈ ρ(T) the continuity of (T− λ)−1 is equivalent to

∃ c > 0 ∀u ∈ D(T) |u|H ≤ c|(T− λ)u|H.

Hence, as T is closed, R(T − λ) = H holds for λ ∈ ρ(T), see e.g. [23, VIII.1, Theorem].
Thus the resolvent set ρ(T), i.e., the set of all λ ∈ C with N(T−λ) = {0}, R(T− λ) = H
and (T− λ)−1 : R(T− λ)→ D(T− λ) bounded, is just given by

ρ(T) = {λ ∈ C : (T− λ)−1 : H→ D(T) bounded}.

We note that for all λ ∈ C the norms in D(T− λ) and D(T) are equivalent.
We give simple proofs of the results of section 2. For this, we recall the Hilbert spaces

X and Y and the closed and densely defined linear operator A : D(A) ⊂ X 7→ Y with
adjoint A∗ : D(A∗) ⊂ Y 7→ X. A∗A : D(A∗A) ⊂ X 7→ X and AA∗ : D(AA∗) ⊂ Y 7→ Y are
self-adjoint and non-negative. Furthermore, we introduce the Maxwell-type operator

M : D(M) ⊂ Z→ Z, D(M) := D(A)×D(A∗), Z := X× Y

by M(x, y) = (A∗y,Ax) and note that

M =

[
0 A∗

A 0

]
, M2 =

[
A∗A 0

0 AA∗

]
are self-adjoint as well and M2 is non-negative. Moreover, we introduce two projections
πX : Z→ X and πY : Z→ Y by πXz := x and πYz := y for z = (x, y) and two embeddings
ιX : X→ Z and ιY : Y → Z by ιXx := (x, 0) and ιYy := (0, y).

First we show a stronger version of (2.2).

Lemma 24 It holds

(i) 0 ∈ σ(M)⇔ 0 ∈ σ(A∗A) ∪ σ(AA∗),

(i’) 0 ∈ σc(M)⇔ 0 ∈ σc(A∗A)⇔ 0 ∈ σc(AA∗),

(i”) 0 ∈ σp(M)⇔ 0 ∈ σp(A∗A) ∪ σp(AA∗)

and for λ ∈ R \ {0}

(ii) λ ∈ ρ(M)⇔ λ2 ∈ ρ(A∗A)⇔ λ2 ∈ ρ(AA∗),

(ii’) λ ∈ σ(M)⇔ λ2 ∈ σ(A∗A)⇔ λ2 ∈ σ(AA∗),

(iii) λ ∈ σc(M)⇔ λ2 ∈ σc(A∗A)⇔ λ2 ∈ σc(AA∗),

(iv) λ ∈ σp(M) ⇔ λ2 ∈ σp(A∗A) ⇔ λ2 ∈ σp(AA∗). More precisely: If z := (x, y) is an
eigenvector to the eigenvalue λ of M, then x is an eigenvector to the eigenvalue λ2 of
A∗A and y is an eigenvector to the eigenvalue λ2 of AA∗. If x is an eigenvector to the
eigenvalue λ2 of A∗A, then z± := (x,±λ−1Ax) is an eigenvector to the eigenvalue
±λ of M, respectively. If y is an eigenvector to the eigenvalue λ2 of AA∗, then
z± := (±λ−1A∗y, y) is an eigenvector to the eigenvalue ±λ of M, respectively.
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Therefore,

(v) ρ(M) and σ(M), σc(M), σp(M) are point symmetric to the origin.

Proof As (i’)∧(i”)⇒(i), (ii)⇒(ii’) and (ii’)∧(iv)⇒(iii), we only have to show (i’), (i”),
(ii) and (iv). Then (v) is clear.

(ii): We just show the assertions for A∗A. The corresponding results for AA∗ can be
proven analogously.
⇒: Let λ ∈ ρ(M), i.e., N(M− λ) = {0} and (M− λ)−1 : Z→ D(M) is continuous.
• First we show N(A∗A−λ2) = {0}. Let x ∈ N(A∗A−λ2). Then z := (x, y) ∈ D(M)

with y := λ−1Ax ∈ D(A∗) belongs to N(M−λ) since (M−λ)z = (A∗y−λx,Ax−λy) = 0.
Hence z = 0, especially x = 0.
• Let f ∈ X. We want to solve (A∗A−λ2)x = f with x ∈ D(A∗A). Defining the ‘dual

variable’ y := λ−1Ax ∈ D(A∗) and z := (x, y) ∈ D(M), the mixed formulation of this
problem is

λ(A∗y − λx) = f, Ax = λy ⇔ (M− λ)z = (A∗y − λx,Ax− λy) = λ−1(f, 0).

These heuristic considerations suggest to set x := πXz ∈ D(A) and y := πYz ∈ D(A∗)
with z := λ−1(M− λ)−1ιXf ∈ D(M). Then (A∗y − λx,Ax− λy) = (M− λ)z = λ−1(f, 0),
i.e., Ax = λy ∈ D(A∗) and (A∗A − λ2)x = f . Moreover, x depends continuously on f
since

|x|D(A∗A) ≤ |x|X︸︷︷︸
≤|z|Z

+ |A∗Ax|X︸ ︷︷ ︸
=|f |X+λ2|x|X

≤ c
(
|z|Z + |f |X

)
≤ c|f |X.

Therefore, (A∗A − λ2)−1 = λ−1πX(M − λ)−1ιX : X → D(A∗A) is continuous and thus
λ2 ∈ ρ(A∗A).
⇐: Let λ2 ∈ ρ(A∗A), i.e., N(A∗A − λ2) = {0} and (A∗A − λ2)−1 : X → D(A∗A) is

continuous.
• First we show N(M− λ) = {0}. Let z = (x, y) ∈ N(M− λ). As

(A∗y − λx,Ax− λy) = (M− λ)z = 0,

Ax = λy ∈ D(A∗) with A∗Ax = λA∗y = λ2x. Hence, x ∈ N(A∗A− λ2) yields x = 0 and
y = 0, i.e., z = 0.
• Let h = (f, g) ∈ Z. We want to solve (M − λ)z = h with (x, y) = z ∈ D(M).

As (A∗y − λx,Ax − λy) = (f, g), y ∈ D(A∗) is already given by the second equation
λy = Ax− g, if x is known. Hence, rewriting everything in terms of x, this is

(f, g) =
(
λ−1A∗(Ax− g)− λx,Ax− (Ax− g)

)
=
(
λ−1A∗(Ax− g)− λx, g

)
,

we see that we need to solve A∗(Ax− g)− λ2x = λf . Since g does not belong to D(A∗)
in general, we cannot apply (A∗A − λ2)−1 directly. The ansatz x = x̃ + x̂ ∈ D(A) with
x̂ ∈ D(A∗A) leads to

A∗(Ax̃− g)− λ2x̃+ (A∗A− λ2)x̂ = λf. (A.2)
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By the Lax-Milgram lemma we can solve, e.g., A∗(Ax̃ − g) + x̃ = λf . More precisely,
there exists a unique x̃ ∈ D(A) with

∀ϕ ∈ D(A) 〈Ax̃,Aϕ〉Y + 〈x̃, ϕ〉X = λ〈f, ϕ〉X + 〈g,Aϕ〉Y (A.3)

depending continuously on f and g and hence on h, i.e., |x̃|D(A) ≤ |λ||f |X + |g|Y ≤ c|h|Z.
Let us denote this bounded linear operator mapping h to x̃ by L : Z→ D(A). Now, (A.2)
turns to

(A∗A− λ2)x̂ = (1 + λ2)x̃.

The latter heuristic computations suggest to define z := (x, y) by

x := x̃+ (1 + λ2)(A∗A− λ2)−1x̃ ∈ D(A), y := λ−1(Ax− g)

with x̃ from (A.3). x̃ ∈ D(A) is uniquely defined and depends continuously on h, i.e.,
|x̃|D(A) ≤ c|h|Z. Moreover, Ax̃ − g ∈ D(A∗) and A∗(Ax̃ − g) = λf − x̃ by (A.3). As
x− x̃ ∈ D(A∗A), we get y = λ−1

(
A(x− x̃) + Ax̃− g

)
∈ D(A∗). Thus, z belongs to D(M).

Since

λA∗y = A∗A(x− x̃) + A∗(Ax̃− g) = (1 + λ2)x̃+ λ2(x− x̃) + λf − x̃ = λ2x+ λf

we obtain
(M− λ)z = (A∗y − λx,Ax− λy) = (f, g) = h.

Furthermore, z depends continuously on h, i.e., using

∀ϕ ∈ D(A∗A) |Aϕ|2Y = 〈A∗Aϕ, ϕ〉X ≤ |A∗Aϕ|X|ϕ|X ≤ |ϕ|2X + |A∗Aϕ|2X

we have

|z|D(M) ≤ |x|D(A) + |y|D(A∗) ≤ c
(
|x|D(A) + |f |X + |g|Y

)
≤ c
(
|x− x̃|D(A) + |x̃|D(A) + |h|Z

)
≤ c
(
|x− x̃|D(A∗A) + |x̃|D(A) + |h|Z

)
≤ c
(
|x̃|D(A) + |h|Z

)
≤ c|h|Z.

Therefore, with χ : D(A)→ Z defined by χ(x) := (x, λ−1Ax) we finally obtain that

(M− λ)−1 = χ
(
1 + (1 + λ2)(A∗A− λ2)−1

)
L− λ−1ιYπY : Z→ D(M)

is bounded and hence λ ∈ ρ(M).
(iv):⇒: Let λ ∈ σp(M) and z := (x, y) be an eigenvector to λ, i.e., 0 6= z ∈ N(M−λ).

As 0 = (M − λ)z = (A∗y − λx,Ax − λy), neither x nor y can be zero. Moreover, since
Mz = λz ∈ D(M), z ∈ N

(
(M + λ)(M− λ)

)
holds, this is

0 = (M + λ)(M− λ)z = (M2 − λ2)z =
(
(A∗A− λ2)x, (AA∗ − λ2)y

)
.

Thus, 0 6= x ∈ N(A∗A− λ2) and 0 6= y ∈ N(AA∗− λ2) yielding λ2 ∈ σp(A∗A)∩ σp(AA∗).
⇐: Let λ2 ∈ σp(A∗A) and x be an eigenvector to λ2, i.e., 0 6= x ∈ N(A∗A−λ2). Then

z± := (x,±λ−1Ax) ∈ D(M) and

(M∓ λ)z± = (±λ−1A∗Ax∓ λx,Ax− λλ−1Ax) = ±λ−1(A∗Ax− λ2x, 0) = 0.



On the Maxwell Constants in 3D 23

Hence, 0 6= z± ∈ N(M ∓ λ), i.e., ±λ ∈ σp(M). Similar arguments apply to the case
λ2 ∈ σp(AA∗).

(i’): It holds with (ii’)

0 ∈ σc(M) ⇔ ∃ (λn) ⊂ σ(M) \ {0} λn → 0

⇔ ∃ (λ2
n) ⊂ σ(A∗A) \ {0} λ2

n → 0

⇔ 0 ∈ σc(A∗A)

and the same is valid for AA∗.
(i”): If 0 ∈ σp(M), then there exists 0 6= z = (x, y) ∈ N(M), i.e., 0 = Mz = (A∗y,Ax).

But then 0 6= z ∈ N(M2), i.e., 0 = M2z = (A∗Ax,AA∗y). As either x 6= 0 or y 6= 0, we get
0 ∈ σp(A∗A) ∪ σp(AA∗). Now, let e.g. 0 ∈ σp(A∗A). Then, there exists 0 6= x ∈ N(A∗A),
i.e., A∗Ax = 0. This implies Ax = 0 since

0 = 〈A∗Ax, x〉X = 〈Ax,Ax〉Y = |Ax|2Y.

Thus 0 6= z := (x, 0) ∈ N(M) because Mz = (A∗0,Ax) = 0. Therefore, 0 ∈ σp(M). �

We recall the ‘Helmholtz’ decompositions

X = N(A)⊕R(A∗), D(A) = N(A)⊕
(
D(A) ∩R(A∗)

)
and define the restricted operator

A := A|D(A) : D(A) ⊂ R(A∗)→ R(A), Ax := Ax, x ∈ D(A) := D(A) ∩R(A∗).

Let us compute the adjoint A∗ : D(A∗) ⊂ R(A)→ R(A∗). For y ∈ D(A∗) we have for all
ϕ ∈ D(A)

〈Aϕ, y〉Y = 〈ϕ,A∗y〉X.
Hence, for all ψ = ψ0 + ϕ ∈ D(A) = N(A)⊕D(A) we get with Aϕ = Aϕ = Aψ and by
A∗y ∈ R(A∗)⊥N(A)

〈Aψ, y〉Y = 〈Aϕ, y〉Y = 〈ϕ,A∗y〉X = 〈ψ,A∗y〉X.

Thus, y ∈ D(A∗) and A∗y = A∗y. This shows D(A∗) = D(A∗)∩R(A) and A∗ := A∗|D(A∗),
i.e.,

A∗ = A∗|D(A∗) : D(A∗) ⊂ R(A)→ R(A∗), A∗y = A∗y, y ∈ D(A∗) = D(A∗) ∩R(A).

Moreover, we have (A∗)∗ = A and the operators A∗A : D(A∗A) ⊂ R(A∗) → R(A∗)
and AA∗ : D(AA∗) ⊂ R(A) → R(A) are self-adjoint and non-negative. Finally, also the
restriction

M := M|D(M) : D(M) ⊂ R(M)→ R(M), Mz := Mz, z ∈ D(M) := D(M) ∩R(M)

is self-adjoint and we have

M =

[
0 A∗
A 0

]
, M2 =

[
A∗A 0

0 AA∗
]
.
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Remark 25 Let us emphasize once more the ‘Helmholtz’ decompositions

X = N(A)⊕R(A∗), D(A) = N(A)⊕D(A),

Y = N(A∗)⊕R(A), D(A∗) = N(A∗)⊕D(A∗),
Z = N(M)⊕R(M), D(M) = N(M)⊕D(M).

We introduce the orthogonal projectors

π0 : Z→ N(M), π : Z→ R(M)

and note π|D(M) : D(M)→ D(M).

Lemma 26 We have 0 6∈ σp(M) ∪ σp(A∗A) ∪ σp(AA∗). Moreover:

(i) The inverse operators A−1, (A∗)−1 and M−1 exist.

(ii) R(A) = R(A), R(A∗) = R(A∗), R(M) = R(M)

(iii) Lemma 24 holds for A, A∗ and M as well, which follows immediately by replacing
X by R(A∗) and Y by R(A) as well as A by A and A∗ by A∗.

Lemma 27 It holds

(i) σ(M) \ {0} = σ(M) \ {0}, more precisely even σc(M) \ {0} = σc(M) \ {0} and
σp(M) \ {0} = σp(M) \ {0},

(ii) ρ(M) \ {0} = ρ(M) \ {0},

(iii) σp(M−1) \ {0} =
1

σp(M) \ {0}
, more precisely N(M− λ) = N(M−1 − λ−1) for

λ 6= 0.

Proof We start with proving (ii).
⇒: Let 0 6= λ ∈ ρ(M). We note that R(M−λ) = Z. For h ∈ R(M) ⊂ Z we want solve

(M−λ)z = h. z := (M−λ)−1h ∈ D(M) with (M−λ)z = h satisfies λz = Mz−h ∈ R(M)
and thus z ∈ D(M). As |z|D(M) = |z|D(M) ≤ c|h|Z = c|h|R(M), z depends continuously on

h. Hence λ ∈ ρ(M).
⇐: Let 0 6= λ ∈ ρ(M). We note that R(M− λ) = R(M). For h ∈ Z we want solve

(M− λ)z = h. Decomposing

h = h0 + h̃ ∈ Z = N(M)⊕R(M), z = z0 + z̃ ∈ D(M) = N(M)⊕D(M)

shows with Mz̃ ∈ R(M)

−λz0 + (M− λ)z̃ = h0 + h̃ ⇔ −λz0 = h0 ∧ (M− λ)z̃ = h̃.

This gives rise to define z ∈ D(M) by

z := z0 + z̃, z̃ := (M− λ)−1h̃ ∈ D(M), z0 := −λ−1h0 ∈ N(M).
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Then (M− λ)z = h0 + h̃ = h and z depends continuously on h, i.e.,

|z|D(M) ≤ |z0|D(M) + |z̃|D(M) = |z0|Z + |z̃|D(M) ≤ c
(
|h0|Z + |h̃|Z

)
≤ c|h|Z.

Therefore, λ ∈ ρ(M). We note that the inverse (M− λ)−1 : Z→ D(M) is given by

(M− λ)−1π − λ−1π0.

(i): Since (ii) implies σ(M) \ {0} = σ(M) \ {0} we just have to show the assertion for
the point spectrum.
⇒: Let 0 6= λ ∈ σp(M). For 0 6= z ∈ N(M − λ) we have λz = Mz ∈ R(M). Hence,

z ∈ D(M) and thus z ∈ N(M− λ), i.e., λ ∈ σp(M).
⇐: Of course N(M− λ) ⊂ N(M− λ). Thus, λ ∈ σp(M) implies λ ∈ σp(M).
(iii): For λ 6= 0 we have

λ ∈ σp(M) ⇔ ∃ 0 6= z ∈ N(M− λ)

⇔ ∃ 0 6= z ∈ D(M) Mz = λz ∈ R(M)

⇔ ∃ 0 6= z ∈ R(M) M−1z = λ−1M−1Mz = λ−1z ∈ D(M)

⇔ ∃ 0 6= z ∈ N(M−1 − λ−1)

⇔ λ−1 ∈ σp(M−1).

The proof is complete. �

The latter lemma holds true for A∗A and AA∗ we well. More precisely:

Lemma 28 It holds

(i) σ(A∗A) \ {0} = σ(A∗A) \ {0}, more precisely even σc(A
∗A) \ {0} = σc(A∗A) \ {0}

and σp(A
∗A) \ {0} = σp(A∗A) \ {0},

(ii) ρ(A∗A) \ {0} = ρ(A∗A) \ {0},

(iii) σp(
(
A∗A)−1

)
\ {0} =

1

σp(A∗A) \ {0}
and N(A∗A − λ2) = N

(
(A∗A)−1 − λ−2

)
for

λ 6= 0.

The corresponding assertions are valid for AA∗ and AA∗ as well.

Proof With Lemma 24 (ii’), Lemma 27 (i) and Lemma 26 we have for λ 6= 0

λ2 ∈ σ(A∗A) ⇔ λ ∈ σ(M) ⇔ λ ∈ σ(M) ⇔ λ2 ∈ σ(A∗A).

and the corresponding results hold for σp, σc and ρ as well. This shows (i) and (ii). To
prove (iii) we can follow the proof of Lemma 27 (iii) and see for λ 6= 0

λ2 ∈ σp(A∗A) ⇔ ∃ 0 6= x ∈ N(A∗A− λ2)

⇔ ∃ 0 6= x ∈ D(A∗A) A∗Ax = λ2x ∈ R(A∗)

⇔ ∃ 0 6= x ∈ D(A∗A) Ax = λ2(A∗)−1x ∈ R(A)

⇔ ∃ 0 6= x ∈ D(A∗A) x = λ2(A)−1(A∗)−1x ∈ R(A∗)

⇔ ∃ 0 6= x ∈ R(A∗) (A∗A)−1x = λ−2x ∈ D(A∗A)

⇔ ∃ 0 6= x ∈ N
(
(A∗A)−1 − λ−2

)
⇔ λ−2 ∈ σp

(
(A∗A)−1

)
,
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which completes the proof. �

A.3.1 Results for Compact Resolvents

From now on we assume generally that the embedding

D(A) ↪→ X (A.4)

is compact.

Lemma 29 The following assertions hold:

(i) ∃ cA > 0 ∀x ∈ D(A) |x|X ≤ cA|Ax|Y

(i’) ∃ cA∗ > 0 ∀ y ∈ D(A∗) |y|Y ≤ cA∗|A∗y|X

(i”) ∃ cM > 0 ∀ z ∈ D(M) |z|Z ≤ cM|Mz|Z

(ii) R(A), R(A∗) and R(M) are closed.

(iii) X = N(A)⊕R(A∗), Y = N(A∗)⊕R(A) and Z = N(M)⊕R(M).

(iv) A−1 : R(A)→ D(A) is continuous and A−1 : R(A)→ R(A∗) is compact.

(iv’) (A∗)−1 : R(A∗)→ D(A∗) is continuous and (A∗)−1 : R(A∗)→ R(A) is compact.

(iv”) M−1 : R(M)→ D(M) is continuous and M−1 : R(M)→ R(M) is compact.

(v) D(A∗) ↪→ Y is compact.

(v’) D(M) ↪→ Z is compact.

Proof (i): Let us assume that the estimate is wrong. Then there exists a sequence
(xn) ⊂ D(A) with |xn|X = 1 and |Axn|Y → 0. As (xn) is bounded in D(A), by the general
assumption (A.4) we can extract a subsequence, again denoted by (xn), with xn → x ∈ X.
Since A and R(A∗) are closed, we have x ∈ N(A) ∩ N(A)⊥ = {0}, in contradiction to
1 = |xn|X → |x|X = 0.

(ii): For y ∈ R(A) = R(A) there exists a sequence (xn) ⊂ D(A) with Axn → y.
By (i’) (xn) is a Cauchy sequence in X. Hence, (xn) converges to some x ∈ X. Since
A is closed, we obtain x ∈ D(A) and Ax = y, showing that R(A) is closed. By the
closed range theorem, see e.g. [23, VII, 5, Theorem], R(A∗) is closed as well. Hence, also
R(M) = R(A∗)×R(A) is closed.

(iii) follows immediately by (ii).
(iv) follows directly by (i) and (A.4). Indeed, (i) is equivalent to the continuity of A−1.
(v): Let (yn) be a bounded sequence in D(A∗). By (ii), (yn) ∈ R(A) = R(A) and

hence there exists a sequence (xn) ⊂ D(A) with Axn = yn. By (i), (xn) is bounded in
D(A). By (A.4), we can extract a subsequence, again denoted by (xn), such that (xn)
converges in X. Then, for xn,m := xn − xm and yn,m := yn − ym we have

|yn,m|2Y = 〈Axn,m, yn,m〉Y = 〈xn,m,A∗yn,m〉X ≤ c|xn,m|X.
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Thus, (yn) is a Cauchy sequence in Y.
(v’) is clear by (A.4) and (v).
(i’)v follows by (v) analogously to (i).
(i”) follows by (i) and (i’).
(iv’)vi follows by (i’) and (v).
(iv) and (iv’) imply (iv”). �

Let us recall some facts: By Lemma 29 (v’) for all λ ∈ C

D(M− λ) ↪→ Z (A.5)

is compact. For λ ∈ ρ(M) ⊃ C \ R we have

N(M− λ) = {0}, R(M− λ) = Z, N(M− λ) = {0}, R(M− λ) = R(M)

and the boundedness of (M− λ)−1 : Z→ D(M) is equivalent to

∃ cM,λ > 0 ∀ z ∈ D(M) |z|Z ≤ cM,λ|(M− λ)z|Z,

which holds for M as well. For 0 6= λ ∈ σ(M) ⊂ R we have

Z = N(M− λ)⊕R(M− λ), R(M) = N(M− λ)⊕R(M− λ).

Lemma 30 For λ ∈ R \ {0} the following assertions hold:

(i) N(M− λ) ⊂ R(M) and N(M− λ) = N(M− λ) has finite dimension.

(ii) ∃ cM,λ > 0 ∀ z ∈ D(M) ∩N(M− λ)⊥ |z|Z ≤ cM,λ|(M− λ)z|Z

(iii) R(M− λ) is closed.

(iii’) R(M− λ) is closed.

(iii”) R(M− λ) = R(M− λ) ∩R(M)

(iv) Z = N(M− λ)⊕R(M− λ) and R(M) = N(M− λ)⊕R(M− λ).

(v) Let N(M − λ) = {0}. Then (M − λ)−1 : R(M) → D(M) is continuous and
(M− λ)−1 : R(M)→ R(M) is compact. Especially λ ∈ ρ(M).

(v’) Let N(M − λ) = {0}. Then (M − λ)−1 : Z → D(M) is continuous. Especially
λ ∈ ρ(M).

Corresponding results hold for A∗A, AA∗ resp. A∗A, AA∗ we well.

v(i’) follows also by (iv’), since (i’) is equivalent to the continuity of (A∗)−1.
viAnother proof of (iv’) is the following: As A−1 : R(A)→ R(A∗) is compact by (iv), so is the adjoint

(A∗)−1 : R(A∗) → R(A) by Schauder’s theorem, see e.g. [23, X, 4, Theorem]. Especially (A∗)−1 is
bounded and hence also (A∗)−1 : R(A∗)→ D(A∗).
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Proof It is enough to consider 0 6= λ ∈ σ(M) ⊂ R.
(i): Of course, N(M− λ) ⊂ N(M − λ). For z ∈ N(M − λ) we have Mz = λz. Thus

z ∈ R(M), i.e., z ∈ D(M). Hence z ∈ N(M− λ). By (A.5) the unit ball in N(M− λ)
is compact, i.e., dimN(M− λ) <∞.

(ii): If the estimate is wrong, then there exists a sequence (zn) ⊂ D(M)∩N(M−λ)⊥

with |zn|Z = 1 and |(M − λ)zn|Z → 0. By (A.5) we can extract a subsequence, again
denoted by (zn), with zn → z ∈ Z. Moreover, Mzn = (M− λ)zn + λzn → λz. As M and
N(M− λ)⊥ are closed, z belongs to N(M− λ)∩N(M− λ)⊥ = {0}, in contradiction to
1 = |zn|Z → |z|Z = 0.

(iii): Let h ∈ R(M− λ). Then there exists a sequence (zn) ⊂ D(M) such that
(M − λ)zn =: hn → h. Decomposing zn = zn,0 + z̃n ∈ N(M − λ) ⊕ R(M− λ) shows
(M − λ)z̃n = hn and z̃n ∈ D(M) ∩ N(M − λ)⊥. By (ii) (z̃n) is a Cauchy sequence in Z
converging to some z ∈ Z. Moreover, Mz̃n = (M− λ)z̃n + λz̃n → h+ λz. AsM is closed,
we obtain z ∈ D(M) and (M− λ)z = h, i.e., h ∈ R(M− λ).

(iii’): Let h ∈ R(M− λ). By (i) we have R(M) = N(M − λ) ⊕
(
R(M) ∩ R(M− λ)

)
and hence it holds

R(M) ∩R(M− λ) = R(M− λ) (A.6)

by (iii). Let us decompose h = h0 +h̃ ∈ N(M)⊕R(M). As (M−λ)h0 = −λh0 ∈ R(M−λ),
we get h̃ ∈ R(M)∩R(M− λ). Hence h̃ ∈ R(M−λ) ⊂ R(M−λ) and thus h ∈ R(M−λ).

(iii”) follows by (iii’) and (A.6).
(iv) follows by (iii) and (iii’).
(v): If N(M − λ) = {0}, then R(M − λ) = Z and R(M − λ) = R(M). By (ii)

(M − λ)−1 : R(M) → D(M) is continuous, more precisely, for h ∈ R(M) we have
z := (M− λ)−1h ∈ D(M) and hence |z|Z ≤ cM,λ|h|Z.

(v’): By (i), (v) and Lemma 27 (ii) we get λ ∈ ρ(M) \ {0} = ρ(M) \ {0}. Hence,
(M− λ)−1 : Z→ D(M) is continuous. �

Theorem 31 M has a pure point spectrum, which is contained in R \ {0} and point
symmetric to the origin. More precisely,

−σp(M) = σp(M) = σ(M) = σ(M) \ {0} = σp(M) \ {0}

and

σ(M)2 = σp(A∗A) = σ(A∗A) = σ(A∗A) \ {0} = σp(A
∗A) \ {0}

= σp(AA∗) = σ(AA∗) = σ(AA∗) \ {0} = σp(AA∗) \ {0}

as well as

ρ(M) 3 0 ∈

{
σp(M) , if N(M) 6= {0},
ρ(M) , if N(M) = {0}

hold. Moreover, there exist sequences of eigenvalues and eigenvectors

(λn)n∈N ⊂ (0,∞), (z±n )n∈N =
(
(xn, y

±
n )
)
n∈N ⊂ D(M),

which might be finite or empty if (e.g.) A is bounded, such that the following holds:
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(i) σ(M) = (λn) ∪ (−λn) and σ(M)2 = σ(A∗A) = σ(AA∗) = (λ2
n).

(ii) (λn) is monotone increasing with λn →∞, if (λn) is not finite.

(iii) (M ∓ λn)z±n = 0 holds for all n, i.e., Axn = ±λny±n and A∗y±n = ±λnxn and thus
z±n = (xn,±λ−1

n Axn) = (±λ−1
n A∗y±n , y

±
n ).

(iii’) (M2 − λ2
n)z±n = 0 holds for all n, i.e., A∗Axn = λ2

nxn and AA∗y±n = λ2
ny
±
n .

(iv) (xn) is a complete orthonormal system in R(A∗), i.e.,

∀x ∈ R(A∗) x =
∞∑
n=1

ξnxn,

and furthermore

∀ x̃ = x0 + x ∈ X = N(A)⊕R(A∗) x =
∞∑
n=1

ξnxn,

∀ x̃ = x0 + x ∈ D(A) = N(A)⊕D(A) Ax̃ = Ax = ±
∞∑
n=1

λnξny
±
n ,

∀x ∈ D(A∗A) A∗Ax =
∞∑
n=1

λ2
nξnxn,

where ξn = 〈x, xn〉X = 〈x̃, xn〉X. Moreover, |x̃|2X = |x0|2X + |x|2X and

|x|2X =
∞∑
n=1

ξ2
n, |Ax|2Y =

∞∑
n=1

λ2
nξ

2
n, |A∗Ax|2X =

∞∑
n=1

λ4
nξ

2
n.

(iv’) (y±n ) is a complete orthonormal system in R(A), i.e.,

∀ y ∈ R(A) y =
∞∑
n=1

ζ±n y
±
n ,

and furthermore

∀ ỹ = y0 + y ∈ Y = N(A∗)⊕R(A) y =
∞∑
n=1

ζ±n y
±
n ,

∀ ỹ = y0 + y ∈ D(A∗) = N(A∗)⊕D(A∗) A∗ỹ = A∗y = ±
∞∑
n=1

λnζ
±
n xn,

∀ y ∈ D(AA∗) AA∗y =
∞∑
n=1

λ2
nζ
±
n y
±
n ,

where ζ±n = 〈y, y±n 〉Y = 〈ỹ, y±n 〉Y. Moreover, |ỹ|2Y = |y0|2Y + |y|2Y and

|y|2Y =
∞∑
n=1

(ζ±n )2, |A∗y|2X =
∞∑
n=1

λ2
n(ζ±n )2, |AA∗y|2Y =

∞∑
n=1

λ4
n(ζ±n )2.
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Proof By Lemma 29 (iv”) we have 0 ∈ ρ(M). M =M holds if N(M) = {0}. By Lemma
30 (v) M has a pure point spectrum and by Lemma 30 (v’) σ(M) \ {0} = σp(M) \ {0}.
By Lemma 27 (i) we have σp(M) = σp(M) \ {0} = σp(M) \ {0}. By Lemma 24 (v) the
spectra are point symmetric to the origin. The other assertions about the spectra follow
immediately by Lemmas 24, 27, 28 and Lemma 26.

As A−1 : R(A) → R(A∗) or (A∗)−1 : R(A∗) → R(A) are compact by Lemma 29
(iv) or (iv’), so is e.g. (A∗A)−1 : R(A∗) → R(A∗). Moreover, (A∗A)−1 is self-adjoint
and positive. Let us assume that A is unboundedvii. By the spectral theorem for self-
adjoint, compact and non-negative operators there exists a monotone decreasing sequence
(λ−1

n )n∈N ⊂ (0,∞) converging to zero and a sequence (xn)n∈N ⊂ R(A∗), such that λ−2
n is

an eigenvalue to the eigenvector xn of (A∗A)−1, i.e., (A∗A)−1xn = λ−2
n xn. Moreover, (xn)

is a complete orthonormal system in R(A∗), i.e., for all x ∈ R(A∗) we have

x =
∞∑
n=1

ξn(x)xn, ξn(x) = 〈x, xn〉X.

(xn) ⊂ D(A∗A) is also a complete orthonormal system of eigenvectors of A∗A since
A∗Axn = λ2

nxn. Defining

y±n := ±λ−1
n Axn ∈ D(A∗)

we see A∗y±n = ±λnxn ∈ D(A). Hence, y±n ∈ D(AA∗) with AA∗y±n = ±λnAxn = λ2
ny
±
n ,

i.e., y±n is an eigenvector of AA∗ to the eigenvalue λ2
n. For all y ∈ R(A) with y = Ax for

some x ∈ D(A) we have

〈y, y±n 〉Y = 〈x,A∗y±n 〉X = ±λn〈x, xn〉X. (A.7)

This shows two things. First, putting y := y±m = A(±λ−1
m xm) we get

〈y±m, y±n 〉Y =
λn
λm
〈xm, xn〉X,

which shows that (y+
n ) and (y−n ) are both orthonormal systems in R(A), and second, that

they are even complete in R(A). Thus, for all y ∈ R(A) we obtain

y =
∞∑
n=1

ζ±n (y)y±n , ζ±n (y) = 〈y, y±n 〉Y.

A little more careful inspection shows the following: For all y = Ax ∈ R(A) with x ∈ D(A)
we have again with (A.7)

y =
∞∑
n=1

ζ±n (y)y±n = ±
∞∑
n=1

λnξn(x)y±n =
∞∑
n=1

ξn(x)Axn,

ζ±n (y) = 〈y, y±n 〉Y = ±λn〈x, xn〉X = ±λnξn(x).

viiIf A is bounded, the sequences (λn) and (z±n ) are finite.
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If even y = AA∗ỹ ∈ R(AA∗) with ỹ ∈ D(AA∗) we see

y =
∞∑
n=1

ζ±n (y)y±n =
∞∑
n=1

λ2
nζ
±
n (ỹ)y±n =

∞∑
n=1

ζ±n (ỹ)AA∗y±n ,

ζ±n (y) = 〈ỹ,AA∗y±n 〉Y = λ2
n〈ỹ, y±n 〉Y = λ2

nζ
±
n (ỹ).

Analogously for some x = A∗y ∈ R(A∗) with y ∈ D(A∗) it holds

x =
∞∑
n=1

ξn(x)xn = ±
∞∑
n=1

λnζ
±
n (y)xn =

∞∑
n=1

ζ±n (y)A∗y±n ,

ξn(x) = 〈x, xn〉X = 〈y,Axn〉Y = ±λn〈y, y±n 〉Y = ±λnζ±n (y).

If even x = A∗Ax̃ ∈ R(A∗A) with x̃ ∈ D(A∗A) we have

x =
∞∑
n=1

ξn(x)xn =
∞∑
n=1

λ2
nξn(x̃)xn =

∞∑
n=1

ξn(x̃)A∗Axn,

ξn(x) = 〈x̃,A∗Axn〉X = λ2
n〈x̃, xn〉X = λ2

nξn(x̃).

For z±n := (xn, y
±
n ) ∈ D(M) we have

Mz±n = (A∗y±n ,Axn) = ±λn(xn, y
±
n ) = ±λnz±n .

Hence, z±n is an eigenvector to the eigenvalue ±λn of M, i.e., z±n ∈ N(M∓λn). Of course,
z±n is also an eigenvector to the eigenvalue λ2

n of M2 since[
A∗A− λ2

n 0
0 AA∗ − λ2

n

]
= M2 − λ2

n = (M± λn)(M∓ λn).

The assertions about the norms follow immediately by orthogonality and the continuity
of the norms, concluding the proof. �

Corollary 32 It holds

λ2
` = |Ax`|2Y = min

06=x∈D(A)
x⊥X{x1,...,x`−1}

|Ax|2Y
|x|2X

= min
06=y∈D(A∗)

y⊥Y {y±1 ,...,y
±
`−1}

|A∗y|2X
|y|2Y

= |A∗y±` |
2
X,

especially

λ2
1 = min

06=x∈D(A)

|Ax|2Y
|x|2X

= min
06=y∈D(A∗)

|A∗y|2X
|y|2Y

.

Proof First, we emphasize that the dimensions of the eigenspaces N(A∗A − λ2
n) and

N(AA∗ − λ2
n) equal. Using the latter theorem we can represent x ∈ D(A) and Ax by

x =
∞∑
n=1

ξnxn, Ax = ±
∞∑
n=1

λnξny
±
n .
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If additionally x⊥X{x1, . . . , x`−1} we see ξ1 = · · · = ξ`−1 = 0 and thus

|x|2X =
∞∑
n=`

ξ2
n, |Ax|2Y =

∞∑
n=`

λ2
nξ

2
n ≥ λ2

`

∞∑
n=`

ξ2
n = λ2

` |x|2X.

Therefore,
|Ax|2Y
|x|2X

≥ λ2
` holds for all 0 6= x ∈ D(A) with x⊥X{x1, . . . , x`−1}. On the other

hand |Ax`|2Y = 〈x`,A∗Ax`〉X = λ2
` |x`|2X and 0 6= x` ∈ D(A) with x`⊥X{x1, . . . , x`−1}.

Thus,

λ2
` = |Ax`|2Y = min

06=x∈D(A)
x⊥X{x1,...,x`−1}

|Ax|2Y
|x|2X

.

The other assertion about y and A∗y follows analogously. �


