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On the Maxwell and Friedrichs/Poincaré Constants in ND

DIRK PAULY

Abstract. We prove that for bounded and convex domains in arbitrary dimensions, the Maxwell con-

stants are bounded from below and above by Friedrichs’ and Poincaré’s constants, respectively. Espe-
cially, the second positive Maxwell eigenvalues in ND are bounded from below by the square root of the

second Neumann-Laplace eigenvalue.
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1. Introduction

Let Ω ⊂ R3 be a bounded weak Lipschitz domain. We denote the standard Lebesgue and Sobolev

spaces by L2(Ω), H1(Ω), which might be scalar-, vector-, or tensor-valued, and by H(curl,Ω), H(div,Ω).
Moreover, we introduce homogeneous scalar, tangential, and normal boundary conditions in the spaces

H̊1(Ω), H̊(curl,Ω), H̊(div,Ω), respectively, which are defined as closures of C̊∞(Ω)-functions, vector or
tensor fields under the corresponding graph norms.

It is well known that the tangential version of Weck’s selection theorem, stating that the embedding

H̊(curl,Ω) ∩ ε−1H(div,Ω) ↪→↪→ L2(Ω)(1.1)

is compact, see [30, 23, 29, 31, 25, 3], is the crucial tool of any analysis for static or time-harmonic
Maxwell equations. Especially, (1.1) implies by a standard indirect argument the following important
Maxwell estimate for tangential boundary conditions: There exists a constant cm,t,ε > 0 such that for all

E ∈ H̊(curl,Ω) ∩ ε−1H(div,Ω) ∩HD,ε(Ω)
⊥

L2ε (Ω)

|E|
L2
ε(Ω)
≤ cm,t,ε

(
| curlE|2

L2(Ω)
+ |div εE|2

L2(Ω)

)1/2
(1.2)

holds. Here, ε : Ω→ R3×3 is a symmetric, L∞(Ω)-bounded, and uniformly positive definite matrix field,
and the kernel space of (harmonic) Dirichlet fields is denoted by

HD,ε(Ω) :=
{
E ∈ H̊(curl,Ω) ∩ ε−1H(div,Ω) : curlE = 0, div εE = 0

}
.
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Note thatHD,ε(Ω) is finite dimensional by (1.1) as its unit ball is compact. We also introduce the weighted

ε-L2(Ω)-scalar product 〈 · , · 〉
L2
ε(Ω)

:= 〈ε · , · 〉
L2(Ω)

and the corresponding induced weighted ε-L2(Ω)-norm

| · |
L2
ε(Ω)

:= 〈 · , · 〉1/2
L2
ε(Ω)

= |ε1/2 · |
L2(Ω)

. If we equip L2(Ω) with this weighted scalar product we write

L2
ε(Ω). Moreover, ⊥

L2
ε(Ω)

denotes orthogonality with respect to the ε-L2(Ω)-scalar product. If ε equals

the identity id, it will be skipped in our notations, e.g., we write ⊥
L2(Ω)

and HD(Ω) = HD,id(Ω).

The fact that a compact embedding implies by an indirect argument a corresponding Friedrichs/Poincaré
type estimate, is a well known and powerful concept. Prominent examples are the Friedrichs and Poincaré
estimates itself, i.e.,

∃ cf > 0 ∀u ∈ H̊1(Ω) |u|
L2(Ω)

≤ cf | ∇u|L2(Ω)
,(1.3)

∃ cp > 0 ∀ v ∈ H1(Ω) ∩ R⊥L2(Ω) |v|
L2(Ω)

≤ cp| ∇ v|L2(Ω)
,(1.4)

which follow immediately using Rellich’s selection theorem, i.e., the compactness of

H̊1(Ω) ⊂ H1(Ω) ↪→↪→ L2(Ω).(1.5)

For the best possible constants it holds

c2f =
1

λ1
<

1

µ2
= c2p,

where

λ1 = min
u∈H̊1(Ω)

| ∇u|2
L2(Ω)

|u|2
L2(Ω)

, µ2 = min
v∈H1(Ω)∩R

⊥
L2(Ω)

| ∇ v|2
L2(Ω)

|v|2
L2(Ω)

is the first Dirichlet resp. second Neumann eigenvalue of the negative Laplacian, see, e.g., [4] and the
literature cited there. Analogously to (1.1) and (1.2), the normal version of Weck’s selection theorem,
i.e., the compactness of the embedding

H(curl,Ω) ∩ ε−1H̊(div,Ω) ↪→↪→ L2(Ω),(1.6)

shows the corresponding Maxwell estimate for normal boundary conditions: There exists a constant

cm,n,ε > 0 such that for all H ∈ H(curl,Ω) ∩ ε−1H̊(div,Ω) ∩HN,ε(Ω)
⊥

L2ε (Ω)

|H|
L2
ε(Ω)
≤ cm,n,ε

(
| curlH|2

L2(Ω)
+ |div εH|2

L2(Ω)

)1/2
,(1.7)

where we define the finite dimensional kernel space of (harmonic) Neumann fields by

HN,ε(Ω) :=
{
H ∈ H(curl,Ω) ∩ ε−1H̊(div,Ω) : curlH = 0, div εH = 0

}
.

Similarly to the Friedrichs and Poincare constants we always assume the best constants, i.e.,

1

c2m,t,ε
= min

E

| curlE|2
L2(Ω)

+ |div εE|2
L2(Ω)

|E|2
L2
ε(Ω)

,
1

c2m,n,ε
= min

H

| curlH|2
L2(Ω)

+ |div εH|2
L2(Ω)

|H|2
L2
ε(Ω)

,

where the first minimum is taken over E ∈ H̊(curl,Ω)∩ ε−1H(div,Ω)∩HD,ε(Ω)
⊥

L2ε (Ω) and the second over

H ∈ H(curl,Ω) ∩ ε−1H̊(div,Ω) ∩HN,ε(Ω)
⊥

L2ε (Ω) .
In [18, 19, 20] we have shown that for convex Ω and, provided that always the best possible constants

are chosen, the estimates

cf
ε̂3
≤ cm,t,ε, cm,n,ε ≤ cpε̂ ≤

diam(Ω)

π
ε̂(1.8)

hold, where

ε̂ := max{ε, ε},(1.9)

and the lower and upper bounds ε, ε > 0 for ε are defined by

∀E ∈ L2(Ω) ε−2|E|2
L2(Ω)

≤ 〈εE,E〉
L2(Ω)

≤ ε2|E|2
L2(Ω)

,(1.10)
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which exist by our assumptions. Note that convex domains are even strong Lipschitz, see, e.g., [7,
Corollary 1.2.2.3] and topologically trivial, i.e., they satisfy HD,ε(Ω) = HN,ε(Ω) = {0} as dimHN,ε(Ω)
resp. dimHD,ε(Ω) is given by the first resp. second Betti number of Ω.

The aim of the paper at hand is to generalize and improve the estimates (1.8) for the Maxwell constants
to convex domains Ω ⊂ RN . In RN it is useful to work within the setting of alternating differential forms
of general order q ∈ {0, . . . , N}. More precisely, let Ω ⊂ RN be a bounded weak Lipschitz domain. We
denote the standard Lebesgue and Sobolev spaces by L2,q(Ω), and

Dq(Ω) := Hq(d,Ω) =
{
ω ∈ L2,q(Ω) : dω ∈ L2,q+1(Ω)

}
,

∆q(Ω) := Hq(δ,Ω) =
{
ω ∈ L2,q(Ω) : δ ω ∈ L2,q−1(Ω)

}
,

where d is the exterior derivative, δ := (−1)(q−1)N ∗d ∗ the co-derivative, and ∗ the Hodge-star-operator.
Moreover, we introduce co-called homogeneous tangential and normal boundary conditions in the spaces

D̊q(Ω) = H̊q(d,Ω), ∆̊q(Ω) = H̊q(δ,Ω),

respectively, which are defined as before as closures of C̊∞,q(Ω)-forms under the corresponding graph
norms. A vanishing derivative will always be indicated by an index zero at the lower right corner, e.g.,

Dq0(Ω) :=
{
ω ∈ Dq(Ω) : dω = 0

}
, ∆̊q

0(Ω) :=
{
ω ∈ ∆̊q(Ω) : δ ω = 0

}
.

It holds

∗Dq(Ω) = ∆N−q(Ω), ∗∆q(Ω) = DN−q(Ω), ∗ D̊q(Ω) = ∆̊N−q(Ω), ∗ ∆̊q(Ω) = D̊N−q(Ω).(1.11)

Inner products and hence norms are defined by

〈ω, ζ〉L2,q(Ω) :=

∫
Ω

ω ∧ ∗ ζ̄, ω, ζ ∈ L2,q(Ω),

〈ω, ζ〉Dq(Ω) := 〈ω, ζ〉L2,q(Ω) + 〈dω,d ζ〉L2,q+1(Ω), ω, ζ ∈ Dq(Ω),

〈ω, ζ〉∆q(Ω) := 〈ω, ζ〉L2,q(Ω) + 〈δ ω, δ ζ〉L2,q−1(Ω), ω, ζ ∈ ∆q(Ω).

We emphasize that for q-forms ω given in Cartesian coordinates (identity map/chart), i.e.,

ω =
∑
I

ωI dxI

with ordered multi-indices I = (i1, . . . , iq), we have ω ∈ L2,q(Ω) if and only if ωI ∈ L2(Ω) for all I. The
inner product for ω, ζ ∈ L2,q(Ω) is given by

〈ω, ζ〉L2,q(Ω) =

∫
Ω

ω ∧ ∗ ζ̄ =
∑
I

∫
Ω

ωI ζ̄I =
∑
I

〈ωI , ζI〉L2(Ω)
= 〈~ω, ~ζ〉

L2(Ω)
,

where we introduce the vector proxy notation

~ω = [ωI ]I ∈ L2(Ω;RNq ), Nq :=

(
N

q

)
.

The spaces L2,q
ε (Ω) with the inner products 〈 · , · 〉L2,q

ε (Ω) = 〈ε · , · 〉L2,q(Ω) are defined in the same way as

for vector or tensor fields, where ε : L2,q(Ω) → L2,q(Ω) is a symmetric, bounded, and uniformly positive
definite transformation on q-forms. Such transformations will be called admissible. All other definitions
and notations concerning ε carry over to q-forms as well, e.g., we have (1.10) and (1.9). More precisely,
by the assumptions on ε we have

∃ ε, ε > 0 ∀ω ∈ L2,q(Ω) ε−2|ω|2L2,q(Ω) ≤ 〈ε ω, ω〉L2,q(Ω) ≤ ε2|ω|2L2,q(Ω)(1.12)

and we note |ω|2
L2,q
ε (Ω)

= 〈ε ω, ω〉L2,q(Ω) = |ε1/2ω|2L2,q(Ω) as well as |ε ω|L2,q(Ω) = |ε1/2ω|L2,q
ε (Ω). Thus, for all

ω ∈ L2,q(Ω)

ε−1|ω|L2,q(Ω) ≤ |ω|L2,q
ε (Ω) ≤ ε|ω|L2,q(Ω), ε−1|ω|L2,q

ε (Ω) ≤ |ε ω|L2,q(Ω) ≤ ε|ω|L2,q
ε (Ω).(1.13)
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As in the vector-valued case we can also define the Sobolev spaces H1,q(Ω) resp. H̊1,q(Ω) component-

wise by defining ω ∈ H1,q(Ω) resp. ω ∈ H̊1,q(Ω) if and only if ωI ∈ H1(Ω) resp. ωI ∈ H̊1(Ω) for all I. In
these cases we have for n = 1, . . . , N

∂n ω =
∑
I

∂n ωI dxI

and we utilize the vector proxy notation also for the gradient, i.e.,

∇ ~ω = [∂n ωI ]n,I = [. . .∇ωI . . . ]I ∈ L2(Ω;RN×Nq ).
Hence, for ω, ζ ∈ H1,q(Ω)

〈ω, ζ〉H1,q(Ω) := 〈ω, ζ〉L2,q(Ω) +

N∑
n=1

〈∂n ω, ∂n ζ〉L2,q(Ω) =

∫
Ω

ω ∧ ∗ ζ̄ +

N∑
n=1

∫
Ω

(∂n ω) ∧ ∗ (∂n ζ̄)

=
∑
I

( ∫
Ω

ωI ζ̄I +

N∑
n=1

∫
Ω

∂n ωI ∂n ζ̄I
)

=
∑
I

(
〈ωI , ζI〉L2(Ω)

+ 〈∇ωI ,∇ ζI〉L2(Ω)

)
= 〈~ω, ~ζ〉

L2(Ω)
+ 〈∇ ~ω,∇ ~ζ〉

L2(Ω)
= 〈~ω, ~ζ〉

H1(Ω)
.

Note that

H1(Ω) = H1,0(Ω) = D0(Ω) = ∗∆N (Ω), H̊1(Ω) = H̊1,0(Ω) = D̊0(Ω) = ∗ ∆̊N (Ω)

and
dω =

∑
n

∂n ω dxn, ω ∈ H1(Ω).

Like before, Weck’s selection theorem (tangential version), stating that the embedding

D̊q(Ω) ∩ ε−1∆q(Ω) ↪→↪→ L2,q(Ω)(1.14)

is compact, holds, see [30] for bounded strong Lipschitz domains (strong cone property) and [23] for
bounded weak Lipschitz domains. The compact embeddings (1.1), (1.6) hold even for bounded weak
Lipschitz domains and mixed boundary conditions, see, e.g., the recent results [3, Theorem 4.7, Theorem
4.8]. The first proof of Weck’s selection theorem (1.14) for strong Lipschitz domains (strong/uniform cone
property), even for differential forms on Riemannian manifolds (and hence especially for Ω ⊂ RN ), has
been given by Weck in [30]. The first proof for weak Lipschitz domains/manifolds is due to Picard and
given in [23]. More related results and generalizations can be found in [12, 21, 22, 24, 25, 29, 31, 9, 6, 8].
Note that the boundedness of the underlying domain Ω is crucial, since one has to work in polynomially
weighted Sobolev spaces in unbounded (like exterior) domains, see, e.g., [10, 11, 12, 14, 15, 17, 16, 21, 25].

As we obtain the corresponding normal version

Dq(Ω) ∩ ε−1∆̊q(Ω) ↪→↪→ L2,q(Ω)

by applying the ∗-operator, see (1.11), we may concentrate on the tangential version (1.14). Especially,
(1.14) implies (again by an indirect argument) the following Maxwell type estimate: There exists ct,q,ε > 0

such that for all ω ∈ D̊q(Ω) ∩ ε−1∆q(Ω) ∩HqD,ε(Ω)
⊥

L
2,q
ε (Ω)

|ω|L2,q
ε (Ω) ≤ ct,q,ε

(
|dω|2L2,q+1(Ω) + | δ ε ω|2L2,q−1(Ω)

)1/2
(1.15)

holds. Here, we introduce the finite dimensional (again the unit ball is compact) kernel space of (harmonic)
Dirichlet forms by

HqD,ε(Ω) := D̊q0(Ω) ∩ ε−1∆q
0(Ω).

Throughout this paper, as already mentioned, we assume that always the best possible constants are
chosen, e.g., ct,q,ε > 0 are defined by

1

c2t,q,ε
:= min

ω

|dω|2L2,q+1(Ω) + | δ ε ω|2L2,q−1(Ω)

|ω|2
L2,q
ε (Ω)

,(1.16)

where the minimum is taken over D̊q(Ω) ∩ ε−1∆q(Ω) ∩HqD,ε(Ω)
⊥

L
2,q
ε (Ω) .
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The main result of this paper is Theorem 3.6, i.e., for convex Ω and for all q it holds

cf
ε̂
≤ ct,q,ε ≤ cpε̂, cp ≤

diam(Ω)

π
.(1.17)

Corollary 3.7 shows that in the case of the other (normal) boundary condition, where the boundary

condition is placed on ε−1∆̊q(Ω) and the corresponding constant is denoted by cn,q,ε, the same result
holds for cn,q,ε as well. Especially for ε = id we have

cf ≤ ct,q, cn,q ≤ cp ≤ diam(Ω)/π.(1.18)

Here and generally throughout this contribution, we skip the index ε in our notations if the case ε = id
is considered. We emphasize that (1.17) not only generalizes (1.8) to N -dimensions, but even improves
(1.8) in 3-dimensions to

cf
ε̂
≤ cm,t,ε, cm,n,ε ≤ cpε̂.(1.19)

In Remark 3.12 we will present a corresponding result for a certain class of non-convex domains, so-
called one-chart or one-map domains, which are bi-Lipschitz transformations of convex domains. By a
standard partition of unity argument we obtain results for general weak Lipschitz domains as well.

To prove our main result (1.17) we will only use

• the well-known Friedrichs/Gaffney regularity and estimate for bounded and convex C∞-smooth

domains Ω ⊂ RN , i.e., D̊q(Ω) ∩∆q(Ω) and Dq(Ω) ∩ ∆̊q(Ω) are subspaces of H1,q(Ω) and

∀ω ∈
(
D̊q(Ω) ∩∆q(Ω)

)
∪
(
Dq(Ω) ∩ ∆̊q(Ω)

)
| ∇ ~ω|2

L2(Ω)
≤ |dω|2L2,q+1(Ω) + | δ ω|2L2,q−1(Ω),(1.20)

• Weck’s selection theorem (1.14), which includes Rellich’s selection theorems as special cases q = 0
or q = N ,

• and some fundamental results from functional analysis.

For the regularity part of (1.20) see also [10].
Using vector proxies for the respective differential forms we get back the classical case of vector fields

in R3 or RN for the special choice q = 1 or q = N − 1. Note that without using differential forms and
vector proxies curlE of a smooth vector field E in RN may be defined point-wise as a vector in R(N−1)N/2,
which is isomorphic to the skew-symmetric part of the Jacobian of E, i.e.,

curlE =̂ 2 skw∇E = ∇E − (∇E)> ∈ RN×N .

Finally, (1.17) and (1.18) hold for (1.2) and (1.7) in RN as well.

2. Preliminaries

Throughout this paper let Ω ⊂ RN , N ≥ 2, be a bounded weak Lipschitz domain. Hence Weck’s
selection theorem (1.14) and the Maxwell type estimate (1.15) hold true.

2.1. Functional Analysis Toolbox. Let A : D(A) ⊂ H1 → H2 denote a closed and densely defined
linear operator on two Hilbert spaces H1 and H2 with Hilbert space adjoint A∗ : D(A∗) ⊂ H2 → H1.
Typically, A and A∗ are unbounded. The adjoint is characterized by

∀x ∈ D(A) ∀ y ∈ D(A∗) 〈Ax, y〉H2
= 〈x,A∗y〉H1

.(2.1)

Note (A∗)∗ = A = A, i.e., (A,A∗) is a dual pair. This shows the trivial but helpful result

D(A) = D
(
(A∗)∗

)
=
{
x ∈ H1 : ∃ f ∈ H2 ∀ y ∈ D(A∗) 〈x,A∗y〉H1

= 〈f, y〉H2

}
.(2.2)

By the projection theorem the Helmholtz type decompositions

H1 = N(A)⊕H1 R(A∗), H2 = N(A∗)⊕H2 R(A)(2.3)

hold, where we introduce the notation N for the kernel (or null space) and R for the range of a linear
operator and ⊕H denotes orthogonality in a Hilbert space H. We define the reduced operators

A := A|
R(A∗)

: D(A) ⊂ R(A∗)→ R(A), D(A) := D(A) ∩N(A)⊥H1 = D(A) ∩R(A∗),
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A∗ := A∗|
R(A)

: D(A∗) ⊂ R(A)→ R(A∗), D(A∗) := D(A∗) ∩N(A∗)⊥H2 = D(A∗) ∩R(A),

which are also closed and densely defined linear operators. We note that A and A∗ are indeed adjoint to
each other, i.e., (A,A∗) is a dual pair as well. Now the inverse operators

A−1 : R(A)→ D(A), (A∗)−1 : R(A∗)→ D(A∗)

exist and they are bijective, since A and A∗ are injective by definition. Furthermore, by (2.3) we have
the refined Helmholtz type decompositions

D(A) = N(A)⊕H1
D(A), D(A∗) = N(A∗)⊕H2

D(A∗)(2.4)

and thus we obtain for the ranges

R(A) = R(A), R(A∗) = R(A∗).(2.5)

Using the closed range theorem and the closed graph theorem we get the following result.

Lemma 2.1. The following assertions are equivalent:

(i) ∃ cA ∈ (0,∞) ∀x ∈ D(A) |x|H1
≤ cA|Ax|H2

(i∗) ∃ cA∗ ∈ (0,∞) ∀ y ∈ D(A∗) |y|H2
≤ cA∗ |A∗y|H1

(ii) R(A) = R(A) is closed in H2.
(ii∗) R(A∗) = R(A∗) is closed in H1.
(iii) A−1 : R(A)→ D(A) is continuous and bijective with norm bounded by (1 + c2A)1/2.

(iii∗) (A∗)−1 : R(A∗)→ D(A∗) is continuous and bijective with norm bounded by (1 + c2A∗)
1/2.

If one of these assertions holds true, e.g., (ii), R(A) = R(A) is closed, then

A : D(A) ⊂ R(A∗)→ R(A), D(A) = D(A) ∩R(A∗),

A∗ : D(A∗) ⊂ R(A)→ R(A∗), D(A∗) = D(A∗) ∩R(A),

and the Helmholtz type decompositions

H1 = N(A)⊕H1 R(A∗), H2 = N(A∗)⊕H2 R(A),

D(A) = N(A)⊕H1
D(A), D(A∗) = N(A∗)⊕H2

D(A∗)

hold.

Throughout this paper we will assume that always the “best” Friedrichs/Poincaré type constants are
chosen, i.e., cA, cA∗ ∈ (0,∞] are given by the usual Rayleigh quotients

1

cA
:= inf

06=x∈D(A)

|Ax|H2

|x|H1

,
1

cA∗
:= inf

06=y∈D(A∗)

|A∗y|H1

|y|H2

.

Lemma 2.2. The Friedrichs/Poincaré type constants coincide, i.e., cA = cA∗ ∈ (0,∞].

Lemma 2.3. The following assertions are equivalent:

(i) D(A) ↪→↪→ H1 is compact.
(i∗) D(A∗) ↪→↪→ H2 is compact.
(ii) A−1 : R(A)→ R(A∗) is compact with norm cA.

(ii∗) (A∗)−1 : R(A∗)→ R(A) is compact with norm cA∗ = cA.

If one of these assertions holds true, e.g., (i), D(A) ↪→↪→ H1 is compact, then (by a standard indi-
rect argument showing Lemma 2.1 (i)) the assertions of the latter two lemmas hold. Especially, the
Friedrichs/Poincaré type estimates hold, all ranges are closed and the inverse operators are compact.

Now, let A0 :D(A0) ⊂ H0 → H1 and A1 :D(A1) ⊂ H1 → H2 be (possibly unbounded) closed and densely
defined linear operators on three Hilbert spaces H0, H1, and H2 with adjoints A∗0 :D(A∗0) ⊂ H1 → H0 and
A∗1 :D(A∗1) ⊂ H2 → H1 as well as reduced operators A0, A*

0, and A1, A*
1. Furthermore, we assume the

sequence or complex property of A0 and A1, that is, A1A0 ⊂ 0, i.e.,

R(A0) ⊂ N(A1).(2.6)
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Then also A∗0A∗1 ⊂ 0, i.e., R(A∗1) ⊂ N(A∗0), as for all x ∈ D(A0), y ∈ R(A∗1) with y = A∗1z, z ∈ D(A∗1)

〈y,A0x〉H1 = 〈A∗1z,A0x〉H1 = 〈z,A1A0x〉H2 = 0.

The Helmholtz type decompositions (2.3) for A = A0 and A = A1 read, e.g.,

H1 = R(A0)⊕H1
N(A∗0), H1 = N(A1)⊕H1

R(A∗1),(2.7)

and by the complex properties (2.6) we obtain

D(A1) = R(A0)⊕H1

(
D(A1) ∩N(A∗0)

)
, D(A∗0) =

(
D(A∗0) ∩N(A1)

)
⊕H1

R(A∗1),

N(A1) = R(A0)⊕H1
N0,1, N(A∗0) = N0,1 ⊕H1

R(A∗1),

where we define the cohomology group

N0,1 := N(A1) ∩N(A∗0).

Putting things together, the general refined Helmholtz type decomposition

H1 = R(A0)⊕H1
N0,1 ⊕H1

R(A∗1), R(A0) = R(A0), R(A∗1) = R(A*
1)(2.8)

holds. The previous results of this section imply immediately the following.

Lemma 2.4. Let A0, A1 be as introduced before with A1A0 ⊂ 0, i.e., (2.6). Moreover, let R(A0) and
R(A1) be closed. Then, the assertions of Lemma 2.1 and Lemma 2.2 hold for A0 and A1. Moreover, the
refined Helmholtz type decompositions

H1 = R(A0)⊕H1 N0,1 ⊕H1 R(A∗1),

N(A1) = R(A0)⊕H1 N0,1, N(A∗0) = N0,1 ⊕H1 R(A∗1),

D(A1) = R(A0)⊕H1
N0,1 ⊕H1

D(A1), D(A∗0) = D(A*
0)⊕H1

N0,1 ⊕H1
R(A∗1),

D(A1) ∩D(A∗0) = D(A*
0)⊕H1

N0,1 ⊕H1
D(A1)

hold. Especially,

R(A0) = N(A1) ∩N⊥H1
0,1 , R(A∗0), R(A1), R(A∗1) = N(A∗0) ∩N⊥H1

0,1

are closed, the respective inverse operators, i.e.,

A0
−1 : R(A0)→ D(A0), A1

−1 : R(A1)→ D(A1),

(A*
0)−1 : R(A∗0)→ D(A*

0), (A*
1)−1 : R(A∗1)→ D(A*

1),

are continuous, and there exist positive constants cA0 , cA1 , such that the Friedrichs/Poincaré type esti-
mates

∀x ∈ D(A0) |x|H0 ≤ cA0 |A0x|H1 , ∀ y ∈ D(A1) |y|H1 ≤ cA1 |A1y|H2 ,

∀ y ∈ D(A*
0) |y|H1

≤ cA0
|A∗0y|H0

, ∀ z ∈ D(A*
1) |z|H2

≤ cA1
|A∗1z|H1

hold.

Remark 2.5. If, e.g., D(A0) ↪→↪→ H0 and D(A1) ↪→↪→ H1 are compact, then R(A0) and R(A1) are closed
and hence the assertions of Lemma 2.4 hold. Moreover, the respective inverse operators, i.e.,

A0
−1 : R(A0)→ R(A∗0), A1

−1 : R(A1)→ R(A∗1),

(A*
0)−1 : R(A∗0)→ R(A0), (A*

1)−1 : R(A∗1)→ R(A1),

are compact.

By the complex property we observe D(A1), D(A*
0) ⊂ D(A1) ∩D(A∗0). Utilizing the Helmholtz type

decomposition (2.8) we immediately see the following.

Lemma 2.6. The embeddings D(A0) ↪→↪→ H0, D(A1) ↪→↪→ H1, and N0,1 ↪→↪→ H1 are compact, if and only if
the embedding D(A1) ∩D(A∗0) ↪→↪→ H1 is compact. In this case, N0,1 has finite dimension.
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Remark 2.7. Let us consider the sequence or complex

D(A0) ⊂ H0
A0−−−−→ D(A1) ⊂ H1

A1−−−−→ H2.(2.9)

(i) The general assumptions on A0 and A1 are equivalent to the assumption that (2.9) is a Hilbert
complex, meaning that the operators are closed and satisfy the complex property (2.6).

(ii) The assumption that the ranges R(A0) and R(A1) are closed is equivalent to the assumption that
(2.9) is a closed Hilbert complex.

(iii) The assumption that the embeddings D(A0) ↪→↪→ H0 and D(A1) ↪→↪→ H1 are compact is equivalent
to the assumption that (2.9) is a compact Hilbert complex, which is always closed.

(iv) The assumption that the embedding D(A1)∩D(A∗0) ↪→↪→ H1 is compact is equivalent to the assump-
tion that (2.9) is a Fredholm complex, meaning that the complex is compact and the cohomology
group N0,1 is finite dimensional.

The strongest property (iv) is the most desirable one, and we can realize this is our applications. By the
previous results, any property of the primal complex (2.9) is transferred to the corresponding property of
the dual complex

H0
A∗0←−−−− D(A∗0) ⊂ H1

A∗1←−−−− D(A∗1) ⊂ H2

and vise verse.

We can summarize.

Theorem 2.8. Let A0, A1 be as introduced, i.e., having the complex property R(A0) ⊂ N(A1). Moreover,
let D(A1)∩D(A∗0) ↪→↪→ H1 be compact. Then the assertions of Lemma 2.4 hold, N0,1 is finite dimensional
and the corresponding inverse operators are continuous resp. compact. Especially, all ranges are closed
and the corresponding Friedrichs/Poincaré type estimates hold.

Theorem 2.9. Let A0, A1 be as introduced, i.e., having the complex property R(A0) ⊂ N(A1), and let
D(A1) ∩D(A∗0) ↪→↪→ H1 be compact. Then

∀x ∈ D(A1) ∩D(A∗0) ∩N⊥H1
0,1 |x|2H1

≤ c2A0
|A∗0x|2H0

+ c2A1
|A1x|2H2

.

Especially,

∀x ∈ D(A1) ∩D(A∗0) ∩N⊥H1
0,1 |x|H1

≤ max{cA0
, cA1
}
(
|A∗0x|2H0

+ |A1x|2H2

)1/2
.

Proof. Let x ∈ D(A1) ∩D(A∗0) ∩N⊥H1
0,1 . By the Helmholtz type decomposition of Lemma 2.4 we have

D(A1) ∩D(A∗0) ∩N⊥H1
0,1 = D(A*

0)⊕H1 D(A1)

and hence we can decompose

x = x0 + x1 ∈ D(A*
0)⊕H1

D(A1), A∗0x = A∗0x0, A1x = A1x1.

By orthogonality and the Friedrichs/Poincaré type estimates we get

|x|2H1
= |x0|2H1

+ |x1|2H1
≤ c2A0

|A∗0x0|2H0
+ c2A1

|A1x1|2H2
= c2A0

|A∗0x|2H0
+ c2A1

|A1x|2H2
,

completing the proof. �

Remark 2.10. In Theorem 2.9 max{cA0
, cA1
} = cA0,A1

is the best constant (or sharp), where

1

c2A0,A1

:= inf
0 6=x∈D(A1)∩D(A∗0)∩N

⊥H1
0,1

|A∗0x|2H0
+ |A1x|2H2

|x|2H1

.

It is clear that cA0,A1 ≤ max{cA0 , cA1} holds by Theorem 2.9. On the other hand, looking at the sub-
spaces (ranges) of the Helmholtz type decompositions one obtains immediately cA0

≤ cA0,A1
, if , e.g.,

max{cA0
, cA1
} = cA0

.
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2.2. Applications to Differential Forms. We will apply Theorem 2.9 in our differential form setting.

As closure of the exterior derivative defined on C̊∞,q(Ω) as an unbounded operator on L2(Ω) we get that

d̊q : D̊q(Ω) ⊂ L2,q(Ω)→ L2,q+1(Ω)

is a closed and densely defined linear operator with closed adjoint

d̊
∗
q = δq+1 : ∆q+1(Ω) ⊂ L2,q+1(Ω)→ L2,q(Ω).

These operators satisfy the natural complex property d̊q+1 d̊q ⊂ 0, i.e., R(̊dq) ⊂ N (̊dq+1), and thus also
δq δq+1 ⊂ 0, i.e., R(δq+1) ⊂ N(δq). Analogously or using the ∗-operator we can define closed operators
for the other boundary condition, i.e.,

dq : Dq(Ω) ⊂ L2,q(Ω)→ L2,q+1(Ω), d∗q = δ̊q+1 : ∆̊q+1(Ω) ⊂ L2,q+1(Ω)→ L2,q(Ω),

which also satisfy the complex properties, i.e., dq+1 dq ⊂ 0 and δ̊q δ̊q+1 ⊂ 0. Note that

D(̊dq) = D̊q(Ω), D(dq) = Dq(Ω), D(̊δq) = ∆̊q(Ω), D(δq) = ∆q(Ω),

N (̊dq) = D̊q0(Ω), N(dq) = Dq0(Ω), N (̊δq) = ∆̊q
0(Ω), N(δq) = ∆q

0(Ω).

By (2.1) we get trivially the rules of partial integration, i.e.,

∀ω ∈ D̊q(Ω) ∀ ζ ∈ ∆q+1(Ω) 〈̊dq ω, ζ〉L2,q+1(Ω) = −〈ω, δq+1 ζ〉L2,q(Ω),

∀ω ∈ Dq(Ω) ∀ ζ ∈ ∆̊q+1(Ω) 〈dq ω, ζ〉L2,q+1(Ω) = −〈ω, δ̊q+1 ζ〉L2,q(Ω).
(2.10)

(2.2) provides a useful characterization of homogeneous boundary conditions, i.e.,

D̊q(Ω) = D(̊dq) = D
(
(̊d
∗
q)
∗) = D(δ∗q+1)

=
{
ω ∈ L2,q(Ω) : ∃ ζ ∈ L2,q+1(Ω) ∀ϕ ∈ D(δq+1) = ∆q+1(Ω) 〈ω, δq+1 ϕ〉L2,q(Ω) = 〈ζ, ϕ〉L2,q+1(Ω)

}
=
{
ω ∈ Dq(Ω) : ∀ϕ ∈ ∆q+1(Ω) 〈ω, δq+1 ϕ〉L2,q(Ω) = 〈dq ω, ϕ〉L2,q+1(Ω)

}
,

and analogously or by the ∗-operator we also get

∆̊q(Ω) =
{
ω ∈ L2,q(Ω) : ∃ ξ ∈ L2,q−1(Ω) ∀ϕ ∈ Dq−1(Ω) 〈ω,dq−1 ϕ〉L2,q(Ω) = 〈ξ, ϕ〉L2,q−1(Ω)

}
.(2.11)

In the following we will skip the index q on the operators and write just d̊, d and δ̊, δ. To incorporate
the material law ε we need to modify these operators slightly. For this, let us fix some q = 0, . . . , N and
let ε be an admissible transformation on q-forms. Defining the closed and densely defined linear operators

A0 := d̊ : D̊q−1(Ω) ⊂ L2,q−1(Ω)→ L2,q
ε (Ω), A1 := d̊ : D̊q(Ω) ⊂ L2,q

ε (Ω)→ L2,q+1(Ω),

we see that their closed adjoints are

A∗0 = d̊
∗

= δ ε : ε−1∆q(Ω) ⊂ L2,q
ε (Ω)→ L2,q−1(Ω), A∗1 = d̊

∗
= ε−1 δ : ∆q+1(Ω) ⊂ L2,q+1(Ω)→ L2,q

ε (Ω).

Again these operators satisfy the complex property A1A0 = d̊ d̊ ⊂ 0, i.e., R(̊d) ⊂ N (̊d), and thus also
A∗0A∗1 = δ ε ε−1 δ ⊂ 0, i.e., R(ε−1 δ) ⊂ N(δ ε). As before, analogously or using the ∗-operator we can also
define the closed operators

Ã0 := d : Dq−1(Ω) ⊂ L2,q−1(Ω)→ L2,q
ε (Ω), Ã1 := d : Dq(Ω) ⊂ L2,q

ε (Ω)→ L2,q+1(Ω),

Ã∗0 = d∗ = δ̊ ε : ε−1∆̊q(Ω) ⊂ L2,q
ε (Ω)→ L2,q−1(Ω), Ã∗1 = d∗ = ε−1 δ̊ : ∆̊q+1(Ω) ⊂ L2,q+1(Ω)→ L2,q

ε (Ω),

which satisfy the complex properties as well.
We will focus on the operators A0, A1, A∗0, A∗1. At this point let us note that all results of the Functional

Analysis Toolbox Section 2.1 are applicable since by Weck’s selection theorem (1.14) the embedding

D(A1) ∩D(A∗0) = D̊q(Ω) ∩ ε−1∆q(Ω) ↪→↪→ L2,q
ε (Ω) = H1

is compact, see, e.g., Theorem 2.8. Especially, all ranges are closed, the inverse operators are continuous
resp. compact, the corresponding Friedrichs/Poincaré type estimates and Helmholtz type decompositions
hold, and the cohomology group

N0,1 = N(A1) ∩N(A∗0) = D̊q0(Ω) ∩ ε−1∆q
0(Ω) = HqD,ε(Ω)
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has finite dimension. The corresponding reduced operators are

A0 = d̊ : D̊q−1(Ω) ∩ δ∆q(Ω) ⊂ δ∆q(Ω)→ d̊ D̊q−1(Ω),

A*
0 = δ ε : ε−1∆q(Ω) ∩ d̊ D̊q−1(Ω) ⊂ d̊ D̊q−1(Ω)→ δ∆q(Ω),

A1 = d̊ : D̊q(Ω) ∩ ε−1 δ∆q+1(Ω) ⊂ ε−1 δ∆q+1(Ω)→ d̊ D̊q(Ω),

A*
1 = ε−1 δ : ∆q+1(Ω) ∩ d̊ D̊q(Ω) ⊂ d̊ D̊q(Ω)→ ε−1 δ∆q+1(Ω),

where d̊ D̊q−1(Ω) and ε−1 δ∆q+1(Ω) have to be understood as closed subspaces of L2,q
ε (Ω). In this case,

Lemma 2.4 and Theorem 2.8 read as follows.

Corollary 2.11. The refined Helmholtz type decompositions

L2,q
ε (Ω) = d̊ D̊q−1(Ω)⊕L2,q

ε (Ω) H
q
D,ε(Ω)⊕L2,q

ε (Ω) ε
−1 δ∆q+1(Ω),

D̊q0(Ω) = d̊ D̊q−1(Ω)⊕L2,q
ε (Ω) H

q
D,ε(Ω),

ε−1∆q
0(Ω) = HqD,ε(Ω)⊕L2,q

ε (Ω) ε
−1 δ∆q+1(Ω),

D̊q(Ω) = d̊ D̊q−1(Ω)⊕L2,q
ε (Ω) H

q
D,ε(Ω)⊕L2,q

ε (Ω)

(
D̊q(Ω) ∩ ε−1 δ∆q+1(Ω)

)
,

ε−1∆q(Ω) =
(
ε−1∆q(Ω) ∩ d̊ D̊q−1(Ω)

)
⊕L2,q

ε (Ω) H
q
D,ε(Ω)⊕L2,q

ε (Ω) ε
−1 δ∆q+1(Ω),

D̊q(Ω) ∩ ε−1∆q(Ω) =
(
ε−1∆q(Ω) ∩ d̊ D̊q−1(Ω)

)
⊕L2,q

ε (Ω) H
q
D,ε(Ω)⊕L2,q

ε (Ω)

(
D̊q(Ω) ∩ ε−1 δ∆q+1(Ω)

)
hold, all ranges

D̊q0(Ω) ∩HqD,ε(Ω)
⊥

L
2,q
ε (Ω) = d̊ D̊q−1(Ω) = d̊

(
D̊q−1(Ω) ∩ δ∆q(Ω)

)
,

d̊ D̊q(Ω) = d̊
(
D̊q(Ω) ∩ ε−1 δ∆q+1(Ω)

)
,

δ∆q(Ω) = δ
(
ε−1∆q(Ω) ∩ d̊ D̊q−1(Ω)

)
,

ε−1∆q
0(Ω) ∩HqD,ε(Ω)

⊥
L
2,q
ε (Ω) = ε−1 δ∆q+1(Ω) = ε−1 δ

(
∆q+1(Ω) ∩ d̊ D̊q(Ω)

)
are closed, the space of Dirichlet forms HqD,ε(Ω) = D̊q0(Ω)∩ ε−1∆q

0(Ω) is finite dimensional, the respective
inverse operators, i.e.,

A0
−1 = d̊

−1
: d̊ D̊q−1(Ω)→ D̊q−1(Ω) ∩ δ∆q(Ω),

A1
−1 = d̊

−1
: d̊ D̊q(Ω)→ D̊q(Ω) ∩ ε−1 δ∆q+1(Ω),

(A*
0)−1 = (δ ε)−1 : δ∆q(Ω)→

(
ε−1∆q(Ω) ∩ d̊ D̊q−1(Ω)

)
,

(A*
1)−1 = (ε−1 δ)−1 : ε−1 δ∆q+1(Ω)→ ∆q+1(Ω) ∩ d̊ D̊q(Ω),

are continuous, and there exist positive constants cA0
= c̃̊d,t,q−1,ε and cA1

= c̊d,t,q,ε, such that the

Friedrichs/Poincaré type estimates

∀ ξ ∈ D̊q−1(Ω) ∩ δ∆q(Ω) |ξ|L2,q−1(Ω) ≤ c̃̊d,t,q−1,ε| d̊ ξ|L2,q
ε (Ω),

∀ω ∈ D̊q(Ω) ∩ ε−1 δ∆q+1(Ω) |ω|L2,q
ε (Ω) ≤ c̊d,t,q,ε| d̊ω|L2,q+1(Ω),

∀ω ∈ ε−1∆q(Ω) ∩ d̊ D̊q−1(Ω) |ω|L2,q
ε (Ω) ≤ c̃̊d,t,q−1,ε| δ ε ω|L2,q−1(Ω),

∀ ζ ∈ ∆q+1(Ω) ∩ d̊ D̊q(Ω) |ζ|L2,q+1(Ω) ≤ c̊d,t,q,ε|ε
−1 δ ζ|L2,q

ε (Ω)

hold.

Remark 2.12. The corresponding corollary holds for the other boundary conditions on ∆̊...(Ω) for the

operators Ã0, Ã∗0, Ã1, Ã∗1 as well.

For ε = id just one constant for a single q is needed. More precisely:
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Lemma 2.13. Let ε = id. Then for all q

c̃̊d,t,q = c̊d,t,q

and the Friedrichs/Poincaré type estimates

∀ω ∈ D̊q(Ω) ∩ δ∆q+1(Ω) |ω|L2,q(Ω) ≤ c̊d,t,q| d̊ω|L2,q+1(Ω),

∀ ζ ∈ ∆q+1(Ω) ∩ d̊ D̊q(Ω) |ζ|L2,q+1(Ω) ≤ c̊d,t,q| δ ζ|L2,q(Ω)

hold. Applying the ∗-operator we have

∀ω ∈ ∆̊N−q(Ω) ∩ dDN−q−1(Ω) |ω|L2,N−q(Ω) ≤ c̊d,t,q| δ̊ ω|L2,N−q−1(Ω),

∀ ζ ∈ DN−q−1(Ω) ∩ δ̊ ∆̊N−q(Ω) |ζ|L2,N−q−1(Ω) ≤ c̊d,t,q|d ζ|L2,N−q(Ω).

All these four Friedrichs/Poincaré type estimates hold with the same best constants c̊d,t,q.

With these settings our estimate of interest (1.15), i.e.,

|ω|L2,q
ε (Ω) ≤ ct,q,ε

(
| d̊ω|2L2,q+1(Ω) + | δ ε ω|2L2,q−1(Ω)

)1/2

for all ω ∈ D̊q(Ω) ∩ ε−1∆q(Ω) ∩HqD,ε(Ω)
⊥

L
2,q
ε (Ω) , reads

∀x ∈ D(A1) ∩D(A∗0) ∩N⊥H1
0,1 |x|H1 ≤ cA0,A1

(
|A1x|2H2

+ |A∗0x|2H0

)1/2

and by Theorem 2.9 and Remark 2.10 we know

ct,q,ε = cA0,A1 = max{cA0 , cA1} = max{c̃̊d,t,q−1,ε, c̊d,t,q,ε}

using the notations from Corollary 2.11. More precisely, Theorem 2.9 shows:

Corollary 2.14. For all ω ∈ D̊q(Ω) ∩ ε−1∆q(Ω) ∩HqD,ε(Ω)
⊥

L
2,q
ε (Ω)

|ω|2
L2,q
ε (Ω)

≤ c2
d̊,t,q,ε

| d̊ω|2L2,q+1(Ω) + c̃2
d̊,t,q−1,ε

| δ ε ω|2L2,q−1(Ω)

and hence

|ω|L2,q
ε (Ω) ≤ ct,q,ε

(
| d̊ω|2L2,q+1(Ω) + | δ ε ω|2L2,q−1(Ω)

)1/2
, ct,q,ε = max{c̃̊d,t,q−1,ε, c̊d,t,q,ε}.

3. Main Results

By Corollary 2.14 we have to find upper and lower bounds for the constants c̃̊d,t,q−1,ε and c̊d,t,q,ε. As

a first step, we take care of the dependencies on the transformation ε.

Lemma 3.1. It holds
c̊d,t,q−1

ε
≤ c̃̊d,t,q−1,ε ≤ c̊d,t,q−1ε,

c̊d,t,q
ε
≤ c̊d,t,q,ε ≤ c̊d,t,qε.

Moreover,

min{c̊d,t,q−1, c̊d,t,q}
ε̂

≤ ct,q,ε = max{c̃̊d,t,q−1,ε, c̊d,t,q,ε} ≤ max{c̊d,t,q−1, c̊d,t,q}ε̂.

Proof. Let ξ ∈ D̊q−1(Ω) ∩ δ∆q(Ω). By Lemma 2.13 and (1.12), (1.13) we see

|ξ|L2,q−1(Ω) ≤ c̊d,t,q−1| d̊ ξ|L2,q(Ω) ≤ c̊d,t,q−1ε | d̊ ξ|L2,q
ε (Ω),

and hence c̃̊d,t,q−1,ε ≤ c̊d,t,q−1ε. On the other hand, by Corollary 2.11 and (1.12), (1.13)

|ξ|L2,q−1(Ω) ≤ c̃̊d,t,q−1,ε| d̊ ξ|L2,q
ε (Ω) ≤ c̃̊d,t,q−1,εε | d̊ ξ|L2,q(Ω)

holds, and hence by Lemma 2.13 c̊d,t,q−1 ≤ c̃̊d,t,q−1,εε. Now, pick ω ∈ D̊q(Ω) ∩ ε−1 δ∆q+1(Ω). According

to Corollary 2.11 (with ε = id) it holds

D̊q(Ω) = D̊q0(Ω)⊕L2,q(Ω)

(
D̊q(Ω) ∩ δ∆q+1(Ω)

)



12 DIRK PAULY

and we can decompose

ω = ω0 + ωδ, ω0 ∈ D̊q0(Ω), ωδ ∈ D̊q(Ω) ∩ δ∆q+1(Ω)

with d̊ω = d̊ωδ. By orthogonality as well as Lemma 2.13 and (1.12), (1.13) we have

|ω|2
L2,q
ε (Ω)

= 〈ε ω, ωδ〉L2,q(Ω) ≤ c̊d,t,q|ε ω|L2,q(Ω)| d̊ω|L2,q+1(Ω) ≤ c̊d,t,qε |ω|L2,q
ε (Ω)| d̊ω|L2,q+1(Ω),

and thus c̊d,t,q,ε ≤ c̊d,t,qε. On the other hand, let ω ∈ D̊q(Ω) ∩ δ∆q+1(Ω). According to Corollary 2.11 it

holds

D̊q(Ω) = D̊q0(Ω)⊕L2,q
ε (Ω)

(
D̊q(Ω) ∩ ε−1 δ∆q+1(Ω)

)
and we can decompose

ω = ω0 + ωδ, ω0 ∈ D̊q0(Ω), ωδ ∈ D̊q(Ω) ∩ ε−1 δ∆q+1(Ω)

with d̊ω = d̊ωδ. By orthogonality as well as Corollary 2.11 and (1.12), (1.13) we have

|ω|2L2,q(Ω) = 〈ω, ωδ〉L2,q(Ω) ≤ ε |ω|L2,q(Ω)|ωδ|L2,q
ε (Ω) ≤ c̊d,t,q,εε |ω|L2,q(Ω)| d̊ω|L2,q+1(Ω),

and thus c̊d,t,q ≤ c̊d,t,q,εε. �

It remains to estimate for all q the constants c̊d,t,q. For this we need the following result about

regularity and Gaffney’s inequality in convex domains.

Lemma 3.2. Assume Ω additionally to be convex. Let ω ∈ D̊q(Ω)∩∆q(Ω) or ω ∈ Dq(Ω)∩ ∆̊q(Ω). Then
ω ∈ H1,q(Ω) and

| ∇ ~ω|2
L2(Ω)

≤ |dω|2L2,q+1(Ω) + | δ ω|2L2,q−1(Ω).

We will give a simple proof in Appendix A, only based on the well known corresponding result for
smooth and convex domains, see (1.20). A proof of Lemma 3.2 can also be found in the nice paper
of Mitrea [13, Theorem 5.5], see also [13, Corollary 5.6]. For N = 3, partial and weaker results have
been established earlier in [26, 1.4 Satz, 5.5 Satz], [28, Theorem 3.1], [5, Corollary 3.6, Theorem 3.9], [1,

Theorem 2.17]. Note that for all ω ∈ H̊1,q(Ω) Gaffney’s equation

| ∇ ~ω|2
L2(Ω)

= |dω|2L2,q+1(Ω) + | δ ω|2L2,q−1(Ω)(3.1)

holds, and that for convex domains all cohomology groups are trivial, i.e., HqD,ε(Ω) = {0}.
Now we can prove the key result for upper bounds.

Lemma 3.3. Assume Ω additionally to be convex. Then c̊d,t,q ≤ cp.

Proof. By Lemma 2.13 we may pick ζ ∈ ∆q+1(Ω) ∩ d̊ D̊q(Ω) = ∆q+1(Ω) ∩ D̊q+1
0 (Ω). Hence ζ = d̊ω with

some ω ∈ D̊q(Ω). Lemma 3.2 shows ζ ∈ H1,q+1(Ω) and for all a ∈ R and all I it holds

〈ζI , a〉L2(Ω)
= 〈ζ, a dxI〉L2,q+1(Ω) = a 〈̊dω,dxI〉L2,q+1(Ω) = −a 〈ω, δ dxI〉L2,q(Ω) = 0.

Thus ζI ∈ H1(Ω) ∩ R⊥L2(Ω) for all I and we can apply the Poincaré estimate and Lemma 3.2 to obtain

|ζ|2L2,q+1(Ω) =
∑
I

|ζI |2L2(Ω)
≤ c2p

∑
I

| ∇ ζI |2L2(Ω)
= c2p| ∇ ~ζ|2L2(Ω)

≤ c2p| δ ζ|2L2,q(Ω).

Hence c̊d,t,q ≤ cp. �

A proof of Lemma 3.3 can also be found in [13, Corollary 5.10], where the estimates are equivalently
formulated in terms of estimates for eigenvalues. For N = 3, the tangential boundary condition in

H̊(curl,Ω), and smooth convex domains the result has also been established in [2, Theorem 3.1]. In both
papers, especially in [2], the proof is more lengthy and complicated than our short proof.

For lower bounds we have the following.

Lemma 3.4. Assume Ω additionally to be topologically trivial. Then ct,q ≥ cf .



On the Maxwell Constants in RN 13

Proof. As Ω is topologically trivial, all cohomology groups vanish. Therefore, for all u ∈ H̊1(Ω) and some

I and with ω := udxI ∈ H̊1,q(Ω) ⊂ D̊q(Ω) ∩ ∆̊q(Ω) we compute by (1.15) and (3.1)

|u|
L2(Ω)

= |ω|L2,q(Ω) ≤ ct,q
(
|dω|2L2,q+1(Ω) + | δ ω|2L2,q−1(Ω)

)1/2
= ct,q| ∇ ~ω|L2(Ω)

= ct,q| ∇u|L2(Ω)
.

Thus cf ≤ ct,q. �

Lemma 3.5. Assume Ω additionally to be topologically trivial. Then ct,q,ε ≥
cf
ε̂

.

Proof. It holds ct,q = max{c̊d,t,q−1, c̊d,t,q} and ct,q,ε = max{c̃̊d,t,q−1,ε, c̊d,t,q,ε}. If ct,q = c̊d,t,q−1, then by

Lemma 3.1 and Lemma 3.4

ct,q,ε ≥ c̃̊d,t,q−1,ε ≥
c̊d,t,q−1

ε
=
ct,q
ε
≥ cf

ε̂
.

If ct,q = c̊d,t,q, then by Lemma 3.1 and Lemma 3.4

ct,q,ε ≥ c̊d,t,q,ε ≥
c̊d,t,q
ε

=
ct,q
ε
≥ cf

ε̂
,

completing the proof. �

Combining Corollary 2.14, Lemma 3.1, Lemma 3.3, Lemma 3.4, and Lemma 3.5 we can formulate our
main result.

Theorem 3.6. Assume Ω additionally to be convex. Then for all ω ∈ D̊q(Ω) ∩ ε−1∆q(Ω)

|ω|2
L2,q
ε (Ω)

≤ c2
d̊,t,q,ε

| d̊ω|2L2,q+1(Ω) + c̃2
d̊,t,q−1,ε

| δ ε ω|2L2,q−1(Ω)

≤ c2t,q,ε
(
| d̊ω|2L2,q+1(Ω) + | δ ε ω|2L2,q−1(Ω)

)
.

Moreover,
c̊d,t,q−1

ε
≤ c̃̊d,t,q−1,ε ≤ c̊d,t,q−1ε ≤ cpε,

c̊d,t,q
ε
≤ c̊d,t,q,ε ≤ c̊d,t,qε ≤ cpε

as well as
cf
ε̂
≤ ct,q,ε = max{c̃̊d,t,q−1,ε, c̊d,t,q,ε} ≤ cpε̂, cp ≤

diam(Ω)

π
.

Especially, for ε = id it holds for all q

c̃̊d,t,q = c̊d,t,q ≤ cp, cf ≤ ct,q = max{c̊d,t,q−1, c̊d,t,q} ≤ cp ≤
diam(Ω)

π
.(3.2)

The corresponding theorem holds for the other boundary condition as well.

Corollary 3.7. Assume Ω additionally to be convex. Then for all ω ∈ Dq(Ω) ∩ ε−1∆̊q(Ω)

|ω|2
L2,q
ε (Ω)

≤ c̃2
d̊,t,N−q−1,µ

|dω|2L2,q+1(Ω) + c2
d̊,t,N−q,µ| δ̊ ε ω|

2
L2,q−1(Ω)

≤ c2t,N−q,µ
(
|dω|2L2,q+1(Ω) + | δ̊ ε ω|2L2,q−1(Ω)

)
,

where µ := (−1)q(N−q) ∗ ε−1∗. Moreover,

c̊d,t,N−q−1

ε
≤ c̃̊d,t,N−q−1,µ ≤ c̊d,t,N−q−1ε ≤ cpε,

c̊d,t,N−q
ε

≤ c̊d,t,N−q,µ ≤ c̊d,t,N−qε ≤ cpε

as well as
cf
ε̂
≤ ct,N−q,µ = max{c̃̊d,t,N−q−1,µ, c̊d,t,N−q,µ} ≤ cpε̂, cp ≤

diam(Ω)

π
.

Especially, (3.2) holds for ε = id and for all q.

In the introduction we have denoted ct,N−q,µ by cn,q,ε.
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Proof. Let ω ∈ Dq(Ω) ∩ ε−1∆̊q(Ω). Then ∗ω ∈ ∆N−q(Ω) and with µ−1 = (−1)q(N−q) ∗ ε ∗ we have

ζ := ∗ ε ω = (−1)q(N−q) ∗ ε ∗ ∗ω ∈ D̊N−q(Ω) ∩ µ−1∆N−q(Ω).

As ε is admissible, so is (−1)q(N−q) ∗ ε ∗ and hence also its inverse µ. Theorem 3.7 applied to N − q, ζ,
µ instead of q, ω, ε shows

|ζ|2
L2,N−q
µ (Ω)

≤ c2
d̊,t,N−q,µ| d̊ ζ|

2
L2,N−q+1(Ω) + c̃2

d̊,t,N−q−1,µ
| δ µ ζ|2L2,N−q−1(Ω)

≤ c2t,N−q,µ
(
| d̊ ζ|2L2,N−q+1(Ω) + | δ µ ζ|2L2,N−q−1(Ω)

)
.

Moreover, ∗ ε ∗ has the same properties (1.12), (1.13) as ε and hence, as inverse, µ inherits these properties
with ε and ε interchanged. Note that, e.g.,

〈µ ζ, ζ〉L2,N−q(Ω) = 〈ε−1 ∗ ζ, ∗ ζ〉L2,q(Ω) = |ε−1/2 ∗ ζ|2L2,q(Ω) ≤ ε
2|ε−1/2 ∗ ζ|2

L2,q
ε (Ω)

= ε2|ζ|2L2,N−q(Ω)

holds by (1.13). Hence the estimates for the constants follow immediately. Plugging in

|ζ|2
L2,N−q
µ (Ω)

= 〈µ ζ, ζ〉L2,N−q(Ω) = (−1)q(N−q)〈∗ ε−1 ∗ ∗ ε ω, ∗ ε ω〉L2,N−q(Ω)

= 〈ω, ε ω〉L2,q(Ω) = |ω|2
L2,q
ε (Ω)

,

| d̊ ζ|L2,N−q+1(Ω) = | d̊ ∗ ε ω|L2,N−q+1(Ω) = | δ̊ ε ω|L2,q−1(Ω),

| δ µ ζ|L2,N−q−1(Ω) = | δ ∗ ε−1 ∗ ∗ ε ω|L2,N−q−1(Ω) = |dω|L2,q+1(Ω)

we obtain

|ω|2
L2,q
ε (Ω)

≤ c2
d̊,t,N−q,µ| δ̊ ε ω|

2
L2,q−1(Ω) + c̃2

d̊,t,N−q−1,µ
|dω|2L2,q+1(Ω)

≤ c2t,N−q,µ
(
| δ̊ ε ω|2L2,q−1(Ω) + |dω|2L2,q+1(Ω)

)
,

completing the proof. �

The same transformation technique or just repeating the previous arguments shows that Corollary
2.11, especially the Friedrichs/Poincaré type estimates, Corollary 2.14 and Lemma 3.1 hold for the other

boundary condition placed on ε−1∆̊q(Ω) as well. More precisely, with µ as before and defining the
(harmonic) Neumann forms by

HqN,ε(Ω) := Dq0(Ω) ∩ ε−1∆̊q
0(Ω)

we have the following results.

Corollary 3.8. For all ω ∈ Dq(Ω) ∩ ε−1∆̊q(Ω) ∩HqN,ε(Ω)
⊥

L
2,q
ε (Ω)

|ω|2
L2,q
ε (Ω)

≤ c̃2
d̊,t,N−q−1,µ

|dω|2L2,q+1(Ω) + c2
d̊,t,N−q,µ| δ̊ ε ω|

2
L2,q−1(Ω)

≤ ct,N−q,µ
(
|dω|2L2,q+1(Ω) + | δ̊ ε ω|2L2,q−1(Ω)

)1/2

with ct,N−q,µ = max{c̃̊d,t,N−q−1,µ, c̊d,t,N−q,µ}. Especially,

∀ ξ ∈ Dq−1(Ω) ∩ δ̊ ∆̊q(Ω) |ξ|L2,q−1(Ω) ≤ c̊d,t,N−q,µ|d ξ|L2,q
ε (Ω),

∀ω ∈ Dq(Ω) ∩ ε−1 δ̊ ∆̊q+1(Ω) |ω|L2,q
ε (Ω) ≤ c̃̊d,t,N−q−1,µ|dω|L2,q+1(Ω),

∀ω ∈ ε−1∆̊q(Ω) ∩ dDq−1(Ω) |ω|L2,q
ε (Ω) ≤ c̊d,t,N−q,µ| δ̊ ε ω|L2,q−1(Ω),

∀ ζ ∈ ∆̊q+1(Ω) ∩ dDq(Ω) |ζ|L2,q+1(Ω) ≤ c̃̊d,t,N−q−1,µ|ε
−1 δ̊ ζ|L2,q

ε (Ω).

Corollary 3.9. It holds
c̊d,t,N−q−1

ε
≤ c̃̊d,t,N−q−1,µ ≤ c̊d,t,N−q−1ε,

c̊d,t,N−q
ε

≤ c̊d,t,N−q,µ ≤ c̊d,t,N−qε,

and

min{c̊d,t,N−q−1, c̊d,t,N−q}
ε̂

≤ ct,N−q,µ = max{c̃̊d,t,N−q−1,µ, c̊d,t,N−q,µ} ≤ max{c̊d,t,N−q−1, c̊d,t,N−q}ε̂.
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3.1. Some Remarks.

Remark 3.10. Our results extend also to all possibly non-convex polyhedra which allow the H1,q(Ω)-

regularity in Lemma 3.2 of the Maxwell spaces D̊q(Ω) ∩∆q(Ω) and Dq(Ω) ∩ ∆̊q(Ω) or to domains whose
boundaries consist of combinations of convex boundary parts and polygonal parts which allow the H1,q(Ω)-
regularity. Such domains exist, depending on the special type of the singularities, which are not allowed

to by too pointy, see, e.g., [26, 27]. It is well known that (3.1) even holds for ω ∈ H1,q(Ω) ∩ D̊q(Ω) or

ω ∈ H1,q(Ω) ∩ ∆̊q(Ω) if Ω is a polyhedron, since the unit normal is piecewise constant and hence the
curvature is zero.

Remark 3.11. Let Ω be additionally convex and let us recall cn,q = ct,N−q and (3.2), especially

cf ≤ ct,q, cn,q ≤ cp.
(i) In generell, we conjecture cf < ct,q, cn,q < cp.
(ii) As a byproduct, by

0 < µ2 =
1

c2p
≤ 1

c2t,q
≤ 1

c2f
= λ1

we have shown a new proof of the well known fact, that the first Dirichlet eigenvalue of the negative
Laplacian λ1 is not smaller than the second Neumann eigenvalue of the negative Laplacian µ2.

Remark 3.12. Our results extend to a certain class of non-convex domains, so-called one-chart domains,
as well. For this, as before, let Ω ⊂ RN be a bounded weak Lipschitz domain and let Ξ ⊂ RN be a bounded
and convex domain, e.g., the unit square or unit ball. Moreover, we assume that there exists an orientation
preserving bi-Lipschitz transformation Φ : Ξ→ Ω with inverse Ψ := Φ−1 : Ω→ Ξ.

Then for ω ∈ D̊q(Ω) ∩ ε−1∆q(Ω) we have

Φ∗ω ∈ D̊q(Ξ) ∩ µ−1∆q(Ξ), µ := (−1)qN−1 ∗ Φ∗ ∗ εΨ∗,

with

d̊ Φ∗ω = Φ∗ d̊ω, δ µΦ∗ω = ± ∗ d Φ∗ ∗ ε ω = ∗Φ∗ ∗ δ ε ω,(3.3)

see Appendix C for a proof of (3.3) in the bi-Lipschitz case. By the transformation formula, straight
forward estimates, which we will carry out in Appendix B as well, and Theorem 3.6 we get

|ω|L2,q(Ω) ≤ ct,q,ε
(
| d̊ω|2L2,q+1(Ω) + | δ ε ω|2L2,q−1(Ω)

)1/2
,

where
ct,q,ε ≤ c3Nc3∇Φ,∇Ψ ε̂ cp,Ξ

and cp,Ξ is the Poincaré constant for the convex domain Ξ, cN depends just on N , and c∇Φ,∇Φ just on
bounds for ∇Φ and ∇Ψ, see (B.4) in Appendix B for more details. These constants can be refined, if
one takes a closer look at the actual dependence on q and special algebraic operations on ∇Φ and ∇Ψ.
In Appendix B.1 we will present sharper estimates for the special case N = 3 and q = 1 of vector proxy
fields ~ω.

Using a partition of unity, we can even extend our results to general bounded weak Lipschitz domains
Ω ⊂ RN .
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Appendix A. Proof of Lemma 3.2

By the ∗-operator it is sufficient to discuss, e.g., ω ∈ Dq(Ω) ∩ ∆̊q(Ω). For a proof we follow the
nice book of Grisvard, see [7, Theorem 3.2.1.2, Theorem 3.2.1.3]. This proof has been carried out in [5,
Corollary 3.6, Theorem 3.9] and [1, Theorem 2.17] for the Maxwell case and N = 3. Our proof will avoid
the misleading notion of traces and solutions of second order elliptic systems. Let us note that in [1, p.
834] the proof for XN (Ω) is wrong. One cannot work in the space VT (Ωk) due to the solenoidal condition.
Working in the space XT (Ωk) is needed, but this destroys their argument for the second order elliptic
system for ζ. Our approach corrects these unconsistencies.

Let us pick a sequence of increasing, convex, and C∞-smooth subdomains (Ωn) ⊂ Ω converging to Ω,
i.e.,

Ωn ⊂ Ωn ⊂ Ωn+1 ⊂ · · · ⊂ Ω, dist(Ω,Ωn) = dist(∂ Ω, ∂ Ωn)→ 0,
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see, e.g., [7, Lemma 3.2.1.1]. Of course, C2-smooth is also sufficient. For Ωn we find ζn ∈ Dq−1(Ωn) such
that for all ϕ ∈ Dq−1(Ωn)

〈ζn, ϕ〉Dq−1(Ωn) = 〈δ ω, ϕ〉L2,q−1(Ωn) + 〈ω,dϕ〉L2,q(Ωn),(A.1)

which is a trivially well defined problem. Note 〈ζn, ϕ〉Dq−1(Ωn) = 〈ζn, ϕ〉L2,q−1(Ωn) + 〈d ζn,dϕ〉L2,q(Ωn).
Hence

〈ω − d ζn,dϕ〉L2,q(Ωn) = 〈ζn − δ ω, ϕ〉L2,q−1(Ωn)

for all ϕ ∈ Dq−1(Ωn), showing by (2.11) that ωn := ω − d ζn ∈ ∆̊q(Ωn) and δ ωn = δ ω − ζn. Moreover,
ωn ∈ Dq(Ωn) with dωn = dω. By (1.20) we have ωn ∈ H1,q+1(Ωn) with

| ∇ ~ωn|2L2(Ωn)
≤ |dωn|2L2,q+1(Ωn) + | δ ωn|2L2,q−1(Ωn) = |dω|2L2,q+1(Ωn) + | δ ω − ζn|2L2,q−1(Ωn).(A.2)

By setting ϕ = ζn in (A.1) we see

|ζn|2Dq−1(Ωn) = 〈δ ω, ζn〉L2,q−1(Ωn) + 〈ω,d ζn〉L2,q(Ωn)

≤ | δ ω|L2,q−1(Ωn)|ζn|L2,q−1(Ωn) + |ω|L2,q(Ωn)|d ζn|L2,q(Ωn) ≤ |ω|∆q(Ωn)|ζn|Dq−1(Ωn)

(A.3)

and thus

|ζn|Dq−1(Ωn) ≤ |ω|∆q(Ωn) ≤ |ω|∆q(Ω).(A.4)

Combining (A.2) and the equation part of (A.3) we observe

|~ωn|2H1(Ωn)
= |ωn|2L2,q(Ωn) + | ∇ ~ωn|2L2(Ωn)

≤ |ωn|2L2,q(Ωn) + |dω|2L2,q+1(Ωn) + | δ ω − ζn|2L2,q−1(Ωn)

= |ω|2L2,q(Ωn) + |d ζn|2L2,q(Ωn) + |dω|2L2,q+1(Ωn) + | δ ω|2L2,q−1(Ωn) + |ζn|2L2,q−1(Ωn)

− 2〈ω,d ζn〉L2,q(Ωn) − 2〈δ ω, ζn〉L2,q−1(Ωn)

= |ω|2Dq(Ωn)∩∆q(Ωn) + |ζn|2Dq(Ωn) − 2|ζn|2Dq(Ωn) ≤ |ω|
2
Dq(Ωn)∩∆q(Ωn)

and therefore

|~ωn|H1(Ωn)
≤ |ω|Dq(Ωn)∩∆q(Ωn) ≤ |ω|Dq(Ω)∩∆q(Ω).(A.5)

Let us denote the extension by zero to Ω by ·̃. Then by (A.4) and (A.5) the sequences (ζ̃n), (d̃ ζn),

and (~̃ωn), (∇̃ ~ωn) are bounded in L2,q−1(Ω), L2,q(Ω), resp. L2(Ω) and we can extract weakly converging
subsequences, again denoted by the index n, such that

ζ̃n
L2,q−1(Ω)−−−−−−⇀ ζ ∈ L2,q−1(Ω), ~̃ωn

L2(Ω)−−−⇀ ~̂ω ∈ L2(Ω),

(d̃ ζn)
L2,q(Ω)−−−−⇀ ξ ∈ L2,q(Ω), ∇̃ ~ωn

L2(Ω)−−−⇀ Θ̂ ∈ L2(Ω).

Let ψ ∈ C̊∞(Ω) and n be large enough such that suppψ ⊂ Ωn. Then ψ ∈ C̊∞(Ωn) and we calculate for

i = 1, . . . , N and the `-th component ~̂ω` of ~̂ω

〈~̂ω`, ∂i ψ〉L2(Ω)
← 〈~̃ωn,`, ∂i ψ〉L2(Ω)

= 〈~ωn,`, ∂i ψ〉L2(Ωn)

= −〈∂i ~ωn,`, ψ〉L2(Ωn)
= −〈∂̃i ~ωn,`, ψ〉L2(Ω)

→ −〈Θ̂i,`, ψ〉L2(Ω)
,

yielding ~̂ω ∈ H1(Ω) and ∇ ~̂ω = Θ̂. Analogously we obtain for φ ∈ C̊∞,q(Ω) with φ ∈ C̊∞,q(Ωn) for n large
enough

〈ζ, δ φ〉L2,q−1(Ω) ← 〈ζ̃n, δ φ〉L2,q−1(Ω) = 〈ζn, δ φ〉L2,q−1(Ωn)

= −〈d ζn, φ〉L2,q(Ωn) = −〈d̃ ζn, φ〉L2,q(Ω) → −〈ξ, φ〉L2,q(Ω),

showing ζ ∈ Dq−1(Ω) and d ζ = ξ. Moreover, for ϕ ∈ Dq−1(Ω) ⊂ Dq−1(Ωn) we have by (A.1)

〈ζ, ϕ〉Dq−1(Ω) = 〈ζ, ϕ〉L2,q−1(Ω) + 〈d ζ,dϕ〉L2,q(Ω) ← 〈ζ̃n, ϕ〉L2,q−1(Ω) + 〈d̃ ζn,dϕ〉L2,q(Ω) = 〈ζn, ϕ〉Dq−1(Ωn)

= 〈δ ω, ϕ〉L2,q−1(Ωn) + 〈ω,dϕ〉L2,q(Ωn) → 〈δ ω, ϕ〉L2,q−1(Ω) + 〈ω,dϕ〉L2,q(Ω) = 0,
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as ω ∈ ∆̊q(Ω), where the last convergence follows by Lebesgue’s dominated convergence theorem. For
ϕ = ζ we get |ζ|Dq−1(Ω) = 0, i.e., ζ = 0. Furthermore, we observe by (A.5)

|~̂ω|2
H1(Ω)

= 〈~̂ω, ~̂ω〉
L2(Ω)

+ 〈∇ ~̂ω,∇ ~̂ω〉
L2(Ω)

← 〈~̂ω, ~̃ωn〉L2(Ω)
+ 〈∇ ~̂ω, ∇̃ ~ωn〉L2(Ω)

= 〈~̂ω, ~ωn〉L2(Ωn)
+ 〈∇ ~̂ω,∇ ~ωn〉L2(Ωn)

≤ |~̂ω|
H1(Ωn)

|~ωn|H1(Ωn)
≤ |~̂ω|

H1(Ω)
|ω|Dq(Ω)∩∆q(Ω),

showing

|~̂ω|
H1(Ω)

≤ |ω|Dq(Ω)∩∆q(Ω).(A.6)

Finally, we have ω = ωn + d ζn in Ωn, i.e., in Ω

χΩnω = ω̃n + d̃ ζn
L2,q(Ω)−−−−⇀ ω̂ + d ζ = ω̂.

On the other hand, by Lebesgue’s dominated convergence theorem we see χΩnω → ω in L2,q(Ω). Thus
ω = ω̂ ∈ H1,q(Ω) and by (A.6)

|ω|H1,q(Ω) = |~̂ω|
H1(Ω)

≤ |ω|Dq(Ω)∩∆q(Ω),

especially,

| ∇ ~ω|2
L2(Ω)

≤ |dω|2L2,q+1(Ω) + | δ ω|2L2,q−1(Ω).

Appendix B. Calculations for Remark 3.12

For a multi index I of length |I| = q (not necessarily ordered) it holds

Φ∗ dxI = Φ∗(dxi1 ∧ · · · ∧ dxiq ) = (Φ∗ dxi1) ∧ · · · ∧ (Φ∗ dxiq ) = (d Φi1) ∧ · · · ∧ (d Φiq ) = d ΦI

=
∑

j1,...,jq

∂j1 Φi1 . . . ∂jq Φiq dxj1 ∧ · · · ∧ dxjq =
∑
|J|=q

∂J ΦI dxJ

and especially

Φ∗(dx1 ∧ · · · ∧ dxN ) = det(∇Φ) dx1 ∧ · · · ∧ dxN .

For multi indices I, J of length q we have

(Φ∗ dxI) ∧ ∗(Φ∗ dxJ) =
∑

|K|=|L|=q

∂K ΦI ∂L ΦJ dxK ∧ ∗ dxL

=
∑
|K|=q

(−1)σK ∂K ΦI ∂K ΦJ dx1 ∧ · · · ∧ dxN .

Hence for

ω =
∑
I

ωI dxI , Φ∗ω =
∑
I

ω̃I Φ∗ dxI , ω̃ :=
∑
I

ω̃I dxI , ω̃I := ωI ◦ Φ

we compute

∗ |ω|2 = ω ∧ ∗ ω̄ =
∑
I,J

ωI ω̄J dxI ∧ ∗ dxJ =
∑
I

ωI ω̄I dxI ∧ ∗ dxI = |~ω|2 dx1 ∧ · · · ∧ dxN ,

∗ |Φ∗ω|2 = Φ∗ω ∧ ∗Φ∗ω̄ =
∑
I,J

ω̃I ¯̃ωJ(Φ∗ dxI) ∧ ∗(Φ∗ dxJ)

=
∑
I,J

∑
|K|=q

(−1)σK ω̃I ¯̃ωJ ∂K ΦI ∂K ΦJ dx1 ∧ · · · ∧ dxN ,

and thus

|~ω|2
L2(Ω)

= |ω|2L2,q(Ω) =

∫
Ω

∗ |ω|2 =

∫
Ω

|~ω|2 dx1 ∧ · · · ∧ dxN =

∫
Ξ

|~̃ω|2Φ∗(dx1 ∧ · · · ∧ dxN )

=

∫
Ξ

det(∇Φ)|~̃ω|2 dx1 ∧ · · · ∧ dxN =

∫
Ξ

det(∇Φ) ∗ |ω̃|2 =

∫
Ξ

det(∇Φ)|~̃ω|2,
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|
−−→
Φ∗ω|2

L2(Ξ)
= |Φ∗ω|2L2,q(Ξ) =

∫
Ξ

∗ |Φ∗ω|2 =
∑
I,J

∑
|K|=q

(−1)σK
∫

Ξ

ω̃I ¯̃ωJ ∂K ΦI ∂K ΦJ dx1 ∧ · · · ∧ dxN

=
∑
I,J

∑
|K|=q

(−1)σK
∫

Ξ

ω̃I ¯̃ωJ ∂K ΦI ∂K ΦJ .

Therefore, we get

min
Ξ

det(∇Φ) |ω̃|2L2,q(Ξ) ≤ |ω|
2
L2,q(Ω) ≤ max

Ξ
det(∇Φ) |ω̃|2L2,q(Ξ),

|Φ∗ω|2L2,q(Ξ) ≤ N
q

(
N

q

)2

max
Ξ
| ∇Φ|2q |ω̃|2L2,q(Ξ),

where the second estimate is quite rough. Combing both we see

|Φ∗ω|2L2,q(Ξ) ≤ cq,N,∇Φ|ω|2L2,q(Ω), cq,N,∇Φ := Nq

(
N

q

)2
maxΞ | ∇Φ|2q

minΞ det(∇Φ)
,(B.1)

|Ψ∗ζ|2L2,q(Ω) ≤ cq,N,∇Ψ|ζ|2L2,q(Ξ), cq,N,∇Ψ := Nq

(
N

q

)2
maxΩ | ∇Ψ|2q

minΩ det(∇Ψ)
(B.2)

and with ω = Ψ∗Φ∗ω

|ω|2L2,q(Ω) ≤ cq,N,∇Ψ|Φ∗ω|2L2,q(Ξ), |ζ|2L2,q(Ξ) ≤ cq,N,∇Φ|Ψ∗ζ|2L2,q(Ω).

Now we calculate by Theorem 3.6

|ω|2L2,q(Ω) ≤ cq,N,∇Ψ|Φ∗ω|2L2,q(Ξ) ≤ cq,N,∇Ψc
2
p,Ξ µ̂

2
(
| d̊ Φ∗ω|2L2,q+1(Ξ) + | δ µΦ∗ω|2L2,q−1(Ξ)

)
= cq,N,∇Ψc

2
p,Ξ µ̂

2
(
|Φ∗ d̊ω|2L2,q+1(Ξ) + |Φ∗ ∗ δ ε ω|2L2,N−q+1(Ξ)

)
≤ cq,N,∇Ψc

2
p,Ξ µ̂

2
(
cq+1,N,∇Φ| d̊ω|2L2,q+1(Ω) + cN−q+1,N,∇Φ| δ ε ω|2L2,q−1(Ω)

)
≤ cq,N,∇Ψ max{cq+1,N,∇Φ, cN−q+1,N,∇Φ}c2p,Ξ µ̂2

(
| d̊ω|2L2,q+1(Ω) + | δ ε ω|2L2,q−1(Ω)

)
≤ c4Nc4∇Φ,∇Ψ µ̂

2c2p,Ξ
(
| d̊ω|2L2,q+1(Ω) + | δ ε ω|2L2,q−1(Ω)

)
,

(B.3)

i.e.,

ct,q,ε ≤ c2Nc2∇Φ,∇Ψ µ̂ cp,Ξ,

with very rough constants

cN := N
N/2N !, c∇Φ,∇Ψ :=

max
[

maxΞ | ∇Φ|,maxΩ | ∇Ψ|, 1
]N

min
[

minΞ

√
det(∇Φ),minΩ

√
det(∇Ψ), 1

] .(B.4)

So, it remains to estimate µ̂. For this we estimate for Φ∗ω ∈ L2,q(Ξ)

〈µΦ∗ω,Φ∗ω〉L2,q(Ξ) = ±〈∗Φ∗ ∗ ε ω,Φ∗ω〉L2,q(Ξ) = ±〈Φ∗ ∗ ε ω, ∗Φ∗ω〉L2,N−q(Ξ) = ±
∫

Ξ

(Φ∗ ∗ ε ω) ∧ (Φ∗ω̄)

= ±
∫

Ω

∗ ε ω ∧ ω̄ = 〈ε ω, ω〉L2,q(Ω) ≤ ε2|ω|2L2,q(Ω) ≤ ε
2cq,N,∇Ψ|Φ∗ω|2L2,q(Ξ),

〈µΦ∗ω,Φ∗ω〉L2,q(Ξ) = 〈ε ω, ω〉L2,q(Ω) ≥ ε−2|ω|2L2,q(Ω) ≥
1

ε2cq,N,∇Φ
|Φ∗ω|2L2,q(Ξ),

and observe

µ̂ ≤ max{ε√cq,N,∇Ψ, ε
√
cq,N,∇Φ} ≤ ε̂max{√cq,N,∇Ψ,

√
cq,N,∇Φ} ≤ ε̂ cN c∇Φ,∇Ψ.

Finally, this shows

ct,q,ε ≤ c3Nc3∇Φ,∇Ψ ε̂ cp,Ξ.
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B.1. Classical Vector Analysis. Some of the latter estimates are very rough. Let us take a closer look
at the classical case of vector analysis, i.e., at the special case of N = 3 and q = 1. By (3.3), see also

Appendix C for more details and a rigorous proof, we know that ω in Dq(Ω) resp. D̊q(Ω) implies Φ∗ω

in Dq(Ξ) resp. D̊q(Ξ) with d Φ∗ω = Φ∗ dω. For N = 3 and q = 1 this means for the vector proxy field

~ω ∈ H̊(curl,Ω) ∼= D̊1(Ω) that
−−→
Φ∗ω = ∇Φ ~̃ω ∈ H̊(curl,Ξ) ∼= D̊1(Ξ)

with

curl(∇Φ ~̃ω) =
−−−→
d Φ∗ω =

−−−−→
Φ∗ dω = adj>(∇Φ)c̃url ~ω,(B.5)

where adj(A) denotes the adjunct matrix of A ∈ R3×3. If A is invertible it holds adj(A) = (detA)A−1.
For q = N − 1 = 2 we have for the vector proxy field ~ω ∈ H(div,Ω) ∼= D2(Ω) that

−−→
Φ∗ω = adj>(∇Φ) ~̃ω ∈ H(div,Ξ) ∼= D2(Ξ)

with
div
(

adj>(∇Φ) ~̃ω
)

=
−−−→
d Φ∗ω =

−−−−→
Φ∗ dω = det(∇Φ)d̃iv ~ω.

Thus for ~ω ∈ H̊(curl,Ω) ∩ ε−1H(div,Ω) we have

∇Φ ~̃ω ∈ H̊(curl,Ξ) ∩ µ−1H(div,Ξ), µ :=
1

det(∇Φ)
adj>(∇Φ) ε̃ adj(∇Φ),

with (B.5) and

div(µ∇Φ ~̃ω) = div
(

adj>(∇Φ) ε̃ ~̃ω
)

= det(∇Φ)d̃iv ε ~ω.

Now we can compute (B.3) more carefully by

|~ω|2
L2(Ω)

=

∫
Ω

|~ω|2 =

∫
Ξ

det(∇Φ)|~̃ω|2 ≤
∫

Ξ

det(∇Φ)
∣∣(∇Φ)−1

∣∣2| ∇Φ ~̃ω|2

=

∫
Ξ

1

det(∇Φ)

∣∣ adj(∇Φ)
∣∣2| ∇Φ ~̃ω|2 ≤ ĉ2∇Φ| ∇Φ ~̃ω|2

L2(Ξ)

≤ ĉ2∇Φc
2
m,t,µ,Ξ

(∣∣ curl(∇Φ ~̃ω)
∣∣2
L2(Ξ)

+
∣∣ div(µ∇Φ ~̃ω)

∣∣2
L2(Ξ)

)
= ĉ2∇Φc

2
m,t,µ,Ξ

(∣∣ adj>(∇Φ)c̃url ~ω
∣∣2
L2(Ξ)

+
∣∣ det(∇Φ)d̃iv ε ~ω

∣∣2
L2(Ξ)

)
= ĉ2∇Φc

2
m,t,µ,Ξ

( ∫
Ξ

∣∣ adj>(∇Φ)c̃url ~ω
∣∣2 +

∫
Ξ

∣∣det(∇Φ)d̃iv ε ~ω
∣∣2)

≤ ĉ2∇Φc
2
m,t,µ,Ξ

(
ĉ2∇Φ

∫
Ξ

det(∇Φ)|c̃url ~ω|2 + c2det(∇Φ)

∫
Ξ

det(∇Φ)|d̃iv ε ~ω|2
)

= ĉ2∇Φc
2
m,t,µ,Ξ

(
ĉ2∇Φ| curl ~ω|2

L2(Ω)
+ c2det(∇Φ)|div ε ~ω|2

L2(Ω)

)
,

(B.6)

where

cdet(∇Φ) := max
Ξ

√
det(∇Φ),

ĉ∇Φ := max
Ξ

∣∣ adj(∇Φ)
∣∣√

det(∇Φ)
= max

Ξ

√
det(∇Φ)

∣∣(∇Φ)−1
∣∣ ≤ cdet(∇Φ) max

Ξ

∣∣(∇Φ)−1
∣∣.

Therefore, we have

cm,t,ε ≤ ĉ∇Φ max{ĉ∇Φ, cdet(∇Φ)}cm,t,µ,Ξ, cm,t,µ,Ξ ≤ µ̂ cp,Ξ,

and it remains to estimate µ̂. For this we compute for ~̃ω ∈ L2(Ξ)

〈µ ~̃ω, ~̃ω〉
L2(Ξ)

=

∫
Ξ

µ ~̃ω · ~̄̃ω =

∫
Ξ

det(∇Φ)
(
(∇Φ)−>ε̃ (∇Φ)−1~̃ω

)
· ~̄̃ω

=

∫
Ξ

det(∇Φ)
(
ε̃ (∇Φ)−1~̃ω

)
· (∇Φ)−1 ~̄̃ω =

∫
Ω

(ε∇Ψ ~ω) · ∇Ψ ~̄ω = 〈ε∇Ψ ~ω,∇Ψ ~ω〉
L2(Ω)
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and estimate

〈µ ~̃ω, ~̃ω〉
L2(Ξ)

≤ ε2| ∇Ψ ~ω|2
L2(Ω)

= ε2
∫

Ω

| ∇Ψ ~ω|2 = ε2
∫

Ξ

det(∇Φ)|(∇Φ)−1~̃ω|2

≤ ε2
∫

Ξ

det(∇Φ)|(∇Φ)−1|2|~̃ω|2 ≤ ε2ĉ2∇Φ

∫
Ξ

|~̃ω|2 = ε2ĉ2∇Φ|~̃ω|2L2(Ξ)
,

〈µ ~̃ω, ~̃ω〉
L2(Ξ)

≥ ε−2| ∇Ψ ~ω|2
L2(Ω)

= ε−2

∫
Ξ

det(∇Φ)|(∇Φ)−1~̃ω|2

≥ ε−2

∫
Ξ

det(∇Φ)

| ∇Φ|2
|~̃ω|2 ≥ ε−2č−2

∇Φ

∫
Ξ

|~̃ω|2 =
1

ε2č2∇Φ

|~̃ω|2
L2(Ξ)

,

where

č∇Φ := max
Ξ

| ∇Φ|√
det(∇Φ)

=
1

minΞ

√
det(∇Φ)

| ∇Φ|

.

Finally, we obtain

µ̂ ≤ max{ε ĉ∇Φ, ε č∇Φ} ≤ ε̂max{ĉ∇Φ, č∇Φ}

and hence

cm,t,ε ≤ ĉ∇Φ max{ĉ∇Φ, cdet(∇Φ)}max{ĉ∇Φ, č∇Φ} ε̂ cp,Ξ ≤ max{ĉ∇Φ, č∇Φ, cdet(∇Φ)}3 ε̂ cp,Ξ.(B.7)

Especially for Φ(x) := r x with r > 0 we have

|~ω|2
L2(Ω)

=

∫
Ω

|~ω|2 =

∫
Ξ

det(∇Φ)|~̃ω|2 = r| ∇Φ ~̃ω|2
L2(Ξ)

≤ rc2m,t,µ,Ξ
(∣∣ curl(∇Φ ~̃ω)

∣∣2
L2(Ξ)

+
∣∣ div(µ∇Φ ~̃ω)

∣∣2
L2(Ξ)

)
= rc2m,t,µ,Ξ

( ∫
Ξ

∣∣ adj>(∇Φ)c̃url ~ω
∣∣2 +

∫
Ξ

∣∣det(∇Φ)d̃iv ε ~ω
∣∣2)

= rc2m,t,µ,Ξ
(
r

∫
Ξ

det(∇Φ)|c̃url ~ω|2 + r3

∫
Ξ

det(∇Φ)|d̃iv ε ~ω|2
)

= r2c2m,t,µ,Ξ
(
| curl ~ω|2

L2(Ω)
+ r2|div ε ~ω|2

L2(Ω)

)
and

〈µ ~̃ω, ~̃ω〉
L2(Ξ)

=

∫
Ξ

µ ~̃ω · ~̄̃ω =

∫
Ξ

det(∇Φ)
(
(∇Φ)−>ε̃ (∇Φ)−1~̃ω

)
· ~̄̃ω = r−2

∫
Ξ

det(∇Φ)(ε̃ ~̃ω) · ~̄̃ω

= r−2

∫
Ω

(ε ~ω) · ~̄ω = r−2〈ε ~ω, ~ω〉
L2(Ω)

,

〈µ ~̃ω, ~̃ω〉
L2(Ξ)

≤ r−2ε2|~ω|2
L2(Ω)

= r−2ε2
∫

Ξ

det(∇Φ)|~̃ω|2 = rε2|~̃ω|2
L2(Ξ)

,

〈µ ~̃ω, ~̃ω〉
L2(Ξ)

≥ rε−2|~̃ω|2
L2(Ξ)

,

i.e., µ̂ ≤ max{
√
rε, ε/

√
r} ≤ max{r, 1}√

r
ε̂, which shows

cm,t,ε ≤ rmax{1, r}cm,t,µ,Ξ ≤ rmax{1, r} µ̂ cp,Ξ ≤
√
rmax{1, r}2 ε̂ cp,Ξ.

On the other hand, (B.7) gives with cdet(∇Φ) = r3/2, ĉ∇Φ =
√

3r1/2, č∇Φ =
√

3r−1/2 the less sharp
estimate

cm,t,ε ≤ 3
√

3r
3/2 max{1, r2}3 ε̂ cp,Ξ.
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Appendix C. Proof of (3.3) in the Bi-Lipschitz Case.

C.1. Without Boundary Conditions. For this, let ω =
∑
I ωI dxI ∈ Dq(Ω). We have to prove

Φ∗ω ∈ Dq(Ξ) with d Φ∗ω = Φ∗ dω. Let us first assume ω ∈ C̊∞,q(RN ), i.e., ωI ∈ C̊∞(RN ) for all I. By
Appendix B we have

d Φj =
∑
i

∂i Φj dxi, Φ∗ω =
∑
I

ω̃IΦ
∗ dxI =

∑
I

ω̃I(d Φi1) ∧ · · · ∧ (d Φiq ),

dω =
∑
I,j

∂j ωI(dxj) ∧ (dxI).

By Rademacher’s theorem we know that ω̃I = ωI ◦ Φ and Φj belong to C0,1(Ξ) ⊂ H1(Ξ) and that the

chain rule holds, i.e., ∂i ω̃I =
∑
j ∂̃j ωI ∂i Φj . As Φj ∈ H1(Ξ) we get d Φj ∈ D1

0(Ξ) by

〈d Φj , δ ϕ〉L2,1(Ξ) = −〈Φj , δ δ ϕ〉L2,0(Ξ) = 0

for all ϕ ∈ C̊∞,2(Ξ). Thus by definition we see

d Φ∗ω =
∑
I

(d ω̃I) ∧ (d Φi1) ∧ · · · ∧ (d Φiq ) =
∑
I,i

∂i ω̃I(dx
i) ∧ (d Φi1) ∧ · · · ∧ (d Φiq )

=
∑
I,i,j

∂̃j ωI ∂i Φj(dx
i) ∧ (d Φi1) ∧ · · · ∧ (d Φiq ) =

∑
I,j

∂̃j ωI(d Φj) ∧ (d Φi1) ∧ · · · ∧ (d Φiq ).

On the other hand it holds

Φ∗ dω =
∑
I,j

∂̃j ωI(Φ
∗ dxj) ∧ (Φ∗ dxI) =

∑
I,j

∂̃j ωI(d Φj) ∧ (d Φi1) ∧ · · · ∧ (d Φiq ).

Therefore, d Φ∗ω = Φ∗ dω. For general ω ∈ Dq(Ω) we pick φ ∈ C̊∞,q+1(Ξ). Standard mollification shows

that C̊∞,q(RN ) is dense in Dq(Ωφ), where Ωφ is smooth and satisfies Φ(suppφ) ⊂ Ωφ ⊂ Ωφ ⊂ Ω. Let

(ωn) ⊂ C̊∞,q(RN ) with ωn → ω in Dq(Ωφ). Then

〈Φ∗ω, δ φ〉L2,q(Ξ) =

∫
Ψ(Ωφ)

Φ∗ω ∧ ∗ δ φ = ±
∫

Ψ(Ωφ)

Φ∗ω ∧ Φ∗Ψ∗ d ∗φ = ±
∫

Ψ(Ωφ)

Φ∗(ω ∧Ψ∗ d ∗φ)

= ±
∫

Ωφ

ω ∧Ψ∗ d ∗φ = ±
∫

Ωφ

ω ∧ d Ψ∗ ∗ φ← ±
∫

Ωφ

ωn ∧ d Ψ∗ ∗ φ

= ±
∫

Ωφ

ωn ∧ ∗ ∗ d ∗ ∗Ψ∗ ∗ φ = ±〈ωn, δ ∗Ψ∗ ∗ φ〉L2,q(Ωφ)

= ±〈dωn, ∗Ψ∗ ∗ φ〉L2,q(Ωφ) → ±〈dω, ∗Ψ∗ ∗ φ〉L2,q(Ωφ) = ±
∫

Ωφ

dω ∧Ψ∗ ∗ φ

= ±
∫

Ψ(Ωφ)

Φ∗(dω ∧Ψ∗ ∗ φ) = ±
∫

Ψ(Ωφ)

(Φ∗ dω) ∧ ∗φ = −〈Φ∗ dω, φ〉L2,q+1(Ξ)

and hence Φ∗ω ∈ Dq(Ξ) with d Φ∗ω = Φ∗ dω.

C.2. With Boundary Conditions. Let ω ∈ D̊q(Ω) and (ωn) ⊂ C̊∞,q(Ω) with ωn → ω in Dq(Ω).
By Appendix C.1 we know Φ∗ω,Φ∗ωn ∈ Dq(Ξ) with d Φ∗ωn = Φ∗ dωn as well as d Φ∗ω = Φ∗ dω.
Since Φ∗ωn =

∑
I ω̃n,IΦ

∗ dxI holds, Φ∗ωn has compact support in Ξ. By standard mollification we see

Φ∗ωn ∈ D̊q(Ξ). Moreover, Φ∗ωn → Φ∗ω in Dq(Ξ) as Φ∗ωn → Φ∗ω in L2,q(Ξ) and

d Φ∗ωn = Φ∗ dωn → Φ∗ dω = d Φ∗ω

in L2,q+1(Ξ) by (B.1). Therefore Φ∗ω ∈ D̊q(Ξ) with d̊ Φ∗ω = Φ∗ d̊ω.
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