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Abstract

We prove a Korn-type inequality in
◦
H(Curl; Ω,R3×3) for tensor fields P mapping

Ω to R3×3. More precisely, let Ω ⊂ R3 be a bounded domain with connected
Lipschitz boundary ∂Ω. Then, there exists a constant c > 0 such that

c ||P ||L2(Ω,R3×3) ≤ ||symP ||L2(Ω,R3×3) + ||CurlP ||L2(Ω,R3×3) (0.1)

holds for all tensor fields P ∈
◦
H(Curl; Ω,R3×3), i.e., all P ∈ H(Curl; Ω,R3×3) with

vanishing tangential trace on ∂Ω. Here, rotation and tangential trace are defined
row-wise. For compatible P , i.e., P = ∇v and thus CurlP = 0, where v ∈ H1(Ω,R3)
are vector fields having components vn, for which ∇vn are normal at ∂Ω, the pre-
sented estimate (0.1) reduces to a non-standard variant of Korn’s first inequality,
i.e.,

c ||∇v||L2(Ω,R3×3) ≤ ||sym∇v||L2(Ω,R3×3) .

On the other hand, for skew-symmetric P , i.e., symP = 0, (0.1) reduces to a non-
standard version of Poincaré’s estimate. Therefore, since (0.1) admits the classical
boundary conditions our result is a common generalization of the two classical esti-
mates, namely Poincaré’s resp. Korn’s first inequality.
Key Words Korn’s inequality, gradient plasticity, theory of Maxwell’s equations,
Helmholtz decomposition, Poincaré/Friedrichs type estimate

1 Introduction: Infinitesimal Gradient Plasticity

The motivation for our new estimate is a formulation of infinitesimal gradient plasticity
[2]. Our model is taken from Neff et al. [9]. Let Ω ⊂ R3 be a bounded domain. The goal
is to find the displacement u : [0,∞) × Ω 7→ R3 and the possibly non-symmetric plastic
distortion tensor P : [0,∞)× Ω 7→ R3×3, such that in [0,∞)× Ω

Div σ = f, σ = 2µ sym(∇u− P ) + λ tr(∇u− P ) id,

Ṗ ∈ Φ(Σ), Σ = σ − 2µ symP − µL2
c Curl CurlP, (1.1)
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hold. The system is completed by the boundary conditions

u(t, x) = 0, ν(x)× P (t, x) = 0 ∀ (t, x) ∈ [0,∞)× ∂Ω

and the initial condition P (0, x) = 0 for all x ∈ Ω. The underlying thermodynamic
potential including the plastic gradients in form of the dislocation density tensor CurlP
is ∫

Ω

µ| sym(∇u− P )|2 +
λ

2
| tr(∇u− P )|2 − f · u+ µ| symP |2 +

µ

2
L2

c |CurlP |2.

Here, µ, λ are the elastic Lamé moduli and σ is the symmetric Cauchy stress tensor.
The system is driven by nonzero body forces denoted by f . The exterior normal to the
boundary ∂Ω is denoted by ν and the plastic distortion P is required to satisfy row-wise
the homogeneous tangential boundary condition which means that the boundary ∂Ω is a
perfect conductor regarding the plastic distortion. ∗

Moreover, Φ : R3×3 7→ R3×3 is the monotone, multivalued flow-function with Φ(0) = 0
and Φ(R3×3

sym) ⊂ R3×3
sym. In general, Σ is not symmetric even if P is symmetric. Thus, the

plastic inhomogeneity is responsible for the plastic spin (the possible non-symmetry of P ).
The mathematically suitable space for symmetric plastic distortion P is the classical space
H(curl; Ω) for each row of P [11, 2]. This case appears when choosing Φ : R3×3 7→ R3×3

sym.
In the large scale limit Lc → 0 we recover a classical elasto-plasticity model with local

kinematic hardening and symmetric plastic strain εp := symP , since then Ṗ ∈ R3×3
sym.

Uniqueness of classical solutions for rate-independent and rate-dependent formulations
of this model is shown in [9]. The more difficult existence question for the rate-independent
model in terms of a weak reformulation is addressed in [9]. First numerical results for
a simplified rate-independent irrotational formulation (no plastic spin, i.e., symmetric
plastic distortion P ) are presented in [11], cf [17]. In [3] the model has been extended
to rate-independent isotropic hardening based on the concept of a dissipation function
defined in terms of the equivalent plastic strain. From a modeling point of view, it is
strongly preferable to again have only the symmetric (rate) part of the plastic distortion
P appear in the dissipation potential.

The existence and uniqueness can be settled by recasting the model as a variational
inequality, if it is possible to define a bilinear form which is coercive with respect to
appropriate spaces. This program has been achieved for other variants of the model in [3].
It had to remain basically open for the above system (1.1). In this case, the appropriate

space for the plastic distortion P is the completion
◦
Hsym(Curl; Ω) of the linear space

{P ∈ C∞(Ω,R3×3) : Pn normal at ∂Ω, n = 1, 2, 3}

with respect to the norm ||| · |||, where Pn are the columns of P T and

|||P |||2 := ||symP ||2L2(Ω) + ||CurlP ||2L2(Ω) .

∗This homogeneous tangential boundary condition on P is consistent with ν ×∇u = 0 on ∂Ω which
follows from u = 0 on ∂Ω.
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Despite first appearance, this quadratic form indeed defines a norm as shown in [9]. Thus
◦
Hsym(Curl; Ω) is a Hilbert-space. However, in this space it is not immediately obvious
how to define a linear and bounded tangential trace operator. Since only ||symP ||L2(Ω)

appears, it is also not clear, how to control the skew-symmetric part of P . Therefore, the
crucial embedding

◦
Hsym(Curl; Ω) ⊂ L2(Ω)

is not clear as well. As a consequence of our main result of this paper we obtain that
nevertheless

◦
Hsym(Curl; Ω) =

◦
H(Curl; Ω)

holds with equivalent norms in case the domain Ω is simply connected and has a Lipschitz
boundary. The result of this paper has been announced in [10].

For the proof of our main result (0.1) we combine techniques from electro-magnetic and
elastic theory, namely the Helmholtz decomposition, the Maxwell compactness property
and Korn’s inequality. Their basic variants are well known results which can be found
in many books, e.g., in [6] and the literature cited there. More sophisticated and related
versions are presented, e.g., in [12, 14, 15, 16, 21] for Maxwell’s equations and [1, 8] for
Korn’s inequality.

This paper is organized as follows. After this motivation we introduce our notation,
definitions and provide some background results. In section 3 we give the proof for our
main estimates. In the last section 4 we establish a connection to a related result by
Garroni et al. [4] for the two-dimensional case.

2 Definitions and Preliminaries

Let Ω be a bounded domain in R3 with connected Lipschitz continuous boundary Γ := ∂Ω.

2.1 Functions and Vector Fields

The usual Lebesgue spaces of square integrable functions, vector or tensor fields on Ω with
values in R, R3 or R3×3, respectively, will be denoted by L2(Ω). Moreover, we introduce
the standard Sobolev spaces

H(grad; Ω) = {u ∈ L2(Ω) : gradu ∈ L2(Ω)}, ||u||2
H(Grad;Ω)

:= ||u||2L2(Ω) + ||gradu||2L2(Ω) ,

H(curl; Ω) = {v ∈ L2(Ω) : curl v ∈ L2(Ω)}, ||v||2
H(curl;Ω)

:= ||v||2L2(Ω) + ||curl v||2L2(Ω) ,

H(div; Ω) = {v ∈ L2(Ω) : div v ∈ L2(Ω)}, ||v||2
H(div;Ω)

:= ||v||2L2(Ω) + ||div v||2L2(Ω) .

H(grad; Ω) is often denoted by H1(Ω). Furthermore, we define their closed subspaces
◦
H(grad; Ω),

◦
H(curl; Ω) as completition under the respective norms of the scalar resp. vector

valued space
◦
C∞(Ω) of compactly supported and smooth test functions resp. vector fields.

In the latter Sobolev spaces the usual homogeneous scalar resp. tangential boundary
conditions

u|Γ = 0, ν × v|Γ = 0
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are generalized, where ν denotes the outer unit normal at Γ. We note in passing that
ν × v|Γ = 0 is equivalent to τ · v|Γ = 0 for all tangential directions τ at Γ, which means
that v is normal at Γ. Furthermore, we need the spaces of irrotational or solenoidal vector
fields

H(curl0; Ω) := {v ∈ H(curl; Ω) : curl v = 0},
◦
H(curl0; Ω) := {v ∈

◦
H(curl; Ω) : curl v = 0},

H(div0; Ω) := {v ∈ H(div; Ω) : div v = 0},

where the index 0 indicates vanishing curl or div, respectively. All these spaces are Hilbert

spaces. E.g., in classical terms we have v ∈
◦
H(curl0; Ω), if and only if

curl v = 0, ν × v|Γ = 0.

For an introduction of these spaces see [6, p. 11-12, 148] or [5, p. 26]. The most important
tool for our analysis is the compact embedding

◦
H(curl; Ω) ∩ H(div; Ω) ↪→ L2(Ω),

which is often referred as ‘Maxwell compactness property’, see [6, p. 158] and [21, 14, 19,
22, 16]. A first immediate consequence is that the space of so called ‘harmonic Dirichlet
fields’

H(Ω) :=
◦
H(curl0; Ω) ∩ H(div0; Ω)

is finite dimensional. A vector field v belonging to H(Ω) means in classical terms that

curl v = 0, div v = 0, ν × v|Γ = 0.

The dimension of H(Ω) equals the second Betti number of Ω, see [6, p. 159] and [13,
Theorem 1]. Since we assume the boundary Γ to be connected, there are no Dirichlet
fields besides zero, i.e.,

H(Ω) = {0}.
This condition on the domain Ω resp. its boundary Γ is satisfied e.g. for a ball or a torus.

By a usual indirect argument we achieve another immediate consequence, see [6, p.
158, Theorem 8.9] or [5, Lemma 3.4]:

Lemma 1 (Maxwell Estimate for Vector Fields) There exists a positive constant cm, such

that for all v ∈
◦
H(curl; Ω) ∩ H(div; Ω)

||v||L2(Ω) ≤ cm
(
||curl v||2L2(Ω) + ||div v||2L2(Ω)

)1/2
.

By definition of the weak divergence, the projection theorem and Rellich’s selection
theorem [6, p. 14] we have from [6, p. 148, Theorem 8.3] or [20, Lemma 3.5], [7, Theorem
3.45]

Lemma 2 (Helmholtz Decomposition for Vector Fields) We have the orthogonal decompo-
sition

L2(Ω) = grad
◦
H(grad; Ω)⊕ H(div0; Ω).
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2.2 Tensor Fields

We extend our calculus to (3× 3)-tensor (matrix) fields. For vector fields v with compo-

nents in H(grad; Ω) and tensor fields P with rows in H(curl; Ω) resp. H(div; Ω), i.e.,

v =

v1

v2

v3

 , vn ∈ H(grad; Ω), P T = [P1 P2 P3], Pn ∈ H(curl; Ω) resp. H(div; Ω)

we define

Grad v :=

gradTv1

gradTv2

gradTv3

 = Jv = ∇v, CurlP :=

curlTP1

curlTP2

curlTP3

 , DivP :=

divP1

divP2

divP3

 ,
where Jv denotes the Jacobian of v and T the transpose. We note that v and DivP are
vector fields, whereas P , CurlP and Grad v are tensor fields. The corresponding Sobolev

spaces will be denoted by H(Grad; Ω),
◦
H(Grad; Ω), H(Curl; Ω),

◦
H(Curl; Ω), H(Curl0; Ω),

◦
H(Curl0; Ω), H(Div; Ω), H(Div0; Ω). As usual, we denote by symP := 1/2(P + P T ) the
symmetric part of a tensor P .

Let us now present our three crucial tools to prove the new estimate. First we have
obvious consequences from Lemmas 1 and 2:

Corollary 3 (Maxwell Estimate for Tensor Fields) For all P ∈
◦
H(Curl; Ω) ∩ H(Div; Ω)

||P ||L2(Ω) ≤ cm
(
||CurlP ||2L2(Ω) + ||DivP ||2L2(Ω)

)1/2
.

Corollary 4 (Helmholtz Decomposition for Tensor Fields) We have the orthogonal decom-
position

L2(Ω) = Grad
◦
H(Grad; Ω)⊕ H(Div0; Ω).

The third important tool is Korn’s first inequality [6, p. 207] or [18, p. 54]:

Lemma 5 (Korn’s First Inequality) For all v ∈
◦
H(Grad; Ω)

||Grad v||L2(Ω) ≤
√

2 ||sym Grad v||L2(Ω) .

3 Main Results

For tensor fields P ∈ H(Curl; Ω) we define the semi-norm

|||P ||| :=
(
||symP ||2L2(Ω) + ||CurlP ||2L2(Ω)

)1/2
.

Lemma 6 Let ĉ := max{2,
√

5cm}. Then, for all P ∈
◦
H(Curl; Ω)

||P ||L2(Ω) ≤ ĉ |||P ||| .
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Proof Let P ∈
◦
H(Curl; Ω). According to Corollary 4 we orthogonally decompose

P = Grad v +Q ∈ Grad
◦
H(Grad; Ω)⊕ H(Div0; Ω).

Then, CurlP = CurlQ and we observe Q ∈
◦
H(Curl; Ω) ∩ H(Div0; Ω) since

Grad
◦
H(Grad; Ω) ⊂

◦
H(Curl0; Ω). (3.1)

By Corollary 3 we have

||Q||L2(Ω) ≤ cm ||CurlP ||L2(Ω) . (3.2)

Then, by Lemma 5 and (3.2) we obtain easily

||P ||2L2(Ω) = ||Grad v +Q||2L2(Ω) = ||Grad v||2L2(Ω) + ||Q||2L2(Ω)

≤ 2 ||sym Grad v||2L2(Ω) + ||Q||2L2(Ω) = 2 ||sym(P −Q)||2L2(Ω) + ||Q||2L2(Ω)

≤ 4 ||symP ||2L2(Ω) + 5 ||Q||2L2(Ω) ≤ 4 ||symP ||2L2(Ω) + 5c2
m ||CurlP ||2L2(Ω) . �

The immediate consequence is

Theorem 7 On
◦
H(Curl; Ω) the norms || · ||H(Curl;Ω)

and ||| · ||| are equivalent. In particular,

||| · ||| is a norm on
◦
H(Curl; Ω) and

∃ c > 0 ∀P ∈
◦
H(Curl; Ω) c ||P ||H(Curl;Ω)

≤ ||symP ||L2(Ω) + ||CurlP ||L2(Ω) .

Setting P := Grad v we obtain by Lemma 6 and (3.1)

Remark 8 (Korn’s First Inequality: Tangential-Variant) For all v ∈
◦
H(Grad; Ω)

||Grad v||L2(Ω) ≤ ĉ ||sym Grad v||L2(Ω) . (3.3)

This is Korn’s first inequality from Lemma 5 with a larger constant ĉ. Since Γ is connected,

i.e., H(Ω) = {0}, we have Grad
◦
H(Grad; Ω) =

◦
H(Curl0; Ω). Thus, (3.3) holds for all

v ∈ H(Grad; Ω) with Grad v ∈
◦
H(Curl0; Ω), i.e., with Grad vn, n = 1, 2, 3, normal at Γ,

which then extends Lemma 5 through the (apparently) weaker boundary condition.

4 Two-Dimensions: a Result of Garroni et al.

Let Ω be a bounded domain in R2 with connected Lipschitz continuous boundary Γ, which
is equivalent (in R2) to the topological property that Ω is simply connected. For tensor
fields P : Ω 7→ R2×2 we define analogously the Curl-operator by

CurlP = Curl

[
P11 P12

P21 P22

]
=

[
curl [P11 P12]T

curl [P21 P22]T

]
=

[
∂1 P12 − ∂2 P11

∂1 P22 − ∂2 P21

]
,
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where now curl denotes the two dimensional scalar rotation and CurlP is a vector. With
the appropriate changes, Lemma 6 and Theorem 7 hold as well. In particular, there exists
a positive constant c, such that

c ||P ||L2(Ω) ≤ ||symP ||L2(Ω) + ||CurlP ||L2(Ω)

holds for all P ∈
◦
H(Curl; Ω).

During the preparation of our paper we got aware that a two-dimensional related
result may be inferred from Garroni et al. [4]. Instead of tangential boundary conditions
ν × P |Γ = 0 they impose the normalization condition∫

Ω

skewP = 0. (4.1)

Let us define the total variation measure of the distribution CurlP for P ∈ L1(Ω) by

|CurlP |Ω := sup

v∈
◦
C1(Ω)

||v||L∞(Ω)≤1

〈P,CoGrad v〉L2(Ω) , CoGrad v :=

[
∂2 v1 − ∂1 v1

∂2 v2 − ∂1 v2

]
.

We note

〈P,CoGrad v〉L2(Ω) =

∫
Ω

P11 ∂2 v1 − P12 ∂1 v1 + P21 ∂2 v2 − P22 ∂1 v2.

Using partial integration, i.e., 〈P,CoGrad v〉L2(Ω) = 〈CurlP, v〉L2(Ω) for v ∈
◦
C1(Ω), it is

easy to see that |CurlP |Ω = ||CurlP ||L1(Ω) if CurlP ∈ L1(Ω). In [4, Theorem 9] it is
shown that for Ω having a Lipschitz boundary and a special ‘slicing’ property, there
exists a constant c > 0, such that

c ||P ||L2(Ω) ≤ ||symP ||L2(Ω) + |CurlP |Ω

holds for all P ∈ L1(Ω) with (4.1). Their proof uses essentially that in R2 the operators curl
and div can be exchanged by the simple transformation, i.e., curl [v1, v2]T = div [−v2, v1]T .
Thus, such a strong result may not be true in higher space dimensions N ≥ 3 and it is
open whether the normalization condition (4.1) can be exchanged with the more natural
tangential boundary conditions.
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