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1 Introduction

In this paper, we derive computable upper bounds for the distance between the exact
solution (E,H) of an initial boundary value problem for Maxwell’s equations, which
have in their second order form a hyperbolic nature, and any pair of vector fields (Ẽ, H̃)
belonging to the admissible energy class of the considered problem. As our techniques rely
on second order methods and the Maxwell system decouples in its second order version
for the electric field E and the magnetic field H, we focus on E in our analysis. The
vector field Ẽ can be considered as an approximation of E computed with the help of
a numerical method. In other words, we deduce nonnegative functionals B (also called
error majorants or upper bounds) that depend only on Ẽ and known data (coefficients,
domain, right hand side and boundary data) and satisfy the following properties:

1. E(E − Ẽ) ≤ B(Ẽ) for all admissible Ẽ.

2. B(Ẽ) = 0 iff Ẽ = E.

3. B(Ẽ)→ 0 if E(E − Ẽ)→ 0.

Here, E is a suitable error measure of the energy of the system defined on a space-time
cylinder (e.g., a L2-energy norm).

Such Functionals B provide an explicit verification of the accuracy of approximations.
Indeed, we see that B(Ẽ) is small then Ẽ belongs to a certain neighborhood of the
exact solution. Moreover, B vanishes only at the exact solution E. The third property
shows that the majorant B possesses the continuity property with respect to all sequences
converging in the topology induced by the energy norm E .

Estimates of such a type (often called functional a posteriori estimates) can be derived
by at least two methods. The first method is based on variational techniques and appli-
cable for problems that admit a variational statement. By this method a posteriori error
estimates were derived in [14, 15] and many other publications (see [5] for a systematic
overview). Another method is based upon the analysis of the integral identity (varia-
tional formulation) that defines the corresponding generalized solution. This method was
suggested in [16], where it was also shown that for linear elliptic equations both meth-
ods (variational and nonvariational) lead to the same estimates. Later the nonvariational
method was also applied to nonlinear elliptic problems and to certain classes of nonlin-
ear problems in continuum mechanics (e.g., for variational inequalities [1, 2, 18]) and to
initial boundary value problems associated with parabolic type equations [17]. A conse-
quent exposition of the ’nonvariational’ a posteriori error estimation method is presented
in the book [19]. Analogous estimates have been derived for elliptic problems in exterior
domains as well [10].

In this paper, we are concerned with an initial boundary value problem for Maxwell’s
equations. For the stationary version of this problem, functional a posteriori estimates
have been derived earlier in [11] for bounded domains. However, the hyperbolic Maxwell
problem essentially differs from the stationary case and the estimates are derived by a
new technique. The derivation method is also based on the analysis of a basic integral
relation but uses a rather different modus operandi. The reason for this lies in the specific
properties of the respective differential operator involving second order time and spatial
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derivatives with opposite signs. We overcome the difficulties arising due to this fact with
the help of a method suggested in [20] for the wave equation, which is closely related,
and deduce computable upper bounds for the distance to the exact solution measured in
a canonical L2-energy norm.

Our main results are presented in Section 3 by Theorems 5 and 8, which provide
computable and guaranteed majorants for the error measures (3.2) and (3.3) of the electric
field E. These first (and simplest) majorants are derived under stronger assumptions on
the approximation. They can be used if the approximation Ẽ possesses extra regularity,
which sometimes may be difficult to guarantee in many numerical schemes. In Section 4
we prove corresponding results under weaker assumption on the approximation Ẽ, which
are free of these drawbacks, but have a more complicated structure. Finally, in section 5
we estimate the error for the approximation of the magnetic field H as well and thus the
error of the approximation of the full solution (E,H).

We note that the respective functionals generate new variational problems, where exact
lower bounds vanish and are attained only on the exact solution. In applied analysis, the
functionals can be used for a posteriori control of errors of approximate solutions obtained
by various numerical methods.

2 Basic problem

Let Ω be a domain∗ in R3 with Lipschitz continuous boundary Γ := ∂Ω and correspond-
ing outward unit normal vector by ν. Furthermore, let T > 0, I := (0, T ) as well as
Ωt := (0, t)×Ω and Γt := (0, t)×Γ for all t > 0 the space-time cylinder and cylinder bar-
rel, respectively. We consider the classical initial boundary value problem for Maxwell’s
equation: Find vector fields E and H (electric and magnetic field), such that

∂tE − ε−1 curlH = F in ΩT , (2.1)

∂tH + µ−1 curlE = G in ΩT , (2.2)

ν × E|Γ = 0 on ΓT , (2.3)

E(0) = E(0, · ) = E0 in Ω, (2.4)

H(0) = H(0, · ) = H0 in Ω. (2.5)

Here ε and µ denote time-independent, real, symmetric and positive definite matrices with
measurable, bounded coefficients that describe properties of the media (dielectricity and
permeability, respectively). For the sake of brevity, matrices (matrix-valued functions)
with such properties are called ’admissible’. We note that the corresponding inverse
matrices are admissible as well.

Remark 1 The underlying domain Ω may be bounded or unbounded. Contrary to the
stationary cases, i.e., static or time-harmonic equations, the Sobolev spaces used for the
solution theory of the Cauchy problem do not differ whether the domain is bounded or not.
For instance, in exterior domains one has to work with polynomially weighted Sobolev
spaces what naturally would lead to weighted error estimates as well. See [3, 6, 7, 8, 9]
for a detailed description.

∗, i.e., a connected open set,



4 Dirk Pauly, Sergey Repin, Tuomo Rossi

By L2(Ω) we denote the usual scalar L2-Hilbert space of square integrable functions

on Ω and by Hm(Ω), m ∈ N, the usual Sobolev spaces. H(Ω) denotes the Hilbert space
of real-valued L2-vector fields, i.e., L2(Ω,R3). For the sake of simplicity, we restrict our
analysis to the case of real-valued functions and vector fields. The generalization to
complex-valued spaces is straight forward. Moreover, we define

H(curl,Ω) :=
{

Φ ∈ H(Ω) | curl Φ ∈ H(Ω)
}
, H(curl◦,Ω) :=

◦
C∞(Ω),

where the closure is taken in the natural norm of H(curl,Ω). The homogeneous tangential
boundary condition (2.3) is generalized in H(curl◦,Ω) by Gauß’ theorem. Equipped with
their natural scalar products all these spaces are Hilbert spaces.

To formulate and obtain a proper Hilbert space solution theory for the latter Cauchy
problem, we need some more suitable Hilbert spaces. We set

H(Ω) := H(Ω)× H(Ω)

as a set and equip this space with the weighted scalar product

〈(E,H), (Φ,Ψ)〉H(Ω) := 〈Λ(E,H), (Φ,Ψ)〉H(Ω)×H(Ω)
= 〈εE,Φ〉H(Ω)

+ 〈µH,Ψ〉H(Ω)
,

where

Λ :=

[
ε 0
0 µ

]
.

For the sake of a short notation, we will write for domains Ξ ⊂ RN

|| · ||Ξ := || · ||L2(Ξ,R`) , 〈 · , · 〉Ξ := 〈 · , · 〉L2(Ξ,R`)

and for suitable matrices A

|| · ||A,Ξ :=
∣∣∣∣A1/2 ·

∣∣∣∣
Ξ

= 〈A · , · 〉1/2Ξ .

Furthermore, we introduce the linear operator

MΛ : D(MΛ) ⊂ H(Ω)→ H(Ω), (Φ,Ψ) 7→ i Λ−1M(Φ,Ψ)

putting

D(MΛ) := H(curl◦,Ω)× H(curl,Ω), M :=

[
0 − curl

curl 0

]
.

Then, a solution of the Cauchy problem (2.1)-(2.5) is to be understood as a solution of
the Cauchy problem

(∂t− iMΛ)(E,H) = (F,G), (2.6)

(E,H)(0) = (E0, H0). (2.7)

Utilizing a slight and obvious modification (variation of constant formula) of [4, The-
orem 8.5], the Cauchy problem (2.6)-(2.7) has unique solution for all T (we may also
replace the interval I by R) by spectral theory since MΛ is self-adjoint. The spectral
theorem suggests

(E,H)(t) = exp(i tMΛ)(E0, H0) +

∫ t

0

exp(i(t− s)MΛ)(F,G)(s) ds, t ∈ I

as solution. We get:
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Theorem 2 Let (F,G) ∈ L1(I,H(Ω)) and (E0, H0) ∈ H(Ω). Then, the Cauchy problem
(2.6)-(2.7) is uniquely solvable in

(i) C0(I,H(Ω));

(ii) C0(I,D(MΛ)) ∩ C1(I,H(Ω)), if additionally

(F,G) ∈ L1(I,D(MΛ)) ∩ C0(I,H(Ω)) and (E0, H0) ∈ D(MΛ);

(iii) C0(I,D(M2
Λ)) ∩ C1(I,D(MΛ)) ∩ C2(I,H(Ω)), if additionally

(F,G) ∈ L1(I,D(M2
Λ)) ∩ C0(I,D(MΛ)) ∩ C1(I,H(Ω)) and (E0, H0) ∈ D(M2

Λ).

Here, (E,H) ∈ D(M2
Λ), if and only if

(E,H), (ε−1 curlH,µ−1 curlE) ∈ D(MΛ) = H(curl◦,Ω)× H(curl,Ω).

Remark 3

(i) Theorem 2 holds if we replace the spaces C` by spaces of vector fields having such

regularity only piecewise, i.e., C`p, where Φ ∈ C`p, if and only if Φ ∈ C`−1 and Φ is

piecewise C`.

(ii) To obtain the second order regularity in Theorem 2 (iii) and in view of numerical

applications it is sufficient to assume that (E0, H0) has H2(Ω)-components and that

(F,G) has C2(ΩT )-components with bounded derivatives.

If (E,H) admits the second order regularity of Theorem 2 (iii) then we can apply
∂t + iMΛ to (2.6) and obtain

(∂2
t +M2

Λ)(E,H) = (F̃ , G̃),

where (F̃ , G̃) := (∂t + iMΛ)(F,G). Equivalently, we have

(∂t Λ ∂t−MΛ−1M)(E,H) = Λ(F̃ , G̃).

Since

−MΛ−1M =

[
curlµ−1 curl 0

0 curl ε−1 curl

]
the latter equation decouples for the electric field E and magnetic field H.

In this paper, we intend to discuss the second order system for the electric field E,
which reads in classical terms

(∂t ε ∂t + curlµ−1 curl)E = K := εF̃ in ΩT , (2.8)

ν × E|Γ = 0 on ΓT , (2.9)

E(0) = E0 in Ω, (2.10)

∂tE(0) = E ′0 := ε−1 curlH0 + F (0) in Ω. (2.11)

Moreover, we assume throughout this paper that the second order regularity of Theorem
2 (iii) holds.
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Remark 4 A solution of the second order problem (2.8)-(2.11) provides also a solution
of the original first order problem (2.1)-(2.5). In particular, under proper regularity as-
sumptions on the data the system (2.8)-(2.11) is uniquely solvable as well. To show this
it sufficies to set

H(t) :=

∫ t

0

(G(s)− µ−1 curlE(s))ds+H0.

Then, (2.3) and (2.4) hold and (2.2) and (2.5) follow directly. Furthermore, to prove
(2.1) we use (2.8) and the above definition of H and obtain

∂tE(t) =

∫ t

0

∂2
s E(s)ds+ E ′0 = −ε−1 curl

∫ t

0

µ−1 curlE(s)ds+

∫ t

0

F̃ (s)ds+ E ′0

= ε−1 curlH(t) +

∫ t

0

(F̃ (s)− ε−1 curlG(s)︸ ︷︷ ︸
=∂s F (s)

)ds+ E ′0 − ε−1 curlH0︸ ︷︷ ︸
=F (0)

.

Hence, our further analysis is based on (2.8)-(2.11).

3 First form of the deviation majorant

Let Ẽ be an approximation of E. In this section, we assume that

Ẽ ∈ C1
p(I,H(curl,Ω)) ∩ C2

p(I,H(Ω)). (3.1)

Our goal is to find a computable upper bound of the error

e := E − Ẽ

associated with Ẽ. For all t ∈ I and ρ ∈ R+ we define two nonnegative quantities

nΦ,ρ(t) := ||Φ||2ε,µ−1,ρ,Ω (t) := ||∂t Φ||2ε,Ω (t) + ρ ||curl Φ||2µ−1,Ω (t), (3.2)

NΦ,ρ(t) := ||Φ||2ε,µ−1,ρ,Ωt
:= ||∂t Φ||2ε,Ωt

+ ρ ||curl Φ||2µ−1,Ωt
, (3.3)

which generate natural energy norms for the accuracy evaluation. We note that by Fubini’s
theorem

∫
Ωt

=
∫ t

0

∫
Ω

and thus

nΦ,ρ = N ′Φ,ρ, NΦ,ρ(t) =

∫ t

0

nΦ,ρ(s)ds.

Theorem 5 Let ρ ∈ (0, 1) and Ẽ be an approximation satisfying (3.1). Moreover, let
∂t e ∈ H(curl◦,Ω) for all t ∈ I. Then, for all t ∈ I

ne,ρ(t) ≤ inf
Y,γ

bẼ,ρ;Y,γ(t), Ne,ρ(t) ≤ inf
Y,γ

BẼ,ρ;Y,γ(t), (3.4)
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where

bẼ,ρ;Y,γ(t) := γeγt
∫ t

0

e−γsfẼ,Y,γ,ρ(s)ds+ fẼ,Y,γ,ρ(t),

BẼ,ρ;Y,γ(t) := eγt
∫ t

0

e−γsfẼ,Y,γ,ρ(s)ds

and the infima are taken over γ ∈ R+ and Y ∈ C1
p(I,H(curl,Ω)). Here,

fẼ,Y,γ,ρ := gẼ,Y,γ,ρ + zẼ,Y ,

gẼ,Y,γ,ρ(t) := γ−1
∣∣∣∣∣∣K̂Ẽ,Y

∣∣∣∣∣∣2
ε−1,Ωt

+ (γρ)−1
∣∣∣∣∣∣∂t K̃Ẽ,Y

∣∣∣∣∣∣2
µ,Ωt

+ (1− ρ)−1
∣∣∣∣∣∣K̃Ẽ,Y

∣∣∣∣∣∣2
µ,Ω

(t),

zẼ,Y := ne,1(0) + 2
〈
K̃Ẽ,Y , curl e

〉
Ω

(0),

where

K̂Ẽ,Y := K̂∂2
t Ẽ,curlY := ε ∂2

t Ẽ + curlY −K,
K̃Ẽ,Y := K̃curl Ẽ,Y := µ−1 curl Ẽ − Y.

Remark 6 We outline that the functionals fẼ,Y,γ,ρ, bẼ,ρ;Y,γ and BẼ,ρ;Y,γ depend only on

known data, the approximation Ẽ, the free variable Y and the free parameters ρ, γ, and do
not involve the unknown exact solution E. Thus, these quantities are explicitly computable
once the approximate solution Ẽ has been constructed. We note that the ’zero term’ zẼ,Y
represents the error in the initial conditions. In particular, zẼ,Y mainly consists of first

order derivatives of the initial error e(0) = E0 − Ẽ(0). Furthermore, Y may even be
chosen from the larger space

C1
p(I,H(Ω)) ∩ L2(I,H(curl,Ω)).

Remark 7 The absolute value of the zero term

zẼ,Y = ||∂t e||2ε,Ω (0) + ||curl e||2µ−1,Ω (0) + 2
〈
K̃Ẽ,Y , curl e

〉
Ω

(0)

may be estimated from above by the quantities

z̃Ẽ,Y := ne,1(0) + 2|
〈
K̃Ẽ,Y , curl e

〉
Ω

(0)|

= ||∂t e||2ε,Ω (0) + ||curl e||2µ−1,Ω (0) + 2|
〈
K̃Ẽ,Y , curl e

〉
Ω
|(0)

≤ ẑẼ,Y := ||∂t e||2ε,Ω (0) + 2 ||curl e||2µ−1,Ω (0) +
∣∣∣∣∣∣K̃Ẽ,Y

∣∣∣∣∣∣2
µ,Ω

(0),

which are nonnegative and easily computable. Furthermore,

(i) zẼ,Y = 0, if ∂t e(0) = 0 and curl e(0) = 0.

(ii) z̃Ẽ,Y = 0, if any only if ∂t e(0) = 0 and curl e(0) = 0.
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(iii) ẑẼ,Y = 0, if any only if ∂t e(0) = 0 and curl e(0) = 0 and µY (0) = curl Ẽ(0).

(iv) gẼ,Y,γ,ρ = 0, if and only if µY = curl Ẽ and curlY = K − ε ∂2
t Ẽ.

Therefore, choosing the functional fẼ,Y,γ,ρ with z̃Ẽ,Y or ẑẼ,Y we see that for all t ∈ I the
functional bẼ,ρ;Y,γ(t) vanishes, if and only if

∂t Ẽ(0) = E ′0, curl Ẽ(0) = curlE0, µY = curl Ẽ, curlY = K − ε ∂2
t Ẽ. (3.5)

Thus, ∂t e and curl e vanish, if and only if ne,ρ = 0, which is implied by bẼ,ρ;Y,γ = 0. The
latter condition is equivalent to (3.5). The same holds for the energy norm Ne,ρ and the
functional BẼ,ρ;Y,γ.

Proof of Theorem 5 We start with deriving first order ordinary differential inequalities,
which then lead to the estimates by Gronwall’s lemma (see appendix). Since ∂t e belongs
to H(curl◦,Ω), we have

∂t ne,1(t) = 2
〈
ε ∂2

t e, ∂t e
〉

Ω
(t) + 2

〈
µ−1 curl e, curl ∂t e

〉
Ω

(t)

= 2
〈
K − ε ∂2

t Ẽ, ∂t e
〉

Ω
(t)− 2

〈
µ−1 curl Ẽ − Y + Y, curl ∂t e

〉
Ω

(t)

= −2
〈
K̂Ẽ,Y , ∂t e

〉
Ω

(t)− 2 ∂t

〈
K̃Ẽ,Y , curl e

〉
Ω

(t) + 2
〈
∂t K̃Ẽ,Y , curl e

〉
Ω

(t).

Thus, by integration

ne,1(t) = zẼ,Y − 2
( 〈
K̃Ẽ,Y , curl e

〉
Ω︸ ︷︷ ︸

=:S1

(t)−
〈
∂t K̃Ẽ,Y , curl e

〉
Ωt︸ ︷︷ ︸

=:S2(t)

+
〈
K̂Ẽ,Y , ∂t e

〉
Ωt︸ ︷︷ ︸

=:S3(t)

)
. (3.6)

We estimate the scalar products S` by

2|S1(t)| ≤ α ||curl e||2µ−1,Ω (t) + α−1
∣∣∣∣∣∣K̃Ẽ,Y

∣∣∣∣∣∣2
µ,Ω

(t),

2|S2(t)| ≤ β ||curl e||2µ−1,Ωt
+ β−1

∣∣∣∣∣∣∂t K̃Ẽ,Y

∣∣∣∣∣∣2
µ,Ωt

,

2|S3(t)| ≤ γ ||∂t e||2ε,Ωt
+ γ−1

∣∣∣∣∣∣K̂Ẽ,Y

∣∣∣∣∣∣2
ε−1,Ωt

,

(3.7)

where α, β, γ ∈ R+ are arbitrary. For ρ ∈ (0, 1) we choose α := 1− ρ ∈ (0, 1). Then, for
arbiratry γ ∈ R+ we put β := γρ ∈ R+. Inserting (3.7) into (3.6), we achieve

ne,ρ ≤ γNe,ρ + fẼ,Y,γ,ρ,

which may be written in two ways

ne,ρ(t) ≤ γ

∫ t

0

ne,ρ(s)ds+ fẼ,Y,γ,ρ(t), N ′e,ρ(t) ≤ γNe,ρ(t) + fẼ,Y,γ,ρ(t).

Gronwall’s inequalities, i.e., (A.2) and (A.4), complete the proof. �

Since ∂t e = 0 implies e(t) = e(0) = E0 − Ẽ(0) constantly for all t we obtain:
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Theorem 8 Let an approximation Ẽ and Y as in Theorem 5 be given. Then, the
following two statements are equivalent:

(i) Ẽ(0) = E0 and bẼ,ρ;Y,γ = 0.

(ii) Ẽ = E and µY = curlE.

In words: Let the approximation Ẽ satisfy the first initial condition Ẽ(0) = E0 exactly.
Then, the functional bẼ,ρ;Y,γ vanishes if and only if the approximation Ẽ equals E and µY
equals curlE.

Remark 9 The assertions of the latter theorem remain valid if we replace bẼ,ρ;Y,γ by
BẼ,ρ;Y,γ.

Remark 10 The latter theorem provides a new variational formulation for the second
order problem (2.8)-(2.11) and thus, in view of Remark 4, for the original first order
problem (2.1)-(2.5) as well.

3.1 Refinement of the estimate

We can derive sharper estimates if ρ and γ in Theorem 5 depend on time. Then, we
replace

nΦ,ρ(t), NΦ,ρ(t) =

∫ t

0

nΦ,ρ(s)ds =

∫ t

0

(
||∂t Φ||2ε,Ω (s) + ρ ||curl Φ||2µ−1,Ω (s)

)
ds

by

ñΦ,ρ(t) := ||∂t Φ||2ε,Ω (t) + ρ(t) ||curl Φ||2µ−1,Ω (t),

ÑΦ,ρ,γ(t) :=

∫ t

0

γ(s)ñΦ,ρ(s)ds =

∫ t

0

γ(s)
(
||∂t Φ||2ε,Ω (s) + ρ(s) ||curl Φ||2µ−1,Ω (s)

)
ds,

respectively. In this case, Ñ ′Φ,ρ,γ = γñΦ,ρ and we modify (3.7) in an obvious manner, i.e.,

2|S1(t)| ≤ α(t) ||curl e||2µ−1,Ω (t) + α−1(t)
∣∣∣∣∣∣K̃Ẽ,Y

∣∣∣∣∣∣2
µ,Ω

(t),

2|S2(t)| ≤
∫ t

0

β(s) ||curl e||2µ−1,Ω (s)ds+

∫ t

0

β−1(s)
∣∣∣∣∣∣∂t K̃Ẽ,Y

∣∣∣∣∣∣2
µ,Ω

(s)ds,

2|S3(t)| ≤
∫ t

0

γ(s) ||∂t e||2ε,Ω (s)ds+

∫ t

0

γ−1(s)
∣∣∣∣∣∣K̂Ẽ,Y

∣∣∣∣∣∣2
ε−1,Ω

(s)ds.

(3.8)

By (3.6) and (3.8) we find that

ñe,ρ(t) ≤
∫ t

0

γ(s)ñe,ρ(s)ds+ f̃Ẽ,Y,γ,ρ(t), Ñ ′e,ρ,γ(t) ≤ γ(t)Ñe,ρ,γ(t) + γ(t)f̃Ẽ,Y,γ,ρ(t),
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where f̃Ẽ,Y,γ,ρ := g̃Ẽ,Y,γ,ρ + zẼ,Y with

g̃Ẽ,Y,γ,ρ(t) := (1− ρ)−1(t)
∣∣∣∣∣∣K̃Ẽ,Y

∣∣∣∣∣∣2
µ,Ω

(t)

+

∫ t

0

γ−1(s)
∣∣∣∣∣∣K̂Ẽ,Y

∣∣∣∣∣∣2
ε−1,Ω

(s)ds+

∫ t

0

(γρ)−1(s)
∣∣∣∣∣∣∂t K̃Ẽ,Y

∣∣∣∣∣∣2
µ,Ω

(s)ds.

We apply (A.1) and (A.3), respectively, and arrive at the following result:

Theorem 11 Let ρ : I → (0, 1) and Ẽ be an approximation satisfying (3.1). Moreover,
let ∂t e ∈ H(curl◦,Ω) for all t ∈ I. Then, for all t ∈ I

ñe,ρ(t) ≤ inf
Y,γ

b̃Ẽ,ρ;Y,γ(t), Ñe,ρ,γ(t) ≤ inf
Y,γ

B̃Ẽ,ρ;Y,γ(t), (3.9)

where

b̃Ẽ,ρ;Y,γ(t) := eΓ(t)

∫ t

0

e−Γ(s)γ(s)f̃Ẽ,Y,γ,ρ(s)ds+ f̃Ẽ,Y,γ,ρ(t), Γ(t) :=

∫ t

0

γ(s)ds,

B̃Ẽ,ρ;Y,γ(t) := eΓ(t)

∫ t

0

e−Γ(s)γ(s)f̃Ẽ,Y,γ,ρ(s)ds

and the infima are taken over γ : I → R+ and Y ∈ C1
p(I,H(curl,Ω)).

Remark 12

(i) The corresponding other assertions hold like in Theorem 5.

(ii) If γ is constant we get the same formulas as in Theorem 5, i.e.,

b̃Ẽ,ρ;Y,γ(t) = γeγt
∫ t

0

e−γsf̃Ẽ,Y,γ,ρ(s)ds+ f̃Ẽ,Y,γ,ρ(t),

B̃Ẽ,ρ;Y,γ(t) = γeγt
∫ t

0

e−γsf̃Ẽ,Y,γ,ρ(s)ds.

We note that in this case Ñe,ρ,γ = γÑe,ρ,1. If γ and ρ are both constant the estimates
coincide with those of Theorem 5.

(iii) Since the latter estimates are stronger it is clear that Theorem 8 and Remarks 9 and
10 hold as well.

4 Second form of the deviation majorant

The estimates presented in Theorems 5 and 11 are derived for approximations Ẽ
having second order time derivatives. This requirement may be difficult to satisfy in
practice because typical approximate solutions possess only first order time derivatives.
In this section, we derive estimates applicable for approximations of such a type.
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As above, Ẽ is an approximation of E, but now we also introduce a vector field Ẽt
considered as an approximation of ∂tE. Hence, we define both the error and the error of
the time derivative separately by

e := E − Ẽ, et := ∂tE − Ẽt.

We note that in general Ẽt 6= ∂t Ẽ and therefore et 6= ∂t e. Henceforth, we assume that

Ẽ, Ẽt ∈ C1
p(I,H(curl,Ω)),

et ∈ H(curl◦,Ω) for all t ∈ I,
(4.1)

where it would be sufficient to assume that

Ẽ ∈ C1
p(I,H(curl,Ω)),

Ẽt ∈ C1
p(I,H(Ω)) ∩ L2(I,H(curl,Ω)),

Ẽt ∈ H(curl◦,Ω) for all t ∈ I.

With two nonnegative, real functions ρ and γ on I we define two energy norms

nΦ,Ψ,ρ(t) := ||Φ||2ε,Ω (t) + ρ(t) ||curl Ψ||2µ−1,Ω (t),

NΦ,Ψ,ρ,γ(t) :=

∫ t

0

γ(s)nΦ,Ψ,ρ(s)ds =

∫ t

0

γ(s)
(
||Φ||2ε,Ω (s) + ρ(s) ||Ψ||2µ−1,Ω (s)

)
ds.

Then, N ′Φ,Ψ,ρ,γ = γnΦ,Ψ,ρ.

Theorem 13 Let ρ : I → (0, 1) and Ẽ be an approximation satisfying (4.1). Then, for
all t ∈ I

net,e,ρ(t) ≤ inf
Y,γ

bẼ,Ẽt,ρ;Y,γ(t), Net,e,ρ,γ(t) ≤ inf
Y,γ

BẼ,Ẽt,ρ;Y,γ(t), (4.2)

where

bẼ,Ẽt,ρ;Y,γ(t) := eΓ(t)

∫ t

0

e−Γ(s)γ(s)fẼ,Ẽt,Y,γ,ρ
(s)ds+ fẼ,Ẽt,Y,γ,ρ

(t), Γ(t) :=

∫ t

0

γ(s)ds,

BẼ,Ẽt,ρ;Y,γ(t) := eΓ(t)

∫ t

0

e−Γ(s)γ(s)fẼ,Ẽt,Y,γ,ρ
(s)ds

and the infima are taken over γ : I → R+ and Y ∈ C1
p(I,H(curl,Ω)). Here,

fẼ,Ẽt,Y,γ,ρ
:= gẼ,Ẽt,Y,γ,ρ

+ zẼ,Ẽt,Y
,

gẼ,Ẽt,Y,γ,ρ
(t) := (1− ρ)−1(t)

∣∣∣∣∣∣K̃Ẽ,Y

∣∣∣∣∣∣2
µ,Ω

(t) + 2
〈
K̃Ẽ,Y , curl(Ẽt − ∂t Ẽ)

〉
Ωt

+

∫ t

0

γ−1(s)
∣∣∣∣ǨẼt,Y

∣∣∣∣2
ε−1,Ω

(s)ds

+

∫ t

0

(γρ)−1(s)
∣∣∣∣∣∣µ−1 curl Ẽt − ∂t Y

∣∣∣∣∣∣2
µ,Ω

(s)ds,

zẼ,Ẽt,Y
:= net,e,1(0) + 2

〈
K̃Ẽ,Y , curl e

〉
Ω

(0),

where ǨẼt,Y
:= K̂∂t Ẽt,curlY := ε ∂t Ẽt + curlY −K.



12 Dirk Pauly, Sergey Repin, Tuomo Rossi

Remark 14 If Ẽt = ∂t Ẽ then the estimates coincide with those of Theorem 11. Fur-
thermore, Remark 6 holds in a similar way. Particularly, Y may be chosen from the larger
space

C1
p(I,H(Ω)) ∩ L2(I,H(curl,Ω)).

If γ > 0 is constant then

Net,e,ρ,γ(t) = γNet,e,ρ,1(t) = γ

∫ t

0

net,e,ρ(s)ds, Γ(t) = γt

and the upper bounds simplyfy, i.e.,

bẼ,Ẽt,ρ;Y,γ(t) = γeγt
∫ t

0

e−γsfẼ,Ẽt,Y,γ,ρ
(s)ds+ fẼ,Ẽt,Y,γ,ρ

(t),

BẼ,Ẽ,ρ;Y,γ(t) = γeγt
∫ t

0

e−γsfẼ,Ẽt,Y,γ,ρ
(s)ds.

If both γ and ρ are constant we have

NΦ,Ψ,ρ,γ = γNΦ,Ψ,ρ, NΦ,Ψ,ρ := NΦ,Ψ,ρ,1.

In this case,

nΦ,Ψ,ρ(t) = ||Φ||2ε,Ω (t) + ρ ||curl Ψ||2µ−1,Ω (t),

NΦ,Ψ,ρ(t) = ||Φ||2ε,Ωt
+ ρ ||curl Ψ||2µ−1,Ωt

and

nΦ,Ψ,ρ = N ′Φ,Ψ,ρ, NΦ,Ψ,ρ(t) =

∫ t

0

nΦ,Ψ,ρ(s)ds.

Theorem 15 Let ρ ∈ (0, 1) and Ẽ be an approximation satisfying (4.1). Then, for all
t ∈ I

net,e,ρ(t) ≤ inf
Y,γ

bẼ,Ẽtρ;Y,γ(t), Net,e,ρ(t) ≤ inf
Y,γ

B̂Ẽ,Ẽt,ρ;Y,γ(t), (4.3)

where

bẼ,Ẽt,ρ;Y,γ(t) := γeγt
∫ t

0

e−γsfẼ,Ẽt,Y,γ,ρ
(s)ds+ fẼ,Ẽt,Y,γ,ρ

(t),

B̂Ẽ,Ẽt,ρ;Y,γ(t) := eγt
∫ t

0

e−γsfẼ,Ẽt,Y,γ,ρ
(s)ds

and the infima are taken over γ ∈ R+ and Y ∈ C1
p(I,H(curl,Ω)). Here,

fẼ,Ẽt,Y,γ,ρ
:= gẼ,Ẽt,Y,γ,ρ

+ zẼ,Ẽt,Y
,

gẼ,Ẽt,Y,γ,ρ
(t) := (1− ρ)−1

∣∣∣∣∣∣K̃Ẽ,Y

∣∣∣∣∣∣2
µ,Ω

(t) + 2
〈
K̃Ẽ,Y , curl(Ẽt − ∂t Ẽ)

〉
Ωt

+ γ−1
∣∣∣∣ǨẼt,Y

∣∣∣∣2
ε−1,Ωt

+ (γρ)−1
∣∣∣∣∣∣µ−1 curl Ẽt − ∂t Y

∣∣∣∣∣∣2
µ,Ωt

.
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Remark 16 If Ẽt = ∂t Ẽ then the estimates coincide with those of Theorem 5. Again,
Remark 6 holds in a similar way. In particular, Y can be chosen from

C1
p(I,H(Ω)) ∩ L2(I,H(curl,Ω)).

Remark 17 The absolute value of the zero term

zẼ,Ẽt,Y
= ||et||2ε,Ω (0) + ||curl e||2µ−1,Ω (0) + 2

〈
K̃Ẽ,Y , curl e

〉
Ω

(0)

can be estimated from above by the two quantities

z̃Ẽ,Ẽt,Y
:= net,e,1(0) + 2|

〈
K̃Ẽ,Y , curl e

〉
Ω

(0)|

= ||et||2ε,Ω (0) + ||curl e||2µ−1,Ω (0) + 2|
〈
K̃Ẽ,Y , curl e

〉
Ω
|(0)

≤ ẑẼ,Ẽt,Y
:= ||et||2ε,Ω (0) + 2 ||curl e||2µ−1,Ω (0) +

∣∣∣∣∣∣K̃Ẽ,Y

∣∣∣∣∣∣2
µ,Ω

(0),

which are nonnegative and easily computable. The same manipulation can be done with

the term 2
〈
K̃Ẽ,Y , curl(Ẽt − ∂t Ẽ)

〉
Ωt

, taking, e.g., it’s absolute value, which leads to some

nonnegative g̃Ẽ,Ẽt,Y,γ,ρ
. Moreover,

(i) zẼ,Ẽt,Y
= 0, if et(0) = 0 and curl e(0) = 0.

(ii) z̃Ẽ,Ẽt,Y
= 0, if any only if et(0) = 0 and curl e(0) = 0.

(iii) ẑẼ,Ẽt,Y
= 0, if any only if et(0) = 0 and curl e(0) = 0 and µY (0) = curl Ẽ(0).

(iv) g̃Ẽ,Ẽt,Y,γ,ρ
= 0, if and only if µY = curl Ẽ, ∂t µY = curl Ẽt and curlY = K−ε ∂t Ẽt.

Therefore, choosing the functional fẼ,Ẽt,Y,γ,ρ
with z̃Ẽ,Y or ẑẼ,Y and g̃Ẽ,Ẽt,Y,γ,ρ

we see that

for all t ∈ I the functional bẼ,Ẽt,ρ;Y,γ(t) vanishes, if and only if

Ẽt(0) = E ′0, curl Ẽ(0) = curlE0, (4.4)

µY = curl Ẽ, ∂t µY = curl Ẽt, curlY = K − ε ∂t Ẽt. (4.5)

Thus, et and curl e vanish, if and only if net,e,ρ = 0, which is implied by bẼ,Ẽt,ρ;Y,γ = 0.
The latter constraint is equivalent to (4.4) and (4.5). The same holds true for the energy
norms Net,e,ρ, Net,e,ρ,γ and the functionals BẼ,Ẽt,ρ;Y,γ, B̂Ẽ,Ẽt,ρ;Y,γ.

Proof of Theorem 13 We follow in close lines the proofs of Theorems 5 and 11. Since
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et ∈ H(curl◦,Ω) and ∂t e = et + Ẽt − ∂t Ẽ, we have

∂t net,e,1(t) = 2 〈ε ∂t et, et〉Ω (t) + 2
〈
µ−1 curl e− Y + Y, curl et

〉
Ω

(t)

+ 2
〈
µ−1 curl e, curl(Ẽt − ∂t Ẽ)

〉
Ω

(t)

= 2
〈
K − curlY − ε ∂t Ẽt, et

〉
Ω

(t)− 2
〈
K̃Ẽ,Y , curl et

〉
Ω

(t)

+ 2
〈

curl(Ẽt − ∂t Ẽ), µ−1 curl e
〉

Ω
(t)

= −2
〈
ǨẼt,Y

, et
〉

Ω
(t)− 2 ∂t

〈
K̃Ẽ,Y , curl e

〉
Ω

(t)

+ 2
〈
K̃Ẽ,Y , curl(Ẽt − ∂t Ẽ)

〉
Ω

(t)

+ 2

〈
µ−1 curl(Ẽt − ∂t Ẽ) + ∂t K̃Ẽ,Y︸ ︷︷ ︸

=µ−1 curl Ẽt−∂t Y

, curl e

〉
Ω

(t).

Thus, by integration

net,e,1(t)

= zẼ,Ẽt,Y
+ 2

〈
K̃Ẽ,Y , curl(Ẽt − ∂t Ẽ)

〉
Ωt

(4.6)

− 2
( 〈
K̃Ẽ,Y , curl e

〉
Ω︸ ︷︷ ︸

=:S1

(t)−
〈
µ−1 curl Ẽt − ∂t Y, curl e

〉
Ωt︸ ︷︷ ︸

=:S2(t)

+
〈
ǨẼt,Y

, et
〉

Ωt︸ ︷︷ ︸
=:S3(t)

)
.

If Ẽt = ∂t Ẽ then (4.6) coincides with (3.6). As before, we choose α := 1− ρ and β := γρ
and estimate the scalar products S` as follows:

2|S1(t)| ≤ α(t) ||curl e||2µ−1,Ω (t) + α−1(t)
∣∣∣∣∣∣K̃Ẽ,Y

∣∣∣∣∣∣2
µ,Ω

(t)

2|S2(t)| ≤
∫ t

0

β(s) ||curl e||2µ−1,Ω (s)ds+

∫ t

0

β−1(s)
∣∣∣∣∣∣µ−1 curl Ẽt − ∂t Y

∣∣∣∣∣∣2
µ,Ω

(s)ds

2|S3(t)| ≤
∫ t

0

γ(s) ||et||2ε,Ω (s)ds+

∫ t

0

γ−1(s)
∣∣∣∣ǨẼt,Y

∣∣∣∣2
ε−1,Ω

(s)ds

(4.7)

Inserting (4.7) into (4.6) yields

net,e,ρ(t) ≤
∫ t

0

γ(s)net,e,ρ(s)ds+ fẼ,Ẽt,Y,γ,ρ
(t),

N ′et,e,ρ,γ(t) ≤ γ(t)Net,e,ρ,γ(t) + γ(t)fẼ,Ẽt,Y,γ,ρ
(t).

Finally, Gronwall’s inequalities, i.e., (A.1) and (A.3), prove the assertions. �

Since et = 0 implies

e(t) =

∫ t

0

(Ẽt − ∂t Ẽ)(s)ds+ e(0)

we obtain:
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Theorem 18 Let approximations Ẽ, Ẽt and Y as in Theorem 13 or Theorem 15 be
given. Then, the following two statements are equivalent:

(i) Ẽ(0) = E0 and Ẽt = ∂t Ẽ and bẼ,Ẽt,ρ;Y,γ = 0.

(ii) Ẽ = E and Ẽt = ∂tE and µY = curlE.

In words: Let the approximations Ẽ, Ẽt satisfy Ẽt = ∂t Ẽ and the first initial condition
Ẽ(0) = E0 exactly. Then, the functional bẼ,Ẽt,ρ;Y,γ vanishes if and only if the approxima-

tion Ẽ equals E and µY equals curlE.

Remark 19 The assertions of the latter theorem remain valid if we replace bẼ,Ẽt,ρ;Y,γ by

BẼ,Ẽt,ρ;Y,γ or B̂Ẽ,Ẽt,ρ;Y,γ.

Remark 20 The latter theorems provide new variational formulations for the second
order problem (2.8)-(2.11) and thus, in view of Remark 4, for the original first order
problem (2.1)-(2.5) as well.

5 Estimates for the approximation of the whole so-

lution

By (2.6) (or the basic equations (2.1), (2.2)) we also get estimates for the errors h,
ht of the magnetic fields H, ∂tH and their approximations H̃, H̃t. E.g., by adding
−(Ẽt, H̃t) + iMΛ(Ẽ, H̃) to (2.6) we obtain

(et, ht)− iMΛ(e, h) = (f, g) := (F,G)− (Ẽt, H̃t) + iMΛ(Ẽ, H̃),

which reads explicitly

et − ε−1 curlh = f = F − Ẽt + ε−1 curl H̃,

ht + µ−1 curl e = g = G− H̃t − µ−1 curl Ẽ.

Therefore, we can estimate

n̂ht,h,ρ(t) := ρ(t) ||ht||2µ,Ω (t) + ||curlh||2ε−1,Ω (t)

≤ 2net,e,ρ(t) + 2 ||f ||2ε,Ω (t) + 2 ||g||2µ,Ω (t)

≤ 2 inf
Y,γ

bẼ,Ẽt,ρ;Y,γ(t) + 2 ||f ||2ε,Ω (t) + 2 ||g||2µ,Ω (t),

which yields

net,e,ρ(t) + n̂ht,h,ρ(t)

= ||et||2ε,Ω (t) + ρ(t) ||curl e||2µ−1,Ω (t) + ρ(t) ||ht||2µ,Ω (t) + ||curlh||2ε−1,Ω (t)

≤ 3 inf
Y,γ

bẼ,Ẽt,ρ;Y,γ(t) + 2 ||f ||2ε,Ω (t) + 2 ||g||2µ,Ω (t).
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Of course, similar estimates hold for the other norms and functionals and the estimates
simplify in an obvious way if ρ or γ are positive constants. The vector fields (f, g) measure
the error in the original first order equation (2.6). Moreover, (et, ht) may be replaced by
∂t(e, h) if for the approximations sufficient regularity is available. In this case, the error
in the first order equation is

(f, g) = (F,G)− (∂t− iMΛ)(Ẽ, H̃) = (∂t− iMΛ)(e, h).

A Appendix: Gronwall inequalities

Gronwall inequalities can be found in almost any book about ordinary differential
equations. Since these estimates differ in small details, we present here two estimates,
which meet our needs. With

C1
p(I) := C1

p(I,R), C0(I) := C0(I,R)

we have

Lemma 21 (differential form) Let u ∈ C1
p(I) and ϕ, ψ ∈ C0(I) with ϕ ≥ 0. If in I

u′ ≤ ϕu+ ψ

then for all t ∈ I

u(t) ≤ exp(Φ(t))
(
u(0) +

∫ t

0

exp(−Φ(s))ψ(s)ds
)
, Φ(t) :=

∫ t

0

ϕ(s)ds. (A.1)

If ϕ is a nonnegative constant then for all t ∈ I

u(t) ≤ exp(ϕt)
(
u(0) +

∫ t

0

exp(−ϕs)ψ(s)ds
)
. (A.2)

If ψ ≤ c ∈ R then for all t ∈ I

u(t) ≤ (u(0) + ct) exp(Φ(t)).

Proof Since
(exp(−Φ)u)′ = exp(−Φ)(u′ − ϕu) ≤ exp(−Φ)ψ

we have

exp(−Φ(t))u(t) ≤ u(0) +

∫ t

0

exp(−Φ(s))ψ(s)ds,

which proves the first part. The other assertions are trivial. �

Using the notations of the latter lemma, we have
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Lemma 22 (integral form) Let u, ϕ, ψ ∈ C0(I) with ϕ ≥ 0. If for all t ∈ I

u(t) ≤
∫ t

0

ϕ(s)u(s)ds+ ψ(t)

then for all t ∈ I

u(t) ≤ exp(Φ(t))

∫ t

0

exp(−Φ(s))ϕ(s)ψ(s)ds+ ψ(t). (A.3)

If ϕ is a nonnegative constant then for all t ∈ I

u(t) ≤ ϕ exp(ϕt)

∫ t

0

exp(−ϕs)ψ(s)ds+ ψ(t). (A.4)

If ψ ≤ c ∈ R then for all t ∈ I

u(t) ≤ c exp(Φ(t)).

Proof Set ũ(t) :=

∫ t

0

ϕ(s)u(s)ds and ψ̃ := ϕψ. Then ũ′ = ϕu ≤ ϕũ + ψ̃. Lemma 21

yields

u(t) ≤ ũ(t) + ψ(t) ≤ exp(Φ(t))
(
ũ(0) +

∫ t

0

exp(−Φ(s))ψ̃(s)ds
)

+ ψ(t),

which proves the first assertion since ũ(0) = 0. The second assertion is trivial. To prove
the last part we compute with exp(−Φ)′ = − exp(−Φ)ϕ

u(t) ≤ c exp(Φ(t))

∫ t

0

exp(−Φ(s))ϕ(s)ds+ c = c exp(Φ(t)).

�

Remark 23 The differential and integral form are equivalent.

Proof Let the assumptions of Lemma 21 be satisfied. Then,

u(t) ≤
∫ t

0

ϕ(s)u(s)ds+

∫ t

0

ψ(t)ds+ u(0)︸ ︷︷ ︸
=:ψ̃(t)

and by Lemma 22

u(t) ≤ exp(Φ(t))

∫ t

0

exp(−Φ(s))ϕ(s)︸ ︷︷ ︸
↑

ψ̃(s)︸︷︷︸
↓

ds+ ψ̃(t)

= exp(Φ(t))
( ∫ t

0

exp(−Φ(s)) ψ̃′(s)︸ ︷︷ ︸
=ψ(s)

ds− exp(−Φ(s))ψ̃(s)
∣∣∣t
0︸ ︷︷ ︸

=exp(−Φ(t))ψ̃(t)−ψ̃(0)

)
+ ψ̃(t),

which completes the proof since ψ̃(0) = u(0). �
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Corollary 24

(i) Let the assumptions of Lemma 21 by satisfied. Then, u(0) ≤ 0 and ψ ≤ 0 imply
u ≤ 0. Hence, if u ≥ 0 then u(0) ≤ 0 and ψ ≤ 0 imply u = 0.

(ii) Let the assumptions of Lemma 22 by satisfied. Then, ψ ≤ 0 implies u ≤ 0. Hence,
if u ≥ 0 then ψ ≤ 0 implies u = 0.
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