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DIRK PAULY AND MICHAEL SCHOMBURG

Abstract. We show that the elasticity Hilbert complex with mixed boundary conditions on

bounded strong Lipschitz domains is closed and compact. The crucial results are compact em-

beddings which follow by abstract arguments using functional analysis together with particular
regular decompositions. Higher Sobolev order results are proved as well. This paper extends

recent results on the de Rham Hilbert complex with mixed boundary conditions from [11] and

recent results on the elasticity Hilbert complex with empty or full boundary conditions from
[15].
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1. Introduction

In this paper we prove regular decompositions and resulting compact embeddings for the elas-
ticity complex

· · · L2(Ω) L2
S(Ω) L2

S(Ω) L2(Ω) · · · .··· symGrad RotRot>S DivS ···

This extends the corresponding results from [11] for the de Rham complex

· · · Lq−1,2(Ω) Lq,2(Ω) Lq+1,2(Ω) · · · ,··· dq−1 dq ···
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whose 3D-version for vector proxies is given by

· · · L2(Ω) L2(Ω) L2(Ω) L2(Ω) · · · .··· d0 =̂ grad d1 =̂ rot d2 =̂ div ···

We shall consider mixed boundary conditions on a bounded strong Lipschitz domain Ω ⊂ R3.
Like the de Rham complex, the elasticity complex has the geometric structure of a Hilbert

complex, i.e.,

· · · H0 H1 H2 · · · ,··· A0 A1 ··· R(A0) ⊂ N(A1),

where A0 and A1 are densely defined and closed (unbounded) linear operators between Hilbert
spaces H`. The corresponding domain Hilbert complex is denoted by

· · · D(A0) D(A0) H2 · · · .··· A0 A1 ···

In fact, we show that the assumptions of [11, Lemma 2.22] hold, which provides an elegant,
abstract, and short way to prove the crucial compact embeddings

D(A1) ∩D(A∗0) ↪→ H1(1)

for the elasticity Hilbert complex. In principle, our general technique – compact embeddings by
regular decompositions and Rellich’s selection theorem – works for all Hilbert complexes known
in the literature, see, e.g., [1] for a comprehensive list of such Hilbert complexes.

Roughly speaking a regular decomposition has the form

D(A1) = H+
1 + A0 H

+
0

with regular subspaces H+
0 ⊂ D(A0) and H+

1 ⊂ D(A1) such that the embeddings H+
0 ↪→ H0 and

H+
1 ↪→ H1 are compact. The compactness is typically and simply given by Rellich’s selection

theorem, which justifies the notion “regular”. By applying A1 any regular decomposition implies
regular potentials

R(A1) = A1 H
+
1

by the complex property. The respective regular potential and decomposition operators

PA1 : R(A1)→ H+
1 , Q1

A1
: D(A1)→ H+

1 , Q0
A1

: D(A1)→ H+
0

are bounded and satisfy A1 PA1
= idR(A1) as well as idD(A1) = Q1

A1
+ A0Q0

A1
.

Note that (1) implies several important results related to the particular Hilbert complex by the
so-called FA-ToolBox, such as closed ranges, Friedrichs/Poincaré type estimates, Helmholtz typ
decompositions, and comprehensive solution theories, cf. [7, 8, 9, 10] and [13, 14, 15].

For an historical overview on the compact embeddings (1) corresponding to the de Rham
complex and Maxwell’s equations, i.e., Weck’s or Weber-Weck-Picard’s selection theorem, see,
e.g., the introductions in [2, 6], the original papers [19, 18, 16, 20, 5, 17], and the recent state of
the art results for mixed boundary conditions and bounded weak Lipschitz domains in [2, 3, 4].
Compact embeddings (1) corresponding to the biharmonic and the elasticity complex are given in
[15] and [13, 14], respectively. Note that in the recent paper [1] similar results have been shown
for no or full boundary conditions using an alternative and more algebraic approach, the so-called
Bernstein-Gelfand-Gelfand resolution (BGG).

2. Elasticity Complexes I

Throughout this paper, let Ω ⊂ R3 be a bounded strong Lipschitz domain with boundary Γ,
decomposed into two parts Γt and Γn := Γ \ Γt with some relatively open and strong Lipschitz
boundary part Γt ⊂ Γ.
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2.1. Notations and Preliminaries. We will strongly use the notations and results from our cor-
responding papers for the elasticity complex [15] and for the de Rham complex [11]. In particular,
we recall [11, Section 2, Section 3] including the notion of extendable domains.

We utilise the standard Sobolev spaces from [11], e.g., the usual Lebesgue and Sobolev spaces

(scalar or tensor valued) L2(Ω) and Hk(Ω) with k ∈ N0. Boundary conditions are introduced in
the strong sense as closures of respective test fields, i.e.,

HkΓt(Ω) := C∞Γt (Ω)
Hk(Ω)

,

we well as in the weak sense by

Hk
Γt(Ω) :=

{
u ∈ Hk(Ω) : 〈∂α u, φ〉L2(Ω) = (−1)|α|〈u, ∂α φ〉L2(Ω) ∀φ ∈ C∞Γn(Ω) ∀ |α| ≤ k

}
.

Lemma 2.1 ([11, Lemma 3.2, Theorem 4.6]). Hk
Γt(Ω) = HkΓt(Ω), i.e., weak and strong boundary

conditions coincide for the standard Sobolev spaces with mixed boundary conditions.

We shall use the abbreviations Hk∅(Ω) = Hk(Ω) and H0
Γt(Ω) = L2(Ω), where the first notion is

actually a density result and incorporated into the notation by purpose.

2.2. Operators. Let symGrad, RotRot>, and Div (here Grad, Rot, and Div act row-wise as the
operators grad, rot, and div from the vector de Rham complex) be realised as densely defined
(unbounded) linear operators

˚symGradΓt : D( ˚symGradΓt) ⊂ L2(Ω)→ L2
S(Ω); v 7→ sym Grad v =

1

2

(
Grad v + (Grad v)>

)
,

˚RotRot>S,Γt : D( ˚RotRot>S,Γt) ⊂ L2
S(Ω)→ L2

S(Ω); S 7→ RotRot> S = Rot
(
(RotS)>

)
,

D̊ivS,Γt : D(D̊ivS,Γt) ⊂ L2
S(Ω)→ L2(Ω); T 7→ Div T

(S, T , Grad v, sym Grad v, RotS, RotRot> S are (3 × 3)-tensor fields, and v, Div T are 3-vector
fields) with domains of definition

D( ˚symGradΓt) := C∞Γt (Ω), D( ˚RotRot>S,Γt) := C∞S,Γt(Ω), D(D̊ivS,Γt) := C∞S,Γt(Ω)

satisfying the complex properties

˚RotRot>S,Γt
˚symGradΓt ⊂ 0, D̊ivS,Γt

˚RotRot>S,Γt ⊂ 0.

For elementary properties of these operators see, e.g., [15], in particular, we have the collection of
formulas presented in Lemma A.1. Here, we introduce the Lebesgue Hilbert space and the test
space of symmetric tensor fields

L2
S(Ω) :=

{
S ∈ L2(Ω) : S> = S

}
, C∞S,Γt(Ω) := C∞Γt (Ω) ∩ L2

S(Ω),

respectively. We get the elasticity complex on smooth tensor fields

· · · L2(Ω) L2
S(Ω) L2

S(Ω) L2(Ω) · · · .···
˚symGradΓt

˚RotRot>S,Γt D̊ivS,Γt ···

The closures

symGradΓt := ˚symGradΓt , RotRot>S,Γt := ˚RotRot>S,Γt , DivS,Γt := D̊ivS,Γt

and Hilbert space adjoints

symGrad∗Γt = ˚symGrad∗Γt , (RotRot>S,Γt)
∗ = ( ˚RotRot>S,Γt)

∗, Div∗S,Γt = D̊iv∗S,Γt

are given by the densely defined and closed linear operators

A0 := symGradΓt : D(symGradΓt) ⊂ L2(Ω)→ L2
S(Ω); v 7→ symGrad v,

A1 := RotRot>S,Γt : D(RotRot>S,Γt) ⊂ L2
S(Ω)→ L2

S(Ω); S 7→ RotRot> S,

A2 := DivS,Γt : D(DivS,Γt) ⊂ L2
S(Ω)→ L2(Ω); T 7→ Div T,

A∗0 = symGrad∗Γt = −DivS,Γn : D(DivS,Γn) ⊂ L2
S(Ω)→ L2(Ω); S 7→ −DivS,

A∗1 = (RotRot>S,Γt)
∗ = RotRot>S,Γn : D(RotRot>S,Γn) ⊂ L2

S(Ω)→ L2
S(Ω); T 7→ RotRot> T,
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A∗2 = Div∗S,Γt = −symGradΓn : D(symGradΓn) ⊂ L2(Ω)→ L2
S(Ω); v 7→ − symGrad v

with domains of definition

D(A0) = D(symGradΓt) = HΓt(symGrad,Ω), D(A∗0) = D(DivS,Γn) = HS,Γn(Div,Ω),

D(A1) = D(RotRot>S,Γt) = HS,Γt(RotRot>,Ω), D(A∗1) = D(RotRot>S,Γn) = HS,Γn(RotRot>,Ω),

D(A2) = D(DivS,Γt) = HS,Γt(Div,Ω), D(A∗2) = D(symGradΓn) = HΓn(symGrad,Ω).

We shall introduce the latter Sobolev spaces in the next section.

2.3. Sobolev Spaces. Let

H(symGrad,Ω) :=
{
v ∈ L2(Ω) : symGrad v ∈ L2(Ω)

}
,

HS(RotRot>,Ω) :=
{
S ∈ L2

S(Ω) : RotRot> S ∈ L2(Ω)
}
,

HS(Div,Ω) :=
{
T ∈ L2

S(Ω) : Div T ∈ L2(Ω)
}
.

Note thatM ∈ HS(RotRot>,Ω) implies RotRot>M ∈ L2
S(Ω), and that we have by Korn’s inequality

the regularity

H(symGrad,Ω) = H1(Ω)

with equivalent norms. Moreover, we define boundary conditions in the strong sense as closures
of respective test fields, i.e.,

HΓt(symGrad,Ω) := C∞Γt (Ω)
H(symGrad,Ω)

,

HS,Γt(RotRot>,Ω) := C∞S,Γt(Ω)
HS(RotRot>,Ω)

,

HS,Γt(Div,Ω) := C∞S,Γt(Ω)
HS(Div,Ω)

,

and we have H∅(symGrad,Ω) = H(symGrad,Ω) = H1(Ω), HS,∅(RotRot>,Ω) = HS(RotRot>,Ω),
and HS,∅(Div,Ω) = HS(Div,Ω), which are density results and incorporated into the notation

by purpose. Spaces with vanishing RotRot> and Div are denoted by HS,Γt,0(RotRot>,Ω) and
HS,Γt,0(Div,Ω), respectively. Note that, again by Korn’s inequality, we have

HΓt(symGrad,Ω) = H1
Γt(Ω).

We need also the Sobolev spaces with boundary conditions defined in the weak sense, i.e.,

HΓt(symGrad,Ω) :=
{
v ∈ H(symGrad,Ω) : 〈symGrad v,Φ〉L2(Ω) = −〈v,Div Φ〉L2(Ω)

∀Φ ∈ C∞S,Γn(Ω)
}
,

HS,Γt(RotRot>,Ω) :=
{
S ∈ HS(RotRot>,Ω) : 〈RotRot> S,Ψ〉L2(Ω) = 〈S,RotRot>Ψ〉L2(Ω)

∀Ψ ∈ C∞S,Γn(Ω)
}
,

HS,Γt(Div,Ω) :=
{
T ∈ HS(Div,Ω) : 〈Div T, φ〉L2(Ω) = −〈T, symGradφ〉L2(Ω)

∀φ ∈ C∞Γn(Ω)
}
.

Note that “strong ⊂ weak” holds, i.e., H···(· · · ,Ω) ⊂ H···(· · · ,Ω), e.g.,

HS,Γt(RotRot>,Ω) ⊂ HS,Γt(RotRot>,Ω), HS,Γt(Div,Ω) ⊂ HS,Γt(Div,Ω),

and that the complex properties hold in both the strong and the weak case, e.g.,

symGradHΓt(Ω) ⊂ HS,Γt,0(RotRot>,Ω), RotRot>HS,Γt(RotRot>,Ω) ⊂ HS,Γt,0(Div,Ω),

which follows immediately by the definitions. In Remark 2.4 below we comment on the question
whether “strong = weak” holds in general.
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2.4. Higher Order Sobolev Spaces. For k ∈ N0 we define higher order Sobolev spaces by

HkS(Ω) := Hk(Ω) ∩ L2
S(Ω),

HkS,Γt(Ω) := C∞S,Γt(Ω)
Hk(Ω)

= HkΓt(Ω) ∩ L2
S(Ω),

Hk(symGrad,Ω) :=
{
v ∈ Hk(Ω) : symGrad v ∈ Hk(Ω)

}
,

HkΓt(symGrad,Ω) :=
{
v ∈ HkΓt(Ω) ∩ HΓt(symGrad,Ω) : symGrad v ∈ HkΓt(Ω)

}
,

HkS(RotRot>,Ω) :=
{
S ∈ HkS(Ω) : RotRot> S ∈ Hk(Ω)

}
,

HkS,Γt(RotRot>,Ω) :=
{
S ∈ HkΓt(Ω) ∩ HS,Γt(RotRot>,Ω) : RotRot> S ∈ HkΓt(Ω)

}
,

HkS(Div,Ω) :=
{
T ∈ HkS(Ω) : Div T ∈ Hk(Ω)

}
,

HkS,Γt(Div,Ω) :=
{
T ∈ HkΓt(Ω) ∩ HS,Γt(Div,Ω) : Div T ∈ HkΓt(Ω)

}
.

We see HkS,∅(RotRot>,Ω) = HkS(RotRot>,Ω) and H0
S,∅(RotRot>,Ω) = HS(RotRot>,Ω) as well as

H0
S,Γt(RotRot>,Ω) = HS,Γt(RotRot>,Ω). Note that for Γt 6= ∅ it holds

HkS,Γt(RotRot>,Ω) =
{
S ∈ HkS,Γt(Ω) : RotRot> S ∈ HkΓt(Ω)

}
, k ≥ 2,(2)

but for Γt 6= ∅ and k = 0 and k = 1
(
as H0

S,Γt(Ω) = L2
S(Ω)

)
H0

S,Γt(RotRot>,Ω) = HS,Γt(RotRot>,Ω)

(
{
S ∈ H0

S,Γt(Ω) : RotRot> S ∈ H0
Γt(Ω)

}
= HS(RotRot>,Ω),

H1
S,Γt(RotRot>,Ω) (

{
S ∈ H1

S,Γt(Ω) : RotRot> S ∈ H1
Γt(Ω)

}
,

respectively. As before, we introduce the kernels

HkS,Γt,0(RotRot>,Ω) := HkΓt(Ω) ∩ HS,Γt,0(RotRot>,Ω) = HkS,Γt(RotRot>,Ω) ∩ HS,0(RotRot>,Ω)

=
{
S ∈ HkS,Γt(RotRot>,Ω) : RotRot> S = 0

}
.

The corresponding remarks and definitions extend to the HkΓt(symGrad,Ω)-spaces and HkS,Γt(Div,Ω)-
spaces as well. In particular, we have for Γt 6= ∅ and k ≥ 1

HkΓt(symGrad,Ω) =
{
v ∈ HkΓt(Ω) : symGrad v ∈ HkΓt(Ω)

}
,

HkS,Γt(Div,Ω) =
{
T ∈ HkS,Γt(Ω) : Div T ∈ HkΓt(Ω)

}
,

(3)

and

H0
Γt(symGrad,Ω) = HΓt(symGrad,Ω) (

{
v ∈ H0

Γt(Ω) : symGrad v ∈ H0
Γt(Ω)

}
= H(symGrad,Ω),

H0
S,Γt(Div,Ω) = HS,Γt(Div,Ω) (

{
T ∈ H0

S,Γt(Ω) : Div T ∈ H0
Γt(Ω)

}
= HS(Div,Ω),

as well as

HkS,Γt,0(Div,Ω) = HkΓt(Ω) ∩ HS,Γt,0(Div,Ω) = HkS,Γt(Div,Ω) ∩ HS,0(Div,Ω)

=
{
T ∈ HkS,Γt(Div,Ω) : Div T = 0

}
.

Analogously, we define the Sobolev spaces Hk
Γt(symGrad,Ω), Hk

S,Γt(RotRot>,Ω), Hk
S,Γt(Div,Ω),

and Hk
S,Γt,0(RotRot>,Ω), Hk

S,Γt,0(Div,Ω) using the respective Sobolev spaces with weak boundary

conditions. Note that again “strong ⊂ weak” holds, i.e., H······(· · · ,Ω) ⊂ H······(· · · ,Ω), e.g.,

HkS,Γt(RotRot>,Ω) ⊂ Hk
S,Γt(RotRot>,Ω), HkS,Γt(Div,Ω) ⊂ Hk

S,Γt(Div,Ω),

and that the complex properties hold in both the strong and the weak case, e.g.,

symGradHk+1
Γt

(Ω) ⊂ HkS,Γt,0(RotRot>,Ω), RotRot>Hk
S,Γt(RotRot>,Ω) ⊂ Hk

S,Γt,0(Div,Ω).

Moreover, the corresponding results for (2) and (3) hold for the weak spaces as well.
In the forthcoming sections we shall also investigate whether indeed “strong = weak” holds.

We start with a simple implication from Lemma 2.1.
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Corollary 2.2. Hk
S,Γt(Ω) = HkS,Γt(Ω), i.e., weak and strong boundary conditions coincide for the

standard Sobolev spaces of symmetric tensor fields with mixed boundary conditions.

Lemma 2.1, Corollary 2.2, (2), (3), and Korn’s inequality show the following.

Lemma 2.3 (higher order weak and strong partial boundary conditions coincide).

(i) For k ≥ 0 it holds HkΓt(symGrad,Ω) = Hk+1
Γt

(Ω) = Hk+1
Γt

(Ω).
(ii) For k ≥ 1 it holds

Hk
Γt(symGrad,Ω) =

{
v ∈ HkΓt(Ω) : symGrad v ∈ HkΓt(Ω)

}
= HkΓt(symGrad,Ω) = Hk+1

Γt
(Ω),

Hk
S,Γt(Div,Ω) =

{
T ∈ HkS,Γt(Ω) : Div T ∈ HkΓt(Ω)

}
= HkS,Γt(Div,Ω).

(iii) For k ≥ 2 it holds

Hk
S,Γt(RotRot>,Ω) =

{
S ∈ HkS,Γt(Ω) : RotRot> S ∈ HkΓt(Ω)

}
= HkS,Γt(RotRot>,Ω).

Remark 2.4 (weak and strong partial boundary conditions coincide). In [15] we could prove the
corresponding results “ strong = weak” for the whole elasticity complex but only with empty or
full boundary conditions (Γt = ∅ or Γt = Γ). Therefore, in these special cases, the adjoints are
well-defined on the spaces with strong boundary conditions as well.

Lemma 2.3 shows that for higher values of k indeed “ strong = weak” holds. Thus to show
“ strong = weak” in general we only have to prove that equality holds in the remains cases k = 0
and k = 1, i.e., we only have to show

HΓt(symGrad,Ω) ⊂ HΓt(symGrad,Ω), HS,Γt(RotRot>,Ω) ⊂ HS,Γt(RotRot>,Ω),

HS,Γt(Div,Ω) ⊂ HkS,Γt(Div,Ω), H1
S,Γt(RotRot>,Ω) ⊂ H1

S,Γt(RotRot>,Ω).

The most delicate situation appears due to the second order nature of RotRot>S . In Corollary
3.11 we shall show using regular decompositions that these results (weak and strong boundary
conditions coincide for the elasticity complex for all k ≥ 0) indeed hold true.

2.5. More Sobolev Spaces. For k ∈ N we introduce also slightly less regular higher order
Sobolev spaces by

Hk,k−1
S,Γt (RotRot>,Ω) :=

{
S ∈ HkΓt(Ω) ∩ HS,Γt(RotRot>,Ω) : RotRot> S ∈ Hk−1

Γt
(Ω)
}
,

Hk,k−1
S,Γt (RotRot>,Ω) :=

{
S ∈ Hk

Γt(Ω) ∩HS,Γt(RotRot>,Ω) : RotRot> S ∈ Hk−1
Γt

(Ω)
}
,

and we extend all conventions of our notations. For the kernels we have

Hk,k−1
S,Γt,0 (RotRot>,Ω) = HkS,Γt,0(RotRot>,Ω), Hk,k−1

S,Γt,0 (RotRot>,Ω) = Hk
S,Γt,0(RotRot>,Ω).

Note that, as before, the intersection with HS,Γt(RotRot>,Ω) and HS,Γt(RotRot>,Ω) is only needed

if k = 1. Again we have “strong ⊂ weak”, i.e., Hk,k−1
S,Γt (RotRot>,Ω) ⊂ Hk,k−1

S,Γt (RotRot>,Ω), and in

both cases (weak and strong) the complex properties hold, e.g.,

symGradHk+1
Γt

(Ω) ⊂ Hk,k−1
S,Γt,0 (RotRot>,Ω), RotRot>Hk,k−1

S,Γt (RotRot>,Ω) ⊂ Hk−1
S,Γt,0(Div,Ω).

Similar to Lemma 2.3 we have the following.

Lemma 2.5 (higher order weak and strong partial boundary conditions coincide). For k ≥ 2

Hk,k−1
S,Γt (RotRot>,Ω) =

{
S ∈ HkS,Γt(Ω) : RotRot> S ∈ Hk−1

Γt
(Ω)
}

= Hk,k−1
S,Γt (RotRot>,Ω).

2.6. Some Elasticity Complexes. By definition we have densely defined and closed (unbounded)
linear operators defining three dual pairs

(symGradΓt , symGrad∗Γt) = (symGradΓt ,−DivS,Γn),(
RotRot>S,Γt , (RotRot>S,Γt)

∗) = (RotRot>S,Γt ,RotRot>S,Γn),

(DivS,Γt ,Div∗S,Γt) = (DivS,Γt ,−symGradΓn).

[11, Remark 2.5, Remark 2.6] show the complex properties

RotRot>S,Γt symGradΓt ⊂ 0, DivS,Γt RotRot>S,Γt ⊂ 0,
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−DivS,ΓnRotRot>S,Γn ⊂ 0, −RotRot>S,ΓnsymGradΓn ⊂ 0.

Hence we get the primal and dual elasticity Hilbert complex

(4) · · · L2(Ω) L2
S(Ω) L2

S(Ω) L2(Ω) · · ····
···

symGradΓt

−DivS,Γn

RotRot>S,Γt

RotRot>S,Γn

DivS,Γt

−symGradΓn

···
···

with the complex properties

R(symGradΓt) ⊂ N(RotRot>S,Γt), R(RotRot>S,Γn) ⊂ N(DivS,Γn),

R(RotRot>S,Γt) ⊂ N(DivS,Γt), R(symGradΓn) ⊂ N(RotRot>S,Γn).

The long primal and dual elasticity Hilbert complex, cf. [11, (12)], reads

(5) RMΓt L2(Ω) L2
S(Ω) L2

S(Ω) L2(Ω) RMΓn

ιRMΓt

πRMΓt

symGradΓt

−DivS,Γn

RotRot>S,Γt

RotRot>S,Γn

DivS,Γt

−symGradΓn

πRMΓn

ιRMΓn

with the additional complex properties

R(ιRMΓt
) = N(symGradΓt) = RMΓt , R(DivS,Γn) = RM

⊥L2(Ω)

Γt
,

R(DivS,Γt) = RM
⊥L2(Ω)

Γn
, R(ιRMΓn

) = N(symGradΓn) = RMΓn ,

where

RMΣ =

{
{0} if Σ 6= ∅,
RM if Σ = ∅,

with RM :=
{
x 7→ Qx+ q : Q ∈ R3×3 skew, q ∈ R3

}
denoting the global rigid motions in Ω. Note that dimRM = 6.

More generally, in addition to (5), we shall discuss for k ∈ N0 the higher Sobolev order (long
primal and formally dual) elasticity Hilbert complexes (omitting Ω in the notation)

RMΓt HkΓt HkS,Γt HkS,Γt HkΓt RMΓn ,
ιRMΓt

symGradkΓt
RotRot

>,k
S,Γt

DivkS,Γt
πRMΓn

RMΓt HkΓn HkS,Γn HkS,Γn HkΓn RMΓn

πRMΓt
−DivkS,Γn

RotRot
>,k
S,Γn −symGradkΓn

ιRMΓn

with associated domain complexes

RMΓt HkΓt (symGrad) HkS,Γt (RotRot>) HkS,Γt (Div) HkΓt RMΓn ,

ιRMΓt
symGradkΓt

RotRot
>,k
S,Γt

DivkS,Γt
πRMΓn

RMΓt HkΓt HkS,Γn (Div) HkS,Γn (RotRot>) HkΓn (symGrad) RMΓn .

πRMΓt
−DivkS,Γn

RotRot
>,k
S,Γn −symGradkΓn

ιRMΓn

Additionally, for k ≥ 1 we will also discuss the following variants of the elasticity complexes

RMΓt HkΓt HkS,Γt Hk−1
S,Γt Hk−1

Γt
RMΓn ,

ιRMΓt
symGradkΓt

RotRot
>,k,k−1
S,Γt

Divk−1
S,Γt

πRMΓn

RMΓt Hk−1
Γn

Hk−1
S,Γn HkS,Γn HkΓn RMΓn

πRMΓt
−Divk−1

S,Γn
RotRot

>,k,k−1
S,Γn −symGradkΓn

ιRMΓn

with associated domain complexes

RMΓt HkΓt (symGrad) Hk,k−1
S,Γt

(RotRot>) Hk−1
S,Γt

(Div) Hk−1
Γt

RMΓn ,

ιRMΓt
symGradkΓt

RotRot
>,k,k−1
S,Γt

Div
k−1
S,Γt

πRMΓn

RMΓt Hk−1
Γt

Hk−1
S,Γn (Div) Hk,k−1

S,Γn (RotRot>) HkΓn (symGrad) RMΓn .

πRMΓt
−Div

k−1
S,Γn

RotRot
>,k,k−1
S,Γn −symGradkΓn

ιRMΓn

Here we have introduced the densely defined and closed linear operators

symGradkΓt : D(symGradkΓt) ⊂ HkΓt(Ω)→ HkS,Γt(Ω); v 7→ symGrad v,

RotRot>,kS,Γt : D(RotRot>,kS,Γt) ⊂ HkS,Γt(Ω)→ HkS,Γt(Ω); S 7→ RotRot> S,

DivkS,Γt : D(DivkS,Γt) ⊂ HkS,Γt(Ω)→ HkΓt(Ω); T 7→ Div T,

−DivkS,Γn : D(DivkS,Γn) ⊂ HkS,Γn(Ω)→ HkΓn(Ω); S 7→ −DivS,

RotRot>,kS,Γn : D(RotRot>,kS,Γn) ⊂ HkS,Γn(Ω)→ HkS,Γn(Ω); T 7→ RotRot> T,
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−symGradkΓn : D(symGradkΓn) ⊂ HkΓn(Ω)→ HkS,Γn(Ω); v 7→ − symGrad v

with domains of definition

D(symGradkΓt) = HkΓt(symGrad,Ω), D(DivkS,Γn) = Hk
S,Γn(Div,Ω),

D(RotRot>,kS,Γt) = HkS,Γt(RotRot>,Ω), D(RotRot>,kS,Γn) = Hk
S,Γn(RotRot>,Ω),

D(DivkS,Γt) = HkS,Γt(Div,Ω), D(symGradkΓn) = Hk
Γn(symGrad,Ω),

as well as

RotRot>,k,k−1
S,Γt : D(RotRot>,k,k−1

S,Γt ) ⊂ HkS,Γt(Ω)→ Hk−1
S,Γt (Ω); S 7→ RotRot> S,

RotRot>,k,k−1
S,Γn : D(RotRot>,k,k−1

S,Γn ) ⊂ HkS,Γn(Ω)→ Hk−1
S,Γn(Ω); T 7→ RotRot> T

with domains of definition

D(RotRot>,k,k−1
S,Γt ) = Hk,k−1

S,Γt (RotRot>,Ω), D(RotRot>,k,k−1
S,Γn ) = Hk,k−1

S,Γn (RotRot>,Ω).

2.7. Dirichlet/Neumann Fields. We also introduce the cohomology space of elastic Dirich-
let/Neumann tensor fields (generalised harmonic tensors)

HS,Γt,Γn,ε(Ω) := N(RotRot>S,Γt) ∩N(DivS,Γn ε) = HS,Γt,0(RotRot>,Ω) ∩ ε−1 HS,Γn,0(Div,Ω).

Here, ε : L2
S(Ω) → L2

S(Ω) is a symmetric and positive topological isomorphism (symmetric and
positive bijective bounded linear operator), which introduces a new inner product

〈 · , · 〉L2
S,ε(Ω) := 〈ε · , · 〉L2

S (Ω),

where L2
S,ε(Ω) := L2

S(Ω) (as linear space) equipped with the inner product 〈 · , · 〉L2
S,ε(Ω). Such

weights ε shall be called admissible and a typical example is given by a symmetric, L∞-bounded,

and uniformly positive definite tensor field ε : Ω→ R(3×3)×(3×3).

3. Elasticity Complexes II

3.1. Regular Potentials and Decompositions I.

3.1.1. Extendable Domains.

Theorem 3.1 (regular potential operators for extendable domains). Let (Ω,Γt) be an extendable
bounded strong Lipschitz pair and let k ≥ 0. Then there exist bounded linear regular potential
operators

PksymGrad,Γt : Hk
S,Γt,0(RotRot>,Ω) −→ Hk+1

Γt
(Ω) ∩ Hk+1(R3),

PkRotRot>S ,Γt
: Hk

S,Γt,0(Div,Ω) −→ Hk+2
S,Γt (Ω) ∩ Hk+2(R3),

PkDivS,Γt
: HkΓt(Ω) ∩ (RMΓn)

⊥L2(Ω) −→ Hk+1
S,Γt (Ω) ∩ Hk+1(R3).

In particular, P ...... are right inverses for symGrad, RotRot>, and Div, respectively, i.e.,

symGradPksymGrad,Γt = idHkS,Γt,0
(RotRot>,Ω),

RotRot> PkRotRot>S ,Γt
= idHkS,Γt,0

(Div,Ω),

DivPkDivS,Γt
= id

HkΓt
(Ω)∩(RMΓn )

⊥
L2(Ω)

.

Without loss of generality, P ...... map to tensor fields with a fixed compact support in R3.

Remark 3.2. Note that An PAn = idR(An) is a general property of a (bounded regular) potential

operator PAn : R(An)→ H+
n with H+

n ⊂ D(An).

Proof of Theorem 3.1. In [15, Theorem 4.2] we have shown the stated results for Γt = Γ and Γt = ∅,
which is also a crucial ingredient of this proof. Note that in these two special cases always “strong
= weak” holds as A∗∗n = An = An, and that this argument fails in the remaining cases of mixed
boundary conditions. Therefore, let ∅  Γt  Γ. Moreover, recall the notion of an extendable

domain from [11, Section 3]. In particular, Ω̂ and the extended domain Ω̃ are topologically trivial.
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• Let S ∈ Hk
S,Γt,0(RotRot>,Ω). By definition, S can be extended through Γt by zero to the

larger domain Ω̃ yielding

S̃ ∈ Hk
S,∅,0(RotRot>, Ω̃) = Hk

S,0(RotRot>, Ω̃) = HkS,0(RotRot>, Ω̃).

By [15, Theorem 4.2] there exists ṽ ∈ Hk+1(R3) such that symGrad ṽ = S̃ in Ω̃. Since

S̃ = 0 in Ω̂, ṽ must be a rigid motion r ∈ RM in Ω̂. Far outside of Ω̃ we modify r by a
cut-off function such that the resulting vector field r̃ is compactly supported and r̃|Ω̃ = r.

Then v := ṽ − r̃ ∈ Hk+1(R3) with v|Ω̂ = 0. Hence v belongs to Hk+1
Γt

(Ω) and depends

continuously on S. Moreover, v satisfies symGrad v = symGrad ṽ = S̃ in Ω̃, in particular
symGrad v = S in Ω. We put PksymGrad,Γt

S := v ∈ Hk+1
Γt

(Ω).

• Let T ∈ Hk
S,Γt,0(Div,Ω). By definition, T can be extended through Γt by zero to Ω̃ giving

T̃ ∈ Hk
S,∅,0(Div, Ω̃) = Hk

S,0(Div, Ω̃) = HkS,0(Div, Ω̃).

By [15, Theorem 4.2] there exists S̃ ∈ Hk+2
S (R3) such that RotRot> S̃ = T̃ in Ω̃. Since

T̃ = 0 in Ω̂, i.e., S̃|Ω̂ ∈ Hk+2
S,0 (RotRot>, Ω̂), we get again by [15, Theorem 4.2] (or the first

part of this proof) ṽ ∈ Hk+3(R3) such that symGrad ṽ = S̃ in Ω̂. Then S := S̃−symGrad ṽ

belongs to Hk+2
S (R3) and satisfies S|Ω̂ = 0. Thus S ∈ Hk+2

S,Γt (Ω) and depends continuously

on T . Furthermore, RotRot> S = RotRot> S̃ = T̃ in Ω̃, in particular RotRot> S = T in
Ω. We set Pk

RotRot>S ,Γt
T := S ∈ Hk+2

S,Γt (Ω).

• Let v ∈ HkΓt(Ω). By definition, v can be extended through Γt by zero to Ω̃ defining

ṽ ∈ Hk(Ω̃). [15, Theorem 4.2] yields T̃ ∈ Hk+1
S (R3) such that Div T̃ = ṽ in Ω̃. As ṽ = 0 in

Ω̂, i.e., T̃ |Ω̂ ∈ Hk+1
S,0 (Div, Ω̂), we get again by [15, Theorem 4.2] (or the second part of this

proof) S̃ ∈ Hk+3
S (R3) such that RotRot> S̃ = T̃ holds in Ω̂. Then T := T̃ − RotRot> S̃

belongs to Hk+1
S (R3) with T |Ω̂ = 0. Hence T belongs to Hk+1

S,Γt (Ω) and depends continuously

on v. Furthermore, Div T = Div T̃ = ṽ in Ω̃, in particular Div T = v in Ω. Finally, we
define PkDivS,Γt

v := T ∈ Hk+1
S,Γt (Ω).

The assertion about the compact supports is trivial. �

As a simple consequence of Theorem 3.1 we obtain a few corollaries.

Corollary 3.3 (regular potentials for extendable domains). Let (Ω,Γt) be an extendable bounded
strong Lipschitz pair and let k ≥ 0. Then the regular potentials representations

Hk
S,Γt,0(RotRot>,Ω) = HkS,Γt,0(RotRot>,Ω) = symGradHkΓt(symGrad,Ω) = symGradHk+1

Γt
(Ω)

= R(symGradkΓt),

Hk
S,Γt,0(Div,Ω) = HkS,Γt,0(Div,Ω) = RotRot> HkS,Γt(RotRot>,Ω) = RotRot> Hk+2

S,Γt (Ω)

= RotRot> Hk+1,k
S,Γt (RotRot>,Ω)

= R(RotRot>,kS,Γt) = R(RotRot>,k+1,k
S,Γt ),

HkΓt(Ω) ∩ (RMΓn)
⊥L2(Ω) = DivHkS,Γt(Div,Ω) = DivHk+1

S,Γt (Ω)

= R(DivkS,Γt)

hold, and the potentials can be chosen such that they depend continuously on the data. In partic-
ular, the latter spaces are closed subspaces of HkS(Ω) and Hk(Ω), respectively.

Proof. By Theorem 3.1 we have

Hk
S,Γt,0(Div,Ω) = RotRot> PkRotRot>S ,Γt

Hk
S,Γt,0(Div,Ω) ⊂ RotRot> Hk+2

S,Γt (Ω)

⊂ RotRot> Hk+1,k
S,Γt (RotRot>,Ω) ⊂ RotRot> HkS,Γt(RotRot>,Ω)

⊂ HkS,Γt,0(Div,Ω) ⊂ Hk
S,Γt,0(Div,Ω).

The other identities follow analogously. �
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Corollary 3.4 (regular decompositions for extendable domains). Let (Ω,Γt) be an extendable
bounded strong Lipschitz pair and let k ≥ 0. Then the bounded regular decompositions

Hk
S,Γt(RotRot>,Ω) = Hk+2

S,Γt (Ω) + symGradHk+1
Γt

(Ω) = R(PkRotRot>S ,Γt
)u HkS,Γt,0(RotRot>,Ω)

= R(PkRotRot>S ,Γt
)u symGradHk+1

Γt
(Ω)

= R(PkRotRot>S ,Γt
)u symGradR(PksymGrad,Γt),

Hk
S,Γt(Div,Ω) = Hk+1

S,Γt (Ω) + RotRot> Hk+2
S,Γt (Ω) = R(PkDivS,Γt

)u HkS,Γt,0(Div,Ω)

= R(PkDivS,Γt
)u RotRot> Hk+2

S,Γt (Ω)

= R(PkDivS,Γt
)u RotRot>R(PkRotRot>S ,Γt

)

hold with bounded linear regular decomposition operators

Qk,1
RotRot>S ,Γt

:= PkRotRot>S ,Γt
RotRot> : Hk

S,Γt(RotRot>,Ω)→ Hk+2
S,Γt (Ω),

Qk,0
RotRot>S ,Γt

:= PksymGrad,Γt(1−Q
k,1

RotRot>S ,Γt
) : Hk

S,Γt(RotRot>,Ω)→ Hk+1
Γt

(Ω),

Qk,1DivS,Γt
:= PkDivS,Γt

Div : Hk
S,Γt(Div,Ω)→ Hk+1

S,Γt (Ω),

Qk,0DivS,Γt
:= PkRotRot>S ,Γt

(1−Qk,1DivS,Γt
) : Hk

S,Γt(Div,Ω)→ Hk+2
S,Γt (Ω)

satisfying

Qk,1
RotRot>S ,Γt

+ symGradQk,0
RotRot>S ,Γt

= idHkS,Γt
(RotRot>,Ω),

Qk,1DivS,Γt
+ RotRot>Qk,0DivS,Γt

= idHkS,Γt
(Div,Ω) .

Remark 3.5. Note that for (bounded linear) potential operators PAn−1
and PAn the identity

Q1
An + An−1Q0

An = idD(An) with Q1
An := PAn An : D(An)→ H+

n ,

Q0
An := PAn−1(1−Q1

An) : D(An)→ H+
n−1

is a general structure of a (bounded) regular decomposition. Moreover:

(i) R(Q1
An

) = R(PAn) and R(Q0
An

) = R(PAn−1
).

(ii) N(An) is invariant under Q1
An

, as An = AnQ1
An

holds by the complex property.

(iii) Q1
An

and An−1Q0
An

= 1−Q1
An

are projections.
(iv) There exists c > 0 such that for all x ∈ D(An)

|Q1
Anx|H+

n
≤ c|An x|Hn+1

.

(iv’) In particular, Q1
An
|N(An) = 0.

Corollary 3.6 (weak and strong partial boundary conditions coincide for extendable domains).
Let (Ω,Γt) be an extendable bounded strong Lipschitz pair and let k ≥ 0. Then weak and strong
boundary conditions coincide, i.e.,

Hk
Γt(symGrad,Ω) = HkΓt(symGrad,Ω) = Hk+1

Γt
(Ω) = Hk+1

Γt
(Ω),

Hk
S,Γt(RotRot>,Ω) = HkS,Γt(RotRot>,Ω),

Hk
S,Γt(Div,Ω) = HkS,Γt(Div,Ω).

Proof of Corollary 3.4 and Corollary 3.6. Let us pick S ∈ Hk
S,Γt(RotRot>,Ω). By Theorem 3.1

we have RotRot> S ∈ Hk
S,Γt,0(Div,Ω) and Ŝ := Pk

RotRot>S ,Γt
RotRot> S ∈ Hk+2

S,Γt . Hence, we obtain

S− Ŝ ∈ Hk
S,Γt,0(RotRot>,Ω) and Theorem 3.1 shows v := PksymGrad,Γt

(S− Ŝ) ∈ Hk+1
Γt

(Ω) and thus

S = Ŝ + symGrad v ∈ Hk+2
S,Γt (Ω) + symGradHk+1

Γt
(Ω) ⊂ HkS,Γt(RotRot>,Ω).

For the directness let S = Pk
RotRot>S ,Γt

T ∈ Hk
S,Γt,0(RotRot>,Ω) with some T ∈ Hk

S,Γt,0(Div,Ω).

Then 0 = RotRot> S = T and thus S = 0. The assertions about the corresponding Div-
spaces follow analogously. Let v ∈ Hk

Γt(symGrad,Ω). Then symGrad v ∈ Hk
S,Γt,0(RotRot>,Ω)
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and Theorem 3.1 yields v̂ := PksymGrad,Γt
symGrad v ∈ Hk+1

Γt
(Ω). As symGrad(v − v̂) = 0, we have

v − v̂ =: r ∈ RM, which even vanishes if Γt 6= ∅. Hence, v = v̂ + r ∈ Hk+1
Γt

(Ω). �

By similar arguments we also obtain the following (non-standard) versions of Corollary 3.4 and
Corollary 3.6.

Corollary 3.7 (Corollary 3.4 and Corollary 3.6 for non-standard Sobolev spaces). Let (Ω,Γt) be an
extendable bounded strong Lipschitz pair and let k ≥ 1. Then the bounded regular decompositions

Hk,k−1
S,Γt (RotRot>,Ω) = Hk+1

S,Γt (Ω) + symGradHk+1
Γt

(Ω) = R(Pk−1
RotRot>S ,Γt

)u HkS,Γt,0(RotRot>,Ω)

= R(Pk−1
RotRot>S ,Γt

)u symGradHk+1
Γt

(Ω)

= R(Pk−1
RotRot>S ,Γt

)u symGradR(PksymGrad,Γt) = Hk,k−1
S,Γt (RotRot>,Ω)

hold with bounded linear regular decomposition operators

Qk,k−1,1

RotRot>S ,Γt
:= Pk−1

RotRot>S ,Γt
RotRot> : Hk,k−1

S,Γt (RotRot>,Ω)→ Hk+1
S,Γt (Ω),

Qk,k−1,0

RotRot>S ,Γt
:= PksymGrad,Γt(1−Q

k,k−1,1

RotRot>S ,Γt
) : Hk,k−1

S,Γt (RotRot>,Ω)→ Hk+1
Γt

(Ω)

satisfying Qk,k−1,1

RotRot>S ,Γt
+ symGradQk,k−1,0

RotRot>S ,Γt
= idHk,k−1

S,Γt
(RotRot>,Ω). In particular, weak and strong

boundary conditions coincide also for the non-standard Sobolev spaces.

Recall the Hilbert complexes and cohomology groups from Section 2.6 and Section 2.7.

Theorem 3.8 (closed and exact Hilbert complexes for extendable domains). Let (Ω,Γt) be an
extendable bounded strong Lipschitz pair and let k ≥ 0. The domain complexes of linear elasticity

RMΓt Hk+1
Γt

HkS,Γt (RotRot>) HkS,Γt (Div) HkΓt RMΓn ,

ιRMΓt
symGradkΓt

RotRot
>,k
S,Γt

DivkS,Γt
πRMΓn

RMΓt HkΓt HkS,Γn (Div) HkS,Γn (RotRot>) Hk+1
Γn

RMΓn ,

πRMΓt
−DivkS,Γn

RotRot
>,k
S,Γn − symGradkΓn

ιRMΓn

and, for k ≥ 1,

RMΓt Hk+1
Γt

Hk,k−1
S,Γt

(RotRot>) Hk−1
S,Γt

(Div) Hk−1
Γt

RMΓn ,

ιRMΓt
symGradkΓt

RotRot
>,k,k−1
S,Γt

Div
k−1
S,Γt

πRMΓn

RMΓt Hk−1
Γt

Hk−1
S,Γn (Div) Hk,k−1

S,Γn (RotRot>) Hk+1
Γn

RMΓn

πRMΓt
−Div

k−1
S,Γn

RotRot
>,k,k−1
S,Γn − symGradkΓn

ιRMΓn

are exact and closed Hilbert complexes. In particular, all ranges are closed, all cohomology groups
(Dirichlet/Neumann fields) are trivial, and the operators from Theorem 3.1 are associated bounded
regular potential operators.

3.1.2. General Strong Lipschitz Domains. Similar to [15, Lemma 4.8] we get the following.

Lemma 3.9 (cutting lemma). Let ϕ ∈ C∞(R3) and let k ≥ 0.

(i) If T ∈ Hk
S,Γt(Div,Ω), then ϕT ∈ Hk

S,Γt(Div,Ω) and Div(ϕT ) = ϕDiv T + T gradϕ holds.

(ii) If k ≥ 1 and S ∈ Hk,k−1
S,Γt (RotRot>,Ω), then ϕS ∈ Hk,k−1

S,Γt (RotRot>,Ω) and

RotRot>(ϕS) = ϕRotRot> S + 2 sym
(
(spn gradϕ) RotS

)
+ Ψ(Grad gradϕ, S)

holds with an algebraic operator Ψ. In particular, this holds for S ∈ Hk
S,Γt(RotRot>,Ω).

We proceed by showing regular decompositions for the elasticity complexes extending the results
of Corollary 3.4 and Corollary 3.7.

Lemma 3.10 (regular decompositions). Let k ≥ 0. Then the bounded regular decompositions

Hk
S,Γt(Div,Ω) = Hk+1

S,Γt (Ω) + RotRot> Hk+2
S,Γt (Ω),

Hk
S,Γt(RotRot>,Ω) = Hk+2

S,Γt (Ω) + symGradHk+1
Γt

(Ω)

and, for k ≥ 1, the non-standard bounded regular decompositions

Hk
S,Γt(RotRot>,Ω) ⊂ Hk,k−1

S,Γt (RotRot>,Ω) = Hk+1
S,Γt (Ω) + symGradHk+1

Γt
(Ω)
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hold with bounded linear regular decomposition operators

Qk,1
RotRot>S ,Γt

: Hk
S,Γt(RotRot>,Ω)→ Hk+2

S,Γt (Ω), Qk,1DivS,Γt
: Hk

S,Γt(Div,Ω)→ Hk+1
S,Γt (Ω),

Qk,0
RotRot>S ,Γt

: Hk
S,Γt(RotRot>,Ω)→ Hk+1

Γt
(Ω), Qk,0DivS,Γt

: Hk
S,Γt(Div,Ω)→ Hk+2

S,Γt (Ω),

Qk,k−1,1

RotRot>S ,Γt
: Hk,k−1

S,Γt (RotRot>,Ω)→ Hk+1
S,Γt (Ω),

Qk,k−1,0

RotRot>S ,Γt
: Hk,k−1

S,Γt (RotRot>,Ω)→ Hk+1
Γt

(Ω)

satisfying

Qk,1DivS,Γt
+ RotRot>Qk,0DivS,Γt

= idHkS,Γt
(Div,Ω),

Qk,1
RotRot>S ,Γt

+ symGradQk,0
RotRot>S ,Γt

= idHkS,Γt
(RotRot>,Ω),

Qk,k−1,1

RotRot>S ,Γt
+ symGradQk,k−1,0

RotRot>S ,Γt
= idHk,k−1

S,Γt
(RotRot>,Ω), k ≥ 1.

It holds DivQk,1DivS,Γt
= DivkS,Γt and thus Hk

S,Γt,0(Div,Ω) is invariant under Qk,1DivS,Γt
. Analo-

gously, RotRot>Qk,1
RotRot>S ,Γt

= RotRot>,kS,Γt and RotRot>Qk,k−1,1

RotRot>S ,Γt
= RotRot>,k,k−1

S,Γt and thus

Hk
S,Γt,0(RotRot>,Ω) is invariant under Qk,1

RotRot>S ,Γt
and Qk,k−1,1

RotRot>S ,Γt
, respectively.

Corollary 3.11 (weak and strong partial boundary conditions coincide). Let k ≥ 0. Weak and
strong boundary conditions coincide, i.e.,

Hk
Γt(symGrad,Ω) = HkΓt(symGrad,Ω) = Hk+1

Γt
(Ω) = Hk+1

Γt
(Ω),

Hk
S,Γt(Div,Ω) = HkS,Γt(Div,Ω),

Hk
S,Γt(RotRot>,Ω) = HkS,Γt(RotRot>,Ω),

Hk,k−1
S,Γt (RotRot>,Ω) = Hk,k−1

S,Γt (RotRot>,Ω), k ≥ 1.

In particular, symGradkΓt = symGradkΓt , RotRot>,kS,Γt = RotRot>,kS,Γt , and DivkS,Γt = DivkS,Γt , as

well as, for k ≥ 1, RotRot>,k,k−1
S,Γt = RotRot>,k,k−1

S,Γt .

Proof of Lemma 3.10 and Corollary 3.11. According to [11] and [15], cf. [2, 3, 4], let (U`, ϕ`) be
a partition of unity for Ω, i.e.,

Ω =

L⋃
`=−L

Ω`, Ω` := Ω ∩ U`, ϕ` ∈ C∞∂ U`(U`),

and (Ω`, Γ̂t,`) are extendable bounded strong Lipschitz pairs. Recall Γt,` := Γt ∩ U` and Γ̂t,`.

• Let k ≥ 0 and let T ∈ Hk
S,Γt(Div,Ω). Then by definition T |Ω` ∈ Hk

S,Γt,`(Div,Ω`) and we
decompose by Corollary 3.4

T |Ω` = T`,1 + RotRot> S`,0

with T`,1 := Qk,1DivS,Γt,`
T |Ω` ∈ Hk+1

S,Γt,`(Ω`) and S`,0 := Qk,0DivS,Γt,`
T |Ω` ∈ Hk+2

S,Γt,`(Ω`). Lemma

3.9 yields

ϕ`T |Ω` = ϕ`T`,1 + ϕ` RotRot> S`,0

=

=:T`︷ ︸︸ ︷
ϕ`T`,1 − 2 sym

(
(spn gradϕ`) RotS`,0

)
−Ψ(Grad gradϕ`, S`,0)

+ RotRot>(ϕ`S`,0)︸ ︷︷ ︸
=:S`
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with T` ∈ Hk+1

S,Γ̂t,`
(Ω`) and S` ∈ Hk+2

S,Γ̂t,`
(Ω`). Extending T` and S` by zero to Ω gives tensor

fields T̃` ∈ Hk+1
S,Γt (Ω) and S̃` ∈ Hk+2

S,Γt (Ω) as well as

T =

L∑
`=−L

ϕ`T |Ω` =

L∑
`=−L

T̃` + RotRot>
L∑

`=−L

S̃`

∈ Hk+1
S,Γt (Ω) + RotRot> Hk+2

S,Γt (Ω) ⊂ HkS,Γt(Div,Ω).

As all operations have been linear and continuous we set

Qk,1DivS,Γt
T :=

L∑
`=−L

T̃` ∈ Hk+1
S,Γt (Ω), Qk,0DivS,Γt

T :=

L∑
`=−L

S̃` ∈ Hk+2
S,Γt (Ω).

• Let k ≥ 1 and let S ∈ Hk,k−1
S,Γt (RotRot>,Ω). Then by definition S|Ω` ∈ Hk,k−1

S,Γt,` (RotRot>,Ω`)

and we decompose by Corollary 3.7

S|Ω` = S`,1 + symGrad v`,0

with S`,1 := Qk,k−1,1

RotRot>S ,Γt,`
S|Ω` ∈ Hk+1

S,Γt,`(Ω`) and v`,0 := Qk,k−1,0

RotRot>S ,Γt,`
S|Ω` ∈ Hk+1

Γt,`
(Ω`).

Thus

ϕ`S|Ω` = ϕ`S`,1 + ϕ` symGrad v`,0

= ϕ`S`,1 − sym
(
v`,0(gradϕ`)

>)︸ ︷︷ ︸
=:S`

+ symGrad(ϕ`v`,0)︸ ︷︷ ︸
=:v`

(6)

with S` ∈ Hk+1

S,Γ̂t,`
(Ω`) and v` ∈ Hk+1

Γ̂t,`
(Ω`). Extending S` and v` by zero to Ω gives fields

S̃` ∈ Hk+1
S,Γt (Ω) and ṽ` ∈ Hk+1

Γt
(Ω) as well as

S =

L∑
`=−L

ϕ`S|Ω` =

L∑
`=−L

S̃` + symGrad

L∑
`=−L

ṽ`

∈ Hk+1
S,Γt (Ω) + symGradHk+1

Γt
(Ω) ⊂ Hk,k−1

S,Γt (RotRot>,Ω).

As all operations have been linear and continuous we set

Qk,k−1,1

RotRot>S ,Γt
S :=

L∑
`=−L

S̃` ∈ Hk+1
S,Γt (Ω), Qk,k−1,0

RotRot>S ,Γt
S :=

L∑
`=−L

ṽ` ∈ Hk+1
Γt

(Ω).

• Let k ≥ 0 and let S ∈ Hk
S,Γt(RotRot>,Ω). Then by definition S|Ω` ∈ Hk

S,Γt,`(RotRot>,Ω`)
and we decompose by Corollary 3.4

S|Ω` = S`,1 + symGrad v`,0

with S`,1 := Qk,1
RotRot>S ,Γt,`

S|Ω` ∈ Hk+2
S,Γt,`(Ω`) and v`,0 := Qk,0

RotRot>S ,Γt,`
S|Ω` ∈ Hk+1

Γt,`
(Ω`).

Now we follow the arguments from (6) on. Note that still only S` ∈ Hk+1

S,Γ̂t,`
(Ω`) holds, i.e.,

we have lost one order of regularity for S`. Nevertheless, we get

S ∈ Hk+1
S,Γt (Ω) + symGradHk+1

Γt
(Ω),

and all operations have been linear and continuous. But this implies by the previous step

S ∈ Hk+1,k
S,Γt (RotRot>,Ω) + symGradHk+1

Γt
(Ω).

Again by the previous step we obtain

S ∈ Hk+2
S,Γt (Ω) + symGradHk+2

Γt
(Ω) + symGradHk+1

Γt
(Ω)

= Hk+2
S,Γt (Ω) + symGradHk+1

Γt
(Ω) ⊂ HkS,Γt(RotRot>,Ω),

and all operations have been linear and continuous.
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It remains to prove Hk
Γt(symGrad,Ω) ⊂ HkΓt(symGrad,Ω). Let v ∈ Hk

Γt(symGrad,Ω). Then we

have ϕ`v ∈ Hk
Γ̂t,`

(symGrad,Ω`) = Hk
Γ̂t,`

(symGrad,Ω`) = Hk+1

Γ̂t,`
(Ω`) by Corollary 3.6. Extending

ϕ`v by zero to Ω yields vector fields v` ∈ Hk+1
Γt

(Ω) as well as v =
∑
` ϕ`v =

∑
` v` ∈ Hk+1

Γt
(Ω). �

3.2. Mini FA-ToolBox.

3.2.1. Zero Order Mini FA-ToolBox. Recall Section 2.7 and let ε, µ be admissible. In Section 2.2
(for ε = µ = id) we have seen that the densely defined and closed linear operators

A0 = symGradΓt : H1
Γt(Ω) ⊂ L2(Ω)→ L2

S,ε(Ω),

A1 = µ−1 RotRot>S,Γt : HS,Γt(RotRot>,Ω) ⊂ L2
S,ε(Ω)→ L2

S,µ(Ω),

A2 = DivS,Γt µ : µ−1 HS,Γt(Div,Ω) ⊂ L2
S,µ(Ω)→ L2(Ω),

A∗0 = −DivS,Γn ε : ε−1 HS,Γn(Div,Ω) ⊂ L2
S,ε(Ω)→ L2(Ω),

A∗1 = ε−1 RotRot>S,Γn : HS,Γn(RotRot>,Ω) ⊂ L2
S,µ(Ω)→ L2

S,ε(Ω),

A∗2 = − symGradΓn : H1
Γn(Ω) ⊂ L2(Ω)→ L2

S,µ(Ω),

where we have used Corollary 3.11, build the long primal and dual elasticity Hilbert complex

(7) RMΓt L2(Ω) L2
S,ε(Ω) L2

S,µ(Ω) L2(Ω) RMΓn

A−1=ιRMΓt

A∗−1=πRMΓt

A0=symGradΓt

A∗0=−DivS,Γn ε

A1=µ−1 RotRot>S,Γt

A∗1=ε−1 RotRot>S,Γn

A2=DivS,Γt µ

A∗2=− symGradΓn

A3=πRMΓn

A∗3=ιRMΓn

cf. (5).

Theorem 3.12 (compact embedding). The embedding

HS,Γt(RotRot>,Ω) ∩ ε−1 HS,Γn(Div,Ω) ↪→ L2
S,ε(Ω)

is compact. Moreover, the compactness does not depend on ε.

Proof. Note that this type of compact embedding is independent of ε and µ, cf. [12, Lemma 5.1].
So, let ε = µ = id. Lemma 3.10 (for k = 0) yields the bounded regular decomposition

D(A∗0) = HS,Γn(Div,Ω) = H1
S,Γn(Ω) + RotRot> H2

S,Γn(Ω) = H+
1 + A∗1 H

+
2

with H+
1 = H1

S,Γn(Ω) and H+
2 = H2

S,Γn(Ω) and H1 = H2 = L2
S(Ω). Rellich’s selection theorem and

[15, Corollary 2.12], cf. [11, Lemma 2.22], yield that D(A1) ∩D(A∗0) ↪→ H1 is compact. �

Remark 3.13 (compact embedding). The embeddings

D(A0) ∩D(A∗−1) = H1
Γt(Ω) ↪→ L2(Ω) = H0,

D(A1) ∩D(A∗0) = HS,Γt(RotRot>,Ω) ∩ ε−1 HS,Γn(Div,Ω) ↪→ L2
S,ε(Ω) = H1,

D(A2) ∩D(A∗1) = µ−1 HS,Γt(Div,Ω) ∩ HS,Γn(RotRot>,Ω) ↪→ L2
S,µ(Ω) = H2,

D(A3) ∩D(A∗2) = H1
Γn(Ω) ↪→ L2(Ω) = H3

are compact, and the compactness does not depend on ε or µ.

Theorem 3.14 (compact elasticity complex). The long primal and dual elasticity Hilbert complex
(7) is compact. In particular, the complex is closed.

Let us recall the reduced operators

(A0)⊥ = (symGradΓt
)⊥ : D

(
(symGradΓt

)⊥
)
⊂ (RMΓt)

⊥
L2(Ω) → R(symGradΓt

),

(A1)⊥ = (µ−1 RotRot>S,Γt)⊥ : D
(
(µ−1 RotRot>S,Γt)⊥

)
⊂ N(µ−1 RotRot>S,Γt)

⊥
L2
S,ε(Ω) → R(µ−1 RotRot>S,Γt),

(A2)⊥ = (DivS,Γt µ)⊥ : D
(
(DivS,Γt µ)⊥

)
⊂ N(DivS,Γt µ)

⊥
L2
S,µ(Ω) → R(DivS,Γt µ),

(A∗0)⊥ = −(DivS,Γn ε)⊥ : D
(
(DivS,Γn ε)⊥

)
⊂ N(DivS,Γn ε)

⊥
L2
S,ε(Ω) → R(DivS,Γn ε),

(A∗1)⊥ = (ε−1 RotRot>S,Γn)⊥ : D
(
(ε−1 RotRot>S,Γn)⊥

)
⊂ N(ε−1 RotRot>S,Γn)

⊥
L2
S,µ(Ω) → R(ε−1 RotRot>S,Γn),

(A∗2)⊥ = (symGradΓn
)⊥ : D

(
(symGradΓn

)⊥
)
⊂ (RMΓn)

⊥
L2(Ω) → R(symGradΓn

),
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with domains of definition

D
(
(A0)⊥

)
= D(symGradΓt

) ∩ (RMΓt )
⊥

L2(Ω) ,

D
(
(A1)⊥

)
= D(µ−1 RotRot>S,Γt ) ∩N(µ−1 RotRot>S,Γt )

⊥
L2
S,ε(Ω)

= D(µ−1 RotRot>S,Γt ) ∩R(ε−1 RotRot>S,Γn ),

D
(
(A2)⊥

)
= D(DivS,Γt µ) ∩N(DivS,Γt µ)

⊥
L2
S,µ(Ω)

= D(DivS,Γt µ) ∩R(symGradΓn
),

D
(
(A∗0)⊥

)
= D(DivS,Γn ε) ∩N(DivS,Γn ε)

⊥
L2
S,ε(Ω)

= D(DivS,Γn ε) ∩R(symGradΓt
),

D
(
(A∗1)⊥

)
= D(ε−1 RotRot>S,Γn ) ∩N(ε−1 RotRot>S,Γn )

⊥
L2
S,µ(Ω)

= D(ε−1 RotRot>S,Γn ) ∩R(µ−1 RotRot>S,Γt ),

D
(
(A∗2)⊥

)
= D(symGradΓn

) ∩ (RMΓn )
⊥

L2(Ω) .

Note that R(An) = R
(
(An)⊥

)
and R(A∗n) = R

(
(A∗n)⊥

)
hold. [11, Lemma 2.9] shows:

Theorem 3.15 (mini FA-ToolBox). For the zero order elasticity complex it holds:

(i) The ranges R(symGradΓt), R(µ−1 RotRot>S,Γt), and R(DivS,Γt µ) are closed.

(i) The inverse operators (symGradΓt)
−1
⊥ , (µ−1 RotRot>S,Γt)

−1
⊥ , and (DivS,Γt µ)−1

⊥ are compact.
(iii) The cohomology group of generalised Dirichlet/Neumann tensor fields HS,Γt,Γn,ε(Ω) is finite-

dimensional. Moreover, the dimension does not depend on ε.
(iv) The orthonormal Helmholtz type decompositions

L2
S,ε(Ω) = R(symGradΓt)⊕L2

S,ε(Ω) N(DivS,Γn ε)

= N(µ−1 RotRot>S,Γt)⊕L2
S,ε(Ω) R(ε−1 RotRot>S,Γn)

= R(symGradΓt)⊕L2
S,ε(Ω) HS,Γt,Γn,ε(Ω)⊕L2

S,ε(Ω) R(ε−1 RotRot>S,Γn)

hold.
(v) There exist (optimal) c0, c1, c2 > 0 such that the Friedrichs/Poincaré type estimates

∀ v ∈ H1
Γt(Ω) ∩ (RMΓt)

⊥L2(Ω) |v|L2(Ω) ≤ c0| symGrad v|L2
S,ε(Ω),

∀T ∈ ε−1 HS,Γn(Div,Ω) ∩R(symGradΓt) |T |L2
S,ε(Ω) ≤ c0|Div εT |L2(Ω),

∀S ∈ HS,Γt(RotRot>,Ω) ∩R(ε−1 RotRot>S,Γn) |S|L2
S,ε(Ω) ≤ c1|µ−1 RotRot> S|L2

S,µ(Ω),

∀S ∈ HS,Γn(RotRot>,Ω) ∩R(µ−1 RotRot>S,Γt) |S|L2
S,µ(Ω) ≤ c1|ε−1 RotRot> S|L2

S,ε(Ω),

∀T ∈ µ−1 HS,Γt(Div,Ω) ∩R(symGradΓn) |T |L2
S,µ(Ω) ≤ c2|DivµT |L2(Ω),

∀ v ∈ H1
Γn(Ω) ∩ (RMΓn)

⊥L2(Ω) |v|L2(Ω) ≤ c2| symGrad v|L2
S,µ(Ω)

hold.

(vi) For all S ∈ HS,Γt(RotRot>,Ω) ∩ ε−1 HS,Γn(Div,Ω) ∩HS,Γt,Γn,ε(Ω)
⊥

L2
S,ε(Ω) it holds

|S|2L2
S,ε(Ω) ≤ c

2
1|µ−1 RotRot> S|2L2

S,µ(Ω) + c20|Div εS|2L2(Ω).

(vii) HS,Γt,Γn,ε(Ω) = {0}, if (Ω,Γt) is extendable.

3.2.2. Higher Order Mini FA-ToolBox. For simplicity, let ε = µ = id. From Section 2.6 we recall
the densely defined and closed higher Sobolev order operators

symGradkΓt : Hk+1
Γt

(Ω) ⊂ HkΓt(Ω)→ HkS,Γt(Ω),

RotRot>,kS,Γt : HkS,Γt(RotRot>,Ω) ⊂ HkS,Γt(Ω)→ HkS,Γt(Ω),

RotRot>,k,k−1
S,Γt : Hk,k−1

S,Γt (RotRot>,Ω) ⊂ HkS,Γt(Ω)→ Hk−1
S,Γt (Ω), k ≥ 1,

DivkS,Γt : HkS,Γt(Div,Ω) ⊂ HkS,Γt(Ω)→ HkΓt(Ω),

(8)

building the long elasticity Hilbert complexes

(9) RMΓt HkΓt (Ω) HkS,Γt (Ω) HkS,Γt (Ω) HkΓt (Ω) RMΓn , k ≥ 0,

ιRMΓt
symGradkΓt

RotRot
>,k
S,Γt

DivkS,Γt
πRMΓn
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(10) RMΓt HkΓt (Ω) HkS,Γt (Ω) Hk−1
S,Γt

(Ω) Hk−1
Γt

(Ω) RMΓn , k ≥ 1.

ιRMΓt
symGradkΓt

RotRot
>,k,k−1
S,Γt

Div
k−1
S,Γt

πRMΓn

We start with regular representations implied by Lemma 3.10 and Corollary 3.11.

Theorem 3.16 (regular representations and closed ranges). Let k ≥ 0. Then the regular potential
representations

R(symGradkΓt) = symGradHkΓt(symGrad,Ω) = symGradHk+1
Γt

(Ω)

= HkS,Γt(Ω) ∩R(symGradΓt)

= HkS,Γt(Ω) ∩ HS,Γt,0(RotRot>,Ω) ∩HS,Γt,Γn,ε(Ω)
⊥

L2
S,ε(Ω)

= HkS,Γt,0(RotRot>,Ω) ∩HS,Γt,Γn,ε(Ω)
⊥

L2
S,ε(Ω) ,

R(RotRot>,k+1,k
S,Γt ) = R(RotRot>,kS,Γt) = RotRot> HkS,Γt(RotRot>,Ω) = RotRot> Hk+2

S,Γt (Ω)

= RotRot> Hk+1,k
S,Γt (RotRot>,Ω)

= HkS,Γt(Ω) ∩R(RotRot>S,Γt)

= HkS,Γt(Ω) ∩ HS,Γt,0(Div,Ω) ∩HS,Γn,Γt,ε(Ω)
⊥

L2
S (Ω) ,

= HkS,Γt,0(Div,Ω) ∩HS,Γn,Γt,ε(Ω)
⊥

L2
S (Ω) ,

R(DivkS,Γt) = DivHkS,Γt(Div,Ω) = DivHk+1
S,Γt (Ω)

= HkΓt(Ω) ∩R(DivS,Γt) = HkΓt(Ω) ∩ (RMΓn)
⊥L2(Ω)

hold. In particular, the latter spaces are closed subspaces of HkS(Ω) and Hk(Ω), respectively, and
all ranges of the higher Sobolev order operators in (8) are closed. Moroever, the long elasticity
Hilbert complexes (9) and (10) are closed.

Note that in Theorem 3.16 we claim nothing about bounded regular potential operators, leaving
the question of bounded potentials to the next sections, cf. Theorem 3.24.

Proof of Theorem 3.16. We only show the representations for R(RotRot>,kS,Γt). The other follow
analogously, but simpler. By Lemma 3.10 and Corollary 3.11 we have

RotRot> Hk+2
S,Γt (Ω) ⊂ RotRot> Hk+1,k

S,Γt (RotRot>,Ω) = R(RotRot>,k+1,k
S,Γt )

⊂ RotRot> HkS,Γt(RotRot>,Ω) = R(RotRot>,kS,Γt) = RotRot> Hk+2
S,Γt (Ω).

In particular,

R(RotRot>,kS,Γt) = RotRot> HkS,Γt(RotRot>,Ω) = RotRot> Hk+2
S,Γt (Ω).(11)

Moreover,

R(RotRot>,kS,Γt) ⊂ HkS,Γt,0(Div,Ω) ∩HS,Γn,Γt,ε(Ω)
⊥

L2
S (Ω)

= HkS,Γt(Ω) ∩ HS,Γt,0(Div,Ω) ∩HS,Γn,Γt,ε(Ω)
⊥

L2
S (Ω) = HkS,Γt(Ω) ∩R(RotRot>S,Γt),

since by Theorem 3.15 (iv)

R(RotRot>S,Γt) = HS,Γt,0(Div,Ω) ∩HS,Γn,Γt,ε(Ω)
⊥

L2
S (Ω) .(12)

Thus it remains to show

HkS,Γt,0(Div,Ω) ∩HS,Γn,Γt,ε(Ω)
⊥

L2
S (Ω) ⊂ RotRot> HkS,Γt(RotRot>,Ω), k ≥ 1.

For this, let k ≥ 1 and T ∈ HkS,Γt,0(Div,Ω) ∩HS,Γn,Γt,ε(Ω)
⊥

L2
S (Ω) . By (12) and (11) we have

T ∈ R(RotRot>S,Γt) = RotRot> H2
S,Γt(Ω)

and hence there is S1 ∈ H2
S,Γt(Ω) such that RotRot> S1 = T . We see S1 ∈ H2

S,Γt(RotRot>,Ω)

resp. S1 ∈ H1
S,Γt(RotRot>,Ω) if k = 1. Hence we are done for k = 1 and k = 2. For k ≥ 2 we
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have T ∈ RotRot> H2
S,Γt(RotRot>,Ω) = RotRot> H4

S,Γt(Ω) by (11). Thus there is S2 ∈ H4
S,Γt(Ω)

such that RotRot> S2 = T . Then S2 ∈ H4
S,Γt(RotRot>,Ω) resp. S2 ∈ H3

S,Γt(RotRot>,Ω) if k = 3,
and we are done for k = 3 and k = 4. After finitely many steps, we observe that T belongs to
RotRot> HkS,Γt(RotRot>,Ω), finishing the proof. �

The reduced operators corresponding to (8) are

(symGradkΓt)⊥ : D
(
(symGradkΓt)⊥

)
⊂ (RMΓt)

⊥
Hk
Γt

(Ω) → R(symGradkΓt),

(RotRot>,kS,Γt)⊥ : D
(
(RotRot>,kS,Γt)⊥

)
⊂ N(RotRot>,kS,Γt)

⊥
HkS,Γt

(Ω) → R(RotRot>,kS,Γt),

(RotRot>,k,k−1
S,Γt )⊥ : D

(
(RotRot>,k,k−1

S,Γt )⊥
)
⊂ N(RotRot>,kS,Γt)

⊥
HkS,Γt

(Ω) → R(RotRot>,k−1
S,Γt ), k ≥ 1,

(DivkS,Γt)⊥ : D
(
(DivkS,Γt)⊥

)
⊂ N(DivkS,Γt)

⊥
HkS,Γt

(Ω) → R(DivkS,Γt)

with domains of definition

D
(
(symGradkΓt)⊥

)
= D(symGradkΓt) ∩ (RMΓt)

⊥
Hk
Γt

(Ω)
,

D
(
(RotRot>,kS,Γt)⊥

)
= D(RotRot>,kS,Γt) ∩N(RotRot>,kS,Γt)

⊥
HkS,Γt

(Ω)
,

D
(
(RotRot>,k,k−1

S,Γt )⊥
)

= D(RotRot>,k,k−1
S,Γt ) ∩N(RotRot>,kS,Γt)

⊥
HkS,Γt

(Ω)
, k ≥ 1,

D
(
(DivkS,Γt)⊥

)
= D(DivkS,Γt) ∩N(DivkS,Γt)

⊥
HkS,Γt

(Ω)
.

[11, Lemma 2.1] and Theorem 3.16 yield:

Theorem 3.17 (closed ranges and bounded inverse operators). Let k ≥ 0. Then:

(i) R(symGradkΓt) = R
(
(symGradkΓt)⊥

)
are closed and, equivalently, the inverse operator

(symGradkΓt)
−1
⊥ : R(symGradkΓt)→ D

(
(symGradkΓt)⊥

)
resp. (symGradkΓt)

−1
⊥ : R(symGradkΓt)→ D(symGradkΓt)

is bounded. Equivalently, there is c > 0 such that for all v ∈ D
(
(symGradkΓt)⊥

)
|v|Hk(Ω) ≤ c| symGrad v|HkS (Ω).

(ii) R
(
(RotRot>,kS,Γt)⊥

)
= R(RotRot>,kS,Γt) = R(RotRot>,k+1,k

S,Γt ) = R
(
(RotRot>,k+1,k

S,Γt )⊥
)

are closed
and, equivalently, the inverse operators

(RotRot>,kS,Γt)
−1
⊥ : R(RotRot>,kS,Γt)→ D

(
(RotRot>,kS,Γt)⊥

)
resp. (RotRot>,kS,Γt)

−1
⊥ : R(RotRot>,kS,Γt)→ D(RotRot>,kS,Γt),

(RotRot>,k+1,k
S,Γt )−1

⊥ : R(RotRot>,kS,Γt)→ D
(
(RotRot>,k+1,k

S,Γt )⊥
)

resp. (RotRot>,k+1,k
S,Γt )−1

⊥ : R(RotRot>,kS,Γt)→ D(RotRot>,k+1,k
S,Γt )

are bounded. Equivalently, there is c > 0 such that for all S ∈ D
(
(RotRot>,kS,Γt)⊥

)
resp.

S ∈ D
(
(RotRot>,k+1,k

S,Γt )⊥
)

|S|HkS (Ω) ≤ c|RotRot> S|HkS (Ω) resp. |S|Hk+1
S (Ω) ≤ c|RotRot> S|HkS (Ω).

(iii) R(DivkS,Γt) = R
(
(DivkS,Γt)⊥

)
are closed and, equivalently, the inverse operator

(DivkS,Γt)
−1
⊥ : R(DivkS,Γt)→ D

(
(DivkS,Γt)⊥

)
resp. (DivkS,Γt)

−1
⊥ : R(DivkS,Γt)→ D(DivkS,Γt)

is bounded. Equivalently, there is c > 0 such that for all T ∈ D
(
(DivkS,Γt)⊥

)
|T |HkS (Ω) ≤ c|Div T |Hk(Ω).

Lemma 3.18 (Schwarz’ lemma). Let 0 ≤ |α| ≤ k.
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(i) For S ∈ HkS,Γt(RotRot>,Ω) resp. S ∈ Hk+1,k
S,Γt (RotRot>,Ω) it holds ∂α S ∈ HS,Γt(RotRot>,Ω)

resp. ∂α S ∈ H1,0
S,Γt(RotRot>,Ω) and RotRot> ∂α S = ∂α RotRot> S.

(ii) For T ∈ HkS,Γt(Div,Ω) it holds ∂α T ∈ HS,Γt(Div,Ω) and Div ∂α T = ∂α Div T .

Proof. Let S ∈ HkS,Γt(RotRot>,Ω). For Φ ∈ C∞Γn(Ω) we have

〈∂α S,RotRot>Φ〉L2
S (Ω) = (−1)|α|〈S,RotRot> ∂α Φ〉L2

S (Ω)

= (−1)|α|〈RotRot> S, ∂α Φ〉L2
S (Ω) = 〈∂α RotRot> S,Φ〉L2

S (Ω)

as S ∈ HkS,Γt(Ω) ∩ HS,Γt(RotRot>,Ω) and RotRot> S ∈ HkS,Γt(Ω). Hence

∂α S ∈ HS,Γt(RotRot>,Ω) = HS,Γt(RotRot>,Ω)

by Corollary 3.11 and RotRot> ∂α S = ∂α RotRot> S. The other assertions follow analogously. �

Theorem 3.19 (compact embedding). Let k ≥ 0. Then the embedding

HkS,Γt(RotRot>,Ω) ∩ HkS,Γn(Div,Ω) ↪→ HkS,Γ(Ω)

is compact.

Proof. We follow in close lines the proof of [15, Theorem 4.11], cf. [11, Theorem 4.16], using
induction. The case k = 0 is given by Theorem 3.12. Let k ≥ 1 and let (S`) be a bounded

sequence in HkS,Γt(RotRot>,Ω) ∩ HkS,Γn(Div,Ω). Note that

HkS,Γt(RotRot>,Ω) ∩ HkS,Γn(Div,Ω) ⊂ HkS,Γt(Ω) ∩ HkS,Γn(Ω) = HkS,Γ(Ω).

By assumption and w.l.o.g. we have that (S`) is a Cauchy sequence in Hk−1
S,Γ (Ω). Moreover, for all

|α| = k we have ∂α S` ∈ HS,Γt(RotRot>,Ω) ∩ HS,Γn(Div,Ω) with RotRot> ∂α S` = ∂α RotRot> S`
and Div ∂α S` = ∂α DivS` by Lemma 3.18. Hence (∂α S`) is a bounded sequence in the zero order

space HS,Γt(RotRot>,Ω) ∩ HS,Γn(Div,Ω). Thus, w.l.o.g. (∂α S`) is a Cauchy sequence in L2
S(Ω) by

Theorem 3.12. Finally, (S`) is a Cauchy sequence in HkS,Γ(Ω), finishing the proof. �

Remark 3.20 (compact embedding). For k ≥ 1, cf. [15, Remark 4.12], there is another and
slightly more general proof using a variant of [11, Lemma 2.22].

For this, let (S`) be a bounded sequence in HkS,Γt(RotRot>,Ω) ∩ HkS,Γn(Div,Ω). In particular,

(S`) is bounded in Hk,k−1
S,Γt (RotRot>,Ω) ∩ HkS,Γn(Div,Ω). According to Lemma 3.10 we decompose

S` = T` + symGrad v` with T` ∈ Hk+1
S,Γt (Ω) and v` ∈ Hk+1

Γt
(Ω). By the boundedness of the regular

decomposition operators, (T`) and (v`) are bounded in Hk+1
S,Γt (Ω) and Hk+1

Γt
(Ω), respectively. W.l.o.g.

(T`) and (v`) converge in HkS,Γt(Ω) and HkΓt(Ω), respectively. For all 0 ≤ |α| ≤ k Lemma 3.18
yields (∂α S`) ⊂ HS,Γn(Div,Ω) and Div ∂α T = ∂α Div T . With S`,l := S`−Sl, T`,l := T`−Tl, and
v`,l := v` − vl we get

|S`,l|2HkS (Ω) = 〈S`,l, T`,l〉HkS (Ω) + 〈S`,l, symGrad v`,l〉HkS (Ω)

= 〈S`,l, T`,l〉HkS (Ω) − 〈DivS`,l, v`,l〉Hk(Ω) ≤ c
(
|T`,l|HkS (Ω) + |v`,l|Hk(Ω)

)
→ 0.

The latter remark shows immediately:

Theorem 3.21 (compact embedding). Let k ≥ 1. Then the embedding

Hk,k−1
S,Γt (RotRot>,Ω) ∩ HkS,Γn(Div,Ω) ↪→ HkS,Γ(Ω)

is compact.

Theorem 3.22 (Friedrichs/Poincaré type estimate). There exists ĉk > 0 such that for all S in

HkS,Γt(RotRot>,Ω) ∩ HkS,Γn(Div,Ω) ∩HS,Γt,Γn,id(Ω)
⊥

L2
S (Ω)

|S|HkS (Ω) ≤ ĉk
(
|RotRot> S|HkS (Ω) + |DivS|Hk(Ω)

)
.
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The condition HS,Γt,Γn,id(Ω)
⊥

L2
S (Ω) can be replaced by the weaker conditions HkS,Γt,Γn,id(Ω)

⊥
L2
S (Ω) or

HkS,Γt,Γn,id(Ω)
⊥

HkS (Ω) . In particular, it holds

∀S ∈ HkS,Γt(RotRot>,Ω) ∩R(RotRot>,kS,Γn) |S|HkS (Ω) ≤ ĉk|RotRot> S|HkS (Ω),

∀S ∈ HkS,Γn(Div,Ω) ∩R(symGradkΓt) |S|HkS (Ω) ≤ ĉk|DivS|Hk(Ω)

with

R(RotRot>,k+1,k
S,Γn ) = R(RotRot>,kS,Γn) = HkS,Γn,0(Div,Ω) ∩HS,Γt,Γn,id(Ω)

⊥
L2
S (Ω) ,

R(symGradkΓt) = HkS,Γt,0(RotRot>,Ω) ∩HS,Γt,Γn,id(Ω)
⊥

L2
S (Ω) .

Analogously, for k ≥ 1 there exists ĉk,k−1 > 0 such that

|S|HkS (Ω) ≤ ĉk,k−1

(
|RotRot> S|Hk−1

S (Ω) + |DivS|Hk(Ω)

)
for all S in Hk,k−1

S,Γt (RotRot>,Ω) ∩ HkS,Γn(Div,Ω) ∩HS,Γt,Γn,id(Ω)
⊥

L2
S (Ω) . Moreover,

∀S ∈ Hk,k−1
S,Γt (RotRot>,Ω) ∩R(RotRot>,kS,Γn) |S|HkS (Ω) ≤ ĉk,k−1|RotRot> S|Hk−1

S (Ω).

Proof. We follow the proof of [11, Theorem 4.17]. To show the first estimate, we use a standard
strategy and assume the contrary. Then there is a sequence

(S`) ⊂ HkS,Γt(RotRot>,Ω) ∩ HkS,Γn(Div,Ω) ∩HS,Γt,Γn,id(Ω)
⊥

L2
S (Ω)

with |S`|HkS (Ω) = 1 and |RotRot> S`|HkS (Ω) + |DivS`|Hk(Ω) → 0. Hence we may assume that S`

converges weakly to some S in HkS(Ω)∩HS,Γt,Γn,id(Ω)∩HS,Γt,Γn,id(Ω)
⊥

L2
S (Ω) . Thus S = 0. By Theorem

3.19 (S`) converges strongly to 0 in HkS(Ω), in contradiction to |S`|Hk(Ω) = 1. The other estimates
follow analogously resp. with Theorem 3.16 by restriction. �

Remark 3.23 (Friedrichs/Poincaré/Korn type estimate). Similar to Theorem 3.22 and by Rel-

lich’s selection theorem there exists c > 0 such that for all v ∈ Hk+1
Γt

(Ω) ∩ (RMΓt)
⊥L2(Ω)

|v|Hk(Ω) ≤ c| symGrad v|HkS (Ω).

As in Theorem 3.17, (RMΓt)
⊥L2(Ω) can be replaced by (RMΓt)

⊥
Hk
Γt

(Ω)
.

3.3. Regular Potentials and Decompositions II. Let k ≥ 0. According to Theorem 3.17 the
inverses of the reduced operators

(symGradkΓt)
−1
⊥ : R(symGradkΓt)→ D(symGradkΓt) = Hk+1

Γt
(Ω),

(RotRot>,kS,Γt)
−1
⊥ : R(RotRot>,kS,Γt)→ D(RotRot>,kS,Γt) = HkS,Γt(RotRot>,Ω),

(RotRot>,k+1,k
S,Γt )−1

⊥ : R(RotRot>,kS,Γt)→ D(RotRot>,k+1,k
S,Γt ) = Hk+1,k

S,Γt (RotRot>,Ω),

(DivkS,Γt)
−1
⊥ : R(DivkS,Γt)→ D(DivkS,Γt) = HkS,Γt(Div,Ω)

are bounded and we recall the bounded linear regular decomposition operators

Qk,1DivS,Γt
: HkS,Γt(Div,Ω)→ Hk+1

S,Γt (Ω), Qk,0DivS,Γt
: HkS,Γt(Div,Ω)→ Hk+2

S,Γt (Ω),

Qk,1
RotRot>S ,Γt

: HkS,Γt(RotRot>,Ω)→ Hk+2
S,Γt (Ω), Qk,0

RotRot>S ,Γt
: HkS,Γt(RotRot>,Ω)→ Hk+1

Γt
(Ω),

Qk+1,k,1

RotRot>S ,Γt
: Hk+1,k

S,Γt (RotRot>,Ω)→ Hk+2
S,Γt (Ω), Qk+1,k,0

RotRot>S ,Γt
: Hk+1,k

S,Γt (RotRot>,Ω)→ Hk+2
Γt

(Ω)

from Lemma 3.10. Similar to [11, Theorem 4.18, Theorem 5.2], cf. [11, Lemma 2.22, Theorem
2.23], we obtain the following sequence of results:

Theorem 3.24 (bounded regular potentials from bounded regular decompositions). For k ≥ 0
there exist bounded linear regular potential operators

PksymGrad,Γt := (symGradkΓt)
−1
⊥ : HkS,Γt,0(RotRot>,Ω) ∩HS,Γt,Γn,ε(Ω)

⊥
L2
S,ε(Ω) → Hk+1

Γt
(Ω),
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PkRotRot>S ,Γt
:= Qk,1

RotRot>S ,Γt
(RotRot>,kS,Γt)

−1
⊥ : HkS,Γt,0(Div,Ω) ∩HS,Γn,Γt,ε(Ω)

⊥
L2
S (Ω) → Hk+2

S,Γt (Ω),

Pk+1,k

RotRot>S ,Γt
:= Qk+1,k,1

RotRot>S ,Γt
(RotRot>,k+1,k

S,Γt )−1
⊥ : HkS,Γt,0(Div,Ω) ∩HS,Γn,Γt,ε(Ω)

⊥
L2
S (Ω) → Hk+2

S,Γt (Ω),

PkDivS,Γt
:= Qk,1DivS,Γt

(DivkS,Γt)
−1
⊥ : HkΓt(Ω) ∩ (RMΓn)

⊥L2(Ω) → Hk+1
S,Γt (Ω),

such that

symGradPksymGrad,Γt = id |
HkS,Γt,0

(RotRot>,Ω)∩HS,Γt,Γn,ε
(Ω)
⊥

L2
S,ε(Ω)

,

RotRot> Pk+1,k

RotRot>S ,Γt
= RotRot> PkRotRot>S ,Γt

= id |
HkS,Γt,0

(Div,Ω)∩HS,Γn,Γt,ε
(Ω)
⊥

L2
S (Ω)

,

DivPkDivS,Γt
= id |

HkΓt
(Ω)∩(RMΓn )

⊥
L2(Ω)

.

In particular, all potentials in Theorem 3.16 can be chosen such that they depend continuously

on the data. PksymGrad,Γt
, Pk

RotRot>S ,Γt
, Pk+1,k

RotRot>S ,Γt
, and PkDivS,Γt

are right inverses of symGrad,

RotRot>, and Div, respectively.

Theorem 3.25 (bounded regular decompositions from bounded regular potentials). For k ≥ 0
the bounded regular decompositions

HkS,Γt(Div,Ω) = Hk+1
S,Γt (Ω) + HkS,Γt,0(Div,Ω) = Hk+1

S,Γt (Ω) + RotRot> Hk+2
S,Γt (Ω)

= R(Q̃k,1DivS,Γt
)u HkS,Γt,0(Div,Ω)

= R(Q̃k,1DivS,Γt
)uR(Ñ k

DivS,Γt
),

HkS,Γt(RotRot>,Ω) = Hk+2
S,Γt (Ω) + HkS,Γt,0(RotRot>,Ω) = Hk+2

S,Γt (Ω) + symGradHk+1
Γt

(Ω)

= R(Q̃k,1
RotRot>S ,Γt

)u HkS,Γt,0(RotRot>,Ω)

= R(Q̃k,1
RotRot>S ,Γt

)uR(Ñ k
RotRot>S ,Γt

),

Hk+1,k
S,Γt (RotRot>,Ω) = Hk+2

S,Γt (Ω) + Hk+1
S,Γt,0(RotRot>,Ω) = Hk+2

S,Γt (Ω) + symGradHk+2
Γt

(Ω)

= R(Q̃k+1,k,1

RotRot>S ,Γt
)u Hk+1

S,Γt,0(RotRot>,Ω)

= R(Q̃k+1,k,1

RotRot>S ,Γt
)uR(Ñ k+1,k

RotRot>S ,Γt
)

hold with bounded linear regular decomposition operators

Q̃k,1DivS,Γt
:= PkDivS,Γt

DivkS,Γt : HkS,Γt(Div,Ω)→ Hk+1
S,Γt (Ω),

Q̃k,1
RotRot>S ,Γt

:= PkRotRot>S ,Γt
RotRot>,kS,Γt : HkS,Γt(RotRot>,Ω)→ Hk+2

S,Γt (Ω),

Q̃k+1,k,1

RotRot>S ,Γt
:= Pk+1,k

RotRot>S ,Γt
RotRot>,k+1,k

S,Γt : Hk+1,k
S,Γt (RotRot>,Ω)→ Hk+2

S,Γt (Ω),

Ñ k
DivS,Γt

: HkS,Γt(Div,Ω)→ HkS,Γt,0(Div,Ω),

Ñ k
RotRot>S ,Γt

: HkS,Γt(RotRot>,Ω)→ HkS,Γt,0(RotRot>,Ω),

Ñ k+1,k

RotRot>S ,Γt
: Hk+1,k

S,Γt (RotRot>,Ω)→ Hk+1
S,Γt,0(RotRot>,Ω)

satisfying

idHkS,Γt
(Div,Ω) = Q̃k,1DivS,Γt

+ Ñ k
DivS,Γt

,

idHkS,Γt
(RotRot>,Ω) = Q̃k,1

RotRot>S ,Γt
+ Ñ k

RotRot>S ,Γt
,

idHk+1,k
S,Γt

(RotRot>,Ω) = Q̃k+1,k,1

RotRot>S ,Γt
+ Ñ k+1,k

RotRot>S ,Γt
.

Corollary 3.26 (bounded regular kernel decompositions). For k ≥ 0 the bounded regular kernel
decompositions

HkS,Γt,0(Div,Ω) = Hk+1
S,Γt,0(Div,Ω) + RotRot> Hk+2

S,Γt (Ω),
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HkS,Γt,0(RotRot>,Ω) = Hk+2
S,Γt,0(RotRot>,Ω) + symGradHk+1

Γt
(Ω)

hold.

Remark 3.27 (bounded regular decompositions from bounded regular potentials). It holds

Div Q̃k,1DivS,Γt
= DivQk,1DivS,Γt

= DivkS,Γt

and hence HkS,Γt,0(Div,Ω) is invariant under Qk,1DivS,Γt
and Q̃k,1DivS,Γt

. Analogously,

RotRot> Q̃k,1
RotRot>S ,Γt

= RotRot>Qk,1
RotRot>S ,Γt

= RotRot>,kS,Γt ,

RotRot> Q̃k+1,k,1

RotRot>S ,Γt
= RotRot>Qk+1,k,1

RotRot>S ,Γt
= RotRot>,k+1,k

S,Γt .

Thus HkS,Γt,0(RotRot>,Ω) and Hk+1
S,Γt,0(RotRot>,Ω) are invariant under Qk,1

RotRot>S ,Γt
and Qk+1,k,1

RotRot>S ,Γt
,

respectively. Moreover,

R(Q̃k,1DivS,Γt
) = R(PkDivS,Γt

), Q̃k,1DivS,Γt
= Qk,1DivS,Γt

(DivkS,Γt)
−1
⊥ DivkS,Γt .

Therefore, we have Q̃k,1DivS,Γt
|D((DivkS,Γt

)⊥) = Qk,1DivS,Γt
|D((DivkS,Γt

)⊥) and thus Q̃k,1DivS,Γt
may differ from

Qk,1DivS,Γt
only on N(DivkS,Γt) = HkS,Γt,0(Div,Ω). Analogously,

R(Q̃k,1
RotRot>S ,Γt

) = R(PkRotRot>S ,Γt
), Q̃k,1

RotRot>S ,Γt
= Qk,1

RotRot>S ,Γt
(RotRot>,kS,Γt)

−1
⊥ RotRot>,kS,Γt ,

R(Q̃k+1,k,1

RotRot>S ,Γt
) = R(Pk+1,k

RotRot>S ,Γt
), Q̃k+1,k,1

RotRot>S ,Γt
= Qk+1,k,1

RotRot>S ,Γt
(RotRot>,k+1,k

S,Γt )−1
⊥ RotRot>,k+1,k

S,Γt .

Hence

Q̃k,1
RotRot>S ,Γt

|D((RotRot>,kS,Γt
)⊥) = Qk,1

RotRot>S ,Γt
|D((RotRot>,kS,Γt

)⊥),

Q̃k+1,k,1

RotRot>S ,Γt
|D((RotRot>,k+1,k

S,Γt
)⊥) = Qk+1,k,1

RotRot>S ,Γt
|D((RotRot>,k+1,k

S,Γt
)⊥)

and thus Q̃k,1
RotRot>S ,Γt

and Q̃k+1,k,1

RotRot>S ,Γt
may differ from Qk,1

RotRot>S ,Γt
and Qk+1,k,1

RotRot>S ,Γt
only on the

kernels N(RotRot>,kS,Γt) = HkS,Γt,0(RotRot>,Ω) and N(RotRot>,k+1,k
S,Γt ) = Hk+1

S,Γt,0(RotRot>,Ω), re-
spectively.

Remark 3.28 (projections). Recall Theorem 3.25, e.g., for RotRot>,kS,Γt

HkS,Γt(RotRot>,Ω) = R(Q̃k,1
RotRot>S ,Γt

)uR(Ñ k
RotRot>S ,Γt

).

(i) Q̃k,1
RotRot>S ,Γt

, Ñ k
RotRot>S ,Γt

= 1− Q̃k,1
RotRot>S ,Γt

are projections.

(i’) Q̃k,1
RotRot>S ,Γt

Ñ k
RotRot>S ,Γt

= Ñ k
RotRot>S ,Γt

Q̃k,1
RotRot>S ,Γt

= 0.

(ii) For I± := Q̃k,1
RotRot>S ,Γt

± Ñ k
RotRot>S ,Γt

it holds I+ = I2
− = idHkS,Γt

(RotRot>,Ω). Therefore,

I+, I2
−, as well as I− = 2Q̃k,1

RotRot>S ,Γt
− idHkS,Γt

(RotRot>,Ω) are topological isomorphisms on

HkS,Γt(RotRot>,Ω).

(iii) There exists c > 0 such that for all S ∈ HkS,Γt(RotRot>,Ω)

c|Q̃k,1
RotRot>S ,Γt

S|Hk+2
S (Ω) ≤ |RotRot> S|HkS (Ω) ≤ |S|HkS (RotRot>,Ω),

|Ñ k
RotRot>S ,Γt

S|HkS (Ω) ≤ |S|HkS (Ω) + |Q̃k,1
RotRot>S ,Γt

S|HkS (Ω).

(iii’) For S ∈ HkS,Γt,0(RotRot>,Ω) we have Q̃k,1
RotRot>S ,Γt

S = 0 and Ñ k
RotRot>S ,Γt

S = S. In partic-

ular, Ñ k
RotRot>S ,Γt

is onto.
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Similar results to (i)-(iii’) hold for DivkS,Γt and RotRot>,k+1,k
S,Γt as well. In particular, Q̃k,1DivS,Γt

,

Ñ k
DivS,Γt

, and Q̃k+1,k,1

RotRot>S ,Γt
, Ñ k+1,k

RotRot>S ,Γt
are projections and there exists c > 0 such that for all

T ∈ HkS,Γt(Div,Ω) and all S ∈ Hk+1,k
S,Γt (RotRot>,Ω)

|Q̃k,1DivS,Γt
T |Hk+1

S (Ω) ≤ c|Div T |Hk(Ω), |Q̃k+1,k,1

RotRot>S ,Γt
S|Hk+2

S (Ω) ≤ c|RotRot> S|HkS (Ω).

Corollary 3.26 shows:

Corollary 3.29 (bounded regular higher order kernel decompositions). For k, ` ≥ 0 the bounded
regular kernel decompositions

N(DivkS,Γt) = HkS,Γt,0(Div,Ω) = H`S,Γt,0(Div,Ω) + RotRot> Hk+2
S,Γt (Ω),

N(RotRot>,kS,Γt) = HkS,Γt,0(RotRot>,Ω) = H`S,Γt,0(RotRot>,Ω) + symGradHk+1
Γt

(Ω)

hold. In particular, for k = 0 and all ` ≥ 0

N(DivS,Γt) = HS,Γt,0(Div,Ω) = H`S,Γt,0(Div,Ω) + RotRot> H2
S,Γt(Ω),

N(RotRot>S,Γt) = HS,Γt,0(RotRot>,Ω) = H`S,Γt,0(RotRot>,Ω) + symGradH1
Γt(Ω).

3.4. Dirichlet/Neumann Fields. From Theorem 3.15 (iv) we recall the orthonormal Helmholtz
type decompositions (for µ = 1)

L2
S,ε(Ω) = R(symGradΓt)⊕L2

S,ε(Ω) N(DivS,Γn ε)

= N(RotRot>S,Γt)⊕L2
S,ε(Ω) R(ε−1 RotRot>S,Γn)

= R(symGradΓt)⊕L2
S,ε(Ω) HS,Γt,Γn,ε(Ω)⊕L2

S,ε(Ω) R(ε−1 RotRot>S,Γn),

N(RotRot>S,Γt) = R(symGradΓt)⊕L2
S,ε(Ω) HS,Γt,Γn,ε(Ω),

N(DivS,Γn ε) = HS,Γt,Γn,ε(Ω)⊕L2
S,ε(Ω) R(ε−1 RotRot>S,Γn).

(13)

Let us denote the L2
S,ε(Ω)-orthonormal projector onto N(DivS,Γn ε) and N(RotRot>S,Γt) by

πDiv : L2
S,ε(Ω)→ N(DivS,Γn ε), πRotRot> : L2

S,ε(Ω)→ N(RotRot>S,Γt),

respectively. Then

πDiv|N(RotRot>S,Γt
) : N(RotRot>S,Γt)→ HS,Γt,Γn,ε(Ω),

πRotRot> |N(DivS,Γn ε)
: N(DivS,Γn ε)→ HS,Γt,Γn,ε(Ω)

are onto. Moreover,

πDiv|R(symGradΓt
) = 0, πRotRot> |R(ε−1 RotRot>S,Γn ) = 0,

πDiv|HS,Γt,Γn,ε
(Ω) = idHS,Γt,Γn,ε

(Ω), πRotRot> |HS,Γt,Γn,ε
(Ω) = idHS,Γt,Γn,ε

(Ω) .

Therefore, by Corollary 3.29 and for all ` ≥ 0

HS,Γt,Γn,ε(Ω) = πDivN(RotRot>S,Γt) = πDiv H
`
S,Γt,0(RotRot>,Ω),

HS,Γt,Γn,ε(Ω) = πRotRot>N(DivS,Γn ε) = πRotRot>ε
−1 H`S,Γn,0(Div,Ω),

where we have used N(DivS,Γn ε) = ε−1 HS,Γn,0(Div,Ω). Hence with

H∞S,Γt,0(RotRot>,Ω) :=
⋂
k≥0

HkS,Γt,0(RotRot>,Ω), H∞S,Γn,0(Div,Ω) :=
⋂
k≥0

HkS,Γn,0(Div,Ω)

we have the following result:

Theorem 3.30 (smooth pre-bases of Dirichlet/Neumann fields). Let dΩ,Γt := dimHS,Γt,Γn,ε(Ω).
Then

πDiv H
∞
S,Γt,0(RotRot>,Ω) = HS,Γt,Γn,ε(Ω) = πRotRot>ε

−1 H∞S,Γn,0(Div,Ω).



HILBERT COMPLEXES WITH MIXED BOUNDARY CONDITIONS – PART 2: ELASTICITY COMPLEX 23

Moreover, there exists a smooth RotRot>-pre-basis and a smooth Div-pre-basis of HS,Γt,Γn,ε(Ω),
i.e., there are linear independent smooth fields

BRotRot>

S,Γt (Ω) := {BRotRot>

S,Γt,` }dΩ,Γt

`=1 ⊂ H∞S,Γt,0(RotRot>,Ω),

BDiv
S,Γn(Ω) := {BDiv

S,Γn,`}
dΩ,Γt

`=1 ⊂ H∞S,Γn,0(Div,Ω),

such that πDiv BRotRot>

S,Γt (Ω) and πRotRot>ε
−1 BDiv

S,Γn(Ω) are both bases of HS,Γt,Γn,ε(Ω). In particular,

LinπDiv BRotRot>

S,Γt (Ω) = HS,Γt,Γn,ε(Ω) = LinπRotRot>ε
−1 BDiv

S,Γn(Ω).

Note that (1−πDiv) and (1−πRotRot>) are the L2
S,ε(Ω)-orthonormal projectors onto the ranges

R(symGradΓt) and R(ε−1 RotRot>S,Γn), respectively, i.e.,

(1− πDiv) : L2
S,ε(Ω)→ R(symGradΓt), (1− πRotRot>) : L2

S,ε(Ω)→ R(ε−1 RotRot>S,Γn).

By (13), Theorem 3.16, and Theorem 3.30 we have, e.g.,

HS,Γt,0(RotRot>,Ω) = R(symGradΓt)⊕L2
S,ε(Ω) HS,Γt,Γn,ε(Ω)

= R(symGradΓt)⊕L2
S,ε(Ω) LinπDiv BRotRot>

S,Γt (Ω)

= R(symGradΓt) + (πDiv − 1) LinBRotRot>

S,Γt (Ω) + LinBRotRot>

S,Γt (Ω)

= R(symGradΓt) + LinBRotRot>

S,Γt (Ω),

HkS,Γt,0(RotRot>,Ω) = R(symGradΓt) ∩ HkS,Γt,0(RotRot>,Ω) + LinBRotRot>

S,Γt (Ω),

= R(symGradkΓt) + LinBRotRot>

S,Γt (Ω).

(14)

Similarly, we obtain a decomposition of HkS,Γn,0(Div,Ω) using BDiv
S,Γn(Ω). We conclude:

Theorem 3.31 (bounded regular direct decompositions). Let k ≥ 0. Then the bounded regular
direct decompositions

HkS,Γt(RotRot>,Ω) = R(Q̃k,1
RotRot>S ,Γt

)u HkS,Γt,0(RotRot>,Ω),

Hk+1,k
S,Γt (RotRot>,Ω) = R(Q̃k+1,k,1

RotRot>S ,Γt
)u Hk+1

S,Γt,0(RotRot>,Ω),

HkS,Γt,0(RotRot>,Ω) = symGradHk+1
Γt

(Ω)u LinBRotRot>

S,Γt (Ω),

HkS,Γn(Div,Ω) = R(Q̃k,1DivS,Γn
)u HkS,Γn,0(Div,Ω),

HkS,Γn,0(Div,Ω) = RotRot> Hk+2
S,Γn(Ω)u LinBDiv

S,Γn(Ω)

hold. Note that R(Q̃k,1
RotRot>S ,Γt

), R(Q̃k+1,k,1

RotRot>S ,Γt
) ⊂ Hk+2

S,Γt (Ω) and R(Q̃k,1DivS,Γn
) ⊂ Hk+1

S,Γn(Ω).

Remark 3.32 (bounded regular direct decompositions). In particular, for k = 0

HS,Γt(RotRot>,Ω) = R(Q̃0,1

RotRot>S ,Γt
)u HS,Γt,0(RotRot>,Ω),

HS,Γt,0(RotRot>,Ω) = symGradH1
Γt(Ω)u LinBRotRot>

S,Γt (Ω)

= symGradH1
Γt(Ω)⊕L2

S,ε(Ω) HS,Γt,Γn,ε(Ω),

HS,Γn(Div,Ω) = R(Q̃0,1
DivS,Γn

)u HS,Γn,0(Div,Ω),

ε−1 HS,Γn,0(Div,Ω) = ε−1 RotRot> H2
S,Γn(Ω)u ε−1 LinBDiv

S,Γn(Ω)

= ε−1 RotRot> H2
S,Γn(Ω)⊕L2

S,ε(Ω) HS,Γt,Γn,ε(Ω)

and

L2
S,ε(Ω) = HS,Γt,0(RotRot>,Ω)⊕L2

S,ε(Ω) ε
−1 RotRot> H2

S,Γn(Ω)

= symGradH1
Γt(Ω)⊕L2

S,ε(Ω) ε
−1 HS,Γn,0(Div,Ω).



24 DIRK PAULY AND MICHAEL SCHOMBURG

Proof of Theorem 3.31. Theorem 3.25 and (14) show

HkS,Γt(RotRot>,Ω) = R(Q̃k,1
RotRot>S ,Γt

)u HkS,Γt,0(RotRot>,Ω),

Hk+1,k
S,Γt (RotRot>,Ω) = R(Q̃k+1,k,1

RotRot>S ,Γt
)u Hk+1

S,Γt,0(RotRot>,Ω),

HkS,Γt,0(RotRot>,Ω) = symGradHk+1
Γt

(Ω) + LinBRotRot>

S,Γt (Ω).

To prove the directness, let

dΩ,Γt∑
`=1

λ`B
RotRot>

S,Γt,` ∈ symGradHk+1
Γt

(Ω) ∩ BRotRot>

S,Γt (Ω).

Then 0 =
∑
` λ`πDivB

RotRot>

S,Γt,` ∈ LinπDivB
RotRot>

S,Γt,` and hence λ` = 0 for all ` as πDivB
RotRot>

S,Γt,` is a

basis of HS,Γt,Γn,ε(Ω) by Theorem 3.30. Concerning the boundedness of the decompositions, let

HkS,Γt,0(RotRot>,Ω) 3 S = symGrad v +B, v ∈ Hk+1
Γt

(Ω), B ∈ LinBRotRot>

S,Γt (Ω).

By Theorem 3.24 symGrad v ∈ R(symGradkΓt) and u := PksymGrad,Γt
symGrad v ∈ Hk+1

Γt
(Ω) solves

symGradu = symGrad v with |u|Hk+1(Ω) ≤ c| symGrad v|HkS (Ω). Therefore,

|u|Hk+1(Ω) + |B|HkS (Ω) ≤ c
(
| symGrad v|HkS (Ω) + |B|HkS (Ω)

)
≤ c
(
|S|HkS (Ω) + |B|HkS (Ω)

)
.

Note that the mapping

Iπ,Div : LinBRotRot>

S,Γt (Ω)→ LinπDiv BRotRot>

S,Γt (Ω) = HS,Γt,Γn,ε(Ω); BRotRot>

S,Γt,` 7→ πDivB
RotRot>

S,Γt,`

is a topological isomorphism (between finite dimensional spaces and with arbitrary norms). Thus

|B|HkS (Ω) ≤ c|B|L2
S (Ω) ≤ c|πDivB|L2

S (Ω) = c|πDivS|L2
S (Ω) ≤ c|S|L2

S (Ω) ≤ c|S|HkS (Ω).

Finally, we see S = symGradu+B ∈ symGradHk+1
Γt

(Ω)u LinBRotRot>

S,Γt (Ω) and

|u|Hk+1(Ω) + |B|HkS (Ω) ≤ c|S|HkS (Ω).

The other assertions for Div follow analogously. �

Remark 3.33 (bounded regular direct decompositions). By Theorem 3.31 we have, e.g.,

HkS,Γt(RotRot>,Ω) = R(Q̃k,1
RotRot>S ,Γt

)u LinBRotRot>

S,Γt (Ω)u symGradHk+1
Γt

(Ω)

= Hk+2
S,Γt (Ω) + symGradHk+1

Γt
(Ω)

with bounded linear regular direct decomposition operators

Q̂k,1
RotRot>S ,Γt

: HkS,Γt(RotRot>,Ω)→ R(Q̃k,1
RotRot>S ,Γt

) ⊂ Hk+2
S,Γt (Ω),

Q̂k,∞
RotRot>S ,Γt

: HkS,Γt(RotRot>,Ω)→ LinBRotRot>

S,Γt (Ω) ⊂ H∞S,Γt,0(RotRot>,Ω) ⊂ Hk+2
S,Γt (Ω),

Q̂k,0
RotRot>S ,Γt

: HkS,Γt(RotRot>,Ω)→ Hk+1
Γt

(Ω)

satisfying Q̂k,1
RotRot>S ,Γt

+ Q̂k,∞
RotRot>S ,Γt

+ symGrad Q̂k,0
RotRot>S ,Γt

= idHkS,Γt
(RotRot>,Ω).

A closer inspection of the latter proof allows for a more precise description of these bounded
decomposition operators. For this, let S ∈ HkS,Γt(RotRot>,Ω). According to Theorem 3.25 and
Remark 3.28 we decompose

S = SR + SN ∈ R(Q̃k,1
RotRot>S ,Γt

)uR(Ñ k
RotRot>S ,Γt

)

with R(Ñ k
RotRot>S ,Γt

) = HkS,Γt,0(RotRot>,Ω) = N(RotRot>,kS,Γt) as well as SR = Q̃k,1
RotRot>S ,Γt

S and

SN = Ñ k
RotRot>S ,Γt

S. By Theorem 3.31 we further decompose

HkS,Γt,0(RotRot>,Ω) 3 SN = symGradu+B ∈ symGradHk+1
Γt

(Ω)u LinBRotRot>

S,Γt (Ω).
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Then πDivSN = πDivB ∈ HS,Γt,Γn,ε(Ω) and thus B = I−1
π,DivπDivSN ∈ LinBRotRot>

S,Γt (Ω). Therefore,

u = PksymGrad,Γt
symGradu = PksymGrad,Γt

(SN − B) = PksymGrad,Γt
(1 − I−1

π,DivπDiv)SN . Finally we
see

Q̂k,1
RotRot>S ,Γt

= Q̃k,1
RotRot>S ,Γt

= PkRotRot>S ,Γt
RotRot>,kS,Γt = Qk,1

RotRot>S ,Γt
(RotRot>,kS,Γt)

−1
⊥ RotRot>,kS,Γt ,

Q̂k,∞
RotRot>S ,Γt

= I−1
π,DivπDivÑ k

RotRot>S ,Γt
,

Q̂k,0
RotRot>S ,Γt

= PksymGrad,Γt(1− I
−1
π,DivπDiv)Ñ k

RotRot>S ,Γt

with Ñ k
RotRot>S ,Γt

= 1− Q̃k,1
RotRot>S ,Γt

. Analogously, we have

Hk+1,k
S,Γt (RotRot>,Ω) = R(Q̃k+1,k,1

RotRot>S ,Γt
)u LinBRotRot>

S,Γt (Ω)u symGradHk+2
Γt

(Ω)

= Hk+2
S,Γt (Ω) + symGradHk+2

Γt
(Ω),

HkS,Γn(Div,Ω) = R(Q̃k,1DivS,Γn
)u LinBDiv

S,Γn(Ω)u RotRot> Hk+2
S,Γn(Ω)

= Hk+1
S,Γn(Ω) + RotRot> Hk+2

S,Γn(Ω)

with bounded linear regular direct decomposition operators

Q̂k+1,k,1

RotRot>S ,Γt
: Hk+1,k

S,Γt (RotRot>,Ω)→ R(Q̃k+1,k,1

RotRot>S ,Γt
) ⊂ Hk+2

S,Γt (Ω),

Q̂k+1,k,∞
RotRot>S ,Γt

: Hk+1,k
S,Γt (RotRot>,Ω)→ LinBRotRot>

S,Γt (Ω) ⊂ H∞S,Γt,0(RotRot>,Ω) ⊂ Hk+2
S,Γt (Ω),

Q̂k+1,k,0

RotRot>S ,Γt
: Hk+1,k

S,Γt (RotRot>,Ω)→ Hk+2
Γt

(Ω),

Q̂k,1DivS,Γn
: HkS,Γn(Div,Ω)→ R(Q̃k,1DivS,Γn

) ⊂ Hk+1
S,Γn(Ω),

Q̂k,∞DivS,Γn
: HkS,Γn(Div,Ω)→ LinBDiv

S,Γn(Ω) ⊂ H∞S,Γn,0(Div,Ω) ⊂ Hk+1
S,Γn(Ω),

Q̂k,0DivS,Γn
: HkS,Γn(Div,Ω)→ Hk+2

S,Γn(Ω)

satisfying

Q̂k+1,k,1

RotRot>S ,Γt
+ Q̂k+1,k,∞

RotRot>S ,Γt
+ symGrad Q̂k+1,k,0

RotRot>S ,Γt
= idHk+1,k

S,Γt
(RotRot>,Ω),

Q̂k,1DivS,Γn
+ Q̂k,∞DivS,Γn

+ RotRot> Q̂k,0DivS,Γn
= idHkS,Γn (Div,Ω)

and

Q̂k+1,k,1

RotRot>S ,Γt
= Q̃k+1,k,1

RotRot>S ,Γt
= Pk+1,k

RotRot>S ,Γt
RotRot>,k+1,k

S,Γt ,

Q̂k+1,k,∞
RotRot>S ,Γt

= I−1
π,DivπDivÑ k+1,k

RotRot>S ,Γt
,

Q̂k+1,k,0

RotRot>S ,Γt
= Pk+1

symGrad,Γt
(1− I−1

π,DivπDiv)Ñ k+1,k

RotRot>S ,Γt
,

Q̂k,1DivS,Γn
= Q̃k,1DivS,Γn

= PkDivS,Γn
DivkS,Γn ,

Q̂k,∞DivS,Γn
= I−1

π,RotRot>
πRotRot>Ñ k

DivS,Γn
,

Q̂k,0DivS,Γn
= PkRotRot>S ,Γn

(1− I−1
π,RotRot>

πRotRot>)Ñ k
DivS,Γn

with

Ñ k+1,k

RotRot>S ,Γt
= 1− Q̃k+1,k,1

RotRot>S ,Γt
, Ñ k

DivS,Γn
= 1− Q̂k,1DivS,Γn

,

Pk+1,k

RotRot>S ,Γt
= Qk+1,k,1

RotRot>S ,Γt
(RotRot>,k+1,k

S,Γt )−1
⊥ , PkDivS,Γn

= Qk,1DivS,Γn
(DivkS,Γn)−1

⊥ ,

and

Iπ,RotRot> : LinBDiv
S,Γn(Ω)→ LinπRotRot> BDiv

S,Γn(Ω) = HS,Γn,Γn,ε(Ω); BDiv
S,Γn,` 7→ πRotRot>B

Div
S,Γn,`.

Noting

R(ε−1 RotRot>S,Γn)⊥L2
S,ε(Ω) BRotRot>

S,Γt (Ω), R(symGradΓt)⊥L2
S (Ω) BDiv

S,Γn(Ω)(15)
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we see:

Theorem 3.34 (alternative Dirichlet/Neumann projections). It holds

HS,Γt,Γn,ε(Ω) ∩ BRotRot>

S,Γt (Ω)
⊥

L2
S,ε(Ω) = {0},

N(DivS,Γn ε) ∩ B
RotRot>

S,Γt (Ω)
⊥

L2
S,ε(Ω) = R(ε−1 RotRot>S,Γn),

HS,Γt,Γn,ε(Ω) ∩ BDiv
S,Γn(Ω)

⊥
L2
S (Ω) = {0},

N(RotRot>S,Γt) ∩ B
Div
S,Γn(Ω)

⊥
L2
S (Ω) = R(symGradΓt).

Moreover, for all k ≥ 0

N(DivkS,Γn ε) ∩ B
RotRot>

S,Γt (Ω)
⊥

L2
S,ε(Ω) = R(ε−1 RotRot>,kS,Γn) = ε−1 RotRot> Hk+2

S,Γn(Ω),

N(RotRot>,kS,Γt) ∩ B
Div
S,Γn(Ω)

⊥
L2
S (Ω) = R(symGradkΓt) = symGradHk+1

Γt
(Ω).

Proof. For k = 0 and S ∈ HS,Γt,Γn,ε(Ω) ∩ BRotRot>

S,Γt (Ω)
⊥

L2
S,ε(Ω) we have

0 = 〈S,BRotRot>

S,Γt,` 〉L2
S,ε(Ω) = 〈πDivS,B

RotRot>

S,Γt,` 〉L2
S,ε(Ω) = 〈S, πDivB

RotRot>

S,Γt,` 〉L2
S,ε(Ω)

and hence S = 0 by Theorem 3.30. Analogously, we see for S ∈ HS,Γt,Γn,ε(Ω) ∩ BDiv
S,Γn(Ω)

⊥
L2
S (Ω)

0 = 〈S,BDiv
S,Γn,`〉Lq(Ω) = 〈πRotRot>S, ε

−1BDiv
S,Γn,`〉L2

S,ε(Ω) = 〈S, πRotRot>ε
−1BDiv

S,Γn,`〉L2
S,ε(Ω)

and thus S = 0 again by Theorem 3.30. According to (13) we can decompose

N(DivS,Γn ε) = R(ε−1 RotRot>S,Γn)⊕L2
S,ε(Ω) HS,Γt,Γn,ε(Ω),

N(RotRot>S,Γt) = R(symGradΓt)⊕L2
S,ε(Ω) HS,Γt,Γn,ε(Ω),

which shows by (15) the other two assertions. Let k ≥ 0. The case k = 0 and Theorem 3.16 show

N(RotRot>,kS,Γt) ∩ B
Div
S,Γn(Ω)

⊥
L2
S (Ω) = HkS,Γt(Ω) ∩N(RotRot>S,Γt) ∩ B

Div
S,Γn(Ω)

⊥
L2
S (Ω)

= HkS,Γt(Ω) ∩R(symGradΓt)

= R(symGradkΓt) = symGradHk+1
Γt

(Ω).

Analogously,

N(DivkS,Γn ε) ∩ B
RotRot>

S,Γt (Ω)
⊥

L2
S,ε(Ω) = ε−1 HkS,Γn(Ω) ∩N(DivS,Γn ε) ∩ B

RotRot>

S,Γt (Ω)
⊥

L2
S,ε(Ω)

= ε−1 HkS,Γn(Ω) ∩R(ε−1 RotRot>S,Γn)

= R(ε−1 RotRot>,kS,Γn) = ε−1 RotRot> Hk+2
S,Γn(Ω),

completing the proof. �

Theorem 3.31 implies:

Theorem 3.35 (cohomology groups). It holds

N(RotRot>,kS,Γt)

R(symGradkΓt)
∼= LinBRotRot>

S,Γt (Ω) ∼= HS,Γt,Γn,ε(Ω) ∼= LinBDiv
S,Γn(Ω) ∼=

N(DivkS,Γn)

R(RotRot>,kS,Γn)
.

In particular, the dimensions of the cohomology groups (Dirichlet/Neumann fields) are independent
of k and ε and it holds

dΩ,Γt = dim
(
N(RotRot>,kS,Γt)/R(symGradkΓt)

)
= dim

(
N(DivkS,Γn)/R(RotRot>,kS,Γn)

)
.
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Appendix A. Elementary Formulas

From [13, 14, 15] and [12] we have the following collection of formulas related to the elasticity
and the biharmonic complex.

Lemma A.1 ([12, Lemma 12.10]). Let u, v, w, and S belong to C∞(R3).

• (spn v)w = v × w = −(spnw) v and (spn v)(spn−1 S) = −Sv, if symS = 0
• sym spn v = 0 and dev(u id) = 0
• tr Grad v = div v and 2 skw Grad v = spn rot v
• Div(u id) = gradu and Rot(u id) = − spn gradu,

in particular, rot Div(u id) = 0 and rot spn−1 Rot(u id) = 0
and sym Rot(u id) = 0

• Div spn v = − rot v and Div skwS = − rot spn−1 skwS,
in particular, div Div skwS = 0

• Rot spn v = (div v) id−(Grad v)>

and Rot skwS = (div spn−1 skwS) id−(Grad spn−1 skwS)>

• dev Rot spn v = −(dev Grad v)>

• −2 Rot sym Grad v = 2 Rot skw Grad v = −(Grad rot v)>
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• 2 spn−1 skw RotS = DivS> − grad trS = Div
(
S − (trS) id

)>
,

in particular, rot DivS> = 2 rot spn−1 skw RotS
and 2 skw RotS = spn DivS>, if trS = 0

• tr RotS = 2 div spn−1 skwS, in particular, tr RotS = 0, if skwS = 0,
and tr Rot symS = 0 and tr Rot skwS = tr RotS

• 2(Grad spn−1 skwS)> = (tr Rot skwS) id−2 Rot skwS
• 3 Div(dev Grad v)> = 2 grad div v
• 2 Rot sym Grad v = −2 Rot skw Grad v = −Rot spn rot v = (Grad rot v)>

• 2 Div sym RotS = −2 Div skw RotS = rot DivS>

• Rot(Rot symS)> = sym Rot(RotS)>

• Rot(Rot skwS)> = skw Rot(RotS)>

All formulas extend to distributions as well.
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