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The Index of Some Mixed Order Dirac-Type Operators
and Generalised Dirichlet-Neumann Tensor Fields

by

Dirk Pauly & Marcus Waurick

SM-UDE-823 2020



Received: June 8, 2020



THE INDEX OF SOME MIXED ORDER DIRAC-TYPE OPERATORS
AND GENERALISED DIRICHLET-NEUMANN TENSOR FIELDS

DIRK PAULY AND MARCUS WAURICK

Dedicated to the Captain

Abstract. We revisit a construction principle of Fredholm operators using Hilbert
complexes of densely defined, closed linear operators and apply this to particular choices
of differential operators. The resulting index is then computed with the help of explicitly
describing the dimension of the cohomology groups of generalised harmonic Dirichlet
and Neumann tensor fields. The main results of this contribution are to compute the
indices of the Dirac-type operators associated to the elasticity complex and the newly
found biharmonic complex, relevant for the biharmonic equation, elasticity, and in the
theory of general relativity. The differential operators are of mixed order and cannot be
seen as leading order type with relatively compact perturbation. As a side product we
present a comprehensive description of the underlying generalised ‘harmonic’ Dirichlet-
Neumann vector and tensor fields defining the respective cohomology groups, including
their dimensions and an explicit construction of bases in terms of topological invariants,
which are of both analytical and numerical interest. For this we follow in close lines the
work of Rainer Picard [23].
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1. Introduction

This article is concerned with the explicit computation of the Fredholm index if a
differential operator is ‘apparently’ of mixed order. More precisely, we shall establish a
collection of theorems like the following:

Theorem 1.1. Let Ω ⊆ R3 be open, bounded with strong1 Lipschitz boundary. Then there
exists a subspace V ⊆ L2,3×3

T (Ω)× L2(Ω) such that

D :=

(
Div 0

symCurl Gradgrad

)
: V ⊆ L2,3×3

T (Ω)× L2(Ω)→ L2,3(Ω)× L2,3×3
S (Ω)

and D∗ are densely defined and closed Fredholm operators, where L2,3×3
T (Ω) and L2,3×3

S (Ω)
denote the sets of trace free and symmetric 3× 3 matrices with entries in L2(Ω), respec-
tively. Moreover,

indD = 4(p−m− n+ 1), indD∗ = − indD

where n is the number of connected components of Ω, m is the number of connected
components of its complement R3 \ Ω, and p is the number of handles, see Definition 3.5
and Assumption 3 for the precise notion.

In the course of the manuscript, we shall describe the subspace V = domD explicitly,
see Theorem 4.4 and Remark 4.5. A refined notation will indicate (full) natural boundary
conditions by ˚ and algebraic properties of the tensor fields belonging to the domain of
definition of the repetitive operators by S and T (symmetric and trace free), e.g., the
latter operators read

D = Dbih,1 :=

(
D̊ivT 0

symCurlT ˚Gradgrad

)
, (Dbih,1)∗ =

(
− devGrad C̊urlS

0 divDivS

)
.

These operators are related to the (primal and dual) first biharmonic complex, also called
Gradgrad or divDiv complex, i.e.,

{0}
ι{0}−−→ L2(Ω)

˚Gradgrad−−−−−→ L2,3×3
S (Ω)

C̊urlS−−−→ L2,3×3
T (Ω)

D̊ivT−−→ L2,3(Ω)
πRTpw−−−→ RTpw,

{0}
π{0}←−− L2(Ω)

divDivS←−−−− L2,3×3
S (Ω)

symCurlT←−−−−− L2,3×3
T (Ω)

− devGrad←−−−−−− L2,3(Ω)
ιRTpw←−−− RTpw,

1The boundary of a strong Lipschitz domain is locally a graph of some Lipschitz function.
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relevant for the biharmonic equation, elasticity, and in the theory of general relativity. In
the second biharmonic complex the boundary conditions are interchanged, i.e.,

{0}
ι{0}−−→ L2,3(Ω)

˚devGrad−−−−→ L2,3×3
T (Ω)

˚symCurlT−−−−−→ L2,3×3
S (Ω)

˚divDivS−−−−→ L2(Ω)
π
P1
pw−−→ P1

pw,

{0}
π{0}←−− L2,3(Ω)

−DivT←−−−− L2,3×3
T (Ω)

CurlS←−−− L2,3×3
S (Ω)

Gradgrad←−−−−− L2(Ω)
ι
P1
pw←−− P1

pw,

leading to the operators

Dbih,2 :=

(
˚divDivS 0

CurlS ˚devGrad

)
, (Dbih,2)∗ =

(
Gradgrad ˚symCurlT

0 −DivT

)
,

see Theorem 5.5 and Remark 5.6. Another interesting complex is the elasticity complex,
also called CurlCurl complex, i.e.,

{0}
ι{0}−−→ L2,3(Ω)

˚symGrad−−−−−→ L2,3×3
S (Ω)

˚CurlCurl>S−−−−−−→ L2,3×3
S (Ω)

D̊ivS−−→ L2,3(Ω)
πRMpw−−−→ RMpw,

{0}
π{0}←−− L2,3(Ω)

−DivS←−−− L2,3×3
S (Ω)

CurlCurl>S←−−−−−− L2,3×3
S (Ω)

− symGrad←−−−−−− L2,3(Ω)
ιRMpw←−−− RMpw.

Here, we shall discuss the operators

Dela :=

(
D̊ivS 0

CurlCurl>S
˚symGrad

)
, (Dela)∗ =

(
− symGrad ˚CurlCurl>S

0 −DivS

)
,

being of the same type, see Theorem 6.4 and Remark 6.5. Here and throughout this paper,
we denote by grad, curl, and div the classical operators from vector analysis. Moreover,
Grad acts componentwise as grad> mapping vector fields to tensor fields. Curl and Div act
row-wise as curl> and div mapping tensor fields to tensor and vector fields, respectively.

Before we come to more in depth description of the main results, we shall provide a
small overview of Fredholm index theory for differential operators next.

It is one of the greatest mathematical achievements of the twentieth century to relate the
analytic notion of the Fredholm index for operators defined on Hilbert spaces to particular
elliptic operators and their corresponding geometric properties of the underlying compact
manifold the operators are defined on. The corner stone of this insight is the celebrated
Atijah-Singer index theorem, see e.g. [16]. The methods of proof led to the invention of
K-theory, which has evolved ever since and is an active field of research. Albeit being
a breakthrough in mathematics, K-theory is a rather difficult tool to work with when it
comes to explicitly compute the index for particular examples. Hence, in any case there is
a need to provide many examples, where it is possible to obtain an explicit index formula.

In particular, when it comes to explicitly computing the Witten index (a generalised
version of the Fredholm index) there is a need to thoroughly understand the Fredholm
case in particular situations. We refer to [8] for a preliminary version of an explicit index
theorem properly justified in [6] and, using a similar pathway as in [8], to [10], where the
transition from the Fredholm situtation to the Witten index has been performed in [10,
Chapter 14]. The generalisation of the one-plus-one-dimensional situation of [8] has been
addressed in the seminal paper [9].

The approach to compute the index in Theorem 1.1 (and in all the others) is based
on a construction principle for Fredholm operators provided in [7]. The fundamental
observation given in [7] is that it is possible to construct a Fredholm operator with the
help of Hilbert complexes of densely defined and closed linear operators, i.e,

· · · ···−→ H0
A0−→ H1

A1−→ H2
A2−→ H3

···−→ · · · ,

· · · ···←− H0

A∗0←− H1

A∗1←− H2

A∗2←− H3
···←− · · · .
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More precisely, if A0, A1, and A2 are densely defined, closed linear operators defined on
suitable Hilbert spaces Hl such that

ranA0 ⊆ kerA1, ranA1 ⊆ kerA2,

then the block matrix operator

D :=

(
A2 0
A∗1 A0

)
with its natural domain of definition is closed and densely defined. It is Fredholm, if the
ranges ranA0, ranA1, and ranA2 are closed and if both kernels

N0 := kerA0, N2,∗ := kerA∗2

and both cohomology groups

K1 := kerA1 ∩ kerA∗0, K2 := kerA2 ∩ kerA∗1

are finite-dimensional. In this case, its index is then given by

indD = dimN0 − dimK1 + dimK2 − dimN2,∗,(1)

cf. Theorem 2.8. For its adjoint, which is then Fredholm as well, we simply have

D∗ :=

(
A∗2 A1

0 A∗0

)
, indD∗ = − indD.

In a first application of this observation presented in this article, we look at the classical
de Rham complex

{0}
A−1=ι{0}−−−−−→ L2(Ω)

A0= ˚grad−−−−−→ L2,3(Ω)
A1= ˚curl−−−−→ L2,3(Ω)

A2=d̊iv−−−−→ L2(Ω)
A3=πRpw−−−−−→ Rpw,

{0}
A∗−1=π{0}←−−−−−− L2(Ω)

A∗0=− div
←−−−−− L2,3(Ω)

A∗1=curl
←−−−− L2,3(Ω)

A∗2=− grad
←−−−−−− L2(Ω)

A∗3=ιRpw←−−−−− Rpw,

(2)

where again the super index ˚ signifies homogeneous Dirichlet boundary conditions, see
Theorem 3.8. By (1) in order to compute the index it is necessary to calculate the
dimension of the cohomology groups, i.e., the dimension of the harmonic Dirichlet and
Neumann fields

HRhm
D (Ω) := K1 = ker( ˚curl) ∩ ker(div),

HRhm
N (Ω) := K2 = ker(d̊iv) ∩ ker(curl),

respectively. In [23], this has been done by Picard. As it turns out these dimensions are
related to topological properties of the underlying domain the differential operators are
defined on, that is,

dimHRhm
D (Ω) = m− 1, dimHRhm

N (Ω) = p,

see Theorem 3.6. In consequence, it is possible to compute the indices for the block de
Rham operators

DRhm :=

(
d̊iv 0

curl ˚grad

)
, (DRhm)∗ :=

(
− grad ˚curl

0 − div

)
by (1) in terms of m, p, and n, i.e.,

indDRhm = p−m− n+ 1, ind(DRhm)∗ = − indDRhm,

see Theorem 3.8. It is noteworthy that this index theorem provides an index theorem for
the Dirac operator on open manifolds with boundary endowed with a particular boundary
condition, see [25] and Section 3.3 below.
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For a proof of Theorem 1.1 (and the others) we will combine the structural viewpoint
outlined by [7] and ideas taken from the explicit computation of the dimension of the
cohomolgy groups. The foundation for all of this to be applicable, however, is the newly
found biharmonic complex, see [20, 21], and the more familiar elasticity complex, see [22].
In [20, 21] the crucial properties and compact embedding results have been found for the
biharmonic Hilbert complex underlying the computation of the index in Theorem 1.1. In
[22] the corresponding results are presented for the elasticity complex. These results also
stress that the mixed order differential operators given in Theorem 1.1 (and the others)
cannot be viewed as a leading order term subject to a relatively compact perturbation.

In Section 2, we briefly recall the notion of Hilbert complexes of densely defined and
closed linear operators. Also, we provide a small introduction to the construction principle
for Fredholm operators provided in [7]. As we slightly deviate from the approach presented
there we recall some of the proofs for convenience of the reader. In order to have a non-
trivial yet rather elementary example at hand, we present the so-called Picard’s extended
Maxwell system in Section 3. This sets the stage for the index theorem for the Dirac
operator provided in Section 3.3. In Section 4, we recall the first biharmonic complex
and provide the explicit formulation of our main result Theorem 1.1, see Theorem 4.4.
Similar results will be presented in Section 5 for the second biharmonic complex and in
Section 6 for the elasticity complex. The Appendix is concerned with the topological
setting introduced in [23] and, in particular, with the computation of bases and hence
the dimensions of the generalised Dirichlet and Neumann vector and tensor fields for the
different complexes, respectively, and thus concluding the proofs of our main results.

Note that unlike to many research topics in the analysis of partial differential equations
(and other topics), we shall use Ω being ’open’ and a ’domain’ as synonymous terms. In
particular, we shall not imply Ω to satisfy any connectivity properties, when calling Ω a
domain.

Recalling and introducing the cohomology groups

K1 = H···D(Ω), K2 = H···N(Ω),

i.e., the Dirichlet and Neumann fields

HRhm
D (Ω) = ker( ˚curl) ∩ ker(div), HRhm

N (Ω) = ker(d̊iv) ∩ ker(curl),

Hbih,1
D,S (Ω) = ker(C̊urlS) ∩ ker(divDivS), Hbih,1

N,T (Ω) = ker(D̊ivT) ∩ ker(symCurlT),

Hbih,2
D,T (Ω) = ker( ˚symCurlT) ∩ ker(DivT), Hbih,2

N,S (Ω) = ker( ˚divDivS) ∩ ker(CurlS),

Hela
D,S(Ω) = ker( ˚CurlCurl>S ) ∩ ker(DivS), Hela

N,S(Ω) = ker(D̊ivS) ∩ ker(CurlCurl>S ),

let us summarise some of the main results of this contribution (including our Appendix),
such as the dimensions of the kernels N0, N2,∗, i.e.,

dim ker( ˚grad) = 0, dim ker(grad) = n,

dim ker( ˚Gradgrad) = 0, dim ker(devGrad) = 4n,

dim ker( ˚devGrad) = 0, dim ker(Gradgrad) = 4n,

dim ker( ˚symGrad) = 0, dim ker(symGrad) = 6n,

and the dimensions of the cohomology groups K1, K2, i.e.,

dimHRhm
D (Ω) = m− 1, dimHRhm

N (Ω) = p,

dimHbih,1
D,S (Ω) = 4(m− 1), dimHbih,1

N,T (Ω) = 4p,
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dimHbih,2
D,T (Ω) = 4(m− 1), dimHbih,2

N,S (Ω) = 4p,

dimHela
D,S(Ω) = 6(m− 1), dimHela

N,S(Ω) = 6p,

and the indices indD, indD∗ of the involved Fredholm operators, i.e.,

indDRhm = p−m− n+ 1, ind(DRhm)∗ = − indDRhm,

indDbih,1 = 4(p−m− n+ 1), ind(Dbih,1)∗ = − indDbih,1,

indDbih,2 = 4(p−m− n+ 1), ind(Dbih,2)∗ = − indDbih,2,

indDela = 6(p−m− n+ 1), ind(Dela)∗ = − indDela.

Remark 1.2. We observe that in all of our examples, where generally the operators Aj
carry the boundary condition and the adjoints A∗j do not have boundary conditions, the
dimensions of the first and second cohomology groups K1 and K2 (‘Dirichlet fields’ and
‘Neumann fields’) are given by

dimK1 =
dimN2,∗

n
· (m− 1), dimK2 =

dimN2,∗

n
· p,

respectively. The indices of D and D∗ are

− indD∗ = indD =
dimN2,∗

n
· (p−m− n+ 1).

For the construction of bases and to compute the dimensions of the latter Neumann
fields it is crucial, that these are sufficiently regular, e.g., continuous in Ω. We even have
the following local regularity results.

Lemma 1.3 (local regularity of the cohomology groups). Let Ω ⊂ R3 be open. Then

HRhm
D (Ω),HRhm

N (Ω) ⊂ C∞,3(Ω) ∩ L2,3(Ω),

Hbih,1
D,S (Ω),Hela

D,S(Ω),Hbih,2
N,S (Ω),Hela

N,S(Ω) ⊂ C∞,3×3(Ω) ∩ L2,3×3
S (Ω),

Hbih,2
D,T (Ω),Hbih,1

N,T (Ω) ⊂ C∞,3×3(Ω) ∩ L2,3×3
T (Ω).

Proof. Vector fields in HRhm
D (Ω) ∪ HRhm

N (Ω) are harmonic and thus belong to C∞,3(Ω).
Tensor fields

S ∈ Hbih,1
D,S (Ω) ∪Hbih,2

N,S (Ω) ⊂ ker(CurlS) ∩ ker(divDivS)

can be represented locally, e.g., in any topologically trivial and smooth subdomain Ω̃

of Ω, by S = Gradgradu with u ∈ H2(Ω̃), see [21, Theorem 3.10], which holds also

without boundary conditions. Thus divDivS Gradgradu = 0 in Ω̃. Local regularity for

the biharmonic equation shows u ∈ C∞(Ω̃) and hence S = Gradgradu ∈ C∞,3×3(Ω̃), i.e.,
S ∈ C∞,3×3(Ω). Tensor fields

T ∈ Hbih,2
D,T (Ω) ∪Hbih,1

N,T (Ω) ⊂ ker(symCurlT) ∩ ker(DivT)

can be represented locally by T = devGrad v with v ∈ H1,3(Ω̃), see [21, Theorem 3.10].

Thus DivT devGrad v = 0 in Ω̃. Local elliptic regularity shows v ∈ C∞,3(Ω̃) and hence

T = devGrad v ∈ C∞,3×3(Ω̃), i.e., T ∈ C∞,3×3(Ω). Tensor fields

S ∈ Hela
D,S(Ω) ∪Hela

N,S(Ω) ⊂ ker(CurlCurl>S ) ∩ ker(DivS)

can be represented locally by S = symGrad v with v ∈ H1,3(Ω̃), see [22, Theorem 3.5].

Thus DivS symGrad v = 0 in Ω̃. Local elliptic regularity shows v ∈ C∞,3(Ω̃) and hence

S = symGrad v ∈ C∞,3×3(Ω̃), i.e., S ∈ C∞,3×3(Ω). �
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2. The Construction Principle and the Index Theorem

In this section, we provide the basic construction principle, which is the basis for the
operators in question. The theory in more general terms has been developed already in
[7]. Here, we rephrase the situation with a slightly more particular viewpoint. For the
convenience of the reader, we carry out the necessary proofs here.

Throughout this section, we let H0, H1, H2, H3 be Hilbert spaces, and

A0 : domA0 ⊆ H0 −→ H1,

A1 : domA1 ⊆ H1 −→ H2,

A2 : domA2 ⊆ H2 −→ H3

be densely defined and closed linear operators.

Definition 2.1. Let A0, A1, A2 be defined as above.

• We call a pair (A0, A1) a complex ( Hilbert complex), if ranA0 ⊆ kerA1.
• We say a complex (A0, A1) is closed, if ranA0 and ranA1 are closed.
• A complex (A0, A1) is said to be compact, if the embedding domA1∩domA∗0 ↪→ H1

is compact.
• The triple (A0, A1, A2) is called a (closed/compact) complex, if both (A0, A1) and

(A1, A2) are (closed/compact) complexes.
• We say that a complex (A0, A1, A2) is maximal compact, if (A0, A1, A2) is a com-

pact complex and both embeddings domA0 ↪→ H0 and domA∗2 ↪→ H3 are compact
as well.

Remark 2.2. The ‘FA-ToolBox’ from [17, 18, 19, 21, 22] shows that (A0, A1) resp.
(A0, A1, A2) is a (closed/compact/maximal compact) complex, if and only if (A∗1, A

∗
0) resp.

(A∗2, A
∗
1, A

∗
0) is a (closed/compact/maximal compact) complex.

Throughout this section, we assume that (A0, A1, A2) is a complex, i.e.,

H0
A0−→ H1

A1−→ H2
A2−→ H3,

H0

A∗0←− H1

A∗1←− H2

A∗2←− H3.

We define the operator

D : (domA2 ∩ domA∗1)× domA0 ⊆ H2 ×H0 −→ H3 ×H1

(x, y) 7−→ (A2x,A
∗
1x+ A0y).

In block operator matrix notation, we have

D =

(
A2 0
A∗1 A0

)
.

We gather some elementary facts about D.

Proposition 2.3. D is a densely defined and closed linear operator.

Proof. For the closedness of D, we let
(
(xk, yk)

)
be a sequence in domD with

(
(xk, yk)

)
converging to some (x, y) in H2 × H0 and (D(xk, yk)) converging to (w, z) in H3 × H1.
One readily sees using the closedness of A2 that x ∈ domA2 and A2x = w. Next, we
observe that ranA0 ⊆ kerA1⊥H1 ranA∗1. Hence, (A∗1xk) and (A0yk) are both convergent
to some z1 ∈ H1 and z2 ∈ H1, respectively. By the closedness of both A∗1 and A0, we
thus deduce that x ∈ domA∗1 and y ∈ domA0 with z1 = A∗1x and z2 = A0y as well as
z = z1 + z2 = A∗1x+ A0y.
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For D being densely defined, we see that by assumption, domA0 is dense in H0. Hence,
it suffices to show that domA2 ∩ domA∗1 is dense in H2. Decompose

H2 = ranA∗2 ⊕H2 kerA2, H2 = kerA∗1 ⊕H2 ranA1.(3)

Moreover, recalling K2 = kerA2 ∩ kerA∗1 and by the complex property we get

kerA2 = K2 ⊕H2 ranA1

and hence

H2 = ranA∗2 ⊕H2 K2 ⊕H2 ranA1,

domA2 ∩ domA∗1 = (domA2 ∩ ranA∗2)⊕H2 K2 ⊕H2 (domA∗1 ∩ ranA1).
(4)

Using the same decomposition arguments it is not difficult to see that domA2 ∩ ranA∗2
is dense in ranA∗2 and, similarly, that also domA∗1 ∩ ranA1 is dense in ranA1, see, e.g.,
the so-called functional analysis ‘FA-ToolBox’ presented in [17, 18, 19, 21, 22]. Hence we
deduce the density result. �

Theorem 2.4. D∗ =

(
A∗2 A1

0 A∗0

)
. More precisely,

D∗ : domA∗2 × (domA1 ∩ domA∗0) ⊆ H3 ×H1 −→ H2 ×H0

(w, z) 7−→ (A∗2w + A1z, A
∗
0z).

Proof. Note that (
A∗2 A1

0 A∗0

)
⊆ D∗

holds by definition since for all (x, y) ∈ domD = (domA2 ∩domA∗1)×domA0 and for all
(w, z) ∈ domA∗2 × (domA1 ∩ domA∗0)〈
D(x, y), (w, z)

〉
H3×H1

= 〈A2x,w〉H3 + 〈A∗1x+ A0y, z〉H1

= 〈x,A∗2w + A1z〉H2 + 〈y, A∗0z〉H0 =
〈
(x, y),D∗(w, z)

〉
H2×H0

.

Let (w, z) ∈ domD∗ and denote (u, v) := D∗(w, z). For all y ∈ domA0 we have
(0, y) ∈ domD and infer

〈A0y, z〉H1 =
〈
D(0, y), (w, z)

〉
H3×H1

=
〈
(0, y),D∗(w, z)

〉
H2×H0

= 〈y, v〉H0 .

Hence, z ∈ domA∗0 and A∗0z = v.
For all x ∈ domA2 ∩ domA∗1 we see (x, 0) ∈ domD and deduce that

〈A2x,w〉H3 + 〈A∗1x, z〉H1 =
〈
D(x, 0), (w, z)

〉
H3×H1

=
〈
(x, 0),D∗(w, z)

〉
H2×H0

= 〈x, u〉H2 .
(5)

Let π2 denote the orthonormal projector onto ranA∗2 in (3). Then for x̃ ∈ domA2 we
have

x := π2x̃ ∈ domA2 ∩ ranA∗2 ⊂ domA2 ∩ kerA∗1 ⊂ domA2 ∩ domA∗1, A2x = A2x̃

and by (5)

〈A2x̃, w〉H3 = 〈A2x,w〉H3 + 〈A∗1x, z〉H1 = 〈x, u〉H2 = 〈x̃, π2u〉H2 .

Thus w ∈ domA∗2 and A∗2w = π2u. Analogously, let π1 denote the orthonormal projector
onto ranA1 in (3). Then for x̃ ∈ domA∗1 we have

x := π1x̃ ∈ domA∗1 ∩ ranA1 ⊂ domA∗1 ∩ kerA2 ⊂ domA2 ∩ domA∗1, A∗1x = A∗1x̃
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and by (5)

〈A∗1x̃, z〉H1 = 〈A2x,w〉H3 + 〈A∗1x, z〉H1 = 〈x, u〉H2 = 〈x̃, π1u〉H2 .

Thus z ∈ domA1 and A1z = π1u. Therefore, (w, z) ∈ domA∗2 × (domA1 ∩ domA∗0).
Moreover, using the orthonormal projector π0 onto K2 in (4) we see for x ∈ K2 by (5)

〈x, π0u〉H2 = 〈π0x, u〉H2 = 〈x, u〉H2 = 〈A2x,w〉H3 + 〈A∗1x, z〉H1 = 0,

yielding π0u = 0. Finally, by (4) we arrive at

D∗(w, z) = (u, v) = (π0u+ π1u+ π2u,A
∗
0z) = (A1z + A∗2w,A

∗
0z),

completing the proof. �

Lemma 2.5. For the kernels it holds

kerD = K2 ×N0 = (kerA2 ∩ kerA∗1)× kerA0,

kerD∗ = N2,∗ ×K1 = kerA∗2 × (kerA1 ∩ kerA∗0).

Proof. For (x, y) ∈ kerD we have A2x = 0 and A∗1x+A0y = 0. By orthogonality and the
complex property, i.e., ranA0 ⊂ kerA1⊥H1 ranA∗1, we see A∗1x = A0y = 0. The assertion
about kerD∗ follows analogously. �

Corollary 2.6. The closures of the ranges are given by

ranD = (kerD∗)⊥H3×H1 = N
⊥H3
2,∗ ×K

⊥H1
1 ,

ranD∗ = (kerD)⊥H2×H0 = K
⊥H2
2 ×N⊥H0

0 .

Lemma 2.7. Let (A0, A1, A2) be a maximal compact Hilbert complex. Then the embedding
domD ↪→ H2 ×H0 is compact, and so is the embedding domD∗ ↪→ H3 ×H1.

Proof. Let
(
(xk, yk)

)
be a (domD)-bounded sequence in domD. Then, as in the proof

of Lemma 2.5, by orthogonality and the complex property (xk) is a (domA2 ∩ domA∗1)-
bounded sequence in domA2∩domA∗1 and (yk) is a (domA0)-bounded sequence in domA0.
Since (A0, A1, A2) is maximal compact, we can extract converging subsequences of (xk)
and (yk). Analogously, we see that also domD∗ ↪→ H3 × H1 is compact, finishing the
proof. �

We now recall the abstract index theorem taken from [7] formulated for the present
situation.

Theorem 2.8. Let (A0, A1, A2) be a maximal compact Hilbert complex. Then D and D∗
are Fredholm operators with indices

indD = dimN0 − dimK1 + dimK2 − dimN2,∗, indD∗ = − indD.

Proof. Utilising the general ‘FA-ToolBox’ from, e.g., [17, 18, 19, 21, 22], and Lemma 2.7
we observe that both ranges ranD and ranD∗ are closed and that both kernels kerD and
kerD∗ are finite dimensional. Therefore, both D and D∗ are Fredholm operators. The
index indD = dim kerD − dim kerD∗ is then given by Lemma 2.5. �

2.1. Some More Results. Let us mention some additional features of the ‘FA-ToolBox’
from [17, 18, 19, 21, 22]. Lemma 2.7 and Theorem 2.8 imply some additional results for
the reduced operators

Dred := D|ranD∗ = D|
(kerD)

⊥H2×H0
, D∗red := D∗|ranD = D∗|

(kerD∗)⊥H3×H1
.
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Corollary 2.9. Let (A0, A1, A2) be a maximal compact Hilbert complex. Then the inverse
operators D−1

red : ranD → ranD∗ and (D∗red)−1 : ranD∗ → ranD are compact. Moreover,
D−1

red : ranD → domDred and (D∗red)−1 : ranD∗ → domD∗red are continuous and, equiva-
lently, the Friedrichs-Poincaré type estimates∣∣(x, y)

∣∣
H2×H0

≤ cD
∣∣D(x, y)

∣∣
H3×H1

= cD
(
|A2x|2H3

+ |A∗1x|2H1
+ |A0y|2H1

)1/2
,∣∣(w, z)∣∣

H3×H1
≤ cD

∣∣D∗(w, z)∣∣
H2×H0

= cD
(
|A∗2w|2H2

+ |A1z|2H2
+ |A∗0z|2H0

)1/2

hold for all (x, y) ∈ domDred and for all (w, z) ∈ domD∗red with the same optimal constant
cD > 0.

The latter estimates are additive combinations of the corresponding estimates for A0

and (A2, A
∗
1) as well as A∗2 and (A1, A

∗
0), respectively.

Remark 2.10. The compactness assumptions (maximal compact) are not needed to render
D and D∗ Fredholm operators. It suffices to assume that (A0, A1, A2) is a closed Hilbert
complex with finite-dimensional kernels N0 and N2,∗ and finite-dimensional cohomology
groups K1 and K2. In this case, the latter Friedrichs-Poincaré type estimates still hold
and D−1

red and (D∗red)−1 are still continuous.

Remark 2.11. There are simple relations between the primal, dual, and adjoint com-
plexes, when D is considered. More precisely, let us denote the latter primal operators D
and D∗ of the primal complex (A0, A1, A2) by

D = Dp =

(
A2 0
A∗1 A0

)
, D∗ = (Dp)∗ =

(
A∗2 A1

0 A∗0

)
,

and the dual operators corresponding to the dual complex (A∗2, A
∗
1, A

∗
0) by

Dd =

(
A∗0 0
A1 A∗2

)
, (Dd)∗ =

(
A0 A∗1
0 A2

)
.

By Remark 2.2 (A0, A1, A2) is a maximal compact complex, if and only if (A∗2, A
∗
1, A

∗
0)

is a maximal compact complex. Note that we may weaken the assumptions according to
Remark 2.10. Theorem 2.8 shows that Dp, (Dp)∗, Dd, (Dd)∗ are Fredholm operators with
indices

indDp = dimNp
0 − dimKp

1 + dimKp
2 − dimNp

2,∗, ind(Dp)∗ = − indDp,
indDd = dimNd

0 − dimKd
1 + dimKd

2 − dimNd
2,∗, ind(Dd)∗ = − indDd.

Next we observe

Nd
0 = kerA∗2 = Np

2,∗, Nd
2,∗ = kerA0 = Np

0 ,

Kd
1 = kerA∗1 ∩ kerA2 = Kp

2 , Kd
2 = kerA∗0 ∩ kerA1 = Kp

1 .

Hence
− ind(Dd)∗ = indDd = − indDp = ind(Dp)∗.

Note that basically Dd and (Dp)∗ as well as Dp and (Dd)∗ are the ‘same’ operators.

Note that the Hilbert space adjoints A∗l depend on the particular choice of the inner
products (metrics) of the underlying Hilbert spaces Hl. A typical example is simply
given by ‘weighted’ inner products induced by ‘weights’ λl, l = 0, 1, 2, 3, i.e., symmetric
and positive topological isomorphisms (symmetric and positive bijective bounded linear
operators) λl : Hl → Hl inducing inner products

〈 · , · 〉H̃l
:= 〈λl · , · 〉Hl

: H̃l × H̃l → C,
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where H̃l := Hl (as linear space) equipped with the inner product 〈 · , · 〉H̃l
. A sufficiently

general situation is defined by λ0 := Id, λ3 := Id, and λ1, λ2 being symmetric and posi-

tive topological isomorphisms, as well as H̃l :=
(
Hl, 〈λl · , · 〉Hl

)
, l = 0, 1, 2, 3. Then the

modified operators2

Ã0 : dom Ã0 := domA0 ⊆ H̃0 −→ H̃1; x 7−→ A0x,

Ã1 : dom Ã1 := domA1 ⊆ H̃1 −→ H̃2; y 7−→ λ−1
2 A1y,

Ã2 : dom Ã2 := λ−1
2 domA2 ⊆ H̃2 −→ H̃3; z 7−→ A2λ2z,

Ã∗0 : dom Ã∗0 = λ−1
1 domA∗0 ⊆ H̃1 −→ H̃0; y 7−→ A∗0λ1y,

Ã∗1 : dom Ã∗1 = domA∗1 ⊆ H̃2 −→ H̃1; z 7−→ λ−1
1 A∗1z,

Ã∗2 : dom Ã∗2 = domA∗2 ⊆ H̃3 −→ H̃2; x 7−→ A∗2x

form again a primal and dual Hilbert complex, i.e.,

H̃0
Ã0−→ H̃1

Ã1−→ H̃2
Ã2−→ H̃3,

H̃0

Ã∗0←− H̃1

Ã∗1←− H̃2

Ã∗2←− H̃3,

and we can define

D̃ :=

(
Ã2 0

Ã∗1 Ã0

)
, D̃∗ =

(
Ã∗2 Ã1

0 Ã∗0

)
.

The closedness of the operators Ãl and the complex properties are easily checked. More-

over, it is not hard to see that the closedness of (Ã0, Ã1, Ã2) is implied by the closedness
of (A0, A1, A2). Remark 2.2, Proposition 2.3, Theorem 2.4, Lemma 2.5, and Corollary 2.6

are also valid for (Ã0, Ã1, Ã2). In particular,

ker D̃ = K̃2 × Ñ0 = (ker Ã2 ∩ ker Ã∗1)× ker Ã0 =
(
(λ−1

2 kerA2) ∩ kerA∗1
)
× kerA0,

ker D̃∗ = Ñ2,∗ × K̃1 = ker Ã∗2 × (ker Ã1 ∩ ker Ã∗0) = kerA∗2 ×
(

kerA1 ∩ (λ−1
1 kerA∗0)

)
,

ran D̃ = (ker D̃∗)⊥H̃3×H̃1 = Ñ
⊥

H̃3
2,∗ × K̃

⊥
H̃1

1 ,

ran D̃∗ = (ker D̃)
⊥

H̃2×H̃0 = K̃
⊥

H̃2
2 × Ñ

⊥
H̃0

0 .

Of course, Lemma 2.7 and Theorem 2.8 hold as well. To relate these two main results to
the original complex (A0, A1, A2) we have the following:

Lemma 2.12. The compactness properties and the dimensions of the kernels and coho-
mology groups of the latter complexes are independent of the weights λl. More precisely,

(i) Ñ0 = N0 and Ñ2,∗ = N2,∗, as dom Ã0 = domA0 and dom Ã2,∗ = domA2,∗,

(ii1) dim
(

kerA1 ∩ (λ−1
1 kerA∗0)

)
= dim K̃1 = dimK1 = dim(kerA1 ∩ kerA∗0),

(ii2) dim
(

kerA2 ∩ (λ−1
2 kerA∗1)

)
= dim K̃2 = dimK2 = dim(kerA2 ∩ kerA∗1),

(iii1) dom Ã1∩dom Ã∗0 = domA1∩ (λ−1
1 domA∗0) ↪→ H̃1 ⇔ domA1∩domA∗0 ↪→ H1,

(iii2) dom Ã2∩dom Ã∗1 = domA2∩ (λ−1
2 domA∗1) ↪→ H̃2 ⇔ domA2∩domA∗1 ↪→ H2.

2E.g., we compute Ã∗0. Let y ∈ dom Ã∗0. Then for x ∈ dom Ã0 = domA0

〈x, Ã∗0y〉H0
= 〈x, Ã∗0y〉H̃0

= 〈Ã0x, y〉H̃1
= 〈A0x, λ1y〉H1

,

showing that λ1y ∈ domA∗0 and A∗0λ1y = Ã∗0y.
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Proof. For the proof we follow in close lines the ideas of [4, Theorem 6.1], where [4] is the
extended version of [5].

(i) is trivial and it is sufficient to show only (ii1) and (iii1).
For (ii1), let µ be another weight having the same properties as λ1. Similar to (3), (4)

we have by orthogonality in H̃1 and by the complex property

H̃1 = ran Ã0 ⊕H̃1
ker Ã∗0 = ranA0 ⊕H̃1

λ−1
1 kerA∗0,

ker Ã1 = ran Ã0 ⊕H̃1
(ker Ã1 ∩ ker Ã∗0) = ranA0 ⊕H̃1

(
kerA1 ∩ (λ−1

1 kerA∗0)
)
,

(6)

and we note that H̃1 = H1 and ker Ã1 = kerA1 as sets. Denoting the H̃1-orthonormal
projector onto λ−1

1 kerA∗0 resp. kerA1∩ (λ−1
1 kerA∗0) by π, we consider the linear mapping

π̂ : kerA1 ∩ (µ−1 kerA∗0) −→ kerA1 ∩ (λ−1
1 kerA∗0); y −→ πy.

As πy = 0 implies y ∈ (µ−1 kerA∗0) ∩ ranA0 = {0}, which follows by H1-orthogonality
considering 〈µy, y〉H1 , we see that π̂ is injective. Thus

dim
(

kerA1 ∩ (µ−1 kerA∗0)
)
≤ dim

(
kerA1 ∩ (λ−1

1 kerA∗0)
)
.

The other inequality ≥ is deduced by symmetry and hence equality holds.
For (iii1), we use a similar decomposition strategy. Let µ be as before and let

domA1 ∩ (λ−1
1 domA∗0) ↪→ H1(7)

be compact. Moreover, let us consider a bounded sequence

(yk) ⊂ domA1 ∩ (µ−1 domA∗0),

i.e., (yk), (A1yk), (A∗0µ yk) are bounded. Similar to (6) we get

dom Ã1 = ran Ã0 ⊕H̃1
(dom Ã1 ∩ ker Ã∗0) = ranA0 ⊕H̃1

(
domA1 ∩ (λ−1

1 kerA∗0)
)
,

dom Ã∗0 = (ran Ã0 ∩ dom Ã∗0)⊕H̃1
ker Ã∗0 =

(
ranA0 ∩ (λ−1

1 domA∗0)
)
⊕H̃1

λ−1
1 kerA∗0,

(8)

and dom Ã1 = domA1 and dom Ã∗0 = λ−1
1 domA∗0 as sets. Now, we apply both decompo-

sitions of (8) to (yk). First, we H̃1-orthogonally decompose yk ∈ domA1 into

yk = uk + vk, uk ∈ ranA0 ⊆ kerA1, vk ∈ domA1 ∩ (λ−1
1 kerA∗0)

with A1yk = A1vk. Hence (vk) is bounded in domA1 ∩ (λ−1
1 kerA∗0) and by (7) we can

extract a H1-converging subsequence, again dented by (vk). Second, we H̃1-orthogonally
decompose λ−1

1 µyk ∈ λ−1
1 domA∗0 into

λ−1
1 µyk = wk + zk, wk ∈ ranA0︸ ︷︷ ︸

⊆kerA1

∩(λ−1
1 domA∗0), zk ∈ λ−1

1 kerA∗0

with A∗0µyk = A∗0λ1wk. Hence (wk) is bounded in kerA1∩(λ−1
1 domA∗0) and by (7) we can

extract a H1-converging subsequence, again dented by (wk). Finally, by H1-orthogonality,
i.e., uk ∈ ranA0⊥H1 kerA∗0 3 λ1zk,〈

µ(yk − yl), yk − yl
〉
H1

=
〈
µ(yk − yl), uk − vl)

〉
H1︸ ︷︷ ︸

=
〈
λ1(wk − wl), uk − ul

〉
H1

+
〈
µ(yk − yl), vk − vl

〉
H1

≤ c
(
|wk − wl|H1 + |vk − vl|H1

)
,

which shows that (yk) is a H1-Cauchy sequence in H1. Thus domA1∩(µ−1 domA∗0) ↪→ H1

is compact. �
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Now we can formulate the counterparts of Lemma 2.7 and Theorem 2.8. The proofs
follow immediately by Lemma 2.12.

Lemma 2.13. Maximal compactness does not depend on the weights λl. More precisely:
(A0, A1, A2) is a maximal compact Hilbert complex, if and only if the Hilbert complex

(Ã0, Ã1, Ã2) is maximal compact. In this case, dom D̃ ↪→ H̃2×H̃0 and dom D̃∗ ↪→ H̃3×H̃1

are compact.

Theorem 2.14. The Fredholm indices do not depend on the weights λl. More precisely:

Let (A0, A1, A2) be a maximal compact Hilbert complex. Then D, D̃, D∗, and D̃∗ are
Fredholm operators with indices

ind D̃ = indD = dimN0 − dimK1 + dimK2 − dimN2,∗, ind D̃∗ = indD∗ = − indD.

3. The de Rham Complex and Its Indices

In this section, we specialise to a particular choice of the operators A0, A1, A2. Also, we
will show that the assumptions of Theorem 2.8 are satisfied for this particular choice of
operators. We will, thus, obtain an index formula. The computations of the dimensions
of the occurring cohomology groups date back to [23].

Definition 3.1. Let Ω ⊆ R3 be an open set. We put

gradc : C∞c (Ω) ⊆ L2(Ω) −→ L2,3(Ω), φ 7−→ gradφ,

curlc : C∞,3c (Ω) ⊆ L2,3(Ω) −→ L2,3(Ω), Φ 7−→ curl Φ,

divc : C∞,3c (Ω) ⊆ L2,3(Ω) −→ L2(Ω), Φ 7−→ div Φ,

and further define the densely defined and closed linear operators

grad := − div∗c , curl := curl∗c , div := − grad∗c ,

˚grad := − div∗ = gradc, ˚curl := curl∗ = curlc, d̊iv := − grad∗ = divc.

In terms of classical definitions and notions, we record the following equalities (that are
easily seen):

dom(grad) = H1(Ω), dom( ˚grad) = C∞c (Ω)
H1(Ω)

= H1
0 (Ω),

dom(curl) = H(curl,Ω), dom( ˚curl) = C∞,3c (Ω)
H(curl,Ω)

= H0(curl,Ω),

dom(div) = H(div,Ω), dom(d̊iv) = C∞,3c (Ω)
H(div,Ω)

= H0(div,Ω).

3.1. Picard’s Extended Maxwell System. We want to apply the index theorem in
the following situation of the classical de Rham complex:

A0 := ˚grad, A1 := ˚curl, A2 := d̊iv,

A∗0 = − div, A∗1 = curl, A∗2 = − grad,

DRhm :=

(
A2 0
A∗1 A0

)
=

(
d̊iv 0

curl ˚grad

)
, (DRhm)∗ =

(
A∗2 A1

0 A∗0

)
=

(
− grad ˚curl

0 − div

)
,

{0}
A−1=ι{0}−−−−−−→ L2(Ω)

A0= ˚grad−−−−−−→ L2,3(Ω)
A1= ˚curl−−−−−→ L2,3(Ω)

A2=d̊iv−−−−−→ L2(Ω)
A3=πRpw−−−−−−→ Rpw,

{0}
A∗−1=π{0}←−−−−−−− L2(Ω)

A∗0=− div←−−−−−− L2,3(Ω)
A∗1=curl←−−−−− L2,3(Ω)

A∗2=− grad←−−−−−−− L2(Ω)
A∗3=ιRpw←−−−−− Rpw.

(9)
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We note

domDRhm = (domA2 ∩ domA∗1)× domA0 = (H0(div,Ω) ∩H(curl,Ω))×H1
0 (Ω).

The complex properties, i.e., A1A0 ⊆ 0 and A2A1 ⊆ 0, are based on Schwarz’s lemma
ensuring that curlc gradc = 0 and divc curlc = 0.

Proposition 3.2. Let Ω ⊆ R3 be open. Then

ranA0 = ran( ˚grad) ⊆ ker( ˚curl) = kerA1,

ranA1 = ran( ˚curl) ⊆ ker(d̊iv) = kerA2

and by Remark 2.2 the same holds for the adjoints (operators without homogeneous bound-
ary conditions).

Proof. See, e.g., [26, Proposition 6.1.5]. �

Theorem 3.3 (Picard-Weber-Weck selection theorem, [24], [27], [29]). Let Ω ⊆ R3 be a
bounded weak3 Lipschitz domain. Then

domA1 ∩ domA∗0 = dom( ˚curl) ∩ dom(div),

domA2 ∩ domA∗1 = dom(d̊iv) ∩ dom(curl)

are both compactly embedded into H1 = H2 = L2,3(Ω).

Remark 3.4. Proposition 3.2 in conjunction with Theorem 3.3 and Rellich’s selection
theorems show that ( ˚grad, ˚curl, d̊iv) is a maximal compact complex. By Remark 2.2 so is
the dual complex (− grad, curl,− div).

Note that

NRhm
0 = kerA0 = ker( ˚grad),

NRhm
2,∗ = kerA∗2 = ker(grad),

KRhm
1 = kerA1 ∩ kerA∗0 = ker( ˚curl) ∩ ker(div) =: HRhm

D (Ω),

KRhm
2 = kerA2 ∩ kerA∗1 = ker(d̊iv) ∩ ker(curl) =: HRhm

N (Ω),

(10)

where we recall from the introduction the classical harmonic Dirichlet and Neumann fields
HRhm
D (Ω) and HRhm

N (Ω), respectively.

Definition 3.5. Let Ω ⊂ R3 be bounded and open. Then we denote by

• n the number of connected components of Ω,
• m the number of connected components of the complement R3 \ Ω,
• p the number of handles of Ω, see Assumption 3 in Appendix B for details.

For p to be well defined we suppose Assumption 3 to hold.

The dimensions of the cohomology groups are given as follows.

Theorem 3.6 ([23, Theorem 1]). Let Ω ⊆ R3 be open and bounded with continuous
boundary. Moreover, suppose Assumption 3. Then

dimHRhm
D (Ω) = m− 1, dimHRhm

N (Ω) = p.

Remark 3.7. Note that for Ω to have a continuous boundary4 is equivalent to have the
segment property, see, e.g., [2].

3The boundary of a weak Lipschitz domain is a 2-dimensional submanifold of the 3-dimensional Lips-
chitz manifold Ω with boundary.

4A boundary being locally representable as the graph of a continuous function.
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Let us introduce the space of piecewise constants by

Rpw :=
{
u ∈ L2(Ω) : ∀C(connect. comp.) ⊆ Ω ∃αC ∈ R : u|C = αC

}
.

Theorem 3.8. Let Ω ⊂ R3 be a bounded weak Lipschitz domain. Then DRhm is a Fredholm
operator with index

indDRhm = dimNRhm
0 − dimKRhm

1 + dimKRhm
2 − dimNRhm

2,∗ .

If additionally Γ is continuous and Assumption 3 holds, then

indDRhm = p−m− n+ 1.

Proof. Recall Remark 3.4. Apply Theorem 2.8 together with (10), the observations

NRhm
0 = ker( ˚grad) = {0}, NRhm

2,∗ = ker(grad) = Rpw,(11)

and Theorem 3.6. �

Remark 3.9. By Theorem 2.8 the adjoint of the de Rham operator (DRhm)∗ is Fredholm
as well with index ind(DRhm)∗ = − indDRhm. Moreover, Picard’s extended Maxwell system
is given by

MRhm :=

(
0 DRhm

−(DRhm)∗ 0

)
=


0 0 A2 0
0 0 A∗1 A0

−A∗2 −A1 0 0
0 −A∗0 0 0

 =


0 0 d̊iv 0

0 0 curl ˚grad

grad − ˚curl 0 0
0 div 0 0


with (MRhm)∗ = −MRhm and indMRhm = dim kerMRhm − dim ker(MRhm)∗ = 0.

3.2. Some More Results. The construction of a maximal compact Hilbert complex is
also possible for mixed boundary conditions as well as for inhomogeneous and anisotropic
media, such as constitutive material laws, see, e.g., [3, 18, 19]. For mixed boundary
conditions we note the following:

Remark 3.10. In order to provide a greater variety of index theorems, it would be inter-
esting to compute the dimensions of the harmonic Dirichlet and Neumann fields also in
the situation of mixed boundary conditions. At least for the authors of this article it is
completely beyond their expertise in geometry and topology and it appears to be an open
problem as to which index formulas could be expected in terms of subcohomologies and
related concepts.

For inhomogeneous and anisotropic media (constitutive material laws) we have:

Remark 3.11. As mentioned, a maximal compact Hilbert complex can also be constructed
for inhomogeneous and anisotropic media. These may be considered as weights λl as
presented in Theorem 2.14. For Maxwell’s equations a typical situation is given by the
choices λ0 := Id, λ3 := Id, and λ1 := ε, λ2 := µ : Ω → R3×3 being symmetric and
uniformly positive definite L∞(Ω)-matrix (tensor) fields. Let us introduce the Hilbert

spaces L2,3
ε (Ω) := H̃1 :=

(
L2,3(Ω), 〈ε · , · 〉L2,3(Ω)

)
and similarly L2,3

µ (Ω) := H̃2 as well as

H̃0 = H̃3 = H0 = H3 = L2(Ω). We look at

Ã0 := ˚grad, Ã1 := µ−1 ˚curl, Ã2 := d̊iv µ,

Ã∗0 = − div ε, Ã∗1 = ε−1 curl, Ã∗2 = − grad,

D̃Rhm :=

(
Ã2 0

Ã∗1 Ã0

)
=

(
d̊iv µ 0

ε−1 curl ˚grad

)
,
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(D̃Rhm)∗ =

(
Ã∗2 Ã1

0 Ã∗0

)
=

(
− grad µ−1 ˚curl

0 − div ε

)
,

i.e., the de Rham complex, cf. (9),

{0}
Ã−1=ι{0}−−−−−−→ L2(Ω)

Ã0= ˚grad−−−−−−→ L2,3
ε (Ω)

Ã1=µ−1 ˚curl−−−−−−−−→ L2,3
µ (Ω)

Ã2=d̊iv µ−−−−−−→ L2(Ω)
Ã3=πRpw−−−−−−→ Rpw,

{0}
Ã∗−1=π{0}←−−−−−−− L2(Ω)

Ã∗0=− div ε←−−−−−−− L2,3
ε (Ω)

Ã∗1=ε−1 curl←−−−−−−−− L2,3
µ (Ω)

Ã∗2=− grad←−−−−−−− L2(Ω)
Ã∗3=ιRpw←−−−−− Rpw.

(12)

Lemma 2.12, Lemma 2.13, and Theorem 2.14 show that the compactness properties, the
dimensions of the kernels and cohomology groups, the maximal compactness, and the Fred-
holm indices of the de Rham complex do not dependent of the material weights ε and µ.
More precisely,

• dim
(

ker( ˚curl)∩
(
ε−1 ker(div)

))
= dim

(
ker( ˚curl)∩ker(div)

)
= dimHRhm

D (Ω) = m−1,

• dim
((
µ−1 ker(d̊iv)

)
∩ ker(curl)

)
= dim

(
ker(d̊iv) ∩ ker(curl)

)
= dimHRhm

N (Ω) = p,

• dom( ˚curl) ∩
(
ε−1 dom(div)

)
↪→ L2,3

ε (Ω) ⇔ dom( ˚curl) ∩ dom(div) ↪→ L2,3(Ω),

•
(
µ−1 dom(d̊iv)

)
∩ dom(curl) ↪→ L2,3

µ (Ω) ⇔ dom(d̊iv) ∩ dom(curl) ↪→ L2,3(Ω),

• ( ˚grad, µ−1 ˚curl, d̊iv µ) is maximal compact, iff ( ˚grad, ˚curl, d̊iv) is maximal compact,

• − ind(D̃Rhm)∗ = ind D̃Rhm = indDRhm = p−m− n+ 1.

At this point, see Lemma 2.5, Corollary 2.6, and (11), we note that the kernels and
ranges are given by

kerDRhm = KRhm
2 ×NRhm

0 = HRhm
N (Ω)× {0},

ker(DRhm)∗ = NRhm
2,∗ ×KRhm

1 = Rpw ×HRhm
D (Ω),

ranDRhm = (ker(DRhm)∗)⊥L2(Ω)×L2,3(Ω) = R
⊥L2(Ω)
pw ×HRhm

D (Ω)⊥L2,3(Ω) ,

ran(DRhm)∗ = (kerDRhm)⊥L2,3(Ω)×L2(Ω) = HRhm
N (Ω)⊥L2,3(Ω) × L2(Ω).

Finally, Corollary 2.9 yields additional results for the corresponding reduced operators

DRhm
red = DRhm|

(kerDRhm)
⊥H2×H0

=

(
d̊iv 0

curl ˚grad

) ∣∣∣
HRhm

N (Ω)
⊥
L2,3(Ω)×L2(Ω)

,

(DRhm
red )∗ = (DRhm)∗|

(ker(DRhm)∗)
⊥H3×H1

=

(
− grad ˚curl

0 − div

) ∣∣∣
R
⊥
L2(Ω)

pw ×HRhm
D (Ω)

⊥
L2,3(Ω)

.

Corollary 3.12. Let Ω ⊂ R3 be a bounded weak Lipschitz domain with continuous bound-
ary. Then

(DRhm
red )−1 : ranDRhm → ran(DRhm)∗,

((DRhm
red )∗)−1 : ran(DRhm)∗ → ranDRhm

are compact. Furthermore,

(DRhm
red )−1 : ranDRhm → domDRhm

red ,

((DRhm
red )∗)−1 : ran(DRhm)∗ → dom(DRhm

red )∗

are continuous and, equivalently, the Friedrichs-Poincaré type estimate∣∣(E, u)
∣∣
L2,3(Ω)×L2(Ω)

≤ cDRhm

(
| gradu|2L2,3(Ω) + | divE|2L2(Ω) + | curlE|2L2,3(Ω)

)1/2
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holds for all (E, u) in

domDRhm
red =

(
H0(div,Ω) ∩H(curl,Ω) ∩HRhm

N (Ω)⊥L2,3(Ω)
)
×H1

0 (Ω)

or (u,E) in

dom(DRhm
red )∗ =

(
H1(Ω) ∩ R

⊥L2(Ω)
pw

)
×
(
H0(curl,Ω) ∩H(div,Ω) ∩HRhm

D (Ω)⊥L2,3(Ω)
)

with some optimal constant cDRhm > 0.

Note that the latter estimate is an additive combination of the well known Friedrichs-
Poincaré estimates for grad and the well known Maxwell estimates for (curl, div).

3.3. The Dirac Operator. We will flag up a relationship of the Dirac operator and
Picard’s extended Maxwell system. Let the assumptions of Theorem 3.8 be satisfied.
The extended Maxwell operator is an operator that is surprisingly close to the Dirac
operator. We shall carry out this construction in the following. Recall from Remark 3.9
that Picard’s extended Maxwell system is given by the operator

M :=

(
0 D
−D∗ 0

)
, D := DRhm.

Next, we shall introduce the Dirac operator. For this, we define the Pauli matrices

σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
.

Introducing

Q : domQ ⊆ L2,2(Ω) −→ L2,2(Ω)

ψ 7−→
3∑
j=1

∂j σjψ =

(
∂3 ∂1−i ∂2

∂1 +i ∂2 − ∂3

)
ψ,

we define the Dirac operator

L :=

(
0 Q
−Q∗ 0

)
.

We have not specified the domain of definition of Q, yet. For now, we shall assume
C∞,2c (Ω) ⊆ domQ. We shall find the domain of definition of Q corresponding to M; see
also Proposition 3.13 below. We introduce the unitary operators from L2,4(Ω) into itself

W :=


0 0 −1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 , U :=


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 .

Then the operators L (Dirac operator) andM (Picard’s extended Maxwell operator) are
unitarily equivalent. More precisely, we have with V from Proposition 3.13

M =

(
U 0
0 W

)(
V 0
0 V

)
L
(
V ∗ 0
0 V ∗

)(
U∗ 0
0 W ∗

)
,

domQ∗ × domQ :=

(
V ∗ 0
0 V ∗

)(
U∗ 0
0 W ∗

)(
domD∗ × domD

)(U 0
0 W

)(
V 0
0 V

)
and, consequently, Q with domain dom(V ∗U∗DWV ) = dom(DWV ) is a Fredholm oper-
ator. Moreover, we have indL = 0 and

indQ = indD = p−m− n+ 1.
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We conclude this section by stating the missing proposition used above. The proofs
of which are straightforward and will therefore be omitted. In a slightly similar fashion,
they can be found [25]. For the next result we use L2

R(Ω) and L2
C(Ω) to denote the Hilbert

space L2(Ω) with the reals and the complex numbers as respective underlying field.

Proposition 3.13 (Realification of L). It holds:

(i) V : L2
C(Ω)→ L2,2

R (Ω) with V f := (<f,=f) is unitary.

(ii) V iV ∗ =

(
0 1
−1 0

)
.

(iii) Q̃ := VQV ∗ = ∂1


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 + ∂2


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 + ∂3


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


with dom Q̃ = V domQV ∗.

4. The First Biharmonic Complex and Its Indices

In this section, we focus on our first main result and properly introduce the operators
involved in the formulation of Theorem 1.1. Thus, we introduce the first biharmonic
complex (see [20, 21]) constructed for biharmonic problems and general relativity, but
also relevant in problems for elasticity. It will be interesting to see that the differential
operator is apparently of mixed order rather than just of first order. It it worth noting
that the apparently leading order term is not dominating the lower order differential
operators.

Definition 4.1. Let Ω ⊆ R3 be an open set. We put

Gradgradc : C∞c (Ω) ⊆ L2(Ω) −→ L2,3×3
S (Ω), φ 7−→ Gradgradφ,

Curlc : C∞,3×3
c,S (Ω) ⊆ L2,3×3

S (Ω) −→ L2,3×3
T (Ω), Φ 7−→ Curl Φ,

Divc : C∞,3×3
c,T (Ω) ⊆ L2,3×3

T (Ω) −→ L2,3(Ω), Φ 7−→ Div Φ,

and further define the densely defined and closed linear operators

divDivS := Gradgrad∗c ,
˚Gradgrad := divDiv∗S = Gradgradc,

symCurlT := Curl∗c , C̊urlS := symCurl∗T = Curlc,

devGrad := −Div∗c , D̊ivT := − devGrad∗ = devGradc.

We shall apply the index theorem in the following situation of the first biharmonic
complex:

A0 := ˚Gradgrad, A1 := C̊urlS, A2 := D̊ivT,

A∗0 = divDivS, A∗1 = symCurlT, A∗2 = − devGrad,

Dbih,1 :=

(
A2 0
A∗1 A0

)
=

(
D̊ivT 0

symCurlT ˚Gradgrad

)
,

(Dbih,1)∗ =

(
A∗2 A1

0 A∗0

)
=

(
− devGrad C̊urlS

0 divDivS

)
,

{0}
ι{0}−−→ L2(Ω)

˚Gradgrad−−−−−−→ L2,3×3
S (Ω)

C̊urlS−−−→ L2,3×3
T (Ω)

D̊ivT−−−→ L2,3(Ω)
πRTpw−−−→ RTpw,

{0}
π{0}←−−− L2(Ω)

divDivS←−−−−− L2,3×3
S (Ω)

symCurlT←−−−−−− L2,3×3
T (Ω)

− devGrad←−−−−−−− L2,3(Ω)
ιRTpw←−−− RTpw.

(13)
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The foundation of the index theorem to hold is the following compactness result es-
tablished by Pauly and Zulehner. Note that it holds dom( ˚Gradgrad) = H2

0 (Ω) and
dom(devGrad) = H1,3(Ω).

Theorem 4.2 ([21, Lemma 3.22, Theorem 3.23]). Let Ω ⊆ R3 be a bounded strong

Lipschitz domain. Then ( ˚Gradgrad, C̊urlS, D̊ivT) is a maximal compact Hilbert complex.

We observe and define

Nbih,1
0 = kerA0 = ker( ˚Gradgrad),

Nbih,1
2,∗ = kerA∗2 = ker(devGrad),

Kbih,1
1 = kerA1 ∩ kerA∗0 = ker(C̊urlS) ∩ ker(divDivS) =: Hbih,1

D,S (Ω),

Kbih,1
2 = kerA2 ∩ kerA∗1 = ker(D̊ivT) ∩ ker(symCurlT) =: Hbih,1

N,T (Ω).

(14)

The dimensions of the cohomology groups are given as follows.

Theorem 4.3. Let Ω ⊆ R3 be open and bounded with continuous boundary. Moreover,
suppose Assumption 3. Then

dimHbih,1
D,S (Ω) = 4(m− 1), dimHbih,1

N,T (Ω) = 4p.

Proof. We postpone the proof to the Appendix. �

Let us introduce the space of piecewise Raviart-Thomas fields by

RTpw :=
{
v ∈ L2,3(Ω) : ∀C(con. cp.) ⊆ Ω ∃αC ∈ R, βC ∈ R3 : u|C(x) = αCx+ βC

}
.

The proper formulation of the first main result, Theorem 1.1, reads as follows.

Theorem 4.4. Let Ω ⊂ R3 be a bounded strong Lipschitz domain. Then Dbih,1 is a
Fredholm operator with index

indDbih,1 = dimNbih,1
0 − dimKbih,1

1 + dimKbih,1
2 − dimNbih,1

2,∗ .

If additionally Assumption 3 holds, then

indDbih,1 = 4(p−m− n+ 1).

Proof. Using Theorem 4.2 apply Theorem 2.8 together with (14), the observations

Nbih,1
0 = ker( ˚Gradgrad) = {0}, Nbih,1

2,∗ = ker(devGrad) = RTpw,(15)

see [21, Lemma 3.2, Lemma 3.3], and Theorem 4.3. �

Remark 4.5. By Theorem 2.8 the adjoint (Dbih,1)∗ is Fredholm as well with index simply
given by ind(Dbih,1)∗ = − indDbih,1. Similar to Remark 3.9 we define the extended first
biharmonic operator

Mbih,1 :=

(
0 Dbih,1

−(Dbih,1)∗ 0

)
=


0 0 D̊ivT 0

0 0 symCurlT ˚Gradgrad

devGrad − C̊urlS 0 0
0 − divDivS 0 0


with (Mbih,1)∗ = −Mbih,1 and indMbih,1 = 0.
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4.1. Some More Results. Inhomogeneous and anisotropic media may also be consid-
ered for the first biharmonic complex, cf. Remark 3.11.

Remark 4.6. Let λ0 := Id, λ3 := Id, and λ1 := ε, λ2 := µ : Ω → R3×3×3×3 being
symmetric and uniformly positive definite L∞(Ω)-tensor fields. Moreover, let us introduce

L2,3×3
S,ε (Ω) := H̃1 :=

(
L2,3×3
S (Ω), 〈ε · , · 〉L2,3×3

S (Ω)

)
and similarly L2,3×3

T,µ (Ω) := H̃2 as well as

H̃0 = H0 = L2(Ω), H̃3 = H3 = L2,3(Ω). We look at

Ã0 := ˚Gradgrad, Ã1 := µ−1 C̊urlS, Ã2 := D̊ivT µ,

Ã∗0 = divDivS ε, Ã∗1 = ε−1 symCurlT, Ã∗2 = − devGrad,

D̃bih,1 :=

(
Ã2 0

Ã∗1 Ã0

)
=

(
D̊ivT µ 0

ε−1 symCurlT ˚Gradgrad

)
,

(D̃bih,1)∗ =

(
Ã∗2 Ã1

0 Ã∗0

)
=

(
− devGrad µ−1 C̊urlS

0 divDivS ε

)
,

i.e., the first biharmonic complex, cf. (13),

{0}
ι{0}−−→ L2(Ω)

˚Gradgrad−−−−−−→ L2,3×3
S,ε (Ω)

µ−1 C̊urlS−−−−−−→ L2,3×3
T,µ (Ω)

D̊ivT µ−−−−→ L2,3(Ω)
πRTpw−−−→ RTpw,

{0}
π{0}←−−− L2(Ω)

divDivS ε←−−−−−− L2,3×3
S,ε (Ω)

ε−1 symCurlT←−−−−−−−− L2,3×3
T,µ (Ω)

− devGrad←−−−−−−− L2,3(Ω)
ιRTpw←−−− RTpw.

(16)

Lemma 2.12, Lemma 2.13, and Theorem 2.14 show that the compactness properties, the
dimensions of the kernels and cohomology groups, the maximal compactness, and the
Fredholm indices of the first biharmonic complex do not dependent of the material weights
ε and µ. More precisely,

• dim
(

ker(C̊urlS) ∩
(
ε−1 ker(divDivS)

))
= dim

(
ker(C̊urlS) ∩ ker(divDivS)

)
= dimHbih,1

D,S (Ω) = 4(m− 1),

• dim
((
µ−1 ker(D̊ivT)

)
∩ ker(symCurlT)

)
= dim

(
ker(D̊ivT) ∩ ker(symCurlT)

)
= dimHbih,1

N,T (Ω) = 4p,

• dom(C̊urlS) ∩
(
ε−1 dom(divDivS)

)
↪→ L2,3×3

S,ε (Ω)

⇔ dom(C̊urlS) ∩ dom(divDivS) ↪→ L2,3×3
S (Ω),

•
(
µ−1 dom(D̊ivT)

)
∩ dom(symCurlT) ↪→ L2,3×3

T,µ (Ω)

⇔ dom(D̊ivT) ∩ dom(symCurlT) ↪→ L2,3×3
T (Ω),

• ( ˚Gradgrad, µ−1 C̊urlS, D̊ivT µ) max cpt, iff ( ˚Gradgrad, C̊urlS, D̊ivT) max cpt,

• − ind(D̃bih,1)∗ = ind D̃bih,1 = indDbih,1 = 4(p−m− n+ 1).

Note that the kernels and ranges are given by

kerDbih,1 = Kbih,1
2 ×Nbih,1

0 = Hbih,1
N,T (Ω)× {0},

ker(Dbih,1)∗ = Nbih,1
2,∗ ×K

bih,1
1 = RTpw ×Hbih,1

D,S (Ω),

ranDbih,1 = (ker(Dbih,1)∗)
⊥

L2,3(Ω)×L
2,3×3
S (Ω) = RT

⊥L2,3(Ω)
pw ×Hbih,1

D,S (Ω)
⊥

L
2,3×3
S (Ω) ,

ran(Dbih,1)∗ = (kerDbih,1)
⊥

L
2,3×3
T (Ω)×L2(Ω) = Hbih,1

N,T (Ω)
⊥

L
2,3×3
T (Ω) × L2(Ω),
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see Lemma 2.5, Corollary 2.6, and (15). Corollary 2.9 shows additional results for the
corresponding reduced operators

Dbih,1
red = Dbih,1|

(kerDbih,1)
⊥H2×H0

=

(
D̊ivT 0

symCurlT ˚Gradgrad

) ∣∣∣
Hbih,1

N,T (Ω)
⊥
L

2,3×3
T (Ω)×L2(Ω)

,

(Dbih,1
red )∗ = (Dbih,1)∗|

(ker(Dbih,1)∗)
⊥H3×H1

=

(
− devGrad C̊urlS

0 divDivS

) ∣∣∣
RT
⊥
L2,3(Ω)

pw ×Hbih,1
D,S (Ω)

⊥
L

2,3×3
S (Ω)

.

Corollary 4.7. Let Ω ⊂ R3 be a bounded strong Lipschitz domain. Then

(Dbih,1
red )−1 : ranDbih,1 → ran(Dbih,1)∗,

((Dbih,1
red )∗)−1 : ran(Dbih,1)∗ → ranDbih,1

are compact. Furthermore,

(Dbih,1
red )−1 : ranDbih,1 → domDbih,1

red ,

((Dbih,1
red )∗)−1 : ran(Dbih,1)∗ → dom(Dbih,1

red )∗

are continuous and, equivalently, the Friedrichs-Poincaré type estimates∣∣(T, u)
∣∣
L2,3×3
T (Ω)×L2(Ω)

≤ cDbih,1

(
|Gradgradu|2

L2,3×3
S (Ω)

+ |Div T |2L2,3(Ω) + | symCurlT |2
L2,3×3
S (Ω)

)1/2
,∣∣(v, S)

∣∣
L2,3(Ω)×L2,3×3

S (Ω)
≤ cDbih,1

(
| devGrad v|2

L2,3×3
T (Ω)

+ | divDivS|2L2(Ω) + |CurlS|2
L2,3×3
T (Ω)

)1/2

hold for all (T, u) in

domDbih,1
red =

(
dom(D̊ivT) ∩ dom(symCurlT) ∩Hbih,1

N,T (Ω)
⊥

L
2,3×3
T (Ω)

)
×H2

0 (Ω)

for all (v, S) in

dom(Dbih,1
red )∗ =

(
H1,3(Ω) ∩ RT

⊥L2,3(Ω)
pw

)
×
(

dom(C̊urlS) ∩ dom(divDivS) ∩Hbih,1
D,S (Ω)

⊥
L

2,3×3
S (Ω)

)
with some optimal constant cDbih,1 > 0.

5. The Second Biharmonic Complex and Its Indices

Definition 5.1. Let Ω ⊆ R3 be an open set. We put

devGradc : C∞,3c (Ω) ⊆ L2,3(Ω) −→ L2,3×3
T (Ω), φ 7−→ devGradφ,

symCurlc : C∞,3×3
c,T (Ω) ⊆ L2,3×3

T (Ω) −→ L2,3×3
S (Ω), Φ 7−→ symCurl Φ,

divDivc : C∞,3×3
c,S (Ω) ⊆ L2,3×3

S (Ω) −→ L2(Ω), Φ 7−→ divDiv Φ,

and further define the densely defined and closed linear operators

DivT := − devGrad∗c ,
˚devGrad := −Div∗T = devGradc,

CurlS := symCurl∗c ,
˚symCurlT := Curl∗S = symCurlc,

Gradgrad := divDiv∗c ,
˚divDivS := Gradgrad∗ = divDivc.
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We shall apply the index theorem in the following situation of the second biharmonic
complex:

A0 := ˚devGrad, A1 := ˚symCurlT, A2 := ˚divDivS,

A∗0 = −DivT, A∗1 = CurlS, A∗2 = Gradgrad,

Dbih,2 :=

(
A2 0
A∗1 A0

)
=

(
˚divDivS 0

CurlS ˚devGrad

)
,

(Dbih,2)∗ =

(
A∗2 A1

0 A∗0

)
=

(
Gradgrad ˚symCurlT

0 −DivT

)
,

{0}
ι{0}−−→ L2,3(Ω)

˚devGrad−−−−−→ L2,3×3
T (Ω)

˚symCurlT−−−−−−→ L2,3×3
S (Ω)

˚divDivS−−−−−→ L2(Ω)
πP1pw−−−→ P1

pw,

{0}
π{0}←−−− L2,3(Ω)

−DivT←−−−− L2,3×3
T (Ω)

CurlS←−−− L2,3×3
S (Ω)

Gradgrad←−−−−−− L2(Ω)
ιP1pw←−− P1

pw.

(17)

Note that dom( ˚devGrad) = H1,3
0 (Ω) by [21, Lemma 3.2].

Lemma 5.2. Let Ω ⊆ R3 be a bounded strong Lipschitz domain. Then it holds that
dom(Gradgrad) = H2(Ω) and that there exists c > 0 such that for all u ∈ H2(Ω)

c |u|H2(Ω) ≤ |u|L2(Ω) + |Grad gradu|L2,3×3(Ω).

Proof. Let u ∈ dom(Gradgrad). Then gradu ∈ H−1,3(Ω) and Grad gradu ∈ L2,3×3(Ω).
Necas’ regularity yields gradu ∈ L2,3(Ω) and thus u ∈ H1(Ω) and gradu ∈ H1,3(Ω).
Hence u ∈ H2(Ω) and by Necas’ inequality we have

| gradu|L2,3(Ω) ≤ c
(
| gradu|H−1,3(Ω) + |Grad gradu|H−1,3×3(Ω)

)
≤ c
(
|u|L2(Ω) + |Grad gradu|L2,3×3(Ω)

)
,

showing the desired estimate. �

Theorem 5.3. Let Ω ⊆ R3 be a bounded strong Lipschitz domain. Then the second
biharmonic complex ( ˚devGrad, ˚symCurlT, ˚divDivS) is a maximal compact Hilbert complex.

Proof. The assertions can be shown by using the ‘FA-ToolBox’ from [17, 18, 19, 21, 22].
The compact embeddings for topologically trivial domains can be proved by a combination
of Helmholtz decompositions and regular potentials as in [21, Theorem 3.10, Theorem
3.12, Lemma 3.19] or in [22, Theorem 3.5, Corollary 3.6, Lemma 3.8]. For general strong
Lipschitz domains we follow the proof of [21, Lemma 3.22] or [22, Theorem 3.17]. Due to

the boundary condition attached to the ‘second order’ operator ˚divDivS the proofs have
to be modified at some places leading to some additional (but handable) difficulties. �

We observe and define

Nbih,2
0 = kerA0 = ker( ˚devGrad),

Nbih,2
2,∗ = kerA∗2 = ker(Gradgrad),

Kbih,2
1 = kerA1 ∩ kerA∗0 = ker( ˚symCurlT) ∩ ker(DivT) =: Hbih,2

D,T (Ω),

Kbih,2
2 = kerA2 ∩ kerA∗1 = ker( ˚divDivS) ∩ ker(CurlS) =: Hbih,2

N,S (Ω).

(18)

Let us introduce the space of piecewise first order polynomials by

P1
pw :=

{
v ∈ L2(Ω) : ∀C(con. cp.) ⊆ Ω ∃αC ∈ R, βC ∈ R3 : u|C(x) = αC + βC · x

}
.
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Theorem 5.4. Let Ω ⊆ R3 be open and bounded with continuous boundary. Moreover,
suppose Assumption 3. Then

dimHbih,2
D,T (Ω) = 4(m− 1), dimHbih,2

N,S (Ω) = 4p.

Proof. We postpone the proof to the Appendix. �

Theorem 5.5. Let Ω ⊂ R3 be a bounded strong Lipschitz domain. Then Dbih,2 is a
Fredholm operator with index

indDbih,2 = dimNbih,2
0 − dimKbih,2

1 + dimKbih,2
2 − dimNbih,2

2,∗ .

If additionally Assumption 3 holds, then

indDbih,2 = 4(p−m− n+ 1).

Proof. Using Theorem 5.3 apply Theorem 2.8 together with (18), the observations

Nbih,2
0 = ker( ˚devGrad) = {0}, Nbih,2

2,∗ = ker(Gradgrad) = P1
pw(19)

by using [21, Lemma 3.2 (i)], and Theorem 5.4. �

Remark 5.6. By Theorem 2.8 the adjoint (Dbih,2)∗ is Fredholm as well with index simply
given by ind(Dbih,2)∗ = − indDbih,2. Similar to Remark 3.9 and Remark 4.5 we define the
extended second biharmonic operator

Mbih,2 :=

(
0 Dbih,2

−(Dbih,2)∗ 0

)
=


0 0 ˚divDivS 0

0 0 CurlS ˚devGrad

−Gradgrad − ˚symCurlT 0 0
0 DivT 0 0


with (Mbih,2)∗ = −Mbih,2 and indMbih,2 = 0.

5.1. Some More Results. Inhomogeneous and anisotropic media may also be consid-
ered for the second biharmonic complex, cf. Remark 3.11 and Remark 4.6.

Remark 5.7. Recall the notations from Remark 4.6 and set λ0 := Id, λ3 := Id, λ1 := ε,

λ2 := µ, and H̃1 := L2,3×3
T,ε (Ω), H̃2 := L2,3×3

S,µ (Ω), H̃0 = H0 = L2,3(Ω), H̃3 = H3 = L2(Ω).
We look at

Ã0 := ˚devGrad, Ã1 := µ−1 ˚symCurlT, Ã2 := ˚divDivSµ,

Ã∗0 = −DivT ε, Ã∗1 = ε−1 CurlS, Ã∗2 = Gradgrad,

D̃bih,2 :=

(
Ã2 0

Ã∗1 Ã0

)
=

(
˚divDivSµ 0

ε−1 CurlS ˚devGrad

)
,

(D̃bih,2)∗ =

(
Ã∗2 Ã1

0 Ã∗0

)
=

(
Gradgrad µ−1 ˚symCurlT

0 −DivT ε

)
,

i.e., the second biharmonic complex, cf. (17),

{0}
ι{0}−−→ L2,3(Ω)

˚devGrad−−−−−→ L2,3×3
T,ε (Ω)

µ−1 ˚symCurlT−−−−−−−−−→ L2,3×3
S,µ (Ω)

˚divDivSµ−−−−−−→ L2(Ω)
πP1pw−−−→ P1

pw,

{0}
π{0}←−−− L2,3(Ω)

−DivT ε←−−−−− L2,3×3
T,ε (Ω)

ε−1 CurlS←−−−−−− L2,3×3
S,µ (Ω)

Gradgrad←−−−−−− L2(Ω)
ιP1pw←−− P1

pw.

(20)
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Lemma 2.12, Lemma 2.13, and Theorem 2.14 show that the compactness properties, the
dimensions of the kernels and cohomology groups, the maximal compactness, and the Fred-
holm indices of the second biharmonic complex do not dependent of the material weights
ε and µ. More precisely,

• dim
(

ker( ˚symCurlT) ∩
(
ε−1 ker(DivT)

))
= dim

(
ker( ˚symCurlT) ∩ ker(DivT)

)
= dimHbih,2

D,T (Ω) = 4(m− 1),

• dim
((
µ−1 ker( ˚divDivS)

)
∩ ker(CurlS)

)
= dim

(
ker( ˚divDivS) ∩ ker(CurlS)

)
= dimHbih,2

N,S (Ω) = 4p,

• dom( ˚symCurlT) ∩
(
ε−1 dom(DivT)

)
↪→ L2,3×3

T,ε (Ω)

⇔ dom( ˚symCurlT) ∩ dom(DivT) ↪→ L2,3×3
T (Ω),

•
(
µ−1 dom( ˚divDivS)

)
∩ dom(CurlS) ↪→ L2,3×3

S,µ (Ω)

⇔ dom( ˚divDivS) ∩ dom(CurlS) ↪→ L2,3×3
S (Ω),

• ( ˚devGrad, µ−1 ˚symCurlT, ˚divDivSµ) m cpt, iff ( ˚devGrad, ˚symCurlT, ˚divDivS) m cpt,

• − ind(D̃bih,2)∗ = ind D̃bih,2 = indDbih,2 = 4(p−m− n+ 1).

Note that the kernels and ranges are given by

kerDbih,2 = Kbih,2
2 ×Nbih,2

0 = Hbih,2
N,S (Ω)× {0},

ker(Dbih,2)∗ = Nbih,2
2,∗ ×K

bih,2
1 = P1

pw ×H
bih,2
D,T (Ω),

ranDbih,2 = (ker(Dbih,2)∗)
⊥

L2(Ω)×L
2,3×3
T (Ω) = (P1

pw)⊥L2(Ω) ×Hbih,2
D,T (Ω)

⊥
L

2,3×3
T (Ω) ,

ran(Dbih,2)∗ = (kerDbih,2)
⊥

L
2,3×3
S (Ω)×L2,3(Ω) = Hbih,2

N,S (Ω)
⊥

L
2,3×3
S (Ω) × L2,3(Ω),

see Lemma 2.5, Corollary 2.6, and (19). Corollary 2.9 shows additional results for the
corresponding reduced operators

Dbih,2
red = Dbih,2|

(kerDbih,2)
⊥H2×H0

=

(
˚divDivS 0

CurlS ˚devGrad

) ∣∣∣
Hbih,2

N,S (Ω)
⊥
L

2,3×3
S (Ω)×L2,3(Ω)

,

(Dbih,2
red )∗ = (Dbih,2)∗|

(ker(Dbih,2)∗)
⊥H3×H1

=

(
Gradgrad ˚symCurlT

0 −DivT

) ∣∣∣
(P1

pw)
⊥
L2(Ω)×Hbih,2

D,T (Ω)
⊥
L

2,3×3
T (Ω)

.

Corollary 5.8. Let Ω ⊂ R3 be a bounded strong Lipschitz domain. Then

(Dbih,2
red )−1 : ranDbih,2 → ran(Dbih,2)∗,

((Dbih,2
red )∗)−1 : ran(Dbih,2)∗ → ranDbih,2

are compact. Furthermore,

(Dbih,2
red )−1 : ranDbih,2 → domDbih,2

red ,

((Dbih,2
red )∗)−1 : ran(Dbih,2)∗ → dom(Dbih,2

red )∗

are continuous and, equivalently, the Friedrichs-Poincaré type estimates∣∣(S, v)
∣∣
L2,3×3
S (Ω)×L2,3(Ω)

≤ cDbih,2

(
| devGrad v|2

L2,3×3
T (Ω)

+ | divDivS|2L2(Ω) + |CurlS|2
L2,3×3
T (Ω)

)1/2
,∣∣(u, T )

∣∣
L2(Ω)×L2,3×3

T (Ω)
≤ cDbih,2

(
|Gradgradu|2

L2,3×3
S (Ω)



INDEX OF MIXED ORDER DIRAC-TYPE OPERATORS 25

+ |Div T |2L2,3(Ω) + | symCurlT |2
L2,3×3
S (Ω)

)1/2

hold for all (S, v) in

domDbih,2
red =

(
dom( ˚divDivS) ∩ dom(CurlS) ∩Hbih,2

N,S (Ω)
⊥

L
2,3×3
S (Ω)

)
×H1,3

0 (Ω)

for all (u, T ) in

dom(Dbih,2
red )∗ =

(
H2(Ω) ∩ (P1

pw)⊥L2(Ω)
)

×
(

dom( ˚symCurlT) ∩ dom(DivT) ∩Hbih,2
D,T (Ω)

⊥
L

2,3×3
T (Ω)

)
with some optimal constant cDbih,2 > 0.

6. The Elasticity Complex and Its Indices

This section is devoted to adapt our main results Theorem 1.1, Theorem 4.4, and
Theorem 5.5, to the elasticity complex, see [22] for details. Its elasticity differential
operator is of mixed order as well, this time in the center of the complex. As before
for the biharmonic operators, the leading order term is not dominating the lower order
differential operators.

Definition 6.1. Let Ω ⊂ R3 be an open set. We put

symGradc : C∞,3c (Ω) ⊆ L2,3(Ω)→ L2,3×3
S (Ω), φ 7→ sym Gradφ,

CurlCurl>c : C∞,3×3
c,S (Ω) ⊆ L2,3×3

S (Ω)→ L2,3×3
S (Ω), Φ 7→ CurlCurl>Φ := Curl(Curl Φ)>,

Divc : C∞,3×3
c,S (Ω) ⊆ L2,3×3

S (Ω)→ L2,3(Ω), Φ 7→ Div Φ,

and further define the densely defined and closed linear operators

DivS := − symGrad∗c ,
˚symGrad := −Div∗S = symGradc,

CurlCurl>S := (CurlCurl>c )∗, ˚CurlCurl>S := (CurlCurl>S )∗ = CurlCurl>c ,

symGrad := −Div∗c , D̊ivS := − symGrad∗ = Divc.

We want to apply the index theorem in the following situation of the elasticity complex:

A0 := ˚symGrad, A1 := ˚CurlCurl>S , A2 := D̊ivS,

A∗0 = −DivS, A∗1 = CurlCurl>S , A∗2 = − symGrad,

Dela :=

(
A2 0
A∗1 A0

)
=

(
D̊ivS 0

CurlCurl>S
˚symGrad

)
,

(Dela)∗ =

(
A∗2 A1

0 A∗0

)
=

(
− symGrad ˚CurlCurl>S

0 −DivS

)
,

{0}
ι{0}−−→ L2,3(Ω)

˚symGrad−−−−−−→ L2,3×3
S (Ω)

˚CurlCurl>S−−−−−−→ L2,3×3
S (Ω)

D̊ivS−−−→ L2,3(Ω)
πRMpw−−−→ RMpw,

{0}
π{0}←−−− L2,3(Ω)

−DivS←−−−− L2,3×3
S (Ω)

CurlCurl>S←−−−−−− L2,3×3
S (Ω)

− symGrad←−−−−−−− L2,3(Ω)
ιRMpw←−−− RMpw.

(21)

The foundation of the index theorem to follow is the following compactness result
established by Pauly and Zulehner. Note that we have dom( ˚symGrad) = H1,3

0 (Ω) and
dom(symGrad) = H1,3(Ω).

Theorem 6.2 ([22, Theorem 3.17]). Let Ω ⊆ R3 be a bounded strong Lipschitz domain.

Then ( ˚symGrad, ˚CurlCurl>S , D̊ivS) is a maximal compact Hilbert complex.
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We observe and define

N ela
0 = kerA0 = ker( ˚symGrad),

N ela
2,∗ = kerA∗2 = ker(symGrad),

Kela
1 = kerA1 ∩ kerA∗0 = ker( ˚CurlCurl>S ) ∩ ker(DivS) =: Hela

D,S(Ω),

Kela
2 = kerA2 ∩ kerA∗1 = ker(D̊ivS) ∩ ker(CurlCurl>S ) =: Hela

N,S(Ω).

(22)

The dimensions of the cohomology groups are given as follows.

Theorem 6.3. Let Ω ⊆ R3 be open and bounded with continuous boundary. Moreover,
suppose Assumption 3. Then

dimHela
D,S(Ω) = 6(m− 1), dimHela

N,S(Ω) = 6p.

Proof. We postpone the proof to the Appendix. �

Let us introduce the space of piecewise rigid motions by

RMpw :=
{
v ∈ L2,3(Ω) : ∀C(con. cp.) ⊆ Ω ∃αC , βC ∈ R3 : u|C(x) = αC × x+ βC

}
.

Theorem 6.4. Let Ω ⊂ R3 be a bounded strong Lipschitz domain. Then Dela is a Fredholm
operator with index

indDela = dimN ela
0 − dimKela

1 + dimKela
2 − dimN ela

2,∗.

If additionally Assumption 3 holds, then

indDela = 6(p−m− n+ 1).

Proof. Using Theorem 6.2 apply Theorem 2.8 together with (22), the observations

N ela
0 = ker( ˚symGrad) = {0}, N ela

2,∗ = ker(symGrad) = RMpw,(23)

see [22, Lemma 3.2], and Theorem 6.3. �

Remark 6.5. By Theorem 2.8 the adjoint (Dela)∗ is Fredholm as well with index simply
given by ind(Dela)∗ = − indDela. Similar to Remark 3.9, Remark 4.5, and Remark 5.6 we
define the extended elasticity operator

Mela :=

(
0 Dela

−(Dela)∗ 0

)
=


0 0 D̊ivS 0

0 0 CurlCurl>S
˚symGrad

symGrad − ˚CurlCurl>S 0 0
0 DivS 0 0


with (Mela)∗ = −Mela and indMela = 0.

6.1. Some More Results. Inhomogeneous and anisotropic media may also be consid-
ered for the elasticity complex, cf. Remark 3.11, Remark 4.6, and Remark 5.7.

Remark 6.6. Recall the notations from Remark 4.6 and Remark 5.7 and set λ0 := Id,

λ3 := Id, λ1 := ε, λ2 := µ, and H̃3 = H̃0 = H3 = H0 = L2,3(Ω), H̃1 := L2,3×3
S,ε (Ω),

H̃2 := L2,3×3
S,µ (Ω). We look at

Ã0 := ˚symGrad, Ã1 := µ−1 ˚CurlCurl>S , Ã2 := D̊ivS µ,

Ã∗0 = −DivS ε, Ã∗1 = ε−1 CurlCurl>S , Ã∗2 = − symGrad,

D̃ela :=

(
Ã2 0

Ã∗1 Ã0

)
=

(
D̊ivS µ 0

ε−1 CurlCurl>S
˚symGrad

)
,
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(D̃ela)∗ =

(
Ã∗2 Ã1

0 Ã∗0

)
=

(
− symGrad µ−1 ˚CurlCurl>S

0 −DivS ε

)
,

i.e., the elasticity complex, cf. (21),

{0}
ι{0}−−→ L2,3(Ω)

˚symGrad−−−−−−→ L2,3×3
S,ε (Ω)

µ−1 ˚CurlCurl>S−−−−−−−−−→ L2,3×3
S,µ (Ω)

D̊ivS µ−−−−→ L2,3(Ω)
πRMpw−−−→ RMpw,

{0}
π{0}←−−− L2,3(Ω)

−DivS ε←−−−−− L2,3×3
S,ε (Ω)

ε−1 CurlCurl>S←−−−−−−−−− L2,3×3
S,µ (Ω)

− symGrad←−−−−−−− L2,3(Ω)
ιRMpw←−−− RMpw.

(24)

Lemma 2.12, Lemma 2.13, and Theorem 2.14 show that the compactness properties, the
dimensions of the kernels and cohomology groups, the maximal compactness, and the
Fredholm indices of the elasticity complex do not dependent of the material weights ε and
µ. More precisely,

• dim
(

ker( ˚CurlCurl>S ) ∩
(
ε−1 ker(DivS)

))
= dim

(
ker( ˚CurlCurl>S ) ∩ ker(DivS)

)
= dimHela

D,S(Ω) = 6(m− 1),

• dim
((
µ−1 ker(D̊ivS)

)
∩ ker(CurlCurl>S )

)
= dim

(
ker(D̊ivS) ∩ ker(CurlCurl>S )

)
= dimHela

N,S(Ω) = 6p,

• dom( ˚CurlCurl>S ) ∩
(
ε−1 dom(DivS)

)
↪→ L2,3×3

S,ε (Ω)

⇔ dom( ˚CurlCurl>S ) ∩ dom(DivS) ↪→ L2,3×3
S (Ω),

•
(
µ−1 dom(D̊ivS)

)
∩ dom(CurlCurl>S ) ↪→ L2,3×3

S,µ (Ω)

⇔ dom(D̊ivS) ∩ dom(CurlCurl>S ) ↪→ L2,3×3
S (Ω),

• ( ˚symGrad, µ−1 ˚CurlCurl>S , D̊ivS µ) m cpt, iff ( ˚symGrad, ˚CurlCurl>S , D̊ivS) m cpt,

• − ind(D̃ela)∗ = ind D̃ela = indDela = 6(p−m− n+ 1).

Note that the kernels and ranges are given by

kerDela = Kela
2 ×N ela

0 = Hela
N,S(Ω)× {0},

ker(Dela)∗ = N ela
2,∗ ×Kela

1 = RMpw ×Hela
D,S(Ω),

ranDela = (ker(Dela)∗)
⊥

L2,3(Ω)×L
2,3×3
S (Ω) = RM

⊥L2,3(Ω)
pw ×Hela

D,S(Ω)
⊥

L
2,3×3
S (Ω) ,

ran(Dela)∗ = (kerDela)
⊥

L
2,3×3
S (Ω)×L2,3(Ω) = Hela

N,S(Ω)
⊥

L
2,3×3
S (Ω) × L2,3(Ω),

see Lemma 2.5, Corollary 2.6, and (23). Corollary 2.9 shows additional results for the
corresponding reduced operators

Dela
red = Dela|

(kerDela)
⊥H2×H0

=

(
D̊ivS 0

CurlCurl>S
˚symGrad

) ∣∣∣
Hela

N,S(Ω)
⊥
L

2,3×3
S (Ω)×L2,3(Ω)

,

(Dela
red)
∗ = (Dela)∗|

(ker(Dela)∗)
⊥H3×H1

=

(
− symGrad ˚CurlCurl>S

0 −DivS

) ∣∣∣
RM
⊥
L2,3(Ω)

pw ×Hela
D,S(Ω)

⊥
L

2,3×3
S (Ω)

.

Corollary 6.7. Let Ω ⊂ R3 be a bounded strong Lipschitz domain. Then

(Dela
red)
−1 : ranDela → ran(Dela)∗,

((Dela
red)
∗)−1 : ran(Dela)∗ → ranDela

are compact. Furthermore,

(Dela
red)
−1 : ranDela → domDela

red,
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((Dela
red)
∗)−1 : ran(Dela)∗ → dom(Dela

red)
∗

are continuous and, equivalently, the Friedrichs-Poincaré type estimate∣∣(S, v)
∣∣
L2,3×3
S (Ω)×L2,3(Ω)

≤ cDela

(
| symGrad v|2

L2,3×3
S (Ω)

+ |DivS|2L2,3(Ω) + |CurlCurl> S|2
L2,3×3
S (Ω)

)1/2

holds for all (S, v) in

domDela
red =

(
dom(D̊ivS) ∩ dom(CurlCurl>S ) ∩Hela

N,S(Ω)
⊥

L
2,3×3
S (Ω)

)
×H1,3

0 (Ω)

or (v, S) in

dom(Dela
red)
∗ =

(
H1,3(Ω) ∩ RM

⊥L2,3(Ω)
pw

)
×
(

dom( ˚CurlCurl>S ) ∩ dom(DivS) ∩Hela
D,S(Ω)

⊥
L

2,3×3
S (Ω)

)
with some optimal constant cDela > 0.

7. Conclusion

The index theorems presented rest on the abstract construction principle provided
in [7] and the results on the newly found biharmonic complex from [20, 21] and the
elasticity complex from [22]. With this insight it is possible to construct basis fields
for the generalised harmonic Dirichlet and Neumann tensor fields, see Appendix. This
construction heavily relies on the choice of boundary conditions and we emphasise that
the considered mixed order operators cannot be viewed as leading order plus relatively
compact perturbation, when it comes to computation of the Fredholm index. In particular,
techniques from pseudo-differential calculus successfully applied to obtain index formulas
for operators defined on non-compact manifolds or compact manifolds without boundary,
see e.g. [11, 12], are likely to be very difficult to be applicable in the present situation.
It would be interesting to see, whether the operators considered above defined on an
unbounded domain enjoy similar index formulas (maybe a comparable Witten index of
some sort) even though the operator itself might not be of Fredholm type anymore.
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Appendix. Dirichlet and Neumann Fields

In Theorem 3.6, Theorem 4.3, Theorem 5.4, and Theorem 6.3 we have seen that the
dimensions of the harmonic Dirichlet and Neumann fields are given by the topological
invariants of the open and bounded set Ω and its complement

Ξ := R3 \ Ω,

i.e., by

• n, the number of connected components Ωk of Ω, i.e., Ω =
⋃̇n

k=1 Ωk,

• m, the number of connected components Ξ` of Ξ, i.e., Ξ =
⋃̇m−1

`=0 Ξ`,
• p, the number of handles of Ω, see Assumption 3.
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More precisely, we recall

dimHRhm
D (Ω) = m− 1, dimHRhm

N (Ω) = p,

dimHbih,1
D,S (Ω) = 4(m− 1), dimHbih,1

N,T (Ω) = 4p,

dimHbih,2
D,T (Ω) = 4(m− 1), dimHbih,2

N,S (Ω) = 4p,

dimHela
D,S(Ω) = 6(m− 1), dimHela

N,S(Ω) = 6p.

This appendix provides the corresponding proofs in detail. For the de Rham complex
we follow in close lines the arguments of Picard in [23] introducing some simplifications
for bounded domains and trivial material tensors ε and µ. These ideas will be adapted
and modified for the proofs of the corresponding results of the other Hilbert complexes.

Assumption 1. Ω ⊂ R3 is open and bounded with segment property, i.e., Ω has a con-
tinuous boundary Γ := ∂ Ω, see Remark 3.7.

Assumption 2. Ω ⊂ R3 is open, bounded, and Γ is strong Lipschitz.

In view of Assumption 1 and Assumption 2 we note:

• Assumption 1 guarantees that m,n ∈ N are well defined. So does Assumption 3
for p ∈ N0. In particular, int Ξ` 6= ∅ for all ` = 0, . . . ,m− 1.
• Assumption 2 implies Assumption 1.
• Assumption 2 simplifies some arguments, in particular, all ranges in the crucial

Helmholtz type decompositions used in our proofs are closed, cf. Remark B.2,
Remark B.11, Remark B.18, and Remark B.24. We emphasise that all our results
presented in this appendix still hold with Assumption 2 replaced by the weaker
Assumption 1. In this case it is not clear if the mentioned ranges are closed and in
some of our arguments we need to use some additional density and approximation
arguments.

Let us recall from Lemma 1.3 the local regularities

HRhm
D (Ω),HRhm

N (Ω) ⊂ C∞,3(Ω) ∩ L2,3(Ω),

Hbih,1
D,S (Ω),Hela

D,S(Ω),Hbih,2
N,S (Ω),Hela

N,S(Ω) ⊂ C∞,3×3(Ω) ∩ L2,3×3
S (Ω),

Hbih,2
D,T (Ω),Hbih,1

N,T (Ω) ⊂ C∞,3×3(Ω) ∩ L2,3×3
T (Ω).

(25)

In particular, all Dirichlet and Neumann fields of the respective cohomology groups are
continuous and square integrable.

Appendix A. Dirichlet Fields

Let us denote the unbounded connected component of Ξ by Ξ0 and its boundary by
Γ0 := ∂ Ξ0. The remaining connected components of Ξ are Ξ1, . . . ,Ξm−1 with boundaries
Γ` := ∂ Ξ`. Note that none of Γ0, . . . ,Γm−1 need to be connected. Furthermore, let us

introduce an open (and bounded) ball B ⊃ Ω and set Ξ̃0 := B ∩ Ξ0. Then the connected

components of B \ Ω are Ξ̃0 and Ξ1, . . . ,Ξm−1. Moreover, let

ξ` ∈ C∞c (R3), ` = 1, . . . ,m− 1,(26)

with disjoint supports such that ξ` = 0 in a neighbourhood of Ξ0 and in a neighbourhood of
Ξk for all ` 6= k ∈ {1, . . . ,m−1} as well as ξ` = 1 in a neighbourhood of Ξ`. In particular,
ξ` = 0 in a neighbourhood of Γ0 and in a neighbourhood of Γk for all ` 6= k ∈ {1, . . . ,m−1}
and ξ` = 1 in a neighbourhood of Γ`. Theses indicator type functions ξ` will be used to
construct a basis for the respective Dirichlet fields.
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A.1. Dirichlet Vector Fields of the Classical de Rham Complex. For the de Rham
complex, simliar to (3) and (4), we have the orthogonal decompositions

L2,3(Ω) = H1 = ranA0 ⊕H1 kerA∗0 = ran( ˚grad,Ω)⊕L2,3(Ω) ker(div,Ω),

ker( ˚curl,Ω) = ker(A1) = ranA0 ⊕H1 K1 = ran( ˚grad,Ω)⊕L2,3(Ω) HRhm
D (Ω).

(27)

Remark A.1. It holds dom( ˚grad,Ω) = H1
0 (Ω). Moreover, the range in (27) is closed by

the Friedrichs estimate

∃ c > 0 ∀φ ∈ H1
0 (Ω) |φ|L2(Ω) ≤ c| gradφ|L2,3(Ω),

which holds by Assumption 1. Note that Ω open and bounded is already sufficient.

Let us denote in (27) the orthogonal projector onto ker(div,Ω) resp. HRhm
D (Ω) by π.

Moreover, recall the functions ξ` from (26). Then for ` = 1, . . . ,m− 1

grad ξ` ∈ C∞,3c (Ω) ∩ ker(curl,Ω) ⊂ ker( ˚curl,Ω)

and there exists some ψ` ∈ H1
0 (Ω) such that

HRhm
D (Ω) 3 π grad ξ` = grad(ξ` − ψ`) = gradu`, u` := ξ` − ψ` ∈ H1(Ω).

We shall show that

BRhm
D := {gradu1, . . . , gradum−1} ⊂ HRhm

D (Ω)(28)

defines a basis of HRhm
D (Ω).

Note that ψ` ∈ H1
0 (Ω) can be found by the standard variational formulation

∀φ ∈ H1
0 (Ω) 〈gradψ`, gradφ〉L2,3(Ω) = 〈grad ξ`, gradφ〉L2,3(Ω),

i.e., ψ` = ∆̊−1∆ξ`. Therefore, u` = ξ` − ψ` = (1− ∆̊−1∆)ξ` ∈ H1(Ω) and

gradu` = grad(1− ∆̊−1∆)ξ`

= (grad− grad ∆̊−1∆)ξ`

= (1− grad ∆̊−1 div) grad ξ`.

Let us also mention that u` solves in classical terms the Dirichlet Laplace problem

−∆u` = − div gradu` = 0 in Ω,

u` = 1 on Γ`,

u` = 0 on Γk, ` 6= k = 0, . . . ,m− 1,

(29)

which is uniquely solvable. In particular, for all ` = 1, . . . ,m− 1 it holds u` = 0 on Γ0.

Lemma A.2. Let Assumption 1 be satisfied. Then HRhm
D (Ω) = linBRhm

D .

Proof. Let H ∈ HRhm
D (Ω) = ker( ˚curl,Ω) ∩ ker(div,Ω). In particular, by the homogeneous

boundary condition its extension by zero H̃ to B belongs to ker( ˚curl, B). As B is topo-
logically trivial (and smooth and bounded), there exists (a unique) u ∈ H1

0 (B) such that

gradu = H̃ in B, see, e.g., [21, Lemma 2.24]. As gradu = H̃ = 0 in B \ Ω, u must be

constant in each connected component Ξ̃0,Ξ1, . . . ,Ξm−1 of B \Ω. Due to the homogenous

boundary condition at ∂B, u vanishes in Ξ̃0. Therefore, H = gradu in Ω and u ∈ H1
0 (B)

such that u|Ξ
Ξ̃0

= 0 and u|Ξ`
=: α` ∈ R for all ` = 1, . . . ,m− 1. Let us consider

Ĥ := H −
m−1∑
`=1

α` gradu` = grad û ∈ HRhm
D (Ω), û := u−

m−1∑
`=1

α`u` ∈ H1(Ω)
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with u` from (28). The extension by zero of ψ` to ψ̃` belongs to H1
0 (B). Hence as an

element of H1(B) we see that

ûB := u−
m−1∑
`=1

α`ξ` +
m−1∑
`=1

α`ψ̃` ∈ H1
0 (B)

vanishes in all Ξ`. Thus û = ûB|Ω ∈ H1
0 (Ω) by Assumption 1, and we compute

|Ĥ|2L2,3(Ω) = 〈grad û, Ĥ〉L2,3(Ω) = 0,

finishing the proof. �

Note that, in classical terms, u from the later proof solves the linear Dirichlet Laplace
problem

−∆u = − div gradu = − divH = 0 in Ω,

u = 0 on Γ0,

u = α` ∈ R on Γ`, ` = 1, . . . ,m− 1,

which is uniquely solvable as long as the constants are prescribed.

Lemma A.3. Let Assumption 1 be satisfied. Then BRhm
D is linear independent.

Proof. Let
m−1∑
`=1

α` gradu` = 0, u :=
m−1∑
`=1

α`u`.

Then gradu = 0 in Ω, i.e., u is constant in each connected component of Ω. We show

u = 0. Recall u` = ξ` − ψ` in Ω. Extension by zero of ψ` to ψ̃` shows ũ` ∈ H1
0 (B), where

ũ` :=

{
u` in Ω,

ξ` in B \ Ω,
grad ũ` =

{
gradu` in Ω,

grad ξ` = 0 in B \ Ω.

Note that ũ` = ξ` = 0 in Ξ̃0 and in Ξk for all ` 6= k = 1, . . . ,m − 1 and that ũ` = ξ` = 1
in Ξ`. Then

ũ :=
m−1∑
`=1

α`ũ` ∈ H1
0 (B)

with ũ = 0 in Ξ̃0 and grad ũ = 0 in B \ Ω as well as grad ũ = gradu = 0 in Ω by
assumption. Hence, grad ũ = 0 in B, showing ũ = 0 in B. In particular, u = 0 in Ω, and
α` = ũ|Ξ`

= 0 for all ` = 1, . . . ,m− 1, finishing the proof. �

Theorem A.4. Let Assumption 1 be satisfied. Then dimHRhm
D (Ω) = m − 1 and a basis

of HRhm
D (Ω) is given by (28).

Proof. Use Lemma A.2 and Lemma A.3. �

A.2. Dirichlet Tensor Fields of the First Biharmonic Complex. For the first bi-
harmonic complex, simliar to (3), (4), and (27), we have the orthogonal decompositions

L2,3×3
S (Ω) = ran( ˚Gradgrad,Ω)⊕L2,3×3

S (Ω) ker(divDivS,Ω),

ker(C̊urlS,Ω) = ran( ˚Gradgrad,Ω)⊕L2,3×3
S (Ω) H

bih,1
D,S (Ω).

(30)
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Remark A.5. It holds dom( ˚Gradgrad,Ω) = H2
0 (Ω) by [21, Lemma 3.3]. Moreover, the

range in (30) is closed by the Friedrichs type estimate

∃ c > 0 ∀φ ∈ H2
0 (Ω) |φ|H1(Ω) ≤ c|Gradgradφ|L2,3×3(Ω),

which holds by Assumption 1. Note that Ω open and bounded is already sufficient.

Let us denote in (30) the orthogonal projector onto ker(divDivS,Ω) resp. Hbih,1
D,S (Ω) by

π and recall the functions ξ` from (26). We introduce polynomials p̂j given by p̂0(x) := 1
and p̂j(x) := xj for j = 1, 2, 3 and define ξ`,j := ξ`p̂j for all ` ∈ {1, . . . ,m − 1} and
all j = 0, . . . , 3. In particular, for all j = 0, . . . , 3 we have ξ`,j = 0 in a neighbourhood
of Ξ0 and in a neighbourhood of Ξk for all ` 6= k ∈ {1, . . . ,m − 1} and ξ`,j = p̂j in a
neighbourhood of Ξ`. Then

Gradgrad ξ`,j ∈ C∞,3×3
c,S (Ω) ∩ ker(CurlS,Ω) ⊂ ker(C̊urlS,Ω)

and there exists some ψ`,j ∈ H2
0 (Ω) such that

Hbih,1
D,S (Ω) 3 πGradgrad ξ`,j = Gradgrad(ξ`,j − ψ`,j) = Gradgradu`,j

with u`,j := ξ`,j − ψ`,j ∈ H2(Ω). We shall show that

Bbih,1
D := {Gradgradu`,j}`=1,...,m−1,

j=0,...,3
⊂ Hbih,1

D,S (Ω)(31)

defines a basis of Hbih,1
D,S (Ω).

Note that ψ`,j ∈ H2
0 (Ω) can be found by the standard variational formulation

∀φ ∈ H2
0 (Ω) 〈Gradgradψ`,j,Gradgradφ〉L2,3×3

S (Ω) = 〈Gradgrad ξ`,j,Gradgradφ〉L2,3×3
S (Ω),

i.e., ψ`,j = (∆̊2)−1∆2ξ`,j. Therefore, u`,j = ξ`,j − ψ`,j =
(
1− (∆̊2)−1∆2

)
ξ`,j ∈ H2(Ω) and

Gradgradu`,j = Gradgrad
(
1− (∆̊2)−1∆2

)
ξ`,j

=
(

Gradgrad−Gradgrad(∆̊2)−1∆2
)
ξ`,j

=
(
1−Gradgrad(∆̊2)−1 divDivS

)
Gradgrad ξ`,j.

Let us also mention that u`,j solves in classical terms the biharmonic Dirichlet problem

∆2u`,j := divDivS Gradgradu`,j = 0 in Ω,

u`,j = p̂j, gradu`,j = grad p̂j = ej on Γ`,

u`,j = 0, gradu`,j = 0 on Γk, ` 6= k = 0, . . . ,m− 1,

(32)

which is uniquely solvable. In particular, for all ` = 1, . . . ,m − 1 and all j = 0, . . . , 3 it
holds u`,j = 0 and gradu`,j = 0 on Γ0. Here, we denote by ej, j = 1, 2, 3, the Euclidean
unit vectors in R3 and set e0 := 0 ∈ R3.

Lemma A.6. Let Assumption 1 be satisfied. Then Hbih,1
D,S (Ω) = linBbih,1

D .

Proof. We follow in close lines the arguments used in the proof of Lemma A.2. For this,
let S ∈ Hbih,1

D,S (Ω) = ker(C̊urlS,Ω) ∩ ker(divDivS,Ω). In particular, by the homogeneous

boundary condition its extension by zero S̃ to B belongs to ker(C̊urlS, B). As B is
topologically trivial (and smooth and bounded), there exists (a unique) u ∈ H2

0 (B) such

that Gradgradu = S̃ in B, see [21, Theorem 3.10 (i)]. As Gradgradu = S̃ = 0 in
B \ Ω, u must belong to P1, the polynomials of order 1, in each connected component

Ξ̃0,Ξ1, . . . ,Ξm−1 of B \Ω. Due to the homogenous boundary condition at ∂B, u vanishes
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in Ξ̃0. Therefore, S = Gradgradu in Ω and u ∈ H2
0 (B) is such that u|Ξ̃0

= 0 and

u|Ξ`
=: p` =:

∑3
j=0 α`,j p̂j ∈ P1, α`,j ∈ R, for all ` = 1, . . . ,m− 1. Let us consider

Ŝ := S −
m−1∑
`=1

3∑
j=0

α`,j Gradgradu`,j = Gradgrad û ∈ Hbih,1
D,S (Ω),

û := u−
m−1∑
`=1

3∑
j=0

α`,ju`,j ∈ H2(Ω)

with u`,j from (31). The extension by zero of ψ`,j to ψ̃`,j belongs to H2
0 (B). Hence as an

element of H2(B) we see that

ûB := u−
m−1∑
`=1

3∑
j=0

α`,jξ`,j +
m−1∑
`=1

3∑
j=0

α`,jψ̃`,j ∈ H2
0 (B)

vanishes in all Ξ`. Thus û = ûB|Ω ∈ H2
0 (Ω) by Assumption 1, and we compute

|Ŝ|2
L2,3×3
S (Ω)

= 〈Gradgrad û, Ŝ〉L2,3×3
S (Ω) = 0,

finishing the proof. �

Note that, in classical terms, u from the latter proof solves the linear biharmonic
Dirichlet problem

∆2u = divDivS Gradgradu = divDivS S = 0 in Ω,

u = 0, gradu = 0 on Γ0,

u = p` ∈ P1, gradu = grad p` ∈ R3 on Γ`, ` = 1, . . . ,m− 1,

which is uniquely solvable as long as the polynomials p` in P1 are prescribed.

Lemma A.7. Let Assumption 1 be satisfied. Then Bbih,1
D is linear independent.

Proof. Let
m−1∑
`=1

3∑
j=0

α`,j Gradgradu`,j = 0, u :=
m−1∑
`=1

3∑
j=0

α`,ju`,j.

Then Gradgradu = 0 in Ω, i.e., u belongs to P1 in each connected component of Ω.

We show u = 0. Recall u`,j = ξ`,j − ψ`,j in Ω. Extension by zero of ψ`,j to ψ̃`,j shows
ũ`,j ∈ H2

0 (B), where

ũ`,j :=

{
u`,j in Ω,

ξ`,j in B \ Ω,
Gradgrad ũ`,j =

{
Gradgradu`,j in Ω,

Gradgrad ξ`,j = 0 in B \ Ω.

Note that ũ`,j = ξ`,j = 0 in Ξ̃0 and in Ξk for all ` 6= k = 1, . . . ,m − 1 and j = 0, . . . , 3,
and that ũ`,j = ξ`,j = p̂j in Ξ`. Then

ũ :=
m−1∑
`=1

3∑
j=0

α`,jũ`,j ∈ H2
0 (B)

with ũ = 0 in Ξ̃0 and Gradgrad ũ = 0 in B \Ω as well as Gradgrad ũ = Gradgradu = 0 in
Ω by assumption. Hence, Gradgrad ũ = 0 in B, showing ũ = 0 in B. In particular, u = 0
in Ω, and

∑3
j=0 α`,j p̂j = ũ|Ξ`

= 0 for all ` = 1, . . . ,m − 1. We conclude α`,j = 0 for all
j = 0, . . . , 3 and all `, finishing the proof. �
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Theorem A.8. Let Assumption 1 be satisfied. Then dimHbih,1
D,S (Ω) = 4(m − 1) and a

basis of Hbih,1
D,S (Ω) is given by (31).

Proof. Use Lemma A.6 and Lemma A.7. �

A.3. Dirichlet Tensor Fields of the Second Biharmonic Complex. For the second
biharmonic complex, simliar to (3), (4), and (27), (30), we have the orthogonal decompo-
sitions

L2,3×3
T (Ω) = ran( ˚devGrad,Ω)⊕L2,3×3

T (Ω) ker(DivT,Ω),

ker( ˚symCurlT,Ω) = ran( ˚devGrad,Ω)⊕L2,3×3
T (Ω) H

bih,2
D,T (Ω).

(33)

Remark A.9. It holds dom( ˚devGrad,Ω) = H1,3
0 (Ω) by [21, Lemma 3.2]. Moreover, the

range in (33) is closed by the Friedrichs type estimate5

∃ c > 0 ∀φ ∈ H1,3
0 (Ω) |φ|L2,3(Ω) ≤ c| devGradφ|L2,3×3(Ω),

which holds by Assumption 1. Note that Ω open and bounded is already sufficient.

Let us denote the orthogonal projector onto ker(DivT,Ω) resp. Hbih,2
D,T (Ω) by π and

recall ξ` ∈ C∞c (R3) from (26). We introduce Raviart-Thomas fields r̂j given by r̂0(x) := x
and r̂j(x) := ej for j = 1, 2, 3 and define ξ`,j := ξ`r̂j for all ` ∈ {1, . . . ,m − 1} and all
j = 0, . . . , 3. In particular, for all j = 0, . . . , 3 we have ξ`,j = 0 in a neighbourhood
of Ξ0 and in a neighbourhood of Ξk for all ` 6= k ∈ {1, . . . ,m − 1} and ξ`,j = r̂j in a
neighbourhood of Ξ`. Then

devGrad ξ`,j ∈ C∞,3×3
c,T (Ω) ∩ ker(symCurlT,Ω) ⊂ ker( ˚symCurlT,Ω)

and there exists some ψ`,j ∈ H1,3
0 (Ω) such that

Hbih,2
D,T (Ω) 3 π devGrad ξ`,j = devGrad(ξ`,j − ψ`,j) = devGrad v`,j

with v`,j := ξ`,j − ψ`,j ∈ H1,3(Ω). We shall show that

Bbih,2
D := {devGrad v`,j}`=1,...,m−1,

j=0,...,3
⊂ Hbih,2

D,T (Ω)(34)

defines a basis of Hbih,2
D,T (Ω).

Note that ψ`,j ∈ H1,3
0 (Ω) can be found by the standard variational formulation

∀φ ∈ H1,3
0 (Ω) 〈devGradψ`,j, devGradφ〉L2,3×3

T (Ω) = 〈devGrad ξ`,j, devGradφ〉L2,3×3
T (Ω),

i.e., ψ`,j = ∆̊−1
T ∆Tξ`,j. Therefore, u`,j = ξ`,j − ψ`,j = (1− ∆̊−1

T ∆T)ξ`,j ∈ H1,3(Ω) and

devGrad v`,j = devGrad(1− ∆̊−1
T ∆T)ξ`,j

= (devGrad− devGrad ∆̊−1
T ∆T)ξ`,j

= (1− devGrad ∆̊−1
T DivT) devGrad ξ`,j.

Let us also mention that v`,j solves in classical terms the elasticity type Dirichlet problem

−∆Tv`,j := −DivT devGrad v`,j = 0 in Ω,

v`,j = r̂j on Γ`,

v`,j = 0 on Γk, ` 6= k = 0, . . . ,m− 1,

(35)

5Note that by |T |2 = |dev T |2+ 1
3 | trT |

2 (pointwise) and |Grad v|2L2,3×3(Ω) = | curl v|2L2,3(Ω)+|div v|2L2(Ω)

for all v ∈ H1,3
0 (Ω), we have 2|Grad v|2L2,3×3(Ω) ≤ 3|devGrad v|2L2,3×3(Ω).
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which is uniquely solvable. In particular, for all ` = 1, . . . ,m − 1 and all j = 0, . . . , 3 it
holds v`,j = 0 on Γ0.

Lemma A.10. Let Assumption 1 be satisfied. Then Hbih,2
D,T (Ω) = linBbih,2

D .

Proof. We follow in close lines the arguments used in the proofs of Lemma A.2 and Lemma
A.6. Let T ∈ Hbih,2

D,T (Ω) = ker( ˚symCurlT,Ω)∩ ker(DivT,Ω). In particular, by the homoge-

neous boundary condition its extension by zero T̃ to B belongs to ker( ˚symCurlT, B). As
B is topologically trivial (and smooth and bounded), there exists (a unique vector field)

v ∈ H1,3
0 (B) such that devGrad v = T̃ in B. This follows analogously to [21, Theorem

3.10 (iv)]. As devGrad v = T̃ = 0 in B \ Ω, v must be a Raviart-Thomas vector field,

i.e., v ∈ RT, in each connected component Ξ̃0,Ξ1, . . . ,Ξm−1 of B \Ω. Due to the homoge-

nous boundary condition at ∂B, v vanishes in Ξ̃0. Therefore, T = devGrad v in Ω and
v ∈ H1,3

0 (B) is such that v|Ξ̃0
= 0 and v|Ξ`

=: r` =:
∑3

j=0 α`,j r̂j ∈ RT, α`,j ∈ R, for all
` = 1, . . . ,m− 1. Let us consider

T̂ := T −
m−1∑
`=1

3∑
j=0

α`,j devGrad v`,j = devGrad v̂ ∈ Hbih,2
D,T (Ω),

v̂ := v −
m−1∑
`=1

3∑
j=0

α`,jv`,j ∈ H1,3(Ω)

with v`,j from (34). The extension by zero of ψ`,j to ψ̃`,j belongs to H1,3
0 (B). Hence as an

element of H1,3(B) we see that

v̂B := v −
m−1∑
`=1

3∑
j=0

α`,jξ`,j +
m−1∑
`=1

3∑
j=0

α`,jψ̃`,j ∈ H1,3
0 (B)

vanishes in all Ξ`. Thus v̂ = v̂B|Ω ∈ H1,3
0 (Ω) by Assumption 1, and we compute

|T̂ |2
L2,3×3
T (Ω)

= 〈devGrad v̂, T̂ 〉L2,3×3
T (Ω) = 0,

finishing the proof. �

Note that, in classical terms, v from the latter proof solves the linear elasticity type
Dirichlet problem

−∆Tv = −DivT devGrad v = −DivT T = 0 in Ω,

v = 0 on Γ0,

v = r` ∈ RT on Γ`, ` = 1, . . . ,m− 1,

which is uniquely solvable as long as the Raviart-Thomas fields r` in RT are prescribed.

Lemma A.11. Let Assumption 1 be satisfied. Then Bbih,2
D is linear independent.

Proof. Let
m−1∑
`=1

3∑
j=0

α`,j devGrad v`,j = 0, v :=
m−1∑
`=1

3∑
j=0

α`,jv`,j.

Then devGrad v = 0 in Ω, i.e., v ∈ RT in each connected component of Ω. We show

v = 0. Recall v`,j = ξ`,j −ψ`,j in Ω. Extension by zero of ψ`,j to ψ̃`,j shows ṽ`,j ∈ H1,3
0 (B),
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where

ṽ`,j :=

{
v`,j in Ω,

ξ`,j in B \ Ω,
devGrad ṽ`,j =

{
devGrad v`,j in Ω,

devGrad ξ`,j = 0 in B \ Ω.

Note that ṽ`,j = ξ`,j = 0 in Ξ̃0 and in Ξk for all ` 6= k = 1, . . . ,m − 1 and j = 0, . . . , 3,
and that ṽ`,j = ξ`,j = r̂j in Ξ`. Then

ṽ :=
m−1∑
`=1

3∑
j=0

α`,j ṽ`,j ∈ H1,3
0 (B)

with ṽ = 0 in Ξ̃0 and devGrad ṽ = 0 in B \ Ω as well as devGrad ṽ = devGrad v = 0 in
Ω by assumption. Hence, devGrad ṽ = 0 in B, showing ṽ = 0 in B. In particular, v = 0
in Ω, and

∑3
j=0 α`,j r̂j = ṽ|Ξ`

= 0 for all ` = 1, . . . ,m − 1. We conclude α`,j = 0 for all
j = 0, . . . , 3 and all `, finishing the proof. �

Theorem A.12. Let Assumption 1 be satisfied. Then dimHbih,2
D,T (Ω) = 4(m − 1) and a

basis of Hbih,2
D,T (Ω) is given by (34).

Proof. Use Lemma A.10 and Lemma A.11. �

A.4. Dirichlet Tensor Fields of the Elasticity Complex. For the elasticity complex,
simliar to (3), (4), and (27), (30), (33), we have the orthogonal decompositions

L2,3×3
S (Ω) = ran( ˚symGrad,Ω)⊕L2,3×3

S (Ω) ker(DivS,Ω),

ker( ˚CurlCurl>S ,Ω) = ran( ˚symGrad,Ω)⊕L2,3×3
S (Ω) H

ela
D,S(Ω).

(36)

Remark A.13. It holds dom( ˚symGrad,Ω) = H1,3
0 (Ω) by [22, Lemma 3.2]. Moreover, the

range in (36) is closed by the Friedrichs type estimate6

∃ c > 0 ∀φ ∈ H1,3
0 (Ω) |φ|L2,3(Ω) ≤ c| symGradφ|L2,3×3(Ω),

which holds by Assumption 1. Note that Ω open and bounded is already sufficient.

Let us denote the orthogonal projector onto ker(DivS,Ω) resp. Hela
D,S(Ω) by π and recall

ξ` ∈ C∞c (R3) from (26). We introduce rigid motions r̂j given by r̂j(x) := ej × x and
r̂j+3(x) := ej for j = 1, 2, 3 and define ξ`,j := ξ`r̂j for all ` ∈ {1, . . . ,m − 1} and for
all j = 1, . . . , 6. In particular, for all j = 1, . . . , 6 we have ξ`,j = 0 in a neighbourhood
of Ξ0 and in a neighbourhood of Ξk for all ` 6= k ∈ {1, . . . ,m − 1} and ξ`,j = r̂j in a
neighbourhood of Ξ`. Then

symGrad ξ`,j ∈ C∞,3×3
c,S (Ω) ∩ ker(CurlCurl>S ,Ω) ⊂ ker( ˚CurlCurl>S ,Ω)

and there exists some ψ`,j ∈ H1,3
0 (Ω) such that

Hela
D,S(Ω) 3 π symGrad ξ`,j = symGrad(ξ`,j − ψ`,j) = symGrad v`,j

with v`,j := ξ`,j − ψ`,j ∈ H1,3(Ω). We shall show that

Bela
D := {symGrad v`,j}`=1,...,m−1,

j=1,...,6
⊂ Hela

D,S(Ω)(37)

defines a basis of Hela
D,S(Ω).

6Note that by |Grad v|2 = | symGrad v|2 + | skw Grad v|2 = | symGrad v|2 + 1
2 | curl v|2 (pointwise)

and by |Grad v|2L2,3×3(Ω) = | curl v|2L2,3(Ω) + |div v|2L2(Ω) for all v ∈ H1,3
0 (Ω), we get Korn’s inequality

|Grad v|2L2,3×3(Ω) ≤ 2| symGrad v|2L2,3×3(Ω).
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Note that ψ`,j ∈ H1,3
0 (Ω) can be found by the standard variational formulation

∀φ ∈ H1,3
0 (Ω) 〈symGradψ`,j, symGradφ〉L2,3×3

S (Ω) = 〈symGrad ξ`,j, symGradφ〉L2,3×3
S (Ω),

i.e., ψ`,j = ∆̊−1
S ∆Sξ`,j. Therefore, u`,j = ξ`,j − ψ`,j = (1− ∆̊−1

S ∆S)ξ`,j ∈ H1,3(Ω) and

symGrad v`,j = symGrad(1− ∆̊−1
S ∆S)ξ`,j

= (symGrad− symGrad ∆̊−1
S ∆S)ξ`,j

= (1− symGrad ∆̊−1
S DivS) symGrad ξ`,j.

Let us also mention that v`,j solves in classical terms the linear elasticity Dirichlet problem

−∆Sv`,j := −DivS symGrad v`,j = 0 in Ω,

v`,j = r̂j on Γ`,

v`,j = 0 on Γk, ` 6= k = 0, . . . ,m− 1,

(38)

which is uniquely solvable. In particular, for all ` = 1, . . . ,m − 1 and all j = 1, . . . , 6 it
holds v`,j = 0 on Γ0.

Lemma A.14. Let Assumption 1 be satisfied. Then Hela
D,S(Ω) = linBela

D .

Proof. We follow in close lines the arguments used in the proofs of Lemma A.2, Lemma
A.6, and Lemma A.10. Let S ∈ Hela

D,S(Ω) = ker( ˚CurlCurl>S ,Ω) ∩ ker(DivS,Ω). In partic-

ular, by the homogeneous boundary condition its extension by zero S̃ to B belongs to
ker( ˚CurlCurl>S , B). As B is topologically trivial (and smooth and bounded), there exists

(a unique vector field) v ∈ H1,3
0 (B) such that symGrad v = S̃ in B, see [22, Theorem 3.5].

As symGrad v = S̃ = 0 in B \Ω, v must be a rigid motion, i.e., v ∈ RM, in each connected

component Ξ̃0,Ξ1, . . . ,Ξm−1 of B \Ω. Due to the homogenous boundary condition at ∂B,

v vanishes in Ξ̃0. Therefore, S = symGrad v in Ω and v ∈ H1,3
0 (B) is such that v|Ξ̃0

= 0

and v|Ξ`
=: r` =:

∑6
j=1 α`,j r̂j ∈ RM, α`,j ∈ R, for all ` = 1, . . . ,m− 1. Let us consider

Ŝ := S −
m−1∑
`=1

6∑
j=1

α`,j symGrad v`,j = symGrad v̂ ∈ Hela
D,S(Ω),

v̂ := v −
m−1∑
`=1

6∑
j=1

α`,jv`,j ∈ H1,3(Ω)

with v`,j from (37). The extension by zero of ψ`,j to ψ̃`,j belongs to H1,3
0 (B). Hence as an

element of H1,3(B) we see that

v̂B := v −
m−1∑
`=1

6∑
j=1

α`,jξ`,j +
m−1∑
`=1

6∑
j=1

α`,jψ̃`,j ∈ H1,3
0 (B)

vanishes in all Ξ`. Thus v̂ = v̂B|Ω ∈ H1,3
0 (Ω) by Assumption 1, and we compute

|Ŝ|2
L2,3×3
S (Ω)

= 〈symGrad v̂, Ŝ〉L2,3×3
S (Ω) = 0,

finishing the proof. �

Note that, in classical terms, v from the latter proof solves the linear elasticity Dirichlet
problem

−∆Sv = −DivS symGrad v = −DivS S = 0 in Ω,
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v = 0 on Γ0,

v = r` ∈ RM on Γ`, ` = 1, . . . ,m− 1,

which is uniquely solvable as long as the rigid motions r` in RM are prescribed.

Lemma A.15. Let Assumption 1 be satisfied. Then Bela
D is linear independent.

Proof. Let
m−1∑
`=1

6∑
j=1

α`,j symGrad v`,j = 0, v :=
m−1∑
`=1

6∑
j=1

α`,jv`,j.

Then symGrad v = 0 in Ω, i.e., v ∈ RM in each connected component of Ω. We show

v = 0. Recall v`,j = ξ`,j −ψ`,j in Ω. Extension by zero of ψ`,j to ψ̃`,j shows ṽ`,j ∈ H1,3
0 (B),

where

ṽ`,j :=

{
v`,j in Ω,

ξ`,j in B \ Ω,
symGrad ṽ`,j =

{
symGrad v`,j in Ω,

symGrad ξ`,j = 0 in B \ Ω.

Note that ṽ`,j = ξ`,j = 0 in Ξ̃0 and in Ξk for all ` 6= k = 1, . . . ,m− 1 and j = 1, . . . , 6 and
that ṽ`,j = ξ`,j = r̂j in Ξ`. Then

ṽ :=
m−1∑
`=1

6∑
j=1

α`,j ṽ`,j ∈ H1,3
0 (B)

with ṽ = 0 in Ξ̃0 and symGrad ṽ = 0 in B \ Ω as well as symGrad ṽ = symGrad v = 0 in
Ω by assumption. Hence, symGrad ṽ = 0 in B, showing ṽ = 0 in B. In particular, v = 0
in Ω, and

∑6
j=1 α`,j r̂j = ṽ|Ξ`

= 0 for all ` = 1, . . . ,m − 1. We conclude α`,j = 0 for all
j = 1, . . . , 6 and all `, finishing the proof. �

Theorem A.16. Let Assumption 1 be satisfied. Then dimHela
D,S(Ω) = 6(m − 1) and a

basis of Hela
D,S(Ω) is given by (37).

Proof. Use Lemma A.14 and Lemma A.15. �

Appendix B. Neumann Fields

The key topological assumptions to be satisfied by Ω to compute a basis for the Neu-
mann fields and for p to be well defined, is described in detail next. For this, we recall
the construction in [23].

Assumption 3 ([23, Section 1]). Let Ω ⊆ R3 be open and bounded. There are p ∈ N0

piecewise C1-curves ζj and p C2-surfaces Fj, j ∈ {1, . . . , p}, with the following properties:

(A1) The sets ran ζj, j ∈ {1, . . . , p}, are pairwise disjoint and given any closed piecewise
C1-curve ζ in Ω there exists uniquely determined αj ∈ Z, j ∈ {1, . . . , p}, such that
for all Φ ∈ ker(curl) being continuously differentiable we have∫

ζ

〈Φ, dλ〉 =

p∑
j=1

αj

∫
ζj

〈Φ, dλ〉.

(A2) ranFj, j ∈ {1, . . . , p}, are pairwise disjoint and ranFj ∩ ran ζk is a singelton, if
j = k, and empty, if j 6= k.

(A3) If Ωc ⊆ Ω is a connected component, then Ωc \
p⋃
j=1

ranFj is simply connected.
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p is called the topological genus of Ω and the curves ζj are said to represent a basis of
the respective homology group of Ω. Let us recall from the beginning of this appendix,

that Ω consists of the connected components Ωk, i.e., Ω =
⋃̇n

k=1Ωk. In particular, for all
k = 1, . . . , n we have that Ωk \

⋃p
j=1 ranFj is simply connected. Moreover, we set

ΩF := Ω \
p⋃
j=1

ranFj.

Let us introduce θj ∈ C∞(ΩF ), j = 1, . . . , p, with support in a small neighbourhood Υj

of Fj on one side of Fj, such that θj = 1 in a neighbourhood Υj,1 ⊂ Υj of the latter side
of Fj and θj = 0 in a neighbourhood Υj,0 of the other side of Fj. Moreover, we assume
that the supports of θj are disjoint and that θj together with all derivatives are bounded.
In particular, θj = 0 in all neighbourhoods Υl,1 ∪ Fl ∪ Υl,0 of Fl for all j 6= l = 1, . . . , p.
Additionally, for all l = 1, . . . , p we pick curves

ζxl,0,xl,1 ⊂ ζl

with fixed starting points xl,0 ∈ Υl,0 and fixed endpoints xl,1 ∈ Υl,1. Note that θl(xl,0) = 0
and θl(xl,1) = 1 as well as θj(xl,1) = θj(xl,0) = 0 for all l 6= j = 1, . . . , p.

B.1. Neumann Vector Fields of the Classical de Rham Complex. By definition
θj = 0 outside of a neighbourhood of Fj and θj is constant in the two neighbourhoods Υj,1

and Υj,0 of both sides of Fj. Hence grad θj = 0 in the two neighbourhoods Υj,1,Υj,0 of Fj
and also in all other Υl,1,Υl,0 of Fl, j 6= l = 1, . . . , p. Thus grad θj can be continuously
extended by zero to Θj ∈ C∞,3(Ω)∩L2,3(Ω) with Θj = 0 in all the latter neighbourhoods

Υ̃l := Υl,1 ∪ Fl ∪Υl,0 of all the surfaces Fl.

Lemma B.1. Let Assumption 3 be satisfied. Then Θj ∈ ker(curl,Ω).

Proof. Let Φ ∈ C∞,3c (Ω). As supp Θj ⊂ Υj \ Υ̃j we can pick another cut-off function
ϕ ∈ C∞c (ΩF ) with ϕ|supp Θj∩supp Φ = 1. Then

〈Θj, curl Φ〉L2,3(Ω) = 〈Θj, curl Φ〉L2,3(supp Θj∩supp Φ) =
〈

grad θj, curl(ϕΦ)
〉
L2,3(ΩF )

= 0,

as ϕΦ ∈ C∞,3c (ΩF ). �

Note again that supp Θj ⊂ Υj \ Υ̃j and thus∫
ζl

〈Θj, dλ〉 =

∫
ζl\Υ̃j

〈grad θj, dλ〉 =

∫
ζxl,0,xl,1

〈grad θj, dλ〉 = θj(xl,1)︸ ︷︷ ︸
=δl,j

− θj(xl,0)︸ ︷︷ ︸
=0

,

where we recall the curves ζxl,0,xl,1 ⊂ ζl, with chosen starting points xl,0 in Υl,0 and
respective endpoints xl,1 in Υl,1. Hence we have functionals βl such that

βl(Θj) :=

∫
ζl

〈Θj, dλ〉 = δl,j, l, j = 1, . . . , p.(39)

Let Assumption 1 be satisfied. For the de Rham complex, simliar to (3), (4), and (27),
we have the orthogonal decompositions

L2,3(Ω) = H2 = ranA∗2 ⊕H2 kerA2 = ran(grad,Ω)⊕L2,3(Ω) ker(d̊iv,Ω),

ker(curl,Ω) = ker(A∗1) = ranA∗2 ⊕H2 K2 = ran(grad,Ω)⊕L2,3(Ω) HRhm
N (Ω).

(40)
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Remark B.2. It holds dom(grad,Ω) = H1(Ω). Moreover, the range in (40) is closed by
the Poincaré estimate

∃ c > 0 ∀φ ∈ H1(Ω) ∩ R
⊥L2(Ω)
pw |φ|L2(Ω) ≤ c| gradφ|L2,3(Ω),

which is implied by Rellich’s selection theorem as Assumption 1 holds.

Let us denote in (40) the orthogonal projector onto ker(d̊iv,Ω) resp. HRhm
N (Ω) by π.

By Lemma B.1 there exists some ψj ∈ H1(Ω) such that

HRhm
N (Ω) 3 πΘj = Θj − gradψj, (Θj − gradψj)

∣∣
ΩF

= grad(θj − ψj).

Since fields in HRhm
N (Ω) are harmonic, we emphasise that we have HRhm

N (Ω) ⊂ C∞,3(Ω),
cf. (25). As Θj ∈ C∞,3(Ω), we see that also gradψj ∈ C∞,3(Ω) holds, yielding that
ψj ∈ H1(Ω) ∩ C∞(Ω). Therefore, all path integrals are well defined and we observe by
(39)

βl(πΘj) =

∫
ζl

〈πΘj, dλ〉 =

∫
ζl

〈Θj, dλ〉 −
∫
ζl

〈gradψj, dλ〉︸ ︷︷ ︸
=0

= δl,j, l, j = 1, . . . , p.(41)

We shall show that

BRhm
N := {πΘ1, . . . , πΘp} ⊂ HRhm

N (Ω)(42)

defines a basis of HRhm
N (Ω).

Note that ψj ∈ H1(Ω) ∩ R
⊥L2(Ω)
pw can be found by the standard variational formulation

∀φ ∈ H1(Ω) 〈gradψj, gradφ〉L2,3(Ω) = 〈Θj, gradφ〉L2,3(Ω),

i.e., ψj = ∆−1 div Θj. Therefore,

πΘj = Θj − gradψj = (1− grad ∆−1 div)Θj.

Let us also mention that ψj solves in classical terms the Neumann Laplace problem

−∆ψj = − div Θj in Ω,

ν · gradψj = ν ·Θj on Γ,∫
Ωk

ψj = 0 for k = 1, . . . , n,

(43)

which is uniquely solvable.

Lemma B.3. Let Assumption 1 and Assumption 3 be satisfied. ThenHRhm
N (Ω) = linBRhm

N .

Proof. Let H ∈ HRhm
N (Ω) = ker(d̊iv,Ω) ∩ ker(curl,Ω) ⊂ C∞,3(Ω), cf. (25), and define the

numbers

γj := γj(H) := βj(H) =

∫
ζj

〈H, dλ〉 ∈ R, j = 1, . . . , p.

We shall show that

HRhm
N (Ω) 3 Ĥ := H −

p∑
j=1

γjπΘj = 0 in Ω.

The aim is to prove that there exists u ∈ H1(Ω) such that gradu = Ĥ, since then

|Ĥ|2L2,3(Ω) = 〈gradu, Ĥ〉L2,3(Ω) = 0.



42 DIRK PAULY AND MARCUS WAURICK

Observing by (41) ∫
ζl

〈Ĥ, dλ〉 =

∫
ζl

〈H, dλ〉︸ ︷︷ ︸
=γl

−
p∑
j=1

γj

∫
ζl

〈πΘj, dλ〉︸ ︷︷ ︸
=βl(πΘj)=δl,j

= 0,

we have by Assumption 3 (A.1) for any closed piecewise C1-curve ζ in Ω∫
ζ

〈Ĥ, dλ〉 = 0.(44)

Recall the connected components Ω1, . . . ,Ωn of Ω. For 1 ≤ k ≤ n let Ωk and some x0 ∈ Ωk

be fixed. By (44) the function u : Ω→ R given by

u(x) :=

∫
ζ(x0,x)

〈Ĥ, dλ〉, x ∈ Ωk,

where ζ(x0, x) is any piecewise C1-curve connecting x0 with x, is well defined, i.e., indepen-

dent of the respective curve ζ(x0, x), and belongs to C∞(Ωk) with gradu = Ĥ ∈ L2,3(Ωk).
Thus7 u ∈ L2(Ωk), see, e.g., [14, Theorem 2.6 (1)] or [1, Theorem 3.2 (2)], and hence
u ∈ H1(Ωk), showing u ∈ H1(Ω). �

Remark B.4. Note that in the latter proof the existence of u ∈ H1(Ωk) with gradu = Ĥ
in Ωk is well known, if the connected component Ωk of Ω is even simply connected. In
this case, namely, we know that ker(curl,Ωk) = ran(grad,Ωk).

Lemma B.5. Let Assumption 1 and Assumption 3 be satisfied. Then BRhm
N is linear

independent.

Proof. Let

p∑
j=1

γjπΘj = 0, γj ∈ R. (41) implies 0 =

p∑
j=1

γj

∫
ζl

〈πΘj, dλ〉︸ ︷︷ ︸
=βl(πΘj)=δl,j

= γl for all l. �

Theorem B.6. Let Assumption 1 and Assumption 3 be satisfied. Then dimHRhm
N (Ω) = p

and a basis of HRhm
N (Ω) is given by (42).

Proof. Use Lemma B.3 and Lemma B.5. �

B.2. Neumann Tensor Fields of the First Biharmonic Complex. Recall from the
latter section that by definition θj = 0 outside of a neighbourhood of Fj and that θj is
constant in the two neighbourhoods Υj,1 and Υj,0 of both sides of Fj. Moreover, let r̂k
be the Raviart-Thomas fields from Section A.3 given by r̂0(x) := x and r̂k(x) := ek for
k = 1, 2, 3. We define the vector fields θj,k := θj r̂k and note devGrad θj,k = 0 in the two
neighbourhoods Υj,1,Υj,0 of Fj and also in all other Υl,1,Υl,0 of Fl, j 6= l = 1, . . . , p. Thus

devGrad θj,k can be continuously extended by zero to Θj,k ∈ C∞,3×3(Ω) ∩ L2,3×3
T (Ω) with

Θj,k = 0 in all the latter neighbourhoods Υ̃l = Υl,1 ∪ Fl ∪Υl,0 of all the surfaces Fl.

Lemma B.7. Let Assumption 3 be satisfied. Then Θj,k ∈ ker(symCurlT,Ω).

Proof. Let Φ ∈ C∞,3×3
c,S (Ω). As supp Θj,k ⊂ Υj \ Υ̃j we can pick another cut-off function

ϕ ∈ C∞c (ΩF ) with ϕ|supp Θj,k∩supp Φ = 1. Then

〈Θj,k,CurlS Φ〉L2,3×3
T (Ω) = 〈Θj,k,CurlS Φ〉L2,3×3

T (supp Θj,k∩supp Φ)

7Indeed, it is sufficient to assume u ∈ L2
loc(Ωk), see, e.g., [15, Satz 6.6.26, Beweis; Folgerung 6.3.2] or

[30, Theorem 7.4].
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=
〈

devGrad θj,k,CurlS(ϕΦ)
〉
L2,3×3
T (ΩF )

=
〈

Grad θj,k, dev CurlS(ϕΦ)
〉
L2,3×3
T (ΩF )︸ ︷︷ ︸

=
〈

Grad θj,k,Curl(ϕΦ)
〉
L2,3×3(ΩF )

= 0

as ϕΦ ∈ C∞,3×3
c (ΩF ). �

Before proceeding we need the following two lemmas:

Lemma B.8. Let u ∈ C∞c (R3,R), v, w ∈ C∞c (R3,R3), and S ∈ C∞c (R3,R3×3). Then:

• (spn v)w = v × w = −(spnw) v and8 (spn v)(spn−1 S) = −Sv, if symS = 0
• sym spn v = 0 and dev(u Id) = 0
• tr Grad v = div v and 2 skw Grad v = spn curl v
• Div(u Id) = gradu and Curl(u Id) = − spn gradu,

in particular, curl Div(u Id) = 0 and curl spn−1 Curl(u Id) = 0
and sym Curl(u Id) = 0
• Div spn v = − curl v and Div skwS = − curl spn−1 skwS,

in particular, div Div skwS = 0
• Curl spn v = (div v) Id−(Grad v)>

and Curl skwS = (div spn−1 skwS) Id−(Grad spn−1 skwS)>

• dev Curl spn v = −(dev Grad v)>

• −2 Curl sym Grad v = 2 Curl skw Grad v = −(Grad curl v)>

• 2 spn−1 skw CurlS = DivS> − grad trS = Div
(
S − (trS) Id

)>
,

in particular, curl DivS> = 2 curl spn−1 skw CurlS
and 2 skw CurlS = spn DivS>, if trS = 0
• tr CurlS = 2 div spn−1 skwS, in particular, tr CurlS = 0, if skwS = 0,

and tr Curl symS = 0 and tr Curl skwS = tr CurlS
• 2(Grad spn−1 skwS)> = (tr Curl skwS) Id−2 Curl skwS
• 3 Div(dev Grad v)> = 2 grad div v
• 2 Curl sym Grad v = −2 Curl skw Grad v = −Curl spn curl v = (Grad curl v)>

• 2 Div sym CurlS = −2 Div skw CurlS = curl DivS>

• Curl(Curl symS)> = sym Curl(CurlS)>

• Curl(Curl skw S)> = skw Curl(CurlS)>

All formulas extend to distributions as well.

Proof. Almost all formulas can be found in [21, Lemma 3.9] and [21, Lemma A.1].
To show the last two formulas we note by [22, Appendix B] that skw T = 0 implies
skw Curl(CurlT )> = 0, and that symT = 0 implies sym Curl(CurlT )> = 0. Hence sym
commutes with Curl Curl> as

Curl(Curl symT )> = sym Curl(Curl symT )> = sym Curl(CurlT )>,

and so does skw. �

Lemma B.9. Let x, x0 ∈ Ω and let ζx0,x ⊂ Ω be a piecewise C1-curve connecting x0 to x.

(i) Let v ∈ C∞(Ω,R3). Then v and its divergence div v can be represented by

v(x)− v(x0)− 1

3
div v(x0)(x− x0)

8Here, we introduce the skew-symmetric matrix spn v :=

 0 −v3 v2

v3 0 −v1

−v2 v1 0

 and the corresponding

isometric mapping spn : R3 → R3×3
skw .
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=

∫
ζx0,x

devGrad v dλ+
1

2

∫
ζx0,x

(∫
ζx0,y

〈
Div(devGrad v)>, dλ

〉)
Id dλy,

div v(x)− div v(x0) =
3

2

∫
ζx0,x

〈
Div(devGrad v)>, dλ

〉
.

(ii) For all T ∈ C∞(Ω,R3×3) it holds∫
ζx0,x

(∫
ζx0,y

〈Div T>, dλ〉
)

Id dλy =

∫
ζx0,x

(x− y)
〈
(Div T>)(y), dλy

〉
.

(iii) Let T ∈ C∞(Ω,R3×3) and define

u(x) :=

∫
ζx0,x

〈Div T>, dλ〉, S := T +
1

2
u Id, v(x) :=

∫
ζx0,x

S dλ.

Then u ∈ C∞(Ω,R), S ∈ C∞(Ω,R3×3), and v ∈ C∞(Ω,R3) are well defined, i.e.,
independent of the respective curve, with

gradu = Div T>, Grad v = S, devGrad v = T,

if and only if trT = 0 and symCurlT T = 0 as well as∫
ζ

〈Div T>, dλ〉 = 0,

∫
ζ

S dλ = 0

hold for any closed piecewise C1-curve ζ ⊂ Ω. In this case,

gradu = Div T> =
2

3
grad div v.

Remark B.10. In Lemma B.9 (iii) for T ∈ C∞T (Ω,R3×3) and S := T + 1
2
u Id with

gradu = Div T> the formulas

curl Div T> = 2 Div symCurlT T, CurlS = symCurlT T

are crucial. These will be derived in the upcoming proof and follow by Lemma B.8.

In Lemma B.9 for a tensor field T the operation T dλ :=
(
〈row`T, dλ〉

)
`=1,2,3

has to be

understood row-wise, i.e., the transpose of the `th row of T is denoted by row`T , giving
then the vector object T dλ. More precisely,( ∫

ζx0,x

T dλ
)
`

=

∫
ζx0,x

〈row`T, dλ〉 =

∫ 1

0

〈
(row`T )

(
ϕ(t)

)
, ϕ′(t)

〉
d t

with some parametrisation ϕ ∈ C1
pw

(
[0, 1],R3

)
of ζx0,x. Furthermore, we define∫

ζx0,x

(x− y)
〈
(Div T>)(y), dλy

〉
:=

∫ 1

0

(
x− ϕ(t)

)〈
(Div T>)

(
ϕ(t)

)
, ϕ′(t)

〉
d t.

Proof of Lemma B.9. For (i), let

T := devGrad v = Grad v − 1

3
(tr Grad v) Id = Grad v − 1

3
(div v) Id

and observe 3 Div T> = 2 grad div v by Lemma B.8. Thus

vk(x)− vk(x0) =

∫
ζx0,x

〈grad vk, dλ〉, k = 1, 2, 3,

div v(x)− div v(x0) =

∫
ζx0,x

〈grad div v, dλ〉 =
3

2

∫
ζx0,x

〈Div T>, dλ〉.
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Therefore,

v(x)− v(x0) =

∫
ζx0,x

Grad v dλ =

∫
ζx0,x

devGrad v dλ+
1

3

∫
ζx0,x

div v Id dλ︸ ︷︷ ︸
=

∫
ζx0,x

div v(y) Id dλy

=

∫
ζx0,x

T dλ+
1

3
div v(x0)

∫
ζx0,x

Id dλy

+
1

2

∫
ζx0,x

(∫
ζx0,y

〈Div T>, dλ〉
)

Id dλy.

Moreover,9
∫
ζx0,x

Id dλy =

∫
ζx0,x

Grad y dλy = x− x0.

For (ii) we compute with ϕ from above∫
ζx0,x

(∫
ζx0,y

〈Div T>, dλ〉
)

Id dλy =

∫ 1

0

( ∫
ζx0,ϕ(s)

〈Div T>, dλ〉︸ ︷︷ ︸
=

∫ s

0

〈
(Div T>)

(
ϕ(t)

)
, ϕ′(t)

〉
d t

)
Idϕ′(s)︸ ︷︷ ︸
= ϕ′(s)

d s

=

∫ 1

0

∫ 1

t

ϕ′(s) d s︸ ︷︷ ︸
= x− ϕ(t)

〈
(Div T>)

(
ϕ(t)

)
, ϕ′(t)

〉
d t

=

∫
ζx0,x

(x− y)
〈
(Div T>)(y), dλy

〉
.

For (iii), let T ∈ C∞(Ω,R3×3) and let u, S, and v be defined as stated. Moreover, let
trT = 0 and symCurlT T = 0 with∫

ζ

〈Div T>, dλ〉 = 0,

∫
ζ

S dλ = 0

for any closed piecewise C1-curve ζ ⊂ Ω. Note that

u well defined (indep. of ζx0,x) ∧ gradu = Div T>

⇔ ∀ ζ (cl pw C1)

∫
ζ

〈Div T>, dλ〉 = 0 ∧ curl Div T> = 0,

and

v well defined (indep. of ζx0,x) ∧ Grad v = S

⇔ ∀ ζ (cl pw C1)

∫
ζ

S dλ = 0 ∧ CurlS = 0.

By Lemma B.8 we have

curl Div T> = 2 Div sym CurlT = 0,

9Alternatively, note with ϕ from above

∫
ζx0,x

Id dλy =

∫ 1

0

Idϕ′(s) d s =

∫ 1

0

ϕ′(s) d s = x− x0.
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i.e., u is well defined and gradu = Div T>, and

CurlS = CurlT +
1

2
Curl(u Id)︸ ︷︷ ︸

= − spn gradu

= CurlT − 1

2
spn Div T>︸ ︷︷ ︸

= skw CurlT

= symCurlT = 0,

as trT = 0 and symCurlT T = 0. Hence u, S, and v are well defined. Moreover,
Grad v = S and devGrad v = devS = dev T = T (since dev(u Id) = 0 and trT = 0)
as well as gradu = Div T> = 2

3
grad div v by Lemma B.8. Furthermore, u ∈ C∞(Ω,R),

S ∈ C∞(Ω,R3×3), and v ∈ C∞(Ω,R3). On the other hand, let T ∈ C∞(Ω,R3×3),
u ∈ C∞(Ω,R), S ∈ C∞(Ω,R3×3), and v ∈ C∞(Ω,R3) be given with

gradu = Div T>, Grad v = S, devGrad v = T.

Then trT = 0, symCurlT T = 0, and gradu = Div T> = 2
3

grad div v by Lemma B.8, as
well as ∫

ζ

〈Div T>, dλ〉 =

∫
ζ

〈gradu, dλ〉 = 0,

∫
ζ

S dλ =

∫
ζ

Grad v dλ = 0,

completing the proof. �

Note that for l, j = 1, . . . , p and k = 0, . . . , 3 and for the curves ζxl,0,xl,1 ⊂ ζl with the
chosen starting points xl,0 ∈ Υl,0 and respective endpoints xl,1 ∈ Υl,1 we can compute by
Lemma B.9

R 3 βl,0(Θj,k) :=
1

2

∫
ζl

〈Div Θ>j,k, dλ〉 =
1

2

∫
ζxl,0,xl,1

〈
Div(devGrad θj,k)

>, dλ
〉

=
1

3
div θj,k(xl,1)− 1

3
div θj,k(xl,0)︸ ︷︷ ︸

=0

=
1

3
δl,j div r̂k(xl,1) = δl,j

{
1, if k = 0,

0, if k = 1, 2, 3,

and

R3 3 bl(Θj,k) :=

∫
ζl

Θj,k dλ+
1

2

∫
ζl

(xl,1 − y)
〈
(Div Θ>j,k)(y), dλy

〉
=

∫
ζxl,0,xl,1

devGrad θj,k dλ

+
1

2

∫
ζxl,0,xl,1

(xl,1 − y)
〈(

Div(devGrad θj,k)
>)(y), dλy

〉
=

∫
ζxl,0,xl,1

(
devGrad θj,k(y)

+
1

2

(∫
ζxl,0,y

〈
Div(devGrad θj,k)

>, dλ
〉)

Id

)
dλy

= θj,k(xl,1)−θj,k(xl,0)− 1

3
div θj,k(xl,0)(xl,1 − xl,0)︸ ︷︷ ︸

=0

= δl,j r̂k(xl,1) = δl,j

{
xl,1, if k = 0,

ek, if k = 1, 2, 3.
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Thus, we have functionals βl,` for l = 1, . . . , p and ` = 0, . . . , 3 given by

βl,0(Θj,k) = δl,jδ0,k

for l, j = 1, . . . , p and k = 0, . . . , 3, as well as

βl,`(Θj,k) :=
〈
bl(Θj,k), e

`
〉

= δl,j

{
〈xl,1, e`〉 = (xl,1)`, if k = 0,

〈ek, e`〉 = δ`,k, if k = 1, 2, 3,

for l, j = 1, . . . , p and ` = 1, 2, 3 and k = 0, . . . , 3. Therefore, we have

βl,`(Θj,k) = δl,jδ`,k + (1− δ`,0)δ0,kδl,j(xl,1)`, l, j = 1, . . . , p, k, ` = 0, 1, 2, 3.(45)

Let Assumption 2 be satisfied. For the first biharmonic complex, simliar to (3), (4),
and (27), (40), we have the orthogonal decompositions

L2,3×3
T (Ω) = ran(devGrad,Ω)⊕L2,3×3

T (Ω) ker(D̊ivT,Ω),

ker(symCurlT,Ω) = ran(devGrad,Ω)⊕L2,3×3
T (Ω) H

bih,1
N,T (Ω).

(46)

Remark B.11. It holds dom(devGrad,Ω) = H1,3(Ω) by [21, Lemma 3.2]. Moreover, the
range in (46) is closed by the Poincaré type estimate

∃ c > 0 ∀φ ∈ H1,3(Ω) ∩ RT
⊥L2,3(Ω)
pw |φ|L2,3(Ω) ≤ c| devGradφ|L2,3×3(Ω),

which is implied by Rellich’s selection theorem and [21, Lemma 3.2] as Assumption 2
holds.

Let us denote in (46) the orthogonal projector onto ker(D̊ivT,Ω) resp. Hbih,1
N,T (Ω) by π.

By Lemma B.7 there exists some ψj,k ∈ H1,3(Ω) such that

Hbih,1
N,T (Ω) 3 πΘj,k = Θj,k−devGradψj,k, (Θj,k−devGradψj,k)

∣∣
ΩF

= devGrad(θj,k−ψj,k).

As Hbih,1
N,T (Ω) ⊂ C∞,3×3(Ω), cf. (25), we conclude by πΘj,k,Θj,k ∈ C∞,3×3(Ω) that also

devGradψj,k ∈ C∞,3×3(Ω) and hence ψj,k ∈ C∞,3(Ω). Thus all path integrals over the
closed curves ζl are well defined. Furthermore, we observe by Lemma B.9

βl,0(devGradψj,k) =
1

2

∫
ζl

〈
Div(devGradψj,k)

>, dλ
〉

=
1

3
divψj,k(xl,1)− 1

3
divψj,k(xl,1) = 0

and

bl(devGradψj,k)

=

∫
ζl

devGradψj,k dλ+
1

2

∫
ζl

(xl,1 − y)
〈(

Div(devGradψj,k)
>)(y), dλy

〉
=

∫
ζxl,1,xl,1

(
devGradψj,k(y) +

1

2

(∫
ζxl,1,y

〈
Div(devGradψj,k)

>, dλ
〉)

Id

)
dλy

= ψj,k(xl,1)− ψj,k(xl,1)− 1

3
divψj,k(xl,1)(xl,1 − xl,1) = 0.

Therefore, by (45)

βl,`(πΘj,k) = βl,`(Θj,k)− βl,`(devGradψj,k)︸ ︷︷ ︸
=0

= δl,jδ`,k + (1− δ`,0)δ0,kδl,j(xl,1)`(47)
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for all l, j = 1, . . . , p and all `, k = 0, 1, 2, 3. We shall show that

Bbih,1
N := {πΘj,k} j=1,...,p,

k=0,1,2,3
⊂ Hbih,1

N,T (Ω)(48)

defines a basis of Hbih,1
N,T (Ω).

Note that ψj,k ∈ H1,3(Ω) ∩ RT
⊥L2,3(Ω)
pw can be found by the variational formulation

∀φ ∈ H1,3(Ω) 〈devGradψj,k, devGradφ〉L2,3×3(Ω) = 〈Θj,k, devGradφ〉L2,3×3(Ω),

i.e., ψj,k = ∆−1
T DivT Θj,k. Therefore,

πΘj,k = Θj,k − devGradψj,k = (1− devGrad ∆−1
T DivT)Θj,k.

Let us also mention that ψj,k solves in classical terms the Neumann elasticity type problem

−∆Tψj,k = −DivT Θj,k in Ω,

(Gradψj,k)ν = Θj,kν on Γ,∫
Ωl

(ψj,k)` = 0 for l = 1, . . . , n, ` = 1, 2, 3,∫
Ωl

x · ψj,k(x) dλx = 0 for l = 1, . . . , n,

(49)

which is uniquely solvable.

Lemma B.12. Let Assumption 2 as well as Assumption 3 be satisfied. Then it holds
Hbih,1
N,T (Ω) = linBbih,1

N .

Proof. Let H ∈ Hbih,1
N,T (Ω) = ker(D̊ivT,Ω)∩ ker(symCurlT,Ω) ⊂ C∞,3×3

T (Ω), cf. (25). With
the above introduced functionals βl,0 and bl we recall

R 3 βl,0(H) =
1

2

∫
ζl

〈DivH>, dλ〉,

R3 3 bl(H) =

∫
ζl

H dλ+
1

2

∫
ζl

(xl,1 − y)
〈
(DivH>)(y), dλy

〉
,

and define for l = 1, . . . , p the numbers

γl,0 := γl,0(H) := βl,0(H),

γl,` := γl,`(H) :=
〈
bl(H)− βl,0(H)xl,1, e

`
〉

= βl,`(H)− βl,0(H)(xl,1)`, ` = 1, 2, 3.

We shall show that

Hbih,1
N,T (Ω) 3 Ĥ := H −

p∑
j=1

3∑
k=0

γj,kπΘj,k = 0 in Ω.

Similar to the proof of Lemma B.3, the aim is to prove that there exists v ∈ H1,3(Ω) such

that devGrad v = Ĥ, since then

|Ĥ|2
L2,3×3
T (Ω)

= 〈devGrad v, Ĥ〉L2,3×3
T (Ω) = 0.

By (47) we observe

1

2

∫
ζl

〈Div Ĥ>, dλ〉 = βl,0(Ĥ) = βl,0(H)︸ ︷︷ ︸
=γl,0

−
p∑
j=1

3∑
k=0

γj,k βl,0(πΘj,k)︸ ︷︷ ︸
=δl,jδ0,k

= 0,
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and thus by Assumption 3 (A.1) for any closed piecewise C1-curve ζ in Ω∫
ζ

〈Div Ĥ>, dλ〉 = 0.(50)

Recall the connected components Ω1, . . . ,Ωn of Ω. For 1 ≤ k ≤ n let some x0 ∈ Ωk be

fixed. By (50) and curl Div Ĥ> = 2 Div symCurlT Ĥ = 0, see Lemma B.8, cf. Lemma B.9
and Remark B.10, the function u : Ω→ R and the tensor field S : Ω→ R3×3 given by

u(x) :=

∫
ζ(x0,x)

〈Div Ĥ>, dλ〉, S := Ĥ +
1

2
u Id, x ∈ Ωk,

where ζ(x0, x) is any piecewise C1-curve connecting x0 with x, are well defined, i.e.,
independent of the respective curve ζ(x0, x), and belong to C∞(Ωk) and C∞,3×3(Ωk),

respectively. Moreover, gradu = Div Ĥ> and CurlS = symCurlT Ĥ = 0 by Remark B.10.
Note that for ζxl,0,xl,1 ⊂ ζl ⊂ Ωk we have with c := u(xl,1) ∈ R

u(x) = u(x)− u(xl,1)︸ ︷︷ ︸
=

∫
ζxl,1,x

〈gradu, dλ〉

+ c =

∫
ζxl,1,x

〈Div Ĥ>, dλ〉+ c, x ∈ ζl,

and ∫
ζl

(c Id) dλ = c

∫
ζl

Gradx dλx = 0.

Moreover, the closed curve ζl may be considered as the closed curve ζxl,1,xl,1 with circulation
1 along ζl. By Lemma B.9 and the definition of bl we have∫

ζl

S dλ =

∫
ζl

Ĥ dλ+
1

2

∫
ζl

(u Id) dλ

=

∫
ζl

Ĥ dλ+
1

2

∫
ζxl,1,xl,1

(∫
ζxl,1,y

〈Div Ĥ>, dλ〉
)

Id dλy

=

∫
ζl

Ĥ dλ+
1

2

∫
ζl

(xl,1 − y)
〈
(Div Ĥ>)(y), dλ

〉
dλy = bl(Ĥ).

Hence, for ` = 1, 2, 3 we get by (47)(∫
ζl

S dλ
)
`

=
〈 ∫

ζl

S dλ, e`
〉

= 〈bl(Ĥ), e`〉 = βl,`(Ĥ)

= βl,`(H)−
p∑
j=1

3∑
k=0

γj,k βl,`(πΘj,k)︸ ︷︷ ︸
=δl,jδ`,k+(1−δ`,0)δ0,kδl,j(xl,1)`

= βl,`(H)− γl,0︸︷︷︸
=βl,0(H)

(xl,1)` − γl,` = 0.

Therefore,
∫
ζl
S dλ = 0 and thus by Assumption 3 (A.1) for any closed piecewise C1-curve

ζ in Ω ∫
ζ

S dλ = 0.(51)

By (51), cf. Lemma B.9, the vector field v : Ω→ R3 given by

v(x) :=

∫
ζx0,x

S dλ, x ∈ Ωk,
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where ζ(x0, x) is any piecewise C1-curve connecting x0 with x, is well defined, i.e., inde-
pendent of the respective curve ζ(x0, x). Moreover, v belongs to C∞,3(Ωk) and satisfies
Grad v = S ∈ C∞,3×3(Ωk) as well as

devGrad v = devS = dev Ĥ = Ĥ ∈ C∞,3×3(Ωk) ∩ L2,3×3
T (Ωk).

Similar to the end of the proof of Lemma B.3, elliptic regularity and, e.g., [14, Theorem
2.6 (1)] or [1, Theorem 3.2 (2)] show that v ∈ C∞,3(Ωk) with devGrad v ∈ L2,3×3

T (Ωk)
implies v ∈ H1,3(Ωk) and thus v ∈ H1,3(Ω), completing the proof. Let us note that
v ∈ H1,3(Ω) implies also S ∈ L2,3×3(Ω) and hence u ∈ L2(Ω). �

Lemma B.13. Let Assumption 2 and Assumption 3 be satisfied. Then Bbih,1
N is linear

independent.

Proof. Let

p∑
j=1

3∑
k=0

γj,kπΘj,k = 0, γj,k ∈ R. (47) implies for l = 1, . . . , p

0 =

p∑
j=1

3∑
k=0

γj,kβl,`(πΘj,k) = γl,0, ` = 0,

0 =

p∑
j=1

3∑
k=0

γj,kβl,`(πΘj,k) = γl,` + γl,0(xl,1)` = γl,`, ` = 1, 2, 3,

finishing the proof. �

Theorem B.14. Let Assumption 2 as well as Assumption 3 be satisfied. Then it holds
dimHbih,1

N,T (Ω) = 4p and a basis of Hbih,1
N,T (Ω) is given by (48).

Proof. Use Lemma B.12 and Lemma B.13. �

B.3. Neumann Tensor Fields of the Second Biharmonic Complex. Again, recall
from the latter section that by definition θj = 0 outside a neighbourhood of Fj and θj is
constant in the two neighbourhoods Υj,1 and Υj,0 of both sides of Fj. Moreover, let p̂k be
the polynomials from Section A.2 given by p̂0(x) := 1 and p̂k(x) := xk for k = 1, 2, 3. We
define the functions θj,k := θj p̂k and note Gradgrad θj,k = 0 in the two neighbourhoods
Υj,1,Υj,0 of Fj and also in all other Υl,1,Υl,0 of Fl, j 6= l = 1, . . . , p. Thus Gradgrad θj,k
can be continuously extended by zero to Θj,k ∈ C∞,3×3(Ω) ∩ L2,3×3

S (Ω) with Θj,k = 0 in

all the latter neighbourhoods Υ̃l = Υl,1 ∪ Fl ∪Υl,0 of all the surfaces Fl.

Lemma B.15. Let Assumption 3 be satisfied. Then Θj,k ∈ ker(CurlS,Ω).

Proof. Let Φ ∈ C∞,3×3
c,T (Ω). As supp Θj,k ⊂ Υj \ Υ̃j we can pick another cut-off function

ϕ ∈ C∞c (ΩF ) with ϕ|supp Θj,k∩supp Φ = 1. Then

〈Θj,k, symCurlT Φ〉L2,3×3
S (Ω) = 〈Θj,k, symCurlT Φ〉L2,3×3

S (supp Θj,k∩supp Φ)

=
〈

Gradgrad θj,k, symCurlT(ϕΦ)
〉
L2,3×3
S (ΩF )

=
〈

Grad(grad θj,k),Curl(ϕΦ)
〉
L2,3×3(ΩF )

= 0

as ϕΦ,Curl(ϕΦ) ∈ C∞,3×3
c (ΩF ). �

Before proceeding, we recall Lemma B.8 and we need the following lemma:

Lemma B.16. Let x, x0 ∈ Ω and let ζx0,x ⊂ Ω be a piecewise C1-curve connecting x0 to
x.
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(i) Let u ∈ C∞(Ω,R). Then u and its gradient gradu can be represented by

u(x)− u(x0)−
〈

gradu(x0), x− x0

〉
=

∫
ζx0,x

〈 ∫
ζx0,y

Gradgradu dλ, dλy
〉
,

gradu(x)− gradu(x0) =

∫
ζx0,x

Gradgradu dλ.

(ii) For all S ∈ C∞(Ω,R3×3) it holds∫
ζx0,x

〈 ∫
ζx0,y

S dλ, dλy
〉

=

∫
ζx0,x

〈
x− y, S(y) dλy

〉
.

(iii) Let S ∈ C∞(Ω,R3×3) and define

v(x) :=

∫
ζx0,x

S dλ, u(x) :=

∫
ζx0,x

〈v, dλ〉.

Then u ∈ C∞(Ω,R) and v ∈ C∞(Ω,R3) are well defined, i.e., independent of the
respective curve, with

gradu = v, Gradgradu = Grad v = S,

if and only if skwS = 0 and CurlS S = 0 as well as∫
ζ

S dλ = 0,

∫
ζ

〈v, dλ〉 = 0

hold for any closed piecewise C1-curve ζ ⊂ Ω.

Remark B.17. In Lemma B.16 (iii) for S ∈ C∞S (Ω,R3×3) with Grad v = S the formula

curl v = 2 spn−1 skwS = 0

is crucial.

In Lemma B.16 for a tensor field S and a parametrisation ϕ ∈ C1
pw

(
[0, 1],R3

)
of ζx0,x

we define ∫
ζx0,x

〈
x− y, S(y) dλy

〉
:=

∫ 1

0

〈
x− ϕ(t), S

(
ϕ(t)

)
ϕ′(t)

〉
d t.

Proof of Lemma B.16. For (i), we have

u(x)− u(x0) =

∫
ζx0,x

〈gradu, dλ〉,

∂k u(x)− ∂k u(x0) =

∫
ζx0,x

〈grad ∂k u, dλ〉, k = 1, 2, 3,

i.e.,

gradu(x)− gradu(x0) =

∫
ζx0,x

Grad gradu dλ.

Therefore,

u(x)− u(x0) =

∫
ζx0,x

〈
gradu(y), dλy

〉
=

∫
ζx0,x

〈 ∫
ζx0,y

Grad gradu dλ, dλy
〉



52 DIRK PAULY AND MARCUS WAURICK

+

∫
ζx0,x

〈
gradu(x0), dλy

〉
︸ ︷︷ ︸

=

∫ 1

0

〈
gradu(x0), ϕ′(t)

〉
d t =

〈
gradu(x0), x− x0

〉
.

For (ii) we compute∫
ζx0,x

〈 ∫
ζx0,y

S dλ, dλy
〉

=

∫ 1

0

〈 ∫
ζx0,ϕ(s)

S dλ︸ ︷︷ ︸
=

∫ s

0

S
(
ϕ(t)

)
ϕ′(t) d t

, ϕ′(s)
〉

d s

=

∫ 1

0

〈
S
(
ϕ(t)

)
ϕ′(t),

∫ 1

t

ϕ′(s) d s︸ ︷︷ ︸
=x−ϕ(t)

〉
d t

=

∫
ζx0,x

〈
x− y, S(y) dλy

〉
.

For (iii), let S ∈ C∞(Ω,R3×3) and let v and u be defined as stated. Moreover, let
skwS = 0 and CurlS S = 0 with∫

ζ

S dλ = 0,

∫
ζ

〈v, dλ〉 = 0

for any closed piecewise C1-curve ζ ⊂ Ω. Note that

v well defined (indep. of ζx0,x) ∧ Grad v = S

⇔ ∀ ζ (cl pw C1)

∫
ζ

S dλ = 0 ∧ CurlS = 0,

and

u well defined (indep. of ζx0,x) ∧ gradu = v

⇔ ∀ ζ (cl pw C1)

∫
ζ

〈v, dλ〉 = 0 ∧ curl v = 0.

Hence v is well defined with Grad v = S. By Lemma B.8 we have

curl v = 2 spn−1 skw Grad v = 2 spn−1 skwS = 0,

showing that u is well defined as well with gradu = v and thus Gradgradu = Grad v = S.
Furthermore, u ∈ C∞(Ω,R) and v ∈ C∞(Ω,R3). On the other hand, let u ∈ C∞(Ω,R)
and v ∈ C∞(Ω,R3) be given with

gradu = v, Gradgradu = Grad v = S.

Then skwS = 0, CurlS S = 0, and∫
ζ

〈v, dλ〉 =

∫
ζ

〈gradu, dλ〉 = 0,

∫
ζ

S dλ =

∫
ζ

Grad v dλ = 0,

completing the proof. �
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Note that for l, j = 1, . . . , p and k = 0, . . . , 3 and for the curves ζxl,0,xl,1 ⊂ ζl with the
chosen starting points xl,0 ∈ Υl,0 and respective endpoints xl,1 ∈ Υl,1 we can compute by
Lemma B.16

R3 3 bl(Θj,k) :=

∫
ζl

Θj,k dλ =

∫
ζxl,0,xl,1

Gradgrad θj,k dλ

= grad θj,k(xl,1)− grad θj,k(xl,0)︸ ︷︷ ︸
=0

= δl,j grad p̂k(xl,1) = δl,j

{
0, if k = 0,

ek, if k = 1, 2, 3,

and

R 3 βl,0(Θj,k) :=

∫
ζl

〈
xl,1 − y,Θj,k(y) dλy

〉
=

∫
ζxl,0,xl,1

〈
xl,1 − y,Gradgrad θj,k(y) dλy

〉
=

∫
ζxl,0,xl,1

〈 ∫
ζxl,0,y

Gradgrad θj,k dλ, dλy
〉

= θj,k(xl,1)−θj,k(xl,0)−
〈

grad θj,k(xl,0), xl,1 − xl,0
〉︸ ︷︷ ︸

=0

= δl,j p̂k(xl,1) = δl,j

{
1, if k = 0,

(xl,1)k, if k = 1, 2, 3.

Thus, we have functionals βl,` for l = 1, . . . , p and ` = 0, . . . , 3 given by

βl,`(Θj,k) :=
〈
bl(Θj,k), e

`
〉

= δl,j

{
0, if k = 0,

δ`,k, if k = 1, 2, 3,

for l, j = 1, . . . , p and ` = 1, 2, 3 and k = 0, . . . , 3, as well as

βl,0(Θj,k) = δl,jδ0,k + δl,j(1− δ0,k)(xl,1)k

for l, j = 1, . . . , p and k = 0, . . . , 3. Therefore, we have

βl,`(Θj,k) = δl,jδ`,k + (1− δ0,k)δ`,0δl,j(xl,1)k, l, j = 1, . . . , p, k, ` = 0, 1, 2, 3.(52)

Let Assumption 2 be satisfied. For the second biharmonic complex, simliar to (3), (4),
(27), (40), and (46), we have the orthogonal decompositions

L2,3×3
S (Ω) = ran(Gradgrad,Ω)⊕L2,3×3

S (Ω) ker( ˚divDivS,Ω),

ker(CurlS,Ω) = ran(Gradgrad,Ω)⊕L2,3×3
S (Ω) H

bih,2
N,S (Ω).

(53)

Remark B.18. It holds dom(Gradgrad,Ω) = H2(Ω) by Lemma 5.2. Moreover, the range
in (53) is closed by the Poincaré type estimate

∃ c > 0 ∀φ ∈ H2(Ω) ∩ (P1
pw)⊥L2(Ω) |φ|L2(Ω) ≤ c|Grad gradφ|L2,3×3(Ω),

which is implied by Rellich’s selection theorem and Lemma 5.2 as Assumption 2 holds.
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Let us denote in (53) the orthogonal projector onto ker( ˚divDivS,Ω) resp. Hbih,2
N,S (Ω) by

π. By Lemma B.15 there exists some ψj,k ∈ H2(Ω) such that

Hbih,2
N,S (Ω) 3 πΘj,k = Θj,k −Gradgradψj,k,

(Θj,k −Gradgradψj,k)
∣∣
ΩF

= Gradgrad(θj,k − ψj,k).

As Hbih,2
N,S (Ω) ⊂ C∞,3×3(Ω), cf. (25), we conclude by πΘj,k,Θj,k ∈ C∞,3×3(Ω) that also

Gradgradψj,k ∈ C∞,3×3(Ω) and hence ψj,k ∈ C∞(Ω). Hence all path integrals over the
closed curves ζl are well defined. Furthermore, we observe by Lemma B.16

bl(Gradgradψj,k) =

∫
ζl

Gradgradψj,k dλ = gradψj,k(xl,1)− gradψj,k(xl,1) = 0

and

βl,0(Gradgradψj,k) =

∫
ζl

〈
xl,1 − y,Gradgradψj,k(y) dλy

〉
=

∫
ζxl,1,xl,1

〈 ∫
ζxl,1,y

Gradgradψj,k dλ, dλy
〉

= ψj,k(xl,1)− ψj,k(xl,1)−
〈

gradψj,k(xl,1), xl,1 − xl,1
〉

= 0.

Therefore, by (52)

βl,`(πΘj,k) = βl,`(Θj,k)− βl,`(Gradgradψj,k)︸ ︷︷ ︸
=0

= δl,jδ`,k + (1− δ0,k)δ`,0δl,j(xl,1)k(54)

for all l, j = 1, . . . , p and all `, k = 0, 1, 2, 3. We shall show that

Bbih,2
N := {πΘj,k} j=1,...,p,

k=0,1,2,3
⊂ Hbih,2

N,S (Ω)(55)

defines a basis of Hbih,2
N,S (Ω).

Note that ψj,k ∈ H2(Ω) ∩ (P1
pw)⊥L2(Ω) can be found by the variational formulation

∀φ ∈ H2(Ω) 〈Gradgradψj,k,Gradgradφ〉L2,3×3(Ω) = 〈Θj,k,Gradgradφ〉L2,3×3(Ω),

i.e., ψj,k = (∆2)−1 divDivS Θj,k. Therefore,

πΘj,k = Θj,k −Gradgradψj,k =
(
1−Gradgrad(∆2)−1 divDivS

)
Θj,k.

Let us also mention that ψj,k solves in classical terms the biharmonic Neumann problem

∆2ψj,k = divDivS Θj,k in Ω,

(Gradgradψj,k)ν = Θj,kν on Γ,

ν ·Div Gradgradψj,k = ν ·Div Θj,k on Γ,∫
Ωl

ψj,k = 0 for l = 1, . . . , n,∫
Ωl

x`ψj,k(x) dλx = 0 for l = 1, . . . , n, ` = 1, 2, 3,

(56)

which is uniquely solvable.

Lemma B.19. Let Assumption 2 as well as Assumption 3 be satisfied. Then it holds
Hbih,2
N,S (Ω) = linBbih,2

N .
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Proof. Let H ∈ Hbih,2
N,S (Ω) = ker( ˚divDivS,Ω) ∩ ker(CurlS,Ω) ⊂ C∞,3×3

S (Ω), cf. (25). With
the above introduced functionals βl,0 and bl we recall

R3 3 bl(H) =

∫
ζl

H dλ,

R 3 βl,0(H) =

∫
ζl

〈
xl,1 − y,H(y) dλy

〉
,

and define for l = 1, . . . , p the numbers

γl,` := γl,`(H) :=
〈
bl(H), e`

〉
= βl,`(H), ` = 1, 2, 3,

γl,0 := γl,0(H) := βl,0(H)−
3∑

k=1

βl,k(H)(xl,1)k.

We shall show that

Hbih,2
N,S (Ω) 3 Ĥ := H −

p∑
j=1

3∑
k=0

γj,kπΘj,k = 0 in Ω.

Similar to the proof of Lemma B.3 and Lemma B.12, the aim is to prove that there exists

u ∈ H2(Ω) such that Gradgradu = Ĥ, since then

|Ĥ|2
L2,3×3
S (Ω)

= 〈Gradgradu, Ĥ〉L2,3×3
S (Ω) = 0.

By (54) we observe for ` = 1, 2, 3( ∫
ζl

Ĥ dλ
)
`

=
〈 ∫

ζl

Ĥ dλ︸ ︷︷ ︸
=bl(Ĥ)

, e`
〉

= βl,`(Ĥ) = βl,`(H)︸ ︷︷ ︸
=γl,`

−
p∑
j=1

3∑
k=0

γj,k βl,`(πΘj,k)︸ ︷︷ ︸
=δl,jδ`,k

= 0,

and thus by Assumption 3 (A.1) for any closed piecewise C1-curve ζ in Ω∫
ζ

Ĥ dλ = 0.(57)

Recall the connected components Ω1, . . . ,Ωn of Ω. For 1 ≤ k ≤ n let some x0 ∈ Ωk be
fixed. By (57) the vector field v : Ω→ R3 given by

v(x) :=

∫
ζ(x0,x)

Ĥ dλ, x ∈ Ωk,

where ζ(x0, x) is any piecewise C1-curve connecting x0 with x, is well defined, i.e., inde-

pendent of the respective curve ζ(x0, x), and belongs to C∞,3(Ωk). Moreover, Grad v = Ĥ

and curl v = 2 spn−1 skw Ĥ = 0 by Remark B.17. Note that for ζxl,0,xl,1 ⊂ ζl ⊂ Ωk we have
with c := v(xl,1) ∈ R3

v(x) = v(x)− v(xl,1)︸ ︷︷ ︸
=

∫
ζxl,1,x

Grad v dλ

+ c =

∫
ζxl,1,x

Ĥ dλ+ c, x ∈ ζl,

and ∫
ζl

〈c, dλ〉 =
3∑
`=1

c`

∫
ζl

〈gradx`, dλ〉 = 0.
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Moreover, the closed curve ζl may be considered as the closed curve ζxl,1,xl,1 with circulation
1 along ζl. By Lemma B.16, the definition of βl,0, and (54) we have∫

ζl

〈v, dλ〉 =

∫
ζl

〈 ∫
ζxl,1,y

Ĥ dλ, dλy
〉

=

∫
ζxl,1,xl,1

〈 ∫
ζxl,1,y

Ĥ dλ, dλy
〉

=

∫
ζl

〈
xl,1 − y, Ĥ(y) dλy

〉
= βl,0(Ĥ) = βl,0(H)−

p∑
j=1

3∑
k=0

γj,k βl,0(πΘj,k)︸ ︷︷ ︸
=δl,jδ0,k+(1−δ0,k)δl,j(xl,1)k

= βl,0(H)− γl,0 −
3∑

k=1

γl,k︸︷︷︸
=βl,k(H)

(xl,1)k = 0.

Therefore, by Assumption 3 (A.1) for any closed piecewise C1-curve ζ in Ω∫
ζ

〈v, dλ〉 = 0.(58)

By (58), cf. Lemma B.16, the function u : Ω→ R given by

u(x) :=

∫
ζx0,x

〈v, dλ〉, x ∈ Ωk,

where ζ(x0, x) is any piecewise C1-curve connecting x0 with x, is well defined, i.e., indepen-
dent of the respective curve ζ(x0, x), and belongs to C∞(Ωk) with gradu = v ∈ C∞,3(Ωk)
and

Gradgradu = Grad v = Ĥ ∈ C∞,3×3(Ωk) ∩ L2,3×3
S (Ωk).

Similar to the end of the proof of Lemma B.3 and Lemma B.12, elliptic regularity and,
e.g., [14, Theorem 2.6 (1)] or [1, Theorem 3.2 (2)] show that v ∈ C∞,3(Ωk) together
with Grad v ∈ L2,3×3

S (Ωk) implies v ∈ H1,3(Ωk). Then, analogously, u ∈ C∞(Ωk) with
gradu = v ∈ L2,3(Ωk) implies u ∈ H1(Ωk) and hence u ∈ H2(Ωk), i.e., u ∈ H2(Ω),
completing the proof. �

Lemma B.20. Let Assumption 2 and Assumption 3 be satisfied. Then Bbih,2
N is linear

independent.

Proof. Let

p∑
j=1

3∑
k=0

γj,kπΘj,k = 0, γj,k ∈ R. (54) implies for l = 1, . . . , p

0 =

p∑
j=1

3∑
k=0

γj,kβl,`(πΘj,k) = γl,`, ` = 1, 2, 3,

0 =

p∑
j=1

3∑
k=0

γj,kβl,`(πΘj,k) = γl,0 +
3∑

k=1

γl,k(xl,1)k = γl,0, ` = 0,

finishing the proof. �

Theorem B.21. Let Assumption 2 as well as Assumption 3 be satisfied. Then it holds
dimHbih,2

N,S (Ω) = 4p and a basis of Hbih,2
N,S (Ω) is given by (55).

Proof. Use Lemma B.19 and Lemma B.20. �
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B.4. Neumann Tensor Fields of the Elasticity Complex. Recall from the latter
sections that by definition θj = 0 outside of a neighbourhood of Fj and θj is constant in the
two neighbourhoods Υj,1 and Υj,0 of both sides of Fj. Moreover, let r̂k be the rigid motions
(Nedelec fields) from Section A.4 given by r̂k(x) := ek × x = spn(ek)x and r̂k+3(x) := ek

for k = 1, 2, 3. We define the vector fields θj,k := θj r̂k and note symGrad θj,k = 0 in the
two neighbourhoods Υj,1,Υj,0 of Fj and also in all other Υl,1,Υl,0 of Fl, j 6= l = 1, . . . , p.

Thus symGrad θj,k can be continuously extended by zero to Θj,k ∈ C∞,3×3(Ω)∩L2,3×3
S (Ω)

with Θj,k = 0 in all the latter neighbourhoods Υ̃l = Υl,1 ∪ Fl ∪Υl,0 of all the surfaces Fl.

Lemma B.22. Let Assumption 3 be satisfied. Then Θj,k ∈ ker(CurlCurl>S ,Ω).

Proof. Let Φ ∈ C∞,3×3
c,S (Ω). As supp Θj,k ⊂ Υj \ Υ̃j we can pick another cut-off function

ϕ ∈ C∞c (ΩF ) with ϕ|supp Θj,k∩supp Φ = 1. Then

〈Θj,k,CurlCurl>S Φ〉L2,3×3
S (Ω) = 〈Θj,k,CurlCurl>S Φ〉L2,3×3

S (supp Θj,k∩supp Φ)

=
〈

symGrad θj,k,CurlCurl>S (ϕΦ)
〉
L2,3×3
S (ΩF )

=
〈

Grad θj,k,CurlCurl>S (ϕΦ)
〉
L2,3×3
S (ΩF )

=
〈

Grad θj,k,Curl
(

Curl(ϕΦ)
)>〉

L2,3×3(ΩF )
= 0

as ϕΦ,CurlCurl>S (ϕΦ) ∈ C∞,3×3
c,S (ΩF ) by Lemma B.8. �

Before proceeding we need the following lemma:

Lemma B.23. Let x, x0 ∈ Ω and let ζx0,x ⊂ Ω be a piecewise C1-curve connecting x0 to
x.

(i) Let v ∈ C∞(Ω,R3). Then v and its rotation curl v can be represented by

v(x)− v(x0)− 1

2

(
curl v(x0)

)
× (x− x0)

=

∫
ζx0,x

symGrad v dλ+

∫
ζx0,x

∫
ζx0,y

spn
(
(Curl symGrad v)> dλ

)
dλy,

curl v(x)− curl v(x0) = 2

∫
ζx0,x

(Curl symGrad v)> dλ.

(ii) For all S ∈ C∞(Ω,R3×3) it holds∫
ζx0,x

∫
ζx0,y

spn
(
(CurlS)> dλ

)
dλy =

∫
ζx0,x

spn
(
(CurlS)>(y) dλy

)
(x− y).

(iii) Let S ∈ C∞(Ω,R3×3) and define

w(x) :=

∫
ζx0,x

(CurlS)> dλ, T := S + spnw, v(x) :=

∫
ζx0,x

T dλ.

Then w, v ∈ C∞(Ω,R3) and T ∈ C∞(Ω,R3×3) are well defined, i.e., independent
of the respective curve, with

Gradw = (CurlS)>, Grad v = T, symGrad v = S,

if and only if skwS = 0 and CurlCurl>S S = 0 as well as∫
ζ

(CurlS)> dλ = 0,

∫
ζ

T dλ = 0
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hold for any closed piecewise C1-curve ζ ⊂ Ω. In this case,

Gradw = (CurlS)> =
1

2
Grad curl v.

In Lemma B.23 for a tensor field S and a parametrisation ϕ ∈ C1
pw

(
[0, 1],R3

)
of ζx0,x

we define∫
ζx0,x

spn
(
(CurlS)>(y) dλy

)
(x− y) :=

∫ 1

0

spn
(

(CurlS)>
(
ϕ(t)

)
ϕ′(t)

)(
x− ϕ(t)

)
d t.

Proof of Lemma B.23. For (i), let

S := symGrad v = Grad v − skw Grad v

and observe 2 CurlS = −2 Curl skw Grad v = (Grad curl v)> by Lemma B.8. Thus

vk(x)− vk(x0) =

∫
ζx0,x

〈grad vk, dλ〉, k = 1, 2, 3,

v(x)− v(x0) =

∫
ζx0,x

Grad v dλ,

curl v(x)− curl v(x0) =

∫
ζx0,x

Grad curl v dλ = 2

∫
ζx0,x

(CurlS)> dλ.

Therefore, by Lemma B.8

v(x)− v(x0) =

∫
ζx0,x

Grad v dλ =

∫
ζx0,x

symGrad v dλ+

∫
ζx0,x

skw Grad v dλ︸ ︷︷ ︸
=

1

2

∫
ζx0,x

spn curl v(y) dλy

=

∫
ζx0,x

S dλ+
1

2

∫
ζx0,x

spn curl v(x0) dλy

+

∫
ζx0,x

spn
( ∫

ζx0,y

(CurlS)> dλ
)

dλy︸ ︷︷ ︸
=

∫
ζx0,x

∫
ζx0,y

spn
(
(CurlS)> dλ

)
dλy

.

Moreover, with ϕ from above10∫
ζx0,x

spn curl v(x0) dλy

=

∫ 1

0

(
spn curl v(x0)

)
ϕ′(s) d s =

(
spn curl v(x0)

)
(x− x0) =

(
curl v(x0)

)
× (x− x0).

10Alternatively, we can compute with Id = Grad y∫
ζx0,x

spn curl v(x0)︸ ︷︷ ︸
=(spn curl v(x0)) Id

dλy = spn curl v(x0)

∫
ζx0,x

Grad y dλy =
(

spn curl v(x0)
)
(x− x0).
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For (ii) we compute with ϕ from above∫
ζx0,x

∫
ζx0,y

spn
(
(CurlS)> dλ

)
dλy =

∫ 1

0

( ∫
ζx0,ϕ(s)

spn
(
(CurlS)> dλ

)
︸ ︷︷ ︸

=

∫ s

0

spn
(

(CurlS)>
(
ϕ(t)

)
ϕ′(t)

)
d t

)
ϕ′(s) d s

=

∫ 1

0

spn
(

(CurlS)>
(
ϕ(t)

)
ϕ′(t)

)∫ 1

t

ϕ′(s) d s︸ ︷︷ ︸
= x− ϕ(t)

d t

=

∫
ζx0,x

spn
(
(CurlS)>(y) dλy

)
(x− y).

For (iii), let S ∈ C∞(Ω,R3×3) and let w, T , and v be defined as stated. Moreover, let
skwS = 0 and CurlCurl>S S = 0 with∫

ζ

(CurlS)> dλ = 0,

∫
ζ

T dλ = 0

for any closed piecewise C1-curve ζ ⊂ Ω. Note that

w well defined (indep. of ζx0,x) ∧ Gradw = (CurlS)>

⇔ ∀ ζ (cl pw C1)

∫
ζ

(CurlS)> dλ = 0 ∧ Curl(CurlS)> = 0,

and

v well defined (indep. of ζx0,x) ∧ Grad v = T

⇔ ∀ ζ (cl pw C1)

∫
ζ

T dλ = 0 ∧ CurlT = 0.

Hence w is well defined with Gradw = (CurlS)>. By Lemma B.8 we have

CurlT = CurlS + Curl spnw = CurlS + (divw) Id−(Gradw)>

= (tr Gradw) Id = (tr CurlS) Id = 0,

as skwS = 0. Hence v is also well defined with Grad v = T . Moreover, v, w ∈ C∞(Ω,R3)
and T ∈ C∞(Ω,R3×3) as well as sym Grad v = symT = symS = S and

Gradw = (CurlS)> = (Curl sym Grad v)> =
1

2
Grad curl v.

On the other hand, let w, v ∈ C∞(Ω,R3) and S, T ∈ C∞(Ω,R3×3) be given with

Gradw = (CurlS)>, Grad v = T, symGrad v = S.

Then skwS = 0,

CurlCurl>S S = Curl(CurlS)> = Curl Gradw = 0

and 2 Gradw = Grad curl v by Lemma B.8, as well as∫
ζ

(CurlS)> dλ =

∫
ζ

Gradw dλ = 0,

∫
ζ

T dλ =

∫
ζ

Grad v dλ = 0,

completing the proof. �
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Note that for l, j = 1, . . . , p and k = 1, . . . , 6 and for the curves ζxl,0,xl,1 ⊂ ζl with the

chosen starting points xl,0 ∈ Υl,0 and respective endpoints xl,1 ∈ Υl,1 we can compute11

by Lemma B.23

R3 3 al(Θj,k) :=

∫
ζl

(Curl Θj,k)
> dλ =

∫
ζxl,0,xl,1

(Curl symGrad θj,k)
> dλ

=
1

2
curl θj,k(xl,1)− 1

2
curl θj,k(xl,0)︸ ︷︷ ︸

=0

=
1

2
δl,j curl r̂k(xl,1) = δl,j

{
ek, if k = 1, 2, 3,

0, if k = 4, 5, 6,

and

R3 3 bl(Θj,k) :=

∫
ζl

Θj,k dλ+

∫
ζl

spn
(
(Curl Θj,k)

>(y) dλy
)
(xl,1 − y)

=

∫
ζxl,0,xl,1

symGrad θj,k dλ

+

∫
ζxl,0,xl,1

spn
(
(Curl symGrad θj,k)

>(y) dλy
)
(xl,1 − y)

=

∫
ζxl,0,xl,1

(
symGrad θj,k(y)

+

∫
ζxl,0,y

spn
(
(Curl symGrad θj,k)

> dλ
))

dλy

= θj,k(xl,1)−θj,k(xl,0)− 1

2
curl θj,k(xl,0)× (xl,1 − xl,0)︸ ︷︷ ︸

=0

= δl,j r̂k(xl,1) = δl,j

{
ek × xl,1, if k = 1, 2, 3,

ek−3, if k = 4, 5, 6.

Thus, we have functionals βl,` for l = 1, . . . , p and ` = 1, . . . , 6 given by

βl,`(Θj,k) :=

{〈
al(Θj,k), e

`
〉
, if ` = 1, 2, 3,〈

bl(Θj,k), e
`−3
〉
, if ` = 4, 5, 6,

j = 1, . . . , p, k = 1, . . . , 6.

Then for l, j = 1, . . . , p and for ` = 1, 2, 3

βl,`(Θj,k) =
〈
al(Θj,k), e

`
〉

= δl,j

{
〈ek, e`〉 = δ`,k, if k = 1, 2, 3,

〈0, e`〉 = 0, if k = 4, 5, 6,

i.e.,

βl,`(Θj,k) = δl,jδ`,k, k = 0, . . . , 6,

11Note that curl r̂k = 2ek for k = 1, 2, 3, since, e.g.,

curl r̂1(x) = curl (e1 × x) = curl (x2 e
1 × e2 + x3 e

1 × e3) = curl (x2e
3 − x3e

2)

= grad (x2)× e3 − grad (x3)× e2 = e2 × e3 − e3 × e2 = 2e1.



INDEX OF MIXED ORDER DIRAC-TYPE OPERATORS 61

and for ` = 4, 5, 6

βl,`(Θj,k) =
〈
bl(Θj,k), e

`−3
〉

= δl,j

{
〈ek × xl,1, e`−3〉 = 〈e`−3 × ek, xl,1〉, if k = 1, 2, 3,

〈ek−3, e`−3〉 = δ`,k, if k = 4, 5, 6,

i.e.,

βl,`(Θj,k) = δl,jδ`,k + δl,j(δ1,k + δ2,k + δ3,k)(xl,1)
`̂−3,k

, k = 0, . . . , 6,

where

(xl,1)
`̂−3,k

:= 〈e`−3 × ek, xl,1〉 = 〈e`−3 × ek, ei〉(xl,1)i = ±(xl,1)i

for the even resp. odd permutation (`− 3, k, i) of (1, 2, 3) and

(xl,1)
`̂−3,k

:= 0

for all other ` and k. In particular, (xl,1)
`̂−3,k

= 0 if `− 3 = k or ` = 1, 2, 3 or k = 4, 5, 6.

Therefore, we have for l, j = 1, . . . , p and k, ` = 1, . . . , 6

βl,`(Θj,k) = δl,jδ`,k + δl,j(xl,1)
`̂−3,k

= δl,jδ`,k + δl,j(δ`,4 + δ`,5 + δ`,6)(δ1,k + δ2,k + δ3,k)(1− δ`−3,k)(xl,1)
`̂−3,k

.
(59)

Let Assumption 2 be satisfied. For the elasticity complex, simliar to (3), (4), and (40),
(46), (53) we have the orthogonal decompositions

L2,3×3
S (Ω) = ran(symGrad,Ω)⊕L2,3×3

S (Ω) ker(D̊ivS,Ω),

ker(CurlCurl>S ,Ω) = ran(symGrad,Ω)⊕L2,3×3
S (Ω) H

ela
N,S(Ω).

(60)

Remark B.24. It holds dom(symGrad,Ω) = H1,3(Ω) by [22, Lemma 3.2]. Moreover, the
range in (60) is closed by the Poincaré type estimate

∃ c > 0 ∀φ ∈ H1,3(Ω) ∩ RM
⊥L2,3(Ω)
pw |φ|L2,3(Ω) ≤ c| symGradφ|L2,3×3(Ω),

which is implied by Rellich’s selection theorem and [22, Lemma 3.2] as Assumption 2
holds.

Let us denote in (60) the orthogonal projector onto ker(D̊ivS,Ω) resp. Hela
N,S(Ω) by π.

By Lemma B.22 there exists some ψj,k ∈ H1,3(Ω) such that

Hela
N,S(Ω) 3 πΘj,k = Θj,k−symGradψj,k, (Θj,k−symGradψj,k)

∣∣
ΩF

= symGrad(θj,k−ψj,k).

As Hela
N,S(Ω) ⊂ C∞,3×3(Ω), cf. (25), we conclude by πΘj,k,Θj,k ∈ C∞,3×3(Ω) that also

symGradψj,k ∈ C∞,3×3(Ω) and hence ψj,k ∈ C∞,3(Ω). Hence all path integrals over the
closed curves ζl are well defined. Furthermore, we observe by Lemma B.23

al(symGradψj,k) =

∫
ζl

(Curl symGradψj,k)
> dλ

=
1

2

(
curlψj,k(xl,1)− curlψj,k(xl,1)

)
= 0,

and

bl(symGradψj,k) =

∫
ζl

symGradψj,k dλ

+

∫
ζl

spn
(
(Curl symGradψj,k)

>(y) dλy
)
(xl,1 − y)
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=

∫
ζxl,1,xl,1

(
symGradψj,k(y)

+

∫
ζxl,1,y

spn
(
(Curl symGradψj,k)

> dλ
))

dλy

= ψj,k(xl,1)− ψj,k(xl,1)− 1

2
curlψj,k(xl,1)× (xl,1 − xl,1) = 0.

Therefore, by (59)

βl,`(πΘj,k) = βl,`(Θj,k)− βl,`(symGradψj,k)︸ ︷︷ ︸
=0

= δl,jδ`,k + δl,j(xl,1)
`̂−3,k

= δl,jδ`,k + δl,j(δ`,4 + δ`,5 + δ`,6)(δ1,k + δ2,k + δ3,k)(1− δ`−3,k)(xl,1)
`̂−3,k

(61)

for all l, j = 1, . . . , p and all `, k = 1, . . . , 6. We shall show that

Bela
N := {πΘj,k}j=1,...,p,

k=1,...,6
⊂ Hela

N,S(Ω)(62)

defines a basis of Hela
N,S(Ω).

Note that ψj,k ∈ H1,3(Ω) ∩ RM
⊥L2,3(Ω)
pw can be found by the standard variational formu-

lation

∀φ ∈ H1,3(Ω) 〈symGradψj,k, symGradφ〉L2,3×3(Ω) = 〈Θj,k, symGradφ〉L2,3×3(Ω),

i.e., ψj,k = ∆−1
S DivS Θj,k. Therefore,

πΘj,k = Θj,k − symGradψj,k = (1− symGrad ∆−1
S DivS)Θj,k.

Let us also mention that ψj,k solves in classical terms the Neumann elasticity problem

−∆Sψj,k = −DivS Θj,k in Ω,

(Gradψj,k)ν = Θj,kν on Γ,∫
Ωl

(ψj,k)` = 0 for l = 1, . . . , n, ` = 1, 2, 3,∫
Ωl

(
x× ψj,k(x)

)
`
dλx = 0 for l = 1, . . . , n, ` = 1, 2, 3,

(63)

which is uniquely solvable.

Lemma B.25. Let Assumption 2 as well as Assumption 3 be satisfied. Then it holds
Hela
N,S(Ω) = linBela

N .

Proof. Let H ∈ Hela
N,S(Ω) = ker(D̊ivS,Ω)∩ ker(CurlCurl>S ,Ω) ⊂ C∞,3×3

S (Ω), cf. (25). With
the above introduced functionals al and bl we recall

R3 3 al(H) =

∫
ζl

(CurlH)> dλ,

R3 3 bl(H) :=

∫
ζl

H dλ+

∫
ζl

spn
(
(CurlH)>(y) dλy

)
(xl,1 − y),

and define for l = 1, . . . , p the numbers

γl,` := γl,`(H) :=
〈
al(H), e`

〉
= βl,`(H), ` = 1, 2, 3,

γl,` := γl,`(H) :=
〈
bl(H)−

3∑
k=1

βl,k(H)ek × xl,1, e`−3
〉
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= βl,`(H)−
3∑

k=1

βl,k(H)(xl,1)
`̂−3,k

, ` = 4, 5, 6,

where we recall (xl,1)
`̂−3,k

= (δ`,4 + δ`,5 + δ`,6)(δ1,k + δ2,k + δ3,k)(1 − δ`−3,k)(xl,1)
`̂−3,k

by

definition, cf. (59), (61). We shall show that

Hela
N,S(Ω) 3 Ĥ := H −

p∑
j=1

6∑
k=1

γj,kπΘj,k = 0 in Ω.

Similar to the proofs of Lemma B.3, Lemma B.12, and Lemma B.19, the aim is to prove

that there exists v ∈ H1,3(Ω) such that symGrad v = Ĥ, since then

|Ĥ|2
L2,3×3
S (Ω)

= 〈symGrad v, Ĥ〉L2,3×3
S (Ω) = 0.

By (61) we observe for l = 1, . . . , p and for ` = 1, 2, 3(∫
ζl

(Curl Ĥ)> dλ
)
`

=
(
al(Ĥ)

)
`︸ ︷︷ ︸

=βl,`(Ĥ)

= βl,`(H)︸ ︷︷ ︸
=γl,`

−
p∑
j=1

6∑
k=1

γj,k βl,`(πΘj,k)︸ ︷︷ ︸
=δl,jδ`,k

= 0,

and thus by Assumption 3 (A.1) for any closed piecewise C1-curve ζ in Ω∫
ζ

(Curl Ĥ)> dλ = 0.(64)

Recall the connected components Ω1, . . . ,Ωn of Ω. For 1 ≤ k ≤ n let some x0 ∈ Ωk be

fixed. By (64) and Curl(Curl Ĥ)> = CurlCurl>S Ĥ = 0, cf. Lemma B.23, the vector field
w : Ω→ R3 and the tensor field T : Ω→ R3×3 given by

w(x) :=

∫
ζ(x0,x)

(Curl Ĥ)> dλ, T := Ĥ + spnw, x ∈ Ωk,

where ζ(x0, x) is any piecewise C1-curve connecting x0 with x, are well defined, i.e.,
independent of the respective curve ζ(x0, x), and belong to C∞,3(Ωk) and C∞,3×3(Ωk),

respectively. Moreover, Gradw = (Curl Ĥ)> and by Lemma B.8

CurlT = Curl Ĥ + Curl spnw = Curl Ĥ + (divw) Id−(Gradw)>

= (tr Gradw) Id = (tr Curl Ĥ) Id = 0,

as skw Ĥ = 0. Note that for ζxl,0,xl,1 ⊂ ζl ⊂ Ωk we have with c := w(xl,1) ∈ R3

w(x) = w(x)− w(xl,1)︸ ︷︷ ︸
=

∫
ζxl,1,x

Gradw dλ

+ c =

∫
ζxl,1,x

(Curl Ĥ)> dλ+ c, x ∈ ζl,

and ∫
ζl

(spn c) dλ = (spn c)

∫
ζl

Id dλ = (spn c)

∫
ζl

Gradx dλx = 0.

Moreover, the closed curve ζl may be considered as the closed curve ζxl,1,xl,1 with circulation
1 along ζl. By Lemma B.23 and by the definition of bl we have for l = 1, . . . , p∫

ζl

T dλ =

∫
ζl

Ĥ dλ+

∫
ζl

(spnw) dλ
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=

∫
ζl

Ĥ dλ+

∫
ζxl,1,xl,1

spn
(∫

ζxl,1,y

(Curl Ĥ)> dλ
)

dλy

=

∫
ζl

Ĥ dλ+

∫
ζl

spn
(
(Curl Ĥ)>(y) dλy

)
(xl,1 − y) = bl(Ĥ).

Hence, for ` = 4, 5, 6 we get by (61)(∫
ζl

T dλ
)
`−3

=
〈 ∫

ζl

T dλ, e`−3
〉

= 〈bl(Ĥ), e`−3〉 = βl,`(Ĥ)

= βl,`(H)−
p∑
j=1

6∑
k=1

γj,k βl,`(πΘj,k)︸ ︷︷ ︸
=δl,jδ`,k+δl,j(xl,1)

`̂−3,k

= βl,`(H)− γl,` −
3∑

k=1

γl,k︸︷︷︸
=βl,k(H)

(xl,1)
`̂−3,k

= 0.

Therefore,
∫
ζl
T dλ = 0 and thus by Assumption 3 (A.1) for any closed piecewise C1-curve

ζ in Ω ∫
ζ

T dλ = 0.(65)

By (65), cf. Lemma B.23, the vector field v : Ω→ R3 given by

v(x) :=

∫
ζx0,x

T dλ, x ∈ Ωk,

where ζ(x0, x) is any piecewise C1-curve connecting x0 with x, is well defined, i.e., inde-
pendent of the respective curve ζ(x0, x). Moreover, v belongs to C∞,3(Ωk) and satisfies
Grad v = T ∈ C∞,3×3(Ωk) as well as

symGrad v = symT = sym Ĥ = Ĥ ∈ C∞,3×3(Ωk) ∩ L2,3×3
S (Ωk).

Similar to the end of the proof of Lemma B.3, elliptic regularity and, e.g., [14, Theorem
2.6 (1)] or [1, Theorem 3.2 (2)] show that v ∈ C∞,3(Ωk) with symGrad v ∈ L2,3×3

S (Ωk)
implies v ∈ H1,3(Ωk) and thus v ∈ H1,3(Ω), completing the proof. Let us note that
v ∈ H1,3(Ω) implies also T ∈ L2,3×3(Ω) and hence w ∈ L2,3(Ω). �

Lemma B.26. Let Assumption 2 and Assumption 3 be satisfied. Then Bela
N is linear

independent.

Proof. Let

p∑
j=1

6∑
k=1

γj,kπΘj,k = 0, γj,k ∈ R. (61) implies for l = 1, . . . , p

0 =

p∑
j=1

6∑
k=1

γj,kβl,`(πΘj,k) = γl,`, ` = 1, 2, 3,

0 =

p∑
j=1

6∑
k=1

γj,kβl,`(πΘj,k) = γl,` +
3∑

k=1

γl,k(xl,1)
`̂−3,k

= γl,`, ` = 4, 5, 6,

finishing the proof. �

Theorem B.27. Let Assumption 2 as well as Assumption 3 be satisfied. Then it holds
dimHela

N,S(Ω) = 6p and a basis of Hela
N,S(Ω) is given by (62).

Proof. Use Lemma B.25 and Lemma B.26. �
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