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ABSTRACT. We revisit a construction principle of Fredholm operators using Hilbert
complexes of densely defined, closed linear operators and apply this to particular choices
of differential operators. The resulting index is then computed with the help of explicitly
describing the dimension of the cohomology groups of generalised harmonic Dirichlet
and Neumann tensor fields. The main results of this contribution are to compute the
indices of the Dirac-type operators associated to the elasticity complex and the newly
found biharmonic complex, relevant for the biharmonic equation, elasticity, and in the
theory of general relativity. The differential operators are of mixed order and cannot be
seen as leading order type with relatively compact perturbation. As a side product we
present a comprehensive description of the underlying generalised ‘harmonic’ Dirichlet-
Neumann vector and tensor fields defining the respective cohomology groups, including
their dimensions and an explicit construction of bases in terms of topological invariants,
which are of both analytical and numerical interest. For this we follow in close lines the
work of Rainer Picard [23].
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1. INTRODUCTION

This article is concerned with the explicit computation of the Fredholm index if a
differential operator is ‘apparently’ of mixed order. More precisely, we shall establish a
collection of theorems like the following:

Theorem 1.1. Let Q C R? be open, bounded with strong* Lipschitz boundary. Then there
exists a subspace V C LZ***(Q) x L*(Q) such that

._ Div 0 ) 2,3%3 2 2,3 2,3%3
D .= (symCurl Gradgrad) tVY C L7 () x LA(Q) — L*°(Q) x Lg”"?(Q)
and D* are densely defined and closed Fredholm operators, where L2>*(Q) and L2***(Q)
denote the sets of trace free and symmetric 3 x 3 matrices with entries in L*(S)), respec-
tively. Moreover,

indD =4(p—m—n+1), ind D* = —ind D

where n is the number of connected components of €2, m is the number of connected
components of its complement R3\ Q, and p is the number of handles, see Definition 3.5
and Assumption 3 for the precise notion.

In the course of the manuscript, we shall describe the subspace V = dom D explicitly,
see Theorem 4.4 and Remark 4.5. A refined notation will indicate (full) natural boundary
conditions by ° and algebraic properties of the tensor fields belonging to the domain of
definition of the repetitive operators by S and T (symmetric and trace free), e.g., the
latter operators read

- Div 0 - —devGrad  Cul
D — Dblh,l = T - Dblh71 * — . 'S )
(symCurlT Gradgrad) ’ ( ) 0 divDivg

These operators are related to the (primal and dual) first biharmonic complex, also called
Gradgrad or divDiv complex, i.e.,

TRTpw

{0} 2}_> LQ(Q) Gradgrad Lé,BxS(Q) Curlg L%,3X3(Q) M) L2’3(Q) — > RTPW7

{0} £ p2(q) LD p 233 () AmOWh 7233 (@) mdovGrad pag i) S g

IThe boundary of a strong Lipschitz domain is locally a graph of some Lipschitz function.
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relevant for the biharmonic equation, elasticity, and in the theory of general relativity. In
the second biharmonic complex the boundary conditions are interchanged, i.e.,
e Curl ivDi TPy
{0} =% L23(@) S5 L39(Q) 2R 13PQ) S LA(Q) = Py,
Gradgrad L2(Q) Pl Pl

pw>

{0} &2 L29(Q) 2 LEPQ) 7 137(9)

leading to the operators

b2 . divbiVS 0 (Dbh2y* = Gradgrad symoCurlT
' Curls devGrad)’ 0 — Divy /)’

see Theorem 5.5 and Remark 5.6. Another interesting complex is the elasticity complex,
also called CurlCurl complex, i.e.,

CurfCurlsT

{O} L{—0}> LQ’S(Q) symGrad L§’3X3<Q) Lg,BXS(Q) %) L2,3(Q> M RMPW’

0 — Div, urlCurld — symGCra RMpy,
{O}(ﬂLQ’?)(Q) Divg L;,3X3(Q) CurlCurlg L§,3X3<Q) ymGrad L2’3(Q) RM RMPW‘

Here, we shall discuss the operators

Dela . Divs 0 (DY) — — symGrad CurlCurld
" \CwrlCurly symGrad/’ 0 —Divg /)’

being of the same type, see Theorem 6.4 and Remark 6.5. Here and throughout this paper,
we denote by grad, curl, and div the classical operators from vector analysis. Moreover,
Grad acts componentwise as grad ' mapping vector fields to tensor fields. Curl and Div act
row-wise as curl’ and div mapping tensor fields to tensor and vector fields, respectively.

Before we come to more in depth description of the main results, we shall provide a
small overview of Fredholm index theory for differential operators next.

It is one of the greatest mathematical achievements of the twentieth century to relate the
analytic notion of the Fredholm index for operators defined on Hilbert spaces to particular
elliptic operators and their corresponding geometric properties of the underlying compact
manifold the operators are defined on. The corner stone of this insight is the celebrated
Atijah-Singer index theorem, see e.g. [16]. The methods of proof led to the invention of
K-theory, which has evolved ever since and is an active field of research. Albeit being
a breakthrough in mathematics, K-theory is a rather difficult tool to work with when it
comes to explicitly compute the index for particular examples. Hence, in any case there is
a need to provide many examples, where it is possible to obtain an explicit index formula.

In particular, when it comes to explicitly computing the Witten index (a generalised
version of the Fredholm index) there is a need to thoroughly understand the Fredholm
case in particular situations. We refer to [8] for a preliminary version of an explicit index
theorem properly justified in [6] and, using a similar pathway as in [8], to [10], where the
transition from the Fredholm situtation to the Witten index has been performed in [10,
Chapter 14]. The generalisation of the one-plus-one-dimensional situation of [8] has been
addressed in the seminal paper [9].

The approach to compute the index in Theorem 1.1 (and in all the others) is based
on a construction principle for Fredholm operators provided in [7]. The fundamental
observation given in [7] is that it is possible to construct a Fredholm operator with the
help of Hilbert complexes of densely defined and closed linear operators, i.e,

A A A
"'—>H0—0>H1—1>H2—2>H3—>"',

Ap Ax A%
o Hy < Hy 2 Hy <2 Hy & -
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More precisely, if Ay, A;, and A are densely defined, closed linear operators defined on
suitable Hilbert spaces H; such that

ran Ag C ker Aq, ran A; C ker A,,

o As 0
b= (A’{ Ao)

with its natural domain of definition is closed and densely defined. It is Fredholm, if the
ranges ran Ag, ran Ay, and ran A, are closed and if both kernels

Ny := ker Aq, Ny . = ker A
and both cohomology groups
K, :=ker Ay Nker Aj, Ky = ker Ay Nker A]
are finite-dimensional. In this case, its index is then given by
(1) ind D = dim Ny — dim K; + dim Ky — dim N,
cf. Theorem 2.8. For its adjoint, which is then Fredholm as well, we simply have
D = (“(1)3 ig) ,  indD*=—indD.

In a first application of this observation presented in this article, we look at the classical
de Rham complex

then the block matrix operator

As =Ry

(0} —>A*Z”°} 12(0) 2, 128 (q) A=, i) A= p2(g)
(2) o) A=up
{0y ST 12 123(Q) S5 1230 1(Q) &SR,

where again the super index ° signifies homogeneous Dirichlet boundary conditions, see
Theorem 3.8. By (1) in order to compute the index it is necessary to calculate the
dimension of the cohomology groups, i.e., the dimension of the harmonic Dirichlet and
Neumann fields

Rpwa

Afj=—div Aj=curl Al=—grad
— <

HR™(Q) := K = ker(curl) N ker(div),
HR™(Q) := K, = ker(div) N ker(curl),

respectively. In [23], this has been done by Picard. As it turns out these dimensions are
related to topological properties of the underlying domain the differential operators are
defined on, that is,

dim HE™(Q) =m — 1, dim HY™(Q) = p,

see Theorem 3.6. In consequence, it is possible to compute the indices for the block de
Rham operators

div 0 —orad curl
DRhm — - DRhm * — g i
<curl grad) ’ ( ) 0 —div

by (1) in terms of m, p, and n, i.e.,
ind D™ =p —m —n+ 1, ind(DR"™)* = — ind DRM™,
see Theorem 3.8. It is noteworthy that this index theorem provides an index theorem for

the Dirac operator on open manifolds with boundary endowed with a particular boundary
condition, see [25] and Section 3.3 below.
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For a proof of Theorem 1.1 (and the others) we will combine the structural viewpoint
outlined by [7] and ideas taken from the explicit computation of the dimension of the
cohomolgy groups. The foundation for all of this to be applicable, however, is the newly
found biharmonic complex, see [20, 21|, and the more familiar elasticity complex, see [22].
In [20, 21] the crucial properties and compact embedding results have been found for the
biharmonic Hilbert complex underlying the computation of the index in Theorem 1.1. In
[22] the corresponding results are presented for the elasticity complex. These results also
stress that the mixed order differential operators given in Theorem 1.1 (and the others)
cannot be viewed as a leading order term subject to a relatively compact perturbation.

In Section 2, we briefly recall the notion of Hilbert complexes of densely defined and
closed linear operators. Also, we provide a small introduction to the construction principle
for Fredholm operators provided in [7]. As we slightly deviate from the approach presented
there we recall some of the proofs for convenience of the reader. In order to have a non-
trivial yet rather elementary example at hand, we present the so-called Picard’s extended
Maxwell system in Section 3. This sets the stage for the index theorem for the Dirac
operator provided in Section 3.3. In Section 4, we recall the first biharmonic complex
and provide the explicit formulation of our main result Theorem 1.1, see Theorem 4.4.
Similar results will be presented in Section 5 for the second biharmonic complex and in
Section 6 for the elasticity complex. The Appendix is concerned with the topological
setting introduced in [23] and, in particular, with the computation of bases and hence
the dimensions of the generalised Dirichlet and Neumann vector and tensor fields for the
different complexes, respectively, and thus concluding the proofs of our main results.

Note that unlike to many research topics in the analysis of partial differential equations
(and other topics), we shall use 2 being 'open’ and a ’domain’ as synonymous terms. In
particular, we shall not imply €2 to satisfy any connectivity properties, when calling €2 a
domain.

Recalling and introducing the cohomology groups

=Hp(Q), K2 =Hy(9),

i.e., the Dirichlet and Neumann fields

HR'™(Q) = ker(curl) N ker(div), HR™ () = ker(div) N ker(curl),
H%hs’l(ﬂ) — ker(Curls) N ker(divDivs), HO 1(Q) — ker(Divy) N ker(symCurly),
Hblh () = ker(symoCurlT) N ker(Divy), b'h 2(Q) = ke (leDlVg) N ker(Curls),

He'a (Q) = ker(CurlCurld ) N ker(Divs), 'He'a 5(Q) = ker(Divs) Nker(CurlCurld ),

let us summarise some of the main results of this contribution (including our Appendix),
such as the dimensions of the kernels Ny, N, i.e.,

dim ker(grad) = dim ker(grad) = n,
dim ker(Gradgrad) = 0, dim ker(devGrad) = 4n,
dim ker(devGrad) = dim ker(Gradgrad) = 4n,
dim ker(sym&}rad) =0, dim ker(symGrad) = 6n,

and the dimensions of the cohomology groups K, Ko, i.e.,
dim HF™(Q) = m — 1, dim HY™(Q) = p,
dim H5' (Q) = 4(m — 1), dim H iy (Q) = 4p,
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dim H5 () = 4(m — 1), dimHye () = 4p,
dim H$5(2) = 6(m — 1), dim H3s(€2) = 6p,
and the indices ind D, ind D* of the involved Fredholm operators, i.e.,
indDR™ =p—m—n+1, ind(DR™)* = — ind DRM™,
ind DM = 4(p —m —n + 1), ind(D"")* = — ind DM
ind DM = 4(p —m —n + 1), ind(D"?)* = — ind D2,
indD® =6(p —m —n+ 1), ind(D*)* = —ind D*".

Remark 1.2. We observe that in all of our examples, where generally the operators A;
carry the boundary condition and the adjoints A} do nmot have boundary conditions, the
dimensions of the first and second cohomology groups Ky and Ky (‘Dirichlet fields’ and
‘Neumann fields’) are given by

dim N, dim Ny,
dimKlz&-(m—l), dimKQZH-p,
n n

respectively. The indices of D and D* are

dlm NQ,*

—indD* =ind D = (p—m-—n-+1).

For the construction of bases and to compute the dimensions of the latter Neumann
fields it is crucial, that these are sufficiently regular, e.g., continuous in 2. We even have
the following local regularity results.

Lemma 1.3 (local regularity of the cohomology groups). Let 2 C R3 be open. Then
HE™ (), HE™(Q) € C24(@) 1 L2(@),
M (), ML (0), HAH(9), Mo (0) € C953(@) 1 L27(9),
HIA (), M (@) € 0 1 L@
Proof. Vector fields in HE™(Q) U HR™(Q) are harmonic and thus belong to C*°3(Q).

Tensor fields
g c Hb.h 1( U ,H?\lthZ( ) C ker(Curls) N ker(divDivg)

can be represented locally, e.g., in any topologically trivial and smooth subdomain Q
of Q, by S = Gradgradu with v € H2(f), sec [21, Theorem 3.10], which holds also
without boundary conditions. Thus divDivs Gradgradu = 0 in Q. Local regularity for
the biharmonic equation shows u € C*°(Q) and hence S = Gradgradu € C°33(Q)), i.e.,
S € C>3*3(Q). Tensor fields

T e Hgt}f( )U H?\',th( ) C ker(symCurly) Nker(Divr)
can be represented locally by T = devGradv with v € H¥(Q), see [21, Theorem 3.10].

Thus Divy devGradv = 0 in €. Local elliptic regularity shows v € C°3(Q) and hence
T = devGradv € C°3*3(Q), i.e., T € C°3*3(Q). Tensor fields

S e Hela S(Q) U 7—[6'3 <(Q) C ker(CurlCurlST) N ker(Divg)

can be represented locally by S = symGradv with v € H3(Q), see [22, Theorem 3.5].
Thus Divg symGradv = 0 in Q. Local elliptic regularity shows v € C°3()) and hence

S = symGradv € C33(Q), ie., S € C33(Q). O
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2. THE CONSTRUCTION PRINCIPLE AND THE INDEX THEOREM

In this section, we provide the basic construction principle, which is the basis for the
operators in question. The theory in more general terms has been developed already in
[7]. Here, we rephrase the situation with a slightly more particular viewpoint. For the
convenience of the reader, we carry out the necessary proofs here.

Throughout this section, we let Hy, Hi, Ho, H3 be Hilbert spaces, and

AO . doon - HO — Hl;
Al : domA1 CH — Hz,
AQ : dOIIlAQ Q H2 —_— H3

be densely defined and closed linear operators.

Definition 2.1. Let Ag, Ay, Ay be defined as above.

e We call a pair (Ag, A1) a complex (Hilbert complex), if ran Ay C ker A;.

o We say a complex (Ag, Ay) is closed, if ran Ay and ran A; are closed.

o A complex (Ay, A1) is said to be compact, if the embedding dom A;Ndom Af — H,
18 compact.

e The triple (Ao, A1, As) is called a (closed/compact) complex, if both (Ag, A1) and
(A1, Ag) are (closed/compact) complezes.

e We say that a complex (Agy, A1, Ay) is maximal compact, if (Ao, A1, As) is a com-
pact complex and both embeddings dom Ay — Hy and dom A3 — Hj are compact
as well.

Remark 2.2. The ‘FA-ToolBox’ from [17, 18, 19, 21, 22] shows that (Ao, A1) resp.
(Ao, A1, A2) is a (closed/compact/mazimal compact) complex, if and only if (AT, A§) resp.
(A3, A7, AY) is a (closed/compact/mazimal compact) complet.

Throughout this section, we assume that (A, A1, Ay) is a complex, i.e.,
Hy 2o 1, 2% |1y 22 [,

Hy &y &8 iy &l
We define the operator
D : (dom A; Ndom A7) x dom Ay C Hy x Hy — Hz x H;
(x,y) — (Agz, Ajz + Apy).

In block operator matrix notation, we have

(A 0
oo (% 1),

We gather some elementary facts about D.
Proposition 2.3. D is a densely defined and closed linear operator.

Proof. For the closedness of D, we let (([L’k, yk)) be a sequence in dom D with ((:Bk, yk))
converging to some (z,y) in Hy x Hy and (D(xg,yx)) converging to (w,z) in Hs x H;.
One readily sees using the closedness of Ay that x € dom A and Asx = w. Next, we
observe that ran Ay C ker A; Ly, ran Aj. Hence, (Ajzy) and (Agyx) are both convergent
to some 2z, € Hy and 2o € Hi, respectively. By the closedness of both A} and A,, we
thus deduce that z € dom A} and y € dom Ay with z; = Ajz and 2z, = Apy as well as
2=z + 2 =Ajz+ Awy.
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For D being densely defined, we see that by assumption, dom Ay is dense in H,. Hence,
it suffices to show that dom A; N dom A7 is dense in Hy. Decompose
(3) Hy = ran A @ p, ker As, Hy = ker AT ©p, ran A;.
Moreover, recalling Ky = ker Ay N ker A} and by the complex property we get

ker Ay = Ky ®p, ran A;

and hence
) H, = ran Aj @HQEHQ ran A, -
dom A; Ndom A} = (dom Ay Nran Aj) ®p, Ko &y, (dom A} Nran Ay).

Using the same decomposition arguments it is not difficult to see that dom A; N ran A3
is dense in ran A} and, similarly, that also dom A} Nran A; is dense in ran A, see, e.g.,
the so-called functional analysis ‘FA-ToolBox’ presented in [17, 18, 19, 21, 22]. Hence we
deduce the density result. 0

Theorem 2.4. D* = (/(1) ﬁ*) More precisely,
D* : dom Aj x (dom A; Ndom A) C Hs3 x Hi — Hy X Hy
(w, 2) — (ASw + Ay z, Aj2).

(5 2)ee
holds by definition since for all (z,y) € dom D = (dom Ay Ndom A7) x dom A, and for all
(w, z) € dom A} x (dom A; N'dom Af)

<D (x,y), (Asz,w) g, + (Ajz + Aoy, 2) m,
= (x, Asw+ A12)m, + (y, A2)m, = <(x, v), D*(w, z)>H2xH0.

Let (w,z) € domD* and denote (u,v) := D*(w,z). For all y € dom Ay we have
(0,y) € dom D and infer

(Aoy, 2)m, = (D(0,9), (w,2)) . g = €(0,9), D" (w, 2)) . = (Y, V) 1y

Hence, z € dom AE‘) and Ajz = v.
For all x € dom Ay N dom A} we see (x,0) € domD and deduce that

(Agz, wy g, + (Alx, 2) <D z,0), (w, )>stH1
= ((,0) ,D*(w,z)>H2xH (z,u)h,.

Let my denote the orthonormal projector onto ran A} in (3). Then for 7 € dom Ay we
have

x = mx € dom As Nran A5 C dom A; Nker A7 C dom A; Ndom A}, Asx = Asx
and by (5)

Proof. Note that

>H3><H1

()

<A257 w>H3 = <A2$7w>H3 + <A’{£L’,Z>H1 = <$7U>H2 = <§7 7T2u>H2'

Thus w € dom A} and Ajw = myu. Analogously, let m; denote the orthonormal projector
onto ran A; in (3). Then for € dom A} we have

x:=mz € dom A} Nran A; C dom A} Nker Ay C dom A, Ndom A}, Ajzr = Ajx
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and by (5)
(Alz, 2 g, = (Asx,wy gy + (AT, 2) gy, = (@, u)y g, = (T, mu) m,.

Thus z € dom A; and A;z = mu. Therefore, (w,z) € dom A5 x (dom A; N dom Aj).
Moreover, using the orthonormal projector 7y onto K5 in (4) we see for x € K, by (5)

(x, mou) g, = (mox, u) g, = (x,u) g, = (Asx,w) g, + (Alx, 2) gy, = 0,
yielding mou = 0. Finally, by (4) we arrive at

D*(w, z) = (u,v) = (mou + mu + mu, Ajz) = (A1z + Asw, Ajz),
completing the proof. 0
Lemma 2.5. For the kernels it holds

ker D = Ky x Ny = (ker Ay Nker A}) x ker Ay,
ker D* = Ny, x K = ker A} x (ker A; N ker Ap).

Proof. For (x,y) € ker D we have Asx = 0 and Ajx + Apy = 0. By orthogonality and the
complex property, i.e., ran Ay C ker A; Ly, ran A}, we see Ajx = Agy = 0. The assertion
about ker D* follows analogously. 0J

Corollary 2.6. The closures of the ranges are given by
ranD = (ker D*)*HaxH = N;’*HZ‘ X KlLHl,
ran D* = (ker D)r2xio = ;2 x N0,

Lemma 2.7. Let (Ag, A1, A2) be a mazimal compact Hilbert complex. Then the embedding
domD — Hy x Hy is compact, and so is the embedding dom D* — Hjz x H;.

Proof. Let ((zx,yxr)) be a (dom D)-bounded sequence in domD. Then, as in the proof
of Lemma 2.5, by orthogonality and the complex property (xj) is a (dom Ay N dom A%)-
bounded sequence in dom AsNdom A and (yy) is a (dom Ag)-bounded sequence in dom Ay.
Since (Ao, A1, Ay) is maximal compact, we can extract converging subsequences of (zy)
and (yg). Analogously, we see that also domD* — Hj x H; is compact, finishing the
proof. O

We now recall the abstract index theorem taken from [7] formulated for the present
situation.

Theorem 2.8. Let (Ag, A1, As) be a maximal compact Hilbert complex. Then D and D*
are Fredholm operators with indices

ind D = dim Ny — dim K; 4+ dim Ky — dim NV, ,, ind D* = —ind D.

Proof. Utilising the general ‘FA-ToolBox’ from, e.g., [17, 18, 19, 21, 22], and Lemma 2.7
we observe that both ranges ran D and ran D* are closed and that both kernels ker D and
ker D* are finite dimensional. Therefore, both D and D* are Fredholm operators. The
index ind D = dim ker D — dim ker D* is then given by Lemma 2.5. U

2.1. Some More Results. Let us mention some additional features of the ‘FA-ToolBox’
from [17, 18, 19, 21, 22]. Lemma 2.7 and Theorem 2.8 imply some additional results for
the reduced operators

L o * . gk gy
Dred = D‘ranD* = D’(keer)iHQXH(w Dred =D ‘ranD =D |(kerD*)LH3><H1 .
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Corollary 2.9. Let (Ag, Ay, A3) be a mazximal compact Hilbert complex. Then the inverse
operators D} : ranD — ranD* and (D))~ : tanD* — ranD are compact. Moreover,
D.i:ranD — dom Doy and (Dry)~' : rtanD* — dom DYy are continuous and, equiva-
lently, the Friedrichs-Poincaré type estimates

* 1/2
‘(x’y”ngHo < CD‘,D<x’y)|H3><H1 - CD(’AQx’%IS + |A1xﬁ{1 + |A0yﬁ{1) )

* * * 1/2
|(w, 2)| e, < 00| D" (w, 2 = cp(|A5wlr, + [Avzly, + 1A52l,)

>‘H2><H0
hold for all (x,y) € dom Dyeq and for all (w, z) € dom Dy, with the same optimal constant
cp > 0.

The latter estimates are additive combinations of the corresponding estimates for A,
and (Ag, A7) as well as A} and (Aj, Af), respectively.

Remark 2.10. The compactness assumptions (mazimal compact) are not needed to render
D and D* Fredholm operators. It suffices to assume that (Ag, A1, As) is a closed Hilbert
complex with finite-dimensional kernels Ny and Ny, and finite-dimensional cohomology
groups K1 and Ky. In this case, the latter Friedrichs-Poincaré type estimates still hold

and D, and (Dy)! are still continuous.

Remark 2.11. There are simple relations between the primal, dual, and adjoint com-
plexes, when D s considered. More precisely, let us denote the latter primal operators D
and D* of the primal complex (Ag, A1, As) by

AQ 0 Aj Al
. YL * o D\* __ 2
- b (8 0).
and the dual operators corresponding to the dual complex (A}, A, Aj) by
Ay 0 Ay Af
d __ 0 d\* __ 0 1
D_(Al A;)’ (D)—<o A2)'

By Remark 2.2 (Ao, A1, A2) is a mazimal compact complex, if and only if (A, AT, Af)
18 a mazximal compact complex. Note that we may weaken the assumptions according to
Remark 2.10. Theorem 2.8 shows that DP, (DP)*, D, (D)* are Fredholm operators with
indices

ind D? = dim Ny — dim K7 + dim K3 — dim N3, ind(DP)* = —ind D?,
ind D? = dim N — dim K{ + dim K¢ — dim Ny, ind(D%)* = —ind D%
Next we observe
N§ =ker Ay = NY_, Ny, =ker Ag = N§,
K& =ker A} Nker Ay = K, K =ker AiNker A} = K?.
Hence

—ind(D?)* = ind D¢ = — ind D? = ind(DP)".
Note that basically D* and (DP)* as well as DP and (D?)* are the ‘same’ operators.

Note that the Hilbert space adjoints A; depend on the particular choice of the inner
products (metrics) of the underlying Hilbert spaces H;. A typical example is simply
given by ‘weighted’ inner products induced by ‘weights’ A;, [ = 0,1, 2,3, i.e., symmetric
and positive topological isomorphisms (symmetric and positive bijective bounded linear
operators) \; : H; — H; inducing inner products

(o) =Ny dm s H x Hy— C,
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where H, := H, (as linear space) equipped with the inner product (-, -) i, A sufficiently
general situation is defined by A\ := Id, A3 := Id, and Ay, Ay being symmetric and posi-
tive topological isomorphisms, as well as H = (Hl, (N -, ->Hl), [ =0,1,2,3. Then the
modified operators?

ZO : domgo :=dom Ay C ]:lo — ]:ll; x — Agz,

ﬁl : domﬁl :=dom A; C ﬁl — ﬁQ; y— Ay P Ay,
/L : domﬁz = A\, dom A, C flg — f[g; z— Ag)az,
Avé : dom 2{3 =\ 'dom A} C Hy —> Hy; y — AjAy,

g’{ ; domgf = dom A} C H, — Hy; 2 A\[TAL2,

A% - dom A} = dom A} C Hy —+ Hy; x— Ajz

form again a primal and dual Hilbert complex, i.e.,
Ho 2% H, 2% Hy, 2 Hj,

- At o~ A o~ I ~
HO(—OH1%1H2<—2H3,

~ 12{2 O ~ g* 111
D=~ = D = 2 ).
(& 3) 7= )

The closedness of the operators /Tl and the complex properties are easily checked. More-
over, it is not hard to see that the closedness of (A, A1, As) is implied by the closedness
of (Ap, A1, A2). Remark 2.2, Proposition 2.3, Theorem 2.4, Lemma 2.5, and Corollary 2.6

are also valid for (A, Ay, As). In particular,
ker D = Ky x Ny = (ker Ay Nker A) x ker Ay = (A3 " ker Ay) Nker A7) x ker A,
ker D* = N, x K; = ker A3 x (ker A Nker A%) = ker A x (ker A, N (\] ! ker A7),

and we can define

= ~ ~lnp ~lg
1~ ~
ranD = (ker D*) fsxm = N, [ x K; ™

Y

= ~ - ~1 - ~1 -
ran D* = (ker D) f2xfo = K, " x N, ™.

Of course, Lemma 2.7 and Theorem 2.8 hold as well. To relate these two main results to
the original complex (Ag, A1, A2) we have the following:

Lemma 2.12. The compactness properties and the dimensions of the kernels and coho-
mology groups of the latter complexes are independent of the weights \;. More precisely,

(i) NO = Ny and j\?gy* =N,,, as dom KO = dom Ay and dom gg,* = dom A, ,,
(iiy) dim (ker 4; N (A7 " ker 43)) = dim Ky =dim K, = dim(ker A; Nker Aj),
(iiz) dim (Alfer Az N (3\2_1 ker A7) = dim K5 = dim Ky = dim(ker Ay Nker A7),
(iiiq) domfll ﬂdomfg) = dom A; N(A; dom A%) — H <« dom A; Ndom A} — Hy,
(iiiz) dom Ay Ndom A¥ = dom A;N (A, dom AY) < H, < dom A;Ndom A} < H.
2E.g., we compute Z(’; Let y € dom Zé Then for = € dom Ay = dom Ay
<$>Av(>§y>Ho = <$agéil/>ﬁ10 = <Av0x7y>ﬁ1 = <A0x7)\1y>H1>

showing that A\y € dom Aj and Aj\y = Ajy.
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Proof. For the proof we follow in close lines the ideas of [4, Theorem 6.1}, where [4] is the
extended version of [5].

(i) is trivial and it is sufficient to show only (ii;) and (iiiy).

For (iiy), let 1 be another weight having the same properties as A;. Similar to (3), (4)
we have by orthogonality in H, and by the complex property

Hy = ran A, ©g, ker Al =ran A, ®g, A ker A5,

(6) - = - -
ker Ay = ran Ag @5, (ker Ay Nker Ag) = ran Ay @y, (ker Ay N (A; " ker Af)),

and we note that ﬁ]l = H,; and ker /~11 = ker A; as sets. Denoting the ﬁl—orthonormal
projector onto A\, * ker A% resp. ker A; N (\; ! ker A%) by 7, we consider the linear mapping
7 ker Ay N (P ker Af) — ker A; N (A ker A5); Yy — Y.

As my = 0 implies y € (u 'ker Af) Nran Ay = {0}, which follows by H;-orthogonality
considering (uy, y) m,, we see that 7 is injective. Thus

dim (ker A; N (u T ker A%)) < dim (ker A; N (A ker AY)).
0 1 0

The other inequality > is deduced by symmetry and hence equality holds.
For (iiiy), we use a similar decomposition strategy. Let u be as before and let

(7) dom A; N (A7 dom A}) — H,

be compact. Moreover, let us consider a bounded sequence
(yx) € dom Ay N (=" dom AY),

ie., (yx), (A1), (Afuyr) are bounded. Similar to (6) we get

dom A; = ran A, ®g, (dom Ay Nker Af) = ran A, ®g, (dom Ay N (A7 ker A7),

(8) - - - -
dom Aj = (ran Ag N dom Af) @ ker Aj = (ran Ag N (A" dom Ap)) S, A ker A%

and dom A; = dom A; and dom gg = \; ' dom A} as sets. Now, we apply both decompo-
sitions of (8) to (yx). First, we Hj-orthogonally decompose y; € dom A; into
Yp = Up + Vg, up € ran Ag C ker Ay, v € dom A; N (A] ! ker A%)

with Ajy, = Ajvr. Hence (vy) is bounded in dom A; N (A\; ' ker A3) and by (7) we can
extract a Hy-converging subsequence, again dented by (vy). Second, we H;-orthogonally
decompose A\; ' uy, € A7 dom A into
ANy = wi + 2, wy € ran AgN(A\; dom A4), 2z, € A\[ ' ker A

——

Cker Ay
with Afuy, = AjAwy,. Hence (wy) is bounded in ker A; N (A\;! dom A%) and by (7) we can
extract a Hj-converging subsequence, again dented by (wy). Finally, by H;-orthogonality,
ie., up € ran Ay Ly, ker Af 2 A2y,

<M(yk — Y1), Yk — yz>H1 = Sﬂ(yk — 1), up — Ul)>H1 +<M(yk —Yr), vk — vz>H1

J

= <)\1(wk —wy), up — Ul>H1
< c(|wp — i, + ok — vilm,),

which shows that (y;) is a H;-Cauchy sequence in H;. Thus dom A;N(p~! dom A%) — H,
is compact. O]
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Now we can formulate the counterparts of Lemma 2.7 and Theorem 2.8. The proofs
follow immediately by Lemma 2.12.

Lemma 2.13. Mazimal compactness does not depend on the weights \;. More precisely:
(Ao, A1, Ag) is a mazimal compact Hilbert complez, if and only if the Hilbert complex
(go, gl, 22) 18 maximal compact. In this case, dom D —» ﬁg X ﬁo and dom D* — ]:73 X ﬁl
are compact.

Theorem 2.14. The Fredholm indices do not depend on the weights A;. More precisely:
Let (Ag, A1, As) be a mazimal compact Hilbert complex. Then D, D, D*, and D* are
Fredholm operators with indices

indD = ind D = dim Ny — dim K; + dim K5 — dim Np,, indD* = ind D* = — ind D.

3. THE DE RHAM COMPLEX AND ITS INDICES

In this section, we specialise to a particular choice of the operators Ay, A1, As. Also, we
will show that the assumptions of Theorem 2.8 are satisfied for this particular choice of
operators. We will, thus, obtain an index formula. The computations of the dimensions
of the occurring cohomology groups date back to [23].

Definition 3.1. Let Q C R3 be an open set. We put

grad, : C>(Q) C L*(Q) — L*(Q), ¢ — grad ¢,
curl, : C2*?(Q) C L**(Q) — L**(Q), ¢ — curl @,
div, : C2(Q) C L**(Q) — L*(Q), ® — div P,
and further define the densely defined and closed linear operators
grad := —div}, curl := curl}, div := — grady,
groad .= —div* = grad,, curl := curl* = curl,, div = — grad® = div,.

In terms of classical definitions and notions, we record the following equalities (that are
easily seen):

dom(grad) = H'(Q), dom(grad) = o=()" Y = H}(Q),
o —————H (curl,Q)
dom(curl) = H(curl, Q), dom(curl) = C2%(Q) = Hy(curl, Q),
. ——————H(div,Q)
dom(div) = H(div, ), dom(div) = C*(Q) = Hy(div, Q).

3.1. Picard’s Extended Maxwell System. We want to apply the index theorem in
the following situation of the classical de Rham complex:

Ay = groad, A= cﬁrl, Ay = div,
Ay = —div, A} = curl, A5 = —grad,

DRAm . Ai 0 _ div 0 (DR A Ai _ (—grad cﬁr} ’
AT Ap curl grad 0 Aj 0 —div

A_1=t{0} .o div A3=TRp
— Rpw,

{0} I (Q) Ag=grad LQ"S(Q) Aj=curl L2’3(Q) Ag= LQ(Q)
(9) : :
{0} A_lzvr{o} LQ(Q) Aj=—grad A3:LRPW

Af=—div Al =curl
— —

L*3(Q) L*3(Q) L*(Q) Ropw-
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We note
dom DR"™ = (dom Ay N dom A}) x dom Ay = (Ho(div, Q) N H(curl, Q) x H}(Q).

The complex properties, i.e., A;A; C 0 and A3A; C 0, are based on Schwarz’s lemma
ensuring that curl, grad, = 0 and div. curl, = 0.

Proposition 3.2. Let Q C R? be open. Then
ran Ay = ran(grad) C ker(curl) = ker A,
ran A; = ran(curl) C ker(div) = ker A,

and by Remark 2.2 the same holds for the adjoints (operators without homogeneous bound-
ary conditions).

Proof. See, e.g., [26, Proposition 6.1.5]. O

Theorem 3.3 (Picard-Weber-Weck selection theorem, [24], [27], [29]). Let Q C R3 be a
bounded weak® Lipschitz domain. Then

dom A; Ndom Aj = dom(curl) N dom(div),
dom A, N dom A% = dom(div) N dom(curl)
are both compactly embedded into Hy = Hy = L*3(Q).

Remark 3.4. Proposition 3.2 in conjunction with Theorem 3.3 and Rellich’s selection
theorems show that (grad, curl, div) is a mazimal compact complex. By Remark 2.2 so is
the dual complex (— grad, curl, — div).

Note that

NE™ = ker Ay = ker(grcéd),

N;:}m = ker A} = ker(grad),

KR"™ — ker Ay Nker A% = ker(curl) Nker(div) =: HR™ (),

KR™ — ker Ay Nker A = ker(div) N ker(curl) =: HR™ (),

where we recall from the introduction the classical harmonic Dirichlet and Neumann fields
HR™(Q) and HR™(Q), respectively.

Definition 3.5. Let Q C R3 be bounded and open. Then we denote by

e n the number of connected components of €2, _
e m the number of connected components of the complement R? \ €,
e p the number of handles of (1, see Assumption 3 in Appendiz B for details.

(10)

For p to be well defined we suppose Assumption 3 to hold.
The dimensions of the cohomology groups are given as follows.

Theorem 3.6 ([23, Theorem 1]). Let Q C R3 be open and bounded with continuous
boundary. Moreover, suppose Assumption 3. Then
dimHP™( Q) =m —1,  dimHF™(Q) = p.

Remark 3.7. Note that for Q to have a continuous boundary® is equivalent to have the
segment property, see, e.g., [2].

3The boundary of a weak Lipschitz domain is a 2-dimensional submanifold of the 3-dimensional Lips-
chitz manifold 2 with boundary.
1A boundary being locally representable as the graph of a continuous function.
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Let us introduce the space of piecewise constants by
Rpw := {u € L*() : VC(connect. comp.) CQ Jac € R:ulc =ac}.

Theorem 3.8. Let Q C R? be a bounded weak Lipschitz domain. Then DRM™ is a Fredholm
operator with index

ind DR = dim N3 — dim K" + dim K53"™ — dim N3I™.
If additionally T is continuous and Assumption 3 holds, then
indDR"™ =p —m —n+ 1.
Proof. Recall Remark 3.4. Apply Theorem 2.8 together with (10), the observations

(11) NE™ — ker(grad) = {0}, N3™ = ker(grad) = Ry,
and Theorem 3.6. U
Remark 3.9. By Theorem 2.8 the adjoint of the de Rham operator (DR'™)* is Fredholm
as well with index ind(DR"™)* = —ind DR"™. Moreover, Picard’s extended Mazwell system
s given by

0 0 A 0 0 0 div 0
AROm . ( 0 DRhm) _| 0 0 Al A|_] 0 0 curl grad

—(DRhm)* 0 A3 -A 0 0 grad —curl O 0
0 —45 0 0 0 div 0 0

with (ME™)* = — MR gnd ind MRP™ = dim ker MRM™ — dim ker(MR™)* = (.

3.2. Some More Results. The construction of a maximal compact Hilbert complex is
also possible for mixed boundary conditions as well as for inhomogeneous and anisotropic
media, such as constitutive material laws, see, e.g., [3, 18, 19]. For mixed boundary
conditions we note the following:

Remark 3.10. In order to provide a greater variety of index theorems, it would be inter-
esting to compute the dimensions of the harmonic Dirichlet and Neumann fields also in
the situation of mized boundary conditions. At least for the authors of this article it is
completely beyond their expertise in geometry and topology and it appears to be an open
problem as to which index formulas could be expected in terms of subcohomologies and
related concepts.

For inhomogeneous and anisotropic media (constitutive material laws) we have:

Remark 3.11. As mentioned, a mazximal compact Hilbert complex can also be constructed
for inhomogeneous and anisotropic media. These may be considered as weights X\, as
presented in Theorem 2.14. For Mazwell’s equations a typical situation is given by the
choices \g := Id, X3 := Id, and \; = &, Xy := pu : Q — R¥>3 being symmetric and
uniformly positive definite L*°(QQ)-matriz (tensor) fields. Let us introduce the Hilbert
spaces L23(Q) := Hy := (L*3(Q),(e-, - )125(0)) and similarly L23(Q) := H, as well as
Ho = H3 = H(] = H3 = L2<Q) We look at
ﬁo = groad, Zl = u_l Cﬁrl, 2{2 = div L4,

ﬁ;; = —dive, /Nl’l‘ = ¢! eurl, ﬁ; = — grad,

HRm . _ %2 0y _ div 0
So\A4r A4y \e'curl grad)’
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e (A3 A\ (—grad pleurl
(&™) _(0 A:) 0 —dive )"

i.e., the de Rham complez, cf. (9),

A= 72(0) Ag=gra [ 0 Ay=p~?t cur [ 0 Ay=div nw 712(0 Ag=m, "R
(12> {O} B 2( ) o—ered ?3( ) - l} 273( ) =4 2( ) > . pwW
Ax=_dive - A*=c~Lcur Af=—gra Az=y w
{0} o) L2(Q) 0 d L?S(Q) ! ! L2 S(Q) (—2 grad LQ(Q) <—‘3 Rp Rpw.

Lemma 2.12, Lemma 2.13, and Theorem 2.14 show that the compactness properties, the
dimensions of the kernels and cohomology groups, the maximal compactness, and the Fred-
holm indices of the de Rham complex do not dependent of the material weights € and p.
More precisely,

o dim (ker(curl)N (e ker(div))) = dim (ker(curl) Nker(div)) = dim HFP™(Q) = m—1,
o dim ( (" ker(div)) Nker(curl)) = dim ( ker(div) N ker(curl)) = dim H{™(Q) = p,

o dom(curl) N (e  dom(div)) < L2¥(Q) <«  dom(curl) N dom(div) < L*3(Q),

o (1" dom(div)) N dom(curl) — L3 () & dom(div) N dom(curl) < L%3(€2),

° (grcéd, put curl, div @) is mazximal compact, iff (grcéd, curl, div) is maximal compact,

e —ind(DR"™)* = ind DR = ind DR = p —m — n + 1.

At this point, see Lemma 2.5, Corollary 2.6, and (11), we note that the kernels and
ranges are given by

ker DRM™ = KM 5 NE™™ = H{™(Q) x {0},
ker(DR"™)* = NJI™ x KT'™ = R, x HE™(Q),
ran DR = (ker(DRP™)") Lr2aizie = RpE® x HEm(Q)hizrm),
ran(DRM™)* = (ker DRM™)Fr23@xr2@) = HRIM(Q) 230 x L2(Q).

Finally, Corollary 2.9 yields additional results for the corresponding reduced operators

div. 0
Rhm __ Rhm e
Dreg” =D |(kerDRh"‘)lH2xH0 N (curl groad)

HRIM () T L23@) x 12(Q)

— grad curl

Rhm Rhm % _
(D ) (D ) |(ker(DRhm)*)lH3><H1 - ( 0 —diV) ‘R:‘—NLz(Q)XHgm(Q)LLQ’S(Q)-

red
Corollary 3.12. Let Q C R? be a bounded weak Lipschitz domain with continuous bound-
ary. Then

(Dfizm)*l . ran DRM™ ran(DRhm)*,

((DRhm) ) ran(DRhm)* — ran DR

red

are compact. Furthermore,

(Dfezm)_l - ran DR"™ — dom DR

red >

((DRhm) ) ran(DRhm)* — dom(DRhm)

red red
are continuous and, equivalently, the Friedrichs-Poincaré type estimate

: 1/2
(E, ‘L23 (@ x () S CDRm (| grad u|%2,3(9) + | div E|%2(Q) + |cur1E|%2,3(Q)) /
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holds for all (E,u) in
dom DA™ = (Hy(div, Q) N H(curl, Q) NHI™(Q) 222@) x HY(Q)

red

or (u, E) in

dom (DA™ = (H'(Q) N RiWL2<Q>) x (Hyo(curl, Q) N H(div, Q) NHI™(Q) r22@)

red

with some optimal constant cpram > 0.

Note that the latter estimate is an additive combination of the well known Friedrichs-
Poincaré estimates for grad and the well known Maxwell estimates for (curl, div).

3.3. The Dirac Operator. We will flag up a relationship of the Dirac operator and
Picard’s extended Maxwell system. Let the assumptions of Theorem 3.8 be satisfied.
The extended Maxwell operator is an operator that is surprisingly close to the Dirac
operator. We shall carry out this construction in the following. Recall from Remark 3.9
that Picard’s extended Maxwell system is given by the operator

e 0 D .__ 7yRhm
M'_<—D* 0), D := DR,

Next, we shall introduce the Dirac operator. For this, we define the Pauli matrices
(0 1 (0 —i (1 0
o1 = 1 0/ 09 = i 0 3 O3 1 — 0 —1/-
Q: dom Q C L**(Q) — L**(Q)
3
- 03 01 —1i 05
v '_>;3ﬂ"’j¢—(al+¢az 0, )1”’

we define the Dirac operator
_( 0 Q
L= <_ o 0) .

We have not specified the domain of definition of Q, yet. For now, we shall assume
C>2%(Q)) C dom Q. We shall find the domain of definition of Q corresponding to M; see
also Proposition 3.13 below. We introduce the unitary operators from L*»*(2) into itself

Introducing

0 0 —1 0 0100
0 0 0 -1 0010
We=1_10 0 ol U=1000 1
0 1 0 0 1000

Then the operators £ (Dirac operator) and M (Picard’s extended Maxwell operator) are
unitarily equivalent. More precisely, we have with V' from Proposition 3.13

U 0 Vo0 V0 u 0
M:(o W)(O v)£(0 V*)(O W*>’
dom Q* x dom Q := (‘6* ‘9*) (%* VS*) (domD* X domD) (g I/(I)/) <‘g 3)

and, consequently, @ with domain dom(V*U*DWV') = dom(DWV) is a Fredholm oper-
ator. Moreover, we have ind £ = 0 and

indQ=indD=p—m—n+1.
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We conclude this section by stating the missing proposition used above. The proofs
of which are straightforward and will therefore be omitted. In a slightly similar fashion,
they can be found [25]. For the next result we use L3(€) and LZ(2) to denote the Hilbert
space L?(Q) with the reals and the complex numbers as respective underlying field.

Proposition 3.13 (Realification of £). It holds:
(i) V: LA(Q) = LE*(Q) with Vf == (Rf, Sf) is unitary.

w01
(i) ViV* = (_1 0]
0010 0 0 0 —1 10 0 O
- . 0001 0O 01 0 01 O 0
(iii) @ :=VQoV* =0, 100 0 + 0o 0 10 ol 03 00 -1 0
01 00 -1 0 0 O 00 0 -1

with dom @ =V dom QV*.
4. THE FIRST BIHARMONIC COMPLEX AND ITS INDICES

In this section, we focus on our first main result and properly introduce the operators
involved in the formulation of Theorem 1.1. Thus, we introduce the first biharmonic
complex (see [20, 21]) constructed for biharmonic problems and general relativity, but
also relevant in problems for elasticity. It will be interesting to see that the differential
operator is apparently of mixed order rather than just of first order. It it worth noting
that the apparently leading order term is not dominating the lower order differential
operators.

Definition 4.1. Let Q C R3 be an open set. We put

Gradgrad, : C=(Q) C L*(Q) — L37°(Q), ¢ — Gradgrad ¢,
Curl, : C2373(Q) € LV (Q) — L3°(9Q), ® +— Curl @,
Div. : C257%(Q) C La¥°(Q) — L*¥(9), ® — Div ®,
and further define the densely defined and closed linear operators
divDivg := Gradgrad}, Gracigrad := divDiv§ = Gradgrad,,
symCurly := Curl}, Curls := symCurl’, = Curl,,
devGrad := — Div], Divy := — devGrad* = devGrad.,.

We shall apply the index theorem in the following situation of the first biharmonic
complex:

Ay = Gra(igrad, Ap = Clolrlg, Ay = DoivT,
A = divDivg, A} = symCurly, A5 = —devGrad,

Dbih,l — A2 0 _ DOIVT 9
- \AT Ag symCurly, Gradgrad/ ’

(DPih1ye — A3 A1\ _ [ —devGrad Curlg
0 Aj 0 divDivg ) ’

Gra(igrad TRTpw

L23%3(q) S, 123x3(qy Divey 123(q) Ky R

t{o} 2
(13> {O} L (Q) o

{O} T{0} LQ(Q) divDivg L;,3><3(Q) symCurly L%’BXS(Q) — devGrad L2’3(Q) Rpr-
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The foundation of the index theorem to hold is the following compactness result es-
tablished by Pauly and Zulehner. Note that it holds dom(Gradgrad) = HZ(Q2) and
dom(devGrad) = H"3(0Q).

Theorem 4.2 (21, Lemma 3.22, Theorem 3.23]). Let Q@ C R? be a bounded strong
Lipschitz domain. Then (Gradgrad, Curls, Divy) is a mazimal compact Hilbert complex.

We observe and define

NP = ker Ay = ker(Gradgrad),

Ny™! = ker Ay = ker(devGrad),

K™ = ker Ay Nker A} = ker(Curls) N ker(divDivs) =: Hipys' (),
K51 — ker Ay Nker A} = ker(Divy) N ker(symCurly) =: HR‘,%I(Q).

(14)

The dimensions of the cohomology groups are given as follows.

Theorem 4.3. Let  C R3 be open and bounded with continuous boundary. Moreover,
suppose Assumption 3. Then

dim Ay (Q) =4(m—1),  dimHyy (Q) = 4p.
Proof. We postpone the proof to the Appendix. O
Let us introduce the space of piecewise Raviart-Thomas fields by
RTpw == {v € L**(Q) : VC(con. cp.) CQ Jac €R, e € R® : u|c(z) = acz + B}
The proper formulation of the first main result, Theorem 1.1, reads as follows.

Theorem 4.4. Let Q C R3 be a bounded strong Lipschitz domain. Then D™ is q
Fredholm operator with index

ind DM = dim Ng™' — dim K™ + dim K3™" — dim Ny
If additionally Assumption 3 holds, then
ind D™ = 4(p —m —n +1).
Proof. Using Theorem 4.2 apply Theorem 2.8 together with (14), the observations
(15) NP — Ker(Gradgrad) = {0}, N;i:’l = ker(devGrad) = RT,,,
see [21, Lemma 3.2, Lemma 3.3|, and Theorem 4.3. O

Remark 4.5. By Theorem 2.8 the adjoint (DPM1)* is Fredholm as well with index simply
given by ind(DPMY)* = —ind DPML. Similar to Remark 3.9 we define the extended first
biharmonic operator

0 0 Divy 0

b . ( 0 Dbih’l) _ 0 0 symCurly Gra&grad
' — (Dbt 0 devGrad — Curlg 0 0
0 — divDivg 0 0

with (MPP1)* = — MPML and ind MPM = 0.
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4.1. Some More Results. Inhomogeneous and anisotropic media may also be consid-
ered for the first biharmonic complex, cf. Remark 3.11.

Remark 4.6. Let g := Id, A3 := Id, and A\ := e, Xy = p : Q — R33X33 peing
symmetric and uniformly positive definite L>°(Q2)-tensor fields. Moreover, let us introduce
L§:§x3(9> = Hy = (L§’3X3(Q), (e, ~>L§,3x3(9)) and similarly LQgXS(Q) := Hy as well as

Hy = Hy = L*(Q), Hy = Hy = L>3(Q). We look at

Zo = Gracigrad, A= wt Cloll"lg, A, = Divy L4,
ES = divDivg e, E{ = ¢ ' symCurly, Aé = — devGrad,
pbihl . %2 _ DwT 1 0
Ay A e~ symCurly Gradgrad
(5bih71)* _ ﬁ; _ deVGrad pt Curlg
0 A* divDivg e
, the first biharmonic complez, cf. (13

{O} {0} LZ(Q) Gradgrad L;’SX?’(Q) w1t Curlg L2,3><3(Q) DiV_TM>L2,3(Q) TR pw Rpr7

) T,
(16) .
{O} T{o} LQ (Q) divDivg e L§:§X3 (Q) e~ symCurly L%’fszfi (Q) — devGrad L2’3 (Q) Rpr RTpW

Lemma 2.12, Lemma 2.13, and Theorem 2.14 show that the compactness properties, the
dimensions of the kernels and cohomology groups, the maximal compactness, and the
Fredholm indices of the first biharmonic complex do not dependent of the material weights
€ and p. More precisely,

. dim (kel‘(ClolI"lS) N (e~ ker(divDivg))) = dim (ker(CﬁrlS) N ker(divDivs))
= dim My (Q) = 4(m — 1),

o dim((p ker(DoivT)) N ker(symCurly)) = dim (ker(DoiVT) N ker(symCurly))
= dimHpys (2) = 4p,

. dom(Curls) N N (e~ dom(divDivg)) — ngxfﬂ (%)
& dom(Curls) N dom(divDivg) < L* 279(Q),
o (! dom(DivT)) N dom(symCurly) — L%:ZX?’(
& dom(Divy) N dom(symCurly) < L LZ3(Q),
° (Gradgrad, w! Curlg7 Divy w) maz cpt, iff (Gradgrad, Clolrlg, DOiVT) mazx cpt,
. — ind(D°M)* = ind DY = ind DM = 4(p —m —n + 1).

Note that the kernels and ranges are given by
ker PP — Kgih,l Nbih,l _ H?\i[hi}( ) x {0},
ker(Dbih’l)* _ N2b|: 1 Kblh 1 _ Rpr « Hblh I(Q)’
L 23x3

L213(Q) bih,1 ) Q
= RTow 7 X Hp e () 57,

J_L2,3><3(Q> « LZ(Q)’

ran Dblh 1 (ker(Dblh 1) )J‘L2 3(Q)><L2 B3X3(q

1Aanu)bih,l) (ker pbih, 1) L2373 @)xL2(Q) _ H?\ll%l (Q)
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see Lemma 2.5, Corollary 2.6, and (15). Corollary 2.9 shows additional results for the
corresponding reduced operators

phind _ pbin ) - Divy 0
red — (kerDbih,l)J-HQXHO -

Y

L 2,3><3(

symCurly Gradgrad 1) I p2(0)
bih,1\x __ /ybih,1\* [ —devGrad Curlg ‘
(Dred ) - (D ) |(ker('Dbih,1)*)lH3 xHy — ( 0 diVDng RT:,VLZ’a(Q) XH%h”gl (Q)LL§’3X3(Q) .

Corollary 4.7. Let Q C R? be a bounded strong Lipschitz domain. Then
(DEML)=1 ; ran Db pan(DbinL)*,
((D21)*)~L : ran(DPM1)* — ran PPN
are compact. Furthermore,

(D:’e'g’l)_ - ran D! 3 dom DM

red
((DE)) s ran (D) > dom(D )

are continuous and, equivalently, the Friedrichs-Poincaré type estimates

()xL2(Q)

(T, w) |L121."3X3 ()

< Cpbih,1 (| Gradgrad U|iz,3x3
S

: 1/2
+ | Div T]%Q,g(m + |symCurlT!i§,3X3(Q))

Y

2
‘(v, S)’Lz,?)(me;,gxg(Q) < Cppina (] devGradv|L%,3X3(Q)

+ | divDiv S|%2(Q) + | Curl SJ7 25 )1/2
T

(@)
hold for all (T, u) in

L 23x3

dom D! (dom(DlvT) N dom(symCurly) N Hb'h H(Q) @) x HY(Q)

red
for all (v,S) in
dom(DPn1)* = (H'3(Q) N RTp ")
X (dom(Curlg) N dom(divDivg) N Hb'h Q) )L 23“(9))

with some optimal constant cpyini > 0.

5. THE SECOND BIHARMONIC COMPLEX AND ITS INDICES
Definition 5.1. Let Q C R3 be an open set. We put

devGrad, : C>*(Q) C L*3(Q) — L3*%(Q), ¢ — devGrad ¢,

symCurl, : C’Z?r’gx‘?(ﬂ) C L273(Q) — L2%P(Q), ¢ — symCurl ®,
divDiv. : Cog***(Q) € Lg¥°(Q) — L*(), ® > divDiv @,
and further define the densely defined and closed linear operators
Divy := — devGrad, devGrad := — Divt = devGrad,,
Curlg := symCurl’, symCurly := Curl} = symCurl,,

Gradgrad := divDiv}, divDivg := Gradgrad® = divDiv.,.



22 DIRK PAULY AND MARCUS WAURICK

We shall apply the index theorem in the following situation of the second biharmonic
complex:

Ag = dev(o}rad, A= symoCurlT, Ay = divbivS,
Ay = — Divry, A} = Curlg, A5 = Gradgrad,
Dbih’2 o AQ 0 _ diVbiVS 9
' Al A Curls devGrad/’

(Dbin2ys — As Ay _ ( Gradgrad symoCurlT
0 AEk) 0 —DiV'H‘ ’

L evGra; symCur ivDivs Pl
{0} {0} L2,3(Q) devGrad L%SX?}(Q) ymCurly Lg’gXS(Q) divDivg LQ(Q) i Pl

(17) P

{0} Tio} L2’3(Q) — Divy L%’Bxg(ﬂ) Curlg L;’BXB(Q) Gradgrad L2(Q)&P;W.
Note that dom(devGrad) = Hy*(Q) by [21, Lemma 3.2].

Lemma 5.2. Let Q C R3? be a bounded strong Lipschitz domain. Then it holds that
dom(Gradgrad) = H?(Q2) and that there exists ¢ > 0 such that for all u € H?()

clulpz) < |ulr2i) + | Grad grad up2.sx3(q).

Proof. Let u € dom(Gradgrad). Then gradu € H 1'3(Q2) and Gradgradu € L?3%3(Q).
Necas’ regularity yields gradu € L*3(Q) and thus v € HY(Q) and gradu € H3(Q).
Hence u € H?(Q2) and by Necas’ inequality we have

| grad u| 230y < ¢(| grad u|g-15(0) + | Grad grad u|g-1.3x3(0) )
< ¢(Ju|r2(q) + | Grad grad u|p2:x3 () ),
showing the desired estimate. U

Theorem 5.3. Let () < R3 be a bounded strong Lipschitz domain. Then the second
biharmonic complez (devGrad, symCurly, divDivs) is a mazimal compact Hilbert complex.

Proof. The assertions can be shown by using the ‘FA-ToolBox’ from [17, 18, 19, 21, 22].
The compact embeddings for topologically trivial domains can be proved by a combination
of Helmholtz decompositions and regular potentials as in [21, Theorem 3.10, Theorem
3.12, Lemma 3.19] or in [22, Theorem 3.5, Corollary 3.6, Lemma 3.8]. For general strong
Lipschitz domains we follow the proof of [21, Lemma 3.22] or [22, Theorem 3.17]. Due to
the boundary condition attached to the ‘second order’ operator diVbng the proofs have
to be modified at some places leading to some additional (but handable) difficulties. [

We observe and define

NP2 — ker Ay = ker(devGrad),

NQbf:’Q = ker A} = ker(Gradgrad),

K22 — ker Ay Nker Af = ker(symCurly) N ker(Divy) =: H%};{Tz(ﬁ),
K52 — ker Ay Nker A} = ker(divDivs) N ker(Curls) =: H%?S’Q(Q).

(18)

Let us introduce the space of piecewise first order polynomials by

PFl,W = {v € L*() :VC(con. cp.) CQ Fac €R, Be € R 1 ulp(z) = ac + B :c}
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Theorem 5.4. Let 0 C R3 be open and bounded with continuous boundary. Moreover,
suppose Assumption 3. Then

dm AR (Q) =4(m—1),  dimHyg (Q) = 4p.
Proof. We postpone the proof to the Appendix. 0

Theorem 5.5. Let Q C R3 be a bounded strong Lipschitz domain. Then D*M? is q
Fredholm operator with index

ind DP"? = dim Ng"™? — dim K7™ + dim K™ — dim Ny 2.
If additionally Assumption 3 holds, then
ind DM = 4(p —m —n +1).
Proof. Using Theorem 5.3 apply Theorem 2.8 together with (18), the observations
(19) Ng™ = ker(devGrad) = {0},  Ny* = ker(Gradgrad) = P,
by using [21, Lemma 3.2 (i)], and Theorem 5.4. O

Remark 5.6. By Theorem 2.8 the adjoint (D*"2)* is Fredholm as well with index simply
given by ind(DPM2)* = —ind DPM2. Similar to Remark 3.9 and Remark 4.5 we define the
extended second biharmonic operator

0 0 divDivs 0

b2 ( 0 Dbih’2> _ 0 0 Curls devGrad
. —(D"™) 0 — Gradgrad —symCurly 0 0
0 DiVT 0 0

with (MPM2)* = — MPM2 gpd ind MPM2 = 0

5.1. Some More Results. Inhomogeneous and anisotropic media may also be consid-
ered for the second biharmonic complex, cf. Remark 3.11 and Remark 4.6.

Remark 5.7. Recall the notations from Remark 4.6 and set Ao :=Id, A3 Id A =€,

Ao 1= i, and Hy = LEY3(Q), Hy == L3%(Q), Hy = Hy = L*3(Q), Hy = H; = L?(Q).
We look at

,Z[O = devérad, A = pt symOCurlT, Zg = divbivS,u,

116 = — Divre, gﬁ = ¢! Curlg, g; = Gradgrad,

Dbih2 . 42 0y _ diVODiVS,u ()
' AT Ay e~ Curls devGrad/’

(5bih,2)* _ Aj %1 _ ( Gradgrad ,u_lsymoCurlT
0 AS 0 —DiVTE ’

i.e., the second biharmonic complez, cf. (17),

oo O 10, 23 devtnd, i) p O, paig) D, p2(0) Ty pl
i -1 radgra w
{O} T{0} L23(Q> — Divre L%’iXB(Q) e~ " Curlg Lg:iXS(Q) Gradgrad LQ(Q) Pp P;w
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Lemma 2.12, Lemma 2.13, and Theorem 2.1/ show that the compactness properties, the
dimensions of the kernels and cohomology groups, the maximal compactness, and the Fred-
holm indices of the second biharmonic complex do not dependent of the material weights
€ and . More precisely,

o dim (ker(symoCurlT) N (e~ ker(Divy))) = dim (ker(symoCurlT) N ker(Divr))
= dim Hy7(Q) = 4(m — 1),

o dim ((p! ker(divoDiv§)) N ker(Curls)) = dim (ker(divbivS) N ker(Curls))
= dim H¥ () = 4p,

o dom(symCurly) N (¢7! dom(Divy)) < — L32°(Q)
& dom(symCurly) N dom(Divy) < L% 3X3(Q),
o (! dom(dewS)) N dom(Curlg) < L2 iX?’( )
& dom(divDivs) N dom(Curlg) < — L23(Q),
. (devérad, ot symoCurlT, divbiVSu) m cpt, iff (devérad, symoCurlT, divbivs) m cpt,
. — ind(D""?)* = ind D*™? = ind DM = 4(p —m —n+1).

Note that the kernels and ranges are given by
ker Dbih,Q — K;ih 2 Nblh 2 _ Hblh 2( ) {0}
ker(beih,Q)* — N2bi:,2 % Kblh,2 — Pl % th’]I?(Q)

2,3x3 1 2.3x3 )

(Pl ) L2(Q) ¥ Hb'h2( ) Ly’ 97
ran(Dbih’2) (ker pbih, 2) (@xL23(Q) _ H?\I,?SQ(Q)J— L3373 () L2’3(Q),

see Lemma 2.5, Corollary 2.6, and (19). Corollary 2.9 shows additional results for the
corresponding reduced operators

ran Dblh 2 (ker(Db'h 2) ) LQ(Q)xL

2 3x3

bih,2 _ ybih,2
Dred =D | b|h2 Q)L ,2:3%3

diVbiVS 0
) 1L —
(ker Dbih2) ™ H2xHo Curls  devGrad

([ Gradgrad symCurlT
(ker(Dbih.2)*) - Hyx Hy — 0 — Divy

(D 123 (Q)

(Dfeizg)* — (rDbih,2)* ‘

) L 23x3 .
(PL) 2@ x2() L1

Corollary 5.8. Let Q C R? be a bounded strong Lipschitz domain. Then
(DEM2)=1 ; ran DbIN2 _ pan(Dbin2)*,
((D25)*)~L : ran(DP"2)* — ran DO
are compact. Furthermore,

(DZZ’Q) - ran DP"? 3 dom PPN

red
(D542 s ran( D) dom(DE )
are continuous and, equivalently, the Friedrichs-Poincaré type estimates

2
}(S, v) }Lg,gxgm)xms(m < Cpbin2 (| devGrad U|L%3X3(Q)

+ | divDiv §[22 0 + | Curl S 2ss ) /2
T

?

()

2
|(u, T) ’LQ(Q)XL%;;Xg(Q) < cpinz (| Gradgrad u|L§’3X3(Q)
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. 1/2
+ |D1V T|%2,3(Q) + |SymCU.I'1T|i§,3><3(Q))

hold for all (S,v) in
dom D2h? = (dom(divi)ivs) N dom(Curlg) N H%t'gz(Q)LLé’g’”(m) x HY3(Q)

red
for all (u,T) in
dom(D2?)" = (H2(2) 1 (P,) %)

X (dom(symDCurlT) N dom(Divr) N ’}—Lgt‘g(Q)LL%M‘(m)

with some optimal constant cpyinz > 0.

6. THE ErasTiciTy COMPLEX AND ITS INDICES

This section is devoted to adapt our main results Theorem 1.1, Theorem 4.4, and
Theorem 5.5, to the elasticity complex, see [22] for details. Its elasticity differential
operator is of mixed order as well, this time in the center of the complex. As before
for the biharmonic operators, the leading order term is not dominating the lower order
differential operators.

Definition 6.1. Let Q C R3 be an open set. We put
symGrad, : C>3(Q) C L**(Q) — L3*°(Q), ¢+ sym Grad ¢,
CurlCurl] : CZ57°(Q) C L3¥°(Q) — LE¥?(Q), @ = CurlCurl @ := Curl(Curl @) 7,
Div. : C257%(Q) € Lg¥P(Q) — L**(Q), & — Div,

and further define the densely defined and closed linear operators

Divg := —symGrad}, symGrad := — Divi = symGrad,,
CurlCurlg := (CurlCurl] )*, CurlCurl! := (CurlCurld )* = Curl—CurlcT,
symGrad := — Div}, Divs := — symGrad* = Div,.
We want to apply the index theorem in the following situation of the elasticity complex:
Ay = symérad, A= CurloCurlér , Ay = DOiVS,
Ay = — Divs, Al = CulrlCulrlg7 A5 = —symGrad,

Dela o AQ 0 o DOiVS 0
C\AT A CurlCurlér symGrad ) ’
(D) — A5 A\ _ (—symGrad CurlCurl{
S \0 A 0 —Divg )’

CurlCurl] TRMpu

{0} =% £28(@) B L50() L3(@) P75 LP4(Q) T RMp,

(21)

{0} S p2a(q) SR p29x8 () SO s q) SamGnd o g) [ gy
The foundation of the index theorem to follow is the following compactness result

established by Pauly and Zulehner. Note that we have dom(symGrad) = H,?(Q) and

dom(symGrad) = H'3(Q).

Theorem 6.2 ([22, Theorem 3.17]). Let Q C R® be a bounded strong Lipschitz domain.

Then (symGrad, CurlCurld , Divg) is a mazimal compact Hilbert complex.



26 DIRK PAULY AND MARCUS WAURICK
We observe and define
NE™ = ker Ay = ker(symGrad),
N3 = ker A5 = ker(symGrad),
K& = ker A; Nker A% = ker(CurlCurl] ) N ker(Divg) =: Hs(Q),
K$§2 = ker Ay Nker A* = ker(Divg) N ker(CurlCurld ) =: Hy's(Q).

The dimensions of the cohomology groups are given as follows.

(22)

Theorem 6.3. Let Q C R3 be open and bounded with continuous boundary. Moreover,
suppose Assumption 3. Then

dimHP(Q) =6(m—1),  dimH3s(Q) = 6p.

Proof. We postpone the proof to the Appendix. O

Let us introduce the space of piecewise rigid motions by

RMpy := {v € L**(Q) :VCO(con. cp.) CQ Fag, Be € R? 1 ulo(z) = ac x x + ﬁc}.
Theorem 6.4. Let Q C R3 be a bounded strong Lipschitz domain. Then D is a Fredholm
operator with index

ind D = dim N¢? — dim K& + dim K52 — dim NS':
If additionally Assumption 3 holds, then
ind D = 6(p —m —n + 1).

Proof. Using Theorem 6.2 apply Theorem 2.8 together with (22), the observations
(23) N = ker(symGrad) = {0}, Ns? = ker(symGrad) = RM,,
see [22, Lemma 3.2], and Theorem 6.3. O

Remark 6.5. By Theorem 2.8 the adjoint (D¥?)* is Fredholm as well with index simply
given by ind(D¥?)* = —ind D2, Similar to Remark 3.9, Remark 4.5, and Remark 5.6 we
define the extended elasticity operator

0 0 Divg 0

Ml — ( 0 De'a) _ 0 0 CurlCurl{ symGrad
' —(D*)* 0 symGrad —CurloCurlér 0 0
0 Divg 0 0

with (M®2)* = = M*2 and ind M®? = 0.

6.1. Some More Results. Inhomogeneous and anisotropic media may also be consid-
ered for the elasticity complex, cf. Remark 3.11, Remark 4.6, and Remark 5.7.

Remark 6.6. Recall the notations from Remark 4.6 and Remark 5.7 and set Ao := 1d,
As == 1d, Ay ==&, Ay := i, and Hy = Hy = Hs = Hy = L*3(Q), Hy = L37°(Q),
Hy = L;:ZXS(Q). We look at

20 = sym&}rad, /Tl = u_lCurloCurlg, /Tg = DDiVS 14
ﬁ(’; = — Divge, Z’{ =g ! CurlCurlg, Z; = —symGrad,
DOiVS H 0

ﬁela - A:2 9 — .
- \47 A e~ CurlCurl{ symGrad)’
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Selayx 113 A [ —symGrad ,u’lCurloCurlér
By = (4 A 2 .
0 A 0 ~Divse

i.e., the elasticity complex, cf. (21),

p~tCurlCurly TRMpw

{0} L{o} LQ’S(Q) symGrad ngix?,(ﬂ) ngix3(Q) ML273(Q) RMpw7

(24) | . -
{0} T{0} L2’3(Q) — Divge L§j§X3(Q) e~ " CurlCurlg Lg:iX?)(Q) — symGrad LQ’S(Q) LRMpw RMPW
Lemma 2.12, Lemma 2.13, and Theorem 2.14 show that the compactness properties, the
dimensions of the kernels and cohomology groups, the maximal compactness, and the
Fredholm indices of the elasticity complex do not dependent of the material weights € and
. More precisely,

e dim (ker(CurloCurlST) N (e~ ker(Divg))) = dim (ker(CurloCurlST) N ker(Divg))
= dim HF5(Q) = 6(m — 1),
e dim((p" keI‘(DOiVS)) N ker(CurlCurld )) = dim ( k er(Divg) N ker(CurlCurld )

= dim H () = 6p,
o dom(CurlCurld ) N N (e~ dom(Divg)) < L§§X3 (Q)
& dom(CurlCurlS ) N dom(Divs) < Lz***(Q),
. (1" dom(Divs)) N dom(CurlCurlg ) < LZ (0

& dom(Divg) N dom(CurlCurld ) — LE3(0Q),
° (sym&}rad, /flCurloCurlST . Divg w) m ept, iff (Symérad, CurfCurlér , DoivS) m cpt,
o —ind(D*?)* = ind D = ind D = 6(p — m — n + 1).
Note that the kernels and ranges are given by
ker DO = K& x N&2 = 92 () x {0},
ker(D?)* = N5'2 x K{° = RMPW X H3s(€),

ran D = (ker(De2)*) 1@ @) _ RMEP@) o el () 1)
ran(D%)" = (ker D) @it — gy () @ 123(),

see Lemma 2.5, Corollary 2.6, and (23). Corollary 2.9 shows additional results for the
corresponding reduced operators

L 23x3

Dela — Dela| L _ DIVS 9
red (ker Dela)~Hax Ho CurlCurlg symGrad ) Ixsz (@) *s @ 123(q)

claye _ ryelays _ (—symGrad CurlCurl
(Dred) = (D ) ‘(ker('pela)*)LngHl = ( 0 —DiVSS e Li2am (0 )L £23%3(g)
Corollary 6.7. Let Q C R? be a bounded strong Lipschitz domain. Then
(D)~ : ran D — ran(D?)*,
((D23)*)~! : ran(D**)* — ran D"

are compact. Furthermore,

(D2)~! : ran D¥? — dom D3

red’
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((,Dela>*)71 Zl"aIl(Dela)* N dOm(Dela)*

red red

are continuous and, equivalently, the Friedrichs-Poincaré type estimate

symGrad U|i2,3><3
S

| (S, ’U) |L§’3X3(Q)XL273(Q) S Cpela ( ()

. 1/2
-+ ‘ DlV 5’123(9) -+ | CurlCurlT S‘ié?)x:‘s(g))

holds for all (S,v) in

2,3x3

dom D = (dOIn(DGiV§) N dom(CurlCurld ) N H%&:S(Q)LLS @) x Hy*(Q)
or (v,5) in

dom(pela)* _ (Hl’S(Q) N RM,J)-WLz,S(Q))

red
o J_ ><’
X (dom(CurlCurlST) N dom(Divg) N H%ﬁS(Q) L3? d(9))

with some optimal constant cpea > 0.

7. CONCLUSION

The index theorems presented rest on the abstract construction principle provided
in [7] and the results on the newly found biharmonic complex from [20, 21] and the
elasticity complex from [22]. With this insight it is possible to construct basis fields
for the generalised harmonic Dirichlet and Neumann tensor fields, see Appendix. This
construction heavily relies on the choice of boundary conditions and we emphasise that
the considered mixed order operators cannot be viewed as leading order plus relatively
compact perturbation, when it comes to computation of the Fredholm index. In particular,
techniques from pseudo-differential calculus successfully applied to obtain index formulas
for operators defined on non-compact manifolds or compact manifolds without boundary,
see e.g. [11, 12], are likely to be very difficult to be applicable in the present situation.
It would be interesting to see, whether the operators considered above defined on an
unbounded domain enjoy similar index formulas (maybe a comparable Witten index of
some sort) even though the operator itself might not be of Fredholm type anymore.
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APPENDIX. DIRICHLET AND NEUMANN FIELDS

In Theorem 3.6, Theorem 4.3, Theorem 5.4, and Theorem 6.3 we have seen that the
dimensions of the harmonic Dirichlet and Neumann fields are given by the topological
invariants of the open and bounded set {2 and its complement

Z:=R*\Q,
ie., by

e n, the number of connected components €2, of €2, i.e., ) = U:Zl Qk,

e m, the number of connected components =, of =, i.e., Z = UZ:O =y,
e p, the number of handles of €2, see Assumption 3.
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More precisely, we recall
dim HR™ (2

dlmHRhm(Q) = Q) =p,

) sm 1), m M () = 4p,
dim Hb'h 2(Q) = 4(m — 1), dim Hb'h 2(Q) = 4p,
dim H35(Q) = 6(m — 1), dim H3s () = 6p.

This appendix provides the corresponding proofs in detail. For the de Rham complex
we follow in close lines the arguments of Picard in [23] introducing some simplifications
for bounded domains and trivial material tensors € and p. These ideas will be adapted
and modified for the proofs of the corresponding results of the other Hilbert complexes.

Assumption 1. Q C R? is open and bounded with segment property, i.e., Q has a con-
tinuous boundary I' := 0, see Remark 3.7.

Assumption 2. Q C R3 is open, bounded, and I is strong Lipschitz.

In view of Assumption 1 and Assumption 2 we note:

e Assumption 1 guarantees that m,n € N are well defined. So does Assumption 3
for p € Ny. In particular, intZ, # () for all £ =0,...,m — 1.

e Assumption 2 implies Assumption 1.

e Assumption 2 simplifies some arguments, in particular, all ranges in the crucial
Helmholtz type decompositions used in our proofs are closed, cf. Remark B.2,
Remark B.11, Remark B.18, and Remark B.24. We emphasise that all our results
presented in this appendix still hold with Assumption 2 replaced by the weaker
Assumption 1. In this case it is not clear if the mentioned ranges are closed and in
some of our arguments we need to use some additional density and approximation
arguments.

Let us recall from Lemma 1.3 the local regularities
rHRhm( ) rHRhm( ) OOO’S(Q) ﬂLQ’g(Q),
(25) HO (), 13 (Q), e (), Hs(Q) € 3 (Q) 0 L),
Hblh Q(Q) Hblh I(Q) C Coo,3><3(Q) N L’]2T,3><3<Q).

In particular, all Dirichlet and Neumann fields of the respective cohomology groups are
continuous and square integrable.

APPENDIX A. DIRICHLET FIELDS

Let us denote the unbounded connected component of = by =, and its boundary by
'y := 0Zy. The remaining connected components of = are =1, ...,=,, 1 with boundaries
I'y := 0=,. Note that none of I'y,...,I',,,_1 need to be connected. Furthermore, let us
introduce an open (and bounded) ball B D Q and set =y := BN E,. Then the connected

components of B\ Q are EO and =Zq,...,=,,_1. Moreover, let
(26) EEeECERY),  (=1,...,m—1,

with disjoint supports such that £, = 0 in a neighbourhood of Zj and in a neighbourhood of
Epforall ¢ £k e {l,...,m—1} as well as {& = 1 in a neighbourhood of Z,. In particular,
& = 01in a neighbourhood of I'y and in a neighbourhood of I'y, for all ¢ # k € {1,...,m—1}
and & = 1 in a neighbourhood of I'y. Theses indicator type functions & will be used to
construct a basis for the respective Dirichlet fields.
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A.1. Dirichlet Vector Fields of the Classical de Rham Complex. For the de Rham
complex, simliar to (3) and (4), we have the orthogonal decompositions

L**(Q) = Hy = ran Ay @y, ker A = ran(grad, Q) @230 ker(div, 2),

27 . .
27) ker(curl, Q) = ker(A;) = ran Ay ®p, K; = ran(grad, ) @250 HRhm( ).

Remark A.1. It holds dom(grad, Q) = H2(Q). Moreover, the range in (27) is closed by
the Friedrichs estimate

Je>0 Vo€ Hy(Q) || r2(0) < cf grad @230
which holds by Assumption 1. Note that ) open and bounded is already sufficient.

Let us denote in (27) the orthogonal projector onto ker(dlv Q) resp. HI™(Q) by 7.
Moreover, recall the functions & from (26). Then for £ =1,. -1

grad &, € C23(Q) Nker(curl, Q) C ker(cﬁrl, Q)
and there exists some 1), € H}(Q) such that
HE™(Q) 3 mgrad & = grad (&, — ) = gradug,  wg =& — ¢ € H' ().
We shall show that
(28) BY™ .= {graduy, ..., grad u,_ 1} C HF™(Q)

defines a basis of HF™(Q).
Note that ¢, € H}(€2) can be found by the standard variational formulation

Voe Hy(Q)  (graddy, grad ¢)2sq) = (grad &, grad ¢) r25(q),
i.e., 1y = ATLAE,. Therefore, uy = & — by = (1 — A7LA)E, € HY(Q) and
grad u, = grad(1 — A_IA)&
= (grad — grad A’lA)&
= (1 — grad A1 div) grad &.

Let us also mention that u, solves in classical terms the Dirichlet Laplace problem
—Auy = —divgraduy, =0 in €2,

(29) up =1 on I,
u =0 onl'y, 0 #k=0,...,m—1,
which is uniquely solvable. In particular, for all / =1,...,m — 1 it holds u, = 0 on T'y.

Lemma A.2. Let Assumption 1 be satisfied. Then HF™(Q) = lin BR™.

Proof. Let H € HR™(Q) = ker(curl, ) N ker(div, 2). In particular, by the homogeneous

boundary condition its extension by zero H to B belongs to ker(curl B). As B is topo-
logically trivial (and smooth and bounded), there exists (a unique) v € Hj(B) such that

gradu = H in B, see, e.g., [21, Lemma 2.24]. As gradu = H = 0 in B\ ©, v must be

constant in each connected component =g, =4,...,=,,_1 of B \ﬁ Due to the homogenous
boundary condition at B, u vanishes in =,. Therefore, H = grad v in  and u € H}(B)
such that u|z. =0 and u|lzg, =t ay € Rforall { =1,...,m — 1. Let us consider
=0
m—1 m—1

H:=H-— ZaggradUg—gradueHRhm() ﬁ::u—ZagugeHl(Q)
(=1 =1
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with u, from (28). The extension by zero of 1, to @Zg belongs to H}(B). Hence as an
element of H'(B) we see that

m—1 m—1
Upi=u—Y e+ Y oy € H)(B)
=1 (=1

vanishes in all Z,. Thus @ = Up|q € Hi(Q) by Assumption 1, and we compute
|H|i2,3(9) = (grad ﬂ, H>L2v3(Q) = 0,
finishing the proof. 0

Note that, in classical terms, u from the later proof solves the linear Dirichlet Laplace
problem

—Au = —divgradu = —divH =0 in €2,
u =0 on I'g,
u=ay €R only, /=1,...,m—1,

which is uniquely solvable as long as the constants are prescribed.
Lemma A.3. Let Assumption 1 be satisfied. Then BE™ is linear independent.

Proof. Let

-1

3

m—1
apgraduy = 0, U= E oy
=1

~
I

1
Then gradu = 0 in §, ie., u is constant in each connected component of (2. We show
u = 0. Recall uy = & — vy in Q. Extension by zero of vy to 1, shows u, € H}(B), where

S e in €, rad @ — grad uy in (2,
T e wB\Q, T \gadg =0 i B\ Q.

Note that % = & =0 in =g and in Zj, for all ¢ £k =1,...,m — 1 and that @, = & = 1
in =y. Then

3

—1
U= gty € Hy(B)
1

~
Il

with @ = 0 in 5y and gradd = 0 in B\ Q as well as gradu = gradu = 0 in Q by
assumption. Hence, gradu = 0 in B, showing u = 0 in B. In particular, u = 0 in 2, and
ag=1lg, =0forall £ =1,...,m — 1, finishing the proof. O

Theorem A.4. Let Assumption 1 be satisfied. Then dim HR'™(Q) = m — 1 and a basis
of HR'™(Q) is given by (28).

Proof. Use Lemma A.2 and Lemma A.3. O

A.2. Dirichlet Tensor Fields of the First Biharmonic Complex. For the first bi-
harmonic complex, simliar to (3), (4), and (27), we have the orthogonal decompositions

L2¥3(Q) = ran(Gradgrad, Q) B 2% ker(divDivs, €2),

(30) ° : bih,1
ker(Curls, 2) = ran(Gradgrad, ) D) Hpg ().
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Remark A.5. It holds dom(Gradgrad, Q) = H2(Q2) by [21, Lemma 3.3]. Moreover, the
range in (30) is closed by the Friedrichs type estimate
Je>0 Voe H(Q) || 1) < c| Gradgrad ¢ 2.5x3(q),
which holds by Assumption 1. Note that ) open and bounded is already sufficient.
Let us denote in (30) the orthogonal projector onto ker(divDivs, §2) resp. Hg'}él(ﬂ) by
7 and recall the functions & from (26). We introduce polynomials p; given by py(z) :=1
and p;(z) = z; for j = 1,2,3 and define &, = &p; for all £ € {1,...,m — 1} and
all 7 = 0,...,3. In particular, for all j = 0,...,3 we have £ ; = 0 in a neighbourhood

of =y and in a neighbourhood of = for all ¢ # k € {1,...,m — 1} and &; = p; in a
neighbourhood of =,. Then

Gradgrad &,; € Co¢”**(€2) Nker(Curls, Q) C ker(Curls, Q)
and there exists some v ; € H(Q2) such that
H%’fgl(ﬁ) > 7 Gradgrad &, ; = Gradgrad(&,; — ¢;) = Gradgrad ug,
with wpj = & ; — e € H*(Q2). We shall show that
(31) B! = {Gradgrad ug;}e=1,..m—1, C Hpys ()
j

=0,...,3

defines a basis of H‘;[‘S’I(Q).
Note that ¢, ; € HZ(2) can be found by the standard variational formulation

V¢ € H(Q) (Gradgrad iy ;, Gradgrad ¢>L§,3x3(9) = (Gradgrad & ;, Gradgrad ¢>L;,3x3(9),
ie., by = (A2)"1A2¢, ;. Therefore, uy; = & — he; = (1- (A2)71A2)f&j € H?*(Q) and
Gradgrad u,; = Gradgrad (1 — (Az)_lAQ)&’j

= ( Gradgrad — Gradgrad(ﬁ2)’1A2)£m

= (1 — Grlraudgraud(AQ)_1 divDng) Gradgrad & ;.
Let us also mention that wu,; solves in classical terms the biharmonic Dirichlet problem

AQWJ := divDivg Gradgrad ug; =0 in €,
(32) ug; = pj, graduy; =gradp; =€’ on Iy,
w; =0, gradug; =0 only, (#k=0,....,m—1,

which is uniquely solvable. In particular, for all { =1,...,m —1and all j =0,...,3 it
holds uy; = 0 and gradug; = 0 on I'y. Here, we denote by e/, j = 1,2, 3, the Euclidean
unit vectors in R? and set e’ := 0 € R3.

Lemma A.6. Let Assumption 1 be satisfied. Then ’Hgt‘gl(ﬁ) = lin B2,

Proof. We follow in close lines the arguments used in the proof of Lemma A.2. For this,
let S € ’H%t’él(ﬁ) = ker(Curls, Q) N ker(divDivs, Q). In particular, by the homogeneous
boundary condition its extension by zero S to B belongs to ker(Cﬁrlg,B). As B is
topologically trivial (and smooth and bounded), there exists (a unique) u € HZ(B) such
that Gradgradu = S in B, see [21, Theorem 3.10 (i)]. As Gradgradu = S = 0 in
B\ Q, u must belong to Py, the polynomials of order 1, in each connected component

20,21, ..., Zm-1 of B\ Q. Due to the homogenous boundary condition at B, u vanishes
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in Zp. Therefore, S = Gradgradu in Q and v € HZ(B) is such that ulz, = 0 and
ulz, =: pp =: Z?:o ar;pj €PY ap; €R, forall ¢ =1,...,m — 1. Let us consider

m—1 3
S — ay,; Gradgrad uy; = Gradgrad i € Hpg' (Q),
7=0

~

—_

3
U — QU5 € H2(Q)
—1 j=0

3

u:

~

with u,; from (31). The extension by zero of ¢ ; to J[,j belongs to HZ(B). Hence as an
element of H*(B) we see that

m—1 3 m—1 3

ug ‘= u — Z Zae,j&,j + Z Z&z,j{ﬁve,j S HS(B>

=1 j=0 (=1 j=0

uglo € HE(Q) by Assumption 1, and we compute

vanishes in all Z,. Thus u =

(@)
finishing the proof. U

Note that, in classical terms, uw from the latter proof solves the linear biharmonic
Dirichlet problem

Ay = divDivg Gradgrad u = divDivg S = 0 in €,
u=0, gradu=0 on [,
u=np; €Py, gradu=gradp, € R® only ¢(=1,....,m—1,
which is uniquely solvable as long as the polynomials p, in Py are prescribed.

Lemma A.7. Let Assumption 1 be satisfied. Then th’l s linear independent.
Proof. Let

—1 m—1

3

3 3
E ay j Gradgrad u,; = 0, E Oy Uy ;-

1 j=0 (=1 j=0
Then Gradgradu = 0 in (2, ie., u belongs to Py in each connected component of €.

We show u = 0. Recall up; = & ; — ¢¢; in 2. Extension by zero of 1, ; to 1, ; shows
up; € H3(B), where

I L¥ in €, Gradgrad i, ; — Gradgrad uy,; in €,
o &; inB\Q, b Gradgrad&,; =0 in B\ Q.

o~
Il

Note that @, = &, = 0in Zg and in Sy for all £ £ k=1,....,m—1and j =0,...,3,
and that ﬁ&j = fg’j = ]/)\] in E(. Then

-1

3

3
Z&gJUg] €H2 B)

1 j=0

~
Il

with 7 = 0 in =, and Gradgrad @ = 0 in B \ Q as well as Gradgrad & = Gradgrad u = 0 in
2 by assumption. Hence, Gradgradu = 0 in B, showing u = 0 in B. In particular, u = 0
in Q, and Z?:o apip; = ulg, =0 forall ¢ =1,...,m — 1. We conclude a; = 0 for all
j=0,...,3 and all ¢, finishing the proof. O
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Theorem A.8. Let Assumption 1 be satisfied. Then dimHgt‘S’l(Q) =4(m —1) and a
basis of ’Hgt‘S’l(Q) is given by (31).

Proof. Use Lemma A.6 and Lemma A.7. O

A.3. Dirichlet Tensor Fields of the Second Biharmonic Complex. For the second
biharmonic complex, simliar to (3), (4), and (27), (30), we have the orthogonal decompo-
sitions

L23(Q) = ran(devGrad, Q) D233 (q) ker(Divr, ),

(33) . : bih,2
ker(symCurly, Q) = ran(devGrad, ) D) Hpr ().

Remark A.9. It holds dom(devGrad, Q) = HY3(Q) by [21, Lemma 3.2]. Morcover, the
range in (33) is closed by the Friedrichs type estimate®

Je>0 Voe Hy*(Q)  [@]r2s0) < ¢ devGrad ¢ 2sxs(a,
which holds by Assumption 1. Note that 2 open and bounded is already sufficient.

Let us denote the orthogonal projector onto ker(Divr, ) resp. H%t‘{f(Q) by 7 and
recall & € C°(R?) from (26). We introduce Raviart-Thomas fields 7; given by 7o(z) :=
and 7;(z) := e/ for j = 1,2,3 and define & ; := &7; for all £ € {1,...,m — 1} and all
j = 0,...,3. In particular, for all j = 0,...,3 we have {; = 0 in a neighbourhood
of Zy and in a neighbourhood of = for all ¢ # k € {1,...,m — 1} and & ; = 7; in a
neighbourhood of =,. Then

devGrad ¢, ; € C’;%SXS(Q) N ker(symCurly, ) C ker(symCurly, )
and there exists some 9, ; € Hy*(92) such that

?—[%%2((2) > mdevGrad & ; = devGrad(&y; — ¢y ;) = devGrad v
with vy := & — r; € HY?(Q). We shall show that
(34) BYM .= {devGrad vy }r=1, ..

=0,
defines a basis of HE‘}E(Q).
Note that ¢, ; € Hy”() can be found by the standard variational formulation

Vo € Hy?(Q)  (devGrad gy, devGrad ¢) j2axs o) = (devGrad &, devGrad ¢) j2axs ),

ie., b = A7 ArEy ;. Therefore, up; = &4 — by = (1 — Ap'Ar)E,; € HY3(Q) and
devGrad v, = devGrad(1 — A7 Ar)&,,

— (devGrad — devGrad A7 'Aq)é,

— (1 — devGrad A;! Divy) devGrad & ;.
Let us also mention that v, ; solves in classical terms the elasticity type Dirichlet problem

—Aqvgj := — DivpdevGradve; =0 in €,
(35) v =75 on Ty,
v; =0 only, (#k=0,...,m—1,

®Note that by |T|> = |dev T|?+%| tr T|? (pointwise) and | Gradv|%2,9,x3(m = |curlv|%213(m+\ divv\%Q(Q)
for all v € Hé’g(ﬂ), we have 2| Gradv|%2,3X3(Q) < 3| devGrad U|2L2,3x3(9)~
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which is uniquely solvable. In particular, for all / =1,....m —1 and all j =0,...,3 it
holds v, ; = 0 on I'y.

Lemma A.10. Let Assumption 1 be satisfied. Then Hb'h 2( ) = lin th’Q.

Proof. We follow in close lines the arguments used in the proofs of Lemma A.2 and Lemma
A6. Let T € ’Hb'h 2(Q) = ker(symoCurlT, Q) Nker(Divr, 2). In particular, by the homoge-
neous boundary condition its extension by zero T to B belongs to ker(symoCurlT, B). As
B is topologically trivial (and smooth and bounded), there exists (a unique vector field)
v € HY(B) such that devGradv = T in B. This follows analogously to [21, Theorem
3.10 (iv)]. As devGradv = T = 0 in B\ Q, v must be a Raviart-Thomas vector field,
i.e., v € RT, in each connected component EO, Z1, ..., Zm1 of B\ Q. Due to the homoge-
nous boundary condition at 0B, v vanishes in éo. Therefore, T" = devGrad v in 2 and
v € Hy*(B) is such that vlg, = 0 and vz, =: 1y = Z?:o ap;m; € RT, ap; € R, for all
¢=1,...,m—1. Let us consider

m—1 3
T:=T- Z ayjdevGrad vy ; = devGrad v € Hb'h 2(Q),
/=1 5=0
m—1 3
Vi=v— Z g v € HP(Q)
(=1 j=0

with v, ; from (34). The extension by zero of ¢y ; to ”(Z&j belongs to Hy*(B). Hence as an
element of H'3(B) we see that

[y

-1

3

3

3
Z Qe € H&’g(B)

1 j=0

3
Zafj’féj

/=1 37=0

~
Il

vanishes in all Z,. Thus 9 = Oglq € Hy*(Q) by Assumption 1, and we compute

=9 B o~ B
|T|L121-’3X3(Q) = (devGrad v, T>L12T,3><3 = 07

(@)
finishing the proof. U

Note that, in classical terms, v from the latter proof solves the linear elasticity type
Dirichlet problem

—Arv = — DivpdevGradv = — Divy T =0 in €,
v=20 on Iy,
v=r; €RT only, /=1,...,m—1,

which is uniquely solvable as long as the Raviart-Thomas fields 7, in RT are prescribed.
Lemma A.11. Let Assumption 1 be satisfied. Then thg 15 linear independent.
Proof. Let

m—1 3 m—1 3
g ay; devGrad vy ; = 0, V= E E QU
£=1 j=0 =1 j=0

Then devGradv = 0 in (2, i.e., v € RT in each connected component of 2. We show
v = 0. Recall vy; = & — 1y, in Q. Extension by zero of 1 ; to 1y ; shows v; € Hy*(B),
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where

~  Juy in Q, d 43 — devGrad vy, in €2,
Vg 1= . — evGrad v, ; = B ) _
&, in B\ Q, devGrad§,; =0 in B\ €.

Note that 9y; = &,; = 0in Zp and in Z;, forall ¢ #k=1,...,m—1and j =0,...,3,
and that 54,]' = fg’j = ;’\] in Eg. Then

m—1

3
> ;s € Hy*(B)

(=1 j=0

with ¥ = 0 in 2y and devGrad?® = 0 in B\ Q as well as devGrad ¥ = devGradv = 0 in
2 by assumption. Hence, devGradv = 0 in B, showing v = 0 in B. In particular, v = 0

in Q, and Y7 a7y = Dlz, = 0 for all £ =1,...,m — 1. We conclude a,; = 0 for all
j=0,...,3 and all ¢, finishing the proof. O

Theorem A.12. Let Assumption 1 be satisfied. Then dlm’Hb'hz( ) =4(m —1) and a
basis of "HD,T (Q) is given by (34).

Proof. Use Lemma A.10 and Lemma A.11. O

A.4. Dirichlet Tensor Fields of the Elasticity Complex. For the elasticity complex,
simliar to (3), (4), and (27), (30), (33), we have the orthogonal decompositions

L§,3><3(Q> - ran(symérad Q) EBLz 3%3(q) ker(DiV& Q)’

36 o
(36) ker(CurlCurlST, Q) = ran(symGrad ) EBL2 853 (q) Hela s(€).

Remark A.13. It holds dom(symGrad, Q) = H}*(Q) by [22, Lemma 3.2]. Moreover, the
range in (36) is closed by the Friedrichs type estimate®

Je>0 VYoe Hy*(Q) |9l < ¢ symGrad @] 2sx3 (0,
which holds by Assumption 1. Note that Q) open and bounded is already sufficient.

Let us denote the orthogonal projector onto ker(Divg, €2) resp. He'a <(Q) by 7 and recall
& € C(R?) from (26). We introduce rigid motions 7; given by r]( ) = ¢l x z and
Tirs(x) := €l for j = 1,2,3 and define & ; = &7; for all £ € {1,...,m — 1} and for
all 7 = 1,...,6. In particular, for all j = 1,...,6 we have § ; = 0 in a neighbourhood
of =y and in a neighbourhood of Zj for all ¢ # k € {1,...,m — 1} and &, = 7; in a
neighbourhood of =,. Then

symGrad &,; € Co57°(Q) Nker(CurlCurld, Q) C ker(CurlCurld , )
and there exists some 9, ; € Hy*(92) such that
'He'a s(02) > msymGrad & ; = symGrad (&, ; — ¢¢;) = symGrad v ;
with vgj = & ; — e, € H?(Q). We shall show that
(37) B := {symGrad Ugj}g 1.

-----

defines a basis of H§%s(€2).

SNote that by |Gradv|?> = |symGradv|?> + |skw Gradv|?> = |symGradv|2 + 2| curlv|? (pointwise)
and by |Gradv\L23X3(Q) \cur1v|L23 @ | div v|L2(Q for all v € Hy?(Q), we get Korn’s inequality
| Grad v|7,, axa(g) < 2| symGrad v|3,, ax3(0)-
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Note that v, ; € Hé 3(Q) can be found by the standard variational formulation
Voe H&’?’(Q) (symGrad 1 j, symGrad ¢>L§,3><3(Q) = (symGrad & ;, symGrad ¢>L§,3x3(9),
ie., b = Ag'AsEy,. Therefore, ug; = & — g = (1 — A5 Ag)ér; € HY¥(Q) and
symGrad vy ; = symGrad(1 — AglAS)&;,j
= (symGrad — symGrad AS_IAS)&J
= (1 — symGrad As_l Divg) symGrad & ;.

Let us also mention that v, ; solves in classical terms the linear elasticity Dirichlet problem

—Agvyj := — DivgsymGradv,; =0 in 2,
(38) v =15 on Ty,
v; =0 only, 0#k=0,....m—1,
which is uniquely solvable. In particular, for all / =1,....m —1and all j =1,...,6 it

holds v, ; = 0 on I'y.
Lemma A.14. Let Assumption 1 be satisfied. Then H3s(Q) = lin B

Proof. We follow in close lines the arguments used in the proofs of Lemma A.2, Lemma
A.6, and Lemma A.10. Let S € H{5(Q) = ker(CurlCurld , Q) N ker(Divg, ). In partic-
ular, by the homogeneous boundary condition its extension by zero S to B belongs to
l<:e1r(CurloCu1rlgT ,B). As B is topologically trivial (and smooth and bounded), there exists
(a unique vector field) v € Hy*(B) such that symGradv = S in B, see [22, Theorem 3.5].
As symGrach =S =0in B\ Q, v must be a rigid motion, i.e., v € RM, in each connected

component Zg, Z1,. .., Z,,_1 of B\ Q. Due to the homogenous boundary condition at 0.5,
v vanishes in Zy. Therefore, S = symGradv in Q and v € Hy*(B) is such that vz, =0
and v|g, =: rp =: Z§:1 ap;m; € RM, oy j € R, forall ¢ =1,...,m — 1. Let us consider
m—1 6
S:=5- Z Z ayjsymGrad vy = symGrad o € Hps(€),
=1 j=1
m—1 6
vi=uv— apjve; € HY(Q)
=1 j=1

with vy from (37). The extension by zero of 1y to 1 belongs to Hy*(B). Hence as an
element of H'3(B) we see that

m—1 6 m—1 6 ~

o jte; € Hy*(B)

1

Vg i=v — Z Zae,j&,j + Z

=1 j=1 =1 j
vanishes in all Z,. Thus 9 = Oplq € Hy*(Q) by Assumption 1, and we compute
|S|i;,3x3(m = (symGrad v, S>L§,3><3(Q) =0,
finishing the proof. U

Note that, in classical terms, v from the latter proof solves the linear elasticity Dirichlet
problem

—Asv = — DivgsymGradv = — Divg S =0 in €,
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v=20 on [y,
v=r,€RM only, 0=1,....m—1,
which is uniquely solvable as long as the rigid motions r, in RM are prescribed.
Lemma A.15. Let Assumption 1 be satisfied. Then BS? is linear independent.

Proof. Let

m—1 6 m—1 6
ay jsymGrad v ; = 0, vi= E Qv Vg ;-
=1 j=1 =1 j=1

Then symGradv = 0 in 2, ie,, v € RM in each connected component of (2. We show
v = 0. Recall vy; = & — 1y, in Q. Extension by zero of 1 ; to 1y ; shows v ; € Hy*(B),
where

~ ve; in €, Grad3 symGrad vy ; in Q,
Vg j = _ symGrad vy ; = _
b &; in B\, Y b symGrad§,; =0 in B\ Q.
Note that v, ; = & ; zomio and in = forall / #k=1,....m—1and j=1,...,6 and
that fﬁg’j = gg’j = ’/f’\J in Eg. Then

m—1

V= Z Z&e,jﬁe,j S H&’S(B)

=1 j=1

with 7 = 0 in Z and symGrad? = 0 in B\ Q as well as symGrad v = symGradv = 0 in
Q by assumption. Hence, symGradv = 0 in B, showing v = 0 in B. In particular, v =0

in 2, and Z?Zl ap;m; = 0|z, =0forall ¢ =1,...,m —1. We conclude oy ; = 0 for all
j=1,...,6 and all ¢, finishing the proof. O

Theorem A.16. Let Assumption 1 be satisfied. Then dim H$s(Q) = 6(m — 1) and a
basis of H$7s(2) is given by (37).

Proof. Use Lemma A.14 and Lemma A.15. 0J

APPENDIX B. NEUMANN FIELDS

The key topological assumptions to be satisfied by ) to compute a basis for the Neu-
mann fields and for p to be well defined, is described in detail next. For this, we recall
the construction in [23].

Assumption 3 ([23, Section 1]). Let Q@ C R? be open and bounded. There are p € Ny
piecewise C'-curves ¢; and p C*-surfaces F;, j € {1,...,p}, with the following properties:

(A1) The setsran(;, j € {1,...,p}, are pairwise disjoint and given any closed piecewise
C*-curve ¢ in Q there exists uniquely determined oy € Z, j € {1,...,p}, such that
for all ® € ker(curl) being continuously differentiable we have

P
/((ID,dA>:Zaj/<(I>,dA>.
¢ j=1 G
(A2) ran F;, j € {1,...,p}, are pairwise disjoint and ran F; Nran(y is a singelton, if
j =k, and empty, if j # k.

p
(A3) If Q. C Q is a connected component, then €.\ U ran F; is simply connected.
j=1
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p is called the topological genus of 2 and the curves (; are said to represent a basis of
the respective homology group of €2. Let us recall from the begmnlng of this appendix,

that € consists of the connected components €2, i.e., {2 = Uk 1. In particular, for all
k=1,...,n we have that Q; \ J]_, ran F is simply connected Moreover, we set

P
Qp = Q\ U ran Fj.
j=1
Let us introduce 6; € C*(Qr), j = 1,...,p, with support in a small neighbourhood T;
of F; on one side of F}, such that §; = 1 in a neighbourhood Y;; C T of the latter side
of Fj and 6; = 0 in a neighbourhood T, of the other side of F;. Moreover, we assume
that the supports of 8; are disjoint and that 0, together with all derivatives are bounded.
In particular, #; = 0 in all neighbourhoods Y;; U F;U Yo of F; forall j #1=1,...,p.
Additionally, for all [ = 1,...,p we pick curves

gxl,()vxl,l CG

with fixed starting points ;9 € T and fixed endpoints z;; € T;;1. Note that 6;(x;0) =0
and 6;(z;1) =1 as well as 0j(x;1) = 6;(z10) =0foralll#7=1,...,p

B.1. Neumann Vector Fields of the Classical de Rham Complex. By definition
; = 0 outside of a neighbourhood of F; and 6, is constant in the two neighbourhoods T ;
and T, of both sides of F;. Hence grad §; = 0 in the two neighbourhoods T, Y, of Fj
and also in all other Y;,, ;o of F, 7 # 1 =1,...,p. Thus gradf; can be continuously
extended by zero to ©; € C°3(Q) N L*3(Q) with ©; = 0 in all the latter neighbourhoods

:fl =T UFUT; of all the surfaces F;.
Lemma B.1. Let Assumption 3 be satisfied. Then ©; € ker(curl, ).

Proof. Let ® € € 3(9) As supp©; C Tj \ :\fj we can pick another cut-off function
()0 E CEO(QF) Wlth w’supp@jﬂsuppq) - 1 Then

(0, curl @) 12310y = (O, curl @) 123 (supp O, Nsupp &) = <grad 6,, curl(gp@)>LQ,3(QF) =0,
as p® € C3(QF). O

Note again that supp ©; C T; \ Tj and thus

/ (©,,d)) = / (grad 0, d ) = / (grad 8;, A \) = 6 (1) — 6 (1),
G G\Y; Capg.or T’ T
~—

where we recall the curves (4., C (, with chosen starting points z;o in T;o and
respective endpoints z;; in Y;;. Hence we have functionals /3; such that

(39) 5(0) = [ ©ndN =by,  Li=1...p
G
Let Assumption 1 be satisfied. For the de Rham complex, simliar to (3), (4), and (27),
we have the orthogonal decompositions
L*3(Q) = Hy = ran A} @y, ker Ay = ran(grad, Q) @259 ker(div Q),

40
(40) ker(curl, ) = ker(A}) = ran Aj ©p, Ko = ran(grad, Q) ®r25) Hy™ ().
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Remark B.2. [t holds dom(grad, Q) = H'(Q). Moreover, the range in (40) is closed by
the Poincaré estimate

Je>0 Yo H(Q)NRaE®  |6lr2q < o grad o),
which is implied by Rellich’s selection theorem as Assumption 1 holds.

Let us denote in (40) the orthogonal projector onto ker(div, ) resp. HR™(Q) by .
By Lemma B.1 there exists some ¢; € H'(2) such that

HR™(Q) 3 10; = ©; — grad ¥, (O, — gradwj)‘ = grad(0; — 1;).

Since fields in HR'™ () are harmonic, we emphasise that we have HR'™(Q) C C>=3(Q),
cf. (25). As ©; € C°3(), we see that also gradt; € C?*(Q) holds, yielding that
Yy € HY(Q)N C"”(Q). Therefore, all path integrals are well defined and we observe by
(39)

(41)  Bi(7O;) :/(w@j,dM :/(@j,d/\> —/(grad%,d)& =60, Lj=1...,p

G G JG

J/

-~

=0

We shall show that
(42) BR™ .= (70,,...,70,} C HR™(Q)
defines a basis of HR'™(Q).
Note that ¢; € HY(Q) N R;\f *® can be found by the standard variational formulation
Vo e H(Q) (grad v, grad @) 123(0) = (O;, grad @) 23
Le., ¥; = At div©,. Therefore,
10, = 0; — grad; = (1 — grad A~' div)6;.
Let us also mention that v; solves in classical terms the Neumann Laplace problem
—AyY; = —divO; in Q,

(43) v-grady; =v -0, on I,

;=0 fork=1,...,n

which is uniquely solvable.

Lemma B.3. Let Assumption 1 and Assumption 3 be satisfied. Then HRM™(Q) = lin BR™.
Proof. Let H € HR™(Q) = ker(div, Q) N ker(curl, ) € C**3(1), cf. (25), and define the

numbers

i :/VJ(H) :BJ(H):/<H7d)‘>ER7 J=1....p
G
We shall show that

p
HI™Q) > H = H - Z%W@j =0 in Q.
j=1
The aim is to prove that there exists u € H*() such that gradu = H, since then
|ﬁ|%2,3(9) = (grad u, ﬁ>L2v3(Q) = O
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Observing by (41)

/Cl<ﬁ,d)\>Z/(H,d)\>—zp:%/<ﬁ(9j7d)\>:0,

q] j=1 q]
———
=M =B1(7©;)=6,;

we have by Assumption 3 (A.1) for any closed piecewise C'-curve ¢ in

(44) / (B,dN) =0,

¢
Recall the connected components €21, ...,€, of Q. For 1 < k < n let )}, and some zy € ()
be fixed. By (44) the function u : Q@ — R given by

u(z) ;z/ (H,d)\), xeQ,
C(:Eo,:l?)

where ((zg, x) is any piecewise C''-curve connecting zy with z, is well defined, i.e., indepen-
dent of the respective curve ((zo, z), and belongs to C*°(€,) with gradu = H € L*3().
Thus” u € L*(), see, e.g., [14, Theorem 2.6 (1)] or [1, Theorem 3.2 (2)], and hence
u € H'(Q), showing u € H'(Q). O

Remark B.4. Note that in the latter proof the existence of u € H'(Qy) with gradu = H
wm Qp 1s well known, if the connected component . of 2 is even simply connected. In
this case, namely, we know that ker(curl, €)y) = ran(grad, ).

Lemma B.5. Let Assumption 1 and Assumption 3 be satisfied. Then BR™ is linear
independent.

p P
Proof. Let Z%W@j =0, 7, € R. (41) implies 0 = Z'yj / (mO;,d\) =~ foralll. O
j=1 =1 4 ,
—1(r6;)=b1

Theorem B.6. Let Assumption 1 and Assumption 3 be satisfied. Then dim HY™(Q) = p
and a basis of HRM™(Q) is given by (42).

Proof. Use Lemma B.3 and Lemma B.5. U

B.2. Neumann Tensor Fields of the First Biharmonic Complex. Recall from the
latter section that by definition 6; = 0 outside of a neighbourhood of F; and that ¢; is
constant in the two neighbourhoods T, and T, of both sides of Fj. Moreover, let 7},
be the Raviart-Thomas fields from Section A.3 given by 7y(z) := x and 7;(x) := e* for
k =1,2,3. We define the vector fields 0, := 0,7 and note devGrad §,; = 0 in the two
neighbourhoods Y1, T of F; and also in all other Y;;, ;g of F, j #1=1,...,p. Thus
devGrad 6, can be continuously extended by zero to 0, € C°¥*3(Q) N LZ***(Q) with

O, = 0 in all the latter neighbourhoods Y‘l =T, UF,UTY; of all the surfaces Fj.
Lemma B.7. Let Assumption 3 be satisfied. Then ©,, € ker(symCurly, §2).

Proof. Let ® € OZEBX?)(Q)- As supp©,, C T\ T]‘ we can pick another cut-off function
p € C°(Qp) with gplsupp@j’kﬁsuppq) = 1. Then

<@j,k7 Curlg @)L%,SXB(Q) = <@j,k; CUI‘IS (I)>L,2E’3X3(supp ©, xNsupp ®)

"Indeed, it is sufficient to assume u € L2 (), see, e.g., [15, Satz 6.6.26, Beweis; Folgerung 6.3.2] or
[30, Theorem 7.4].
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= (devGrad 6;, Curlg(gotI))>L%3X3(QF) = (Grad 6;, dev Curlg(gpcb)>L%3X3(QF) =0

= (Grad by, 051(99@»

L2,3><3(QF)
as @ € C3%3(Qp). O
Before proceeding we need the following two lemmas:

Lemma B.8. Let u € C(R* R), v,w € C(R3 R?), and S € C(R3, R3**?). Then:
e (spnv)w=vxXw=—(spnw)v and® (spnv)(spn~tS) = —Sv, if symS =0
e symspnv =0 and dev(uld) =0
trGradv =dive  and 2skw Gradv = spn curlw
Div(uld) = gradu and Curl(uld) = —spngradu,
in particular, curl Div(uIld) =0 and curlspn~! Curl(uId) =0
and  sym Curl(uId) =0
e Divspnv = —curlv  and Divskw S = — curlspn~!skw S,
in particular,  divDivskw S =0
e Curlspnv = (divv) Id —(Grad v) "
and  Curlskw S = (divspn~!skw S) Id —(Grad spn~* skw S) "
e dev Curlspnv = —(dev Gradv) "
e —2 Curlsym Grad v = 2 Curl skw Grad v = —(Grad curlv) "
e 2spn~'skw Curl S = Div ST — grad tr S = Div (S — (tr S) Id)T,
in particular, curl Div.ST = 2curlspn~! skw Curl S
and 2skw Curl S =spnDivS", iftrS =0
o trCurl S = 2divspn~—tskw S, in particular, trCurlS =0, if skwS =0,
and trCurlsymS =0 and trCurlskw S = trCurl §
e 2(Gradspn~!skw S)" = (tr Curlskw S) Id —2 Curl skw S
e 3Div(dev Gradv)" = 2graddivw
e 2 Curlsym Grad v = —2 Curl skw Grad v = — Curlspn curlv = (Grad curlv) "
e 2Divsym Curl S = —2 Divskw Curl S = curl Div S
e Curl(Curlsym S)" = sym Curl(Curl S)"
e Curl(Curlskw S)" = skw Curl(Curl S) "

All formulas extend to distributions as well.

Proof. Almost all formulas can be found in [21, Lemma 3.9] and [21, Lemma A.1].
To show the last two formulas we note by [22, Appendix B] that skw7 = 0 implies
skw Curl(Curl 7)" = 0, and that symT = 0 implies sym Curl(Curl 7)" = 0. Hence sym
commutes with Curl Curl” as

Curl(Curlsym T) " = sym Curl(Curlsym 7') " = sym Curl(Curl 7) ",
and so does skw. O

Lemma B.9. Let z, 29 € Q and let (. C  be a piecewise C-curve connecting xq to x.
(i) Let v e C®(Q,R?). Then v and its divergence divv can be represented by

v(x) — v(zg) — %div v(xo)(z — x0)

0 —V3 (%)
8Here, we introduce the skew-symmetric matrix spnv := ( Vs 0 —v1> and the corresponding
—7V3 U1 O

isometric mapping spn : R3 — Rjkxvf .
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1
= / devGradvd A + 5/ (/ <Div(devGradv)T,d/\>> Idd A,
gzo,z Cmo,z

ooy

divo(z) — divo(xg) = ; / { Div(devGradv) ", d ).
Czg,m

(ii) For all T € C*(Q, R3*3) it holds
/ ([ (wT",an)1ddr, :/ (z — ) ((DIVTT)(y), d X,).
¢

TQ,T C-To;y Czo,z

(iii) Let T € C>=(Q,R**3) and define
1
u(z) ::/ (DivT",d\), S:=T+uld, v(x) ::/ SdA.

Czo, Cag

Then v € C*(Q,R), S € C®(Q,R¥>3), and v € C*(Q,R?) are well defined, i.e.,
independent of the respective curve, with

gradu = DivT", Gradv = 9, devGradv =T,
if and only if tr'T" = 0 and symCurl; T = 0 as well as

/(DivTT,d)\>:0, /Sd/\:o
¢

¢
hold for any closed piecewise C*-curve ¢ C Q. In this case,

2
gradu = DivT" = 3 grad div v.

Remark B.10. In Lemma B.9 (iii) for T € C(Q,R*?) and S := T + Luld with
gradu = DivT" the formulas

curl DivT" = 2 Div symCurly T, Curl § = symCurl T’
are crucial. These will be derived in the upcoming proof and follow by Lemma B.S.

In Lemma B.9 for a tensor field 7" the operation T'd A := ({row,T’,d >‘>)z:1 , 5 has to be

understood row-wise, i.e., the transpose of the fth row of T" is denoted by row,T’, giving
then the vector object T'd A\. More precisely,

(/C Td )‘)e = / (row,T,d \) = /01 <(rOWgT) (¢(t)), gp’(t)> dt

z(0,T z(0,T

with some parametrisation ¢ € C’;W([O, 1],R3) of (4, Furthermore, we define

| @@ TN = [ (=) (P T (e). ) ar

Cz , T
0

Proof of Lemma B.9. For (i), let
1 1
T := devGradv = Grad v — g(tr Gradv)Id = Gradv — g(div v)1d
and observe 3DivT " = 2grad divv by Lemma B.8. Thus

vp(z) — vp(zo) = / (grad vy, d \), k=1,2,3,

Cogra

divo(z) — divo(zg) = / (graddive,d \) = g/ (DivTT,d\).

CZEO,LL‘ C:EOyz
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Therefore,
1
v(x) — v(zo) :/ Gradvd A = / devGradvd A + = / divoldd A
Cog s Coore 3 ey )
= / divu(y) Idd A,
Ceg,z
L.
:/ Td>\+—dlvv(x0)/ Idd A,
0 0>
1
+5 [ (f owTTan)adn,
2 Jerge N agn
Moreover,’ / Idd A, = / Gradyd A, = x — 2.
Cog,x Cag .z

For (ii) we compute with ¢ from above

1
/ (/ (DWTﬂdA»Idd%:i/ ( ./ (DivTT,d\) )m¢%gds
Cz'(),w Cwo,y 0 CE()W(S) W_/

~—— = ¢'(s)

= /0 (DivTT)(p(1),¢'(1) )t
- /01 /tl ¢'(s)ds <(DivTT)(gp(t)),go’(t)>dt

—_——
=z —p(t)

:/ (z = y){(DivTT)(y),dA,).

Cag,m

For (iii), let T € C*(Q,R3*3) and let u, S, and v be defined as stated. Moreover, let
tr 7' = 0 and symCurl 7" = 0 with

k/@mqﬂﬁx>:0, /SdA:O
¢ ¢

for any closed piecewise C'-curve ¢ C ). Note that

u well defined (indep. of (;, ) A gradu = DivT"

& vg@ummﬂ)t/mmqﬂﬂxy_o A curl DivT " =0
¢
and
v well defined (indep. of (4, ..) A Gradv =S
& V ¢ (cl pw CY) /Sd)\:O A Curl S = 0.
¢

By Lemma B.8 we have
curl DivT " = 2 Divsym Curl T = 0,

1 1
9 Alternatively, note with ¢ from above / Idd, = / Idy¢'(s)ds = / o' (s)ds =z — xp.
0 0

Cagre
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i.e., u is well defined and gradu = DivT ", and

1 1
Curl S = CurlT + = Curl(uld) = CurlT — =spnDivT" = symCurl T = 0,
p Y 2

—_——
= —spngradu = skw Curl T’
as tr'7 = 0 and symCurlyT" = 0. Hence u, S, and v are well defined. Moreover,

Gradv = S and devGradv = devS = devT = T (since dev(uld) = 0 and tr7 = 0)
as well as gradu = DivT" = Zgraddive by Lemma B.8. Furthermore, u € C*(2, R),
S € C®(Q,R*3), and v € C®(Q,R?). On the other hand, let T € C>(£2,R3*3),
u e C®(Q,R), S e C®Q,R3>*), and v € C*(2,R3) be given with

gradu = DivT", Gradv = 9, devGradv =T.

Then tr T = 0, symCurly T = 0, and gradu = DivT ' = %grad divv by Lemma B.8, as
well as

/(DivTT,d/\>:/<gradu,d)\>:0, /Sd/\:/Gradvd/\:O,
¢ ¢ ¢ ¢

completing the proof. 0

Note that for [,j =1,...,pand k = 0,...,3 and for the curves ¢y, , C ¢ with the
chosen starting points z;9 € T and respective endpoints z;; € T;; we can compute by
Lemma B.9

1 1
R 3 Bio(O;n) = 3 / (DivO,,d\) = 3 / { Div(devGrad ;) ", d \)
G

Cﬂ”l,O*“”l,l

1. L.
= 5 div Gjyk(xu) — g div Hj,k(xm)

=0

1 1, ifk=0
= —0,;div 7 =08 ’
30 AV Tk(en) = {0, if k=1,2,3,
and
1 .
R3 ) bl(@j,k> = / @j,kd)\ + 5 / (iL‘lJ - y)<<D1V @Ik)(y),d)\y>
G G
= / devGrad 0, d A
qmz,o’xm
1 _ .
+ 3 (211 — y)<(D1V(deVGrad 0ix)")(v), d)\y>
Coy 00211
= / (deVGrad 0 x(y)
Czl,O’zl,l
1 _ .
+5( [ (DivldevGradg;)",aN)) 1 ) dn,
Cay 0w
L.
= 0;(211) —Qj,k(mz,o) 3 div ej,k(xl,())(xl,l — T10)

=0
. 'rl,la if k= 07
= 01,Tk(21,1) = 01,5 {ek ifk=1,2,3
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Thus, we have functionals g, for l =1,...,pand £ =0,...,3 given by

B10(0jk) = 91,500k
forl,7=1,...,pand k=0,...,3, as well as

S if k=0
0.1 — (b(0.1). e — g - 4 {21, €) = (@a)e, i ,
ﬁll( J’k) < l< J’k)’e > Ly {<€k,€€> = 6[,]4:7 if k= 1,2737

forl,7=1,...,pand £ =1,2,3 and k =0, ...,3. Therefore, we have
(45)  B1e(©k) = 0160k + (1 — 0,0)00,k01;(T1,1)e, LLj=1,...,p, k,€=0,1,23.

Let Assumption 2 be satisfied. For the first biharmonic complex, simliar to (3), (4),
and (27), (40), we have the orthogonal decompositions

L%’SX?’(Q) = ran(devGrad, Q) B 2% ker(DoiVT, ),

(46) bih,1
ker(symCurly, Q) = ran(devGrad, ) Dp23x3q) Hyr (Q).

Remark B.11. It holds dom(devGrad, Q) = H'3(Q) by [21, Lemma 3.2]. Moreover, the
range in (46) is closed by the Poincaré type estimate

Je>0 Ve H3Q) NRTp ™  [glh20q) < ¢ devGrad ¢| 2y,
which is implied by Rellich’s selection theorem and [21, Lemma 3.2] as Assumption 2
holds.

Let us denote in (46) the orthogonal projector onto ker(Divy, Q) resp. 7-[?\%1(9) by .

By Lemma B.7 there exists some v;, € H'3(Q) such that

HA (Q) 5 70, = O, —devGrad ¢y, (0 —devGrad i, — devGrad(0; ,—1;1).

I

As H?\ift‘q’rl(ﬁ) C C¥3(Q), cf. (25), we conclude by 70,0, € C**3(Q) that also
devGrad ¢, € C*%3(Q) and hence 1, € C*3(Q). Thus all path integrals over the
closed curves (; are well defined. Furthermore, we observe by Lemma B.9

Bio(devGrad i) = © /C ( Div(devGrad ;) T, d A)

1

. 1.
— g le wj,k(xl,l) — g le ’QD]'JC(LEZJ) = O

and

bi(devGrad ¢ ;)

1
= / devGrad ¢, , d A + 5 / (11 — y)<(Div(devGrad i) ) (y),d )\y>
G G

g

1, .
=ip(xi1) — Yip(e) — 3 div ey, (1) (x) — 21) = 0.
Therefore, by (45)
(47) Bie(mO k) = Bre(Oj k) — \Bl,g(dev(}rad Q/Jj,kl = 01,j00) + (1 — 60,0)00,1015(x11)e

~~
=0

( devGrad ;. (y) + % ( / ( Div(devGrad ¢;x) ', d )\>> Id ) d ),

Cwl,lyy
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foralll,7=1,...,pand all /,k =0,1,2,3. We shall show that
(48) Bt = {704} =1 p, C HYH (Q)

77777

)4y

defines a basis of H?\i,%l(Q).
Note that ¢, € H*3(Q) N RT;&Q’S(“) can be found by the variational formulation
Vo e HYP(Q) (devGrad v; 1, devGrad @) p28x3(0) = (O, devGrad ¢) r2.5x3(q),
e, V= A%l Divt ©; . Therefore,
10, = 0, — devGrad ¢, = (1 — devGrad A%l Divy)0; 4.
Let us also mention that 9, ;. solves in classical terms the Neumann elasticity type problem

_Aij,k = — DiVT @j,k in Q,

(Grad ¢, )V = O, v on I,
(49) /(wj’k)g:() fori=1,...,n, (=1,2,3,
Q
/:U-wj7k(a:)d)\x:0 forli=1,...,n,
9

which is uniquely solvable.

Lemma B.12. Let Assumption 2 as well as Assumption 3 be satisfied. Then it holds
HE () = 1lin B

Proof. Let H € HR}%I(Q) — ker(Divr, Q) Nker(symCurly, Q) € C2**3(Q), cf. (25). With

the above introduced functionals 3,y and b; we recall

1
R > Bio(H) = 3 / (DivHT,d\),
G

R? 5 by(H) = : de+%/<(:cl,1 —y)((Div H")(y),dA,),

and define for [ = 1,...,p the numbers
Y0 = Yo(H) = Bio(H),
M = ”YZ,Z(H) = <bz(H) - 51,0([‘[)371,1, €£> = 51,@(H) - ﬁz,o(H)(l"m)z, t=1,2,3.
We shall show that
p 3
H?\']t‘,ﬁ}(Q) S H:=H— ZZ%M@J?’“ =0 1in .
j=1 k=0

Similar to the proof of Lemma B.3, the aim is to prove that there exists v € H3(2) such
that devGrad v = H, since then

|]/‘.;|ijzr,3><3(9) = (devGrad v, j‘j)L%sxs =0.

(@)
By (47) we observe

p 3
3 08 HT, %) = o) = folH) 3= 3 fro(r010) =0,
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and thus by Assumption 3 (A.1) for any closed piecewise C'-curve ¢ in

(50) léﬂﬁvﬁidA):O.

Recall the connected compoAnents Q1,...,Q, of Q/.\ For 1 < k < n let some xy € € be
fixed. By (50) and curl Div H' = 2 DivsymCurly H = 0, see Lemma B.8, cf. Lemma B.9
and Remark B.10, the function u :  — R and the tensor field S : Q — R3*3 given by

~ ~ 1
u(z) ::/ (DivHT",d\), S::H+§u1d, x € Qy,
¢(wo,x)

where ((xg,z) is any piecewise C'-curve connecting zo with z, are well defined, i.e.,
independent of the respective curve ¢(zo,x), and belong to C“(Qk) and C* SXS(Qk)
respectively. Moreover, grad u = Div HT and Curl S = symCurly H=0 by Remark B.10.
Note that for ¢, o4, C ¢ C Q2 we have with ¢ := u(z;;) € R

w(@) = u(e)—ulzy) o= / DivAT,dN +e,  zed,
N e’ Czl’l,z
:/ (grad u,d \)
Cop

and

/(cId)d/\:c/ Gradzxd A\, =0.

G G
Moreover, the closed curve ¢; may be considered as the closed curve (y, , ,, with circulation
1 along (;. By Lemma B.9 and the definition of b; we have

~ 1
/Sd)\ Hd/\+2/(u1d)d/\
q]

HdA+ HVHTdM>MdA

CIllﬂ”ll C””lly

ﬁdA+—/@m—yxmwﬁﬁwydde:m@ﬂ
G 2 q]

Hence, for ¢ = 1,2,3 we get by (47)

( Sd)\)e=<QSd)\,e> (bi(H), ") = Bo(H)

G
p 3
= Be(H) — Z’Yj,k Bre(mO; k) =Bie(H) = 7o (w11)e — e =0.
7=1 k=0 =5 5 .
=01,0¢,k+(1—04,0)00,k01,5 (x1,1) ¢ =p1,0(H)

Therefore, [ G S'd A =0 and thus by Assumption 3 (A.1) for any closed piecewise C'-curve
(in Q2

(51) /SdA:Q
¢
By (51), cf. Lemma B.9, the vector field v :  — R? given by

v(x) == / SdA, x €,
G,z
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where ((zg, ) is any piecewise C''-curve connecting xy with z, is well defined, i.e., inde-
pendent of the respective curve ((xg,z). Moreover, v belongs to C°3(£2;,) and satisfies
Gradv = S € C™3%3(Q;) as well as

devGradv = dev S = dev H = H € C%3(Q,) N L3 ().

Similar to the end of the proof of Lemma B.3, elliptic regularity and, e.g., [14, Theorem
2.6 (1)] or [1, Theorem 3.2 (2)] show that v € C°3(,) with devGradv € L2***(Q)
implies v € H'"3(Q) and thus v € H"“3(2), completing the proof. Let us note that
v e H3(Q) implies also S € L*3*3(Q) and hence u € L?(Q). O

Lemma B.13. Let Assumption 2 and Assumption 3 be satisfied. Then B?\i,h’l 15 linear

independent.

P 3
Proof. Let Z Z’Yj’kﬂ_gj"k =0, v € R. (47) implies for i =1,...,p
j=1 k=0

V4 3
0= Z Z VikBre(mO; k) = Y0, (=0,

j=1 k=0
p 3
0=> " %sBre(mOjx) = e+ No(x11)e = e, t=1,2,3,
j=1 k=0
finishing the proof. U

Theorem B.14. Let Assumption 2 as well as Assumption 3 be satisfied. Then it holds
dim H?\}t‘q}l(Q) = 4p and a basis of H?\}t‘q}l(Q) is given by (48).

Proof. Use Lemma B.12 and Lemma B.13. O

B.3. Neumann Tensor Fields of the Second Biharmonic Complex. Again, recall
from the latter section that by definition ; = 0 outside a neighbourhood of F}; and 0, is
constant in the two neighbourhoods Y;; and T of both sides of Fj. Moreover, let pj, be
the polynomials from Section A.2 given by py(z) := 1 and pi(z) := xy, for k =1,2,3. We
define the functions 6, := 6;p, and note Gradgradd;; = 0 in the two neighbourhoods
T;1, Y0 of F; and also in all other Y, ;o of £}, 7 #1 =1,...,p. Thus Gradgrad o,
can be continuously extended by zero to 0, € C°3*3(Q) N L3***(Q) with ©,, = 0 in
all the latter neighbourhoods T; = T;; U F; U 1} of all the surfaces F;.

Lemma B.15. Let Assumption 3 be satisfied. Then O;, € ker(Curlg, ).

Proof. Let ® € ijfgxg)(Q)- As supp©, 1, C Tj \ Tj we can pick another cut-off function
e OCOO(QF) with @’supp@j’kmsuppcb = 1. Then

(O 1, symCurly ¢)>L§,3><3(Q) = (0, k, symCurly ®>L§’3X3(supp 0, xNsupp @)

Grad(grad 6, ), Curl(go@)>L2,3x3(QF) =0

as @@, Curl(p®) € C3*3(Qp). O

= ( Gradgrad 6, , symCurlT(¢®)>L§,3X3(QF) =(
Before proceeding, we recall Lemma B.8 and we need the following lemma:

Lemma B.16. Let z,79 € Q and let (y, . C Q be a piecewise C'-curve connecting xq to
x.
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(i) Let u € C(,R). Then u and its gradient gradu can be represented by

u(x) — u(wo) — (gradu(zg), x — z9) = ( Gradgradud A, d \,),

gxo,a: gxo,y

grad u(x) — grad u(zg) = Gradgrad ud .

Car(),a:

(ii) For all S € C°°(Q,R3*3) it holds

/C </C SdAdx,) = /C (x—y,S(y)dN,).

0o,y

(iii) Let S € C(Q,R**3) and define

oz) = [ sdx u(:c)::/ (v, d ).

Cwo,w Cwo,x

Then u € C®(Q,R) and v € C®(Q,R3) are well defined, i.e., independent of the
respective curve, with

gradu = v, Gradgradu = Gradv = S,
if and only if skw.S =0 and Curls S = 0 as well as

/dezo, /(v,d)\) ~0
¢ ¢

hold for any closed piecewise C'-curve ¢ C Q.
Remark B.17. In Lemma B.16 (iii) for S € C(Q,R3*3) with Gradv = S the formula
curlv = 2spn~' skw S = 0
s crucial.

In Lemma B.16 for a tensor field S and a parametrisation ¢ € C;W([O, 1],R3) of Czo.2
we define

[ -wswany = [ (o e se0)0)ar

Cwo,x

Proof of Lemma B.16. For (i), we have

u(z) — u(zg) = / (grad u,d \),

Cwo,x

O u(z) — O u(zo) = / (grad Ok u, d A}, k=1,2,3,

Cwo,x

ie.,

grad u(z) — grad u(zg) = Grad grad ud \.

Cm T
0

Therefore,

u(z) —u(zg) = / (gradu(y),d \,)

T0,T

= / < Gradgradudk,d/\y>

Czoyz Czo,y
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+ <gradu(x0),d)\y>

gz , T
0

J/

-~

:/0 (gradu(z), ¢'(t)) dt = (grad u(zo), z — zo)

For (ii) we compute

K

zQ,T Czow’y

Sd)\,dAy>:/01</ Sax d(s))ds

Cao.e(s)
S

—_———

- [ stew)ema
- /01 <S(<p(t))cp'(t),/tl gp’(s)ds>dt

—_——
=z—¢p(t)

= <x—y,5(y)d>\y>.

Cz T
0

For (iii), let S € C*(Q,R**3) and let v and u be defined as stated. Moreover, let
skw S = 0 and Curlg S = 0 with

/de—o, /(v,d)\)—()
¢ ¢

for any closed piecewise C'-curve ¢ C €. Note that

v well defined (indep. of (4, ) A Gradv = S
& V ¢ (cl pw Ch) /CSd)\:O A Curl S =0,
and
u well defined (indep. of (y, ) A gradu = v
= V ¢ (cl pw CY) /<<U7d)\> =0 A curlv = 0.

Hence v is well defined with Gradv = S. By Lemma B.8 we have
curlv = 2spn~ ! skw Grad v = 2spn~ ' skw S = 0,

showing that u is well defined as well with grad v = v and thus Gradgradu = Gradv = S.
Furthermore, u € C*(2,R) and v € C*°(2,R3). On the other hand, let v € C*(, R)
and v € C=(Q,R3) be given with

gradu = v, Gradgradu = Gradv = S.
Then skw S = 0, Curls S = 0, and

/(v,d)\>:/<gradu,d>\>20, /Sd)\:/Gradvd)\:O,
¢ ¢ ¢ ¢

completing the proof. O
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Note that for /,j = 1,...,pand k = 0,...,3 and for the curves (s, C ¢ with the
chosen starting points x;9 € T;¢ and respective endpoints x;; € Y;; we can compute by
Lemma B.16

R3 = bl<@j,k) e @j,k dl = / Gradgrad Gj’k dA
G

= grad 0, ,(x;1) — grad 0; (z;0)
————

CIl,O’Il,l

=0
0, ifk=0,

= 01,5 grad pi(zi,1) = 0 {ek k=123

and

R > £0(0,k) = / (z11— v, 05k(y)dNy)
G

= / (w11 — y, Gradgrad 6, (y) d \, )

Cor00mi0
= / ( Gradgrad 6, d A, d\,)
Copgary Y Caow
= j,k($l,1) —9j,k($l,o) - <grad 9j,k($l,o), Li1 — iUl,o>
) A
1, if k=0,

= 01;pk(T1,1) = 015 {(Iu)k ifk=1,2.3

Thus, we have functionals 8, for l =1,...,pand £ =0,...,3 given by

510(0,0) 1= (n(O,0).") = by {SM 1o
forl,7=1,...,pand ¢ =1,2,3and k =0,...,3, as well as
Bro(Ojx) = 01300k + 01,5 (1 — o) (11)k
forl,j=1,...,pand k= 0,...,3. Therefore, we have
(52)  B1e(Oj k) = 0100k + (1 — 00k)00,0005(x11)k, lLLj=1,...,p, k,(=0,1,23.

Let Assumption 2 be satisfied. For the second biharmonic complex, simliar to (3), (4),

(27), (40), and (46), we have the orthogonal decompositions
) L2¥3(Q) = ran(Gradgrad, Q) D233 (q) kel".(diV(DiVS, ),
ker(Curls, 2) = ran(Gradgrad, Q) D 2x3(q) 7—[5’\',?8’2(9).

Remark B.18. It holds dom(Gradgrad, ) = H?(Q2) by Lemma 5.2. Moreover, the range
in (53) is closed by the Poincaré type estimate

Je>0 Voe H* Q)N (P;W)LLQ(Q) ||r2(0) < | Grad grad ¢|2.5x3(q),

which is implied by Rellich’s selection theorem and Lemma 5.2 as Assumption 2 holds.
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Let us denote in (53) the orthogonal projector onto ker(divDivg, ) resp. %%?S’z(Q) by
7. By Lemma B.15 there exists some v;, € H*(2) such that

Hys' () 3 70, = O, — Cradgrad vy,

(0, — Gradgrad wj’k)’QF = Gradgrad (0, — ;)

As ’H?Vit'S’Q(Q) C C33(Q), cf. (25), we conclude by m0;, 0, € C3*3(Q) that also
Gradgrad ¢, € C°¥3(Q) and hence ;) € C*°(Q). Hence all path integrals over the
closed curves (; are well defined. Furthermore, we observe by Lemma B.16

bi(Gradgrad ;) = [ Gradgrad;, d X = grad ¢, (2;1) — grad ¥ ,x(21) =0
q]

and

Bio(Gradgrad ¢, ;) = <:pl71 —y, Gradgrad ¢ ,(y) d )\y>

G
= / ( / Gradgrad ¢; 5 d A, d A, )
sz,lazl,l sz,lwy

= %’,k(xz,l) - %’,k(fcz,ﬂ - <grad %’,k(fcm), Ty — SCz,1> = 0.
Therefore, by (52)

(54)  Bie(mO;k) = Bie(Ojk) — @l,z(Gfadgmd %’,kz = 01,001 + (1 — S0.4)00,0015(211)k

=0
foralll,7=1,...,pand all /,k =0,1,2,3. We shall show that
(55) B = {10k} j=1 p C M ()

.....

s Ly

defines a basis of H?\}?S’Q(Q).
Note that ¥;, € H*(2) N (PéW)LLQ(Q) can be found by the variational formulation
Vo e H*(Q) (Gradgrad v; 5, Gradgrad @) 123x3(q) = (O;, Gradgrad ¢) 2.3x3(q),
ie., ¥ = (A%) 71 divDivg ©; ;. Therefore,
10, r = 0, — Gradgrad ¢, = (1 — Gradgrad(A?) ! divDivg )@j,k.
Let us also mention that v;; solves in classical terms the biharmonic Neumann problem
AQ@ZJM = divDivg ©;; in Q,
(Gradgrad ¢ )v = O v on I,

v - Div Gradgrad ¢, = v -DivO;; onT,

(56)
Vi =0 forl=1,...,n,
Q

/ rip(x)d A, =0 fori=1,...,n, (=123,
Q

which is uniquely solvable.

Lemma B.19. Let Assumption 2 as well as Assumption 3 be satisfied. Then it holds
H2(Q) = lin B,



INDEX OF MIXED ORDER DIRAC-TYPE OPERATORS 55

Proof. Let H € H33 () = ker(divDivs, Q) Nker(Curls, ) C C5>**3(Q), cf. (25). With
the above introduced functionals ;¢ and b; we recall

R*>b(H)= [ Hd\,
q]

RBBZ,O( ) /<<$l1 H d/\y>

and define for [ = 1,...,p the numbers
Ve = e(H) = (b(H),e") = Bro(H t=1,2,3,

Y0 = Y0(H) == Biol Z Bik(H) (1)
We shall show that

P 3
HNS (@3 Hi=H =3 3 7m0 =0 inQ.
j=1 k=0

Similar to the proof of Lemma B.3 arld Lemma B.12, the aim is to prove that there exists
u € H?(Q) such that Gradgradu = H, since then

|H|i§’3X3(Q) == (Gradgrad u, H>Lg’3X3(Q) = 0.
By (54) we observe for { =1,2,3
P 3
([ HdN), = ([ HdXe)=B(H)=BoH)=> > 7k fre(mO;x) =0,
G q —~—" i1 ko —
N—— =71,¢ =61,700,k

=by(H)

and thus by Assumption 3 (A.1) for any closed piecewise C'-curve ¢ in Q

(57) /Cfld/\zo.

Recall the connected components €2y,...,€, of Q. For 1 < k < n let some zy € ) be
fixed. By (57) the vector field v :  — R? given by

v(z) = / Hd, x € S,
((zo,x)

where ((zg, ) is any piecewise C''-curve connecting xy with z, is well defined, i.e., inde-
pendent of the respective curve (zg, ), and belongs to C°3(£2;,). Moreover, Grad v = H
and curlv = 2spn~ skw H = 0 by Remark B.17. Note that for Cay g C G C € we have
with ¢ :=v(z;;) € R? o

v(z) = wv(x)—v(r,) +ec= Hd\+c, x € (,
— Copp e
= / Gradvd A

Cog 1.0

and

3
/(c,dA) = Zc£/<gradxg,d)\> = 0.
G =1 G
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Moreover, the closed curve ¢; may be considered as the closed curve (;, , ,, with circulation
1 along ;. By Lemma B.16, the definition of o, and (54) we have

/@,d»:/( Hd)d)\,) = { Hd)d\,)
G G

Cwm,y sz,pwl,l Cgcm,y

- /< (an — . Hy) d),)
= 51,0( = Bio(H ZZ%k Bro(mO; k)

1 k=0
I= =01,500,k+(1—00,£)01,5 (1,1)%
3

= Bo(H) — M0 — Z Yk (xi1)e =0.

— =~
=1 =P,k (H)

Therefore, by Assumption 3 (A.1) for any closed piecewise C*-curve ¢ in €2
(58) /C(v,d)\) =
By (58), cf. Lemma B.16, the function u : Q@ — R given by
u(z) = / (v,d \), x € Uy,
Cag @

where ((zg, x) is any piecewise C''-curve connecting zy with z, is well defined, i.e., indepen-
dent of the respective curve (zg, ), and belongs to C°°(€),) with gradu = v € C*3(Q,)
and
Gradgrad u = Gradv = H € C¥3(Q,) N L3P ().

Similar to the end of the proof of Lemma B.3 and Lemma B.12, elliptic regularity and,
e.g., [14, Theorem 2.6 (1)] or [1, Theorem 3.2 (2)] show that v € C°3(Q) together
with Gradv € L3***(€,) implies v € H'(Q). Then, analogously, u € C*(£;,) with
gradu = v € L»3(Q) implies u € H'(£) and hence u € H?*(y), ie., u € H*(Q),

completing the proof. O
Lemma B.20. Let Assumption 2 and Assumption 3 be satisfied. Then Bb'h2 18 linear
independent.
p 3
Proof. Let Z Z%,kw@jyk =0, v € R. (54) implies for i =1,...,p
j=1 k=0
p 3
0=> " %sBe(@O) = s, t=1,2,3,
j=1 k=0
p 3 3
0= Z Z%,kﬁl,ﬁ(ﬂ@j,k) =Y0+ Z Yk (Te1)k = M0, =0,
j=1 k=0 k=1
finishing the proof. 0

Theorem B.21. Let Assumption 2 as well as Assumption 3 be satisfied. Then it holds
dim Hb'h 2(Q) = 4p and a basis of H?\}?SQ(Q) is given by (55).

Proof. Use Lemma B.19 and Lemma B.20. U
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B.4. Neumann Tensor Fields of the Elasticity Complex. Recall from the latter
sections that by definition 6; = 0 outside of a neighbourhood of F}; and 6; is constant in the
two neighbourhoods T, ; and T of both sides of F;. Moreover, let 7, be the rigid motions
(Nedelec fields) from Section A.4 given by 7%(x) := e* x x = spn(e*) x and T 3(z) := €
for £ = 1,2,3. We define the vector fields 6, := 6,7}, and note symGradé,; = 0 in the
two neighbourhoods Y;;, Y, of F; and also in all other Y;;, ;o of £}, j #1=1,...,p.
Thus symGrad 6, can be continuously extended by zero to 0, € C°¥3(Q) N L3***(Q)

with ©,; = 0 in all the latter neighbourhoods ;fl =T, UF,UT of all the surfaces Fj.
Lemma B.22. Let Assumption 3 be satisfied. Then ©;,, € ker(CurlCurlg , Q).

Proof. Let ® € OZ%BX?)(Q)- As supp©,, C T\ Tj we can pick another cut-off function
2 € CEO(QF) Wlth gplsupp@jykﬁsuppé =1. Then

T T
(O, CurlCurlg ¢>L§,3><3(Q) = (0,1, CurlCurlg (D>L§*3X3(supp@j,kmsuppq>)

= (symGrad 64, CurlCurlg (p®)) 2555, = ( Grad 8, CurlCurlg (9@)) 2xs

= < Grad 6}, Curl ( Curl(ngI)))T> =0

L2:3%3(Qp)
as @, CurlCurlg (p®) € C’fé’?’xg(ﬁp) by Lemma B.8. O
Before proceeding we need the following lemma:
Lemma B.23. Let x,z € 2 and let (y,» C 2 be a piecewise C*-curve connecting xo to
x.
(i) Let v e C®(Q,R?). Then v and its rotation curlv can be represented by
1

v(z) —v(xg) — §(curlv(x0)) X (x — x9)

= / symGradovd X + spn ((Curl symGradv) ' d )\) d Ay,

Caco,ac Ca:(),a: Ca:o,y

curlv(z) — curlv(zg) = 2/ (CurlsymGradv)" d \.

Cogra

(ii) For all S € C*(Q,R**?) it holds

/ / spn ((Curl $)TdA)d A, = / spn ((Curl )" (y) d A, (z — y).
Czg,z v Cag,y

Cag oo

(iii) Let S € C*(Q,R**?) and define

w(z) = / (Curl S)" d A, T := 5+ spnw, v(x) = / TdA.
Czg,o

Cogoa

Then w,v € C®(Q,R?) and T € C>(Q,R3*3) are well defined, i.e., independent
of the respective curve, with

Gradw = (Curl S) ", Gradv =T, symGradv = S,
if and only if skw.S =0 and CurlCurlST S =0 as well as

/KhﬂSfdAzo, /TdAzO
¢

¢
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hold for any closed piecewise Ct-curve ¢ C €. In this case,
1
Gradw = (Curl §)" = 5 Grad curlv.

In Lemma B.23 for a tensor field S and a parametrisation ¢ € C’;W([O, 1],R3) of Cuow
we define

/ spn ((Curl S) " (y) d A (z — y) == /0 spn ((Curl S)T(gp(t))go'(t)> (z — (1)) dt.

Cz , T
0

Proof of Lemma B.23. For (i), let
S :=symGrad v = Grad v — skw Grad v
and observe 2 Curl S = —2 Curl skw Grad v = (Grad curlv) " by Lemma B.8. Thus

vi(x) — vg(zg) = / (grad vy, d \), kE=1,2,3,

Czo,z
v(z) —v(zg) = Gradvd A,
Czo,z
curlv(x) — curlv(zy) = / Gradcurlvd A = 2/ (Curl )" d .
Czg @ Czg,z

Therefore, by Lemma B.8

v(z) —v(zg) = Gradvd A = / symGradvd A + / skw Grad v d A

Czo,z CCC(),I Czo,z

J/

-~

1
= —/ spn curlv(y) d A,
2 Jeuy

1
:/ Sd)\+§/ spn curlv(zg) d A,

Czg,z Czg,z
+ / Spn(/ (CurlS)Td)\)d)\y
Czg,o Czg.y .
/ spn ((Curl S)TdA) d A,

Czo T Czo Y
Moreover, with ¢ from above!”

/ spn curl v(zg) d A,

Cxo,z'

:/0 (spncurlv(zg))¢'(s)ds = (spncurlv(zo))(z — z9) = (curlv(zo)) x (z — o).

10Alternatively, we can compute with Id = Grad y

/ spncurlv(zg) dA, = Spncurlv(xo)/ Gradyd A, = (spncurlv(zo))(z — 20).
~———

Czg, Cag,
o =(spncurlv(zg)) Id 0
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For (ii) we compute with ¢ from above

/ / spn ((Curl S)Td A) d A, —/ / spn ((Curl S)T d A) )gp’(s)ds
gzoz zoy

Cage(s)

J/

:/ spn ((CurlS) (go(t))gp’(t))dt

0

= /01 spn ((Curl S)T(gp(t))gp’(t)) /tl '(s)dsdt

—_—
=z —o(t)
= / spn ((Curl S)T(y) d)\y) (:U - y)

Cwo,w

For (iii), let S € C*(Q,R**3) and let w, T, and v be defined as stated. Moreover, let
skw S = 0 and CurlCurly S = 0 with

/KMHSfdA:O, ‘/dezo
¢ ¢

for any closed piecewise C'-curve ¢ C ). Note that

w well defined (indep. of (y, ) A Gradw = (Curl S)"

& VY {(cdpwC) /(Curl SHTdA=0 A Curl(CurlS)" =
¢

and

v well defined (indep. of (y, 1) A Gradv =T

& V((dpwCh) /Td/\zo A CurlT = 0.
¢

Hence w is well defined with Gradw = (Curl S)". By Lemma B.8 we have
Curl T = Curl S + Curlspnw = Curl S + (divw) Id —(Grad w) "
= (tr Grad w) Id = (tr Curl S) Id = 0,
as skw S = 0. Hence v is also well defined with Gradv = T. Moreover, v,w € C*(,R3)
and T € C*(0,R3*3) as well as sym Gradv = symT = sym S = S and
Gradw = (Curl S)" = (Curlsym Gradv) " = %Grad curlv.

On the other hand, let w,v € C*°(2,R3) and S, T € C=(Q, R3>*3) be given with
Gradw = (Curl )", Gradv =T, symGradv = S.
Then skw S = 0,
CurlCurld S = Curl(Curl S)" = Curl Grad w = 0

and 2 Grad w = Grad curlv by Lemma B.8, as well as

/(CurlS)TdA:/Gradwd/\zo, /Td/\:/Gradvd/\zo,
¢ ¢

¢ ¢
completing the proof. O
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Note that for /,j =1,...,pand k = 1,...,6 and for the curves (s, ., C ¢ with the

chosen starting points x;9 € T;o and respective endpoints x;; € Y;; we can compute!!
by Lemma B.23

R® > ,(O;4) :== / (Curl©;4) " d A = / (CurlsymGrad ;)" d A

G Cxl,oﬂxl,l

1 1
b curl 8 x (1) — ) curl 8, i (x10)
-0
1 e* ifk=1,23
_ _5 ) 1/\ _ 5 ) ) ) Hy Dy
50 Cur k(1) 1,j {07 £k —4.5.6,

and

R? > b(©)k) = / ©,rdA +/ spn ((Curl @qu)T(y) d)\y) (x11 —y)

G G
= / symGrad 0 d A
Czl,O‘rzl,l
+ / spn ((CurlsymGrad 0;5) " (y) dAy) (11 — )
411,0@1,1
= / < symGrad 6, ;. (y)

Citz,o BN

+ / spn ((CurlsymGrad 6;) " d A)) d A,

C:Clﬂoyy

1
= ej,k(«xl,l) —ij(l’l’o) — 5 curl Gj,k(xm) X <$l71 — Il70)

J/

TV
=0

N et xwp, ifk=1,23,
= 5z,j7"k(xl,1) = 51,3’ {6k—3 7 ifk=4.5.6

Thus, we have functionals 8, for l =1,...,pand £ =1,...,6 given by

Ojk).€), =123 ,
6, = | (@(©ir),€). i —1,.. k=1,....6.
6l,f< ],k) {<b[(@j7k),€€3>, if 0= 4,5,6, J 9 » Dy ) )

Then for l,j =1,...,pand for £ =1,2,3

<€k,€€> = 557]€7 if k= 1, 2,3,

0..) = . N =95
Bre(©;k) = (a(©jx), ") “{(o,ef):o, if k=4,5,6,

ie.,

Be(©;k) = 61,500k, k=0,...,6,

HNote that curl 7, = 2e* for k = 1,2, 3, since, e.g.,

1 1 3

x €3) = curl (zq€® — z3¢?)
= grad (r2) x €® — grad (z3) x e? = €? x ® — €% x e? = 2¢’.

curl 7y (x) = curl (e! x z) = curl (zo e x * + 3¢
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and for £ =4,5,6
Fxapy,ef™3) = ("3 x ek apy), ifk=1,2,3
O..)={(b(O; 76573 — 5 <6 1 y L1/ )4y Dy
Pre(@in) = (b(®sad, ™) = g {(e“, =3 = 5y, if = 4, 5,6,
ie.,
ﬁl,é(@j,k) = 5l7j5£,k + 51,]' (517k + 52,1@ + 53716)(27171)@, k=0,...,6,

where
(200) g, 7= (72 x P ) = (€72 x e €Y ()i = £ (@10);

for the even resp. odd permutation (¢ — 3, k, ) of (1,2,3) and
(xu)@ =0

for all other £ and k. In particular, (2;1),5 Y 0 itl—3=korl{=1,23o0rk=45,6.

Therefore, we have for [,j =1,...,p and E ..,6
Bre(Oj) = 01,300x + 01(201) =53,
= 01,00k + 61,; (00,4 + 05 + 06) (01,6 + 2 + 34) (1 — 5@-3,k)($l,1)@-

(59)

Let Assumption 2 be satisfied. For the elasticity complex, simliar to (3), (4), and (40),
(46), (53) we have the orthogonal decompositions

L§’3X3(9> — ran(symGI‘ad, Q) EBLQ,BXB( Q) ker(DoiVS, Q)7

<60> T ela
ker(CurlCurlg , ) = ran(symGrad, Q) @213 q) H¥s5(€).

Remark B.24. [t holds dom(symGrad, Q) = H"3(Q) by [22, Lemma 3.2]. Moreover, the
range in (60) is closed by the Poincaré type estimate

Je>0 Ve H3Q) NRME @ []p2010) < ¢ symGrad ¢| 230y,

which is implied by Rellich’s selection theorem and [22, Lemma 3.2] as Assumption 2
holds.

Let us denote in (60) the orthogonal projector onto ker(Divg, Q) resp. HPs() by .
By Lemma B.22 there exists some ¢;, € H?(2) such that

’He'a s(Q) 2710, = 0, —symGrad;;, (0;r—symGrad ¢j7k)‘QF = symGrad(0; x—;x).

As HPs(Q) € CP3(Q), of. (25), we conclude by 710;,0;, € C*3(Q) that also
symGrad Vi € C°33(Q) and hence ¢, € C°3(Q). Hence all path integrals over the
closed curves (; are well defined. Furthermore, we observe by Lemma B.23

a;(symGrad ;) = / (Curl symGrad 'ij’k;)—r dA
G

1
= E(curl k(1) — curl ¢j7k(x171)) =0,

and

bi(symGrad ;) = / symGrad ¢, d A
G

+ / spn ((Curl symGrad ¢j7k)T(y) d /\y) (z11 —y)
¢
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— / ( symGrad ¥; x(y)

Cﬂ”l,lvzl,l

+ / spn ((Curl symGrad ;)" d A)) d A,

Crlylyy

1
= V(1) — Yjn(T1) — 5 curl ¢, (z11) X (x70 — 211) = 0.
Therefore, by (59)

Bre(mO; k) = Bre(Ojk) — ?Z7Z(symGrad Vi) = 01,300k + 015 (211) =5,
(61) =0
= 01,70 + 01,5 (0e.a + 025 + 00,6) (91, + Oz + O3.0) (1 — p—s.) (T01) =53,
foralll,7=1,...,pand all £,k =1,...,6. We shall show that

(62) B2 = {w@j,k}ﬁf ) C Hys ()

ceey

77777

defines a basis of H{?s(€2).

L
Note that ¢;, € H*(Q) N RI\/IP\,\fQ’B(Q) can be found by the standard variational formu-
lation

Vo e HY(Q) (symGrad v ,, symGrad ¢) 12.3x3(q) = (O, symGrad @) p23x3(q),
e, V= Ag_l Divg ©; ;. Therefore,
70, = 0, —symGrad ¢, = (1 — symGrad As_l Divg)0; 4.
Let us also mention that 1;; solves in classical terms the Neumann elasticity problem
—Ast)j = —Divg ©,; in Q,

(Grad ¢ x)v = O v on I,
(63) /(wj,k)gzo fori=1,...,n, (=1,23,
9
/ (xx¢j7k(x))£dAm:0 fori=1,...,n, (=123,
19

which is uniquely solvable.

Lemma B.25. Let Assumption 2 as well as Assumption 3 be satisfied. Then it holds

Proof. Let H € Hy%5(Q) = ker(Divg, Q) Nker(CurlCurld , Q) © C**3(Q), cf. (25). With
the above introduced functionals a; and b; we recall

R® > (H) = /(CurlH)Td)\,

G
R*>b(H):= [ HdA+ / spn ((Curl H) " (y) d Ay (211 — v),
G G
and define for [ = 1,...,p the numbers
Vi = ’}/l,g(H) = <CL[<H),€Z> - 6[75<H), (= 1, 2,3,

3
Vi = ”)/l,g(H) = <bl<H) — ZBZ,k(H)ek X X1, 6873>
k=1
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_ﬁlé Zﬁlk xllgg,ky £:475767

where we recall (xl»l)ﬂf?»\k = (0ea + 05 + 00,6) (016 + G2 + 03) (1 — de—s.)(w11) =53, by
definition, cf. (59), (61). We shall show that

P 6
'Hela s(Q) > H:=H— Z Z’}/j7kﬂ'@j7k =0 in Q.

j=1 k=1
Similar to the proofs of Lemma B.3, Lemma B.12, and Lemma B.19, the aim is to prove
that there exists v € H?(Q) such that symGradv = H, since then

|ﬁ|ig,3x3( Q) = (symGrad v, H> 263
S

By (61) we observe for l =1,...,p and for { =1,2,3

():O.

p

6

(/(CurlH)Td)\) = (a(H)), = Bre(H) =3 50 Bre(mO;4) =0,

G l w_/ \\,_/ o1 ke \7,5_./
=01,790,k

—_

=B1,¢(H) e
and thus by Assumption 3 (A.1) for any closed piecewise C'-curve ¢ in

(64) /C (Curl H)Td A = 0.

Recall the connected components 2q,...,€, of Q. For 1 < k < n let some xy € € be
fixed. By (64) and Curl(Curl )" = CurlCurly H = 0, cf. Lemma B.23, the vector field
w : ) — R? and the tensor field 7 : Q — R3*? given by

w(x) ::/ (Curl H)TdX, T :=H +spnw, x € Uy,
((z0,2)

where ((zg,z) is any piecewise Cl-curve connecting zy with z, are well defined, i.e.,
independent of the respective curve ((zp, ), and belong to C>3(Qy,) and C3*3(Qy),
respectively. Moreover, Gradw = (Curl H)T and by Lemma B.8

Curl T = Curl H + Curlspnw = Curl H + (divw) Id —(Grad w) "
= (tr Grad w) Id = (tr Curlﬁ]) Id =0,

as skw [ = 0. Note that for Corowrs C G C Q we have with ¢ := w(z;) € R?

w(x) = w(x)—w(r,) +c= / (Curl PAI)Td/\ +c, x € (,
—_—— —

Copp e

:/ Gradwd A\

411,1@
and

/(spnc)d)\ = (spnc)/ Idd X = (spnc)/ Gradzd A, =0.
G G G
Moreover, the closed curve ¢; may be considered as the closed curve (;, , ,, with circulation

1 along (;. By Lemma B.23 and by the definition of b; we have for [ =1,...p

/TdA: ﬁdA+/(spnw)dA
G G G
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_ ﬁdA+l/ wn(/ Kmﬂﬁfﬂk>d%
G

Cay 1w Cay 1oy
= ﬁd)ﬁ—/spn ((Curlﬁ)T(y)d/\y)(xu—y) :bl(ﬁ).
G G
Hence, for ¢ = 4,5,6 we get by (61)

</< TdA), = | AN = ((H), &) = fu(H)

p 6 3
= Bue(H) =D Y e BumOn) = BulH) —me— Y Yk (@1)55 =0
j=1 k=1 — k=1 ’
=01,300,k+01,5(%1.1) =57, =01,k (H)

Therefore, [ ol d A = 0 and thus by Assumption 3 (A.1) for any closed piecewise C''-curve
¢ in Q)

(65) /TdA:O
¢
By (65), cf. Lemma B.23, the vector field v : Q — R? given by
v(x) = / TdA, x € Uy,

<z , T
0

where ((xg, ) is any piecewise C'-curve connecting xy with x, is well defined, i.e., inde-

pendent of the respective curve ((zg, ). Moreover, v belongs to C*3(£,) and satisfies
Gradv =T € C®%*3(Qy) as well as

symGradv = symT = sym H = H € C>%3(Q;) N L33 ().

Similar to the end of the proof of Lemma B.3, elliptic regularity and, e.g., [14, Theorem
2.6 (1)] or [1, Theorem 3.2 (2)] show that v € C°3(Q) with symGradv € L2***(Q)
implies v € H'?(Q) and thus v € H'(Q), completing the proof. Let us note that
v e H3(Q) implies also T' € L***3(Q)) and hence w € L**(Q). O

Lemma B.26. Let Assumption 2 and Assumption 3 be satisfied. Then BS? is linear
independent.

P 6
Proof. Let Z Z’Yj,k’ﬂ'@j,k =0, v, € R. (61) implies for [ =1,...,p

j=1 k=1
P 6
0= Z Z%’,kﬁz,@(ﬂ@j,k) = Nt (=1,2,3,
j=1 k=1
p 6 3
0= Y vkBe®Osx) = e+ O Wr(®11) 3 = Mt {=4,5,6,
Jj=1 k=1 k=1
finishing the proof. U

Theorem B.27. Let Assumption 2 as well as Assumption 8 be satisfied. Then it holds
dim H3P5(2) = 6p and a basis of H37s(Q) is given by (62).

Proof. Use Lemma B.25 and Lemma B.26. U
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