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A Global div-curl-Lemma for Mixed Boundary Conditions in Weak Lipschitz Domains
and a Corresponding Generalized A*

0-A1-Lemma in Hilbert Spaces

DIRK PAULY

Abstract. We prove global and local versions of the so called div-curl-lemma, also known as compen-

sated compactness, for mixed boundary conditions as well as bounded weak Lipschitz domains in 3D and
weak Lipschitz interfaces. We will generalize our results using an abstract Hilbert space setting, which

shows corresponding results to hold in arbitrary dimensions as well as for various differential operators.

The crucial tools are Hilbert complexes and related compact embeddings.
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1. Introduction

We will prove a global version of the so called div-curl-lemma used for compensated compactness,
stating that under certain (mixed tangential and normal) boundary conditions and (very weak) regularity
assumptions on a domain Ω ⊂ R3 the following holds:

Let Ω ⊂ R3 be a bounded weak Lipschitz domain with boundary Γ and boundary parts Γt and Γn. Let

(En) and (Hn) be two sequences bounded in L2(Ω), such that (curlEn) and (divHn) are also bounded in

L2(Ω) and ν×En = 0 on Γt and ν ·Hn = 0 on Γn. Then there exist subsequences, again denoted by (En)
and (Hn), such that (En), (curlEn) and (Hn), (divHn) converge weakly to E, curlE resp. H, divH in

L2(Ω) and the inner products converge as well, i.e.,∫
Ω

En ·Hn →
∫

Ω

E ·H.

A local version (distributional like convergence for arbitrary domains and no boundary conditions
needed) of this div-curl-lemma is then immediately obtained.

Let Ω ⊂ R3 be an open set. Let (En) and (Hn) be two sequences bounded in L2(Ω), such that (curlEn)

and (divHn) are also bounded in L2(Ω). Then there exist subsequences, again denoted by (En) and (Hn),
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2 DIRK PAULY

such that (En), (curlEn) and (Hn), (divHn) converge weakly to E, curlE resp. H, divH in L2(Ω) and

the inner products converge in the distributional sense as well, i.e., for all ϕ ∈ C̊∞(Ω) it holds∫
Ω

(En ·Hn)ϕ→
∫

Ω

(E ·H)ϕ.

For details, see Theorem 3.1 and Corollary 3.2. We will also show a generalization to a natural Hilbert
space setting in Theorem 4.7. In Section 5 we apply this result to some more differential operators in
3D and ND, appearing, e.g., in generalized electro-magnetics, for the biharmonic equation, in general
relativity, for gravitational waves, and in the theory of linear elasticity and plasticity.

The div-curl-lemma, or compensated compactness, see the original papers by Murat [13] and Tartar
[23] or [7, 22], and its variants and extensions have plenty of important applications. For an extensive
discussion and a historical overview of the div-curl-lemma see [24]. More recent discussions can be
found, e.g., in [5, 25] and in the nice preprint [26]. The div-curl-lemma is widely used in the theory
of homogenization of (nonlinear) partial differential equations, see, e.g., [22]. Moreover, it is crucial
in establishing compactness and regularity results for nonlinear partial differential equations such as
harmonic maps, see, e.g., [9, 8, 19]. Numerical applications can be found, e.g., in [2]. It is further
a crucial tool in the homogenization of stochastic partial differential equations, especially with certain
random coefficients, see, e.g., the survey [1] and the literature cited therein, e.g., [10].

Let us also mention that the div-curl-lemma is particularly useful to treat homogenization of problems
arising in plasticity, see, e.g., a recent preprint on this topic [21], for which the preprint [20] provides

the important key div-curl-lemma. As in [20, 21] H1(Ω)-potentials are used, these contributions are

restricted to smooth, e.g., C2 or convex, domains and to full boundary conditions. On the other hand,
using Weck’s selection theorem (2.1) it is easily possible to extend these results even to bounded weak
Lipschitz domains of arbitrary topology and to the case of mixed boundary conditions.

Generally, for problems related to Maxwell’s equations the detour over H1(Ω) instead of using Weck’s
selection theorem seems to be the wrong way to deal with such equations. Most of the arguments simply
fail, and if not, the results are usually limited to smooth domains and trivial topologies. Mixed boundary
conditions cannot be treated properly. Since the early 1970’s, see the original paper by Weck [28] for

Weck’s selection theorem, it is well known, that the H1(Ω)-detour is often not helpful and does not lead
to satisfying results.

2. Definitions and Preliminaries

Let Ω ⊂ R3 be a bounded weak Lipschitz domain, see [3, Definition 2.3] for details, with boundary
Γ := ∂ Ω, which is divided into two relatively open weak Lipschitz subsets Γt and Γn := Γ \ Γt (its
complement), see [3, Definition 2.5] for details. Note that strong Lipschitz (graph of Lipschitz functions)
implies weak Lipschitz (Lipschitz manifolds) for the boundary as well as the interface. Throughout this
paper we shall assume the latter regularity on Ω and Γt.

Recently, in [3], Weck’s selection theorem, also known as the Maxwell compactness property, has been
shown to hold for such bounded weak Lipschitz domains and mixed boundary conditions. More precisely,
the embedding

R̊Γt(Ω) ∩ D̊Γn(Ω) ↪→↪→ L2(Ω)(2.1)

is compact, see [3, Theorem 4.7]. A short historical overview of Weck’s selection theorem is given in
the introduction of [3], see also the original paper [28] and [18, 27, 6, 29, 11, 12] for simpler proofs and
generalizations.

Here the usual Lebesgue and Sobolev spaces are denoted by L2(Ω) and H1(Ω) as well as

R(Ω) :=
{
E ∈ L2(Ω) : rotE ∈ L2(Ω)

}
, D(Ω) :=

{
E ∈ L2(Ω) : divE ∈ L2(Ω)

}
,

where we prefer to write rot instead of curl. R(Ω) and D(Ω) are also written as H(rot,Ω) or H(curl,Ω)
resp. H(div,Ω) in the literature. With the help of test functions and test vector fields

C̊∞Γt
(Ω) :=

{
ϕ|Ω : ϕ ∈ C̊∞(R3), dist(suppϕ,Γt) > 0

}
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we define the closed subspaces

H̊1
Γt

(Ω) := C̊∞Γt
(Ω)

H1(Ω)

, R̊Γt(Ω) := C̊∞Γt
(Ω)

R(Ω)

, D̊Γn(Ω) := C̊∞Γn
(Ω)

D(Ω)

(2.2)

as closures of test functions respectively vector fields. In (2.2) homogeneous scalar, tangential and normal
traces on Γt resp. Γn are generalized, respectively. To avoid case studies when using the Poincaré estimate,
we also define

H̊1
∅(Ω) := H1(Ω) ∩ R⊥L2(Ω) =

{
u ∈ H1(Ω) :

∫
Ω

u = 0
}
.

Let us emphasize that our assumptions also allow for Rellich’s selection theorem, i.e., the embedding

H̊1
Γt

(Ω) ↪→↪→ L2(Ω)(2.3)

is compact, see, e.g., [3, Theorem 4.8]. By density we have the two rules of partial integration

∀u ∈ H̊1
Γt

(Ω) ∀H ∈ D̊Γn(Ω) 〈∇u,H〉
L2(Ω)

= −〈u,divH〉
L2(Ω)

,(2.4)

∀E ∈ R̊Γt(Ω) ∀H ∈ R̊Γn(Ω) 〈rotE,H〉
L2(Ω)

= 〈E, rotH〉
L2(Ω)

.(2.5)

We emphasize that, besides Weck’s selection theorem, the resulting Maxwell estimates (Friedrichs/Poincaré
type estimates), Helmholtz decompositions, closed ranges, continuous and compact inverse operators,
and an adequate electro-magneto static solution theory for bounded weak Lipschitz domains and mixed
boundary conditions, another important result has been shown in [3]. It holds

H̊1
Γt

(Ω) =
{
u ∈ H1(Ω) : 〈∇u,Φ〉

L2(Ω)
= −〈u,div Φ〉

L2(Ω)
for all Φ ∈ C̊∞Γn

(Ω)
}
,

R̊Γt(Ω) =
{
E ∈ R(Ω) : 〈rotE,Φ〉

L2(Ω)
= 〈E, rot Φ〉

L2(Ω)
for all Φ ∈ C̊∞Γn

(Ω)
}
,

D̊Γn(Ω) =
{
H ∈ D(Ω) : 〈divH,ϕ〉

L2(Ω)
= −〈H,∇ϕ〉

L2(Ω)
for all ϕ ∈ C̊∞Γt

(Ω)
}
,

(2.6)

i.e., strong and weak definitions of boundary conditions coincide, see [3, Theorem 4.5]. Furthermore, we
define the closed subspaces of irrotational resp. solenoidal vector fields

R0(Ω) :=
{
E ∈ R(Ω) : rotE = 0

}
, D0(Ω) :=

{
E ∈ D(Ω) : divE = 0

}
as well as

R̊Γt,0(Ω) := R̊Γt(Ω) ∩ R0(Ω), D̊Γn,0(Ω) := D̊Γn(Ω) ∩ D0(Ω).

A direct consequence of (2.1) is the compactness of the unit ball in

H(Ω) := R̊Γt,0(Ω) ∩ D̊Γn,0(Ω),

the space of so called Dirichlet-Neumann fields. Hence H(Ω) is finite dimensional. Another immediate
consequence of Weck’s selection theorem (2.1), using a standard indirect argument, is the so called
Maxwell estimate, i.e.,

∃ cm > 0 ∀E ∈ R̊Γt(Ω) ∩ D̊Γn(Ω) ∩H(Ω)
⊥

L2(Ω) |E|
L2(Ω)

≤ cm
(
| rotE|

L2(Ω)
+ |divE|

L2(Ω)

)
(2.7)

or, equivalently,

∀E ∈ R̊Γt(Ω) ∩ D̊Γn(Ω) |E − πE|
L2(Ω)

≤ cm
(
| rotE|

L2(Ω)
+ |divE|

L2(Ω)

)
,(2.8)

see [3, Theorem 5.1], where π : L2(Ω)→ H(Ω) denotes the L2(Ω)-orthonormal projector onto the Dirichlet-
Neumann fields. Recent estimates for the Maxwell constant cm can be found in [14, 15, 16]. Analogously,
Rellich’s selection theorem (2.3) shows the Friedrichs/Poincaré estimate

∃ cf,p > 0 ∀u ∈ H̊1
Γt

(Ω) |u|
L2(Ω)

≤ cf,p| ∇u|L2(Ω)
,(2.9)

see [3, Theorem 4.8]. By the projection theorem, applied to the densely defined and closed (unbounded)
linear operator

∇ : H̊1
Γt

(Ω) ⊂ L2(Ω) −→ L2(Ω)
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with (Hilbert space) adjoint

∇∗ = −div : D̊Γn(Ω) ⊂ L2(Ω) −→ L2(Ω),

here we need (2.6), we get the simple Helmholtz decomposition

L2(Ω) = ∇ H̊1
Γt

(Ω)⊕
L2(Ω)

D̊Γn,0(Ω),(2.10)

see [3, Theorem 5.3 or (13)], which immediately implies

R̊Γt(Ω) = ∇ H̊1
Γt

(Ω)⊕
L2(Ω)

(
R̊Γt(Ω) ∩ D̊Γn,0(Ω)

)
(2.11)

as ∇ H̊1
Γt

(Ω) ⊂ R̊Γt,0(Ω). Note that the decompositions (2.10) and (2.11) are orthogonal which is denoted

by ⊕
L2(Ω)

. By (2.9), the range ∇ H̊1
Γt

(Ω) is closed in L2(Ω), see also [3, Lemma 5.2]. Note that we call

(2.10) a simple Helmholtz decomposition, since the refined Helmholtz decomposition

L2(Ω) = ∇ H̊1
Γt

(Ω)⊕
L2(Ω)

H(Ω)⊕
L2(Ω)

rot R̊Γn(Ω)

holds as well, see [3, Theorem 5.3], where also rot R̊Γn(Ω) is closed in L2(Ω) as a consequence of (2.7), see
[3, Lemma 5.2].

3. The div-rot-Lemma

Theorem 3.1 (global div-rot-lemma). Let (En) ⊂ R̊Γt(Ω) and (Hn) ⊂ D̊Γn(Ω) be two sequences bounded

in R(Ω) resp. D(Ω). Then there exist E ∈ R̊Γt(Ω) and H ∈ D̊Γn(Ω) as well as subsequences, again denoted

by (En) and (Hn), such that (En) and (Hn) converge weakly in R(Ω) resp. D(Ω) to E resp. H together
with the convergence of the inner products

〈En, Hn〉L2(Ω)
→ 〈E,H〉

L2(Ω)
.

Proof. We pick subsequences, again denoted by (En) and (Hn), such that (En) and (Hn) converge

weakly in R(Ω) resp. D(Ω) to E resp. H for some E ∈ R̊Γt(Ω) and H ∈ D̊Γn(Ω). By the simple

Helmholtz decomposition (2.11), we have the orthogonal decomposition R̊Γt(Ω) 3 En = ∇un + Ẽn with

some un ∈ H̊1
Γt

(Ω) and Ẽn ∈ R̊Γt(Ω) ∩ D̊Γn,0(Ω). Then (un) is bounded in H1(Ω) by orthogonality

and the Friedrichs/Poincaré estimate (2.9). (Ẽn) is bounded in R(Ω) ∩ D(Ω) by orthogonality and

rot Ẽn = rotEn, div Ẽn = 0. Hence, using Rellich’s and Weck’s selection theorems there exist u ∈ H̊1
Γt

(Ω)

and Ẽ ∈ R̊Γt(Ω) ∩ D̊Γn,0(Ω) and we can extract two subsequences, again denoted by (un) and Ẽn, such

that un ⇀ u in H1(Ω) and un → u in L2(Ω) as well as Ẽn ⇀ Ẽ in R(Ω) ∩ D(Ω) and Ẽn → Ẽ in L2(Ω).

We have E = ∇u+ Ẽ, giving the simple Helmholtz decomposition for E, as, e.g., for all ϕ ∈ C̊∞(Ω)

〈E,ϕ〉
L2(Ω)

← 〈En, ϕ〉L2(Ω)
= 〈∇un, ϕ〉L2(Ω)

+ 〈Ẽn, ϕ〉L2(Ω)
→ 〈∇u, ϕ〉

L2(Ω)
+ 〈Ẽ, ϕ〉

L2(Ω)
.

Then by (2.4)

〈En, Hn〉L2(Ω)
= 〈∇un, Hn〉L2(Ω)

+ 〈Ẽn, Hn〉L2(Ω)
= −〈un,divHn〉L2(Ω)

+ 〈Ẽn, Hn〉L2(Ω)

→ −〈u,divH〉
L2(Ω)

+ 〈Ẽ,H〉
L2(Ω)

= 〈∇u,H〉
L2(Ω)

+ 〈Ẽ,H〉
L2(Ω)

= 〈E,H〉
L2(Ω)

,

completing the proof. �

Corollary 3.2 (local div-rot-lemma). Let (En) ⊂ R(Ω) and (Hn) ⊂ D(Ω) be two sequences bounded in

R(Ω) resp. D(Ω). Then there exist E ∈ R(Ω) and H ∈ D(Ω) as well as subsequences, again denoted

by (En) and (Hn), such that En ⇀ E in R(Ω) and Hn ⇀ H in D(Ω) together with the distributional
convergence

∀ϕ ∈ C̊∞(Ω) 〈ϕEn, Hn〉L2(Ω)
→ 〈ϕE,H〉

L2(Ω)
.

Proof. Let Γt := Γ and hence Γn = ∅. (ϕEn) is bounded in R̊Γ(Ω) and (Hn) is bounded in D(Ω).
Theorem 3.1 shows the assertion. �
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Remark 3.3. We note that the boundedness of (En) and (Hn) in local spaces is sufficient for Corollary
3.2 to hold. Hence, no regularity or boundedness assumptions on Ω are needed, i.e., Ω can be an arbitrary
domain in R3.

4. Generalizations

The idea of the proof of Theorem 3.1 can be generalized.

4.1. Functional Analysis Toolbox. Let A :D(A) ⊂ H1 → H2 be a (possibly unbounded) closed and

densely defined linear operator on two Hilbert spaces H1 and H2 with adjoint A* :D(A*) ⊂ H2 → H1. Note

(A∗)∗ = A = A, i.e., (A,A*) is a dual pair. By the projection theorem the Helmholtz type decompositions

H1 = N(A)⊕H1 R(A*), H2 = N(A*)⊕H2 R(A)(4.1)

hold, where we introduce the notation N for the kernel (or null space) and R for the range of a linear
operator. We can define the reduced operators

A := A |
R(A*)

: D(A) ⊂ R(A*)→ R(A), D(A) := D(A) ∩N(A)⊥H1 = D(A) ∩R(A*),

A* := A* |
R(A)

: D(A*) ⊂ R(A)→ R(A*), D(A*) := D(A*) ∩N(A*)⊥H2 = D(A*) ∩R(A),

which are also closed and densely defined linear operators. We note that A and A* are indeed adjoint to

each other, i.e., (A,A*) is a dual pair as well. Now the inverse operators

A−1 : R(A)→ D(A), (A*)−1 : R(A*)→ D(A*)

exist and they are bijective, since A and A* are injective by definition. Furthermore, by (4.1) we have
the refined Helmholtz type decompositions

D(A) = N(A)⊕H1
D(A), D(A*) = N(A*)⊕H2

D(A*)(4.2)

and thus we obtain for the ranges

R(A) = R(A), R(A*) = R(A*).(4.3)

By the closed range theorem and the closed graph theorem we get immediately the following.

Lemma 4.1. The following assertions are equivalent:

(i) ∃ cA ∈ (0,∞) ∀x ∈ D(A) |x|H1
≤ cA|Ax|H2

(i∗) ∃ cA* ∈ (0,∞) ∀ y ∈ D(A*) |y|H2
≤ cA* |A* y|H1

(ii) R(A) = R(A) is closed in H2.

(ii∗) R(A*) = R(A*) is closed in H1.
(iii) A−1 : R(A)→ D(A) is continuous and bijective with norm bounded by (1 + c2A)1/2.

(iii∗) (A*)−1 : R(A*)→ D(A*) is continuous and bijective with norm bounded by (1 + c2
A*)1/2.

In case that one of the latter assertions is true, e.g., (ii), R(A) is closed, we have

H1 = N(A)⊕H1 R(A*), H2 = N(A*)⊕H2 R(A),

D(A) = N(A)⊕H1 D(A), D(A*) = N(A*)⊕H2 D(A*),

D(A) = D(A) ∩R(A*), D(A*) = D(A*) ∩R(A),

and

A : D(A) ⊂ R(A*)→ R(A), A* : D(A*) ⊂ R(A)→ R(A*).

Remark 4.2. For the “best” constants cA, cA* the following holds: The Rayleigh quotients

1

cA
:= inf

06=x∈D(A)

|Ax|H2

|x|H1

,
1

cA*

:= inf
0 6=y∈D(A*)

|A* y|H1

|y|H2

coincide, i.e., cA = cA* ∈ (0,∞].
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Lemma 4.3. The following assertions are equivalent:

(i) D(A) ↪→↪→ H1 is compact.

(i∗) D(A*) ↪→↪→ H2 is compact.

(ii) A−1 : R(A)→ R(A*) is compact.

(ii∗) (A*)−1 : R(A*)→ R(A) is compact.

If one of these assertions holds true, e.g., (i), D(A) ↪→↪→ H1 is compact, then the assertions of Lemma 4.1
and Remark 4.2 hold with cA = cA* ∈ (0,∞). Especially, the Friedrichs/Poincaré type estimates hold,
all ranges are closed and the inverse operators

A−1 : R(A)→ R(A*), (A*)−1 : R(A*)→ R(A)

are compact with norms
∣∣A−1

∣∣
R(A),R(A*)

=
∣∣(A*)−1

∣∣
R(A*),R(A)

= cA.

Proof. As the other assertions are easily proved or immediately clear by symmtery, we just show that (i),
i.e., the compactness of

D(A) = D(A) ∩R(A*) ↪→↪→ H1,

implies (i∗) as well as Lemma 4.1 (i).
(i)⇒Lemma 4.1 (i): For this we use a standard indirect argument. If Lemma 4.1 (i) was wrong, there

exists a sequence (xn) ⊂ D(A) with |xn|H1
= 1 and Axn → 0. As (xn) is bounded in D(A) we can

extract a subsequence, again denoted by (xn), with xn → x ∈ H1 in H1. Since A is closed, we have
x ∈ D(A) and Ax = 0, hence x ∈ N(A) = {0}, in contradiction to 1 = |xn|H1 → |x|H1 = 0.

(i)⇒(i∗): Let (yn) ⊂ D(A*) be a bounded sequence. Utilizing Lemma 4.1 (i) and (ii) we obtain

D(A*) = D(A*) ∩ R(A) and thus yn = Axn with (xn) ⊂ D(A), which is bounded in D(A) by Lemma
4.1 (i). Hence we may extract a subsequence, again denoted by (xn), converging in H1. Therefore with
xn,m := xn − xm and yn,m := yn − ym we see

|yn,m|2H2
=
〈
yn,m,A(xn,m)

〉
H2

=
〈

A*(yn,m), xn,m
〉
H1
≤ c |xn,m|H1 ,

and hence (yn) is a Cauchy sequence in H2. �

Now, let A0 :D(A0) ⊂ H0 → H1 and A1 :D(A1) ⊂ H1 → H2 be (possibly unbounded) closed and densely
defined linear operators on three Hilbert spaces H0, H1, and H2 with adjoints A*

0 :D(A*
0) ⊂ H1 → H0 and

A*
1 :D(A*

1) ⊂ H2 → H1 as well as reduced operators A0, A*
0, and A1, A*

1. Furthermore, we assume the
sequence or complex property of A0 and A1, that is, A1 A0 = 0, i.e.,

R(A0) ⊂ N(A1).(4.4)

Then also A*
0 A*

1 = 0, i.e., R(A*
1) ⊂ N(A*

0). From the Helmholtz type decompositions (4.1) for A = A0

and A = A1 we get in particular

H1 = R(A0)⊕H1 N(A*
0), H1 = R(A*

1)⊕H1 N(A1),(4.5)

and the following result for Helmholtz type decompositions:

Lemma 4.4. Let N0,1 := N(A1) ∩N(A*
0). The refined Helmholtz type decompositions

N(A1) = R(A0)⊕H1
N0,1, D(A1) = R(A0)⊕H1

(
D(A1) ∩N(A*

0)
)
, R(A0) = R(A0),(4.6)

N(A*
0) = R(A*

1)⊕H1
N0,1, D(A*

0) = R(A*
1)⊕H1

(
D(A*

0) ∩N(A1)
)
, R(A*

1) = R(A*
1),(4.7)

and

H1 = R(A0)⊕H1
N0,1 ⊕H1

R(A*
1)(4.8)

hold, which can be further refined and specialized, e.g., to

D(A1) ∩D(A*
0) = D(A*

0)⊕H1 N0,1 ⊕H1 D(A1).(4.9)

Proof. By (4.5) and the complex properties we see (4.6) and (4.7), yielding directly (4.8) and (4.9). �
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We observe

D(A1) = D(A1) ∩R(A*
1) ⊂ D(A1) ∩N(A*

0) ⊂ D(A1) ∩D(A*
0),

D(A*
0) = D(A*

0) ∩R(A0) ⊂ D(A*
0) ∩N(A1) ⊂ D(A*

0) ∩D(A1),

and using the refined Helmholtz type decompositions of Lemma 4.4 as well as the results of Lemma 4.1,
Lemma 4.3, and Lemma 4.5, we immediately see:

Lemma 4.5. The following assertions are equivalent:

(i) D(A0) ↪→↪→ H0, D(A1) ↪→↪→ H1, and N0,1 ↪→↪→ H1 are compact.

(ii) D(A1) ∩D(A*
0) ↪→↪→ H1 is compact.

In this case, the cohomology group N0,1 has finite dimension.

We summarize:

Theorem 4.6. Let D(A1) ∩ D(A*
0) ↪→↪→ H1 be compact. Then D(A0) ↪→↪→ H0, D(A1) ↪→↪→ H1, and

D(A*
0) ↪→↪→ H1, D(A*

1) ↪→↪→ H2 are compact, all ranges R(A0), R(A*
0), and R(A1), R(A*

1) are closed, and
the corresponding Friedrichs/Poincaré type estimates hold, i.e. there exists cA0

, cA1
∈ (0,∞) such that

∀ z ∈ D(A0) |z|H0 ≤ cA0 |A0 z|H1 ,(4.10)

∀x ∈ D(A*
0) |x|H1

≤ cA0
|A*

0 x|H0
,

∀x ∈ D(A1) |x|H1
≤ cA1

|A1 x|H2
,

∀ y ∈ D(A*
1) |y|H2 ≤ cA1 |A*

1 y|H1 .

Moreover, all refined Helmholtz type decompositions of Lemma 4.4 hold with closed ranges, especially

D(A1) = R(A0)⊕H1

(
D(A1) ∩N(A*

0)
)
.(4.11)

Proof. Apply the latter lemmas and remarks to A = A0 and A = A1. �

4.2. The A*
0-A1-Lemma. Let A0 and A1 be as introduced before satisfying the complex property (4.4),

i.e., A1 A0 = 0 or R(A0) ⊂ N(A1). In other words, the primal and dual sequences

D(A0) ⊂ H0
A0−−−−→ D(A1) ⊂ H1

A1−−−−→ H2,

H0
A*

0←−−−− D(A*
0) ⊂ H1

A*
1←−−−− D(A*

1) ⊂ H2

(4.12)

are Hilbert complexes of closed and densely defined linear operators. The additional assumption of closed
ranges R(A0) and R(A1)

(
and hence also closed ranges R(A*

0) and R(A*
1)
)

is equivalent to calling the
Hilbert complexes closed. The complexes are exact, if and only if N0,1 = {0}.

As our main result, the following generalized global div-curl-lemma holds.

Theorem 4.7 (A*
0-A1-lemma). Let D(A1) ∩ D(A*

0) ↪→↪→ H1 be compact. Moreover, let (xn) ⊂ D(A1)
and (yn) ⊂ D(A*

0) be two sequences bounded in D(A1) resp. D(A*
0). Then there exist x ∈ D(A1) and

y ∈ D(A*
0) as well as subsequences, again denoted by (xn) and (yn), such that (xn) and (yn) converge

weakly in D(A1) resp. D(A*
0) to x resp. y together with the convergence of the inner products

〈xn, yn〉H1
→ 〈x, y〉H1

.

Proof. Note that Theorem 4.6 can be applied. We pick subsequences, again denoted by (xn) and (yn),
such that (xn) and (yn) converge weakly in D(A1) resp. D(A*

0) to x ∈ D(A1) resp. y ∈ D(A*
0). By

(4.11) we get the orthogonal decomposition

D(A1) 3 xn = A0 zn + x̃n, zn ∈ D(A0), x̃n ∈ D(A1) ∩N(A*
0).

(zn) is bounded in D(A0) by orthogonality and the Friedrichs/Poincaré tye estimate (4.10). (x̃n) is
bounded in D(A1) ∩D(A*

0) by orthogonality and A1 x̃n = A1 xn, A*
0 x̃n = 0. Using the compact embed-

dings D(A0) ↪→↪→ H0 and D(A1) ∩D(A*
0) ↪→↪→ H1, there exist z ∈ D(A0) and x̃ ∈ D(A1) ∩N(A*

0) and we
can extract two subsequences, again denoted by (zn) and (x̃n), such that zn ⇀ z in D(A0) and zn → z in
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H0 as well as x̃n ⇀ x̃ in D(A1) ∩D(A*
0) and x̃n → x̃ in H1. We have x = A0 z + x̃, giving the Helmholtz

type decomposition for x, as, e.g., for all ϕ ∈ H1

〈x, ϕ〉H1
← 〈xn, ϕ〉H1

= 〈A0 zn, ϕ〉H1
+ 〈x̃n, ϕ〉H1

→ 〈A0 z, ϕ〉H1
+ 〈x̃, ϕ〉H1

.

Finally, we see

〈xn, yn〉H1
= 〈A0 zn, yn〉H1

+ 〈x̃n, yn〉H1
= 〈zn,A*

0 yn〉H0
+ 〈x̃n, yn〉H1

→ 〈z,A*
0 y〉H0 + 〈x̃, y〉H1 = 〈A0 z, y〉H1 + 〈x̃, y〉H1 = 〈x, y〉H1 ,

completing the proof. �

Remark 4.8. By Lemma 4.5 the crucial assumption, i.e., D(A1) ∩ D(A*
0) ↪→↪→ H1 is compact, holds,

if and only if D(A0) ↪→↪→ H0, D(A1) ↪→↪→ H1 are compact and N0,1 is finite dimensional. Moreover, as
Banach space adjoints we have

H0
∼= H′0 ↪→↪→ D(A0)′ ⇔ D(A0) ↪→↪→ H0 ⇔ D(A*

0) ↪→↪→ H1 ⇔ H1
∼= H′1 ↪→↪→ D(A*

0)′,

and

H1
∼= H′1 ↪→↪→ D(A1)′ ⇔ D(A1) ↪→↪→ H1 ⇔ D(A*

1) ↪→↪→ H2 ⇔ H2
∼= H′2 ↪→↪→ D(A*

1)′.

Especially, the assumption that D(A1) ∩D(A*
0) ↪→↪→ H1 is compact, is equivalent to dimN0,1 <∞ and

H0 ↪→↪→ D(A0)′, H2 ↪→↪→ D(A*
1)′

are compact. Thus, we observe that Theorem 4.7 is equivalent to [26, Theorem 2.5] and that the assump-
tions of Theorem 4.7 are practically equivalent to those of [26, Theorem 2.4].

5. Applications

Whenever closed Hilbert complexes like (4.12) together with the corresponding compact embedding
D(A1) ∩ D(A*

0) ↪→↪→ H1 occur, we can apply the general A*
0-A1-lemma, i.e., Theorem 4.7. In three

dimensions we typically have three closed and densely defined linear operators A0, A1, and A2, satisfying
the complex properties R(A0) ⊂ N(A1) and R(A1) ⊂ N(A2), i.e.,

D(A0) ⊂ H0
A0−−−−→ D(A1) ⊂ H1

A1−−−−→ D(A2) ⊂ H2
A2−−−−→ H3,

H0
A*

0←−−−− D(A*
0) ⊂ H1

A*
1←−−−− D(A*

1) ⊂ H2
A*

2←−−−− D(A*
2) ⊂ H3,

(5.1)

together with the crucial compact embeddings

D(A1) ∩D(A*
0) ↪→↪→ H1, D(A2) ∩D(A*

1) ↪→↪→ H2.(5.2)

Let us recall our general assumptions on the underlying domain from Section 2: In the following
examples we suppose that Ω ⊂ R3 is a bounded weak Lipschitz domain, see [3, Definition 2.3], with
boundary Γ, which is divided into two relatively open weak Lipschitz subsets Γt and Γn := Γ \ Γt, see [3,
Definition 2.5].

5.1. The div-rot-Lemma Revisited. The first and most canonical example is given by the classical
operators from vector analysis

A0 := ∇̊Γt : H̊1
Γt

(Ω) ⊂ L2(Ω) −→ L2
ε(Ω); u 7→ ∇u,

A1 := µ−1r̊otΓt : R̊Γt(Ω) ⊂ L2
ε(Ω) −→ L2

µ(Ω); E 7→ µ−1 rotE,

A2 := d̊ivΓtµ : µ−1D̊Γt(Ω) ⊂ L2
µ(Ω) −→ L2(Ω); H 7→ divµH.

A0, A1, and A2 are unbounded, densely defined, and closed linear operators with adjoints

A*
0 = ∇̊

∗
Γt

= −d̊ivΓnε : ε−1D̊Γn(Ω) ⊂ L2
ε(Ω) −→ L2(Ω); H 7→ −div εH,

A*
1 = (µ−1r̊otΓt)

∗ = ε−1r̊otΓn : R̊Γn(Ω) ⊂ L2
µ(Ω) −→ L2

ε(Ω); E 7→ ε−1 rotE,

A*
2 = (d̊ivΓtµ)∗ = −∇̊Γn : H̊1

Γn
(Ω) ⊂ L2(Ω) −→ L2

µ(Ω); u 7→ −∇u.
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Here, ε, µ : Ω → R3×3 are symmetric and uniformly positive definite L∞(Ω)-tensor fields. The complex
properties hold as

R(A0) = ∇̊ΓtH̊
1
Γt

(Ω) ⊂ R̊Γt,0(Ω) = N(A1), R(A*
1) = ε−1r̊otΓn R̊Γn(Ω) ⊂ ε−1D̊Γn,0(Ω) = N(A*

0),

R(A1) = µ−1r̊otΓt R̊Γt(Ω) ⊂ µ−1D̊Γt,0(Ω) = N(A2), R(A*
2) = ∇̊ΓnH̊

1
Γn

(Ω) ⊂ R̊Γn,0(Ω) = N(A*
1).

Hence, the sequences (5.1) read

H̊1
Γt

(Ω) ⊂ L2(Ω)
A0=∇̊Γt−−−−−→ R̊Γt(Ω) ⊂ L2

ε(Ω)
A1=µ−1 r̊otΓt−−−−−−−−→ µ−1D̊Γt(Ω) ⊂ L2

µ(Ω)
A2=d̊ivΓtµ−−−−−−−→ L2(Ω),

L2(Ω)
A∗0=−d̊ivΓn ε←−−−−−−−− ε−1D̊Γn(Ω) ⊂ L2

ε(Ω)
A∗1=ε−1 r̊otΓn←−−−−−−−− R̊Γn(Ω) ⊂ L2

µ(Ω)
A∗2=−∇̊Γn←−−−−−−− H̊1

Γn
(Ω) ⊂ L2(Ω).

These are the well known Hilbert complexes for electro-magnetics, which are also known as de Rham
complexes. Moreover, the crucial embeddings (5.2), i.e.,

D(A1) ∩D(A*
0) = R̊Γt(Ω) ∩ ε−1D̊Γn(Ω) ↪→↪→ L2(Ω), D(A2) ∩D(A*

1) = µ−1D̊Γt(Ω) ∩ R̊Γn(Ω) ↪→↪→ L2(Ω),

are compact by Weck’s selection theorem (2.1), see [3, Theorem 4.7]. Indeed, Weck’s selection theorems
are independent of the material law tensors ε or µ. Choosing the pair (A0,A1) we get by Theorem 4.7
the following:

Theorem 5.1 (global div ε-µ−1 rot-lemma). Let (En) ⊂ R̊Γt(Ω) and (Hn) ⊂ ε−1D̊Γn(Ω) be two sequences

bounded in R(Ω) resp. ε−1D(Ω). Then there exist E ∈ R̊Γt(Ω) and H ∈ ε−1D̊Γn(Ω) as well as subsequences,

again denoted by (En) and (Hn), such that (En) and (Hn) converge weakly in R(Ω) resp. ε−1D(Ω) to E
resp. H together with the convergence of the inner products

〈En, Hn〉L2
ε(Ω)
→ 〈E,H〉

L2
ε(Ω)

.

Remark 5.2. We note:

(i) Considering (En) and (εHn) shows that Theorem 5.1 is equivalent to the global div-curl-lemma
Theorem 3.1.

(ii) Theorem 5.1 has a corresponding local version similar to the local div-curl-lemma Corollary 3.2
and Remark 3.3, which holds with no regularity or boundedness assumptions on Ω.

(iii) Choosing the pair (A1,A2) we get by Theorem 4.7 a permutation of Theorem 5.1, shortly stat-

ing, that for bounded sequences (En) ⊂ µ−1D̊Γt(Ω) and (Hn) ⊂ R̊Γn(Ω) it holds (after picking
subsequences) 〈En, Hn〉L2

µ(Ω)
→ 〈E,H〉

L2
µ(Ω)

.

Other examples are the following:

5.2. Generalized Electro-Magnetics. Let us allow Ω ⊂ RN or even to be a smooth Riemannian
manifold with Lipschitz boundary and interface submanifolds Γ, and Γt, Γn. Using the calculus of
alternating differential q-forms, we define the exterior derivative d and co-derivative δ = ± ∗ d ∗ as
Sobolev derivatives in the distributional weak sense by

Dq(Ω) :=
{
E ∈ L2,q(Ω) : dE ∈ L2,q+1(Ω)

}
, ∆q+1(Ω) :=

{
H ∈ L2,q+1(Ω) : δ H ∈ L2,q(Ω)

}
.

To introduce boundary conditions we define

d̊
q

Γt
: D̊qΓt

(Ω) := C̊∞,qΓt
(Ω)

Dq(Ω)

⊂ L2,q(Ω) −→ L2,q+1(Ω); E 7→ dE

as closure of the classical exterior derivative d acting on test q-forms. d̊
q

Γt
is an unbounded, densely

defined, and closed linear operator with adjoint

(̊d
q

Γt
)∗ = −̊δ

q+1

Γn
: ∆̊q+1

Γn
(Ω) := C̊∞,q+1

Γn
(Ω)

∆q+1(Ω)

⊂ L2,q+1(Ω) −→ L2,q(Ω); H 7→ − δ H.

Let us introduce

A0 := d̊
q−1

Γt
, A1 := d̊

q

Γt
, A∗0 = δ̊

q

Γn
, A∗1 = δ̊

q+1

Γn
.
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The complex properties hold as, e.g.,

R(A0) = d̊
q−1

Γt
D̊q−1

Γt
(Ω) ⊂ D̊qΓt,0

(Ω) = N(A1), R(A*
1) = δ̊

q+1

Γn
∆̊q+1

Γn
(Ω) ⊂ ∆̊q

Γn,0
(Ω) = N(A*

0)

by the classical properties δ δ = ± ∗ d d ∗ = 0. Hence, the sequences (5.1) read

D̊q−1
Γt

(Ω) ⊂ L2,q−1(Ω)
A0=d̊

q−1
Γt−−−−−−→ D̊qΓt

(Ω) ⊂ L2,q(Ω)
A1=d̊

q
Γt−−−−−→ L2,q+1(Ω),

L2,q−1(Ω)
A∗0=̊δ

q
Γn←−−−−− ∆̊q

Γn
(Ω) ⊂ L2,q(Ω)

A∗1=̊δ
q+1
Γn←−−−−−− ∆̊q+1

Γn
(Ω) ⊂ L2,q+1(Ω),

which are the well known Hilbert complexes for generalized electro-magnetics, i.e., the de Rham com-
plexes. Moreover, the crucial embedding (5.2), i.e.,

D(A1) ∩D(A*
0) = D̊qΓt

(Ω) ∩ ∆̊q
Γn

(Ω) ↪→↪→ L2(Ω),

is compact by a generalization of Weck’s selection theorem (2.1), see [4] or the fundamental papers of
Weck [28] and Picard [18] for full boundary conditions. Indeed, Weck’s selection theorems are independent
of the material law tensors ε or µ. Theorem 4.7 shows the following result:

Theorem 5.3 (global δ-d-lemma). Let (En) ⊂ D̊qΓt
(Ω) and (Hn) ⊂ ∆̊q

Γn
(Ω) be two sequences bounded

in Dq(Ω) resp. ∆q(Ω). Then there exist E ∈ D̊qΓt
(Ω) and H ∈ ∆̊q

Γn
(Ω) as well as subsequences, again

denoted by (En) and (Hn), such that (En) and (Hn) converge weakly in Dq(Ω) resp. ∆q(Ω) to E resp.
H together with the convergence of the inner products

〈En, Hn〉L2,q(Ω)
→ 〈E,H〉

L2,q(Ω)
.

Remark 5.4. We note:

(i) For N = 3 and q = 1 (resp. q = 2) we obtain by Theorem 5.3 again the global div-curl-lemma
Theorem 3.1.

(ii) For q = 0 (resp. q = N) as well as identifying d̊
0

Γt
= ∇̊Γt and ∆̊0

Γn
(Ω) = 0 (resp. d̊

N

Γt
= 0

and ∆̊N
Γn

(Ω) = ∇̊Γn) we get by Theorem 5.3 the following trivial (by Rellich’s selection theorem)

result: For all bounded sequences (un) ⊂ H̊1
Γt

(Ω) and (vn) ⊂ L2(Ω) there exist u ∈ H̊1
Γt

(Ω) and

v ∈ L2(Ω) as well as subsequences, again denoted by (un) and (vn), such that (un) and (vn)

converge weakly in H̊1
Γt

(Ω) resp. L2(Ω) to u resp. v together with the convergence of the inner
products 〈un, vn〉L2(Ω)

→ 〈u, v〉
L2(Ω)

.

(iii) Theorem 5.3 has a corresponding local version similar to the local div-curl-lemma Corollary 3.2
and Remark 3.3, which holds with no regularity or boundedness assumptions on Ω.

5.3. Biharmonic Equation and General Relativity, Gravitational Waves. Let Ω ⊂ R3 enjoy our
general assumptions. We introduce symmetric and deviatoric (trace-free) square integrable tensor fields

in L2(Ω;S) resp. L2(Ω;T) and as closures of the Hessian ∇∇, and Rot, Div (row-wise rot, div), applied
to test functions resp. test tensor fields, the linear operators

A0 := ∇̊∇Γt : H̊2
Γt

(Ω) := C̊∞Γt
(Ω)

H2(Ω)

⊂ L2(Ω) −→ L2(Ω; S); u 7→ ∇∇u,

A1 := R̊otS,Γt : R̊Γt(Ω; S) := C̊∞Γt
(Ω; S)

R(Ω)

⊂ L2(Ω; S) −→ L2(Ω;T); S 7→ RotS,

A2 := D̊ivT,Γt : D̊Γt(Ω;T) := C̊∞Γt
(Ω;T)

D(Ω)

⊂ L2(Ω;T) −→ L2(Ω); T 7→ Div T.

A0, A1, and A2 are unbounded, densely defined, and closed linear operators with adjoints

A*
0 = (∇̊∇Γt)

∗ = ˚div DivS,Γn :
˚
DDΓn

(Ω; S) := C̊∞Γn
(Ω; S)

DD(Ω)

⊂ L2(Ω; S) −→ L2(Ω); S 7→ div DivS,

A*
1 = R̊ot

∗
S,Γt

= ˚sym RotT,Γn
: R̊sym,Γn(Ω;T) := C̊∞Γn

(Ω;T)
Rsym(Ω)

⊂ L2(Ω;T) −→ L2(Ω; S); T 7→ sym RotT,

A*
2 = D̊iv

∗
T,Γt

= − dev ∇̊Γn : H̊1
Γn

(Ω) ⊂ L2(Ω) −→ L2(Ω;T); v 7→ − dev∇ v,
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see [17] for details. Note that u, v, and S, T are scalar, vector, and tensor (matrix) fields, respectively.
The complex properties hold as

R(A0) = ∇̊∇ΓtH̊
2
Γt

(Ω) ⊂ R̊Γt,0(Ω; S) = N(A1),

R(A*
1) = ˚sym RotT,Γn

R̊sym,Γn(Ω;T) ⊂ ˚
DDΓn,0

(Ω;S) = N(A*
0),

R(A1) = R̊otS,Γt R̊Γt(Ω; S) ⊂ D̊Γt,0(Ω;T) = N(A2),

R(A*
2) = dev ∇̊ΓnH̊

1
Γn

(Ω) ⊂ R̊sym,Γn,0(Ω;T) = N(A*
1).

The sequences (5.1) read

H̊2
Γt

(Ω) ⊂ L2(Ω)
A0=∇̊∇Γt−−−−−−−−−→ R̊Γt (Ω; S) ⊂ L2(Ω; S)

A1=R̊otS,Γt−−−−−−−−−→ D̊Γt (Ω; T) ⊂ L2(Ω; T)
A2=D̊ivT,Γt−−−−−−−−−→ L2(Ω),

L2(Ω)
A∗

0
= ˚div DivS,Γn←−−−−−−−−−−−− ˚

DDΓn
(Ω; S) ⊂ L2(Ω; S)

A∗
1

=sym R̊otT,Γn←−−−−−−−−−−−−− R̊sym,Γn (Ω; T) ⊂ L2(Ω; T)
A∗

2
=− dev ∇̊Γn←−−−−−−−−−−−− H̊1

Γn
(Ω) ⊂ L2(Ω).

These are the so called Grad grad and div Div complexes, appearing, e.g., in the biharmonic problem or
general relativity, see [17] for details. The crucial embeddings (5.2), i.e.,

D(A1) ∩D(A*
0) = R̊Γt(Ω;S) ∩ ˚

DDΓn
(Ω;S) ↪→↪→ L2(Ω;S),

D(A2) ∩D(A*
1) = D̊Γt(Ω;T) ∩ R̊sym,Γn(Ω;T) ↪→↪→ L2(Ω;T),

are compact by [17, Lemma 3.22]. Choosing the pair (A0,A1) we get by Theorem 4.7 the following:

Theorem 5.5 (global div Div-Rot-S-lemma). Let (Sn) ⊂ R̊Γt(Ω;S) and (Tn) ⊂ ˚
DDΓn

(Ω; S) be two se-

quences bounded in R(Ω) resp. DD(Ω). Then there exist S ∈ R̊Γt(Ω;S) and T ∈ ˚
DDΓn

(Ω;S) as well as

subsequences, again denoted by (Sn) and (Tn), such that (Sn) and (Tn) converge weakly in R(Ω) resp.

DD(Ω) to S resp. T together with the convergence of the inner products

〈Sn, Tn〉L2(Ω,S)
→ 〈S, T 〉

L2(Ω,S)
.

For the pair (A1,A2) Theorem 4.7 implies:

Theorem 5.6 (global sym Rot-Div-T-lemma). Let (Sn) ⊂ D̊Γt(Ω;T) and (Tn) ⊂ R̊sym,Γn(Ω;T) be two

sequences bounded in D(Ω) resp. Rsym(Ω). Then there exist S ∈ D̊Γt(Ω;T) and T ∈ R̊sym,Γn(Ω;T) as well

as subsequences, again denoted by (Sn) and (Tn), such that (Sn) and (Tn) converge weakly in D(Ω) resp.
Rsym(Ω) to S resp. T together with the convergence of the inner products

〈Sn, Tn〉L2(Ω,T)
→ 〈S, T 〉

L2(Ω,T)
.

Remark 5.7. Theorem 5.1 has a corresponding local version similar to the local div-curl-lemma Corollary
3.2 and Remark 3.3, which holds with no regularity or boundedness assumptions on Ω.

5.4. Linear Elasticity. Let

A0 := sym ∇̊Γt : H̊1
Γt

(Ω) ⊂ L2(Ω) −→ L2(Ω; S); v 7→ sym∇ v,

A1 := ˚Rot Rot>S,Γt
:

˚
RR>Γt

(Ω; S) := C̊∞Γt
(Ω; S)

RR>(Ω)

⊂ L2(Ω; S) −→ L2(Ω; S); S 7→ Rot Rot> S,

A2 := D̊ivS,Γt : D̊Γt(Ω; S) := C̊∞Γt
(Ω; S)

D(Ω)

⊂ L2(Ω; S) −→ L2(Ω); T 7→ Div T.

A0, A1, and A2 are unbounded, densely defined, and closed linear operators with adjoints

A*
0 = (sym ∇̊Γt)

∗ = −D̊ivS,Γn : D̊Γn(Ω; S) ⊂ L2(Ω; S) −→ L2(Ω); S 7→ −DivS,

A*
1 = ( ˚Rot Rot>S,Γt

)∗ = ˚Rot Rot>S,Γn
:

˚
RR>Γn

(Ω; S) ⊂ L2(Ω; S) −→ L2(Ω; S); T 7→ Rot Rot> T,

A*
2 = D̊iv

∗
S,Γt

= − sym ∇̊Γn : H̊1
Γn

(Ω) ⊂ L2(Ω) −→ L2(Ω; S); v 7→ − sym∇ v.
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Note that v resp. S, T are vector resp. tensor (matrix) fields. The complex properties hold as

R(A0) = sym ∇̊ΓtH̊
1
Γt

(Ω) ⊂ ˚
RR>Γt,0(Ω;S) = N(A1),

R(A*
1) = ˚Rot Rot>S,Γn

˚
RR>Γn

(Ω; S) ⊂ D̊Γn,0(Ω; S) = N(A*
0),

R(A1) = ˚Rot Rot>S,Γt

˚
RR>Γt

(Ω; S) ⊂ D̊Γt,0(Ω;S) = N(A2),

R(A*
2) = sym ∇̊ΓnH̊

1
Γn

(Ω) ⊂ ˚
RR>Γn,0(Ω;S) = N(A*

1).

The sequences (5.1) read

H̊1
Γt

(Ω) ⊂ L2(Ω)
A0=sym ∇̊Γt−−−−−−−−−→ ˚

RR>Γt
(Ω; S) ⊂ L2(Ω; S)

A1= ˚Rot Rot>S,Γt−−−−−−−−−−−→ D̊Γt (Ω; S) ⊂ L2(Ω; S)
A2=D̊ivS,Γt−−−−−−−−→ L2(Ω),

L2(Ω)
A∗0=−D̊ivS,Γn←−−−−−−−−−− D̊Γn (Ω; S) ⊂ L2(Ω; S)

A∗1= ˚Rot Rot>S,Γn←−−−−−−−−−−− ˚
RR>Γn

(Ω; S) ⊂ L2(Ω; S)
A∗2=− sym ∇̊Γn←−−−−−−−−−−− H̊1

Γn
(Ω) ⊂ L2(Ω).

These are the so called Rot Rot complexes, appearing, e.g., in linear elasticity, see [17]. The crucial
embeddings (5.2), i.e.,

D(A1) ∩D(A*
0) =

˚
RR>Γt

(Ω;S) ∩ D̊Γn(Ω; S) ↪→↪→ L2(Ω; S),

D(A2) ∩D(A*
1) = D̊Γt(Ω; S) ∩ ˚

RR>Γn
(Ω; S) ↪→↪→ L2(Ω; S),

are compact, which can be proved by the same techniques showing [17, Lemma 3.22]. Choosing the pair
(A0,A1) we get by Theorem 4.7 the following:

Theorem 5.8 (global Rot Rot>-Div-S-lemma). Let (Sn) ⊂ ˚
RR>Γt

(Ω;S) and (Tn) ⊂ D̊Γn(Ω;S) be two

sequences bounded in RR>(Ω) resp. D(Ω). Then there exist S ∈ ˚
RR>Γt

(Ω; S) and T ∈ D̊Γn(Ω; S) as well as

subsequences, again denoted by (Sn) and (Tn), such that (Sn) and (Tn) converge weakly in RR>(Ω) resp.

D(Ω) to S resp. T together with the convergence of the inner products

〈Sn, Tn〉L2(Ω,S)
→ 〈S, T 〉

L2(Ω,S)
.

Remark 5.9. Let us note:

(i) Theorem 4.7 for the pair (A1,A2) implies the same result just interchanging Sn, Tn and the
boundary conditions.

(ii) Theorem 5.8 has a corresponding local version similar to the local div-curl-lemma Corollary 3.2
and Remark 3.3, which holds with no regularity or boundedness assumptions on Ω.

(iii) We emphasize the strong symmetry in the Rot Rot complexes of linear elasticity.
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