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DIRK PAULY AND MICHAEL SCHOMBURG

ABSTRACT. We show that the de Rham Hilbert complex with mixed boundary conditions on
bounded strong Lipschitz domains is closed and compact. The crucial results are compact em-
beddings which follow by abstract arguments using functional analysis together with particular
regular decompositions. Higher Sobolev order results are proved as well.
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1. INTRODUCTION

In this paper we prove regular decompositions and resulting compact embeddings for the de
Rham complex (of vector fields)

= L2(0) S 12(0) S L2(Q) 5 L2(0) =
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and, more generally, for the de Rham complex (of differential forms)
Sy L) 4T a2y 4T pert2) s

In forthcoming papers, we shall extend our results to other more complicated complexes as well,
such as the elasticity complex

T .
. L2(Q) symGrad Lg(Q) RotRotg Lé(Q) Divg |_2 (Q) e

or the the primal and dual biharmonic complexes

Gradgrad Rotgs

e () L3(0) — LA(Q) — L2(Q) = -,

symRoty divDivg

L L2(Q) R, 12(0) L3(Q) L2(Q) —= -+,
which is possible due to the general structure and our unified approach and methods. All complexes
are considered with mixed boundary conditions on a bounded strong Lipschitz domain Q C R
Some of our results hold also for higher Sobolev orders. Note that the first three complexes are
formally symmetric and that the last two complexes are formally adjoint or dual to each other.
These Hilbert complexes share the same geometric sequence (complex) structure

Ao Ay

Ho H, Hy — -+, R(Ap) C N(Ay),

where Ag and A; are densely defined and closed (unbounded) linear operators between Hilbert
spaces H,. The corresponding domain Hilbert complex is denoted by

.~ D(Ag) Ao, D(A) A Hy — -
In fact, we show that the assumptions of Lemma 2.22 hold, which provides an elegant, abstract,
and short way to prove the crucial compact embeddings

(1) D(A1) N D(Ag) = H,

for the de Rham Hilbert complexes, cf. Theorem 4.8, Theorem 4.16, and Theorem 5.4, Theorem
5.7. In principle, our general technique — compact embeddings by regular decompositions and
Rellich’s selection theorem — works for all Hilbert complexes known in the literature, see, e.g., [1]
for a comprehensive list of such Hilbert complexes.

Roughly speaking a regular decomposition has the form

D(A1) = Hi + AgHg
with regular subspaces Hi C D(Ag) and Hf € D(A;) such that the embeddings H < H, and
Hf — H; are compact. The compactness is typically and simply given by Rellich’s selection
theorem, which justifies the notion “regular”. By applying A, any regular decomposition implies
regular potentials
R(A;) = A HY

by the complex property. The respective regular potential and decomposition operators

Pa, : R(Ay) — H, Q}h :D(A;) — H, Q(/)h : D(Ay) — Hf

are bounded and satisfy Ay Pa, = idg(a,) as well as idpa,) = Q4 + Ao QR

Note that (1) implies several important results related to the particular Hilbert complex by the
so-called FA-ToolBox, cf. [10, 11, 12, 13] and [15, 16, 17]. Upon others, one gets Friedrichs/Poincaré
type estimates, closed ranges, compact resolvents, Helmholtz typ decompositions, comprehensive
solution theories, div-curl lemmas, discrete point spectra, eigenvector expansions, a posteriori error
estimates, and index theorems for related Dirac type operators. See Theorem 4.9 and Theorem
5.5 for a selection of such results.

For an historical overview on the compact embeddings (1) corresponding to the de Rham
complex and Maxwell’s equations, also called Weck’s or Weber-Weck-Picard’s selection theorem,
see, e.g., the introductions in [2, 9], the original papers [23, 22, 19, 24, 7, 20], and the recent state
of the art results for mixed boundary conditions and bounded weak Lipschitz domains in [2, 3, 4].
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Compact embeddings (1) corresponding to the biharmonic and the elasticity complex are given in
[17] and [15, 16], respectively. Note that in the recent paper [1] similar results have been shown
for the special case of no or full boundary conditions using an alternative and more algebraic
approach, the so-called Bernstein-Gelfand-Gelfand resolution (BGG).

2. FAT: FA-TooLBox

We collect and present some old and new results from the so-called functional analysis toolbox
(FA-ToolBox).

2.1. FAT I: Linear Operators, Adjoints, and Fundamental Lemmas. We shall work with
bounded and unbounded linear operators. For this, let H, and H; be Hilbert spaces. For a bounded
linear operator A we use the notation

(2) A:D(A) = H,
where D(A) C H, is the domain of definition of A. Tt’s unbounded version will be denoted by
(3) A:D(A) C Hy — H,.

Kernel and range of A shall be denoted by N(A) and R(A), respectively. Note that — equipped
with the standard graph inner product — D(A) becomes a Hilbert space as long as A is closed.
The difference of the latter two versions of A comes from using the norm of D(A) or simply the
norm of Hy, respectively. Generally, inner product, norm, orthogonality, and orthogonal sum in a
Hilbert space H shall be denoted by (-, - )u, | - |n, Ln, and @&y, respectively. By + we indicate a

direct sum. The dual space of a Banach or Hilbert space H will be written as H'.
There are at least three different adjoints. The bounded linear operator (2) has the Banach
space adjoint A’ : H'1 — D(A)’, which — as usual — may be identified with its modification

A RHl : Hl — D(A)/,

where Ry, : Hy — Hl1 denotes the Riesz isomorphism of H;. Another option is the Hilbert space
adjoint defined by
A" =Ry 5 A'Ru, 1 Hy — D(A).

On the other hand, the unbounded linear operator (3) has the Hilbert space adjoint
A*: D(A") C Hy = H,,
provided that A is densely defined. A* is always closed and characterised by
Ve e D(A) Vye D(AY) (Az,y)n, = (x, A" y)u, -

Note that the different adjoints are strongly related through the respective Riesz isomorphisms.

If the unbounded operator A is densely defined and closed, so is A*. In this case, A*™ = A = A
and we call (A, A*) a dual pair.

Let us recall a small part of the co-called FA-ToolBox from, e.g., [11, Lemma 4.1, Lemma 4.3],
see also [10, 12, 13, 16, 17], for more details. For this, let A from (3) be densely defined and closed.
Moreover, let

AL = A=Al i, D(AL) C N(A)Y* —H,,  D(AL):=D(A)NN(A)™o,

A = AT = A i, tD(AT) C N(A*)™ = H,,  D(A%):= D(A") N N(A*)™

N(A*)
denote the reduced operators, which are densely defined, closed, and injective. Note that by the
projection theorem we have the orthogonal Helmholtz-type decompositions

Ho = N(A) &n, N(A)™*, N(A)™ = R(A%), N(A)=R(A")™",
D(A) = N(A) &n, D(AL),
Hy = N(A") @n, N(A*)™, N(A*)™ =R(A), N(A")=R(A)"™,
D(A™) = N(A") @n, D(A]),
and thus R(A 1) = R(A) and R(A%) = R(A").

(4)
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Lemma 2.1 (fundamental lemma 1). The following assertions are equivalent:
(i) 3 ea>0 VzeD(A)) |z[n, < cal Axly,
(i) Jeax >0 Vye D(AY) [yln, < cax| A" x|,
(ii) R(A) = R(A.) is closed.
(ii’) R(A") = R(AY) is closed.
(iii) A7': R(A) — D(A}) is continuous.
(iii’) (A%)~r: R(A*) — D(A%Y) is continuous.
Moreover, for the “best” constants it holds |A1

! |R(A),HO T CA T Car = |(A*l)71|R(A*),H1'

Lemma 2.2 (fundamental lemma 2). Let D(A ) < Hy be compact. Then each of (i)-(iii’) in
Lemma 2.1 holds.

Lemma 2.3 (fundamental lemma 3). The following assertions are equivalent:
(i) D(AL) < Hy is compact.
(i’) D(AY) < H, is compact.
(ii) AT': R(A) — Hy is compact.
(ii’) (A7)~ : R(A*) — Hy is compact.

Remark 2.4. D(A) — H, compact implies D(A,) — H, compact, and D(A*) < H; compact
implies D(A”) < H; compact.

2.2. FAT II: Hilbert Complexes and Mini FA-ToolBox. We continue to make use of parts
of the FA-ToolBox from, e.g., [10, 12, 11, 13] and [15, 16, 17], together with an extension suited
for so called (bounded linear) regular potential operators and regular decompositions introduced
in [17]. Lemma 2.22 provides an elegant, abstract, and short way to prove compact embedding
results for an arbitrary Hilbert complex.
For this, let Hy, H;, H, be Hilbert spaces and let
Ao Ay

5 o 7=—=H H H
() 0 A 1 AT 2

be a primal and dual Hilbert complex, i.e.,
Ay : D(Ag) C Hy — Hy, A;:D(A;) CHy — Hy
are densely defined and closed (unbounded) linear operators satisfying the complex property
(6) A1 Ag CO,
together with (densely defined and closed Hilbert space) adjoints
Af : D(AG) € Hy — Hy, AT : D(A]) C Hy — Hy.

Remark 2.5. Note that the complex property (6) is equivalent to R(Ag) C N(Ay), which is
equivalent to the dual complex property R(AY) C N(A{) as

R(A}) € RA]) = N(A)™ € R(Ag)™ = N(A})

and vice versa.

Remark 2.6. Let Ag, Ay be given by the closures of densely defined (unbounded) linear operators
Ag:D(Ag) CHy —H,,  Ay:D(A)) CH, —H,

satisfying the complex property AyAy C 0. Then Ay = 10870 and Ay = Ail are densely defined and
closed (unbounded) linear operators satisfying the complex property A1 Ag C 0, since N(Ay) is
closed and thus R(Ag) C N(A1) C N(Ay) implies R(Ag) C N(Aq).

As in (4) and defining the cohomology group
Noj == N(A1) N N(Ag)

we get the following orthogonal Helmholtz-type decompositions.
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Lemma 2.7 (Helmholtz decomposition lemma). The refined orthogonal Helmholtz-type decompo-
sitions

H; = R(Ao) @1, N(Ap), Hy = N(A1) &u, R(AT),
% N(A1) = R(Ao) ©n, No,1, N(Ap) = Noja @©n, R(AT),
D(A1) = R(Ao) @n, (D(A1) NN(AD)), D(AG) = (N(A1) N D(AG)) &, R(A]),
D(Ag) = D((Ag)1) @n, N(Ap), D(A1) = N(A1) @n, D((A1)1),

as well as R((A$)1) = R(Ag) and R((A1)1) = R(A1) hold. Moreover,

H, = R(Ao) ®n, No ©n, R(A7),
(8) D(Ap) = D( S)L) ®n, No,1 Bn, R(AY),
D(A1) = R(Ag) ®n, Noj1 @®n, D((A1)L),
D(A1) N D(Ag) = D((Ag)1) @u, Noa @u, D((A1)L)
As

D((A3)1) = R(Ag) N D(A3) € N(A1) N D(A) € DY

iy
=
B~
=

with continuous embeddings we get the following result.

Lemma 2.8 (compactness lemma). The following assertions are equivalent:
(i) D((Ao)L) = Hy, D((A1)L) = Hy, and Ny <= H; are compact.
(ii) D(A1) N D(A{) < H, is compact.

In this case, the cohomology group No1 has finite dimension.
Summarising the latter results we get the following theorem.

Theorem 2.9 (mini FAT). Let D(A1) N D(Aj) < H, be compact. Then:

(i) The ranges R(Ag), R(Ay) and R(Ay), R(A]) are closed.
(if) The inverse operators (Ag) ", (A§) " and (A1)]", (A})]" are compact.
(iii) The cohomology group No1 = N(A1) N N(A) has finite dimension.
(iv) The orthogonal Helmholtz-type decomposition H; = R(Ag) ©u, No,1 ©n, R(AY) holds.
(v) There exist ca,,ca, > 0 such that

Va € D((Ag)1) = D(Ag) N N(Ag)™o = D(Ag) N R(A}) |z, < caol Aoz,
Vy € D((A5)1) = D(A5) N N(Af)™ = D(A5) N R(Ao) ylH, < caol Agyln,,
Vy e D((A1)1) = D(A) N N(A)™ = D(Ay) N R(A}) Wi, < ca[Aryln,,
Vz € D((A})1) = D(A}) N N(A)™: = D(A}) N R(A4) |2[h, < cas| AT 2[n, -

(v’) With ca, and ca, from (v) it holds
* J_ *
Vy e D(A1)NDAG) NNyt [yld, < il Ajuld, + A, [ Avuli, -

Definition 2.10. The Hilbert complex (5) is called

e closed, if R(Ag) and R(A1) are closed,
o compact, if the embedding D(A1) N D(Ag) — H; is compact.

Remark 2.11. A compact Hilbert complex is already closed.
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2.3. FAT III: Bounded Regular Decompositions and Potentials. Bounded regular decom-
positions and bounded regular potentials are very powerful tools. In particular, compact embed-
dings can easily be proved, cf. Lemma 2.22, which then — in combination with the FA-ToolBox —
immediately lead to a comprehensive list of important results for the underlying Hilbert complex,
cf. Theorem 2.9 and [13].

Throughout this subsection, let Ay and A; be densely defined and closed linear operators
satisfying the complex property, i.e., R(Ag) C N(A1). Moreover, we fix some regular subspaces

HS’, HT, and H;‘, such that either
© Hy —D(Ag) — H, and Hf —D(A;) < Hy,
or H]L —D(Af) <= H, and H; —D(A]) <= H,

hold with continuous embeddings. In the following, we consider reqular decompositions of D(A1)
and D(A() of the following type

(10) D(A1) =H{ +AoHy,  D(Aj) = HI +AjH;.
For the rest of this subsection we concentrate on the first regular decomposition in (10). Analo-

gous results hold true for the second regular decomposition in (10), and we leave the corresponding
reformulations to the interested reader.

Definition 2.12 (bounded regular decompositions). In (10) we call the regular decomposition
D(A;) = Hf + AgH{ bounded, if there exist bounded linear operators
QAl,l : D(Al) — H;r, QAl,O : D(Al) — Har,
such that
Qa1+ Ao Qa0 =1dpea,) -
Oa,,1 and Qa, o are then called bounded linear regular decomposition operators.
More precisely, for each x € D(A7) there exist two potentials
xr1 = QAl,ll' S HT, Z = QAI)().’E € Hg7

such that © = 1 + Ag z and \x1|H1+ + |Z\Hg < clz|pea,) with some ¢ > 0 independent of x,x1, 2.

Definition 2.13 (weak bounded regular decompositions). D(A1) = Hf + N (A1) is called a weak
bounded reqular decomposition, if there exist bounded linear operators

QAl,l D(Al)%HT, NAl D(Al)—>N(A1)

such that Qa, 1 + Na, = idD(A1)~ Qa,,1 and Na, are again called bounded linear regular decom-
position operators.
More precisely, for each x € D(Ay) there exist

z1:= Qa1 €HT,  xo:=Ny,z € N(Ay),

such that © = x1 + z¢ and |an1|H;r + [2oln, < clx|p(a,) with some ¢ > 0 independent of x,x1, zo.

Remark 2.14 (bounded regular decompositions). For bounded regular decompositions it holds:
(i) For Qa, 1 from Definition 2.12 or Definition 2.13 we have A1 Qa, 1 = A1 by the complex
property. Hence N(A1) is invariant under Qa, 1, i-e., Qa, 1N(A1) C N(Aq).
(ii) A bounded regular decomposition from Definition 2.12 implies a weak bounded regular
decomposition from Definition 2.13 by setting Na, = Ag Qa,.0 since AgHS < N(A;)
holds by the complex property.

Definition 2.15 (bounded regular potentials). We call R(A1) = A1 H a bounded regular poten-
tial representation, if there exists a bounded linear operator

Pa, : R(Al) — Hi'— with Ay Pa, = idR(Al) .

We say that Pa, is a bounded linear regular potential operator of Ay. In particular, Pa, is a
bounded linear right inverse of Ay.

Analogously, we extend the latter definition to the operators Ag, Ay, and AJ.
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Remark 2.16 (bounded regular potentials). We state two simple facts about potential operators:

(i) Let a linear operator

1 . .
Pao i N(A1) NNy " = D(Ag)  with  AgPa, = ldN(AmN:rl

be given. Then R(Ag) is closed as R(Ap) = N(A1) N N;;l = R(A¢Pa,) C R(Ao).

(ii) Let a bounded linear operator

1y . .
Pao : N(A1) NNy, — HY with AgPa, = 1dN(A1)mV;1Hl

be given. Then (as above) R(Ag) = N(A1)N N(irl = AgH{ is closed and
Pa, : R(Ag) — HE")_ with AgPa, = idR(AO)
s a bounded linear regular potential operator of Ag.

Lemma 2.17 (bounded regular potentials by weak bounded regular decompositions). Let R(Aq)
be closed, and let D(A1) = H + N(A;) be a weak bounded regular decomposition. Then the
bounded regular potential representation R(A1) = Ay Hf holds and

Pa, = Qa1 (AT R(A) = Hf  with Ay Pa, =idga,)
is a respective bounded linear reqular potential operator of A;.

Proof. As R(A;) is closed, Lemma 2.1 shows that (A;)]' : R(A;) — D(A;) is bounded. Hence
S0 is Pa,. Moreover, A; Pa, = A; QAl’l(Al)il = A1(A1)11 =1idg(a,) by Remark 2.14. O

Lemma 2.18 (weak bounded regular decompositions by bounded regular potentials). Let a
bounded regular potential representation R(A;) = Ay H] be given with bounded linear regular
potential operator Pa, : R(A1) — HY satisfying Ay Pa, = idg(a,). Then

Qa, 1 :=Pa, A1 : D(Ay) — Hf, Na, ==idpa,) —Qa,1: D(A1) = N(Ay)
are bounded linear regular decomposition operators with
Qa1 +Na, =idpa,)
and implying the weak bounded reqular decompositions
D(A1) =Hf + N(A1) = R(Qa, 1) + N(A1) = R(Qa, 1) + R(Na,).
It holds A1 Qa, 1 = A1, i.e., N(Aq) is invariant under Qa, 1. Note that R(Qa,.1) = R(Pa,).

Proof. Qa,1 and N, are bounded. Let € D(A;). Then Az € R(A;) and Pa, Ayx € Hf
with  := x — Pa, A x € N(A;). For the directness, let x = Qa, 19 = Pa, A1 ¢ € N(A1) with
@ € D(A1). Then 0 = A; z = Aj ¢ and hence = = 0. O

Remark 2.19. Note that Q?Al’l = Qa1 and Qa, i Na, = Na,Qa,1 = 0 hold for the special
bounded linear reqular decomposition operator Qua, 1 = Pa, A1 from the latter lemma. Hence:
(i) Qa,1 and Na, are projections.
(ii) For I. := Qa, 1+ Na, we observe I, =12 = idp(a,). Thus the operators I, 12, as well
as I =2Qa, 1 —idp(a,) are topological isomorphisms on D(Ay).
(iii) There exists ¢ > 0 such that for x € D(Ay) it holds

c|Qa,azlyr < [Arzln, < [zlp(a,), Wa,zln, < [zln, +1Qa, 12w, -

(iii’) For x € N(A1) we have Qa, 1z = 0 and N,z = x, d.e., Qa,1|na,) = 0 as well as
NaiInay) = idn(ay)- In particular, Na, is onto.
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Corollary 2.20 (bounded regular decompositions by bounded regular potentials). Let the complex

be ezact, i.e., N(A1) = R(Ag), and let R(A1) = Ay H as well as R(Ag) = AgH be bounded

reqular potential representations with bounded linear reqular potential operators Pa, : R(A1) — HT

and Pa, : R(Ag) — HS‘ satisfying Ay Pa, = idga,) and Ao Pa, = idga,), respectively. Then
QA1,1 : D(Al) — Hf, QAl,O = ’PAONAI : D(Al) — Hg

with Qa,.1 = Pa, A1 and Na, = idpa,) —Qa,,1 from Lemma 2.18 are bounded linear regular
decomposition operators with
Qa1+ Ao Qa0 =idpay)

and implying bounded regular decompositions

D(A1) =Hy + AgHJ = R(Qa, 1) F AoH = R(Qa, 1) + Ag R(Qa, ).
It holds A1 Qa, 1 = A1, ie., N(A1) is invariant under Qa, 1. Note that R(Qa, 1) = R(Pa,) and
R(QAl,O) = R(PAO)'
Proof. Qa,1 and Qa, o are bounded. Let x € D(A1). Then Az € R(A1) and Pa, Ajz € Hf
with 7 := 2 — Pa, A1 € N(A;) = R(Ag). Thus z := Pa,T € H and Agz =7, i.e.,

T = PAl Ajz+72= PA] A1$—|—A0'PAO% = PAl Az +A0'PAO(1 - PAl Al)x.
Directness is clear by Lemma 2.18 as Ay Har C N(A;) holds by the complex property. O
Remark 2.21. There exists ¢ > 0 such that for x € D(A1) it holds

C\QA1,1£E|H1+ <Ay x|, < zlpeay), C|QA1,017|H(J; < Nazlu, < zln, +1Qa,17|H, -
Note that QAl,l‘N(Al) =0.

2.4. FAT IV: Compactness Results and Mini FA-ToolBox. From [17, Theorem 2.8, Corol-
lary 2.9] we cite the following compactness result.

Lemma 2.22 (compact embedding by regular decompositions). Let Ag and Ay be densely defined
and closed linear operators satisfying the complex property, i.e., R(Ag) C N(Ay). Moreover, let
(i) either the bounded regular decomposition D(A1) = Hf + AgHg hold with compact embed-
dings Hf — H, and H — Hy,
(ii) or the bounded reqular decomposition D(Ag) = Hf + A Hy hold with compact embeddings
HY < Hy and H — H,.
Then the embedding D(A1) N D(Ay) — Hy is compact.

For convenience we repeat the proof of [17, Theorem 2.8].

Proof. Let (z,) C D(A1) N D(A() be a bounded sequence, i.e., there exists ¢ > 0 such that for all
n we have |2 |u, + | Ay 2pn, + | AS Tpln, < c. By assumption we decompose @, = p1,n + Ag pon
with py , € Hf and po., € HS‘ satisfying |p17n|H1+ + \p07n|Hg < clzn|pea,) < ¢ Hence (pen) C HZ‘
is bounded in Hj, ¢ = 0,1, and thus we can extract convergent subsequences, again denoted
by (pen), such that (pg,) are convergent in H,, £ = 0,1. Then with z,,, = z, — x,, and
Den,m = Pen — De;m We get

|xn,m‘|%|1 = <xn,mapl,n,m>H1 + <A8 xn,myp07n,m>H0 < C(|pl,n,m‘H1 + |p0,n,m|H0)7

which shows that (z,) is a Cauchy sequence in H;. Hence we have shown (i), and (ii) follows
analogously. O

Theorem 2.23 (mini FAT by regular decompositions). Let the assumptions of Lemma 2.22 (i)
hold with the bounded linear regular decomposition operators Qa, 1 : D(A1) — H as well as
QAl,O : D(Al) — H(—]i_ Then:
(1) The embedding D(A1) N D(A{) < Hy is compact.
(ii) The assertions of Theorem 2.9 (mini FAT) hold.
(iii) The bounded regular potential representation R(A1) = Ay HY holds with bounded linear
reqular potential operator Pa, = Qa, 1(A1)]" : R(A1) — HY satisfying Ay Pa, = idga,)-
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(iv) éAhl =Pa, Ay : D(A}) = Hf and Na, = idp(a,) féAhl :D(A1) — N(A1) are bounded
linear regular decomposition operators with Qa, 1+Na, = idp(a,) and the bounded regular
decompositions

D(A1) = Hf + AgHJ = Hf + N(A1) = R(Qa, 1) + N(A1) = R(Qa, 1) + R(Na,)

hold. Moreover, R(QAM) = R(Pa,).
(iv’) A1 Qa1 = A1 94,1 = Aq, ie, N(Ay) is invariant under Qa, 1 and Qa, 1. It holds

Qa1 = Oa1(A)T AL Hence Qa,1lpan.) = Qailpay,) and thus Qa, 1 may
differ from Qa, 1 only on N(Aq).

Proof. (i) and (ii) are trivial. (iii) follows by Lemma 2.17 and Lemma 2.18 shows (iv). It holds

O, DA ) = Qa1 (A1) T A [piay ) = Qar (A1) T AL L
= Qa,11dp(a,).) = QailD(an )

which shows the last assertion of (iv’). O

Corollary 2.24 (mini FAT by regular decompositions). Let the assumptions of Lemma 2.22 (ii)
hold with the bounded linear reqular decomposition operators QASJ : D(Ay) — HT as well as

Qaz,2 : D(Ay) — H3. Then (i) and (i) of Theorem 2.23 hold. Moreover:
(iii) The bounded regular potential representation R(AJ) = AgH{ holds with bounded linear
regular potential operator Pax = QA;,l(AS)Il : R(A]) — HT satisfying A Pa; = idp(az)-
(iv) @ASJ =Pa; Ag: D(Ap) — H and/\~fA3 =idp(az) _éASJ : D(AY) — N(A() are bounded
linear reqular decomposition operators with éAg,l +/\~/'A3 =1idp(agz) and the bounded regular
decompositions

D(Af) = H{ + ATHS = H{ + N(Aj) = R(Qa;.1) + N(A)) = R(Qaz 1) + R(Nay)
hold. Moreover, R(éA3,1) = R(Paz).

(iv’) Aj éASal = Ay Qaz1 = Ag, ie., N(Ag) is invariant under Qaz 1 and QvAs,l. It holds
Qaz1 = Qaga(A5) L A, Hence Qazilp(ag).) = Qagalpas.) and thus Qag1 may

differ from Qax 1 only on N(Ag).

2.5. FAT V: Long Hilbert Complexes. As a typical situation in 3D (extending literally to
any dimension) we have a long primal and dual Hilbert complex
Afl AO A1 A2 A3

11 H H H I I H,.
(11) -1 0 ~ AT 2 s 3 x 4

Here, Ag, A1, Ay are densely defined and closed (unbounded) linear operators between three Hilbert
spaces Hy, H;, H, satisfying the complex properties

R(A¢) C N(A1),  R(A;) C N(Ay).

AG, AT, A5 are the corresponding (Hilbert space) adjoints. Moreover, A_1, A4 and H_,, H, are
particular operators and kernels, respectively, i.e.,

H_,:= N(A) = R(A§)™,  H,:= N(A}) = R(Ay)™*
with corresponding bounded embeddings
A1 = 1tnay) : N(Ag) = Hy, A3 =Nyt N(A3) — Hs.

Remark 2.25. It holds A* | = L*N(AD) = TN(Ay) : Ho = N(Ag), the “orthonormal projection”
onto the kernel of Ag. To see this, we note A* | : Hy — N(Ag) and for x € Hy and ¢ € N(Ay)

(A1, 2)n, = (9, )R, = (TN (AP TIH, = (P TN (A0)T)H, = (P TN (A0)T) N (Ao)-
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Actually, the correct orthonormal projection onto N(Ag) is then given by the self-adjoint bounded
linear operator A_1 A* | = LN(AO)L’;V(AO) = TN(Ay) * Ho = Ho with R(mn(a,)) = N(Ag). Analo-
gously, Az = L}‘V(AE) = 7N(az) : Hy = N(A3Y) and A5 A3 = LN(AE)LR,(A;) = 7n(az) : Hy = Hs,
respectively, with R(mnaz)) = N(A3).
The latter arguments show that the long primal and dual Hilbert complex (11) reads
A_1=tN(ag) Ao Ay Az AB:ﬂ—N(Ag)

(12)  N(Ao) Ho Hy H, Hs N(A3)

AT =TN(Ag) Af AT Aj Ag:bN(AE)

with the complex properties

R(A_1) = N(Ao), R(Ag) € N(Aq), R(A1) C N(Asg), R(Az) = N(A3),

R(Ag) = N(ALy),  R(A]) C N(Ag),  R(A3) CN(A7),  R(A3) = N(A3).

Definition 2.26. The long Hilbert complex (12) is called

o closed, if R(Ay), R(A1), and R(Az) are closed,
e compact, if the embeddings D(A1) N D(A{) — H; and D(A2) N D(A]) < Hy as well as

D(Ag) N D(AZ)) = D(Ag) = Ho,  D(A3) N D(A3) = D(A3) — Hy

are compact.
Remark 2.27. A compact long Hilbert complex is already closed.

Note that the cohomology groups at both ends are trivial, i.e.,
N_19=N(Ag) N N(A*;) = N(Ag) N N(Ag)™ = {0},

(13) * *\ L *
N2’3 = N(A3) n N(AQ) = N(AQ) H3 N N(Az) = {O}

3. NOTATIONS AND PRELIMINARIES

3.1. Domains. Throughout this paper, let Q C R, d € N, be a bounded strong Lipschitz domain
(locally Q lies above a graph of some Lipschitz function). Moreover, let the boundary T of Q be
decomposed into two strong Lipschitz subsets I; and [}, :=T \ﬁ forming the interface Iy N T, for
the mixed boundary conditions (tangential and normal). See [2, 3, 4] for exact definitions. We
call (Q,T}) a bounded strong Lipschitz pair.

We also recall the notion of an extendable strong Lipschitz domain through either one of the
boundary parts I} or T}, see [4, Section 5.4] and [3, Section 7] for a definition. Roughly speaking,
a bounded strong Lipschitz pair (Q,I}) is called extendable, if

e Q and I} are topologically trivial, and et T Q
e () can be extended through I} to some topologically trivial r ://

and bounded strong Lipschitz domain ﬁ, resulting in a new
topologically trivial and bounded strong Lipschitz domain L
Q = int(QUQ), cf. the figure on the right or [4, Figure 3.2] }8 ! Pk
for more details. Q pRye

Lemma 3.1. Any bounded strong Lipschitz pair (Q,T}) can be decomposed into a finite union of
extendable bounded strong Lipschitz pairs (8¢, T ,¢) together with a subordinate partition of unity.

3.2. Sobolev Spaces of Scalar, Vector, and Tensor Fields. In this subsection let d = 3. The
usual Lebesgue and Sobolev Hilbert spaces (of scalar, vector, or tensor valued fields) are denoted
by L2(Q), H*(Q), H(rot, ), H(div,Q) for k € Z, and by Hy(rot,2) and Hy(div, Q) we indicate
the spaces with vanishing rot and div, respectively. Homogeneous boundary conditions for these
standard differential operators grad, rot, and div are introduced in the strong sense as closures of
respective test fields from

5 (Q) = {¢|Q : ¢ € C°(RY), supp ¢ compact, dist(supp ¢,I}) > O},
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i.e., for k € Ny

—_Hk —— H(ro —_ iv
HE () =T )" 7, Hy (rot, Q) == Cro() Y, Hy, (div, Q) =Gy,

and we have HS(Q) = H¥(Q), Hy(rot, Q) = H(rot, ), and Hy(div, ) = H(div, ), which are well
known density results and incorporated into the notation by purpose. Spaces with vanishing rot
and div are again denoted by Hp, ((rot, ) and Hy, (div, Q), respectively. Note that for £ =0 we
have HY, (Q) = L?(2) and for the gradient we can also write Hf, () = Hp, (grad, Q). Moreover, we
introduce for k € Ny the non-standard Sobolev spaces

H" (rot, Q) := {v € H¥*(Q) : rot v € H¥*(Q)},

HE, (rot, Q) := {v € HE, () N Hy, (rot, Q) : ot v € HE ()},

H* (div, Q) == {v € H*(Q) : dive € HF(Q)},

HE, (div, Q) == {v € HE, (Q) N Hp, (div, Q) : dive € HE ().
We see HE (rot, Q) = H¥(rot, ) and for k = 0 we have Hj(rot, Q) = H%(rot, ) = H(rot, ) and
HY, (rot, Q) = Hp, (rot, Q). Note that for I # @ and k > 1 it holds

H’lit (rot,Q) = {v € HI’?t(Q) jrotv € Hﬁ(ﬂ)},
but for Iy # @ and k = 0 (as HY, (Q) = L(2))
HE, (rot, Q) = {v € HY, () N Hp, (rot, ) : rot v € HY, ()} = H, (rot, Q)
C {v € HY,(Q) : rot v € HY, ()} = Hij(rot, ) = H(rot, ).

As before,
HE, o(rot, Q) == HE, (Q) N H, o(rot, Q) = HE, (rot, Q) N Hy(rot, ) = {v € HF, (rot, Q) : rot v = 0}.

The corresponding remarks and definitions extend to the Hllit (div, Q)-spaces as well.
At this point, let us note that boundary conditions can also be defined in the weak sense by

HE () := {u € H¥(Q) : (0% w, @)120) = (=1)*N(w,0% )12y Vo € CR(Q) Vo] <k},
Hr, (rot, Q) := {v € H(rot, Q) : (rot v, ¥)2(q) = (v, 10t ) 12(0) V¥ € CI‘ZZ(Q)},
Hp, (div, Q) := {v € H(div, Q) : (divv, @)12(0) = —(v,grad @) 12(0) V¢ € CF(Q)}.
Analogously, we define the Sobolev spaces Hllit (rot, 2), Hllit (div, Q) and Hllit,()(1ro‘c7 ), Hlfﬂho(div7 Q)

using the respective Sobolev spaces with weak boundary conditions. Note that “strong C weak”
holds, e.g.,

HE (Q) C HE(Q),  Hyp, (tot, Q) C Hy, (rot, ),  HE (div, Q) C H, (div, ),
and that the complex properties hold in both the strong and the weak case, e.g.,
grad Hﬁ“(Q) C H’ftﬁo(rot,Q), rot Hllft (rot, Q) C Hllit’o(div,Q),
which follows immediately by the definitions. The next lemma shows that indeed “strong = weak”

holds.

Lemma 3.2 ([2, Theorem 4.5]). The Sobolev spaces defined by weak and strong boundary condi-
tions coincide, e.g., Hﬁ(Q) = HF (Q), Hp, (rot, Q) = Hp, (rot,Q), and Hﬁ (div, Q) = HE (div, Q),
cf. Lemma 3.3.

Finally, we introduce the cohomology space of Dirichlet/Neumann fields (generalised harmonic
fields)
'Hpt’pms(Q) = Hpt’o(rot, Q)N slepmo(div, Q).
The classical Dirichlet and Neumann fields are then given by Hr.  _(€2) anf H . _(€2), respectively.
Here, ¢ : L2(Q2) — L%(Q) is a symmetric and positive topological isomorphism (symmetric and
positive bijective bounded linear operator), which introduces a new inner product

<', '>L§(Q) = <€', '>L2(Q)a
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where L2(Q) := L?(€2) (as linear space) equipped with the inner product (-, - ) 2(q). Such weights
€ shall be called admissible and a typical example is given by a symmetric, L>°-bounded, and
uniformly positive definite tensor (matrix) field € :  — R3*3.

3.3. Sobolev Spaces of Differential Forms. For spaces of differential forms we follow the same
rational. Instead of the differential operators grad, rot, and div we now have only the exterior
derivative d and the co-derivative § = + % d %, given by d and the Hodge star operator *. The
standard Lebesgue and Sobolev Hilbert spaces are denoted by L%2(Q), HZ¥(Q), H(d, Q), H1(5,Q)
for k € Z, and by H{(d, Q) and H{(d, ©2) we indicate the spaces with vanishing d and d, respectively.
Here ¢ € Z marks the rank of the respective differential forms. As before, homogeneous boundary
conditions for d and J are introduced in the strong sense as closures of respective test forms from

CH™(Q) = {Olo : @€ C?>°(R%), supp ® compact, dist(supp ®,T}) > 0},
ie., for k € Ny

s ——HT*(Q) ————H9(d,Q) ————HI(5,Q)
HEF(©) = CE>(Q) » HEL(d,9Q) == CE™(Q) » HE(0,0) == () ;

and we have Hg’k(Q) = H*(Q), Hi(d, Q) = H9(d,Q), and H](5,€) = H(4,€2), which are well
known density results and incorporated into the notation by purpose. Spaces with vanishing d
and ¢ are again denoted by Hf, 0(d, ) and HE, 0(6,9), respectively. Note that for k =0 we have

HE%(Q) = L%2(Q) and for ¢ = 0 we can also write HY' () = HY, (d, Q) 22 HY (5,9). Moreover, we
mtroduce for k € Ny the non-standard Sobolev spaces of q—forms

H2¥(d,Q) := {E € HY*(Q) : d E € HITHF ()],
HEM(d, Q) := {E € HEM(Q) NHE (d,Q) : d E € HETYH ()],
H2 (5,Q) == {E € H*(Q) : 6 E € HI™VF(Q)},
HEM(6,Q) == {E € HEF(Q) NHE (5,Q) 1 6 E € HE ()}
We see Hq’k(d Q) = H¥*(d,9Q) and for k = 0 we have H%’ (d,Q) = H?%(d,Q) = HY(d,Q) and
quﬂ;,o(d7 Q) = HY, (d, Q). Note that for T} # () and k > 1 it holds
HL"(d,Q) = {E € HE*(Q) : d E € HET ()},
but for T} # @ and k = 0 (as HE"(Q) = L72(Q))
HE?(d, Q) = {E € HE®(Q) N HE (d,Q) : dE € HEY(Q)} = HE (d, Q)
C{E e HE' () : dE € HEF (@)} = HF“(d, ) = H(d, ).
As before,
HE"(d, Q) == HEF(Q) NHE, o(d, Q) = HE®(d,Q) N HI(d,Q) = {E € HE"(d, Q) : d E = 0}.
The corresponding remarks hold for the Hl‘i;k(é, Q)-spaces as well.
Again, let us note that boundary conditions can also be defined in the weak sense by
HE (Q) i= {E € HP¥(Q) 1 (0% B, @) a0y = (—1)1*HE, 0 @) a2y V& € CLX(Q) Vo] < k},
HL (d,Q) := {E € HY(d, Q) : (d B, ®)ar12(0) = —(E,0D)azqy V& € CEHO(Q)},
HY (5,9) == {E € H1(6,9) : (0 B, ®)La-12(0) = —(E,d®)azqy V&€ CL 2(Q)}.

Analogously, we define the Sobolev spaces H%;k (d,Q), HqF;k (6,9Q) and H%fo(d, ), H%fo (6,9) using
the respective Sobolev spaces with weak boundary conditions. Note that “strong C weak” holds,
e.g.,

HEM(Q) CHER (), HE(AQ) CHE(AQ),  HER(E,Q) C HE' (6, Q),
and that the complex properties hold in both the strong and the weak case, e.g.,

dHE"(d, Q) C qujfé’k(d,Q), SHE"(8,9Q) C H%;é’k(é,ﬁ),
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which follows immediately by the definitions. The next lemma shows that indeed “strong = weak”
holds.

Lemma 3.3 ([4, Theorem 4.7]). The Sobolev spaces defined by weak and strong boundary condi-
tions coincide, e.g., H%;k(Q) = Hl‘i;k(Q), HE (d,Q) = Hf, (d,Q), and H%;k(é,ﬂ) = H%;k(é,Q).

For convenience, a self-contained proof of Lemma 3.3 (and hence also of Lemma 3.2) is given
as a part of Lemma 4.6, cf. Lemma 4.4 and Lemma 4.5.

Lemma 3.4 (Schwarz’ lemma). Let |a] < k.

(i) For E € HE"(d,Q) it holds 9° E € HE’(d, Q) and d0“ E = 9 d E.

(i) For H € HE"(5,Q) it holds 9 H € HE’(5,Q) and §0* H = 9“6 H.
Proof. (i) can be seen as follows: For ® € Cq's'1 () we have

(0% B,0 ®) a2y = (—1)*NE, 6 0% ®) 1420
= (-DIFHAE, 0% D) sr12() = — (0% A E, ®)4+12(q)

as B € HEM(Q) N HE(d, Q) and dE € HE™ Q). Hence 9° E € HL'(d,Q) = HE’(d, Q) by
Lemma 3.3 and d9% E = 0% d E. (ii) follows analogously or by the Hodge *-operator. O

Finally, we introduce the cohomology space of Dirichlet/Neumann forms (generalised harmonic
forms)

(14) Hi, 1, (@) = HE, o(d,2) Ne™THE (6, 9).

The classical Dirichlet and Neumann fields are then given by HF 0. (€) anf ?—l@ r - (£2), respectively.
Here, € = ¢, : L2%(Q) — L%%(Q) is a symmetric and positive topological isomorphism (symmetric
and positive bijective bounded linear operator), which introduces a new inner product

(- '>Lg’2(Q) = (e, Lz,
where LL?(Q) := L9?(Q) (as linear space) equipped with the inner product (-, -) a.2(q. Such
weights ¢ shall be called admissible and a typical example is given by a symmetric, L°°-bounded,
N N
and uniformly positive definite tensor (matrix) field € :  — R(:) (D).
3.4. Some Useful and Important Results. In [6] the existence of a crucial universal exten-

sion operator for the Sobolev spaces H9*(d,(2) has been shown, which is based on the universal
extension operator from Stein’s book [21].

Lemma 3.5 (universal Stein extension operator [6, Theorem 3.6], cf. [4, Lemma 2.15]). Let
Q C RY be a bounded strong Lipschitz domain. For all k € Ng and all q there exists a (universal)
bounded linear extension operator

£ = &% HYk(d, Q) — HPF(d, RY).

More precisely, there exists ¢ > 0 such that for all E € H*(d,Q) it holds EE € H®*(d,R?) and
EE = E in Q as well as [EE|ar@ardy < ¢[Elyak@a,n)- Furthermore, € can be chosen such that

EE has fived compact support in R? for all E € H¥*(d, Q).
From [4, Theorem 5.2] we have the following Helmholtz decompositions.

Lemma 3.6 (Helmholtz decompositions). Let Q C R? be a bounded strong Lipschitz domain. For
all q the orthonormal Helmholtz decompositions

L2%(Q) = dHE 0 (d, Q) Bpa2q) e ' HEY (6, 0)
= HE%(d, Q) @02 e GHET(5,9)
=d qu“t_l’o(da Q) @Lg'z(ﬂ) "Hi%,rn,g(ﬁ) @LZ'Z(Q) et HQF:I’O(& Q)
hold. In particular, the ranges

dHE0(d, Q) = HE® (A, Q) N HY, 1 (9)7

2
L@
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SHET(8,9) = HEC (6, Q) NHE 1 (@) 2@

are closed subspaces of L22(2) and the potentials can be chosen such that they depend continuously
on the data.

Note that Lemma 3.6 even holds for bounded weak Lipschitz domains Q C R. From [18], cf. [4,
Lemma 2.19], we have the following Helmholtz decompositions for the special case = R.

Lemma 3.7 (Helmholtz decompositions in the whole space). For all g
L?2(R?) = HE(d, R?) ®pe.2(ray HE (5, RY),
HY(d, R?) = H{(d, RY) @pa42(gay (HY(d, R?) N HE (5, RY)).

Let mypa © LY2(RY) — HE(6,RY) denote the orthonormal projector onto H3(8,R%). Then for
all E € HI(d,RY) it holds mypaE € HI(d,R?) N HI(6,R?Y) and dmypeE = dE as well as
Tkt ElHa(a,rd) < [ElHa(d,Rra)-

From [8, Lemma 4.2(i)], cf. [4, Lemma 2.20], we have the following regularity result.
Lemma 3.8 (regularity in the whole space). For k € Ny and all q it holds
{E € HY(d,RY) NHY(S,RY) : d E € HTTVF(RY) A § E € HITVF(RT)} = HORFH(RY).
More precisely, E € H1(d,R%) NH(§,RY) with dE € HItLE(RY) and 6 E € HI™VF(RY), if and
only if E € HUEFHL(RY) and
%|E\HM+1(R«1) < |ElLaz(ra) + | d Elnat1eray + | 6 Elpa-1.0ray < ¢|Elpyar+(ga)
with some ¢ > 0 independent of E.

In [4, Lemma 3.1], see also [2, 3] for more details, the following lemma about the existence of
regular potentials without boundary conditions has been shown.

Lemma 3.9 (regular potential for d without boundary condition). Let Q C R? be a bounded
strong Lipschitz domain. For all ¢ € {1,...,d} there exists a bounded linear potential operator

Pap + Hio(d, @) NG 1oy ()71 — HETH (6, RY),

such that d'Pg’g =id| i.e., for all E € H%:g(d7 Q) NHY F,id(Q)J—Lq,2(Q)

H%:g(va)ﬁHg,r,id(Q)LLq'Q(Q) ’
dPIYE=E inQ.
In particular,
La, -1, -1, -1,
HG (A 2) NG ()7 = dHETHY(6,2) = dHE™H () = dH M (6, 9)
and the potentials can be chosen such that they depend continuously on the data. Especially, these
are closed subspaces of L92(Q) and Pg’g is a right inverse to d.
4. DE RuaM COMPLEX
In this section we shall apply the FA-ToolBox from Section 2 to the de Rham complex.

4.1. Zero Order De Rham Complex. Let the exterior derivatives be realised as densely defined
(unbounded) linear operators
dr, : D(dy,) € L92(Q) —» L7H2(Q); B dE,  D(dp,) == CE™(Q), ¢=0,....d—1,
satisfying the complex properties
ar.dp, - co.
Then the closures df, := colTit and Hilbert space adjoints (df,)* = (d1q~t)* are given by

df, : D(d},) C L?%(Q) = LT2(Q); B dE,  D(df,) = HE"(d,Q),
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and
(A)* = = 0L : D(SE) C LI (Q) - L92(Q); H —6H,  D(EH) = HE0(5,9),

where indeed D((S%TI) = H%jl’o(é, ) holds by Lemma 3.3, cf. [4, Section 5.2], (weak and strong
boundary conditions coincide).

Remark 4.1. Note that by definition the adjoints are given by
(A2)* = (dpy)* = —6L™ : D(OE) € LTH12(Q) — L92(Q); H s — 0 H,

with D(6%jl) = H%jl’o(é,Q). Lemma 3.3 (weak and strong boundary conditions coincide) shows
indeed D(6%") = HEFY0(5,Q) = HET0(5,Q) = D(6E™), d.e., 647 = 621

By definition the densely defined and closed (unbounded) linear operators
Ag=di, Al =-0ot, q=0,...,d—1,

define dual pairs (df,, (df,)*) = (df,, —61'{:1). Remark 2.5 and Remark 2.6 show the complex
properties R(d%;l) C N(d},) and R(6%"") € N(6% ), i.e., the complex properties
—1 1
df, di-t co, 4% T co.
Note that with Ay = d% and A} _, = (dlcft_l)* =— 51’171 as well as
A1 =N, ALl = TN(Ag) Ag=1n@s ), Ad=TN@as )

(actually, A_y A" | = my(a,) and A7 Ay = TN(A%_ ), cf. Remark 2.25) we have

R if¥ =0,

N(Ao) = N(dp,) =Rr,,  N(Aj;) =N(f)=*Rr,, Ry:= :
{0} otherwise,

and that the long (here even longer) primal and dual de Rham Hilbert complex (12) reads

LR, dl} dFt
Rr, 4><T L92(Q) ? L12(Q) —><52 L22(Q) Pa—
Tt T O e
dg! d,
(15) s /= L h2(Q) —><—q L92(Q) —+1> Lat12(Q) —/— ---
~or <—5gn —
iy 1 d-2.2 L, d—1,2 L 42 TR,
e L22(Q) e L 12(0) e L92(Q) e Ry,
=0, —0r, R,

with the complex properties

R(d% ) € N(dE), R(%) € N(6%. ), g=1,...,d—1,

and
R(iry,) = N(d%) = Rr, R(AEY) = N(mugy, ) = (+Rp, ) H42@),
R(6%) = N(mzg,) = (Rp,) 2@, R(tgy, ) = N(6L ) = #Rr, .

We emphasise that the definition of the Dirichlet/Neumann forms (14) is consistent with the
definition of the cohomology groups N, 1, = N(A,) N N(A;_;) aslong as 1 < ¢ < d— 1. For
g = 0 and ¢ = d we have the deviations

{0} = N—l,O C N(AO) = HIQ‘t,O(dv Q) = H%,Fms(g) = RD,’
{0} = Ng—1,a CN(A) ) = 'HE o(6,Q) =Hi 1 () = =Ry,

cf. (13), which is intended and usefull for latter formulations.
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4.2. Higher Order De Rham Complex. Similar to (15) we can also investigate the higher
Sobolev order primal de Rham complex

q—1,k a,k

d d4
. H%:Lk(Q) Ty H%;k(Q) Ty H%:rl’k(Q) L

together with its formal adjoint, the higher Sobolev order dual de Rham complex

_sak _gatlk
S HEPR(Q) 2 HER(Q) 1 HEPDR(Q)
More precisely, we consider
d%* . D(ALY) € HER(Q) — HETF(Q); B - d B, D(dE*) == H& (d, Q),
with formal adjoints
— LR D(ETR) C HEFYR(Q) — HER(Q); H s =6 H,  D(64TF) == HETV (6, 9).
Note that qu;k and 5%:1’k are densely defined and closed as, e.g.,

R B 1 2.
CE¥(Q) € HEF(d, Q) C HEF () = i),

and that indeed the complex properties R(d%:l’k) C N(d%;k) and R(é%:l’k) C N(é%f) hold.
Unfortunately, the respectively adjoints
()" = D((Ag)") € HE™H(9) — HEM (@),
S DG ) © HER©) - @)

are hard to compute. Therefore, only some parts of the FA-ToolBox from Section 2 apply to the
higher order de Rham complex, and a few results have to proved in a less general setting.
Note that for F € D(d%k) and for H € D(6%T%) ¢ Hl‘ij'l’k(é, Q)N H%:‘l’k(& Q) we have

(B, H)yyoi1x ) = > (0dE, 0" H)arro)=— Y_ (0" E,0% 0 H)Lo2i) = —(E,0 )yt (o)
' o <k ol <k '
by Lemma 3.4.

Remark 4.2 (higher order adjoints for the de Rham complex). It holds — 5%+1’k C (dan)* and
— AT C (0FM)*, e,

D(EY ) € D((dEM)) and (dg;k)*b(égﬂ,k) = — gLtk
D(AE) € D((6%%)%) and (6E5)" | pgag—rky = —d& -

Note that, here, we identify —6%+1’k with 75%+1’k : D(§%+1’k) - qujl’k(ﬂ) — H%;k(Q), which is
not densely defined. The same holds for —dlq:Lk.

4.3. Regular Potentials Without Boundary Conditions. The next lemma generalises Lemma
3.9 and ensures the existence of regular H%’k(Q)—potentials without boundary conditions for strong
Lipschitz domains.

Lemma 4.3 (regular potential for d without boundary condition). Let @ C R? be a bounded
strong Lipschitz domain and let k > 0 and q € {1,...,d}. Then there exists a bounded linear
reqular potential operator

Py HES(A, Q) NHY L () 102@) — HETH (5 RY),

such that dPg’g =1id| i.e., for all E € H%’Ig(d7 Q) NHG id(Q)J‘quQm)

1
HE b (d)NHE () -2

dPIGE=E inQ.
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In particular, the bounded reqular potential representations
R(d§™) = HPB (A, Q) NHY 1, ()77 = dHE ¥ (d, Q) = dHE Q) = dHY M (6, )

hold and the potentials can be chosen such that they depend continuously on the data. Especially,
these are closed subspaces of Hg’k(Q) = H?*(Q) and Pg’g is a right inverse to d. By a simple

cut-off technique Pg:g may be modified to
PLy HES (A Q) NHY L ()72 — HIZLRHL (5 RY)
such that 77 E has a fized compact support in R? for all E € HJ k(d Q)N ’H@ a2 )J'L“(“).
Proof. Lemma 3.9 shows the assertions for k = 0 and Pg’w. Moreover, the inclusions
dHIP(6,Q) C dHETVTH Q) € dHETHN(A, Q) € HEE(d, Q) N HG L ()

hold. Suppose E € HJ b (d, Q)H 1 ()7 k > 1. Then B € HPE ™' (d, Q)NHE 1 () 2@
By assumption of inductlon there exists Pg’@ 'Ee Hy~ b k(Q) with dpgg 'E=FinQand
|7’g,’371E\H4711k(Q) < ¢|Elyak-1(0).-
Hence ’Pg’k 'Fe HG~ “¥(d, Q) and by Lemma 3.5 we have EPg’gflE € HI=LF(d, R?) with compact
support and
EPLS " Elna-1xar) < ePEE T Elua-riay < c(PEy " Elna-1() + | Eluor))-
Using Lemma 3.7 we obtain a uniquely determined
PIGE = g1 pe€PLy B € HTVO(d,RY) N HE~ (6, RY)

with dPIGE = dEPL ™ E € HH*(RY). Lemma 3.8 shows PIyE € HI=LE1(R?) with

|73 E|Hq Lk+1(Rd) < C(|Pd 0E|Lq 1,2(Rd) + \dc‘:’Pq k= 1E|Hq,k(Rd)) < C|5Pg:g_lE|Hq—l,k(d7]Rd).
Finally, PJ E € Hq_l’k+1(6 R?) meets our needs as it holds |P§:gE|Hq—l,k+l(Rd) < | Eljak () and
dPLGE = dé‘qu 'E=dPly'E=FEinQ O

By Hodge +-duality we get a corresponding result for the d-operator, cf. Lemma A.1.

4.4. Regular Potentials and Decompositions With Boundary Conditions. Now we con-
struct regular H%*(Q)-potentials with (partial) boundary conditions. Recall the definitions of
Section 3.1 for the different assumptions on the domain Q C R<.

4.4.1. Extendable Domains.

Lemma 4.4 (regular potential for d with partial boundary condition for extendable domains).
Let (Q,T}) be an extendable bounded strong Lipschitz pair and let 1 < g < d—1 as well as k > 0.
Then there exists a bounded linear regular potential operator

Pet,  HE(d, Q) — HITHEH R N HETH (@),
such that d Py, = id g (s i€ Jor all B € HEZY (d,Q)
dPILE=E inQ.
In particular, the bounded reqular potential representation
HE(4,9) = HE (4, Q) = dHETH (@) = dHETH(d,0) = ()

holds and the potentials can be chosen such that they depend continuously on the data. Especially,
these spaces are closed subspaces of H%’k(Q) = H%*(Q) and Pg’llft is a right inverse to d. Without

loss of generality, ”Pg’llft maps to forms with a fived compact support in R?.
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The results extend literally to the case ¢ = d if Iy # T’ and the case q = 0 is trivial since
H%’j’o(d, Q) =Ry,. In the special case ¢ = d and Ty =T the results still remain valid if

HEG(d, Q) = HEF (@), HES(d, Q) = HE®(Q)
are replaced by the slightly smaller spaces

HEMQ) N Ry 2@, HEF(Q) 0 (+R) 2,

respectively.

Proof. The case I; = () is done in Lemma 4.3. For I} # (), suppose E € HE (d Q) and define
E € L%2(f)) as extension of E by zero to (). By definition we see E € Hg) g(d,Q). Since © is
@Fd( ) = {0}, Lemma 4.3

yields a regular potential Pg7 E € HI7 VR (5 Ry  Ha-LE+L(RY) with qu’gE E in Q and

bounded, strong Lipschitz, and topologically trivial, in particular H

C"Pg@Eh-{q Lk+1(Rd) < |E|H‘1 K@) = = |ElHa. k(Q)-

Eet L denote Ehe restriction toAQ. Then L§P§:®E € H%fl’kﬂ(ﬂ) and dLﬁin”gE = LQE =0 in
Q, ie., Lﬁpg’gE € Hq_l’kH(d ). Using Lemma 4.3 again, this time in €, which is bounded,
strong Lipschitz, and topologlcally trivial as well, we obtain P{, b kHLQ”ngE € HI=2:k+2(Rd)
with d P, LRt Pd o E = 15P7 Q)E in Q and

q—1 k+1 q,k 1o .k o
|’P Pd,@E|Hq—2,k,+2(Rd) < C|Pd7®E‘Hq71,k+l(§).

Then
PLE ¢ HEN(AQ) — Ha~LA+L(RY)
E s Pg:gE—d(Pq 1 k+1 ,Pg:gE)
is linear and bounded since

q—1,k+1

k k1 k1
|Pg’FtE|Hq—1‘k+1(Rd) < |P§’®E|Hq—1,k+1(Rd) + |Pd 0 L§P§7®E‘Hq72,k+2(Rd) < ClE'Hq,k(Q).

Since Pg’llftE =0in Q we obtain by standard arguments for Sobolev spaces Pg’{f Ee quzl’kH(Q),
cf. [4, Lemma 2.14] (Weak and strong boundary conditions coincide for H% K (Q)) Moreover, it
holds dPg’F E = qu’ E=FEin Q in particular, dPg’F E = F in Q. Finally,

dHL Q) € dHE (A, Q) € HER(d, ) € HEY (d,Q) ¢ dHE (@),

completing the proof of the main part. In the special case ¢ = d and [} =T we also have to take
care of the constant d-forms in * R. O

Hodge x-duality yields a corresponding result for the d-operator, cf. Lemma A.2 (i).

Lemma 4.5 (regular decompositions for d with partial boundary condition for extendable do-
mains). Let (Q,T}) be an extendable bounded strong Lipschitz pair and let k > 0. Then the bounded
regular decompositions

HEH(d,Q) = HE"(d, Q) = HEF(Q) + dHE (@)
= QU |HEF(d, Q) +d QLT (HE(d, Q)
= Q¥ (HEF(d, Q) + dHEL Q)
= det H%; (d, Q)+H 0(d, )
hold with bounded linear reqular decomposition operators
Qir, 1 =PI " d: HE (A, Q) — ML),
Q.0 =P n(l = PAL ) HE (A, Q) = HE Q).
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q k q k . .
More precisely, it holds HE," (d, Q) = H{"(d, Q) and Qd r,1+d Qd 0 = id |H1¢£t,k(d79)} i.e.,

E= Qd il +d Qd r.ob € Hq’kH(Q) +d H%t_l’kH(Q)
for all E € Hq’k(d Q). Moreover, it holds deF L= dq’l€ and thus quiko(d Q) is invariant
under er 1+ Note that for the ranges Qd Ty H%; (d,Q) = (Qd 1) = R(Pq+1 ") as well as
Qd T.,0 H%,,k(daQ) = R( d,]f},o) = (Pd,n) hold.

The proof follows by Corollary 2.20 and Lemma 4.4. For convenience, we give a self-contained
proof here.

Proof. Let E € HE"(d,Q). Then dE € HE (*(d, Q) and we see Pg}l”“dE € HEM(Q) with
dPit*dE = dE by Lemma 44. Thus E — P{;""dE € HE (d Q) = dHE V*H(Q) and
PoE(E — PP dE) € HE Y (Q) with d P (B — PIEHE dE) = E—P{"" dE by Lemma
4.4. This yields

E =P AE +dPIE (1 - P d)E € HEMH Q) + dHE 1 (Q) c HE (d, ),

which proves the regular decompositions and also the assertions about the bounded linear regular
decomposition operators. To show the directness of the sums, let H = Pg';tl’k dFE € H%fo(d, Q)

with some E € H%*(d, Q). Then 0=dH =d E as d E € HE *(d, Q) and thus H = 0. O
Again, by Hodge x-duality we get a corresponding result for the §-operator, cf. Lemma A.2 (ii).
4.4.2. General Lipschitz Domains.

Lemma 4.6 (regular decompositions for d with partial boundary condition). Let (2,1}) be a
bounded strong Lipschitz pair and let k > 0. Then the bounded regular decompositions

HE(d,0) = HE(d,9) = HEMH (@) + dHETH ()
hold with bounded linear reqular decomposition operators
QFL | tHER(d, Q) = HEMY (@), QT ot HEF(d,Q) — HE M (@)
satisfying Qd Tt de T,0 = iqu )" In particular, weak and strong boundary conditions

coincide. Moreover, it holds d Qd ni= dq’ and thus qu’ o(d, Q) is invariant under Qd 1

Proof. According to Lemma 3.1, let us introduce a partition of unity (Uy,x¢) as in [4, Section
4.2] or [3, Section 4.2], such that (€,,T; ) is an extendable bounded strong Lipschitz pair for all

l=1,...,L;. Using the notations from [4] we have

Q,=QnNUy, Ye=0 \ T, Le=TyNU,, ft}g = int(l—‘t,g Ui@).
Maybe Uy =  has to be replaced by more neighbourhoods U_j_,...,Uy to ensure that all
pairs (Qg,fw), { = —L_,...,L,, are topologically trivial. Note that for all “inner” indices
£=—L_,...,0 we have Qy = U, as well as thng 0Qy =0U,.

Then for E € HL (d,9) we have x,E € Hq " (d, ) = HZ" (d, Q) for all £ and Lemma 4.5
t, 4
shows the bounded regular decompositions

XeE = B¢+ d Hy € HZMH Q) + dHL M (@)
t,0 t,0

with E, and Hy depending continuously on x¢E. Extending E, and H, by zero to Q yields forms
E, € Hl’i;kH(Q) and Hy € Hl’it_l’k+1((2) as well as the representation

HEMA,Q) 3 E=) xxE=> E+dY H e HE Q)+ dHE Q) € HE (d, Q).
V4 14 4

As all operations have been linear and continuous we set

Qd .1 = ZEg € HqF;kJrl(Q), Qd T,.0 ol = Zﬁg c H%:l,kJrl(Q)’
‘ ‘
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and obtain the assertions. O
Hodge x-duality shows a corresponding result for the J-operator, cf. Lemma A.3.

Corollary 4.7 (regular decompositions for d with partial boundary condition). Let (Q,T}) be a
bounded strong Lipschitz pair and let k > 0. Then the reqular potential representations

R(ALF) = dHETH(d, ) = dHE Q) = HER (4, Q) nHE 1 ()T
R(SEM) = SHEF (4, ) = SHETH(Q) = HES (5, Q) N A, 1, ()72

2
L@

hold. In particular, these spaces are closed subspaces of HZE () = HB*(Q).
0
Proof. Lemma 4.6 yields
(16)  R(dL M%) = dHL M (d, Q) = dHE Q) € HES (A, Q) N HE, 1 ()
For k = 0 we get by (16) and Lemma 3.6
(17) dHEMH(Q) = dHE(d, Q) = HE (4, Q) NHE, 1 ()

Lia2gg)

L2,

Let E € HEY (d,Q)n H%t,rn,g(ﬂ)“?”‘“)- By (17) we observe E € HL*(Q) ndHE H(Q), i,
E = dE; € HL"(Q) with By € HL "' (Q). Thus By € HL “'(d,Q) and E € dHL “'(d, Q). By
(16) there is Er € HL "*(Q) with E = dEy € dHE "*(Q), ie, By € HL "?(d, Q) as well as
Eed qu{m(d7 Q). After k induction steps we obtain E € d quﬂ:l’k(d7 Q). Hodge x-duality shows
the assertions for 4. O

Note that in Corollary 4.7 we claim nothing about bounded regular potential operators, leaving
the question of bounded potentials to the next sections.

4.5. Zero Order Mini FA-ToolBox. We shall apply Theorem 2.23 from the FA-ToolBox to the
zero order de Rham complex. In Section 4.1 we have seen that

Ag =d{ T HE (A, Q) € L17H2(Q) - L73(Q),
Ay =df HEY(d, Q) C L72(Q) — LT3 (Q),
Ap=—6L tHEY(5,Q) C L92(Q) — LT 12(Q),

A7 = =6 T HIPYO(5,0) C LIT2(Q) — L93(Q)

are densely defined and closed and form a Hilbert complex of dual pairs, i.e., the long primal and
dual Hilbert complex (15). Recall also (12) and Definition 2.26 are well as Remark 2.27.
Lemma 4.6 for k = 0 yields the bounded regular decomposition

D(A1) = HEY(d, Q) = HEH(Q) + dHE 1 (Q) = H + Ao Hy
with Hf := HE'(Q) and H := HL 1 (Q) and Hy = L92(Q) and H, := L9712(Q). Rellich’s
selection theorem shows that the assumptions of Lemma 2.22 (i) and Theorem 2.23 as satisfied.
Note that it holds D(df,) = H}'(Q) and D(5f. ) = HE'(Q).
Theorem 4.8 (compact embedding for the de Rham complex). Let (2,T;) be a bounded strong
Lipschitz pair. Then for all ¢ the embedding
D(A1) N D(Ag) = D(d},) N D67, ) = HE"(d, Q) NHE(6,9) = L4%(Q)

is compact. Moreover, the long primal and dual de Rham Hilbert complex (15) is compact. In
particular, the complex is closed.

Proof. Apply Theorem 2.23 (i). O

Theorem 4.9 (mini FA-ToolBox for the de Rham complex). Let (,T3) be a bounded strong
Lipschitz pair. Then for all q

(i) the ranges R(df,) and R(3}, ) are closed,
(il) the inverse operators (qu/)J__1 and (§%n)ll are compact,
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111) the cohomology group : = , )N , as finite dimension,
iii) th h l thrnﬂd Q an,o d, qun,o 0,8) has fi d
(iv) the orthogonal Helmholtz-type decomposition

L92(Q) = dHE H0(d, Q) @rae (o) HE, 1, 1a(Q) BLez) SHET(6,Q)

holds,
v) there exists ¢, > 0 such that
(v) q
VE € D((d%t)J_) ‘E|Lq,2(Q) < qu dE|Lq+1,2(Q),
VH e D((6E)L) |H|La+1.2(0) < Cq| 0 HlLa2 ()
where

D((d},)1) = D(Af,) NN (dh) v = D(dh) N RE™),
D((OF) 1) = DEE) N N(ET) 2@ = DEET) N R(df,),
(v’) with cq from (v) it holds for all E € D(df,) N D(5F, ) N Hfﬂt’Fﬂ/,id(Q)LL”(“)
|Eltaz(q) < 3l dEfasa) + 1|0 B2,

(Vi) M, a(Q) = {0}, if (Q,1}) is additionally extendable.
Proof. Apply Theorem 2.23 (ii), i.e., Theoren 4.8 and Theorem 2.9 show (i)-(v’). For k = 0 Lemma
4.4 and Lemma 3.6 imply d H{, %(d, Q) = HE% (d,Q) = dHE 10(d, Q) Sreaie) HE 1 1a(Q), ie.,
(vi). O
Remark 4.10 (mini FA-ToolBox for the de Rham complex). Recall the admissible weights € from

Section 3.3. In [14, Lemma 5.1, Lemma 5.2] we have shown that the compactness in Theoren 4.8
and the dimensions of the cohomology groups do not depend on the particular €. Hence, for all q

(i) the embedding H%;O(d,Q) N 5_1H1‘1’TL0(5,Q) < L92(Q) is compact,
(ii) d?l,n = dim H%t’Fn’E(Q) = dim quﬂhpmid(Q).
(iii) Theorem 4.9 holds with appropriate modifications for including €.

Compare to the more explicit formulations from Section 5 for the vector de Rham complex. All
these results carry over literally. In particular, cf. Theorem 4.9 (v’), we have with ¢, (now de-

pending also on € and 1) for all E € D(p~"d},) N D0 €)N H%ﬁF’“E(Q)ltg'z(n)

‘E|Lq2 <C2|u 1dE|L(1+12 +C§_1‘6€E|Eq—l‘2(ﬂ).

Q)
Moreover,

(iv) Theorem 4.8 and hence Theorem 4.9 and (i)- (i) of this remark hold more generally for
bounded weak Lipschitz pairs (,T3), see [3, 4].

Theorem 4.11 (bounded regular potentials for the de Rham complex). Let (2,T;) be a bounded
strong Lipschitz pair and let QY F 1 be given from Lemma 4.6. Then for all ¢ € {1,...,d} there
exists a bounded linear regular potentml operator

Pt = Qip i (df D1 HE (A Q) NHE, 1 (9)
such that dPJY, = id|

J‘Lg’z(ﬂ) H(IZ—x_l’l(Q)7
t

HIO (@, E(Q)LL?Q(Q). In particular, the bounded reqular potential
t tin,

representations
R(A{) = HES(d, Q) nHY, 1 ()
hold and the potentials can be chosen such that they depend continuously on the data.

Proof. Apply Theorem 2.23 (iii). Note that R(dqfl) is closed by Theorem 4.9 and hence

fue) = qHIZM0(d, Q) = dHEHL(Q)

Q)@

R(df, ) = dHE0(d,92) = HE (A Q) NHE, 1 ()
holds by Lemma 3.6. O
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Remark 4.12 (Dirichlet/Neumann forms). Note that Hgt,Fn,a(Q) = 5’1H%n70(5, Q) =e xRy,

L : :
and Hf, 1, () 7@ = (+Rp, )2 @ holds in the special case q = d.

Theorem 4.13 (bounded regular decompositions for the de Rham complex). Let (Q,I}) be a
bounded strong Lipschitz pair and let Pg’lq and er 1 be given from Theorem 4.11 and from
Lemma 4.6, respectively. Then the bounded regular decompositions

HE (d, Q) = HE"(d, Q) = HE'(Q) + HE (d, Q) = HE'(Q) + dHE (@)
= R(QYL, 1) +HEL(d, @) = R(QEY, 1) + RVT)
hold with bounded linear reqular decomposition operators
O, 5= Pt M@, > HE' @), N0 S HE(0.9) = HE (0. 9)
satisfying Qd T Nq’ = iqu 0(d,0)" Moreover, it holds de n1 = de L1 = df, and thus

H%to (d, Q) is invariant under er 1 and Qd’r 1~ Furthermore, R(Qd Ft ) = (77dJrl 0) and
Qd n,1 = ngodq Qd Tl (dqr,,) d%t- Hence er 1‘D (df,) Qd Tl

Qd T,.1 may differ from d% 1 only on qu“;,o(dv Q).

4)1) and thus

Proof. Apply Theorem 2.23 (iv) and (iv’). O

Again, Theorem 4.11 and Theorem 4.13 have dual versions for the J-operator by Hodge *-
duality, cf. Theorem A.4 for k = 0.

4.6. Higher Order Mini FA-ToolBox. Some results from the latter section hold even for higher
Sobolev orders. As pointed out in Section 4.2, the adjoints are much more complicated. Hence
Lemma 2.22 and Theorem 2.23 from the FA-ToolBox are not directly applicable, so that some
detours and modifications are needed.

In Section 4.2 we have introduced the higher order primal and dual de Rham Hilbert complex
composed of the densely defined and closed linear operators

At - D(ALF) € HER(Q) = HETHH(9), D(df;") = HE"(d, @),
SEF: D(OER) C HEM(Q) — HE 1R (), D(5%") = HER(5,9).
By Corollary 4.7 be see:

Theorem 4.14 (higher order closed ranges for the de Rham complex). Let (2,T}) be a bounded
strong Lipschitz pair. Then for all ¢ and for all k € Ny the ranges

R(dL1F) = dHE (A, Q) = dHEMH(Q) = HER(d, Q) NHE 1 14(9)
R(E) = SHEFE(8,Q) = SHET Q) = HES (6,2) N HE, 1 jq(@) o2

Lia2)
)

are closed, i.e., closed subspaces of H9*(Q). In particular, the higher order long primal and dual
de Rham complex from Section 4.2 is closed.

The corresponding reduced operators read

1
(@)1 D((E)L) € HEG(.0) Y = dHEN@ Q) N(AE) = HE(d.9),
Lok
—(8LF) L - D((6L7) 1) C HER (6, 0) @ 5 HEF(5,9), N(0%F) = HEF((5,9),

with
1 q,k
D((df") 1) = HE (d, @) N HER (4, Q) 0 = HER(d, ) n R((dE")7),
. 1 a,
D((6%F).) = HEF(6,9) MHER(5,2) "5/ = HEF(5,2) N R((5E")").
and we have by Lemma 2.1 and Theorem 4.14:
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Theorem 4.15 (higher order fundamental lemma 1 for the de Rham complex). Let (£2,1}) be a
bounded strong Lipschitz pair. Then for all ¢ and for all k € Ny the following assertions hold and
are equivalent:

(i) 3c>0 YEe€D((AE")1)  |Elur(a) < c|dEluarie
(ii) R(dE") = R((d%")1) = dHE"(d, Q) is closed.
(iii) (AL*)7': R(AE") — D((dE*)L) is bounded.
(iii”) (dg*)7": R(AE") — D(AE") is bounded.
The corresponding results hold for the 6%;5“ as well.

The higher order version of Theorem 4.8 reads as follows:

Theorem 4.16 (higher order compact embedding for the de Rham complex). Let (Q,I}) be a
bounded strong Lipschitz pair. Then for all ¢ and for all k € Ny the embedding

D(dE") N D(E*) = HEF(d, Q) NHEF(5,9) — HEF(Q)
18 compact.

Proof. We follow in close lines the proof of [17, Theorem 4.11] using induction. The case k = 0 is
given by Theorem 4.8. Let k > 1 and let (E,,) be a bounded sequence in H%;k(d, N Hfﬂf(é, Q).
Note that
HE"(d, Q) NHEF(6,Q) € HEM(Q) NHEF(Q) = HEM(Q).

By assumption and w.l.o.g. we have that (F,,) is a Cauchy sequence in H%’k_l(Q). Moreover, for
all |a| = k we have 0% E,, € H%;O(d, Q)N Hiif(é, Q) withdo* E, =90°dE, and 690° E,, =9 E,
by Lemma 3.4. Hence (0% E,) is a bounded sequence in H%;O(d,ﬂ) N H%:LO((S,Q). Thus, w.l.o.g.
(0% E,) is a Cauchy sequence in L%2(2) by Theorem 4.8. Finally, (E,) is a Cauchy sequence in
H%’k(Q)7 finishing the proof. O

Higher order analogues of Theorem 4.9 and Remark 4.10 hold. Some of these results are
formulated in the following theorem.

Theorem 4.17 (higher order Friedrichs/Poincaré type estimates for the de Rham complex). Let
(Q,T) be a bounded strong Lipschitz pair. Then for all ¢ and for all k > 0 there exists ¢qp > 0
such that for all E € H%;k(d, Q)N H%:Lk(é, Q)N H%t,Fn,id(Q)J_

L9:2 ()

|Elnar@) < Cor(|d Bluarin) + 10 Elna-1na))-

1

The condition MY, id(Q)LL“(Q) can be replaced by the weaker conditions ?—l%;{krn Q)@ o

H%;kpmid(Q)lHq’km). In particular, it holds

V E € HE (d, Q) N R(GET) |Elnar@) < Corl d Bluatikq),
Y E € HE"(5,Q) N R(dE ) |Elnar @) < Cokl 0 Elna-1x 0

with
R(512:17k) = qu“ﬁo(& on H%,Fﬂ,id(Q)L”’z(m,
R(dlq“:Lk) = qu“fo(va) N Hg‘t,rn,id(Q)Lm‘“).

Proof. To show the first estimate, we use a standard strategy and assume the contrary. Then
there is a sequence

(En) C HES(d, Q) NHEN (8, Q) NHE, g ()72
with |Ep|par) = 1 and |d Eylyetixq) + |0 Enlye-14(q) — 0. Hence we may assume that F,

converges weakly to some E in HZ*(Q) N HE, a2 N an,rmid(ﬂ)l”g(m. Thus £ = 0. By

Theorem 4.16 (E,,) converges strongly to 0 in H%*(Q), in contradiction to | Enlpar) = 1.
The other two estimates follow with Theorem 4.14 by restriction.
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Note that by Theorem 4.15
(57" RAEY) = DG, (OET: R6ES) — DL
are bounded. The higher order versions of Theorem 4.11 and Theorem 4.13 read as follows:

Theorem 4.18 (higher order bounded regular potentials and decompositions for the de Rham
complex). Let (Q,T}) be a bounded strong Lipschitz pair and let k > 0. Moreover, let Qd .1 be
giwen from Lemma 4.6. Then:

(i) Forallqe {1,...,d} there exists a bounded linear regular potential operator
PLE = Q@) T HER (d,Q) NHE, 1 ()T @ — HE VR (),

such that de:Ft =id| . In particular, the bounded reqular rep-

Lig2
HE S (d)NHE, 1, () 7@
resentations
R(df, ) = HES (4, ) nHE, L (9)
= HEN (@) NdHE T (d,9) = dHE T (d,Q) = dHE Q)
hold and the potentials can be chosen such that they depend continuously on the data.
(ii) The bounded regular decompositions
HES (4 0) = BT () 4 I (4.9) = @) + dHE @)
= R(Q4T, 1) +HE (4, Q) = R(QLT, 1) + RVIY)
hold with bounded linear reqular decomposmon operators

G,k k 14q, k ,k ek, k ,k
giFt = Pg—;tl dq H%‘t (d’Q) — H%‘t +1(Q)’ -ng N Hq (d Q) — H%t70(d,ﬂ)

Q)@

satisfying Qd T +Ng’1’§ = iqu - (a,0)° Moreover, de T = de 1= dq”C and thus
H%; (d,Q) is invariant under er 1 and er 1+ 1t holds R(QY dl" 1) = (’Pqul ") and
& +1,k 1q, : : :
gn = Pg T dq = giFt (dlq‘t )1 dq . Hence er 1‘D (A*) 0 Qd Ty,1 |D((d1‘it’k)L)

and thus Qd r,.1 may differ from Qd T 1 only on H (d Q).
(i’) The bounded regular kernel decomposition Hf; (d Q) H%fg_l(d, Q)+d H%:l’k+l(Q) holds.

Proof. Lemma 4.6 yields the bounded regular decomposition
D(AE*) = HE (4, Q) = HEMH(Q) + dHE VM HQ) = HY +d P HE

with Hf := HE"1(Q) and HY := HEL ¥ (Q) and H; := HE*(Q) and H, := HE ¥ (Q). Rellich’s
selection theorem shows that the assumptlons of Lemma 2.22 (i) and Theorem 2.23 as satisfied.
Note that it holds D(d%k) = H%kH(Q) and D((S?nk) = H%LkH(Q). Theorem 2.23 (iii)-(iv’) and
Theorem 4.14 show the assertions (i) and (ii). (ii’) follows directly by (ii). O

Hodge x-duality yields the corresponding results for the co-derivative as well, cf. Theorem A.4.
Remark 4.19. Let us recall the bounded regular decompositions from Theorem 4.18 (ii), e.qg.,
k )
HE"(d, Q) = R(Q} d, Ft )+ R(Ngn)
By Rema'rk 2 19 we emphasise:

(i) F 1 anqu’F =1- er .1 are projections with Q dF 1 dF —./\/'d Fth ra =0
(11) For I. = Qd T 1 :I:./\/'qF it holds I, = I = idyar g oy Therefore, 1, 1%, as well as
t Iy )

= 2Qd T ldH%t"“(d,Q) are topological isomorphisms on H%;k(d, Q).
(iii) There exists ¢ > 0 such that for all E € HqF;k(d, )
c| Q4% 1 Elnarsr(q) < |d Elpariie) < |Elhara,0);
INGE Elvar () < |Eluar ) + 195 F 1 Elnar -
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=0 and

(iii’) For E € H{ (dQ) wehaveQdFl annnglle E, ie., an’ kgt @)

d:Ft|H1qx;If0(d7Q) = 1dH%;sz(d,Q). In particular, ./\/""'7’Ft s onto.
Theorem 4.18 (ii’) shows by induction and by Hodge *-duality:

Corollary 4.20 (higher order kernels for the de Rham complex). Let (2,T}) be a bounded strong
Lipschitz pair and let k,¢ > 0. Then the bounded regular kernel decompositions

HE" (A, Q) = HE (A, Q) + dHE @), HER (6,9) = HE' (6,9) + GHET Q)
hold. In particular, for k=0 and all £ >0
HES(d, Q) = HE (4, Q) + dHE 1 (Q), HEC0(5,9) = HE 1 (6,Q) + SHE ().

4.7. Dirichlet/Neumann Forms. By Lemma 3.6 we recall the orthonormal Helmholtz decom-
positions

L22(Q) = dHE(d, Q) @02y € "HE (6,2
= HE%(d,9) Drazigy €0 HE(6, Q)
(18) =d H%:l’o(dv Q) ez ) MY, 1, £ () Braz(g elo qu“:rl’o(& Q),
HE %0 (d,2) = dHE (A, Q) B2 o) HE, 1, (D),
571H1q“;0,0(5v Q) =H, 1, (Q) Baz(q) e SHET(8,9).
Let us denote the L%?(Q)-orthonormal projector onto 5_1qu£0(6, ) and H%;?O(d, Q) by
ms: L2(Q) = e 'HEY((6,9),  ma: LE2(Q) = HE(d, Q),
respectively. Then
7r5|H§t’?o(d,Q) : qul, (d,Q) = Hf, 1, (), 7Td|s—1Hg;f{U(5,Q) _lqu“’ 0(0,) = HY, n (Q)

are onto. Moreover,

7T6|d H?{l’o(d,ﬂ) = 07 Wd‘s—l 5H12:1’D(5,Q) = 07
Tolag, @ =idug (@) Talug, o @ =idug o @)

Therefore, by Corollary 4.20 and for all £ > 0
s N
HE 1 (Q) = msHE (d, Q) = meHE  (d,Q),
HE 1 Q) = maeTHHEY ((5,9) = wdg—lH;ﬁO(a, Q).

Hence with
HES (d, Q) == () HE', HE5(6,Q) == [ HE
£>0 £>0
we get by the monotonicity of the Sobolev spaces the following result:

Theorem 4.21 (smooth pre-bases of Dirichlet/Neumann forms for the de Rham complex). Let
(Q,T}) be a bounded strong Lipschitz pair and recall d%’n from Remark 4.10. Then

msHES(d, Q) = HE, 1 (D )—Wdf_lqu“’O%(‘s Q).

Moreover, there exists a smooth d-pre-basis and a smooth §-pre-basis ofHD,F E(Q), i.e., there are
linear independent smooth forms

B, () = {Bgp, z}eQ e HE% (d, Q), Bin (Q):={Bjr, z}eQ e HE 0 (9, Q)
such that 58] , () and wdsle;Fn(Q) are both bases of Hf, . (). In partz'cular,
Lln ﬂ-éBg,Ft (Q) = qu—‘t,F,L)E(Q) = Lln WdE_lgg’Fn (Q)
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Note that (1 —ms) and (1 —mq) are the L%2(Q)-orthonormal projectors onto d H%:l’o(d, Q) and

el§ qujl’o(ts, Q), respectively, i.e.,
(1—ms) : L2%(Q) — dHE 10(d, ), (1 —7q) : L22(Q) — e 1 GHE0(5, Q).
Then by (18) and Corollary 4.7, cf. Theorem 4.18 (i), we have
HE (4, Q) = dHE(d, ) BLe2(q) "L, 1, (?)

= dHE(d, Q) @02 ) Lin s8] 1, (Q)
= dHL%(d, Q) + (w5 — 1) Lin BY 1, (Q) + Lin BY 1, (Q)
= dHL %(d, Q) + Lin BY 1, (),
HER (4, Q) = dHE 0(d, Q) mHgkO(d Q) + Lin BY 1. (),
— dHITQ) + Lin B (9).

Theorem 4.22 (higher order bounded regular direct decompositions for the de Rham complex).
Let (2, T;) be a bounded strong Lipschitz pair and let k > 0. Then the bounded regular direct
decompositions

HE"(d, ) = RQET, ) +HE(4.9), HE(d,Q) = dHETHH(Q) 4 Lin BY 1, (),
HER(6,9) = R(QYT, 1) +HES(0,9), HE(0,92) = SHE (@) + Lin B, ()
hold. Note that R(Q gn’ ) C Hq’k+1( Q) and R(Q¥E 1) C H%f“(Q). In particular, for k=0
HE'(d,9) = RQGTL, o) +HE (A, Q). HE(d, Q) = dHEH Q) + Lin BY 1, ()
=d qu:l’l(Q) Draz(q) HE, 1, (D),
HLO(6.2) = R(GYS, )+ HEC(0.0). ' HEY,(5,9) = < S HEF () 1 = Lin B, ()
=M SHET Q) Brazq) Hiy 1, ()

Q
Q

as well as
L22(Q) = HE(d, Q) Bpoag € SHIFN (@)
= dHE Q) Bpo2 ) e THEY 1 (6,9).
Proof. Theorem 4.18 (ii) and (19) show
HE"(d,Q) = R(QYY, ) +HE (A, Q),  HEY(d,Q) = dHE VM 1(Q) + Lin BY 1, ().

To prove the directness, let
dq

QI
> MBi,€d HE 5 +1(Q) N Lin Bl (Q).
=1

Then 0 = >, M5 Bir, , € LinmsBi 1, (Q) and hence A, = 0 for all £ as 78] 1, () is a basis of
HD r, E( ) by Theorem 4.21. Concerning the boundedness of the decompositions, let
HEA(A,Q) 5 E=dH+B,  HeHL "™ (Q), BeLnBi,(Q).
Then we have by Theorem 4.18 (i) dH € R(d%t_l’k) and Ey := ’Pg:{ft dH € H%t_l’kﬂ(Q) solves
d Eq = d H with |Eg|ye-1.6+1(0) < ¢/ d H|ya k(). Therefore,
|Edlna—101(0) + [Bluar ) < (| d H|par @) + [Bluar) < e(|Bluar@) + [Blhar@))-
Note that the mapping
I3 : Lin Bg,n(ﬂ) — Lin 7T5Bg’n<9) = ngt,rma(ﬂ)? Bg,n,f — Wng’n_[
is a topological isomorphism (between finite dimensional spaces and with arbitrary norms). Thus

|B|Hq,k(Q) < C|B||_q,2(Q) < C|7T5B||_q,2(Q) = C|7T5E||_q,2(9) < C|E|Lq,2(Q) < C|E|Hq,k(Q).
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Finally, we see E =d Eq4+ B €d qu{l’kH(Q) + Lin Bg,n (2) and
|Edlna-1.041(0) + [Bluan () < ¢[Elpar(o)-
Hodge +-duality yields the other assertions. O

Remark 4.23 (higher order bounded regular direct decompositions for the de Rham complex).
Note that by Theorem 4.22 we have, e.g.,

HE(d,9) = R(QLY, 1) + Lin BY 1, (@) + dHE (@) = HEFTH(Q) + d HE ()
with bounded linear reqular direct decomposition operators
: ~a,k &
dD Hq (d,Q) — R(Qd 1 e R( gi,n,l) - qu“t H(Q)»
O oo P HEM(d, Q) — Lin BY 1, (), Bl 1, (Q) C HES(d, Q) C HE (@),
Q4T 0+ HE (@, Q) = HE (@)

satisfying Qd Tt Qd T td Qd o= ing,k(d7Q). A closer inspection of the latter proof allows

for a more precise description of these bounded decomposition operators.
For this, let E € Hq’k(d, Q). According to Theorem /.18 and Remark 4.19 we decompose

. rq.k \7q,k k k
E = Er+Ey € R(QLT, ;) + RIVIT,), R(N{T,) = HE o(d, Q) = N(dg5),
with Eg = églﬁlE and Eny = f,’nE By Theorem 4.22 we further decompose
HLY(d,9Q) 3 Exy = d Eq + B € dHL "F(Q) + Lin B 1, ().

Then wsEx = m5B € MY, 1 (Q) and thus B = I;;'nsB = I;;'m;Ex € LinBS [, (). Therefore,
Eq = Pg:llit dE4 = Pq’k (En — B) = Pq’k (1-— I_lﬂg)EN. Finally, we see

+1,k jq,k _ k=1 1a.k
Qd 1 Qd Tl = Pg Ty dq Qd Tl (qut )J_ dqn )
, ; q,k
cqir, =1y 7Té/\/’qr =1y 76( d,n,1)7
k & _
Qd I},0 gn( - IH Wé)Nd,'rt = g,'n(l - Iylﬂé)( Qd 1 1)

Theorem 4.24 (alternative Dirichlet/Neumann projections for the de Rham complex). Let (2, T})
be a bounded strong Lipschitz pair. Then

MHE o () NBLL (Q) 2@ = {0}, e THE (5,2 NBY Q)@ = 1§ HE0(6, 92),
M p (DNBLL (@)@ = {0}, HEY(d, Q) N B, ()@ = dHE (d, Q).

Proof. For H € Hf, - ()N Bg’n(Q)J‘Lg’%Q) we have
0= (H, Bd,D,,Z>Lg’2(Q) = (msH, Bg,n,zﬂg’z(ﬂ) = (H, 7T5Bg,Ff,,Z>LZ‘2(Q)
and hence H = 0 by Theorem 4.21. Analogously, we see for H € H{, . _(Q) N B (Q) 2@
0= (H,Bj, Jiezo) = <7TdH78_lBg,Fn,Z>LZ’2(Q) = (H, de_lBg,F,,,,£>Lg'2(Q)
and thus H = 0. It holds
(20) ets ngjl’o((s» ) L2 B, (), d qu“:l’o(da Q) Liaz9)B) 1, ().
According to (18) we can decompose
e 'HEY((6,Q) = e OHET0(6,Q) @02 ) HE, 1, (),
HE(4,9) = dHET(d, Q) @a20) B, 1, (D),

which shows by (20) the other two assertions. O
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Corollary 4.25 (alternative Dirichlet/Neumann projections for the de Rham complex). Let
(Q,T}) be a bounded strong Lipschitz pair and let k > 0. Then

eTTHER(6,9) N BY (@) 2@ = e G HET (5, 0) = e S HET (@),
HER (d, Q) N BL L () 2@ = dHE M5 (d, Q) = dHE Q).
Proof. We have by Theorem 4.24 and Theorem 4.18 (i)
HE(d 9) 0 B, ()72 = HER(Q) N HE (d, ) N B, (9) 71t
= HEF(Q) N dHEL (d, Q)
= dHL M (d, Q) = dHE VHH(Q).

Analogously,
eI (6, 9) 1 B ()12 = =T IHER () e THES (6, 9) 1 B, (9) )
= "HER(Q) ne T GHET(6, )
= e PEHETR(5,Q) = e O HET T (@),
completing the proof. O

Theorem 4.22 and *H{, p ;4(Q2) = H?‘;%t,id () shows the following result:

Theorem 4.26 (cohomology groups of the de Rham complex). Let (2,T;) be a bounded strong
Lipschitz pair. Then (22 means isomorphic)

N(dE)/R(df ) = Lin B 1, (Q) = Hf, 1, () = LinBj 1 (Q) = N(5%")/REE).

In particular, the dimensions of the cohomology groups (Dirichlet/Neumann forms) are indepen-
dent of k and € and it holds

. & —1,k . y Lk
df, r, = dim (N(d")/R(df, ")) = dim (N (6%")/R(6ET)).

Moroever, df, 1, = dé’_lii.

Remark 4.27. For the case of either no or full boundary conditions, i.e., Iy = () or Iy = T,

related results on regular potentials, reqular decompositions, as well as cohomology groups and

their dimensions, even for real Sobolev exponents k € R, have been proved in [5] using integral
equation representations and methods. In particular, we refer to [5, Theorem 1.1, Theorem 4.9].

5. VECTOR DE RHAM COMPLEX

We reformulate the results from Section 4 in the special case d = 3 and ¢ € {0,1,2,3} using
vector proxies. Recall Section 3.2 and let ¢ and p be admissible weights. To apply the FA-ToolBox
from Section 2 for the vector de Rham complex, let grad, rot, and div be realised as densely defined
(unbounded) linear operators

griadn : D(groadpt) C L%(Q) — L2(Q); u +— grad u,
ptrotr, : D(u~trotr,) C L2(Q) — Li(Q); Ew p'rot E,
divr,u : D(divr, ) C© L2(Q) — L2(9); H s divpH

with domains of definition
D(gradp,) := CZ(Q),  D(u 'totr,) := CX(Q),  D(divpp) := u~ ' CF(Q)
satisfying the complex properties
p”trotr, grzamdn co, divny,uflrco)tpt = (ﬁVI‘tI'(o)tr‘t cO0.

Then the closures

gradp, 1= groadpt, ot rotr, := uflrétn, divr, p 1= divrtu
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and Hilbert space adjoints

grady, = groad;t, (ntroty)* = (u trotr,)*, (divr, p)* = (divp,p)*
are given by
A = grady, : D(gradp,) C L*(Q) — L2(Q); u > grad u,
Aq = ptroty, : D(u"troty) € LA(Q) — LZ(Q); E s p'rot E,
Ay :=divr, g : D(divr, p) C L2(Q) — L*(Q); H s div uH,
A = grady, = —divr, € : D(divr, €) C LQ(Q) — L2(Q); E— —diveFE,
A} = (u troty,)* = e roty, : D(e ' rotr,) C LQ(Q) — L2(Q); H s e 'rot H,
A} = (divr, p)* = —grady, : D(gradp, ) C L*(Q) — Li(Q); u+— —gradu
with domains of definition
D(Ag) = D(gradp,) = Hf, (), D(A§) = D(divr, ) = e~ "Hy, (div, Q),
D(A1) = D(p~ ' rotr,) = H, (rot, Q), D(A}) = D(e™ ' rotr, ) = Hp, (rot, ),
D(As) = D(dive, 4) = ' Hy, (div, ), D(A}) = D{grady, ) = HE, ().

As in Section 4, indeed the domains of definition of the adjoints are given as stated.
Remark 5.1. Note that by definition the adjoints are given by
gradf, = grady, = —divr, ¢ : D(divr,e) C L2(Q) — L3(Q),
(u'roty,)* = (u 'rotry)* = e 'roty, : D(e 'rotr,) C L () — L2(Q),
(divy, p)* = (divp,p)* = —grad, : D(gradp, ) C L*(Q) — LZ(Q)
with domains of definition
D(divr,e) = e~ "Hy, (div, Q), D(e'rotp,) = Hp, (rot,Q), D(grady, ) = Hf, (Q).

Lemma 3.2 (weak and strong boundary conditions coincide) shows indeed that divp, e = divp, €,
e lroty, = e lrotr,, and gradr, = gradr,, in particular

D(divr,e) = e "H, (div,Q) = e 'Hp, (div,Q) = D(divr, ),
D(e™'rotr,) = Hy, (rot, Q) = Hp, (rot,Q) = D(e ' rotr,),
D(grady, ) = HE, () = HE, (2) = D(grady, ).
By definition we have densely defined and closed (unbounded) linear operators defining three
dual pairs
(gradp,, (gradp, )*) = (grady,, — divy, ),
(u~*rotr,, (u™ " rotr,)*) = (u~ " rotr,, e rotr, ),
(divr, p, (divy, p)*) = (divr, p, — gradyp, ).
Remark 2.5 and Remark 2.6 show the complex properties
ptrotr, gradp, C 0, divy, g~ rotr, = divr, rotr, C 0,
—divr, e roty, = —divr, rotr, C 0, —e roty, gradr, C 0.
The long primal and dual vector de Rham Hilbert complex (12), cf. (15), reads

-1 .
YRr, gradr, pu o rotp, divp, 1 Ry,

(21) Ry, L2() L2(Q) 7= L7() L2(Q) R,

s —di — & L
Rp, divp, € e ! rotr,, gradr, Rr,,

with the complex properties
R(tgy,) = N(grady,) = Ry, R(divr, €) = (Rr,)
R(gradp,) C N(u™ ' rotr,), R(s'rotr,) € N(divy, ¢),

J-L2(sz)
)
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R(p~ 'rotr,) C N(divr, p), R(gradp, ) C N(s ' rotr, ),
R(divr, p) = (R, ) 2@, R(gy,,) = N(gradp, ) = Rr,.
Recalling Remark 2.25, we note that actually tg,, LHEQ = TRy, and (g, tp. = TRy, as self-adjoint

projections on L%(Q2).
Similar to (21) (for simplicity let e = p = 1) we investigate the higher order de Rham complex

gradllit K rotll‘lt & divllit & TR,
> Hrt(Q) —_— Hrt(Q) —_— Hn(Q) —— Ry,

L]RF

as well. More precisely, we consider the densely defined and closed linear operators
gradr, : D(gradr,) C HE, () = HE, (Q); u — gradu,  D(grady,) := H, (grad, ) = HE™(Q),
rotf, : D(rotf,) C HE (Q) — HE (Q); E — 1ot E, D(rotf;) := HE, (rot, ©),
divf, : D(divf,) C HE (Q) — HE (Q); H = divH,  D(div),) := HE (div, Q).
Note that the complex properties R(gradﬁ) C N(rotf,) and R(rotf,) C N (divﬁ) hold.

5.1. Regular Potentials and Decompositions. For d € {grad, rot,div} Lemma 4.6, Corollary
4.7, Theorem 4.18, and Remark 4.19 read as follows.

Theorem 5.2 (higher order bounded regular potentials and decompositions for the vector de
Rham complex with partial boundary condition). Let (Q,1}) be a bounded strong Lipschitz pair
and let k > 0. Then:

(i) The bounded regular decompositions
HE, (rot, Q) = HE, (rot, ) = HE(Q) + grad HEHH(Q),
HE, (div, Q) = HE, (div, Q) = HE(Q) + rot HEH ()

hold with bounded linear reqular decomposition operators

Qllrcot,l“t,l : Hlf‘t (I"Ot,Q) - Hllf‘jl(Q)v Qfot,Ft,O : Hll?‘t (I"Ot,Q) - H]Ig‘jl(Q%
Qgiv,n,l : Hf‘t (div, Q) — HE“(Q% Qﬁiv,n,o : H{C‘t (div, Q) — H?jl(Q)

satisfying Qfot,l‘t,l + grad Qfot,n,o = idH{zf (rot,2) and Qgiv,l“t,l +rot Qﬁiv,n,o = idH{zf (div,Q) "
In particular, weak and strong boundary conditions coincide. It holds rot Qfot,l“,,,l = rot’lit
and thus H{iﬁo(rot, Q) is invariant under Qfot,r,,,l- Analogously, div Q’;iv,n,l = divﬁ and
thus H, ((div, Q) is invariant under Qﬁiv,n,r

(ii) The regular potential representations

L

R(grady,) = grad Hi;™ (Q) = HE, o(rot, Q) NHr, 1, . (Q) 2@ = HE, (Q) N R(grady, ),
R(rotﬁ) = rot Hf«t (rot, Q) = rot H'lijl(ﬂ) = Hf«t’o(div, Q) NHr, e (Q)J'LQ(‘” = Hﬁ (2) N R(rotr,),
R(divk,) = div Hf, (div, Q) = div HEF (Q) = HE () N (Rp,) 2@ = HE, () N R(divr,)
hold. In particular, these spaces are closed subspaces of Hg(ﬂ) = Hk(Q).
(iii) There exist bounded linear regular potential operators

g
k k =1 .k (1 k41
Protr, = Qrot.r,,1(Toty,) 1+ HE, o(div, Q) N Hy, 1, (2)7H@ — Hr:r (Q),

Pgivrt = Qﬁiv,ﬂ,l(divlﬁ)ll : Hlﬁ(ﬂ) N (RFn)le(m — HIEH(Q%

Pkrad,n = (gradllit)ll : Hllit,o(mtag) ﬁHn,1“",5(9)J_Lg(m — HIEH(Q)a
oyt

such that

k .
rad P, =id 1
g grad,I |H]Ic‘,,,o(rOtVQ)mHFt,Fn,a(Q) L2()?

k .
rot P =id L
rot, I} |H1’it o(div. )M, () PO
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divPY, , =id| L
div, I} k 12(Q) "
HE ()N(Rr,)

In particular, all potentials in (i) can be chosen such that they depend continuously on
the data. Pgrad,n’ ”Pfot,n, and Pé“iv’n are right inverses of grad, rot, and div, respectively.
(iv) The bounded regular decompositions

H’ﬁ (rot, ) = Hk“(Q) + H{it’o(rot, Q) = Hk“(Q) + grad HkH(Q)
= R(QF, 1)+ Hlk“t,o(mta Q) = R(QF, 1)+ R(NE, )
HE, (div, Q) = HEP(Q) + HE, o(div, Q) = HETH(Q) + rot HEM (Q)
= R(éﬁiv,n,l) + Hllit,o(di‘ﬁ Q) = R(égiv,l“t,l) + R(-/\?(fiv,rt)
hold with bounded linear reqular decomposition operators
ok, 1 = Prkot,rt rOt]ﬂ : Hlﬁ (rot, ©2) — HE—I(Q): N Bl  HE  (rot, €2) — H’liho(rot,Q),
Ok ry1 = Phiyr, divh, « HE (div, Q) — HEFH(Q), N, 1, « HE (div, Q) — HE, ((div, Q)

satisfying Qb 1 + Niber, = iyt (rot,0) and Qivra + Ndvr, = iyt (aiv,)- 1t holds

rot Qfot,l"t,l = rot Qrot,n,l = rot’lit and thus Hllftjo(rot,ﬂ) 18 invariant under Qfot’n’l

and Qfotﬂ’l, Analogously, div Qﬁiv,n,l div Qk. T divlli and thus HE ((div, )

is invariant under Q% . | and Q& . . Moreover, we have R(QF, 1) = R(Prot )
Ok — Ok k=1 1k k

and Qrot,D,,l - Qrot,l"t,l(rOtI})L rOth Hence Qrot,l"t,l D((rot’ﬁ)i) - Qrot,l"t,1|D( rotl’if)L)

and thus éfot’rhl may differ from Qfot,l",,,l only on Hk olrot, Q).  Analogously, it holds
(de’n’ ) = R(Ph,r,) and éﬁiv,n,l = Ok 1 (dlvp) Ydiv,. Hence we have that
Qdiv,n,ﬂD((divﬁ)Q = Qﬁiv,n,ﬂD((divﬁ)g and thus de,n,1 may differ from Qﬁiv,n,l only
on HE, o(div, Q).
(iv’) The bounded regular kernel decompositions H’liho(rot,Q) = Hﬁf&(rot,Q) + grad Hlli:rl(Q)
and HE, (div, Q) = HEY) (div, Q) + rot HEFH(Q) hold.
Remark 5.3. Let us recall the bounded regular decompositions from Theorem 5.2 (iv), e.g.,

k
HY, (rot, Q) = R(QF, 1)+ R(NE, )
(i) Qfot,l—‘t,h J\/;]Zt Ty — 1 - Qrot 1 are pTOj@CtZOTlS with Qrot Tl 'A/I"]gt o = N]gt e QfOt Tl — 0-

(ii) For Iy := th T :i:./\/ot r, it holds Iy =I? 1dH1;gt(r0t7Q) Therefore, }4_, 12, as well as
_= 2Qrot,D,1 — 1dePt(r0t7Q) are topological isomorphisms on HD (rot, Q).
(iii) There exists ¢ > 0 such that for all E € Hllit (rot, )
c| Ok 11 Elurri(a) < |10t Elur) < 1Bk rot,0)»
NE Bl < Bl + Qi r, 1 Bl )

(iii’) For E € HF, ((rot, Q) we have éfot,r‘ 1 E =0 and ./\f]rot r, B = E. In particular, Motr is
onto.

(iv) Literally, (i)-(ii’) hold for div as well.

5.2. Zero Order Mini FA-ToolBox. Theorem 4.8, Theorem 4.9, and Remark 4.10 translate to
the following results, cf. (12) and Definition 2.26 as well as [14, Lemma 5.1, Lemma 5.2].

Theorem 5.4 (compact embedding for the vector de Rham complex). Let (Q,I}) be a bounded
strong Lipschitz pair. Then the embeddings

D(Ao) = Hr, (2) — L*(9),
D(A1) N D(A) = Hp, (rot, Q) Ne™'Hy, (div, Q) = L2(Q),
D(A2) N D(AT) = p~"Hp, (div, Q) N H, (rot, ) < L2(),
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D(A3) = Hr, (2) = L*(Q)
are compact, i.e., the long primal and dual vector de Rham Hilbert complex is compact. In partic-
ular, the complex is closed. Moreover, the compactness of the embeddings is independent of € and
I
Theorem 5.5 (mini FA-ToolBox for the vector de Rham complex). Let (,T;) be a bounded
strong Lipschitz pair. Then
(i) the ranges R(gradr,), R(rotr,), and R(divy,) = (]an)J'LZ(“) are closed,
(ii) the inverse operators (gradp,) ', (u~'rotr,) 7" and (divr, p) 7" are compact,
(iii) the cohomology group Hr, 1, .(Q) = H, o(rot, ) ﬂe’lHFmo(div,Q) has finite dimension,
which is independent of €,
(iv) the orthogonal Helmholtz-type decomposition

L2(Q) = grad H, () @rz) Hr,r, () Sz e rot Hp, (rot, Q)

holds,
(V) there ezist Cgrad,T,, Crot,T, , Cdiv,T; > 0 such that

Vu € D((gradp,) 1) [ulL2(0) < cgrad.r | grad uliz(q),
VE € D((divr, ) 1) |E|L2(0) < Cgrad,r, | diveE] 2(q),
VE € D((p "rotr,) 1) |E|20) < Crot.T, |1t~ TOt Eliz (o),
VH e D((e 'rotr,) 1) [Hz(0) < Crot,1, | Tot B2 (0,
VH e D((len J_) 2(0) < caiv,, | div pH | 2 (),
Yue D((gradr J_) [ulL2() < caiv,r, | grad U|Li(ﬂ),

where

D((gradp,). ) = D(gradp,) N N(gradp,) e = D(gradr, ) N R(divr, ¢),
D((divr, €)1 ) = D(divr, €) N N(divp, £) 2@ = D(divr, €) N R(grady, ),
D((p "' rotr,) 1) = D(u 'rotr,) NN (p™* rotpt)J'@(Q) = D(u " *rotr,) N R(e ' rotr, ),
(

which also gives D(( ' rotr,) 1), D((divr, pn)1), and D((grady, ) 1) by interchanging e,
H and Ft; ns

(v*) it holds for all E € D(u~" rotr,) N D(divr, &) N Hp,, D”E(Q)J‘

L2(Q)

|E|Eg(9) < o I Ot E|L2 @ T Coraar, | diveE[P2 (o),
(vi) Hp, 1, () = {0}, if Q is additionally extendable.

Remark 5.6. Theorem 5.4 and Theorem 5.5 hold more generally for bounded weak Lipschitz pairs
(1), see [2, 3, 4].

5.3. Higher Order Mini FA-ToolBox and Dirichlet/Neumann Fields. Theorem 5.4 holds
even for higher Sobolev orders, cf. Theorem 4.16.

Theorem 5.7 (higher order compact embedding for the vector de Rham complex). Let (Q,T}) be
a bounded strong Lipschitz pair. Then for all k € Ny the embeddings

HE (Q) NHE, () = HE(Q),
HE, (rot, Q) N HE (div, Q) < HE(Q),
HE, (div, Q) N HE (rot, Q) < HE(Q),
HE, (2) NHET(Q) — HE(Q)

are compact.
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Remark 5.8 (higher order Friedrichs/Poincaré type estimates for the vector de Rham complex).
Analogues of Theorem 4.15 and Theorem 4.17 hold. In particular, for all k > 0 there exists ¢ > 0
such that for all E € HE, (rot, Q) NHE (div, Q) N thpmid(Q)Lﬂ(Q)

|Elfk 0y < G (1ot Bl ) + [div Effiq))-
Theorem 5.2 (iv’), cf. Corollary 4.20, shows by induction for all k,¢ > 0
(22) H’ftﬁo(rot, Q) = Hfﬁtyo(rot, Q) + grad Hllfjl(Q), H’ft’o(div,Q) = Hfﬁtwo(div7 Q) + rot Hllifl(Q)
By Theorem 5.5 (iv) we have the orthonormal Helmholtz decompositions
L2(Q2) = grad Hr, () ®12(q) £~ 'Hr,, o(div, Q)
= Hp, o(rot, Q) @i 2(q) e ' rot Hp, (rot, )
(23) = grad Ht, () @12(0) Hr, 1, () @12(0) €' 1ot H, (vot, Q),
Hr, o(rot, Q) = grad Hll", (Q) ®20) Hr, 1, (),
€ Hr, o(div, Q) = Hp, 1, () BL2(0) &' rot Hy, (vot, Q).
Let us denote the L2(2)-orthonormal projector onto e ~'Hp, (div,Q) and Hy, ,(rot, ©2) by
T+ L2(Q) — 5_1Hpn70(div,ﬂ), Trot : L2(Q) — Hr, o(rot, ©2)
respectively. Then
Taiv[Hy, o (rot,) + Hry o(rot, Q) = Hp, 1 (),
Trot|e=1Hy, (div.) e 'Hp, o(div, Q) = Hp, 1, (D)

are onto. Moreover,

7Tdiv|grad Hllﬂt Q) — 0, Trot |€*1 rot Hy, (rot,Q2) =0,
ﬂ-div|’Hl"t,Fn,s(Q) = 1dHI‘t,Fn,s(Q)7 7rr0t|7'trt,rn,s(9) = ldHFt,Fn,a(Q) '

Therefore, by (22) and for all £ >0
Hr, 1, () = TaiH, o(rot, Q) = 7Tdivait,o(rOtv Q),
He, 1, .o (Q) = Tote” 'Hp, o(div, Q) = more ' HE, o(div, Q).
Hence with

HE o (rot, Q) := (1| HE, o(rot, Q) HE o (div, Q) == [ HE, o(div, Q)
k>0 k>0

we have the following result:

Theorem 5.9 (smooth pre-bases of Dirichlet/Neumann fields for the vector de Rham complex).
Let (Q,1}) be a bounded strong Lipschitz pair and let dor, == dimHy, 1, (). Then

WdiVHl‘ZiO(rot, Q) = HFt,Fn,e(Q) = ﬂrotelefﬂi,o(div, Q).

Moreover, there exists a smooth rot-pre-basis and a smooth div-pre-basis of Hr, 1. . (Q), i.e., there
are linear independent smooth fields

Broer, () = {Brotre}o2rt CHX o(10t,Q),  Baiyr, () := {Baiw,ru e} oort C HE o(div, Q)
such that Taiy B,y 1, () and more™ By, 1, () are both bases of Hr, 1, (). In particular,
Lin FdivBrot,n Q) = HD,F,L,E(Q) = Lin 7T]rot<’5_15’div7r" (Q).

Note that (1 —7qiy) and (1 — m) are the L2(Q)-orthonormal projectors onto grad Hf, (€2) and
e L rot Hp, (rot,(2), respectively, i.e.,

1 — maiv) : L2(Q) — grad HE (Q), 1 — mot) : L2(Q) — e L rot Hp (rot, Q).
e Iy € T,



34 DIRK PAULY AND MICHAEL SCHOMBURG

Then by (23) and Theorem 5.2 (ii) we have, e.g.,

Hr, (rot, ) = grad HE, (Q) & Lz Hr, 1, o (2)
= grad HD () ®L2() Lin maiv Byoy 1, (22)
= grad H1 (Q) (maiv — 1) Lin B, o1, (©) + Lin B,ot.1, (Q)
(24) = grad HF () + Lin l’j'mt 1, (Q),
HI’“‘h (rot, Q) = grad Hpt (£2) NHE, o(rot, Q) + Lin B, 1, (€2),

= grad H{ijl(Q) + Lm Beot.r, ().
Similar to Theorem 4.22 we get:

Theorem 5.10 (higher order bounded regular direct decompositions for the vector de Rham
complex). Let (Q,T;) be a bounded strong Lipschitz pair and let k > 0. Then the bounded regular
direct decompositions

HE, (rot, Q) = R(QF, n,.1) + HE, o(rot, ©), HE, o(rot, Q) = grad H{ijl(Q) + Lin B, 1, (),
Hl’2 (div,Q) = R(Qdivl‘n,l) + Hllin,o(di"v Q), Hllin,o(di"v Q) = rot Hllijl(ﬂ) + Lin BdivI,,L(Q)

hold. Note that R(Qrot 1) C Hllij'l(Q) and R(éﬁiv’rml) C H’lfj'l(ﬂ) In particular, for k=20

Hr, (rot, Q) = R(Q?ot,l"t,l) + Hr, o(rot, ©2), Hr, o(rot, ) = grad Hll“t () + Lin Boos 1, (),
= grad Hr, () Brz(a) Hr, 1,6 (),
Hr, (div, Q) = R(Q%iy 1, 1) + Hr, 0(div,Q), € 'Hp, o(div, ) = ¢~ ' tot Hf;, () + " Lin By, ()
= e ot Hr‘n (Q) Brz(q) Hr, 1, (Q)
as well as

L2(€2) = Hp, o(rot, Q) ®r2(q) e rot HE, () = grad HE, (2) ®rz(q) €~ 'Hy, o(div, Q).
Remark 4.23 holds here as well. Noting
(25) e rot Hy, (rot, ) Li2)Broe,r, (2),  grad Hy, () Liz () Baiv,r, (2)
we see:

Theorem 5.11 (alternative Dirichlet/Neumann projections for the vector de Rham complex).
Let (Q,1}) be a bounded strong Lipschitz pair. Then

Hry 1, e () N B ()7 = {0}, &7y, o(div, ©) 1B, r, () = ™ rot H, (rot, ©),
Hry o () N B r, (7 = {0}, Hi (106, 2) N By r, ()7 = grad HE, (€).
Moreover, for all k > 0
5_1H’13m0(div, Q)N B, (Q)LLg(Q) =¢ lrot Hf (rot, Q) = e ' rot Hlkijl(ﬂ),
H’ﬁ’o(rot, Q)N By, (Q)LLQ(”) = grad H{i:rl(Q)

Theorem 5.12 (cohomology groups of the vector de Rham complex). Let (2,1}) be a bounded
strong Lipschitz pair. Then

N(rotf,)/R(gradr,) & Lin By, 1, () = Hy, 1, () 2 Lin By, 1, () = N(divy, )/ R(rotf, ).

In particular, the dimensions of the cohomology groups (Dirichlet/Neumann fields) are independent
of k and £ and it holds

dgr, = dim (N(rotﬁ)/R(gradﬁ)) = dim (N(divllin)/R(rot{in)).
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APPENDIX A. RESULTS FOR THE CO-DERIVATIVE

By Hodge x-duality we get the corresponding dual results from Section 4 for the d-operator.

Lemma A.1 (regular potential for § without boundary condition). Let @ C R be a bounded

strong Lipschitz domain and let k > 0 and g € {0,...,d — 1}. Then there exists a bounded linear
reqular potential operator

such that 673;1’5 =id|

Pg;g : Hg:’g(a, Q)N Hg@’id(ﬂ)%“(m — HITERL (g RY),

y q,k q 1 4:2(Q)
H‘é’,g(5,9)0H?,w,id(ﬂ)ﬁq’2<m’ i-e., for all B € Hyo(6,92) Ny g 54(Q)77

SPYSE=E inQ.
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In particular, the bounded reqular potential representations
R(SFTF) = HEE(0, Q) N MLy 4 ()72 = SHIHH(5,Q) = s HETHHH Q) = s HE L (d, @)

hold and the potentials can be chosen such that they depend continuously on the data. Especially,
these are closed subspaces of H%"k(ﬂ) = H®*(Q) and Pg’g is a right inverse to . By a simple

T,0,id

cut-off technique 'Pg’g may be modified to
Py HEG (6,2 NHL g 1y (Q)7%@ — HITLE (d,RY)
such that 73 E has a fized compact support in R? for all E € H} k(é Q) NHL 0.4a(€2 )J'“”(”).

Lemma A.2 (regular potentials and decompostions for § with partial boundary condition for
extendable domains). Let (2,T,) be an extendable bounded strong Lipschitz pair and let k > 0.

(i) For1<q <d—1 there exists a bounded linear regular potential operator
PEE HER(5,9Q) — HITWRFLRY) A HEFLEH (),
ko , k
such that 6 Py, = id |qu$0(6@), i.e., for all E € HL"((5,9)

SPILE=E inQ.
In particular, the bounded regular potential representations
K N 1,k+1 1,k
HE'0(8,92) = HE(6,9) = GHLT () = §HETHH(6, )
hold and the potentials can be chosen such that they depend continuously on the data.
Especially, these are closed subspaces of H%’k(Q) = H%*(Q) and ’Pg:{fn is a right inverse

to §. The results extend literally to the case ¢ = 0 if I, # T’ and the case q = d is
trivial since H%ﬁo(zs,Q) =Ryp,. Forq =0 and I,, = T the results still remain valid if

Hl(l’f)(é, Q) = H2*(Q) and H%fg(é, Q) = HY¥(Q) are replaced by the slightly smaller spaces

Hg’k(Q) ART2@ gngd H%k(Q) N RLLM(“), respectively.
(ii) For all 0 < g < d the regular decompositions
HLH (6, Q) = HEF(5,Q) = HE* (@ )+6Hq+1’k+1(Q)
= Q5 Fn,lHq’ (6,Q) +6 QLF, HE (5,0)
= QP (HEF(5,Q) + SHE ()
= QFr, HET(0,92) + HE 4 (6,9)

hold with bounded linear regular decomposition operators
FEa =Pt 0 HEN(0,9) — HEFT(9),
szl’fn,o =PI (= Pon o) HER(6,2) = HET(@)
satisfying Q F 1T 5Q6F 0= 1d|Hq (5,9 Moreover, it holds §Q ST, = 5q and thus
Hl'i’ 0((5 Q) is invariant under Q5F 1 Q5F IH%;L (0,Q) = (Q(SF 1) = (Pd,rn ") as well
as 5F OHq’ (6,2) = (Qél" 0) = (73 ) hold.

Lemma A.3 (regular decompositions for § with partial boundary condition). Let (Q,T},) be a
bounded strong Lipschitz pair and let k > 0. Then the bounded regular decompositions

HE (5,0) = HE"(6,Q) = HEF(Q) + SHETF1(Q)
hold with bounded linear reqular decomposition opemtors
Froa RO o HEFT @), Qfp o HEN(6,9) = HETQ)
satisfying Q5F 1t 6Q5 T,0 = 1qu (5,9 In particular, weak and strong boundary conditions

coincide. Moreover, it holds & Q5 T, = 6q’ and thus qu’ 0((5 0) is invariant under 95 .1
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Theorem A.4 (higher order bounded regular potentials and decompositions for § with partial
boundary condition). Let (,I,) be a bounded strong Lipschitz pair and let k > 0. Moreover, let
6 F 1 be given from Lemma A.3. Then:

(i) For all q €{0,...,d — 1} there exists a bounded linear regular potential operator
Pir, = Qz?i:"wq“ L HER (0, 9) O, (@7 — BT Q),

such that 57737’1]5" =id ‘H‘? G, (@@ In particular, the bounded regular rep-
%, In e

resentations
R(‘s%:l’k) quko(5 QNHL E(Q)LLQ'Z(Q)
= HEM Q) NS HET (5,Q) = SHETH(5,0) = sHET ()
hold and the potentials can be chosen such that they depend continuously on the data.
(ii) The bounded regular decompositions
HEF(5,0) = HEF1(Q) + HES(6.2) = HEFH () 4+ 6 HEF 4+ (0

= R(QLE. 1) +HEF(6,Q) = R(Q¥L )+ RINFE)

hold with bounded linear reqular decomposition operators

Ot | :=7>§,;j"ﬂ6%; HL(6,Q) = HEFH(Q), AL - HER(6,Q) — HER (6,9)

satisfying ég’llf 1 + N ’ = iqu k:((s Q- Moreover, 5951“ 1= 5Q6F 1= 5q’k and thus
qui 0((5 Q) is invariant under Qur .1 and Qar 1+ It holds R(Q! 51‘ 1) = R(PST, b k) and
Qir Tl = grlk 1q“k Qar 1(5[1’ )1 15%?. Hence Qajfn,1|(agj) = 9 Fn,1|(61‘i;f)L and
thus Qé,F",l may differ from Qé,l“n,l only on H%ﬁo(&Q).

(ii’) The bounded regular kernel decomposition H%;ﬁo(é, Q) = H%:ﬁgl(é, Q)+4 Hl‘i:l’kﬂ(Q) holds.

Note that Remark 4.12 and Remark 4.19 hold with obvious modifications.
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