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Abstract. It is shown that the first biharmonic boundary value problem on a topologically trivial do-

main in 3D is equivalent to three (consecutively to solve) second-order problems. This decomposition
result is based on a Helmholtz-like decomposition of an involved non-standard Sobolev space of tensor

fields and a proper characterization of the operator div Div acting on this space. Similar results for

biharmonic problems in 2D and their impact on the construction and analysis of finite element methods
have been recently published in [14]. The discussion of the kernel of div Div leads to (de Rham-like)

closed and exact Hilbert complexes, the div Div-complex and its adjoint the Grad grad-complex, involv-

ing spaces of trace-free and symmetric tensor fields. For these tensor fields we show Helmholtz type
decompositions and, most importantly, new compact embedding results. Almost all our results hold

and are formulated for general bounded strong Lipschitz domains of arbitrary topology. There is no
reasonable doubt that our results extend to strong Lipschitz domains in RN .
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1. Introduction

In [14] it was shown that the fourth-order biharmonic boundary value problem

(1.1) ∆2u = f in Ω, u = ∂n u = 0 on Γ,

where Ω is a bounded and simply connected domain in R2 with a (strong) Lipschitz boundary Γ, can be
decomposed into three second-order problems. The first problem is a Poisson problem for an auxiliary
scalar field p

∆p = f in Ω, p = 0 on Γ,
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the second problem is a linear elasticity problem for an auxiliary vector field V

−Div ε(V ) = −Div(sym GradV ) = grad p in Ω, (sym GradV )n = −p n = 0 on Γ,

i.e.,
Div(sym GradV + p I) = 0 in Ω, (sym GradV + p I)n = 0 on Γ,

and, finally, the third problem is a Poisson problem for the original scalar field u

∆u = 2 p+ div V in Ω, u = 0 on Γ.

Here f is a given right-hand side, ∆, n, and ∂n denote the Laplace operator, the outward normal vector to
the boundary, and the derivative in this direction, respectively. The differential operators grad, div, and
(for later use) rot denote the gradient of a scalar field and the divergence and rotation of a vector field,
the corresponding capitalized differential operators Grad, Div, and Rot denote the row-wise application
of grad to a vector field, div and rot to a tensor field. The prefix sym is used for the symmetric part of a
matrix, for the skew-symmetric part we use the prefix skw. This decomposition is of triangular structure,
i.e., the first problem is a well-posed second-order problem in p, the second problem is a well-posed
second-order problem in V for given p, and the third problem is a well-posed second-order problem in
u for given p and V . This allows to solve them consecutively analytically or numerically by means of
techniques for second-order problems.

This is - in the first place - a new analytic result for fourth-order problems. But it also has interesting
implications for discretization methods applied to (1.1). It allows to re-interpret known finite element
methods as well as to construct new discretization methods for (1.1) by exploiting the decomposable
structure of the problem. In particular, it was shown in [14] that the Hellan-Herrmann-Johnson mixed
method (see [8, 9, 13]) for (1.1) allows a similar decomposition as the continuous problem, which leads
to a new and simpler assembling procedure for the discretization matrix and to more efficient solution
techniques for the discretized problem. Moreover, a novel conforming variant of the Hellan-Herrmann-
Johnson mixed method was found based on the decomposition.

The aim of this paper is to derive a similar decomposition result for biharmonic problems on bounded
and topologically trivial three-dimensional domains Ω with a (strong) Lipschitz boundary Γ. For this we
proceed as in [14] and reformulate (1.1) using ∆2 = div Div Grad grad as a mixed problem by introducing
the (negative) Hessian of the original scalar field u as an auxiliary tensor field

(1.2) M = −Grad gradu.

Then the biharmonic differential equation reads

(1.3) −div Div M = f in Ω.

For an appropriate non-standard Sobolev space for M it can be shown that the mixed problem in M and
u is well-posed. Then the decomposition of the biharmonic problem follows from a regular decomposition
of this non-standard Sobolev space. This part of the analysis carries over completely from the two-
dimensional case to the three-dimensional case and is shortly recalled in Section 4. To efficiently utilize this
regular decomposition for the decomposition of the biharmonic problem an appropriate characterization
of the kernel of the operator div Div is required, which is well understood for the two-dimensional case,
see, e.g., [3, 11, 14]. Its extension to the three-dimensional case is the central topic of this paper. We
expect - as in the two-dimensional case - similar interesting implications for the study of appropriate
discretization methods for four-order problems in the three-dimensional case.

The paper is organized as follows. After some preliminaries in Section 2 and introducing our general
functional analytical setting, we will discuss the relevant unbounded linear operators, show closed and
exact Hilbert complex properties, and present a suitable representation of the kernel of div Div for the
three-dimensional case in Section 3.1 for topologically trivial domains. In Section 3.2 we extend the
results to (strong) Lipschitz domains based on two new and crucial compact embeddings. Based on the
representation of the kernel of div Div a decomposition of the three-dimensional biharmonic problem into
three (consecutively to solve) second-order problems will be derived in Section 4. The proofs of some
useful identities are presented in an appendix.
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2. Preliminaries

We start by recalling some basic concepts and abstract results from functional analysis concerning
Helmholtz decompositions, closed ranges, Friedrichs/Poincaré type estimates, and bounded or even com-
pact inverse operators. Since we will need both the Banach space setting for bounded linear operators
as well as the Hilbert space setting for (possibly unbounded) closed and densely defined linear operators,
we will shortly recall these two variants.

2.1. Functional Analysis Toolbox. Let X and Y be real Banach spaces. With BL(X,Y) we introduce
the space of bounded linear operators mapping X to Y. The dual spaces of X and Y are denoted by
X′ := BL(X,R) and Y′ := BL(Y,R). For a given A ∈ BL(X,Y) we write A′ ∈ BL(Y′,X′) for its Banach
space dual or adjoint operator defined by A′ y′(x) := y′(Ax) for all y′ ∈ Y′ and all x ∈ X. Norms and
duality in X resp. X′ are denoted by | · |X, | · |X′ , and 〈 · , · 〉X′ .

Suppose H1 and H2 are Hilbert spaces. For a (possibly unbounded) densely defined linear operator
A : D(A) ⊂ H1 → H2 we recall that its Hilbert space dual or adjoint A∗ : D(A∗) ⊂ H2 → H1 can be
defined via its Banach space adjoint A′ and the Riesz isomorphisms of H1 and H2 or directly as follows:
y ∈ D(A∗) if and only if y ∈ H2 and

∃ f ∈ H1 ∀x ∈ D(A) 〈Ax, y〉H2 = 〈x, f〉H1 .

In this case we define A∗ y := f . We note that A∗ has maximal domain of definition and that A∗ is
characterized by

∀x ∈ D(A) ∀ y ∈ D(A∗) 〈Ax, y〉H2 = 〈x,A∗ y〉H1 .

Here 〈 · , · 〉H denotes the scalar product in a Hilbert space H and D is used for the domain of definition
of a linear operator. Additionally, we introduce the notation N for the kernel or null space and R for the
range of a linear operator.

Let A:D(A) ⊂ H1 → H2 be a (possibly unbounded) closed and densely defined linear operator on two
Hilbert spaces H1 and H2 with adjoint A∗ :D(A∗) ⊂ H2 → H1. Note (A∗)∗ = A = A, i.e., (A,A∗) is a
dual pair. By the projection theorem the Helmholtz type decompositions

H1 = N(A)⊕H1 R(A∗), H2 = N(A∗)⊕H2 R(A)(2.1)

hold and we can define the reduced operators

A := A |
R(A∗)

: D(A) ⊂ R(A∗)→ R(A), D(A) := D(A) ∩N(A)⊥H1 = D(A) ∩R(A∗),

A∗ := A∗ |
R(A)

: D(A∗) ⊂ R(A)→ R(A∗), D(A∗) := D(A∗) ∩N(A∗)⊥H2 = D(A∗) ∩R(A),

which are also closed and densely defined linear operators. We note that A and A∗ are indeed adjoint to
each other, i.e., (A,A∗) is a dual pair as well. Now the inverse operators

A−1 : R(A)→ D(A), (A∗)−1 : R(A∗)→ D(A∗)
exist and they are bijective, since A and A∗ are injective by definition. Furthermore, by (2.1) we have
the refined Helmholtz type decompositions

D(A) = N(A)⊕H1 D(A), D(A∗) = N(A∗)⊕H2 D(A∗)(2.2)

and thus we obtain for the ranges

R(A) = R(A), R(A∗) = R(A∗).(2.3)

By the closed range theorem and the closed graph theorem we get immediately the following.

Lemma 2.1. The following assertions are equivalent:
(i) ∃ cA ∈ (0,∞) ∀x ∈ D(A) |x|H1 ≤ cA|Ax|H2

(i∗) ∃ cA∗ ∈ (0,∞) ∀ y ∈ D(A∗) |y|H2 ≤ cA∗ |A
∗ y|H1

(ii) R(A) = R(A) is closed in H2.
(ii∗) R(A∗) = R(A∗) is closed in H1.
(iii) A−1 : R(A)→ D(A) is continuous and bijective with norm bounded by (1 + c2A)1/2.



4 DIRK PAULY AND WALTER ZULEHNER

(iii∗) (A∗)−1 : R(A∗)→ D(A∗) is continuous and bijective with norm bounded by (1 + c2A∗)
1/2.

In case that one of the assertions of Lemma 2.1 is true, e.g., R(A) is closed, we have

H1 = N(A)⊕H1 R(A∗), H2 = N(A∗)⊕H2 R(A),

D(A) = N(A)⊕H1 D(A), D(A∗) = N(A∗)⊕H2 D(A∗),
D(A) = D(A) ∩R(A∗), D(A∗) = D(A∗) ∩R(A).

For the “best” constants cA, cA∗ we have the following lemma.

Lemma 2.2. The Rayleigh quotients

1
cA

:= inf
0 6=x∈D(A)

|Ax|H2

|x|H1

= inf
06=y∈D(A∗)

|A∗ y|H1

|y|H2

=:
1
cA∗

coincide, i.e., cA = cA∗ , if either cA or cA∗ exists in (0,∞). Otherwise they also coincide, i.e., it holds
cA = cA∗ =∞.

From now on and throughout this paper, we always pick the best possible constants in the various
Friedrichs/Poincaré type estimates.

A standard indirect argument shows the following.

Lemma 2.3. Let D(A) = D(A) ∩ R(A∗) ↪→ H1 be compact. Then the assertions of Lemma 2.1 hold.
Moreover, the inverse operators

A−1 : R(A)→ R(A∗), (A∗)−1 : R(A∗)→ R(A)

are compact with norms
∣∣A−1

∣∣
R(A),R(A∗)

=
∣∣(A∗)−1

∣∣
R(A∗),R(A)

= cA.

Moreover, we have

Lemma 2.4. D(A) ↪→ H1 is compact, if and only if D(A∗) ↪→ H2 is compact.

Now, let A0 :D(A0) ⊂ H0 → H1 and A1 :D(A1) ⊂ H1 → H2 be (possibly unbounded) closed and densely
defined linear operators on three Hilbert spaces H0, H1 and H2 with adjoints A*

0 :D(A*
0) ⊂ H1 → H0 and

A*
1 :D(A*

1) ⊂ H2 → H1 as well as reduced operators A0, A*
0, and A1, A*

1. Furthermore, we assume the
sequence or complex property of A0 and A1, that is, A1 A0 = 0, i.e.,

R(A0) ⊂ N(A1).(2.4)

Then also A*
0 A*

1 = 0, i.e., R(A*
1) ⊂ N(A*

0). The Helmholtz type decompositions of (2.1) for A = A1 and
A = A0 read

H1 = N(A1)⊕H1 R(A*
1), H1 = N(A*

0)⊕H1 R(A0)(2.5)

and by (2.4) we see

N(A*
0) = N0,1 ⊕H1 R(A*

1), N(A1) = N0,1 ⊕H1 R(A0), N0,1 := N(A1) ∩N(A*
0)(2.6)

yielding the refined Helmholtz type decomposition

H1 = R(A0)⊕H1 N0,1 ⊕H1 R(A*
1), R(A0) = R(A0), R(A*

1) = R(A*
1).(2.7)

The previous results of this section imply immediately the following.

Lemma 2.5. Let A0, A1 be as introduced before with A1 A0 = 0, i.e., (2.4). Moreover, let R(A0) and
R(A1) be closed. Then, the assertions of Lemma 2.1 and Lemma 2.2 hold for A0 and A1. Moreover, the
refined Helmholtz type decompositions

H1 = R(A0)⊕H1 N0,1 ⊕H1 R(A*
1), N0,1 = N(A1) ∩N(A*

0),

N(A1) = R(A0)⊕H1 N0,1, N(A*
0) = N0,1 ⊕H1 R(A*

1),

D(A1) = R(A0)⊕H1 N0,1 ⊕H1 D(A1), D(A*
0) = D(A*

0)⊕H1 N0,1 ⊕H1 R(A*
1),
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D(A1) ∩D(A*
0) = D(A*

0)⊕H1 N0,1 ⊕H1 D(A1)

hold. Especially, R(A0), R(A*
0), R(A1), and R(A*

1) are closed, the respective inverse operators, i.e.,

A0
−1 : R(A0)→ D(A0), A1

−1 : R(A1)→ D(A1),

(A*
0)−1 : R(A*

0)→ D(A*
0), (A*

1)−1 : R(A*
1)→ D(A*

1),

are continuous, and there exist positive constants cA0 , cA1 , such that the Friedrichs/Poincaré type esti-
mates

∀x ∈ D(A0) |x|H0 ≤ cA0 |A0 x|H1 , ∀ y ∈ D(A1) |y|H1 ≤ cA1 |A1 y|H2 ,

∀ y ∈ D(A*
0) |y|H1 ≤ cA0 |A*

0 y|H0 , ∀ z ∈ D(A*
1) |z|H2 ≤ cA1 |A*

1 z|H1

hold.

Remark 2.6. Note that R(A0) resp. R(A1) is closed, if e.g. D(A0) ↪→ H0 resp. D(A1) ↪→ H1 is
compact. In this case, the respective inverse operators, i.e.,

A0
−1 : R(A0)→ R(A*

0), A1
−1 : R(A1)→ R(A*

1),

(A*
0)−1 : R(A*

0)→ R(A0), (A*
1)−1 : R(A*

1)→ R(A1),

are compact.

Observe D(A1) = D(A1) ∩R(A*
1) ⊂ D(A1) ∩N(A*

0) ⊂ D(A1) ∩D(A*
0). Utilizing the Helmholtz type

decompositions of Lemma 2.5 we immediately have:

Lemma 2.7. The embeddings D(A0) ↪→ H0, D(A1) ↪→ H1, and N0,1 ↪→ H1 are compact, if and only if
the embedding D(A1) ∩D(A*

0) ↪→ H1 is compact. In this case N0,1 has finite dimension.

Remark 2.8. The assumptions in Lemma 2.5 on A0 and A1 are equivalent to the assumption that

D(A0) ⊂ H0
A0−−−−→ D(A1) ⊂ H1

A1−−−−→ H2

is a closed Hilbert complex, meaning that the ranges are closed. As a result of the previous lemmas, the
adjoint complex

H0
A*

0←−−−− D(A*
0) ⊂ H1

A*
1←−−−− D(A*

1) ⊂ H2.

is a closed Hilbert complex as well.

We can summarize.

Theorem 2.9. Let A0, A1 be as introduced before, i.e., having the complex property A1 A0 = 0, i.e.,
R(A0) ⊂ N(A1). Moreover, let D(A1) ∩ D(A*

0) ↪→ H1 be compact. Then the assertions of Lemma 2.5
hold, N0,1 is finite dimensional and the corresponding inverse operators are continuous resp. compact.
Especially, all ranges are closed and the corresponding Friedrichs/Poincaré type estimates hold.

A special situation is the following.

Lemma 2.10. Let A0, A1 be as introduced before with R(A0) = N(A1) and R(A1) closed in H2. Then
R(A*

0) and R(A*
1) are closed as well, and the simplified Helmholtz type decompositions

H1 = R(A0)⊕H1 R(A*
1), N0,1 = {0},

N(A1) = R(A0) = R(A0), N(A*
0) = R(A*

1) = R(A*
1),

D(A1) = R(A0)⊕H1 D(A1), D(A*
0) = D(A*

0)⊕H1 R(A*
1),

D(A1) ∩D(A*
0) = D(A*

0)⊕H1 D(A1)

are valid. Moreover, the respective inverse operators are continuous and the corresponding Friedrichs/
Poincaré type estimates hold.

Remark 2.11. Note that R(A*
1) = N(A*

0) and R(A*
0) closed are equivalent assumptions for Lemma 2.10

to hold.
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Lemma 2.12. Let A0, A1 be as introduced before with the sequence property (2.4), i.e., R(A0) ⊂ N(A1).
If the embedding D(A1)∩D(A*

0) ↪→ H1 is compact and N0,1 = {0}, then the assumptions of Lemma 2.10
are satisfied.

Remark 2.13. The assumptions in Lemma 2.10 on A0 and A1 are equivalent to the assumption that

D(A0) ⊂ H0
A0−−−−→ D(A1) ⊂ H1

A1−−−−→ H2

is a closed and exact Hilbert complex. By Lemma 2.10 the adjoint complex

H0
A*

0←−−−− D(A*
0) ⊂ H1

A*
1←−−−− D(A*

1) ⊂ H2.

is a closed and exact Hilbert complex as well.

Parts of Lemma 2.10 hold also in the Banach space setting. As a direct consequence of the closed
range theorem and the closed graph theorem the following abstract result holds.

Lemma 2.14. Let X0, X1, X2 be Banach spaces and suppose A0 ∈ BL(X0,X1), A1 ∈ BL(X1,X2) with
R(A0) = N(A1) and that R(A1) is closed in X2. Then R(A′0) is closed in X′0 and R(A′1) = N(A′0).
Moreover, (A′1)−1 ∈ BL

(
R(A′1), R(A1)′

)
.

Note that in the latter context we consider the operators

A1 : X1 −→ R(A1), A′1 : R(A1)′ −→ R(A′1) (A′1)−1 : R(A′1) −→ R(A1)′,

with N(A′1) = R(A1)◦ = {0}.

Remark 2.15. The conditions on A0 and A1 in Lemma 2.14 are identical to the assumption that

X0
A0−−−−→ X1

A1−−−−→ X2

is a closed and exact complex of Banach spaces. The consequences of Lemma 2.14 can be rephrased as
follows. The adjoint complex of Banach spaces

X′0
A′0←−−−− X′1

A′1←−−−− X′2

is closed and exact as well.

Lemma 2.16. (A′1)−1 ∈ BL
(
R(A′1), R(A1)′

)
is equivalent to

∃ cA′1 > 0 ∀ y′ ∈ R(A1)′ |y′|R(A1)′ ≤ cA′1 |A
′
1 y
′|X′1 .(2.8)

For the best constant cA′1 , (2.8) is equivalent to the general inf-sup-condition

0 <
1
cA′1

= inf
0 6=y′∈R(A1)′

sup
06=x∈X1

〈y′,A1 x〉R(A1)′

|y′|R(A1)′ |x|X1

.(2.9)

In the special case that X2 = H2 is a Hilbert space the closed subspace R(A1) is isometrically isomorphic
to R(A1)′ and we obtain the following form of the inf-sup-condition

0 <
1
cA′1

= inf
0 6=y∈R(A1)

sup
0 6=x∈X1

〈y,A1 x〉H2

|y|H2 |x|X1

.(2.10)

The results collected in this section are well-known in functional analysis. We refer to [1] for a
presentation of some results of this section from a numerical analysis perspective.
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2.2. Sobolev Spaces. Next we introduce our notations for several classes of Sobolev spaces on a bounded
domain Ω ⊂ R3. Let m ∈ N0. We denote by L2(Ω) and Hm(Ω) the standard Lebesgue and Sobolev
spaces and write H0(Ω) = L2(Ω). Our notation of spaces will not indicate whether the elements are scalar
functions or vector fields. For the rotation and divergence we define the Sobolev spaces

R(Ω) :=
{
V ∈ L2(Ω) : rotV ∈ L2(Ω)

}
, D(Ω) :=

{
V ∈ L2(Ω) : div V ∈ L2(Ω)

}
with the respective graph norms, where rot and div have to be understood in the distributional or weak
sense. We introduce spaces with boundary conditions in the weak sense in the natural way by

◦
Hm(Ω) :=

◦
C∞(Ω)

Hm(Ω)

,
◦
R(Ω) :=

◦
C∞(Ω)

R(Ω)

,
◦
D(Ω) :=

◦
C∞(Ω)

D(Ω)

,

i.e., as closures of test functions or fields under the respective graph norms, which generalizes homogeneous
scalar, tangential and normal boundary conditions, respectively. We also introduce the well known dual
spaces

H−m(Ω) :=
( ◦
Hm(Ω)

)′
with the standard dual or operator norm defined by

|u|
H−m(Ω)

:= sup
06=ϕ∈

◦
Hm(Ω)

〈u, ϕ〉
H−m(Ω)

|ϕ|◦
Hm(Ω)

for u ∈ H−m(Ω),

where we recall the duality pairing 〈 · , · 〉
H−m(Ω)

in
(
H−m(Ω),

◦
Hm(Ω)

)
. Moreover, we define with respective

graph norms

R−m(Ω) :=
{
V ∈ H−m(Ω) : rotV ∈ H−m(Ω)

}
,

D−m(Ω) :=
{
V ∈ H−m(Ω) : div V ∈ H−m(Ω)

}
.

A vanishing differential operator will be indicated by a zero at the lower right corner of the spaces, e.g.,

R0(Ω) =
{
V ∈ R(Ω) : rotV = 0

}
,

◦
D0(Ω) =

{
V ∈

◦
D(Ω) : div V = 0

}
,

R−m0 (Ω) =
{
V ∈ R−m(Ω) : rotV = 0

}
, D−1

0 (Ω) =
{
V ∈ D−1(Ω) : div V = 0

}
.

Let us also introduce

L2
0(Ω) :=

{
u ∈ L2(Ω) : u⊥

L2(Ω)
R
}

=
{
u ∈ L2(Ω) :

∫
Ω

u = 0
}
,

where ⊥
L2(Ω)

denotes orthogonality in L2(Ω).

Remark 2.17. Other widely used notations for the spaces R(Ω),
◦
R(Ω), R−m(Ω), R0(Ω), . . . are H(rot,Ω),

H0(rot,Ω), H−m(rot,Ω), H(rot 0,Ω), . . . , respectively. Similarly, alternative notations for D(Ω),
◦
D(Ω),

D−m(Ω), D0(Ω), . . . are H(div,Ω), H0(div,Ω), H−m(div,Ω), H(div 0,Ω), . . . , respectively.

2.3. General Assumptions. We will impose the following regularity and topology assumptions on our
domain Ω.

Definition 2.18. Let Ω be an open subset of R3 with boundary Γ := ∂ Ω. We will call Ω
(i) strong Lipschitz, if Γ is locally a graph of a Lipschitz function ψ : U ⊂ R2 → R,
(ii) topologically trivial, if Ω is simply connected with connected boundary Γ.

General Assumption 2.19. From now on and throughout this paper it is assumed that Ω ⊂ R3 is a
bounded strong Lipschitz domain.

If the domain Ω has to be topologically trivial, we will always indicate this in the respective result.
Note that several results will hold for arbitrary open subsets Ω of R3. All results are valid for bounded
and topologically trivial strong Lipschitz domains Ω ⊂ R3. Nevertheless, most of the results will remain
true for bounded strong Lipschitz domains Ω ⊂ R3.
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2.4. Vector Analysis. In this last part of the preliminary section we summarize and prove several
results related to scalar and vector potentials of various smoothness, corresponding Friedrichs/Poincaré
type estimates, and related Helmholtz decompositions of L2(Ω) and other Hilbert and Sobolev spaces.

This is a first application of the functional analysis toolbox Section 2.1 for the operators
◦

grad,
◦

rot,
◦

div,
and their adjoints −div, rot, − grad. Although these are well known facts, we recall and collect them
here, as we will use later similar techniques to obtain related results for the more complicated operators

◦
Grad grad,

◦
RotS,

◦
DivT, and their adjoints div DivS, sym RotT, −dev Grad. Let

A0 :=
◦

grad :
◦
H1(Ω) ⊂ L2(Ω) −→ L2(Ω),

A1 :=
◦

rot :
◦
R(Ω) ⊂ L2(Ω) −→ L2(Ω),

A2 :=
◦

div :
◦
D(Ω) ⊂ L2(Ω) −→ L2(Ω).

Then A0, A1, and A2 are unbounded, densely defined, and closed linear operators with adjoints

A*
0 =

◦
grad ∗ = −div : D(Ω) ⊂ L2(Ω) −→ L2(Ω),

A*
1 =

◦
rot ∗ = rot : R(Ω) ⊂ L2(Ω) −→ L2(Ω),

A*
2 =

◦
div ∗ = − grad : H1(Ω) ⊂ L2(Ω) −→ L2(Ω)

and the sequence or complex properties

R(A0) =
◦

grad
◦
H1(Ω) ⊂

◦
R0(Ω) = N(A1), R(A*

1) = rot R(Ω) ⊂ D0(Ω) = N(A*
0),

R(A1) =
◦

rot
◦
R(Ω) ⊂

◦
D0(Ω) = N(A2), R(A*

2) = grad H1(Ω) ⊂ R0(Ω) = N(A*
1)

hold. Note N(A0) = {0} and N(A*
2) = R. Moreover, the embeddings

D(A1) ∩D(A*
0) =

◦
R(Ω) ∩ D(Ω) ↪→ L2(Ω), D(A2) ∩D(A*

1) =
◦
D(Ω) ∩ R(Ω) ↪→ L2(Ω)

are compact. The latter compact embeddings are called Maxwell compactness properties or Weck’s
selection theorems. The first proof for strong Lipschitz domains (uniform cone like domains) avoiding
smoothness of Γ was given by Weck in [27]. Generally, Weck’s selection theorems hold e.g. for weak
Lipschitz domains, see [22], or even for more general domains with p-cusps or antennas, see [28, 23]. See
also [26] for a different proof in the case of a strong Lipschitz domain. Weck’s selection theorem for mixed
boundary conditions has been proved in [12] for strong Lipschitz domains and recently in [2] for weak

Lipschitz domains. Similar to Rellich’s selection theorem, i.e., the compact embedding of
◦
H1(Ω) resp.

H1(Ω) into L2(Ω), it is crucial that the domain Ω is bounded. Finally, the kernels

N(A1) ∩N(A*
0) =

◦
R0(Ω) ∩ D0(Ω) =: HD(Ω) resp. N(A2) ∩N(A*

1) =
◦
D0(Ω) ∩ R0(Ω) =: HN(Ω),

are finite dimensional, as the unit balls are compact, i.e., the spaces of Dirichlet or Neumann fields are
finite dimensional. More precisely, the dimension of the Dirichlet resp. Neumann fields depends on the
topology or cohomology of Ω, i.e., second resp. first Betti number, see e.g. [20, 21]. Especially we have

HD(Ω) = {0}, if Γ is connected, HN(Ω) = {0}, if Ω is simply connected.

Remark 2.20. Our general assumption on Ω to be bounded and strong Lipschitz ensures that Weck’s
selection theorems (and thus also Rellich’s) hold. The additional assumption that Ω is also topologically
trivial excludes the existence of non-trivial Dirichlet or Neumann fields, as Ω is simply connected with a
connected boundary Γ.

By the results of the functional analysis toolbox Section 2.1 we see that all ranges are closed with

R(A0) = R(A0), R(A1) = R(A1), R(A2) = R(A2),
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R(A*
0) = R(A*

0), R(A*
1) = R(A*

1), R(A*
2) = R(A*

2),

i.e., the ranges

◦
grad

◦
H1(Ω), grad H1(Ω) = grad

(
H1(Ω) ∩ L2

0(Ω)
)
,

◦
rot
◦
R(Ω) =

◦
rot
(◦
R(Ω) ∩ rot R(Ω)

)
, rot R(Ω) = rot

(
R(Ω) ∩

◦
rot
◦
R(Ω)

)
,(2.11)

◦
div

◦
D(Ω) =

◦
div
( ◦
D(Ω) ∩ grad H1(Ω)

)
, div D(Ω) = div

(
D(Ω) ∩

◦
grad

◦
H1(Ω)

)
are closed, and the reduced operators are

A0 =
◦

grad :
◦
H1(Ω) ⊂ L2(Ω) −→

◦
grad

◦
H1(Ω),

A1 =
◦

rot :
◦
R(Ω) ∩ rot R(Ω) ⊂ rot R(Ω) −→ rot

◦
R(Ω),

A2 =
◦

div :
◦
D(Ω) ∩ grad H1(Ω) ⊂ grad H1(Ω) −→ L2

0(Ω),

A*
0 = −div : D(Ω) ∩ grad

◦
H1(Ω) ⊂ grad

◦
H1(Ω) −→ L2(Ω),

A*
1 = rot : R(Ω) ∩

◦
rot
◦
R(Ω) ⊂

◦
rot
◦
R(Ω) −→ rot R(Ω),

A*
2 = − grad : H1(Ω) ∩ L2

0(Ω) ⊂ L2
0(Ω) −→ grad H1(Ω).

Moreover, we have the following well known Helmholtz decompositions of L2-vector fields into irrotational
and solenoidal vector fields, corresponding Friedrichs/Poincaré type estimates and continuous or compact
inverse operators.

Lemma 2.21. The Helmholtz decompositions

L2(Ω) =
◦

div
◦
D(Ω)⊕

L2(Ω)
R,

◦
div

◦
D(Ω) = L2

0(Ω),

L2(Ω) = div D(Ω),

L2(Ω) =
◦

grad
◦
H1(Ω)⊕

L2(Ω)
D0(Ω)

=
◦
R0(Ω)⊕

L2(Ω)
rot R(Ω)

=
◦

grad
◦
H1(Ω)⊕

L2(Ω)
HD(Ω)⊕

L2(Ω)
rot R(Ω),

L2(Ω) = grad H1(Ω)⊕
L2(Ω)

◦
D0(Ω)

= R0(Ω)⊕
L2(Ω)

◦
rot
◦
R(Ω)

= grad H1(Ω)⊕
L2(Ω)

HN(Ω)⊕
L2(Ω)

◦
rot
◦
R(Ω)

hold. Moreover, (2.11) is true for the respective ranges and the “better” potentials in (2.11) are uniquely
determined and depend continuously in the right hand sides. If Γ is connected, it holds HD(Ω) = {0}
and, e.g.,

L2(Ω) =
◦
R0(Ω)⊕ D0(Ω) and

◦
R0(Ω) =

◦
grad

◦
H1(Ω), D0(Ω) = rot R(Ω) = rot

(
R(Ω) ∩

◦
D0(Ω)

)
.

If Ω is simply connected, it holds HN(Ω) = {0} and, e.g.,

L2(Ω) = R0(Ω)⊕
◦
D0(Ω) and R0(Ω) = grad H1(Ω),

◦
D0(Ω) =

◦
rot
◦
R(Ω) =

◦
rot
(◦
R(Ω) ∩ D0(Ω)

)
.
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Lemma 2.22. The following Friedrichs/Poincaré type estimates hold. There exist positive constants cg,
cr, cd, such that

∀u ∈
◦
H1(Ω) |u|

L2(Ω)
≤ cg | gradu|

L2(Ω)
,

∀V ∈ D(Ω) ∩
◦

grad
◦
H1(Ω) |V |

L2(Ω)
≤ cg |div V |

L2(Ω)
,

∀V ∈
◦
R(Ω) ∩ rot R(Ω) |V |

L2(Ω)
≤ cr | rotV |

L2(Ω)
,

∀V ∈ R(Ω) ∩
◦

rot
◦
R(Ω) |V |

L2(Ω)
≤ cr | rotV |

L2(Ω)
,

∀V ∈
◦
D(Ω) ∩ grad H1(Ω) |V |

L2(Ω)
≤ cd |div V |

L2(Ω)
,

∀u ∈ H1(Ω) ∩ L2
0(Ω) |u|

L2(Ω)
≤ cd | gradu|

L2(Ω)
.

Moreover, the reduced versions of the operators
◦

grad,
◦

rot,
◦

div, grad, rot, div

have continuous resp. compact inverse operators
◦

grad−1 :
◦

grad
◦
H1(Ω) −→

◦
H1(Ω),

◦
grad−1 :

◦
grad

◦
H1(Ω) −→ L2(Ω),

div−1 : L2(Ω) −→ D(Ω) ∩
◦

grad
◦
H1(Ω), div−1 : L2(Ω) −→

◦
grad

◦
H1(Ω) ⊂ L2(Ω),

◦
rot−1 :

◦
rot
◦
R(Ω) −→

◦
R(Ω) ∩ rot R(Ω),

◦
rot−1 :

◦
rot
◦
R(Ω) −→ rot R(Ω) ⊂ L2(Ω),

rot−1 : rot R(Ω) −→ R(Ω) ∩
◦

rot
◦
R(Ω), rot−1 : rot R(Ω) −→

◦
rot
◦
R(Ω) ⊂ L2(Ω),

◦
div−1 : L2

0(Ω) −→
◦
D(Ω) ∩ grad H1(Ω),

◦
div−1 : L2

0(Ω) −→ grad H1(Ω) ⊂ L2(Ω),

grad−1 : grad H1(Ω) −→ H1(Ω) ∩ L2
0(Ω), grad−1 : grad H1(Ω) −→ L2

0(Ω),

with norms (1 + c2g)1/2, (1 + c2r )1/2, (1 + c2d)1/2 resp. cg, cr, cd. In other words, the operators

◦
grad :

◦
H1(Ω) −→

◦
grad

◦
H1(Ω), div : D(Ω) ∩

◦
grad

◦
H1(Ω) −→ L2(Ω),

u 7−→ gradu V 7−→ div V
◦

rot :
◦
R(Ω) ∩ rot R(Ω) −→

◦
rot
◦
R(Ω), rot : R(Ω) ∩

◦
rot
◦
R(Ω) −→ rot R(Ω),

V 7−→ rotV V 7−→ rotV
◦

div :
◦
D(Ω) ∩ grad H1(Ω) −→ L2

0(Ω), grad : H1(Ω) ∩ L2
0(Ω) −→ grad H1(Ω),

V 7−→ div V u 7−→ gradu

are topological isomorphisms. If Ω is topologically trivial, then
◦

grad :
◦
H1(Ω) −→

◦
R0(Ω), div : D(Ω) ∩

◦
R0(Ω) −→ L2(Ω),

u 7−→ gradu V 7−→ div V
◦

rot :
◦
R(Ω) ∩ D0(Ω) −→

◦
D0(Ω), rot : R(Ω) ∩

◦
D0(Ω) −→ D0(Ω),(2.12)

V 7−→ rotV V 7−→ rotV
◦

div :
◦
D(Ω) ∩ R0(Ω) −→ L2

0(Ω), grad : H1(Ω) ∩ L2
0(Ω) −→ R0(Ω),

V 7−→ div V u 7−→ gradu

are topological isomorphisms.
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Remark 2.23. Recently it has been shown in [17, 18, 19], that for bounded and convex Ω ⊂ R3 it holds

cr ≤ cd ≤
diam Ω
π

,

i.e., the Maxwell constant cr can be estimates from above by the Friedrichs/Poincaré constant.

Remark 2.24. Some of the previous results can be formulated equivalently in terms of complexes: The
sequence

{0} 0−−−−→
◦
H1(Ω)

◦
grad−−−−→

◦
R(Ω)

◦
rot−−−−→

◦
D(Ω)

◦
div−−−−→ L2(Ω) πR−−−−→ R

and thus also its dual or adjoint sequence

{0} 0←−−−− L2(Ω) − div←−−−− D(Ω) rot←−−−− R(Ω)
− grad←−−−− H1(Ω) ιR←−−−− R

are closed Hilbert complexes. Here πR : L2(Ω)→ R denotes the orthogonal projector onto R with adjoint
π∗R = ιR : R → L2(Ω), the canonical embedding. If Ω is additionally topologically trivial, then the
complexes are also exact. These complexes are widely known as de Rham complexes.

Let Ω be additionally topologically trivial. For irrotational vector fields in
◦
Hm(Ω) resp. Hm(Ω) we

have smooth potentials, which follows immediately by
◦
R0(Ω) =

◦
grad

◦
H1(Ω) resp. R0(Ω) = grad H1(Ω)

from the previous lemma.

Lemma 2.25. Let Ω be additionally topologically trivial and m ∈ N0. Then
◦
Hm(Ω) ∩

◦
R0(Ω) =

◦
grad

◦
Hm+1(Ω), Hm(Ω) ∩ R0(Ω) = grad Hm+1(Ω)

hold with linear and continuous potential operators P ◦
grad

, Pgrad.

So, for each V ∈
◦
Hm(Ω) ∩

◦
R0(Ω), we have V =

◦
gradu for the potential u = P ◦

grad
V ∈

◦
Hm+1(Ω) and,

analogously, for each V ∈ Hm(Ω) ∩ R(Ω), it holds V = gradu for the potential u = Pgrad V ∈ Hm+1(Ω).
Note that the potential in Hm+1(Ω) is uniquely determined only up to a constant.

For solenoidal vector fields in
◦
Hm(Ω) resp. Hm(Ω) we have smooth potentials, too.

Lemma 2.26. Let Ω be additionally topologically trivial and m ∈ N0. Then
◦
Hm(Ω) ∩

◦
D0(Ω) =

◦
rot

◦
Hm+1(Ω), Hm(Ω) ∩ D0(Ω) = rot Hm+1(Ω)

hold with linear and continuous potential operators P ◦
rot

, Prot.

For a proof see, e.g., [6, Corollary 4.7] or with slight modifications the generalized lifting lemma [10,

Corollary 5.4] for the case d = 3, k = m, l = 2. Moreover, the potential in
◦
Hm+1(Ω) resp. Hm+1(Ω) is no

longer uniquely determined.
For the divergence operator we have the following result.

Lemma 2.27. Let m ∈ N0. Then
◦
Hm(Ω) ∩ L2

0(Ω) =
◦

div
◦
Hm+1(Ω), Hm(Ω) = div Hm+1(Ω)

hold with linear and continuous potential operators P ◦
div

, Pdiv.

Again, the potential in
◦
Hm+1(Ω) resp. Hm+1(Ω) is no longer uniquely determined. Also Lemma 2.25

resp. Lemma 2.27 has been proved in [6, Corollary 4.7(b)] and in [10, Corollary 5.4] for the case d = 3,
k = m, l = 1 resp. d = 3, k = m, l = 3.
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Remark 2.28. Lemma 2.27, which shows a classical result on the solvability and on the properties of
the solution operator of the divergence equation, is an important tool in fluid dynamics, i.e., in the theory
of Stokes or Navier-Stokes equations. The potential operator is often called Bogovskiĭ operator, see [4, 5]
for the original works and also [7, p. 179, Theorem III.3.3], [25, Lemma 2.1.1]. Moreover, there are also
versions of Lemma 2.25 and Lemma 2.26, if Ω is not topologically trivial, which we will not need in the
paper at hand.

Remark 2.29. A closer inspection of Lemma 2.25 and Lemma 2.26 and their proofs shows, that these
results extend to general topologies as well. More precisely we have:

(i) It holds
◦
Hm(Ω) ∩

◦
grad

◦
H1(Ω) =

◦
Hm(Ω) ∩

◦
R0(Ω) ∩HD(Ω)⊥ =

◦
grad

◦
Hm+1(Ω),

Hm(Ω) ∩ grad H1(Ω) = Hm(Ω) ∩ R0(Ω) ∩HN(Ω)⊥ = grad Hm+1(Ω)

with linear and continuous potential operators P ◦
grad

, Pgrad.

(ii) It holds
◦
Hm(Ω) ∩

◦
rot
◦
R(Ω) =

◦
Hm(Ω) ∩

◦
D0(Ω) ∩HN(Ω)⊥ =

◦
rot

◦
Hm+1(Ω),

Hm(Ω) ∩ rot R(Ω) = Hm(Ω) ∩ D0(Ω) ∩HD(Ω)⊥ = rot Hm+1(Ω)

with linear and continuous potential operators P ◦
rot

, Prot.

Using the latter three results and Lemma 2.14, irrotational and solenoidal vector fields in H−m(Ω) can
be characterized.

Corollary 2.30. Let Ω be additionally topologically trivial and m ∈ N. Then

R−m0 (Ω) = grad H−m+1(Ω) = grad
( ◦
Hm−1(Ω) ∩ L2

0(Ω)
)′

is closed in H−m(Ω) with continuous inverse, i.e., grad−1 ∈ BL
(
R−m0 (Ω), (

◦
Hm−1(Ω)∩L2

0(Ω))′
)
. Especially

for m = 1,
R−1

0 (Ω) = grad L2(Ω) = grad L2
0(Ω)

is closed in H−1(Ω) with continuous inverse grad−1 ∈ BL
(
R−1

0 (Ω), L2
0(Ω)

)
and uniquely determined po-

tential in L2
0(Ω). Moreover,

∃ cg,−1 > 0 ∀u ∈ L2
0(Ω) |u|

L2(Ω)
≤ cg,−1| gradu|

H−1(Ω)
≤
√

3 cg,−1|u|L2(Ω)

and the inf-sup-condition

0 <
1

cg,−1
= inf

06=u∈L2
0(Ω)

| gradu|
H−1(Ω)

|u|
L2(Ω)

= inf
0 6=u∈L2

0(Ω)

sup
06=V ∈

◦
H1(Ω)

〈u,div V 〉
L2(Ω)

|u|
L2(Ω)

|GradV |
L2(Ω)

.

holds.

Proof. Let X0 :=
◦
Hm+1(Ω), X1 :=

◦
Hm(Ω), X2 :=

◦
Hm−1(Ω) and

A0 :=
◦

rot :
◦
Hm+1(Ω)→

◦
Hm(Ω), A1 := −

◦
div :

◦
Hm(Ω)→

◦
Hm−1(Ω).

These linear operators are bounded, R(A0) =
◦

rot
◦
Hm+1(Ω) =

◦
Hm(Ω) ∩

◦
D0(Ω) = N(A1) by Lemma 2.26,

and R(A1) =
◦

div
◦
Hm(Ω) =

◦
Hm−1(Ω)∩L2

0(Ω) by Lemma 2.27. Therefore, R(A1) is closed. For the adjoint
operators we get

A′0 = rot =
◦

rot ′ : H−m(Ω)→ H−m−1(Ω), A′1 = grad = −
◦

div ′ : H−m+1(Ω)→ H−m(Ω)

and obtain from Lemma 2.14 that

R−m0 (Ω) = N(A′0) = R(A′1) = grad H−m+1(Ω)



Grad grad- and div Div-Complexes and Applications 13

is closed and

grad−1 = (A′1)−1 ∈ BL
(
R(A′1), R(A1)′

)
= BL

(
R−m0 (Ω), (

◦
Hm−1(Ω) ∩ L2

0(Ω))′
)
,

which completes the proof for general m. If m = 1, we get the assertions about the Friedrichs/Poincaré/
Nec̆as inequality and inf-sup-condition by Lemma 2.16, i.e., (2.8) and (2.10). �

Corollary 2.31. Let Ω be additionally topologically trivial and m ∈ N. Then

D−m0 (Ω) = rot H−m+1(Ω) = rot
( ◦
Hm−1(Ω) ∩

◦
D0(Ω)

)′
is closed in H−m(Ω) with continuous inverse, i.e., rot−1 ∈ BL

(
D−m0 (Ω), (

◦
Hm−1(Ω)∩

◦
D0(Ω))′

)
. Especially

for m = 1,

D−1
0 (Ω) = rot L2(Ω) = rot

◦
D0(Ω)

is closed in H−1(Ω) with continuous inverse rot−1 ∈ BL
(
D−1

0 (Ω),
◦
D0(Ω)

)
and uniquely determined po-

tential in
◦
D0(Ω). Moreover,

∃ cr,−1 > 0 ∀V ∈
◦
D0(Ω) |V |

L2(Ω)
≤ cr,−1| rotV |

H−1(Ω)
≤
√

2 cr,−1|V |L2(Ω)

and the inf-sup-condition

0 <
1

cr,−1
= inf

06=V ∈
◦
D0(Ω)

| rotV |
H−1(Ω)

|V |
L2(Ω)

= inf
0 6=V ∈

◦
D0(Ω)

sup
06=V ∈

◦
H1(Ω)

〈V, rotH〉
L2(Ω)

|V |
L2(Ω)

|GradH|
L2(Ω)

.

holds.

Proof. Let X0 :=
◦
Hm+1(Ω), X1 :=

◦
Hm(Ω), X2 :=

◦
Hm−1(Ω) and

A0 :=
◦

grad :
◦
Hm+1(Ω)→

◦
Hm(Ω), A1 :=

◦
rot :

◦
Hm(Ω)→

◦
Hm−1(Ω).

These linear operators are bounded, R(A0) =
◦

grad
◦
Hm+1(Ω) =

◦
Hm(Ω)∩

◦
R0(Ω) = N(A1) by Lemma 2.25,

and R(A1) = rot
◦
Hm(Ω) =

◦
Hm−1(Ω)∩

◦
D0(Ω) by Lemma 2.26. Therefore, R(A1) is closed. For the adjoint

operators we get

A′0 = − div =
◦

grad ′ : H−m(Ω)→ H−m−1(Ω), A′1 = rot =
◦

rot ′ : H−m+1(Ω)→ H−m(Ω)

and obtain from Lemma 2.14 that

D−m0 (Ω) = N(A′0) = R(A′1) = rot H−m+1(Ω)

is closed and

rot−1 = (A′1)−1 ∈ BL
(
R(A′1), R(A1)′

)
= BL

(
D−m0 (Ω), (

◦
Hm−1(Ω) ∩

◦
D0(Ω))′

)
,

which completes the proof for general m. If m = 1, we get the assertions about the Friedrichs/Poincaré/
Nec̆as inequality and inf-sup-condition by Lemma 2.16, i.e., (2.8) and (2.10). �

Let us present the corresponding result for the divergence as well.

Corollary 2.32. Let Ω be additionally topologically trivial and m ∈ N. Then

H−m(Ω) = div H−m+1(Ω) = div
( ◦
Hm−1(Ω) ∩

◦
R0(Ω)

)′
(is closed in H−m(Ω)) with continuous inverse, i.e., div−1 ∈ BL

(
H−m(Ω), (

◦
Hm−1(Ω) ∩

◦
R0(Ω))′

)
. Espe-

cially for m = 1,

H−1(Ω) = div L2(Ω) = div
◦
R0(Ω)
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(is closed in H−1(Ω)) with continuous inverse div−1 ∈ BL
(
H−1(Ω),

◦
R0(Ω)

)
and uniquely determined

potential in
◦
R0(Ω). Moreover,

∃ cd,−1 > 0 ∀V ∈
◦
R0(Ω) |V |

L2(Ω)
≤ cd,−1|div V |

H−1(Ω)
≤ cd,−1 |V |L2(Ω)

and the inf-sup-condition

0 <
1

cd,−1
= inf

0 6=V ∈
◦
R0(Ω)

|div V |
H−1(Ω)

|V |
L2(Ω)

= inf
06=V ∈

◦
D0(Ω)

sup
06=u∈

◦
H1(Ω)

〈V, gradu〉
L2(Ω)

|V |
L2(Ω)

| gradu|
L2(Ω)

.

holds.

Proof. Let X1 :=
◦
Hm(Ω), X2 :=

◦
Hm−1(Ω) and A1 := −

◦
grad :

◦
Hm(Ω) →

◦
Hm−1(Ω). A1 is linear and

bounded with R(A1) = grad
◦
Hm(Ω) =

◦
Hm−1(Ω) ∩

◦
R0(Ω) by Lemma 2.25. Therefore, R(A1) is closed.

The adjoint is A′1 = div = −
◦

grad ′ : H−m+1(Ω)→ H−m(Ω) with closed range R(A′1) = div H−m+1(Ω) by
the closed range theorem. Moreover, N(A1) = {0}. Hence A′1 is surjective as A1 is injective, i.e.,

H−m(Ω) = N(A1)◦ = R(A′1) = div H−m+1(Ω).

As A1 is also surjective onto its range, A′1 = div : H−m+1(Ω) → R(A′1) is bijective. By the bounded
inverse theorem we get

div−1 = (A′1)−1 ∈ BL
(
R(A′1), R(A1)′

)
= BL

(
H−m(Ω), (

◦
Hm−1(Ω) ∩

◦
R0(Ω))′

)
,

which completes the proof for general m. If m = 1, we get the assertions about the Friedrichs/Poincaré/
Nec̆as inequality and inf-sup-condition by Lemma 2.16, i.e., (2.8) and (2.10). �

Remark 2.33. The results of the latter three lemmas and corollaries can be formulated equivalently in
terms of complexes: Let Ω be additionally topologically trivial. Then the sequence

◦
Hm+1(Ω)

◦
grad−−−−→

◦
Hm(Ω)

◦
rot−−−−→

◦
Hm−1(Ω)

◦
div−−−−→

◦
Hm−2(Ω)

and thus also its dual or adjoint sequence

H−m−1(Ω) − div←−−−− H−m(Ω) rot←−−−− H−m+1(Ω)
− grad←−−−− H−m+2(Ω)

are closed and exact Banach complexes.

3. The Grad grad- and div Div-Complexes

We will use the following standard notations from linear algebra. For vectors a, b ∈ R3 and matrices
A,B ∈ R3×3 the expressions a · b and A : B denote the inner product of vectors and the Frobenius inner
product of matrices, respectively. For a vector a ∈ R3 with components ai for i = 1, 2, 3 the matrix
spn a ∈ R3×3 is defined by

spn a =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 .
Observe that (spn a) b = a × b for a, b ∈ R3, where a × b denotes the exterior product of vectors. The
exterior product a × B of a vector a ∈ R3 and a matrix B ∈ R3×3 is defined as the matrix which is
obtained by applying the exterior product row-wise. Note that spn is a bijective mapping from R3 to
the set of skew-symmetric matrices in R3×3 with the inverse mapping spn−1. In addition to symA and
skwA for the symmetric part and the skew-symmetric part of a matrix A, we use devA and trA for
denoting the deviatoric part and the trace of a matrix A. Finally, the set of symmetric matrices in R3×3

is denoted by S, the set of matrices in R3×3 with vanishing trace is denoted by T.
In this section we need several spaces of tensor fields. The spaces

◦
C∞(Ω), L2(Ω), H1(Ω),

◦
H1(Ω), D(Ω),

◦
D(Ω),

◦
R0(Ω), . . .
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are introduced as those spaces of tensor fields, whose rows are in the corresponding spaces of vector fields
◦
C∞(Ω), L2(Ω), H1(Ω),

◦
H1(Ω), D(Ω),

◦
D(Ω),

◦
R0(Ω), . . . , respectively. Additionally, we will need spaces

allowing for a deviatoric gradient, a symmetric rotation, and a double divergence, i.e.,

Gdev(Ω) :=
{
V ∈ L2(Ω) : dev GradV ∈ L2(Ω)

}
, Gdev,0(Ω) :=

{
V ∈ L2(Ω) : dev GradV = 0

}
,

Rsym(Ω) :=
{
E ∈ L2(Ω) : sym Rot E ∈ L2(Ω)

}
, Rsym,0(Ω) :=

{
E ∈ L2(Ω) : sym Rot E = 0

}
,

DD(Ω) :=
{
M ∈ L2(Ω) : div Div M ∈ L2(Ω)

}
, DD0(Ω) :=

{
M ∈ L2(Ω) : div Div M = 0

}
.

Moreover, we introduce various spaces of symmetric tensor fields without prescribed boundary conditions,
i.e.,

L2(Ω,S) := {M ∈ L2(Ω) : M> = M}, DD(Ω,S) := DD(Ω) ∩ L2(Ω,S), . . . ,

and with homogeneous boundary conditions as closures of symmetric test tensor fields, i.e.,

◦
R(Ω,S) :=

◦
C∞(Ω) ∩ L2(Ω,S)

R(Ω)

, . . . ,

as well as spaces of tensor fields with vanishing trace and without prescribed boundary conditions, i.e.,

L2(Ω,T) := {E ∈ L2(Ω) : tr E = 0}, H1(Ω,T) := H1(Ω) ∩ L2(Ω,T), . . . ,

and with homogeneous boundary conditions as closures of trace-free test tensor fields, i.e.,

◦
D(Ω,T) :=

◦
C∞(Ω) ∩ L2(Ω,T)

D(Ω)

, . . . .

We note
◦
R(Ω,S) ⊂

◦
R(Ω) ∩ L2(Ω,S),

◦
D(Ω,T) ⊂

◦
D(Ω) ∩ L2(Ω,T), . . . .

Let us also mention that

dev Grad Gdev(Ω) ⊂ L2(Ω,T), sym Rot Rsym(Ω) ⊂ L2(Ω,S)

hold. This can be seen as follows. Pick Φ ∈ Gdev(Ω) with E := dev Grad Φ and Φ ∈ Rsym(Ω) with

M := sym Rot Φ. Then for all ψ ∈
◦
C∞(Ω) and Ψ ∈

◦
C∞(Ω)

〈tr E, ψ〉
L2(Ω)

= 〈E, ψ I〉
L2(Ω)

= −〈Φ,Div devψ I〉
L2(Ω)

= 0,

〈skw M,Ψ〉
L2(Ω)

= 〈M, skw Ψ〉
L2(Ω)

= 〈Φ,Rot sym skw Ψ〉
L2(Ω)

= 0.

Before we proceed we need a few technical lemmas.

Lemma 3.1. For any distributional vector field V it holds for i, j, k = 1, . . . , 3

∂k(GradV )ij =


∂k(dev GradV )ij , if i 6= j,

∂j(dev GradV )ik , if i 6= k,
3
2
∂i(dev GradV )ii +

1
2

∑
l 6=i

∂l(dev GradV )li , if i = j = k.

Proof. Let Φ ∈
◦
C∞(R3) be a vector field. We want to express the second derivatives of Φ by the derivatives

of the deviatoric part of the Jacobian, i.e., of dev Grad Φ. Recall that we have dev E = E − 1
3 (tr E) I

for a tensor E. Hence dev Grad Φ coincides with Grad Φ outside the diagonal entries, i.e., we have
(Grad Φ)ij = (dev Grad Φ)ij for i 6= j. Hence, looking at second derivatives, we see immediately

∂k ∂j Φi = ∂k(Grad Φ)ij = ∂k(dev Grad Φ)ij for i 6= j,

∂k ∂j Φi = ∂j ∂k Φi = ∂j(Grad Φ)ik = ∂j(dev Grad Φ)ik for i 6= k.

Thus it remains to represent ∂2
i Φi by the derivatives of dev Grad Φ. By

∂2
i Φi = ∂i(Grad Φ)ii = ∂i(dev Grad Φ)ii +

1
3
∂i div Φ
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we get
2
3
∂2
i Φi = ∂i(dev Grad Φ)ii +

1
3

∑
l 6=i

∂i ∂l Φl = ∂i(dev Grad Φ)ii +
1
3

∑
l 6=i

∂l(dev Grad Φ)li,

yielding the stated result for test vector fields. Testing extends the formulas to distributions, which
finishes the proof. �

We note that the latter trick is similar to the well known fact that second derivatives of a vector
field can always be written as derivatives of the symmetric gradient of the vector field, leading by Nec̆as
estimate to Korn’s second and first inequalities. We will now do the same for the operator dev Grad.

Lemma 3.2. It holds:
(i) There exists c > 0, such that for all vector fields V ∈ H1(Ω)

|GradV |
L2(Ω)

≤ c
(
|V |

L2(Ω)
+ |dev GradV |

L2(Ω)

)
.

(ii) Gdev(Ω) = H1(Ω).
(iii) For dev Grad : Gdev(Ω) ⊂ L2(Ω) −→ L2(Ω,T) it holds D(dev Grad) = Gdev(Ω) = H1(Ω), and the

kernel of dev Grad equals the space of (global) shape functions of the lowest order Raviart-Thomas
elements, i.e.,

N(dev Grad) = Gdev,0(Ω) = RT0 := {P : P (x) = a x+ b, a ∈ R, b ∈ R3},
which dimension is dim RT0 = 4.

(iv) There exists c > 0, such that for all vector fields V ∈ H1(Ω) ∩ RT
⊥

L2(Ω)

0

|V |
H1(Ω)

≤ c |dev GradV |
L2(Ω)

.

Proof. Let V ∈ H1(Ω). By the latter lemma and Nec̆as estimate, i.e.,

∃ c > 0 ∀u ∈ L2(Ω) c |u|
L2(Ω)

≤ | gradu|
H−1(Ω)

+ |u|
H−1(Ω)

≤ (
√

3 + 1)|u|
L2(Ω)

,

we get

|GradV |
L2(Ω)

≤ c
( 3∑
k=1

| ∂k GradV |
H−1(Ω)

+ |GradV |
H−1(Ω)

)
≤ c

( 3∑
k=1

| ∂k dev GradV |
H−1(Ω)

+ |GradV |
H−1(Ω)

)
≤ c

(
|dev GradV |

L2(Ω)
+ |V |

L2(Ω)

)
,

which shows (i). As Ω has the segment property and by standard mollification we obtain that restrictions

of
◦
C∞(R3)-vector fields are dense in Gdev(Ω). Especially H1(Ω) is dense in Gdev(Ω). Let V ∈ Gdev(Ω)

and (Vn) ⊂ H1(Ω) with Vn → V in Gdev(Ω). By (i) (Vn) is a Cauchy sequence in H1(Ω) converging to
V in H1(Ω), which proves V ∈ H1(Ω) and hence (ii). For P ∈ RT0 it holds dev GradP = adev I = 0.
Let dev GradV = 0 for some vector field V ∈ Gdev(Ω) = H1(Ω). By Lemma 3.1 we get ∂k GradV = 0
for all k = 1, . . . , 3, and therefore V (x) = Ax + b for some matrix A ∈ R3×3 and vector b ∈ R3. Then
0 = dev GradV = devA, if and only if A = 1

3 (trA) I, which shows (iii). If (iv) was wrong, there exists a

sequence (Vn) ⊂ H1(Ω)∩RT
⊥

L2(Ω)

0 with |Vn|H1(Ω)
= 1 and dev GradVn → 0. As (Vn) is bounded in H1(Ω),

by Rellich’s selection theorem there exists a subsequence, again denoted by (Vn), and some V ∈ L2(Ω)
with Vn → V in L2(Ω). By (i), (Vn) is a Cauchy sequence in H1(Ω). Hence Vn → V in H1(Ω) and

V ∈ H1(Ω) ∩ RT
⊥

L2(Ω)

0 . As 0 ← dev GradVn → dev GradV , we have by (iii) V ∈ RT0 ∩ RT
⊥

L2(Ω)

0 = {0},
a contradiction to 1 = |Vn|H1(Ω)

→ 0. The proof is complete. �

We recall the following well-known result.
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Lemma 3.3. Let GG(Ω) := {u ∈ L2(Ω) : Grad gradu ∈ L2(Ω)} and
◦

GG(Ω) :=
◦
C∞(Ω)

GG(Ω)

. Then
◦

GG(Ω) =
◦
H2(Ω),

◦
GG0(Ω) = {0},

and there exists c > 0 such that for all u ∈
◦
H2(Ω)

|u|
H2(Ω)

≤ c |Grad gradu|
L2(Ω)

= c |∆u|
L2(Ω)

.

It holds c ≤
√

1 + c2g(1 + c2g) ≤ 1 + c2g.

By straight forward calculations and standard arguments for distributions, see the Appendix, we get
the following.

Lemma 3.4. It holds:

(i) skw Grad grad H2(Ω) = 0, i.e., Hessians are symmetric.
(ii) tr Rot R(Ω,S) = 0, i.e., rotations of symmetric tensors are trace free.

These formulas extend to distributions as well.

With Lemma 3.3 and Lemma 3.4 let us now consider the linear operators

A0 :=
◦

Grad grad :
◦

GG(Ω) =
◦
H2(Ω) ⊂ L2(Ω) −→ L2(Ω,S), u 7→ Grad gradu,(3.1)

A1 :=
◦

RotS :
◦
R(Ω,S) ⊂ L2(Ω,S) −→ L2(Ω,T), M 7→ Rot M,(3.2)

A2 :=
◦

DivT :
◦
D(Ω,T) ⊂ L2(Ω,T) −→ L2(Ω), E 7→ Div E.(3.3)

These are well and densely defined and closed. Closedness is clear. For densely definedness we look e.g.

at
◦

RotS. For M ∈ L2(Ω,S) pick (Φn) ⊂
◦
C∞(Ω) with Φn →M in L2(Ω). Then

|M− sym Φn|2L2(Ω)
+ | skw Φn|2L2(Ω)

= |M−Φn|2L2(Ω)
→ 0,

showing (sym Φn) ⊂
◦
C∞(Ω) ∩ L2(Ω,S) ⊂

◦
R(Ω,S) and sym Φn → M in L2(Ω,S). By Lemma 3.3 the

kernels are

N(
◦

Grad grad) = {0}, N(
◦

RotS) =
◦
R0(Ω,S), N(

◦
DivT) =

◦
D0(Ω,T).

Lemma 3.5. The adjoints of (3.1), (3.2), (3.3) are

A*
0 = (

◦
Grad grad)∗ = div DivS : DD(Ω,S) ⊂ L2(Ω,S) −→ L2(Ω), M 7→ div Div M,

A*
1 = (

◦
RotS)∗ = sym RotT : Rsym(Ω,T) ⊂ L2(Ω,T) −→ L2(Ω,S), E 7→ sym Rot E,

A*
2 = (

◦
DivT)∗ = −dev Grad : Gdev(Ω) = H1(Ω) ⊂ L2(Ω) −→ L2(Ω,T), V 7→ −dev GradV.

with kernels

N(div DivS) = DD0(Ω,S), N(sym RotT) = Rsym,0(Ω,T), N(dev Grad) = RT0.

Proof. We have M ∈ D
(
(

◦
Grad grad)∗

)
⊂ L2(Ω,S) and (

◦
Grad grad)∗M = u ∈ L2(Ω), if and only if

M ∈ L2(Ω,S) and there exists u ∈ L2(Ω), such that

∀ϕ ∈ D(
◦

Grad grad) =
◦
H2(Ω) 〈Grad gradϕ,M〉

L2(Ω,S)
= 〈ϕ, u〉

L2(Ω)

⇔ ∀ϕ ∈
◦
C∞(Ω) 〈Grad gradϕ,M〉

L2(Ω)
= 〈ϕ, u〉

L2(Ω)
,
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if and only if M ∈ DD(Ω) ∩ L2(Ω,S) = DD(Ω,S) and div Div M = u. Moreover, we observe that

E ∈ D
(
(
◦

RotS)∗
)
⊂ L2(Ω,T) and (

◦
RotS)∗E = M ∈ L2(Ω,S), if and only if E ∈ L2(Ω,T) and there exists

M ∈ L2(Ω,S), such that (note sym2 = sym)

∀Φ ∈ D(
◦

RotS) =
◦
R(Ω,S) 〈Rot Φ,E〉

L2(Ω,T)
= 〈Φ,M〉

L2(Ω,S)

⇔ ∀Φ ∈
◦
C∞(Ω) ∩ L2(Ω,S) 〈Rot sym Φ,E〉

L2(Ω)
= 〈sym Φ,M〉

L2(Ω)

⇔ ∀Φ ∈
◦
C∞(Ω) 〈Rot sym Φ,E〉

L2(Ω)
= 〈sym Φ,M〉

L2(Ω)

⇔ ∀Φ ∈
◦
C∞(Ω) 〈Rot sym Φ,E〉

L2(Ω)
= 〈Φ,M〉

L2(Ω)
,

if and only if E ∈ Rsym(Ω) ∩ L2(Ω,T) = Rsym(Ω,T) and sym Rot E = M. Similarly, we see that

V ∈ D
(
(
◦

DivT)∗
)
⊂ L2(Ω) and (

◦
DivT)∗V = E ∈ L2(Ω,T), if and only if V ∈ L2(Ω) and there exists

E ∈ L2(Ω,T), such that (note dev2 = dev)

∀Φ ∈ D(
◦

DivS) =
◦
D(Ω,T) 〈Div Φ, V 〉

L2(Ω)
= 〈Φ,E〉

L2(Ω,T)

⇔ ∀Φ ∈
◦
C∞(Ω) ∩ L2(Ω,T) 〈Div dev Φ, V 〉

L2(Ω)
= 〈dev Φ,E〉

L2(Ω)

⇔ ∀Φ ∈
◦
C∞(Ω) 〈Div dev Φ, V 〉

L2(Ω)
= 〈dev Φ,E〉

L2(Ω)

⇔ ∀Φ ∈
◦
C∞(Ω) 〈Div dev Φ, V 〉

L2(Ω)
= 〈Φ,E〉

L2(Ω)
,

if and only if V ∈ Gdev(Ω) = H1(Ω) and −dev GradV = E using Lemma 3.2. Lemma 3.2 also shows
N(dev Grad) = Gdev,0(Ω) = RT0, completing the proof. �

Remark 3.6. Note that, e.g., the second order operator
◦

Grad grad is “one” operator and not a compo-

sition of the two first order operators
◦

Grad and
◦

grad. Similarly the operator div DivS, sym RotT, resp.
dev Grad has to be understood as “one” operator.

We observe the following complex properties for A0, A1, A2, and A*
0, A*

1, A*
2.

Lemma 3.7. It holds
◦

RotS
◦

Grad grad = 0,
◦

DivT
◦

RotS = 0, div DivS sym RotT = 0, sym RotT dev Grad = 0,

i.e.,

R(
◦

Grad grad) ⊂ N(
◦

RotS), R(sym RotT) ⊂ N(div DivS),

R(
◦

RotS) ⊂ N(
◦

DivT), R(dev Grad) ⊂ N(sym RotT).

Proof. For E = Rot M ∈ R(
◦

RotS) with M ∈ D(
◦

RotS) there exists a sequence (Mn) ⊂
◦
C∞(Ω) ∩ L2(Ω,S)

such that Mn →M in the graph norm of D(
◦

RotS). As

Rot
( ◦
C∞(Ω) ∩ L2(Ω,S)

)
⊂
◦
C∞(Ω) ∩ L2(Ω,T) ∩D0(Ω) ⊂ N(

◦
DivT)

we have E ∈ N(
◦

DivT) since E ← Rot Mn ∈ N(
◦

DivT). Hence R(
◦

RotS) ⊂ N(
◦

DivT), i.e.,
◦

DivT
◦

RotS = 0
and for the adjoints we have sym RotT dev Grad = 0. Analogously we see the other two inclusions. �

Remark 3.8. The latter considerations show that the sequence

{0} 0−−−−→
◦
H2(Ω)

◦
Grad grad−−−−−−→

◦
R(Ω; S)

◦
RotS−−−−→

◦
D(Ω,T)

◦
DivT−−−−→ L2(Ω)

πRT0−−−−→ RT0
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and thus also its dual or adjoint sequence

{0} 0←−−−− L2(Ω) div DivS←−−−−− DD(Ω,S)
sym RotT←−−−−−− Rsym(Ω,T) − dev Grad←−−−−−−− H1(Ω)

ιRT0←−−−− RT0

are Hilbert complexes. Here πRT0 : L2(Ω)→ RT0 denotes the orthogonal projector onto RT0 with adjoint

π∗RT0
= ιRT0 : RT0 → L2(Ω), the canonical embedding. The first complex might by called

◦
Grad grad-

complex and the second one div Div-complex.

3.1. Topologically Trivial Domains. We start with a useful lemma, which will be shown in the Ap-
pendix, collecting a few differential identities, which will be utilized in the proof of the subsequent main
theorem.

Lemma 3.9. Let u, V , and E be distributional scalar, vector, and tensor fields. Then
(i) 2 skw GradV = spn rotV ,

(ii) Rot spnV = (div V ) I− (GradV )> and, as a consequence, tr Rot spnV = 2 div V ,
(iii) Div(u I) = gradu and Rot(u I) = − spn gradu,
(iv) 2 grad div V = 3 Div

(
dev (GradV )>

)
,

(v) skw Rot E = spnH and Div(sym Rot E) = rotH with 2H = Div E> − grad(tr E),
(vi) Div(spnV ) = − rotV .

Observe that we already know that N(
◦

Grad grad) = {0} and N(dev Grad) = RT0. If the topology of
the underlying domain is trivial, we will now characterize the remaining kernels and the ranges of the

linear operators
◦

Grad grad,
◦

RotS,
◦

DivT, and dev Grad, sym RotT, div DivS.

Theorem 3.10. Let Ω be additionally topologically trivial. Then

(i)
◦
R0(Ω,S) = N(

◦
RotS) = R(

◦
Grad grad) = Grad grad

◦
H2(Ω),

(ii)
◦
D0(Ω,T) = N(

◦
DivT) = R(

◦
RotS) = Rot

◦
H1(Ω,S),

(iii) RT
⊥

L2(Ω)

0 = N(πRT0) = R(
◦

DivT) = Div
◦
H1(Ω,T),

(iv) Rsym,0(Ω,T) = N(sym RotT) = R(dev Grad) = dev Grad H1(Ω),

(v) DD0(Ω,S) = N(div DivS) = R(sym RotT) = sym Rot H1(Ω,T),

(vi) L2(Ω) = N(0) = R(div DivS) = div Div H2(Ω,S).

The corresponding linear and continuous (regular) potential operators are given by

P ◦
Grad grad

= P ◦
grad

P ◦
Grad

:
◦
R0(Ω,S) −→

◦
H2(Ω),

P ◦
RotS

= sym
(
1− 2 GradP ◦

rot
spn−1 skw

)
P ◦

Rot
:
◦
D0(Ω,T) −→

◦
H1(Ω,S),

P ◦
DivT

= dev
(
1 +

1
2

Grad> P ◦
div

tr
)
P ◦

Div
: RT

⊥
L2(Ω)

0 −→
◦
H1(Ω,T),

Pdev Grad = Grad−1
(
1 +

1
2

(grad−1 Div( · )>) I
)

: Rsym,0(Ω,T) −→ H1(Ω),

Psym RotT = dev PRot

(
1 + spn rot−1 Div

)
: DD0(Ω,S) −→ H1(Ω,T),

Pdiv DivS = symPDivPdiv : L2(Ω) −→ H2(Ω,S).

Remark 3.11. We note that

H1(Ω,S) = sym H1(Ω), H1(Ω,T) = dev H1(Ω),
◦
H1(Ω,S) = sym

◦
H1(Ω),

◦
H1(Ω,T) = dev

◦
H1(Ω)

as, e.g., dev H1(Ω) ⊂ H1(Ω,T) = dev H1(Ω,T) ⊂ dev H1(Ω). The same holds for the corresponding
spaces of skew-symmetric tensor fields as well. Moreover:
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(i) Theorem 3.10 holds also for the other set of canonical boundary conditions, which follows directly
from the proof.

(ii) A closer inspection shows, that for (iii) and (vi), i.e., P ◦
DivT

and Pdiv DivS , only the potential
operators corresponding to the divergence, i.e., P ◦

div
, P ◦

Div
, PDiv, Pdiv, are involved. As Lemma

2.27 does not need any topological assumptions, (iii) and (vi), together with the representations
of the potential operators, hold for general topologies as well.

Proof of Theorem 3.10. Note that by Lemma 3.2 (iii), Lemma 3.3, and Lemma 3.7 all inclusions of
the type R(. . .) ⊂ N(. . .) easily follow. Therefore it suffices to show that N(. . .) is included in the
corresponding space appearing at the end of each line in (i) - (vi), which itself is obviously included in
R(. . .). Throughout the proof we will frequently use the formulas of Lemma 3.9.

ad (i): Let M ∈
◦
R0(Ω,S) = N(

◦
RotS). Applying Lemma 2.25 for m = 0 row-wise, there is a vector field

V := P ◦
Grad

M ∈
◦
H1(Ω) with M = GradV . Since skw M = 0 and 2 skw GradV = spn rotV , it follows

that rotV = 0. By Lemma 2.25 for m = 1 there is a function u := P ◦
grad

V ∈
◦
H2(Ω) with V = gradu.

Hence M = GradV = Grad gradu ∈ Grad grad
◦
H2(Ω). So

◦
R0(Ω,S) ⊂ Grad grad

◦
H2(Ω), which completes

the proof of (i). Note that

P ◦
Grad grad

M := u = P ◦
grad

P ◦
Grad

M ∈
◦
H2(Ω),

from which it directly follows that P ◦
Grad grad

is linear and bounded.

ad (ii): Let E ∈
◦
D0(Ω,T) = N(

◦
DivT). Then there is a tensor field N := P ◦

Rot
E ∈

◦
H1(Ω) with

E = Rot N, see Lemma 2.26 for m = 0 applied row-wise. Since tr E = 0 and tr Rot sym N = 0,

it follows that tr Rot skw N = 0. Now let V := spn−1 skw N ∈
◦
H1(Ω), i.e., skw N = spnV . Since

tr Rot spnV = 2 div V , it follows that div V = 0. Therefore, there is a vector field H := P ◦
rot
V ∈

◦
H2(Ω)

such that V = rotH, see Lemma 2.26 for m = 1. So we have

Rot skw N = Rot spn rotH = 2 Rot skw GradH = −2 Rot sym GradH.

Hence

E = Rot N = Rot sym N + Rot skw N = Rot M, M := sym N− 2 sym GradH ∈
◦
H1(Ω,S),

So
◦
D0(Ω,T) ⊂ Rot

◦
H1(Ω,S), which completes the proof of (ii). Note that

P ◦
RotS

E := M = symP ◦
Rot

E− 2 sym Grad
(
P ◦

rot
spn−1 skwP ◦

Rot
E
)

= sym
(
1− 2 GradP ◦

rot
spn−1 skw

)
P ◦

Rot
E ∈

◦
H1(Ω,S),

from which it directly follows that P ◦
RotS

is linear and bounded.

ad (iii): Let V ∈ RT
⊥

L2(Ω)

0 = N(πRT0). As V ∈ (R3)
⊥

L2(Ω) , there is a tensor field F = P ◦
Div

V ∈
◦
H1(Ω)

with V = Div F, see Lemma 2.27 for m = 0 applied row-wise. We have Div F ∈ RT
⊥

L2(Ω)

0 as well as

Div dev F ∈ RT
⊥

L2(Ω)

0 . Hence grad(tr F) = Div((tr F) I) ∈ RT
⊥

L2(Ω)

0 , which implies tr F ∈
◦
H1(Ω) ∩ L2

0(Ω).

Therefore, there is a vector field H := P ◦
div

tr F ∈
◦
H2(Ω) with tr F = divH, see Lemma 2.27 for m = 1.

Thus
Div((tr F) I) = grad divH =

3
2

Div
(

dev (GradH)>
)
.

Hence

V = Div F = Div dev F +
1
3

Div((tr F)I) = Div E, E := dev
(
F +

1
2

(GradH)>
)
∈
◦
H1(Ω,T).
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So RT
⊥

L2(Ω)

0 ⊂ Div
◦
H1(Ω,T), which completes the proof of (iii). Note that

P ◦
DivT

V := E = dev
(
P ◦

Div
V +

1
2

(GradP ◦
div

trP ◦
Div

V )>
)

= dev
(
1 +

1
2

Grad> P ◦
div

tr
)
P ◦

Div
V ∈

◦
H1(Ω,T),

from which it directly follows that P ◦
DivT

is linear and bounded.

ad (iv): Let E ∈ Rsym,0(Ω,T) = N(sym RotT). Then (trivially) Div sym Rot E = 0 and it follows

rotH = 0 with H :=
1
2
(

Div E> − grad(tr E)
)

=
1
2

Div E>

and

(3.4) skw Rot E = spnH.

So H ∈ R−1
0 (Ω). Therefore, there is a unique scalar field u := grad−1H ∈ L2

0(Ω), such that

H = gradu,

see Corollary 2.30 for m = 1. As Rot(u I) = − spn gradu implies sym Rot(u I) = 0, we see

F := E + u I ∈ Rsym,0(Ω).

Moreover, by (3.4)

skw Rot F = skw Rot E + skw Rot(u I) = spnH − spn gradu = 0.

Hence F ∈ R0(Ω). Therefore, there is a unique vector field V := Grad−1 F ∈ H1(Ω) ∩ L2
0(Ω), such that

F = GradV , see Lemma 2.25 for m = 0. So we have

E = GradV − u I.

From the additional condition tr E = 0 it follows that 3u = tr GradV = div V leading to

E = dev GradV, V ∈ H1(Ω).

So Rsym,0(Ω,T) ⊂ dev Grad H1(Ω), which completes the proof of (iv). Note that

Pdev GradE := V = Grad−1
(
E +

1
2

(grad−1 Div E>) I
)

= Grad−1
(
1 +

1
2

(grad−1 Div( · )>) I
)
E ∈ H1(Ω),

from which it directly follows that Pdev Grad is linear and bounded.
ad (v): Let M ∈ DD0(Ω,S) = N(div DivS). So Div M ∈ D−1

0 (Ω) and there is a unique vector field

V := rot−1 Div M ∈
◦
D0(Ω), such that

Div M = rotV = −Div(spnV ),

see Corollary 2.31 for m = 1. Hence Div(M + spnV ) = 0, i.e., M + spnV ∈ D0(Ω), and by Lemma 2.26
there is a tensor field F := PRot(M + spnV ) ∈ H1(Ω), such that

M + spnV = Rot F.

Observe that M is symmetric and spnV is skew-symmetric. Thus

M = sym Rot F and spnV = skw Rot F, F ∈ H1(Ω),

and hence
M = sym Rot F = sym Rot E with E := dev F ∈ H1(Ω,T),

as dev F = F− 1
3 (tr F) I and sym Rot((tr F) I) = 0. So DD0(Ω,S) ⊂ sym Rot H1(Ω,T), which completes

the proof of (v). Note that

Psym RotTM := E = dev PRot

(
M + spn rot−1 Div M

)
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= dev PRot

(
1 + spn rot−1 Div

)
M ∈ H1(Ω,T),

from which it directly follows that Psym RotT is linear and bounded.
ad (vi): Let u ∈ L2(Ω) = N(0). Then there is a vector field V = Pdivu ∈ H1(Ω) with u = div V , see

Lemma 2.27 for m = 0, and a tensor field N = PDivV ∈ H2(Ω) such that V = Div N, see Lemma 2.27
for m = 1 applied row-wise. Since div Div skw N = 0, it follows that

u = div Div N = div Div M with M =: sym N ∈ H2(Ω,S).

So L2(Ω) ⊂ div Div H2(Ω,S), which completes the proof of (vi). Note that

Pdiv DivSu := M = symPDivPdivu ∈ H2(Ω,S),

from which it directly follows that Pdiv DivS is linear and bounded. �

Provided that the domain Ω has trivial topology, Theorem 3.10 implies that the densely defined, closed

and unbounded linear operators
◦

Grad grad,
◦

RotS,
◦

DivT, and their adjoints div DivS, sym RotT, dev Grad
have closed ranges and that all relevant cohomology groups are trivial, as

N(
◦

Grad grad) ∩N(0) = {0} ∩ L2(Ω) = {0},

N(
◦

RotS) ∩N(div DivS) =
◦
R0(Ω,S) ∩ DD0(Ω,S) =

◦
R0(Ω,S) ∩ sym Rot H1(Ω,T)

= N(
◦

RotS) ∩R(sym RotT) = {0},

N(
◦

DivT) ∩N(sym RotT) =
◦
D0(Ω,T) ∩ Rsym,0(Ω,T) =

◦
D0(Ω,T) ∩ dev Grad H1(Ω)

= N(
◦

DivT) ∩R(dev Grad) = {0},

N(πRT0) ∩N(dev Grad) = RT
⊥

L2(Ω)

0 ∩ RT0 = {0}.
In this case, the reduced operators are

A0 =
◦

Grad grad :
◦
H2(Ω) ⊂ L2(Ω) −→

◦
R0(Ω,S),

A1 =
◦

RotS :
◦
R(Ω,S) ∩ DD0(Ω,S) ⊂ DD0(Ω,S) −→

◦
D0(Ω,T),

A2 =
◦

DivT :
◦
D(Ω,T) ∩ Rsym,0(Ω,T) ⊂ Rsym,0(Ω,T) −→ RT

⊥
L2(Ω)

0 ,

A*
0 = div DivS : DD(Ω,S) ∩

◦
R0(Ω,S) ⊂

◦
R0(Ω,S) −→ L2(Ω),

A*
1 = sym RotT : Rsym(Ω,T) ∩

◦
D0(Ω,T) ⊂

◦
D0(Ω,T) −→ DD0(Ω,S),

A*
2 = −dev Grad : H1(Ω) ∩ RT

⊥
L2(Ω)

0 ⊂ RT
⊥

L2(Ω)

0 −→ Rsym,0(Ω,T)

as

R(div DivS) = L2(Ω), R(
◦

DivT) = RT
⊥

L2(Ω)

0 .

The functional analysis toolbox Section 2.1, e.g., Lemma 2.10, immediately lead to the following implica-
tions about Helmholtz type decompositions, Friedrichs/Poincaré type estimates and continuous inverse
operators.

Theorem 3.12. Let Ω be additionally topologically trivial. Then all occurring ranges are closed and all
related cohomology groups are trivial. Moreover, the Helmholtz type decompositions

L2(Ω,S) =
◦
R0(Ω,S)⊕

L2(Ω,S)
DD0(Ω,S), L2(Ω,T) =

◦
D0(Ω,T)⊕

L2(Ω,T)
Rsym,0(Ω,T)

hold. The kernels can be represented by the following closed ranges
◦
R0(Ω,S) = Grad grad

◦
H2(Ω),
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sym Rot H1(Ω,T) = DD0(Ω,S) = sym Rot Rsym(Ω,T) = sym Rot
(
Rsym(Ω,T) ∩

◦
D0(Ω,T)

)
,

Rot
◦
H1(Ω,S) =

◦
D0(Ω,T) = Rot

◦
R(Ω,S) = Rot

( ◦
R(Ω,S) ∩ DD0(Ω,S)

)
,

Rsym,0(Ω,T) = dev Grad H1(Ω) = dev Grad
(
H1(Ω) ∩ RT

⊥
L2(Ω)

0

)
,

and it holds

div Div H2(Ω,S) = L2(Ω) = div Div DD(Ω,S) = div Div
(
DD(Ω,S) ∩

◦
R0(Ω,S)

)
,

Div
◦
H1(Ω,T) = RT

⊥
L2(Ω)

0 = N(πRT0) = Div
◦
D(Ω,T) = Div

( ◦
D(Ω,T) ∩ Rsym,0(Ω,T)

)
.

All potentials depend continuously on the data. The potentials on the very right hand sides are uniquely
determined. There exist positive constants cGg, cD, cR such that the Friedrichs/Poincaré type estimates

∀u ∈
◦
H2(Ω) |u|

L2(Ω)
≤ cGg |Grad gradu|

L2(Ω)
,

∀M ∈ DD(Ω,S) ∩
◦
R0(Ω,S) |M|

L2(Ω)
≤ cGg |div Div M|

L2(Ω)
,

∀E ∈
◦
D(Ω,T) ∩ Rsym,0(Ω,T) |E|

L2(Ω)
≤ cD |Div E|

L2(Ω)
,

∀V ∈ H1(Ω) ∩ RT
⊥

L2(Ω)

0 |V |
L2(Ω)

≤ cD |dev GradV |
L2(Ω)

,

∀M ∈
◦
R(Ω,S) ∩ DD0(Ω,S) |M|

L2(Ω)
≤ cR |Rot M|

L2(Ω)
,

∀E ∈ Rsym(Ω,T) ∩
◦
D0(Ω,T) |E|

L2(Ω)
≤ cR | sym Rot E|

L2(Ω)

hold. Moreover, the reduced versions of the operators
◦

Grad grad, div DivS,
◦

DivT, dev Grad,
◦

RotS, sym RotT

have continuous inverse operators

(
◦

Grad grad)−1 :
◦
R0(Ω,S) −→

◦
H2(Ω),

(div DivS)−1 : L2(Ω) −→ DD(Ω,S) ∩
◦
R0(Ω,S),

(
◦

DivT)−1 : RT
⊥

L2(Ω)

0 −→
◦
D(Ω,T) ∩ Rsym,0(Ω,T),

(dev Grad)−1 : Rsym,0(Ω,T) −→ H1(Ω) ∩ RT
⊥

L2(Ω)

0 ,

(
◦

RotS)−1 :
◦
D0(Ω,T) −→

◦
R(Ω,S) ∩ DD0(Ω,S),

(sym RotT)−1 : DD0(Ω,S) −→ Rsym(Ω,T) ∩
◦
D0(Ω,T)

with norms (1 + c2Gg)1/2, (1 + c2D)1/2, resp. (1 + c2R)1/2.

Remark 3.13. Let Ω be additionally topologically trivial. The Friedrichs/Poincaré type estimate for
Rot M in the latter theorem can be slightly sharpened. Utilizing Lemma 3.4 we observe tr Rot M = 0 and
thus dev Rot M = Rot M for M ∈ R(Ω,S). Hence

∀M ∈
◦
R(Ω,S) ∩ DD0(Ω,S) |M|

L2(Ω)
≤ cR |dev Rot M|

L2(Ω)
.

Similarly and trivially we see

∀u ∈
◦
H2(Ω) |u|

L2(Ω)
≤ cGg | sym Grad gradu|

L2(Ω)
.

Recalling Remark 3.8 we have the following result.
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Remark 3.14. Let Ω be additionally topologically trivial. Theorem 3.10 and Theorem 3.12 easily lead to
the following results in terms of complexes: The sequence

{0} 0−−−−→
◦
H2(Ω)

◦
Grad grad−−−−−−→

◦
R(Ω; S)

◦
RotS−−−−→

◦
D(Ω,T)

◦
DivT−−−−→ L2(Ω)

πRT0−−−−→ RT0

and thus also its dual or adjoint sequence

{0} 0←−−−− L2(Ω) div DivS←−−−−− DD(Ω,S)
sym RotT←−−−−−− Rsym(Ω,T) − dev Grad←−−−−−−− H1(Ω)

ιRT0←−−−− RT0

are closed and exact Hilbert complexes.

Remark 3.15. The part

{0} 0−−−−→
◦
H2(Ω)

◦
Grad grad−−−−−−→

◦
R(Ω; S)

◦
RotS−−−−→ L2(Ω)

of the Hilbert complex from above and the related adjoint complex

{0} 0←−−−− L2(Ω) div DivS←−−−−− DD(Ω,S)
sym RotT←−−−−−− Rsym(Ω,T)

have been discussed in [24] for problems in general relativity.

Remark 3.16. In 2D and under similar assumptions we obtain by completely analogous but much simpler
arguments that the Hilbert complexes

{0} 0−−−−→
◦
H2(Ω)

◦
Grad grad−−−−−−→

◦
R(Ω; S)

◦
RotS−−−−→ L2(Ω)

πRT0−−−−→ RT0
,

{0} 0←−−−− L2(Ω) div DivS←−−−−− DD(Ω,S)
sym Rot←−−−−− H1(Ω)

ιRT0←−−−− RT0

are dual to each other, closed and exact. Contrary to the 3D case, the operator
◦

RotS maps a tensor field
to a vector field and the operator sym Rot ∼= sym Grad is applied row-wise to a vector field and maps this
vector field to a tensor field. The associated Helmholtz decomposition is

L2(Ω,S) =
◦
R0(Ω,S)⊕

L2(Ω,S)
DD0(Ω,S)

with
◦
R0(Ω,S) = Grad grad

◦
H2(Ω), DD0(Ω,S) = sym Rot H1(Ω).

Theorem 3.10 leads to the following so called regular decompositions.

Theorem 3.17. Let Ω be additionally topologically trivial. Then
◦
R(Ω,S) =

◦
H1(Ω,S) +

◦
R0(Ω,S),

◦
R0(Ω,S) = Grad grad

◦
H2(Ω),

◦
D(Ω,T) =

◦
H1(Ω,T) +

◦
D0(Ω,T),

◦
D0(Ω,T) = Rot

◦
H1(Ω,S),

Rsym(Ω,T) = H1(Ω,T) + Rsym,0(Ω,T), Rsym,0(Ω,T) = dev Grad H1(Ω),

DD(Ω,S) = H2(Ω,S) + DD0(Ω,S), DD0(Ω,S) = sym Rot H1(Ω,T)

with linear and continuous decomposition resp. potential operators

P◦
R(Ω,S),

◦
H1(Ω,S)

:
◦
R(Ω,S) −→

◦
H1(Ω,S), P◦

R(Ω,S),
◦
H2(Ω)

:
◦
R(Ω,S) −→

◦
H2(Ω),

P◦
D(Ω,T),

◦
H1(Ω,T)

:
◦
D(Ω,T) −→

◦
H1(Ω,T), P◦

D(Ω,T),
◦
H1(Ω,S)

:
◦
D(Ω,T) −→

◦
H1(Ω,S),

P
Rsym(Ω,T),H1(Ω,T)

: Rsym(Ω,T) −→ H1(Ω,T), P
Rsym(Ω,T),H1(Ω)

: Rsym(Ω,T) −→ H1(Ω),

P
DD(Ω,S),H2(Ω,S)

: DD(Ω,S) −→ H2(Ω,S), P
DD(Ω,S),H1(Ω,T)

: DD(Ω,S) −→ H1(Ω,T).
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Proof. Let, e.g., E ∈ Rsym(Ω,T). Then

sym Rot E ∈ DD0(Ω,S) = sym Rot H1(Ω,T)

with linear and continuous potential operator Psym RotT : DD0(Ω,S) −→ H1(Ω,T) by Theorem 3.10.
Thus, there is Ẽ ∈ H1(Ω,T) depending linearly and continuously on E with sym Rot Ẽ = sym Rot E.
Hence,

E− Ẽ ∈ Rsym,0(Ω,T) = dev Grad H1(Ω)

with linear and continuous potential operator Pdev Grad : Rsym,0(Ω,T) −→ H1(Ω) by Theorem 3.10.
Hence, there exists V ∈ H1(Ω) with E− Ẽ = dev GradV and V depends linearly and continuously on E.
The other assertions are proved analogously. �

3.2. General Bounded Strong Lipschitz Domains. In this section we consider bounded strong
Lipschitz domains Ω of general topology and will extend results of the previous section as follows. The

◦
Grad grad- and the Div div-complexes remain closed and all associated cohomology groups are finite-
dimensional. Moreover, the respective inverse operators are continuous resp. compact, and corresponding
Friedrichs/Poincaré type estimates hold. We will show this by verifying the compactness properties of
Lemma 2.7 for the various linear operators of the complexes. Then Lemma 2.5, Remark 2.6, and Theorem
2.9 immediately lead to the desired results. Using Rellich’s selection theorem we have the following
compact embeddings

D(
◦

Grad grad) ∩D(0) =
◦
H2(Ω)

cpt
↪→ L2(Ω),

D(πRT0) ∩D(dev Grad) = H1(Ω)
cpt
↪→ L2(Ω).

The two missing compactness results that would immediately lead to the desired results are

D(
◦

RotS) ∩D(div DivS) =
◦
R(Ω,S) ∩ DD(Ω,S)

cpt
↪→ L2(Ω,S),(3.5)

D(
◦

DivT) ∩D(sym RotT) =
◦
D(Ω,T) ∩ Rsym(Ω,T)

cpt
↪→ L2(Ω,T).(3.6)

The main aim of this section is to show the compactness of the two crucial embeddings (3.5)-(3.6). As
a first step we consider a trivial topology.

Lemma 3.18. Let Ω be additionally topologically trivial. Then the embeddings (3.5) and (3.6), i.e.,
◦
R(Ω,S) ∩ DD(Ω,S) ↪→ L2(Ω,S), Rsym(Ω,T) ∩

◦
D(Ω,T) ↪→ L2(Ω,T),

are compact.

Proof. Let (Mn) be a bounded sequence in
◦
R(Ω,S)∩DD(Ω,S). By Theorem 3.12 and Theorem 3.10 we

have
◦
R(Ω,S) ∩ DD(Ω,S) =

( ◦
R0(Ω,S) ∩ DD(Ω,S)

)
⊕

L2(Ω,S)

( ◦
R(Ω,S) ∩ DD0(Ω,S)

)
,

◦
R0(Ω,S) = Grad grad

◦
H2(Ω),

DD0(Ω,S) = sym Rot H1(Ω,T)

with linear and continuous potential operators. Therefore, we can decompose
◦
R(Ω,S) ∩ DD(Ω,S) 3Mn = Mn,r + Mn,d ∈

( ◦
R0(Ω,S) ∩ DD(Ω,S)

)
⊕

L2(Ω,S)

( ◦
R(Ω,S) ∩ DD0(Ω,S)

)
with Mn,r ∈ Grad grad

◦
H2(Ω) ∩ DD(Ω,S), Rot Mn,d = Rot Mn, and Mn,r = Grad gradun, un ∈

◦
H2(Ω),

as well as Mn,d ∈
◦
R(Ω,S) ∩ sym Rot H1(Ω,T), div Div Mn,r = div Div Mn, and Mn,d = sym Rot En,

En ∈ H1(Ω,T), and both un and En depend continuously on Mn, i.e.,

|un|H2(Ω)
≤ c |Mn,r|L2(Ω)

≤ c |Mn|L2(Ω)
, |En|H1(Ω)

≤ c |Mn,d|L2(Ω)
≤ c |Mn|L2(Ω)

.
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By Rellich’s selection theorem, there exist subsequences, again denoted by (un) and (En), such that (un)
converges in H1(Ω) and (En) converges in L2(Ω). Thus with Mn,m := Mn −Mm, and similarly for
Mn,m,r, Mn,m,d, un,m, En,m, we see

|Mn,m,r|2L2(Ω)
= 〈Mn,m,r,Grad gradun,m〉L2(Ω)

= 〈div Div Mn,m,r, un,m〉L2(Ω)

= 〈div Div Mn,m, un,m〉L2(Ω)
≤ c |un,m|L2(Ω)

,

|Mn,m,d|2L2(Ω)
= 〈Mn,m,d, sym Rot En,m〉L2(Ω)

= 〈Rot Mn,m,d,En,m〉L2(Ω)

= 〈Rot Mn,m,En,m〉L2(Ω)
≤ c |En,m|L2(Ω)

.

Hence, (Mn) is a Cauchy sequence in L2(Ω,S). So
◦
R(Ω,S) ∩ DD(Ω,S) ↪→ L2(Ω,S)

is compact. To show the second compact embedding, let (En) ⊂ Rsym(Ω,T) ∩
◦
D(Ω,T) be a bounded

sequence. By Theorem 3.12 and Theorem 3.10 we have

Rsym(Ω,T) ∩
◦
D(Ω,T) =

(
Rsym,0(Ω,T) ∩

◦
D(Ω,T)

)
⊕

L2(Ω,T)

(
Rsym(Ω,T) ∩

◦
D0(Ω,T)

)
,

Rsym,0(Ω,T) = dev Grad H1(Ω),
◦
D0(Ω,T) = Rot

◦
H1(Ω,S)

with linear and continuous potential operators. Therefore, we can decompose

Rsym(Ω,T) ∩
◦
D(Ω,T) 3 En = En,r + En,d ∈

(
Rsym,0(Ω,T) ∩

◦
D(Ω,T)

)
⊕

L2(Ω,T)

(
Rsym(Ω,T) ∩

◦
D0(Ω,T)

)
with En,r ∈ dev Grad H1(Ω) ∩

◦
D(Ω,T), sym Rot En,d = sym Rot En, En,r = dev GradVn, Vn ∈ H1(Ω), as

well as En,d ∈ Rsym(Ω,T) ∩ Rot
◦
H1(Ω,S), Div En,r = Div En, and En,d = Rot Mn, Mn ∈

◦
H1(Ω,S), and

both Vn and Mn depend continuously on En, i.e.,

|Vn|H1(Ω)
≤ c |En,r|L2(Ω)

≤ c |En|L2(Ω)
, |Mn|H1(Ω)

≤ c |En,d|L2(Ω)
≤ c |En|L2(Ω)

.

By Rellich’s selection theorem, there exist subsequences, again denoted by (Vn) and (Mn), such that (Vn)
converges in L2(Ω) and (Mn) converges in L2(Ω). Thus with En,m := En−Em, and similarly for En,m,r,
En,m,d, Vn,m, Mn,m, we see

|En,m,r|2L2(Ω)
= 〈En,m,r,dev GradVn,m〉L2(Ω)

= −〈Div En,m,r, Vn,m〉L2(Ω)

= −〈Div En,m, Vn,m〉L2(Ω)
≤ c |Vn,m|L2(Ω)

,

|En,m,d|2L2(Ω)
= 〈En,m,d,Rot Mn,m〉L2(Ω)

= 〈sym Rot En,m,d,Mn,m〉L2(Ω)

= 〈sym Rot En,m,Mn,m〉L2(Ω)
≤ c |Mn,m|L2(Ω)

.

Note, that here the symmetry of Mn,m is crucial. Finally, (En) is a Cauchy sequence in L2(Ω,T). So

Rsym(Ω,T) ∩
◦
D(Ω,T) ↪→ L2(Ω,T)

is compact. �

For general topologies we will use a partition of unity argument. The next lemma, which we will prove
in the Appendix, provides the necessary tools for this.

Lemma 3.19. Let ϕ ∈
◦
C∞(R3).

(i) If M ∈
◦
R(Ω) resp.

◦
R(Ω,S) resp.

◦
R(Ω,T), then ϕM ∈

◦
R(Ω) resp.

◦
R(Ω,S) resp.

◦
R(Ω,T) and

Rot(ϕM) = ϕRot M + gradϕ×M.(3.7)
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(ii) If M ∈ R(Ω) resp. R(Ω,S) resp. R(Ω,T), then ϕM ∈ R(Ω) resp. R(Ω,S) resp. R(Ω,T) and
(3.7) holds.

(iii) If E ∈
◦
D(Ω) resp.

◦
D(Ω,T) resp.

◦
D(Ω,S), then ϕE ∈

◦
D(Ω) resp.

◦
D(Ω,T) resp.

◦
D(Ω,S) and

Div(ϕE) = ϕDiv E + gradϕ ·E.(3.8)

(iv) If E ∈ D(Ω) resp. D(Ω,T) resp. D(Ω,S), then ϕE ∈ D(Ω) resp. D(Ω,T) resp. D(Ω,S) and
(3.8) holds.

(v) If E ∈ Rsym(Ω,T), then ϕE ∈ Rsym(Ω,T) and

sym Rot(ϕE) = ϕ sym Rot E + sym(gradϕ×E).

(vi) If M ∈ DD(Ω,S), then ϕM ∈ DD0,−1(Ω,S) and

div Div(ϕM) = ϕdiv Div M + 2 gradϕ ·Div M + tr(Grad gradϕ ·M).

By mollifying these formulas extend to ϕ ∈
◦
C0,1(R3) resp. ϕ ∈

◦
C1,1(R3).

Here gradϕ× resp. gradϕ · is applied row-wise to a tensor M and we see gradϕ ·M = M gradϕ.
Moreover, we introduce

DD0,−1(Ω,S) = {M ∈ L2(Ω,S) : div Div M ∈ H−1(Ω)}.

Another auxiliary result required for the compactness proof is contained in the next lemma.

Lemma 3.20. The regular (type) decomposition

DD0,−1(Ω,S) =
◦
H1(Ω) · Iu DD0(Ω,S)

holds, where u denotes the direct sum. More precisely, for each M ∈ DD0,−1(Ω,S) there are unique

u ∈
◦
H1(Ω) and M0 ∈ DD0(Ω,S) such that M = u I + M0. The scalar function u ∈

◦
H1(Ω) is given as the

unique solution of the Dirichlet-Poisson problem

〈gradu, gradϕ〉
L2(Ω)

= −〈div Div M, ϕ〉
H−1(Ω)

for all ϕ ∈
◦
H1(Ω),

and the decomposition is continuous, more precisely there exists c > 0, such that

|u|
H1(Ω)

≤ c |div Div M|
H−1(Ω)

, |M− u I|
L2(Ω)

≤ c |M|
DD0,−1(Ω,S)

.

Proof. The unique solution u ∈
◦
H1(Ω) satisfies

H−1(Ω) 3 div Div u I = div gradu = div Div M,

i.e., M0 := M− u I ∈ DD0(Ω,S), which shows the decomposition. Moreover,

|u|
H1(Ω)

≤ (1 + c2g) |div Div M|
H−1(Ω)

shows, that u depends continuously on M and hence also M0 since

|M0|L2(Ω)
≤ |M|

L2(Ω)
+ |u|

L2(Ω)
≤
√

2 (1 + c2g) |M|
DD0,−1(Ω,S)

.

Let u I ∈ DD0(Ω,S) with u ∈
◦
H1(Ω). Then 0 = div Div u I = div gradu = ∆u, yielding u = 0. Hence,

the decomposition is direct, completing the proof. �

Lemma 3.21. The embeddings (3.5)-(3.6), i.e.,
◦
R(Ω,S) ∩ DD(Ω,S) ↪→ L2(Ω,S), Rsym(Ω,T) ∩

◦
D(Ω,T) ↪→ L2(Ω,T),

are compact.
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Proof. Let (Ui) be an open covering of Ω, such that Ωi := Ω∩Ui is topologically trivial for all i. As Ω is

compact, there is a finite subcovering denoted by (Ui)i=1,...,I with I ∈ N. Let (ϕi) with ϕi ∈
◦
C∞(Ui) be

a partition of unity subordinate to (Ui). Suppose (En) ⊂ Rsym(Ω,T) ∩
◦
D(Ω,T) is a bounded sequence.

Then En =
∑I
i=1 ϕiEn and (ϕiEn) ⊂ Rsym(Ωi,T) ∩

◦
D(Ωi,T) is a bounded sequence for all i by Lemma

3.19. As Ωi is topologically trivial, there exists a subsequence, again denoted by (ϕiEn), which is a
Cauchy sequence in L2(Ωi) by Lemma 3.18. Picking successively subsequences yields that (ϕiEn) is
a Cauchy sequence in L2(Ωi) for all i. Hence (En) is a Cauchy sequence in L2(Ω). So the second

embedding of the lemma is compact. Let (Mn) ⊂
◦
R(Ω,S) ∩ DD(Ω,S) be a bounded sequence. Then

Mn =
∑I
i=1 ϕiMn and (ϕiMn) ⊂

◦
R(Ωi,S) ∩ DD0,−1(Ωi,S) is a bounded sequence for all i by Lemma

3.19 as |Div Mn|H−1(Ω)
≤ |Mn|L2(Ω)

. Using Lemma 3.20 we decompose

ϕiMn = ui,n I + M0,i,n ∈
◦
H1(Ωi) · Iu

( ◦
R(Ωi,S) ∩ DD0(Ωi,S)

)
.

Moreover, (ui,n) is bounded in
◦
H1(Ωi) and (M0,i,n) is bounded in

( ◦
R(Ωi,S) ∩ DD0(Ωi,S)

)
. By Rellich’s

selection theorem and Lemma 3.18 as well as picking successively subsequences we get that (ϕiMn) is a
Cauchy sequence in L2(Ωi) for all i. Hence (Mn) is a Cauchy sequence in L2(Ω), showing that the first
embedding of the lemma is also compact and finishing the proof. �

Utilizing the crucial compact embeddings of Lemma 3.21, we can apply the functional analysis toolbox
Section 2.1 to the (linear, densely defined, and closed ‘complex’) operators A0, A1, A2, A*

0, A*
1, A*

2. In
this general case the reduced operators are

A0 =
◦

Grad grad :
◦
H2(Ω) ⊂ L2(Ω) −→ Grad grad

◦
H2(Ω),

A1 =
◦

RotS :
◦
R(Ω,S) ∩ sym Rot Rsym(Ω,T) ⊂ sym Rot Rsym(Ω,T) −→ Rot

◦
R(Ω,S),

A2 =
◦

DivT :
◦
D(Ω,T) ∩ dev Grad H1(Ω) ⊂ dev Grad H1(Ω) −→ RT

⊥
L2(Ω)

0 ,

A*
0 = div DivS : DD(Ω,S) ∩Grad grad

◦
H2(Ω) ⊂ Grad grad

◦
H2(Ω) −→ L2(Ω),

A*
1 = sym RotT : Rsym(Ω,T) ∩ Rot

◦
R(Ω,S) ⊂ Rot

◦
R(Ω,S) −→ sym Rot Rsym(Ω,T),

A*
2 = −dev Grad : H1(Ω) ∩ RT

⊥
L2(Ω)

0 ⊂ RT
⊥

L2(Ω)

0 −→ dev Grad H1(Ω)

as

div Div DD(Ω,S) = R(div DivS) = N(
◦

Grad grad)
⊥

L2(Ω) = {0}⊥L2(Ω) = L2(Ω),

Div
◦
D(Ω,T) = R(

◦
DivT) = N(dev Grad)

⊥
L2(Ω) = RT

⊥
L2(Ω)

0 .

Note that by the compact embeddings of Lemma 3.21 all ranges are actually closed and we can skip the
closure bars. We obtain the following theorem.

Theorem 3.22. It holds:
(i) The ranges

R(
◦

Grad grad) = Grad grad
◦
H2(Ω),

L2(Ω) = R(div DivS) = div Div DD(Ω,S) = div Div
(
DD(Ω,S) ∩Grad grad

◦
H2(Ω)

)
,

R(
◦

RotS) = Rot
◦
R(Ω,S) = Rot

( ◦
R(Ω,S) ∩ sym Rot Rsym(Ω,T)

)
,

R(sym RotT) = sym Rot Rsym(Ω,T) = sym Rot
(
Rsym(Ω,T) ∩ Rot

◦
R(Ω,S)

)
,
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RT
⊥

L2(Ω)

0 = R(
◦

DivT) = Div
◦
D(Ω,T) = Div

( ◦
D(Ω,T) ∩ dev Grad H1(Ω)

)
,

R(dev Grad) = dev Grad H1(Ω) = dev Grad
(
H1(Ω) ∩ RT

⊥
L2(Ω)

0

)
are closed. The more regular potentials on the right hand sides are uniquely determined and
depend linearly and continuously on the data, see (v).

(ii) The cohomology groups

HD(Ω,S) :=
◦
R0(Ω,S) ∩ DD0(Ω,S), HN(Ω,T) :=

◦
D0(Ω,T) ∩ Rsym,0(Ω,T)

are finite dimensional and may be called Dirichlet resp. Neumann tensor fields.
(iii) The Hilbert complexes from Remark 3.8, i.e.,

{0} 0−−−−→
◦
H2(Ω)

◦
Grad grad−−−−−−→

◦
R(Ω; S)

◦
RotS−−−−→

◦
D(Ω,T)

◦
DivT−−−−→ L2(Ω)

πRT0−−−−→ RT0

and its adjoint

{0} 0←−−−− L2(Ω) div DivS←−−−−− DD(Ω,S)
sym RotT←−−−−−− Rsym(Ω,T) − dev Grad←−−−−−−− H1(Ω)

ιRT0←−−−− RT0,

are closed. They are also exact, if and only if HD(Ω,S) = {0}, HN(Ω,T) = {0}. The latter holds,
if Ω is topologically trivial.

(iv) The Helmholtz type decompositions

L2(Ω,S) = Grad grad
◦
H2(Ω)⊕

L2(Ω,S)
DD0(Ω,S)

=
◦
R0(Ω,S)⊕

L2(Ω,S)
sym Rot Rsym(Ω,T)

= Grad grad
◦
H2(Ω)⊕

L2(Ω,S)
HD(Ω,S)⊕

L2(Ω,S)
sym Rot Rsym(Ω,T),

L2(Ω,T) = Rot
◦
R(Ω,S)⊕

L2(Ω,T)
Rsym,0(Ω,T)

=
◦
D0(Ω,T)⊕

L2(Ω,T)
dev Grad H1(Ω)

= Rot
◦
R(Ω,S)⊕

L2(Ω,T)
HN(Ω,T)⊕

L2(Ω,T)
dev Grad H1(Ω)

are valid.
(v) There exist positive constants cGg, cD, cR, such that the Friedrichs/Poincaré type estimates

∀u ∈
◦
H2(Ω) |u|

L2(Ω)
≤ cGg |Grad gradu|

L2(Ω)
,

∀M ∈ DD(Ω,S) ∩Grad grad
◦
H2(Ω) |M|

L2(Ω)
≤ cGg |div Div M|

L2(Ω)
,

∀E ∈
◦
D(Ω,T) ∩ dev Grad H1(Ω) |E|

L2(Ω)
≤ cD |Div E|

L2(Ω)
,

∀V ∈ H1(Ω) ∩ RT
⊥

L2(Ω)

0 |V |
L2(Ω)

≤ cD |dev GradV |
L2(Ω)

,

∀M ∈
◦
R(Ω,S) ∩ sym Rot Rsym(Ω,T) |M|

L2(Ω)
≤ cR |Rot M|

L2(Ω)
,

∀E ∈ Rsym(Ω,T) ∩ Rot
◦
R(Ω,S) |E|

L2(Ω)
≤ cR | sym Rot E|

L2(Ω)

holdi.

iNote Rot M = dev Rot M for M ∈ R(Ω, S) and thus for all M ∈
◦
R(Ω, S) ∩ sym Rot Rsym(Ω, T)

|M|
L2(Ω)

≤ cR |Rot M|
L2(Ω)

= cR | dev Rot M|
L2(Ω)

.
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(vi) The inverse operators

(
◦

Grad grad)−1 : Grad grad
◦
H2(Ω) −→

◦
H2(Ω),

(div DivS)−1 : L2(Ω) −→ DD(Ω,S) ∩Grad grad
◦
H2(Ω),

(
◦

DivT)−1 : RT
⊥

L2(Ω)

0 −→
◦
D(Ω,T) ∩ dev Grad H1(Ω),

(dev Grad)−1 : dev Grad H1(Ω) −→ H1(Ω) ∩ RT
⊥

L2(Ω)

0 ,

(
◦

RotS)−1 : Rot
◦
R(Ω,S) −→

◦
R(Ω,S) ∩ sym Rot Rsym(Ω,T),

(sym RotT)−1 : sym Rot Rsym(Ω,T) −→ Rsym(Ω,T) ∩ Rot
◦
R(Ω,S)

are continuous with norms (1 + c2Gg)1/2 resp. (1 + c2D)1/2, resp. (1 + c2R)1/2, and their modifications

(
◦

Grad grad)−1 : Grad grad
◦
H2(Ω) −→

◦
H1(Ω) ⊂ L2(Ω),

(div DivS)−1 : L2(Ω) −→ Grad grad
◦
H2(Ω) ⊂ L2(Ω,S),

(
◦

DivT)−1 : RT
⊥

L2(Ω)

0 −→ dev Grad H1(Ω) ⊂ L2(Ω,T),

(dev Grad)−1 : dev Grad H1(Ω) −→ RT
⊥

L2(Ω)

0 ⊂ L2(Ω),

(
◦

RotS)−1 : Rot
◦
R(Ω,S) −→ sym Rot Rsym(Ω,T) ⊂ L2(Ω,S),

(sym RotT)−1 : sym Rot Rsym(Ω,T) −→ Rot
◦
R(Ω,S) ⊂ L2(Ω,T)

are compact with norms cGg, cD, resp. cR.

We note
◦
R0(Ω,S) = Grad grad

◦
H2(Ω)⊕

L2(Ω,S)
HD(Ω,S),

DD0(Ω,S) = sym Rot Rsym(Ω,T)⊕
L2(Ω,S)

HD(Ω,S),
◦
D0(Ω,T) = Rot

◦
R(Ω,S)⊕

L2(Ω,T)
HN(Ω,T),

Rsym,0(Ω,T) = dev Grad H1(Ω)⊕
L2(Ω,T)

HN(Ω,T).

Finally, even parts of Theorem 3.10 and Theorem 3.17 extend to the general case, i.e., we have regular
potentials and regular decompositions for bounded strong Lipschitz domains as well.

Theorem 3.23. The regular decompositions

(i)
◦
R(Ω,S) =

◦
H1(Ω,S) + Grad grad

◦
H2(Ω),

(ii)
◦
D(Ω,T) =

◦
H1(Ω,T) + Rot

◦
H1(Ω,S),

(iii) Rsym(Ω,T) = H1(Ω,T) + dev Grad H1(Ω),

(iv) DD(Ω,S) = H2(Ω,S) + DD0(Ω,S)

hold with linear and continuous (regular) potential operators.

Proof. As in the proof of Lemma 3.21, let (Ui) be an open covering of Ω, such that Ωi := Ω ∩ Ui is
topologically trivial for all i. As Ω is compact, there is a finite subcovering denoted by (Ui)i=1,...,I with

I ∈ N. Let (ϕi) with ϕi ∈
◦
C∞(Ui) be a partition of unity subordinate to (Ui) and let additionally
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φi ∈
◦
C∞(Ui) with φi|suppϕi

= 1. To prove (i), suppose M ∈
◦
R(Ω,S). By Lemma 3.19 and Theorem 3.17

we have
ϕiM ∈

◦
R(Ωi,S) =

◦
H1(Ωi,S) +

◦
R0(Ωi,S) =

◦
H1(Ωi,S) + Grad grad

◦
H2(Ωi).

Hence, ϕiM = Mi + Grad gradui with Mi ∈
◦
H1(Ωi,S) and ui ∈

◦
H2(Ωi). Let M̂i and ûi denote the

extensions by zero of Mi and ui. Then M̂i ∈
◦
H1(Ω,S) and ûi ∈

◦
H2(Ω). Thus

M =
∑
i

ϕiM =
∑
i

M̂i + Grad grad
∑
i

ûi ∈
◦
H1(Ω,S) + Grad grad

◦
H2(Ω),

and all applied operations are continuous. Similarly we proof (ii). To show (iii), let E ∈ Rsym(Ω,T). By
Lemma 3.19 and Theorem 3.17 we have

ϕiE ∈ Rsym(Ωi,T) = H1(Ωi,T) + Rsym,0(Ωi,T) = H1(Ωi,T) + dev Grad H1(Ωi).

Hence, ϕiE = Ei + dev GradVi with Ei ∈ H1(Ωi,T) and Vi ∈ H1(Ωi). In Ωi we observe

ϕiE = φiϕiE = φiEi + φi dev GradVi

= φiEi − dev(Vi · grad> φi) + dev Grad(φiVi) ∈ H1(Ωi,T) + dev Grad H1(Ωi).

Let Êi and V̂i denote the extensions by zero of φiEi − dev(Vi · grad> φi) and φiVi. Then Êi ∈ H1(Ω,T)
and V̂i ∈ H1(Ω). Thus

E =
∑
i

ϕiE =
∑
i

Êi + dev Grad
∑
i

V̂i ∈ H1(Ω,T) + dev Grad H1(Ω),

and all applied operations are continuous. To show (iv), let M ∈ DD(Ω,S). Then div Div M ∈ L2(Ω) and
by Theorem 3.10 and Remark 3.11 (ii) there is some M̃ ∈ H2(Ω,S), together with a linear and continuous
potential operator, with div Div M̃ = div Div M. Therefore, we have M − M̃ ∈ DD0(Ω,S), completing
the proof. �

Applying
◦

RotS,
◦

DivT, and sym RotT, div DivS to the latter regular decompositions we get the following
regular potentials.

Theorem 3.24. It holds

(i) R(
◦

RotS) = Rot
◦
R(Ω,S) = Rot

◦
H1(Ω,S),

(ii) RT
⊥

L2(Ω)

0 = R(
◦

DivT) = Div
◦
D(Ω,T) = Div

◦
H1(Ω,T),

(iii) R(sym RotT) = sym Rot Rsym(Ω,T) = sym Rot H1(Ω,T),

(iv) L2(Ω) = R(div DivS) = div Div DD(Ω,S) = div Div H2(Ω,S)

with corresponding linear and continuous (regular) potential operators (on the right hand sides).

Remark 3.25. While the results about the regular potentials in Theorem 3.24 hold in full generality for
all operators, one may wonder that the regular decompositions from Theorem 3.23 hold in full generality
only for (i)-(iii), but not for (iv), i.e., we just have in (iv)

DD(Ω,S) = H2(Ω,S) + DD0(Ω,S) ⊃ H2(Ω,S) + sym Rot H1(Ω,T).

The reason for the failure of the partition of unity argument from the proof of Theorem 3.23 is the
following: Let M ∈ DD(Ω,S). By Lemma 3.19 (vi) we just get ϕiM ∈ DD0,−1(Ωi,S), see also the proof
of Lemma 3.21. Using Lemma 3.20 and Theorem 3.17 we can decompose

ϕiM = ui I + sym Rot Ei ∈
◦
H1(Ωi) · Iu sym Rot H1(Ωi,T)

as DD0(Ωi,S) = sym Rot H1(Ωi,T). In Ωi we observe

ϕiM = φiϕiM = φiui I + φi sym Rot Ei
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= φiui I− sym(gradφi ×Ei) + sym Rot(φiEi) ∈ H1(Ωi,S) + sym Rot H1(Ωi,T).

Let M̂i and Êi denote the extensions by zero of φiui I−sym(gradφi×Ei) and φiEi. Then M̂i ∈ H1(Ω,S)
and Êi ∈ H1(Ω,T) and thus

M =
∑
i

ϕiM =
∑
i

M̂i + sym Rot
∑
i

Êi ∈ H1(Ω,S) + sym Rot H1(Ω,T),

and all applied operations are continuous. Therefore, we obtain

H2(Ω,S) + sym Rot H1(Ω,T) ⊂ H2(Ω,S) + DD0(Ω,S) = DD(Ω,S) ⊂ H1(Ω,S) + sym Rot H1(Ω,T).

So we have lost one Sobolev order in the summand H1(Ω,S).

4. Application to Biharmonic Problems

By ∆2 = div Div Grad grad, a standard (primal) variational formulation of (1.1) in R3 reads as follows:

For given f ∈ H−2(Ω), find u ∈
◦
H2(Ω) such that

(4.1) 〈Grad gradu,Grad gradφ〉
L2(Ω)

= 〈f, φ〉
H−2(Ω)

for all φ ∈
◦
H2(Ω).

Existence, uniqueness, and continuous dependence on f of a solution to (4.1) is guaranteed by the theorem
of Lax-Milgram, see, e.g., [16, 15] or Lemma 3.3. Note that then

M := Grad gradu ∈
◦
R0(Ω,S)	

L2(Ω,S)
HD(Ω,S) ⊂ L2(Ω,S)

with div Div M = f ∈ H−2(Ω). In other words the operator

div Div : L2(Ω,S)→ H−2(Ω)(4.2)

is surjective and

div Div :
◦
R0(Ω,S)	

L2(Ω,S)
HD(Ω,S)→ H−2(Ω)(4.3)

is bijective and even a topological isomorphism by the bounded inverse theorem. For our decomposition
result we need the following variant of the Hilbert complex from Theorem 3.22.

RT0

ιRT0−−−−→ H1(Ω) − dev Grad−−−−−−−→ Rsym(Ω,T)
sym RotT−−−−−−→ DD0,−1(Ω,S) div DivS−−−−−→ H−1(Ω) 0−−−−→ {0},

where we recall DD0,−1(Ω,S) from Lemma 3.20. This is obviously also a closed Hilbert complex as
div Div : DD0,−1(Ω,S)→ H−1(Ω) is surjective as well by (4.2). Observe that

H1(Ω,S) ⊂ DD0,−1(Ω,S) ⊂ L2(Ω,S).

For right-hand sides f ∈ H−1(Ω) we consider the following mixed variational problem for u and the

Hessian M of u: Find M ∈ DD0,−1(Ω,S) and u ∈
◦
H1(Ω) such that

〈M,Ψ〉
L2(Ω)

+ 〈u,div Div Ψ〉
H−1(Ω)

= 0 for all Ψ ∈ DD0,−1(Ω,S),(4.4)

〈div Div M, ψ〉
H−1(Ω)

= −〈f, ψ〉
H−1(Ω)

for all ψ ∈
◦
H1(Ω).(4.5)

The first row and the second row of this mixed problem are variational formulations of (1.2) and (1.3),
respectively. We recall the following two results related to these mixed problems from [14].

Theorem 4.1. Let f ∈ H−1(Ω). Then:
(i) Problem (4.4)-(4.5) is a well-posed saddle point problem.

(ii) The variational problems (4.1) and (4.4)-(4.5) are equivalent, i.e., if u ∈
◦
H2(Ω) solves (4.1),

then M = −Grad gradu lies in DD0,−1(Ω,S) and (M, u) solves (4.4)-(4.5). And, vice versa, if

(M, u) ∈ DD0,−1(Ω,S) ×
◦
H1(Ω) solves (4.4)-(4.5), then u ∈

◦
H2(Ω) with Grad gradu = −M and

u solves (4.1).
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Although only two-dimensional biharmonic problems were considered in [14], the proof of the latter
theorem is completely identical for the three-dimensional case. The same holds for Lemma 3.20.

Proof. To show (i), we first note that (Φ,Ψ) 7→ 〈Φ,Ψ〉
L2(Ω)

is coercive over the kernel of (4.5), i.e., for

Φ ∈ DD0(Ω,S) we have 〈Φ,Φ〉
L2(Ω)

= |Φ|2
L2(Ω)

= |Φ|2
DD0,−1(Ω,S)

. Moreover, the inf-sup-condition holds,
as

inf
06=ϕ∈

◦
H1(Ω)

sup
06=Φ∈DD0,−1(Ω,S)

〈ϕ,div Div Φ〉
H−1(Ω)

| gradϕ|
L2(Ω)

|Φ|
DD0,−1(Ω,S)

≥ inf
06=ϕ∈

◦
H1(Ω)

−〈ϕ,div Divϕ I〉
H−1(Ω)

| gradϕ|
L2(Ω)

|ϕ I|
DD0,−1(Ω,S)

= inf
06=ϕ∈

◦
H1(Ω)

| gradϕ|
L2(Ω)(

|ϕ I|2
L2(Ω)

+ |div Div(ϕ I)|2
H−1(Ω)

)1/2

= inf
06=ϕ∈

◦
H1(Ω)

| gradϕ|
L2(Ω)(

3|ϕ|2
L2(Ω)

+ | gradϕ|2
L2(Ω)

)1/2
≥ (3 c2g + 1)−1/2

by choosing Φ := −ϕ I ∈
◦
H1(Ω) · I ⊂ DD0,−1(Ω,S) and observing

−〈ϕ,div Div(ϕ I)〉
H−1(Ω)

= −〈ϕ,div gradϕ〉
H−1(Ω)

= | gradϕ|2
L2(Ω)

,

|div Div(ϕ I)|
H−1(Ω)

= sup
06=φ∈

◦
H1(Ω)

〈φ, div gradϕ〉
H−1(Ω)

| gradφ|
L2(Ω)

= sup
06=φ∈

◦
H1(Ω)

〈gradφ, gradϕ〉
L2(Ω)

| gradφ|
L2(Ω)

= | gradϕ|
L2(Ω)

.

Note that both the primal problem (4.1) and the mixed problem (4.4)-(4.5) are well-posed. So, it suffices

to show the first part of (ii) only. The reverse direction follows then automatically. Let u ∈
◦
H2(Ω) solve

(4.1). Then M := −Grad gradu ∈ DD0,−1(Ω,S) with div Div M = −f in H−2(Ω) and hence in H−1(Ω).
Thus (4.5) holds. Moreover, for Ψ ∈ DD0,−1(Ω,S) we see

〈M,Ψ〉
L2(Ω)

= −〈Grad gradu,Ψ〉
L2(Ω)

= −〈u,div Div Ψ〉
H−2(Ω)

= −〈u,div Div Ψ〉
H−1(Ω)

and hence (4.4) is true. Therefore, (M, u) solves (4.4)-(4.5). �

Remark 4.2. For convenience of the reader, we give additionally a proof of the other direction as well:

If (M, u) in DD0,−1(Ω,S) ×
◦
H1(Ω) solves (4.4)-(4.5), then div Div M = −f in H−1(Ω) and (4.4) holds.

Especially, (4.4) holds for Ψ ∈ H2(Ω,S) ⊂ H1(Ω,S) ⊂ DD0,−1(Ω,S), i.e.,

−〈M,Ψ〉
L2(Ω)

= 〈u,div Div Ψ〉
H−1(Ω)

= 〈u,div Div Ψ〉
L2(Ω)

.(4.6)

But then (4.6) holds for all Ψ ∈ H2(Ω) as sym Ψ ∈ H2(Ω,S) and

−〈M,Ψ〉
L2(Ω)

= −〈M, sym Ψ〉
L2(Ω)

= 〈u,div Div sym Ψ〉
L2(Ω)

= 〈u,div Div Ψ〉
L2(Ω)

,(4.7)

since div Div skw Ψ = 0 by

〈div Div skw Ψ, φ〉
L2(Ω)

= 〈skw Ψ,Grad gradφ〉
L2(Ω)

= 0

for all φ ∈
◦
C∞(Ω). (4.7) yields that u ∈

◦
H2(Ω) with Grad gradu = −M. Finally, for all φ ∈

◦
H2(Ω)

〈Grad gradu,Grad gradφ〉
L2(Ω)

= −〈M,Grad gradφ〉
L2(Ω)

= −〈div Div M, φ〉
H−2(Ω)

= 〈f, φ〉
H−2(Ω)

,

showing that u ∈
◦
H2(Ω) solves (4.1).
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We note that the decomposition of DD0,−1(Ω,S) in Lemma 3.20 is different to the Helmholtz type
decomposition of the larger space L2(Ω,S) in Theorem 3.12 and Theorem 3.22 and does not involve the

Hessian of scalar functions in
◦
H2(Ω). Using the decomposition of DD0,−1(Ω,S) in Lemma 3.20, we have

the following decomposition result for the biharmonic problem. Let (M, u) ∈ DD0,−1(Ω,S) ×
◦
H1(Ω) be

the unique solution of (4.4)-(4.5). Using Lemma 3.20 we have the following direct decompositions for
M,Ψ ∈ DD0,−1(Ω,S)

M = p I + M0, Ψ = ϕ I + Ψ0, p, ϕ ∈
◦
H1(Ω), M0,Ψ0 ∈ DD0(Ω,S).

This allows to rewrite (4.4)-(4.5) equivalently in terms of (p,M0, u) and for all (ϕ,Ψ0, ψ), i.e.,

〈p I, ϕ I〉
L2(Ω)

+ 〈M0,Ψ0〉L2(Ω)
+ 〈p I,Ψ0〉L2(Ω)

+ 〈M0, ϕ I〉
L2(Ω)

+ 〈u,div Div(ϕ I)〉
H−1(Ω)

= 0,

〈div Div(p I), ψ〉
H−1(Ω)

= −〈f, ψ〉
H−1(Ω)

or equivalently

〈gradu, gradϕ〉
L2(Ω)

+ 3〈p, ϕ〉
L2(Ω)

+ 〈M0,Ψ0〉L2(Ω)
+ 〈p, tr Ψ0〉L2(Ω)

+ 〈tr M0, ϕ〉L2(Ω)
= 0,

〈grad p, gradψ〉
L2(Ω)

= −〈f, ψ〉
H−1(Ω)

,

which leads to the equivalent system

〈gradu, gradϕ〉
L2(Ω)

+ 3〈p, ϕ〉
L2(Ω)

+ 〈tr M0, ϕ〉L2(Ω)
= 0,

+〈M0,Ψ0〉L2(Ω)
+ 〈p, tr Ψ0〉L2(Ω)

= 0,

〈grad p, gradψ〉
L2(Ω)

= −〈f, ψ〉
H−1(Ω)

.

Theorem 4.3. The variational problem (4.4)-(4.5) is equivalent to the following well-posed and uniquely

solvable variational problem. For f ∈ H−1(Ω) find p ∈
◦
H1(Ω), M0 ∈ DD0(Ω,S), and u ∈

◦
H1(Ω) such that

〈gradu, gradϕ〉
L2(Ω)

+ 〈tr M0, ϕ〉L2(Ω)
+ 3〈p, ϕ〉

L2(Ω)
= 0,(4.8)

〈M0,Ψ0〉L2(Ω)
+ 〈p, tr Ψ0〉L2(Ω)

= 0,(4.9)

〈grad p, gradψ〉
L2(Ω)

= −〈f, ψ〉
H−1(Ω)

(4.10)

for all ψ ∈
◦
H1(Ω), Ψ0 ∈ DD0(Ω,S), and ϕ ∈

◦
H1(Ω). Moreover, the unique solution (M, u) of (4.4)-(4.5)

is given by M := p I + M0 and u for the unique solution (p,M0, u) of (4.11)-(4.13).

If Ω is additionally topologically trivial, then by Theorem 3.12 or Theorem 3.22

DD0(Ω,S) = sym Rot Rsym(Ω,T) = sym Rot
(
Rsym(Ω,T) ∩

◦
D0(Ω,T)

)
and we obtain the following result.

Theorem 4.4. Let Ω be additionally topologically trivial. The variational problem (4.4)-(4.5) is equivalent

to the following well-posed and uniquely solvable variational problem. For f ∈ H−1(Ω) find p ∈
◦
H1(Ω),

E ∈ Rsym(Ω,T) ∩
◦
D0(Ω,T), and u ∈

◦
H1(Ω) such that

〈gradu, gradϕ〉
L2(Ω)

+ 〈tr sym Rot E, ϕ〉
L2(Ω)

+ 3〈p, ϕ〉
L2(Ω)

= 0,(4.11)

〈sym Rot E, sym Rot Φ〉
L2(Ω)

+ 〈p, tr sym Rot Φ〉
L2(Ω)

= 0,(4.12)

〈grad p, gradψ〉
L2(Ω)

= −〈f, ψ〉
H−1(Ω)

(4.13)

for all ψ ∈
◦
H1(Ω), Φ ∈ Rsym(Ω,T) ∩

◦
D0(Ω,T), and ϕ ∈

◦
H1(Ω). Moreover, the unique solution (M, u) of

(4.4)-(4.5) is given by M := p I + sym Rot E and u for the unique solution (p,E, u) of (4.11)-(4.13).

Note that, e.g., 〈tr sym Rot E, ϕ〉
L2(Ω)

= 〈sym Rot E, ϕ I〉
L2(Ω)

and 3〈p, ϕ〉
L2(Ω)

= 〈p I, ϕ I〉
L2(Ω)

.
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Proof. (4.4)-(4.5) is equivalent to (4.8)-(4.10) and hence also to (4.11)-(4.13), if the latter system is well-
posed. By Theorem 3.12 or Theorem 3.22 the bilinear form 〈sym Rot · , sym Rot · 〉

L2(Ω)
is coercive over

Rsym(Ω,T) ∩
◦
D0(Ω,T), which shows the consecutive unique solvability of (4.11)-(4.13). �

The three problems in the previous theorem are weak formulations of the following three second-order
problems in strong form. A homogeneous Dirichlet Poisson problem for the auxiliary scalar function p

∆p = f in Ω, p = 0 on Γ,

a second-order inhomogeneous Neumann type Rot sym Rot-Div-system for the auxiliary tensor field E

tr E = 0, Rot sym Rot E = −Rot(p I) = spn grad p, Div E = 0 in Ω,
n× sym Rot E = −n× p I = p spnn = 0, En = 0 on Γ,

and, finally, a homogeneous Dirichlet Poisson problem for the original scalar function u

∆u = 3p+ tr sym Rot E = tr(p I + sym Rot E) in Ω, u = 0 on Γ.

In other words, the system (4.11)-(4.13) has triangular structure 3 tr sym RotT −
◦
∆

◦
RotS( · I)

◦
RotS sym RotT 0

−
◦
∆ 0 0



p

E

u

 =


0

0

−f


with (tr sym RotT)∗ =

◦
RotS( · I). Indeed we see that E ∈ Rsym(Ω,T) ∩

◦
D0(Ω,T) with

〈sym Rot E, sym Rot Φ〉
L2(Ω)

+ 〈p, tr sym Rot Φ〉
L2(Ω)

= 0

for all Φ ∈ Rsym(Ω,T) ∩
◦
D0(Ω,T) is equivalent to E ∈ Rsym(Ω,T) ∩

◦
D0(Ω,T) and

〈sym Rot E + p I, sym Rot Φ〉
L2(Ω)

= 0(4.14)

for all Φ ∈ Rsym(Ω,T) as by Theorem 3.12

sym Rot
(
Rsym(Ω,T) ∩

◦
D0(Ω,T)

)
= sym Rot Rsym(Ω,T).(4.15)

Now (4.14) shows that

sym Rot E + p I ∈ D(sym Rot∗T) = D(
◦

RotS) =
◦
R(Ω,S)

with Rot(sym Rot E + p I) = 0.

Finally, we want to get rid of the complicated space Rsym(Ω,T)∩
◦
D0(Ω,T) in the variational formulation

in Theorem 4.4, which might be very complicated to implement in forthcoming numerical applications
using finite elements due to the solenoidal and homogeneous normal boundary conditions. For given

p ∈
◦
H1(Ω) the part (4.12), i.e., find E ∈ Rsym(Ω,T) ∩

◦
D0(Ω,T) such that

〈sym Rot E, sym Rot Φ〉
L2(Ω)

+ 〈p, tr sym Rot Φ〉
L2(Ω)

= 0(4.16)

for all Φ ∈ Rsym(Ω,T)∩
◦
D0(Ω,T), of the variational system (4.11)-(4.13), has also a saddle point structure.

By Theorem 3.12 we have (4.15) as well as
◦
D0(Ω,T) = Rsym,0(Ω,T)

⊥
L2(Ω,T) = dev Grad

(
H1(Ω) ∩ RT

⊥
L2(Ω)

0

)⊥
L2(Ω) .

Hence (4.16) is equivalent to find E ∈ Rsym(Ω,T) such that

〈sym Rot E, sym Rot Φ〉
L2(Ω)

+ 〈p, tr sym Rot Φ〉
L2(Ω)

= 0,(4.17)

〈E,dev Grad Φ〉
L2(Ω)

= 0(4.18)
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for all Φ ∈ Rsym(Ω,T) and Φ ∈ H1(Ω) ∩ RT
⊥

L2(Ω)

0 . Observe that

(E, V ) := (E, 0) ∈ Rsym(Ω,T)×
(
H1(Ω) ∩ RT

⊥
L2(Ω)

0

)
solves the modified variational system

〈sym Rot E, sym Rot Φ〉
L2(Ω)

+ 〈Φ,dev GradV 〉
L2(Ω)

= −〈p, tr sym Rot Φ〉
L2(Ω)

,(4.19)

〈E,dev Grad Φ〉
L2(Ω)

= 0(4.20)

for all Φ ∈ Rsym(Ω,T) and Φ ∈ H1(Ω) ∩ RT
⊥

L2(Ω)

0 . On the other hand, any solution

(E, V ) ∈ Rsym(Ω,T)×
(
H1(Ω) ∩ RT

⊥
L2(Ω)

0

)
of (4.19)-(4.20) satisfies V = 0, as (4.19) tested with

Φ := dev GradV ∈ dev Grad H1(Ω) = Rsym,0(Ω,T)

shows dev GradV = 0 and thus V ∈ RT0 by Lemma 3.2 yielding V = 0. Note that (4.19)-(4.20) has the
saddle point structure ◦

RotS sym RotT dev Grad

−
◦

DivT 0

[E

V

]
=

− ◦
RotS(v · I)

0

 , (dev Grad)∗ = −
◦

DivT .

We obtain the following theorem.

Theorem 4.5. Let Ω be additionally topologically trivial. The variational problem (4.11)-(4.13) is equiva-

lent to the following well-posed and uniquely solvable variational system. For f ∈ H−1(Ω) find p ∈
◦
H1(Ω),

E ∈ Rsym(Ω,T), V ∈ H1(Ω) ∩ RT
⊥

L2(Ω)

0 , and u ∈
◦
H1(Ω) such that

〈gradu, gradϕ〉
L2(Ω)

+ 〈tr sym Rot E, ϕ〉
L2(Ω)

+ 3〈p, ϕ〉
L2(Ω)

= 0,(4.21)

〈sym Rot E, sym Rot Φ〉
L2(Ω)

+ 〈Φ,dev GradV 〉
L2(Ω)

+ 〈p, tr sym Rot Φ〉
L2(Ω)

= 0,(4.22)

〈E,dev Grad Φ〉
L2(Ω)

= 0,(4.23)

〈grad p, gradψ〉
L2(Ω)

= −〈f, ψ〉
H−1(Ω)

(4.24)

for all ψ ∈
◦
H1(Ω), Φ ∈ Rsym(Ω,T), Φ ∈ H1(Ω)∩RT

⊥
L2(Ω)

0 , and ϕ ∈
◦
H1(Ω). Moreover, the unique solution

(p,E, V, u) of (4.21)-(4.24) satisfies V = 0 and (p,E, u) is the unique solution of (4.11)-(4.13).

Note that the system (4.21)-(4.24) has the block triangular saddle point structure
3 tr sym RotT 0 −

◦
∆

◦
RotS( · I)

◦
RotS sym RotT dev Grad 0

0 −
◦

DivT 0 0

−
◦
∆ 0 0 0



p

E

V

u

 =


0

0

0

−f

 .

with (tr sym RotT)∗ =
◦

RotS( · )I and (dev Grad)∗ = −
◦

DivT.

Proof. We only have to show well-posedness of the partial system (4.22)-(4.23). First note that by

Theorem 3.12 the bilinear form 〈sym Rot · , sym Rot · 〉
L2(Ω)

is coercive over Rsym(Ω,T)∩
◦
D0(Ω,T), which

equals the kernel of (4.23). Indeed it follows from (4.23) that

E ∈ dev Grad
(
H1(Ω) ∩ RT

⊥
L2(Ω)

0

)⊥
L2(Ω) =

◦
D0(Ω,T).
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Moreover, the inf-sup-condition is satisfied as by picking for fixed 0 6= Φ ∈ H1(Ω) ∩ RT
⊥

L2(Ω)

0 the tensor
Φ := dev Grad Φ ∈ dev Grad H1(Ω) = Rsym,0(Ω,T) we have

inf
0 6=Φ∈H1(Ω),
Φ⊥

L2(Ω)
RT0

sup
Φ∈Rsym(Ω,T)

〈Φ,dev Grad Φ〉
L2(Ω)

|Φ|
Rsym(Ω,T)

|Φ|
H1(Ω)

≥ inf
06=Φ∈H1(Ω),
Φ⊥

L2(Ω)
RT0

|dev Grad Φ|
L2(Ω)

|Φ|
H1(Ω)

≥ 1
c

by Lemma 3.2 (iv). �

Remark 4.6. The corresponding result for the two-dimensional case is completely analogous with the

exception that the tensor potential E ∈ Rsym(Ω,T) ∩
◦
D0(Ω,T) is to be replaced by a much simpler vector

potential N ∈ H1(Ω). Furthermore, observe that

〈sym RotN, sym Rot Φ〉
L2(Ω)

= 〈sym Grad⊥N, sym Grad⊥ Φ〉
L2(Ω)

holds for vector fields N,Φ ∈ H1(Ω). Here the superscript ⊥ denotes the rotation of a vector field by
90◦. Note that the complicated second-order inhomogeneous Neumann type Rot sym Rot-Div-system for
the auxiliary tensor field E is replaced in 2D by a much simpler inhomogeneous Neumann linear elasticity
problem, where the standard Sobolev space H1(Ω) resp. H1(Ω) ∩ RM

⊥
L2(Ω) can be used. Here RM denotes

the space of rigid motions. This yields the decomposition result in [14] for the two-dimensional case,
which was shortly mentioned in the introduction.
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Appendix A. Proofs of Some Useful Identities

Note that for a, b ∈ R3 and A ∈ R3×3

spn a : spn b = 2 a · b, skwA =
1
2

spn

A32 −A23

A13 −A31

A21 −A12

(A.1)

hold and hence for skew-symmetric A

spn a : A = spn a : spn spn−1A = 2 a · spn−1A,(A.2)

i.e., spn∗ = 2 spn−1. Moreover, we have for two matrices A,B

A> : B = tr(AB) = tr(BA) = B> : A = A : B>.

The assertions of Lemma 3.4 and Lemma 3.9 are contained in the assertions of the following lemma.

Lemma A.1. For smooth functions, vector fields and tensor fields we have
(i) skw Grad gradu = 0,

(ii) div Div M = 0, if M is skew-symmetric,
(iii) Rot(u I) = − spn gradu,
(iv) tr Rot M = 2 div(spn−1 skw M),

especially tr Rot M = 0, if M is symmetric,
(v) Div(u I) = gradu,

(vi) tr GradV = div V ,
(vii) Div(spnV ) = − rotV ,

especially Div(skw M) = − rotV for V = spn−1 skw M,
(viii) Rot(spnV ) = (div V ) I− (GradV )>,

especially Rot skw M = (div V ) I− (GradV )> for V = spn−1 skw M,
(ix) skw GradV = 1

2 spn rotV and Rot(sym GradV ) = −Rot(skw GradV ) = − 1
2 Rot(spn rotV ),

(x) skw Rot M = spnV and Div(sym Rot M) = −Div(skw Rot M) = rotV
with V = 1

2

(
Div M> − grad(tr M)

)
,

especially Div(sym Rot M) = −Div(skw Rot M) = 1
2 rot Div M>, if tr M = 0,

(xi) grad div V = 3
2 Div dev (GradV )>.

These formulas hold for distributions as well.

Proof. (i)-(ix) and the first identity in (x) follow by elementary calculations. For the second identity in

(x) observe that 0 = Div Rot M = Div(sym Rot M) + Div(skw Rot M) for M ∈
◦
C∞(R3) and hence, using

the first identity in (x) and (vii), we obtain

Div(sym Rot M) = −Div(skw Rot M) = −Div(spnV ) = rotV.
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To see (xi) we compute

0 = Div Rot spnV = Div
(
(div V ) I

)
−Div(GradV )>

= Div
(
(div V ) I

)
−Div dev (GradV )> − 1

3
Div

(
(tr (GradV )>) I

)
=

2
3

Div
(
(div V ) I

)
−Div dev (GradV )> =

2
3

grad div V −Div dev (GradV )>.

Therefore, the stated formulas hold in the smooth case. By density these formulas extend to u, V , and
M in respective Sobolev spaces. Let us give proofs for distributions as well. For this, let m ∈ N0 and

u ∈ H−m(Ω), V ∈ H−m(Ω), M ∈ H−m(Ω) and ϕ ∈
◦
C∞(Ω), Φ ∈

◦
C∞(Ω), and Φ ∈

◦
C∞(Ω). By

〈u, ∂i ∂j ϕ〉H−m(Ω)
= 〈u, ∂j ∂i ϕ〉H−m(Ω)

, or (with (ii)) 〈u,div Div skw Φ〉
H−m(Ω)

= 0

we see that Grad gradu ∈ H−m−2(Ω) is symmetric and hence (i). Note that the formal adjoint is
(skw Grad grad)∗ = div Div skw. If M is skew-symmetric we have 〈M,Grad gradϕ〉

H−m(Ω)
= 0, i.e., (ii).

We compute with (iv)

〈u I,Rot Φ〉
H−m(Ω)

= 〈u, tr(Rot Φ)〉
H−m(Ω)

= 2〈u,div(spn−1 skw Φ)〉
H−m(Ω)

= −〈spn gradu, skw Φ〉
H−m−1(Ω)

= −〈spn gradu,Φ〉
H−m−1(Ω)

,

showing (iii). Formally, (tr Rot)∗ = Rot( · I). Hence by (iii)

〈M,Rot(ϕ I)〉
H−m(Ω)

= −〈M, spn gradϕ〉
H−m(Ω)

= −〈skw M, spn gradϕ〉
H−m(Ω)

= −2〈spn−1 skw M, gradϕ〉
H−m(Ω)

= 2〈div spn−1 skw M, ϕ〉
H−m−1(Ω)

,

yielding (iv). (v) follows by

−〈u I,Grad Φ〉
H−m(Ω)

= −〈u, tr(Grad Φ)〉
H−m(Ω)

= −〈u,div Φ〉
H−m(Ω)

.

Formally, (tr Grad)∗ = −Div( · I). Thus by (v)

−〈V,Div(ϕ I)〉
H−m(Ω)

= −〈V, gradϕ〉
H−m(Ω)

= 〈div V, ϕ〉
H−m−1(Ω)

,

yielding (vi). We have the formal adjoint (Div spn)∗ = (Div skw spn)∗ = −2 spn−1 skw Grad, and by the
formula 2 skw Grad Φ = spn rot Φ from (ix), we obtain (vii), i.e.,

−2〈V, spn−1 skw Grad Φ〉
H−m(Ω)

= −〈V, rot Φ〉
H−m(Ω)

.

Using the formal adjoint (Rot spn)∗ = 2 spn−1 skw Rot we calculate with (x)

2〈V, spn−1 skw Rot Φ〉
H−m(Ω)

= 〈V,Div Φ> − grad(tr Φ)〉
H−m(Ω)

= −〈GradV,Φ>〉
H−m−1(Ω)

+ 〈div V, tr Φ〉
H−m−1(Ω)

,

i.e., (viii) holds. Formally (skw Grad)∗ = −Div skw. Using (vii) we see

−〈V,Div skw Φ〉
H−m(Ω)

= 〈V, rot spn−1 skw Φ〉
H−m(Ω)

=
1
2
〈spn rotV, skw Φ〉

H−m−1(Ω)
,

which proves (ix). We compute by (viii)

〈M,Rot skw Φ〉
H−m(Ω)

= 〈tr M,div(spn−1 skw Φ)〉
H−m(Ω)

− 〈M>,Grad(spn−1 skw Φ)〉
H−m(Ω)

= −〈grad(tr M), spn−1 skw Φ〉
H−m−1(Ω)

+ 〈Div M>, spn−1 skw Φ〉
H−m−1(Ω)

= −1
2
〈spn(grad tr M), skw Φ〉

H−m−1(Ω)
+

1
2
〈spn Div M>, skw Φ〉

H−m−1(Ω)
,

showing the first formula in (x) and the second one follows by Div Rot = 0 and (vii). To prove (xi) we
observe

〈V,Div(dev Grad Φ)>〉
H−m(Ω)

= 〈V,Div dev(Grad Φ)>〉
H−m(Ω)

=
2
3
〈V, grad div Φ〉

H−m(Ω)
,
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completing the proof. �

Proof of Lemma 3.19. For M ∈
◦
R(Ω,S) there exists a sequence (Φn) ⊂

◦
C∞(Ω)∩L2(Ω,S) with Φn →M

in R(Ω). But then (ϕΦn) ⊂
◦
C∞(Ω) ∩ L2(Ω,S) with ϕΦn → ϕM in R(Ω), proving ϕM ∈

◦
R(Ω,S), as we

have Rot(ϕΦn) = ϕRot Φn+ gradϕ×Φn. This formula also shows for Ψ ∈
◦
C∞(Ω)

(
note ϕΨ ∈

◦
C∞(Ω)

)
〈ϕM,Rot Ψ〉

L2(Ω)
= 〈M, ϕRot Ψ〉

L2(Ω)
= 〈M,Rot(ϕΨ)〉

L2(Ω)
− 〈M, gradϕ×Ψ〉

L2(Ω)

= 〈Rot M, ϕΨ〉
L2(Ω)

+ 〈gradϕ×M,Ψ〉
L2(Ω)

,
(A.3)

and thus Rot(ϕM) = ϕRot M + gradϕ×M. Analogously we prove the other cases of (i). Similarly we
show (iii) using the formula Div(ϕΦn) = ϕDiv Φn + gradϕ ·Φn. To show (ii), let M ∈ R(Ω,S). Then
ϕM ∈ L2(Ω,S) and (A.3) shows ϕM ∈ R(Ω,S) with the desired formula. Analogously the other cases of

(ii) follow. Similarly we prove (iv). Let E ∈ Rsym(Ω,T) and Φ ∈
◦
C∞(Ω). Then ϕE ∈ L2(Ω,T) and with

ϕΦ ∈
◦
C∞(Ω) we get

〈ϕE,Rot sym Φ〉
L2(Ω)

= 〈E, ϕRot sym Φ〉
L2(Ω)

= 〈E,Rot sym(ϕΦ)〉
L2(Ω)

− 〈E, gradϕ× sym Φ〉
L2(Ω)

= 〈sym Rot E, ϕΦ〉
L2(Ω)

+ 〈gradϕ×E, sym Φ〉
L2(Ω)

,

which shows ϕE ∈ Rsym(Ω,T) and sym Rot(ϕE) = ϕ sym Rot E + sym(gradϕ × E) and hence (v). To

prove (vi), let M ∈ DD(Ω,S) and φ ∈
◦
C∞(Ω). Then ϕM ∈ L2(Ω,S) and we compute by

Grad grad(ϕφ) = ϕGrad gradφ+ φGrad gradϕ+ 2 sym
(
(gradϕ)(gradφ)>

)
,

(gradϕ)(gradφ)> = Grad(φ gradϕ)− φGrad gradϕ

the identity

Grad grad(ϕφ) = ϕGrad gradφ− φGrad gradϕ+ 2 sym
(

Grad(φ gradϕ)
)
.

Finally with ϕφ ∈
◦
C∞(Ω) we get

〈ϕM,Grad gradφ〉
L2(Ω)

= 〈M, ϕGrad gradφ〉
L2(Ω)

=
〈
M,Grad grad(ϕφ)

〉
L2(Ω)

+ 〈M, φGrad gradϕ〉
L2(Ω)

− 2
〈
M, sym

(
Grad(φ gradϕ)

)〉
L2(Ω)

= 〈div Div M, ϕ φ〉
L2(Ω)

+ 〈M : Grad gradϕ, φ〉
L2(Ω)

− 2
〈
M,Grad(φ gradϕ)

〉
L2(Ω)

= 〈ϕ div Div M, φ〉
L2(Ω)

+
〈

tr(M ·Grad gradϕ), φ
〉
L2(Ω)

+ 2 〈Div M, φ gradϕ〉
H−1(Ω)︸ ︷︷ ︸

= 〈Div M · gradϕ, φ〉
H−1(Ω)

,

which shows (vi), i.e., ϕM ∈ DD0,−1(Ω,S) and

div Div(ϕM) = ϕdiv Div M + 2 gradϕ ·Div M + tr(Grad gradϕ ·M).

The proof is finished. �
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