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ABSTRACT. It is shown that the first biharmonic boundary value problem on a topologically trivial do-
main in 3D is equivalent to three (consecutively to solve) second-order problems. This decomposition
result is based on a Helmholtz-like decomposition of an involved non-standard Sobolev space of tensor
fields and a proper characterization of the operator div Div acting on this space. Similar results for
biharmonic problems in 2D and their impact on the construction and analysis of finite element methods
have been recently published in [14]. The discussion of the kernel of div Div leads to (de Rham-like)
closed and exact Hilbert complexes, the div Div-complex and its adjoint the Grad grad-complex, involv-
ing spaces of trace-free and symmetric tensor fields. For these tensor fields we show Helmholtz type
decompositions and, most importantly, new compact embedding results. Almost all our results hold
and are formulated for general bounded strong Lipschitz domains of arbitrary topology. There is no
reasonable doubt that our results extend to strong Lipschitz domains in RY.
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1. INTRODUCTION

In [14] it was shown that the fourth-order biharmonic boundary value problem
(1.1) A?u=f inQ, u=0,u=0 onl,

where ) is a bounded and simply connected domain in R? with a (strong) Lipschitz boundary T, can be
decomposed into three second-order problems. The first problem is a Poisson problem for an auxiliary
scalar field p

Ap=f inQ, p=0 onTl,
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2 DIRK PAULY AND WALTER ZULEHNER

the second problem is a linear elasticity problem for an auxiliary vector field V'
—Dive(V) = —Div(sym Grad V') = gradp in Q, (symGradV)n=—-pn=0 onT,
ie.,
Div(sym GradV +pI) =0 in ©, (symGradV +pI)n=0 onT,
and, finally, the third problem is a Poisson problem for the original scalar field u

Au=2p+divV in Q, u=0 onl.

Here f is a given right-hand side, A, n, and 0,, denote the Laplace operator, the outward normal vector to
the boundary, and the derivative in this direction, respectively. The differential operators grad, div, and
(for later use) rot denote the gradient of a scalar field and the divergence and rotation of a vector field,
the corresponding capitalized differential operators Grad, Div, and Rot denote the row-wise application
of grad to a vector field, div and rot to a tensor field. The prefix sym is used for the symmetric part of a
matrix, for the skew-symmetric part we use the prefix skw. This decomposition is of triangular structure,
i.e., the first problem is a well-posed second-order problem in p, the second problem is a well-posed
second-order problem in V for given p, and the third problem is a well-posed second-order problem in
u for given p and V. This allows to solve them consecutively analytically or numerically by means of
techniques for second-order problems.

This is - in the first place - a new analytic result for fourth-order problems. But it also has interesting
implications for discretization methods applied to (1.1). It allows to re-interpret known finite element
methods as well as to construct new discretization methods for (1.1) by exploiting the decomposable
structure of the problem. In particular, it was shown in [14] that the Hellan-Herrmann-Johnson mixed
method (see [8, 9, 13]) for (1.1) allows a similar decomposition as the continuous problem, which leads
to a new and simpler assembling procedure for the discretization matrix and to more efficient solution
techniques for the discretized problem. Moreover, a novel conforming variant of the Hellan-Herrmann-
Johnson mixed method was found based on the decomposition.

The aim of this paper is to derive a similar decomposition result for biharmonic problems on bounded
and topologically trivial three-dimensional domains €2 with a (strong) Lipschitz boundary T'. For this we
proceed as in [14] and reformulate (1.1) using A? = div Div Grad grad as a mixed problem by introducing
the (negative) Hessian of the original scalar field u as an auxiliary tensor field

(1.2) M = — Grad grad u.
Then the biharmonic differential equation reads
(1.3) —divDivM = f in Q.

For an appropriate non-standard Sobolev space for M it can be shown that the mixed problem in M and
u is well-posed. Then the decomposition of the biharmonic problem follows from a regular decomposition
of this non-standard Sobolev space. This part of the analysis carries over completely from the two-
dimensional case to the three-dimensional case and is shortly recalled in Section 4. To efficiently utilize this
regular decomposition for the decomposition of the biharmonic problem an appropriate characterization
of the kernel of the operator div Div is required, which is well understood for the two-dimensional case,
see, e.g., [3, 11, 14]. Its extension to the three-dimensional case is the central topic of this paper. We
expect - as in the two-dimensional case - similar interesting implications for the study of appropriate
discretization methods for four-order problems in the three-dimensional case.

The paper is organized as follows. After some preliminaries in Section 2 and introducing our general
functional analytical setting, we will discuss the relevant unbounded linear operators, show closed and
exact Hilbert complex properties, and present a suitable representation of the kernel of div Div for the
three-dimensional case in Section 3.1 for topologically trivial domains. In Section 3.2 we extend the
results to (strong) Lipschitz domains based on two new and crucial compact embeddings. Based on the
representation of the kernel of div Div a decomposition of the three-dimensional biharmonic problem into
three (consecutively to solve) second-order problems will be derived in Section 4. The proofs of some
useful identities are presented in an appendix.
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2. PRELIMINARIES

We start by recalling some basic concepts and abstract results from functional analysis concerning
Helmholtz decompositions, closed ranges, Friedrichs/Poincaré type estimates, and bounded or even com-
pact inverse operators. Since we will need both the Banach space setting for bounded linear operators
as well as the Hilbert space setting for (possibly unbounded) closed and densely defined linear operators,
we will shortly recall these two variants.

2.1. Functional Analysis Toolbox. Let X and Y be real Banach spaces. With BL(X,Y) we introduce
the space of bounded linear operators mapping X to Y. The dual spaces of X and Y are denoted by
X' := BL(X,R) and Y’ := BL(Y,R). For a given A € BL(X,Y) we write A" € BL(Y’,X’) for its Banach
space dual or adjoint operator defined by A’y'(x) := /(A x) for all ' € Y’ and all z € X. Norms and
duality in X resp. X" are denoted by | - |x, | - |x, and (-, - )x.

Suppose H; and Hs are Hilbert spaces. For a (possibly unbounded) densely defined linear operator
A:D(A) C Hi — Hy we recall that its Hilbert space dual or adjoint A*: D(A*) C Hy — Hjy can be
defined via its Banach space adjoint A’ and the Riesz isomorphisms of H; and Hy or directly as follows:
y € D(A") if and only if y € Hy and

IfeH VeeDA) (Az,ymn, = (z, fHn,.

In this case we define A*y := f. We note that A* has maximal domain of definition and that A* is
characterized by
Vz e D(A) Vye D(AY) (Az,y)n, = (x, A" y)n,.

Here (-, - )y denotes the scalar product in a Hilbert space H and D is used for the domain of definition
of a linear operator. Additionally, we introduce the notation N for the kernel or null space and R for the
range of a linear operator.

Let A:D(A) C Hy — Hs be a (possibly unbounded) closed and densely defined linear operator on two
Hilbert spaces H; and Hs with adjoint A*: D(A*) C Hy — Hj. Note (A*)* = A = A, ie, (A,A") isa
dual pair. By the projection theorem the Helmholtz type decompositions

(2.1) Hi = N(A) ®n, R(AY), Hy = N(A") &, R(A)
hold and we can define the reduced operators
A=A |W :D(A) C R(A™) — R(A), D(A) := D(A)N N(A)*t" = D(A) N R(A¥),

A" = A [y D(A") € R(A) — R(A¥),  D(A") := D(A*) N N(A")** = D(A") N R(A),

which are also closed and densely defined linear operators. We note that A and A* are indeed adjoint to
each other, i.e., (A, A") is a dual pair as well. Now the inverse operators

A1 R(A) — D(A),  (A)7':R(A*) — D(AY)

exist and they are bijective, since A and A are injective by definition. Furthermore, by (2.1) we have
the refined Helmholtz type decompositions

(2.2) D(A) = N(A) &u, D(A), D(A”) = N(A”) &n, D(A")
and thus we obtain for the ranges

(2.3) R(A) = R(A), R(A*) = R(A").
By the closed range theorem and the closed graph theorem we get immediately the following.

Lemma 2.1. The following assertions are equivalent:
(i) Jea € (0,00) Vze D(A) |z|H, < calAxln,
(i*) Jea- € (0,00) Vye D(AY) [y|n, < cax| A" yln,
(ii) R(A) = R(A) is closed in Hs.
(ii*) R(A") = R(A") is closed in Hy.
(iii) A7 : R(A) — D(A) is continuous and bijective with norm bounded by (1 + ¢%)">.
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(iii*) (A*)~1: R(A*) — D(A*) is continuous and bijective with norm bounded by (1 + c%.)".
In case that one of the assertions of Lemma 2.1 is true, e.g., R(A) is closed, we have
Hi = N(A) ®un, R(AY), Ho = N(A¥) @n, R(A),
D(A) = N(A)@n, D(A), (A") = N(A") @, D(AY),
D(A) = D(A) N R(A"), (A*) = D(A")NR(A).

For the “best” constants ca, ca» we have the following lemma.

2
D(A")
D(A")

Lemma 2.2. The Rayleigh quotients
1 inf |A‘T|H2 o . |A*y|H1 . i

— = in = n :
CA 0#z€D(A) \x|H1 0#£yeD(A*) \y|H2 CA*
coincide, i.e., cA = ca~, if either ca or cax exists in (0,00). Otherwise they also coincide, i.e., it holds
CA = CAx = OQ.
From now on and throughout this paper, we always pick the best possible constants in the various

Friedrichs/Poincaré type estimates.
A standard indirect argument shows the following.

Lemma 2.3. Let D(A) = D(A) N R(A*) — Hy be compact. Then the assertions of Lemma 2.1 hold.
Moreover, the inverse operators

A1 R(A) — R(A¥), (A*)7':R(A*) — R(A)

are compact with norms |A_1 ‘R(A),R(A*) = |(,4*)—1|R(A*)7R(A) =cA.

Moreover, we have
Lemma 2.4. D(A) — Hy is compact, if and only if D(A") — Hs is compact.

Now, let Ag: D(Ag) C Hy — Hy and A;: D(A;) C Hy — Hs be (possibly unbounded) closed and densely
defined linear operators on three Hilbert spaces Hg, H; and Hy with adjoints Ay: D(A,) C Hy — Hg and
A]:D(A]) C Hy — Hj as well as reduced operators Ag, Ag, and A, A]. Furthermore, we assume the
sequence or complex property of Ag and Ay, that is, A; Ag =0, i.e.,

(2.4) R(Ag) C N(Ay).

Then also Ay A] =0, i.e., R(A]) C N(Ap). The Helmholtz type decompositions of (2.1) for A = A; and
A = Ap read

(2.5) Hi = N (A1) &u, R(A}), H, = N(Ay) @1, R(Ao)

and by (2.4) we see

(26)  N(Ag) = Noi @n, R(A)), N(Ay) = No1 @n, R(Ay), No1:= N(A1) N N(Ap)
yielding the refined Helmholtz type decomposition
(2.7) Hi = R(Ag) @u, Not @n, R(A]),  R(A¢) = R(Ay),  R(A]) = R(A).

The previous results of this section imply immediately the following.

Lemma 2.5. Let Ag, Ay be as introduced before with Ay Ag = 0, i.e., (2.4). Moreover, let R(Ag) and
R(A4) be closed. Then, the assertions of Lemma 2.1 and Lemma 2.2 hold for Ay and Ay. Moreover, the
refined Helmholtz type decompositions

Hi = R(Ag) ®n, No1 @n, R(A]), No1 = N(A1) N N(Ap),
N(A1) = R(Ag) ®n, No1, N(Ag) = Noi @n, R(A}),
D(A1) = R(Ao) ®n, Noa ©n, D(A1), D(Ap) = D(Ag) @n, No.1 @, R(AY),
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D(A1) N D(Ag) = D(Ag) Bu, Not @, D(Ar)
hold. Especially, R(Ao), R(Ay), R(A1), and R(AY) are closed, the respective inverse operators, i.e.,
Ao~ : R(Ao) — D(Ao), A7 R(Ay) — D(Ay),

(A0) ™" R(Ag) — D(Ay), (A" R(A]) — D(AY),

are continuous, and there exist positive constants ca,, ca,, such that the Friedrichs/Poincaré type esti-
mates

VyED(.AS) |y‘H1 SCA()'A;y'Ho’ VZED(A:) |Z|H2 SCA1|A>1'< Z‘Hl

Vx€D<A0) |x‘H0 <CA0|A0x|H13 VyeD(Al) |y|H1 §0A1|A1y|H2,

hold.
Remark 2.6. Note that R(Ag) resp. R(A1) is closed, if e.g. D(Ag) — Hp resp. D(A;) — Hy is

compact. In this case, the respective inverse operators, i.e.,

Ao~ R(Ag) — R(Ay), A7l R(AY) — R(AY),

*

(A0) " R(Ag) — R(Ao), (A" R(A}) — R(A1),

are compact.

Observe D(A;) = D(A1) N R(A] ) C D(A;) N N(Ap) € D(A;) N D(Ay). Utilizing the Helmholtz type
decompositions of Lemma 2.5 we immediately have:

Lemma 2.7. The embeddings D(Ay) — Ho, D(A1) — Hi, and No1 — Hi are compact, if and only if
the embedding D(A1) N D(Ag) < Hy is compact. In this case Ny has finite dimension.

Remark 2.8. The assumptions in Lemma 2.5 on Ag and Ay are equivalent to the assumption that

D(Ag) C Hy —22~ D(Ay) c H; —2— H,

s a closed Hilbert complex, meaning that the ranges are closed. As a result of the previous lemmas, the
adjoint complex

*

Ho <2 D(AD) € Hy <2~ D(AY) C H.

s a closed Hilbert complex as well.
We can summarize.

Theorem 2.9. Let Ay, Ay be as introduced before, i.e., having the complex property A1 Ag = 0, i.e
R(Ag) C N(Ay). Moreover, let D(A1) N D(Ay) — Hy be compact. Then the assertions of Lemma 2.5
hold, Ny is finite dimensional and the corresponding inverse operators are continuous resp. compact.
Especially, all ranges are closed and the corresponding Friedrichs/Poincaré type estimates hold.

A special situation is the following.

Lemma 2.10. Let Ay, Ay be as introduced before with R(Ag) = N(A1) and R(A1) closed in Hy. Then
R(Ay) and R(AY) are closed as well, and the simplified Helmholtz type decompositions

Hy = ( ) DH, ( )ﬂ NO,l = {0}7
N(A1) = R(Ao) = R(Ao), N(Ag) = R(A}) = R(AY),
D(A1) = R(Ao) ®h, D(A1), D(Ag) = D(Ag) @n, R(A)),

*

D(A1) N D(Ag) = (Ao)@Hl D(A1)

are valid. Moreover, the respective inverse operators are continuous and the corresponding Friedrichs/
Poincaré type estimates hold.

Remark 2.11. Note that R(A]) = N(Ag) and R(Ay) closed are equivalent assumptions for Lemma 2.10
to hold.
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Lemma 2.12. Let Ay, Ay be as introduced before with the sequence property (2.4), i.e., R(Ap) C N(Ay).
If the embedding D(A1) N D(Ag) — Hy is compact and Ny 1 = {0}, then the assumptions of Lemma 2.10
are satisfied.

Remark 2.13. The assumptions in Lemma 2.10 on Ay and Ay are equivalent to the assumption that

D(Ag) C Hy —2— D(A;) € H, —2 H,

18 a closed and exact Hilbert complex. By Lemma 2.10 the adjoint complex

*

HO L D(A;) C Hy <A—1 D(A;) C Hs.

s a closed and exact Hilbert complex as well.

Parts of Lemma 2.10 hold also in the Banach space setting. As a direct consequence of the closed
range theorem and the closed graph theorem the following abstract result holds.

Lemma 2.14. Let Xo, X1, Xo be Banach spaces and suppose Ag € BL(Xq,X1), A1 € BL(Xy,Xs) with
R(Ap) = N(A1) and that R(A1) is closed in Xo. Then R(A() is closed in X{ and R(A]) = N(Ap).
Moreover, (A})~' € BL(R(A}), R(A1)').

Note that in the latter context we consider the operators
Ap i Xy — R(Aq), Al R(A1) — R(AY) (AD) 7! R(A}) — R(AY),
with N(A}) = R(A1)° = {0}.
Remark 2.15. The conditions on Ag and Ay in Lemma 2.14 are identical to the assumption that

Ao Ay

Xo X, X

1s a closed and exact complex of Banach spaces. The consequences of Lemma 2.14 can be rephrased as
follows. The adjoint complex of Banach spaces

Al A
X5 — X — X,
1s closed and exact as well.
Lemma 2.16. (A})~' € BL(R(A}), R(Ay)) is equivalent to
(2.8) Jear >0 Yy € R(Ay) W [rayy < carl ALY Ixr

For the best constant car, (2.8) is equivalent to the general inf-sup-condition

1 ,,A X ’
(2.9) 0< = inf sup w.
CAy 0y €R(A1) 0£zeX, ly |R(A1)"x|X1

In the special case that Xo = Hs is a Hilbert space the closed subspace R(A1) is isometrically isomorphic
to R(A1)" and we obtain the following form of the inf-sup-condition

<ya Al $>H2

(2.10) 0< = inf sup .
CAr O0F#YER(A1) 0zeX, [Ylhs |2,

The results collected in this section are well-known in functional analysis. We refer to [1] for a
presentation of some results of this section from a numerical analysis perspective.
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2.2. Sobolev Spaces. Next we introduce our notations for several classes of Sobolev spaces on a bounded
domain Q C R3. Let m € Nyg. We denote by L?(Q) and H™(Q) the standard Lebesgue and Sobolev
spaces and write H?(Q2) = L2(Q). Our notation of spaces will not indicate whether the elements are scalar
functions or vector fields. For the rotation and divergence we define the Sobolev spaces

R(Q) :={Vel*Q):rotVel*>(Q)}, D Q):={Vel*Q) :divVel*Q)}
with the respective graph norms, where rot and div have to be understood in the distributional or weak
sense. We introduce spaces with boundary conditions in the weak sense in the natural way by
. ) RO D)
H™(Q) := C=(Q) , R(Q):=C>(Q) , D(Q) :=C>(Q) ,
i.e., as closures of test functions or fields under the respective graph norms, which generalizes homogeneous

scalar, tangential and normal boundary conditions, respectively. We also introduce the well known dual
spaces

/

H_m(Q) = (Hm(Q))
with the standard dual or operator norm defined by

(U @) —m
(Ul oy = sup T() for u € H™™(Q),
0zpehm(@) T Hm(Q)
where we recall the duality pairing (-, - >H*m(Q) in (H=™(£2),H™(Q2)). Moreover, we define with respective

graph norms
R™™(Q) := {V eEH™(Q) : otV € H_”L(Q)},
D™™(Q) := {V eEHT™(Q) : divV € H_m(Q)}.
A vanishing differential operator will be indicated by a zero at the lower right corner of the spaces, e.g.,
Ro(Q) = {V €R(Q) : rot V =0}, Dy(Q) = {V €D(Q) : divV =0},
Ry™(Q) = {V ERT™(Q) : otV = O}, D, '(Q) = {V eDH(Q) : divV = 0}.

Let us also introduce
L3(Q) := {u e L*(Q) : uJ_LQ(Q)R} ={uel?*) : / u=0},
Q

where L denotes orthogonality in L2(2).

L2()

Remark 2.17. Other widely used notations for the spaces R(Q2), R(Q), R™™(Q), Ry(), ... are H(rot, ),

Hy(rot, Q), H ™ (rot, ), H(rot0,Q), ..., respectively. Similarly, alternative notations for D(2), D(Q),
D~™(Q), Dy(R), ...are H(div,Q), Hy(div,Q), H™(div, ), H(div0,Q), ..., respectively.

2.3. General Assumptions. We will impose the following regularity and topology assumptions on our
domain 2.

Definition 2.18. Let Q be an open subset of R? with boundary T := 0. We will call Q
(i) strong Lipschitz, if T is locally a graph of a Lipschitz function ¢ : U C R? — R,
(ii) topologically trivial, if Q2 is simply connected with connected boundary T.

General Assumption 2.19. From now on and throughout this paper it is assumed that Q C R3 is a
bounded strong Lipschitz domain.

If the domain 2 has to be topologically trivial, we will always indicate this in the respective result.
Note that several results will hold for arbitrary open subsets Q of R3. All results are valid for bounded
and topologically trivial strong Lipschitz domains Q2 C R3. Nevertheless, most of the results will remain
true for bounded strong Lipschitz domains Q C R3.
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2.4. Vector Analysis. In this last part of the preliminary section we summarize and prove several
results related to scalar and vector potentials of various smoothness, corresponding Friedrichs/Poincaré

type estimates, and related Helmholtz decompositions of L(£2) and other Hilbert and Sobolev spaces.

o] fe) [e]
This is a first application of the functional analysis toolbox Section 2.1 for the operators grad, rot, div,
and their adjoints — div, rot, — grad. Although these are well known facts, we recall and collect them
here, as we will use later similar techniques to obtain related results for the more complicated operators

Gra(i) grad, Ri)tg, Dodir7 and their adjoints div Divs, sym Roty, — dev Grad. Let
Ao = grad : H'(Q) € L2(0) — L2(Q),
Ay = ot : R(Q) € L2(Q) — L2(Q),
Ay :=div: D(Q) € L3(Q) — L2(Q).
Then Ay, A1, and Ay are unbounded, densely defined, and closed linear operators with adjoints
Al = grad® = —div: D(Q) C L3(Q) — L2(),
AT =1ot* = rot : R(Q) C L%(Q) — L2(9),
AL = div: = — grad : HY(Q) C L2(Q) — L2(Q)

and the sequence or complex properties

R(Ao) = grad H'(2) € Ry(Q) = N(Ay), R(A}) = 10t R(2) € Dy(2) = N(Ap),
R(A1) = 10t R() € Dy(Q) = N(As), R(AL) = grad HL(2) C Ry(Q) = N(A])

hold. Note N(Ag) = {0} and N(Aj}) = R. Moreover, the embeddings

D(A) N D(AL) =R(Q) ND(Q) — L2(Q),  D(As)n D(AT) = D(Q) NR(Q) — LA(Q)

are compact. The latter compact embeddings are called Maxwell compactness properties or Weck’s
selection theorems. The first proof for strong Lipschitz domains (uniform cone like domains) avoiding
smoothness of ' was given by Weck in [27]. Generally, Weck’s selection theorems hold e.g. for weak
Lipschitz domains, see [22], or even for more general domains with p-cusps or antennas, see [28, 23]. See
also [26] for a different proof in the case of a strong Lipschitz domain. Weck’s selection theorem for mixed
boundary conditions has been proved in [12] for strong Lipschitz domains and recently in [2] for weak

Lipschitz domains. Similar to Rellich’s selection theorem, i.e., the compact embedding of H(£2) resp.
HL(2) into L%(Q), it is crucial that the domain €2 is bounded. Finally, the kernels

N(A1) N N(ALD) = Ry(Q) N Dy(Q) = Hp(Q) resp. N(As) N N(AD) = Dy(Q) N Ry () =: Hy (),

are finite dimensional, as the unit balls are compact, i.e., the spaces of Dirichlet or Neumann fields are
finite dimensional. More precisely, the dimension of the Dirichlet resp. Neumann fields depends on the
topology or cohomology of 2, i.e., second resp. first Betti number, see e.g. [20, 21]. Especially we have

Hp(2) = {0}, if " is connected,  Hy(Q2) = {0}, if Q is simply connected.

Remark 2.20. Our general assumption on € to be bounded and strong Lipschitz ensures that Weck’s
selection theorems (and thus also Rellich’s) hold. The additional assumption that Q2 is also topologically
trivial excludes the existence of non-trivial Dirichlet or Neumann fields, as Q) is simply connected with a
connected boundary I.

By the results of the functional analysis toolbox Section 2.1 we see that all ranges are closed with
R(Ao) = R(Ao), R(A1) = R(A1), R(Az) = R(Az),
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R(Ag) = R(Ap), R(A)) = R(A)), R(A;) = R(Ay),
ie., the ranges
erad H'(Q), grad H!(Q) = grad (H'(Q) N L2()),
(2.11) rot R(€2) = rot (R(2) N rot R(12)), rot R(Q2) = rot (R() N rot R(12)),
divD($) = div (D() N grad H' (), div D(92) = div (D(€) N grad H'(2))

are closed, and the reduced operators are
Ao = grad : H(Q) C L*(2) — grad H'(Q),

(@)
Ay = rot : R(2) N 1ot R(Q) C rot R(Q) (
As = div: D(Q) N grad H'(Q) C grad HY(Q) — L2(Q),
A = —div: D(Q) N grad H(Q) HL(Q) )
( () (
()

A; = —grad : HY(Q) N L2(Q) c L2(Q) — grad HY(Q).

Moreover, we have the following well known Helmholtz decompositions of L2-vector fields into irrotational
and solenoidal vector fields, corresponding Friedrichs/Poincaré type estimates and continuous or compact
inverse operators.

Lemma 2.21. The Helmholtz decompositions

o o o o

R, divD(Q) = L3(Q),

=Ry(9) D2 (q) Ot R(Q?)
= grad H'(Q) D20 Hy(£2) D2 (q) ot R(QY)

hold. Moreover, (2.11) is true for the respective ranges and the “better” potentials in (2.11) are uniquely
determined and depend continuously in the right hand sides. If T’ is connected, it holds Hp(2) = {0}
and, e.g.,

o o]

L2(2) = Ry(Q) ®Dy(Q)  and  Ry(Q) = grad H(Q),  Dy(€2) = rot R(2) = rot (R(2) N Dy(©2)).

If Q is simply connected, it holds Hy(Q2) = {0} and, e.g.,

o

L2(2) = Ry(Q) ®Dy(Q)  and  Ry(Q) = grad HL(),  Dy(S2) = rot R(%2) = rot (R(S2) N Dy(R2)).
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Lemma 2.22. The following Friedrichs/Poincaré type estimates hold. There exist positive constants cg,
Cr, Cd, Such that

Yue If|1(Q) \u|l_2 < gl gmduh_2
VV € D(Q) N grad H(Q) Vi < el div V],
VV € R(Q) Nrot R() Vs < €106 V]

YV € R(Q) Nrot R(Q) Vi < €10t Vg
VV € D(Q) N grad H(Q) Vs < ol div Vi),
Vu e HY(Q) NLA(Q) [ul 2y < calgradul s g

Moreover, the reduced versions of the operators

o o o
grad, rot, div, grad, vrot, div

have continuous resp. compact inverse operators

grad ! : grad H'(Q) — H(Q), grad ~! : grad H'(92) — L2(Q),

div!: L2(Q) — D(92) N grad HL(9), L L2(Q) — grad H(Q) © L2(Q),
rot rot IOQ(Q) — IOQ(Q) Nrot R(£2), rot ~1 : rot R(Q) — 1ot R(Q) C L3(Q),
rot =1 : rot R(2) — R(2) N rot R(), rot =1 : rot R(2) — rot R(Q) € L2(Q),

div =11 L2(Q) — D(Q) N grad H' (), div =" L2(Q) — grad H'(Q) C L2(),

grad ™! : grad H(Q) — HY(Q) N LZ(Q) grad ™! : grad H'(Q) — L2(),

agrad : H'(Q) — grad H(Q), div : D(Q) N grad H () — L2(Q),
u — grad u Vi—divV
rot : F{(Q) NrotR(2) — rot I%(Q), rot : R(2) N rot I%(Q) — rot R(Q),
Vi—rotV Vi—rotV
div : D(Q) Ngrad H(Q) — L3(), grad : HY(Q) NL3(Q) — grad HY(Q),
Vi—divV u+— grad u

are topological isomorphisms. If Q is topologically trivial, then

grad : HL(92) — R,(9), div: D(Q) NRy(Q) — LA(Q),
u — grad u Vi—divV

(2.12) rot : R(Q) N Dy(Q) — Dy(9), rot : R(€2) N Dy (§2) — Dy(),
Vi—rotV Vi—rotV

div : D(Q) N Ry (Q) — L2(92), grad : HY(2) N L2(Q) — Ry (),

Vi—divV u +— grad u

are topological isomorphisms.
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Remark 2.23. Recently it has been shown in [17, 18, 19], that for bounded and convex Q C R® it holds
diam

— )

™

¢ < ¢

i.e., the Mazwell constant ¢, can be estimates from above by the Friedrichs/Poincaré constant.

Remark 2.24. Some of the previous results can be formulated equivalently in terms of complexes: The
sequence

{0} —— HI(®) % RQ) —— D(@) —* L(@) —"—
and thus also its dual or adjoint sequence

—div

{0y —2— 12(Q) D(Q) 2 R(Q) <L HI(Q) —2 R

are closed Hilbert complexes. Here mr : L2(2) — R denotes the orthogonal projector onto R with adjoint
o= g : R — L%(), the canonical embedding. If Q is additionally topologically trivial, then the
complezes are also exact. These compleres are widely known as de Rham complexes.

Let Q be additionally topologically trivial. For irrotational vector fields in H™(£2) resp. H™(f) we

have smooth potentials, which follows immediately by R,(Q) = grad H'(Q2) resp. R,(2) = grad H!(Q)
from the previous lemma.

Lemma 2.25. Let Q be additionally topologically trivial and m € Ny. Then
H™(Q) NRy(Q) = grad H™ (), H™(Q) NRy(Q) = grad H™T1(Q)

hold with linear and continuous potential operators P ° v Pgrad-
gra

So, for each V' € H™(Q) N Ry(€2), we have V = grad u for the potential u = P ° V € H™T1(Q) and,
gr

analogously, for each V' € H™(Q) N R(£), it holds V = grad u for the potential u = Pgrq V € H™ ().
Note that the potential in H™*1(£) is uniquely determined only up to a constant.

For solenoidal vector fields in ISV”(Q) resp. H™(Q) we have smooth potentials, too.
Lemma 2.26. Let Q be additionally topologically trivial and m € Ny. Then
H™ () 1 Dy(Q) = rot H™+1(92),  H™(Q) N Dy() = rot H™ ()
hold with linear and continuous potential operators Prgt, Prot-

For a proof see, e.g., [6, Corollary 4.7] or with slight modifications the generalized lifting lemma [10,

Corollary 5.4] for the case d = 3, k = m, | = 2. Moreover, the potential in H™*1(Q) resp. H™*1() is no
longer uniquely determined.
For the divergence operator we have the following result.

Lemma 2.27. Let m € Ng. Then
H™(Q) NL3(Q) = divH™(Q), H™(Q) = div H™T1(Q)
hold with linear and continuous potential operators Pd<_> , Paiv-
Again, the potential in H™*1(Q) resp. H™*1(£) is no longer uniquely determined. Also Lemma 2.25

resp. Lemma 2.27 has been proved in [6, Corollary 4.7(b)] and in [10, Corollary 5.4] for the case d = 3,
k=m,l=1resp. d=3, k=m, [ =3.
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Remark 2.28. Lemma 2.27, which shows a classical result on the solvability and on the properties of
the solution operator of the divergence equation, is an tmportant tool in fluid dynamics, i.e., in the theory
of Stokes or Navier-Stokes equations. The potential operator is often called Bogovskiiu operator, see [4, 5]
for the original works and also [7, p. 179, Theorem II1.3.3], [25, Lemma 2.1.1]. Moreover, there are also
versions of Lemma 2.25 and Lemma 2.26, if Q) is not topologically trivial, which we will not need in the
paper at hand.

Remark 2.29. A closer inspection of Lemma 2.25 and Lemma 2.26 and their proofs shows, that these
results extend to general topologies as well. More precisely we have:

(i) It holds
H™(Q) Ngrad HY(Q) = H™(Q) NRy(Q) N Hp () = grad H™1(Q),
H™(Q) N grad HY(Q) = H™(Q) N Ry (Q) N Hy ()L = grad H"T1(Q)
with linear and continuous potential operators P ° Perad-
gra
(ii) It holds
H™(Q) Nrot R(Q) = H™ () N Dy (Q) N Hy (Q)E = rot H™+1(Q),
H™(Q) Nrot R(2) = H™(Q) N Dy () N Hp () = rot H™ ()
with linear and continuous potential operators P 0 Prot-
Using the latter three results and Lemma 2.14, irrotational and solenoidal vector fields in H="(2) can
be characterized.

Corollary 2.30. Let Q be additionally topologically trivial and m € N. Then
Ry ™(Q) = grad H"™F1(Q) = grad (H™1(Q) N L2(Q))’

is closed in H=™ () with continuous inverse, i.c., grad~' € BL(Ry™(Q), (H™~H(Q)NL3(Q))"). Especially
form =1,

Ry () = grad L*(Q) = grad L3(Q)
is closed in H='(Q) with continuous inverse grad™" € BL(Ral(Q), L%(Q)) and uniquely determined po-
tential in L3(Q). Moreover,

Jeg—1>0 Yueli(Q) |u|L2(Q) < ¢q,—1|grad u|H,1(Q) < \/§0g7,1|u|L2(Q)
and the inf-sup-condition
1 | grad ul,,_ (u,divV)
0< - inf MO g sup il R
-1 omuer3@ [l 0AuELF(D) oLy efin (o) [ul 2 gy | Grad V2 g

holds.

Proof. Let Xo := H™+1(Q), X, := H™(Q), X5 := H™1(Q) and
Ay = rot : }?I“”l(Q) — I(jlm(Q), Ay = —d(ijv : |S|m(Q) — I(—Dim*l(Q).

These linear operators are bounded, R(Ag) = rot ISV"“(Q) = I(-)Im(Q) N ISO(Q) = N(A;) by Lemma 2.26,
and R(A;) = divH™(Q) = H"~}(Q) NLZ(Q) by Lemma 2.27. Therefore, R(A;) is closed. For the adjoint
operators we get
Al =rot = rot’ : H™(Q) — H-™1(Q), A} = grad = —div’ : H-™+1(Q) — H-™(Q)
and obtain from Lemma 2.14 that
Ry ™(Q) = N(Ap) = R(A}) = grad H-"+1(Q)
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is closed and
grad™ = (A})~" € BL(R(A}), R(A)') = BL(R;™(@), (H™ () N L)),

which completes the proof for general m. If m = 1, we get the assertions about the Friedrichs/Poincaré/
Necas inequality and inf-sup-condition by Lemma 2.16, i.e., (2.8) and (2.10). O

Corollary 2.31. Let Q be additionally topologically trivial and m € N. Then

o

Dy ™(Q) = rot H™+1(Q) = rot (H™1(Q) N Dy(2))’
is closed in H=™ () with continuous inverse, i.e., rot~* € BL(Dy™ (), (H™~1(Q)NDy(R))’). Especially
form =1,
Dy ' (Q) = rot L2(Q) = rot Dy ()
is closed in H™1(Q) with continuous inverse rot~! € BL(Dy'(),Dy(Q)) and uniquely determined po-

o
tential in Dy (2). Moreover,

3cr-1>0 YV EDY(Q) Vi S crmlrot Vg g < ﬁcr,_1|V\L2(Q)
and the inf-sup-condition

1 |rot V| ,_
0< —= inf ViHl(Q) = inf sup
ol oxvedy(9) | |L2(Q) 0£VED() 04V eI (@

(V, rot H)LQ(Q)
Vi Grad A,

)
holds.

Proof. Let Xq := I(-)Im+1(Q), Xq = ISV"(Q), Xg = ﬁm_l(ﬂ) and
Ay = gr;d : |S|m+1(Q) — Ifim(Q), A= rot : |S|m(Q) — ﬁmfl(ﬂ).

These linear operators are bounded, R(A¢) = groad I(:Im'*‘l(ﬂ) = I(-)Im(Q) N I%O(Q) = N(A;) by Lemma 2.25,
and R(A) =rot ﬁm(Q) = Iflmfl(Q) N ISO (©) by Lemma 2.26. Therefore, R(A;) is closed. For the adjoint
operators we get
Al = —div =grad’ : H™(Q) — H™™1(Q), A} = rot = rot’ : H-+1(Q) — H™™(Q)
and obtain from Lemma 2.14 that
D; ™ () = N(A}) = R(A]) = rot H-"+1(Q)
is closed and
rot™! = (A))™" € BL(R(A}). R(A1)') = BL(D5 ™ (2), ("~ () N D(9)').

which completes the proof for general m. If m = 1, we get the assertions about the Friedrichs/Poincaré/
Necas inequality and inf-sup-condition by Lemma 2.16, i.e., (2.8) and (2.10). O

Let us present the corresponding result for the divergence as well.
Corollary 2.32. Let Q be additionally topologically trivial and m € N. Then

H=™(Q) = divH™"™+1(Q) = div (H1(2) N Ry ()’

(is closed in H=™(Q)) with continuous inverse, i.e., div_' € BL(H™™(Q), (Iflm_l(Q) N I%O(Q))’). Espe-
cially form =1,

H*l(Q) = div LQ(Q) = div |§iO(Q)
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o

(is closed in H=1(Q)) with continuous inverse div™' BL(H7Y(),Ro(Q)) and uniquely determined

potential in Ry(2). Moreover,

Jeg,—1 >0 VV eRQ) |V|L2(Q) < cg,—1|div V\H_l(Q) < cd-1 |V||_2(Q)

and the inf-sup-condition
(V, grad u)

0< L = inf M = inf sup i N
A1 oevery@  VIem 02V €Bo(@) oucii ey |V 12| 8724 U2 o)
holds.
Proof. Let Xy := H™(Q), Xy := H™"1(Q) and A; := —grad : H"(Q) — H™"}(Q). A; is linear and

bounded with R(A;) = grad H™(Q) = H™~1(Q) N Ry () by Lemma 2.25. Therefore, R(A;) is closed.
The adjoint is A} = div = —grad’ : H=™T1(Q) — H=™(Q) with closed range R(A}) = divH™™"1(Q) by
the closed range theorem. Moreover, N(A;) = {0}. Hence A} is surjective as A; is injective, i.e.,
H™™(Q) = N(A;)° = R(A]) = divH ™1(Q).
As A; is also surjective onto its range, A} = div : HT™*1(Q) — R(A}) is bijective. By the bounded
inverse theorem we get
div™' = (A))~! € BL(R(A}), R(A1)") = BL(HT™(Q), (H™ () N Ry(2))'),

which completes the proof for general m. If m = 1, we get the assertions about the Friedrichs/Poincaré/
Necas inequality and inf-sup-condition by Lemma 2.16, i.e., (2.8) and (2.10). |

Remark 2.33. The results of the latter three lemmas and corollaries can be formulated equivalently in
terms of complexes: Let ) be additionally topologically trivial. Then the sequence

|S|m+1(Q) grad Iflm(Q) rot ﬁmfl(Q) div ﬁm,Q(Q)

and thus also its dual or adjoint sequence
H_m_l(Q) —div H_m(Q) rot H_m+1(Q) — grad H_m+2(Q)
are closed and exact Banach complezes.
3. THE Grad grad- AND div Div-COMPLEXES

We will use the following standard notations from linear algebra. For vectors a,b € R3 and matrices
A, B € R3%3 the expressions a - b and A : B denote the inner product of vectors and the Frobenius inner
product of matrices, respectively. For a vector a € R® with components a; for i = 1,2,3 the matrix
spna € R3*3 is defined by

0 —as a9
spna = | as 0 —aq
—as a1 0

Observe that (spna)b = a x b for a,b € R?, where a x b denotes the exterior product of vectors. The
exterior product a x B of a vector a € R? and a matrix B € R3*3 is defined as the matrix which is
obtained by applying the exterior product row-wise. Note that spn is a bijective mapping from R? to
the set of skew-symmetric matrices in R3*3 with the inverse mapping spn~'. In addition to sym A and
skw A for the symmetric part and the skew-symmetric part of a matrix A, we use dev A and tr A for
denoting the deviatoric part and the trace of a matrix A. Finally, the set of symmetric matrices in R3*3
is denoted by S, the set of matrices in R3*3 with vanishing trace is denoted by T.
In this section we need several spaces of tensor fields. The spaces

o o

C®(Q), L2(Q), HY(Q), HY(Q), D), D(Q), R,(),
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are introduced as those spaces of tensor fields, whose rows are in the corresponding spaces of vector fields
EC’O(Q)7 L2(Q), HL(Q), Ic-)ll(Q), D(Q), IS(Q), I%O(Q), ..., respectively. Additionally, we will need spaces
allowing for a deviatoric gradient, a symmetric rotation, and a double divergence, i.e.,
Guer () :=={V € L?(Q) : devGradV € L*(Q)},  Gaey () :={V € L*(Q) : devGrad V =0},
Roym () = {E € L*(Q) : symRotE € L*(Q)}, R Q) :={E € L*(Q) : symRotE = 0},
DD(Q) := {M € L*(Q) : divDivM € L*(Q)}, DD, () := {M € L*(Q) : divDivM = 0}.
Moreover, we introduce various spaces of symmetric tensor fields without prescribed boundary conditions,
ie.,

sym,O(

L2(Q,S) = {M € L2(Q) : MT =M}, DD(Q,S) := DD(Q)NL%(L,S), ...,

and with homogeneous boundary conditions as closures of symmetric test tensor fields, i.e.,

. 5 R(©)
R(Q,S) = C>(Q)NL2(Q,S) , ...,

as well as spaces of tensor fields with vanishing trace and without prescribed boundary conditions, i.e.,
L2(Q,T) :={EcL*(Q) : trE =0}, HYQ,T):=H (Q)NnL*QT), ...,

and with homogeneous boundary conditions as closures of trace-free test tensor fields, i.e.,

. - D(Q)
D(Q,T) :=C®(Q) NL2(QT)

We note . . . .
R(Q,S) C R(2) NLA(Q,S), D(Q,T) C D(Q)NL*Q,T),
Let us also mention that
dev Grad Gy, () € L*(Q,T), symRotR,,,,(Q2) C L*(2,S)
hold. This can be seen as follows. Pick ® € Gdev( ) with E := devGrad® and ® € R
M := sym Rot ®. Then for all ¢ € COO(Q) and ¥ € COO(Q)

(tr E ¢>L2(sz (E, v I>|_2 @ = —(®,Divdev I)LQ(S2 =0,

sym(

(Q) with

sym

(skw M,\II>L2(Q) (M, skw \II>L2(Q) (®, Rot sym skw @), , L) = 0
Before we proceed we need a few technical lemmas.
Lemma 3.1. For any distributional vector field V it holds for i,j,k=1,...,3
8k(dev Grad V)U 5 ZfZ # j7
O (Grad V), = g-(dev Grad V) s ifi £k,
5 Oi(dev Grad V) Zal devGrad V), ,ifi=j=k.

l;éz

Proof. Let ® € C*°(IR?) be a vector field. We want to express the second derivatives of ® by the derivatives
of the deviatoric part of the Jacobian, i.e., of devGrad ®. Recall that we have devE = E — 2(trE) I
for a tensor E. Hence dev Grad ® coincides with Grad ® outside the diagonal entries, i.e., we have
(Grad @);; = (dev Grad ®);; for i # j. Hence, looking at second derivatives, we see immediately

0y 0; ®; = 0 (Grad @);; = Ok (dev Grad @), for ¢ # 7,
8k. 6j @i = 6j 8k (I)i = 3j (Grad (D)zk = 8j (dev Grad (I))zk for ¢ 7é k.
Thus it remains to represent 8? ®; by the derivatives of dev Grad ®. By

1
97 ®; = 0;(Grad ®);; = 9;(dev Grad ®);; + 5 Oidive
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we get
82<I> = 0;(dev Grad @);; Za 0, @, = 0;(dev Grad ®);; Zal dev Grad ®);;,
l;éz l;éz
yielding the stated result for test vector fields. Testing extends the formulas to distributions, which
finishes the proof. ([

We note that the latter trick is similar to the well known fact that second derivatives of a vector
field can always be written as derivatives of the symmetric gradient of the vector field, leading by Necas
estimate to Korn’s second and first inequalities. We will now do the same for the operator dev Grad.
Lemma 3.2. It holds:

(i) There exists ¢ > 0, such that for all vector fields V € H'(Q)

| Grad V‘L2(Q) <c (|V|L2(Q) + | dev Grad V|L2(Q)).
(i) Gaey () = H' ().
(iii) For dev Grad : Gy, (2) C L2(Q2) — L*(Q,T) it holds D(dev Grad) = G4, () = H(Q), and the

kernel of dev Grad equals the space of (global) shape functions of the lowest order Raviart- Thomas
elements, i.e.,

N(dev Grad) = Gy, o(Q2) =RTo:={P : P(z) =az+b, a €R, beR?},
which dimension is dim RTg = 4.
1
(iv) There ezists ¢ > 0, such that for all vector fields V € H(2) NRT, L

|V|H1(Q) < ¢|dev Grad V\LQ(Q)
Proof. Let V € HY(Q). By the latter lemma and Necas estimate, i.e.,
de>0 VYVue LQ(Q) |u|L2(Q) < |gradu|H vyt |u|H ) S (\[—&— )\u||_2(Q)7

we get

3

| Grad V], g, < c(> |0k Grad Vly_, o) + | Grad Vi, )
k=1
3
<c (Z | 01 dev Grad V|H,1(Q) + | Grad V|H,1(Q))

k=1
< ¢ (| dev Grad V|L2(Q) + |V|L2(Q))7
which shows (i). As €2 has the segment property and by standard mollification we obtain that restrictions
of C°°(]R3) vector fields are dense in G, (2). Especially H'(Q2) is dense in G4, (). Let V € Gy, ()
and (V,,) € HY(Q) with V,, — V in G, (Q). By (i) (V,,) is a Cauchy sequence in H!(Q) converging to
V in H1(€2), which proves V € H'(2) and hence (ii). For P € RTy it holds dev Grad P = adevI = 0.
Let devGrad V' = 0 for some vector field V € G4, (Q) = H(Q). By Lemma 3.1 we get 9y GradV = 0
for all k = 1,...,3, and therefore V(z) = Az + b for some matrix A € R3*3 and vector b € R3. Then
0 = devGradV = dev A, if and only if A = % (tr A) I, which shows (iii). If (iv) was wrong, there exists a
1
sequence (V,,) C HY(Q)NRT, C with |V”|H1(Q) =1 and dev Grad V,, — 0. As (V,,) is bounded in H' (),
by Rellich’s selection theorem there exists a subsequence, again denoted by (V},), and some V € L2(Q)
with V,, — V in L2(Q). By (i), (Vi) is a Cauchy sequence in H!(Q). Hence V,, — V in H(Q) and

L 1
V e HY(Q) NRT, Y As 0 « devGradV, — devGradV, we have by (iii) V € RTo N RT, C@ — (o},
a contradiction to 1 = |V"‘H1(Q) — 0. The proof is complete. O

We recall the following well-known result.
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. - GG(Q)
Lemma 3.3. Let GG(Q) := {u € L%(Q) : Gradgradu € L%(Q)} and GG(Q) := C=(Q) . Then

o

GG(Q) = H(Q), GGy () = {0},

To
N

and there exists ¢ > 0 such that for all u € H?({2)

|u|H2(Q) < ¢| Grad grad u|L2(Q) = c\Au\LQ(Q).

It holds ¢ < 1—1—02(1—1—02) < 1—|—c§.

By straight forward calculations and standard arguments for distributions, see the Appendix, we get
the following.
Lemma 3.4. It holds:

(i) skw Grad grad H*(Q) = 0, i.e., Hessians are symmetric.
(ii) trRot R(Q),S) =0, i.e., rotations of symmetric tensors are trace free.

These formulas extend to distributions as well.

With Lemma 3.3 and Lemma 3.4 let us now consider the linear operators

(3.1) Ay = Gra(i)grad : GOG(Q) = If|2(Q) C L%(Q) — L%(,S), u +— Grad grad u,
(3.2) Ay := Rots : R(,S) € L3(,5) — L2(Q,T), M — Rot M,
(3.3) As = Dive : D(Q,T) € L3(Q,T) — L2(Q), E — DivE.

These are well and densely defined and closed. Closedness is clear. For densely definedness we look e.g.
at Rotg. For M € L?(€,S) pick (®,,) C C>(f2) with ®,, — M in L*(Q). Then
M — sym @, |

)+ [skw &y, i,_,(m =M= @[, =0,

2 2
L2(Q L2(Q

showing (sym ®,,) C C*(Q) N L*(Q,S) C R(2,S) and sym ®,, — M in L*(,S). By Lemma 3.3 the

kernels are
N(Grad grad) = {0}, N(Rots) = Ry (€, S), N(Divr) = Dy (62, T).
Lemma 3.5. The adjoints of (3.1), (3.2), (3.3) are

Al = (Grad grad)* = div Divs : DD(,S) C L2(Q,S) — L2(€2), M + div Div M,
A} = (Rotg)" = symRotr : R, (2, T) C L2, T) — L%(Q,S), B+ symRotE,
A} = (Divp)* = — dev Grad : G, (Q) = H'(Q) € L2(Q) — LA, T), Vs —devCrad V.
with kernels
N(div Divs) = DD, (€2, S), N(symRotr) = Ry, 0(2,T), N(dev Grad) = RTy.

Proof. We have M € D((Graci)grad)*) C L%(Q,S) and (Gra(;grad)*M = u € L%(Q), if and only if
M € L%((,S) and there exists u € L2(€2), such that

V¢ € D(Grad grad) = H*(Q) (Grad grad o, M), ¢, o) = (@, )2

= Vo e C®(0) (Grad grad @,M)LQ(Q) = <<p7u>|_2(9),
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if and only if M € DD(Q2) N L%(©2,S) = DD(,S) and divDivM = u. Moreover, we observe that
E € D((Rots)*) C L2(Q,T) and (Rots)*E = M € L%(€,S), if and only if E € L?(, T) and there exists
M € L%((,S), such that (note sym? = sym)

V& ¢ D(Rots) = R(Q,S) (Rot ®,E) ., 7, = (8. M),
. Ve e C°(Q) N LA(Q,S) (Rotsym &, E),, ) = (sym &, M),
o Vd e (OZOO(Q) (Rotsym @, E), ) = (sym @, M),
o Ve e C2(Q) (Rotsym @, E),, ) = (£, M), -

if and only if E € R.,,(Q) NL*Q,T) = R, (2,T) and symRot E = M. Similarly, we see that

V € D((Divy)*) C L2(Q) and (Divy)*V = E € L2(Q,T), if and only if V € L?(Q) and there exists
E € L%(Q,T), such that (note dev® = dev)

sym (

V& ¢ D(Divs) = D(Q,T) DIVE,V) ) = (8. B,
o V@ € C(2) N LA(Q,T) (Divdev ®, V), ) = (dev @, E)y,
o V@ e C () (Divdev @, V), ) = (dev @, E),,
& v € CX(Q) (Divdev ®, V), ) = (8.E) (g

if and only if V € G, () = H(Q) and —dev GradV = E using Lemma 3.2. Lemma 3.2 also shows
N(dev Grad) = Gy, () = RTo, completing the proof. O

Remark 3.6. Note that, e.g., the second order opemtor Grad grad is “one” operator and not a compo-

sition of the two first order opemtors Grad and grad Similarly the operator div Divg, sym Rotr, resp.
dev Grad has to be understood as “one” operator.

We observe the following complex properties for Ag, A1, As, and AS, Al A;.
Lemma 3.7. It holds
Rots Gradgrad = 0,  DivyRots =0,  divDivssymRoty — 0,  sym Roty dev Grad = 0,
i.e.,
R(Gracfgrad) C N(R(z)tg), R(sym Rotr) C N(div Divg),
R(Rots) C N(Divr), R(dev Grad) C N (sym Rotr).

Proof. For E = Rot M € R(Rots) with M € D(Rotg) there exists a sequence (M,,) C C=(Q) N L%(Q,S)
such that M,, — M in the graph norm of D(Rotg). As

Rot (€ () NL2(2,8)) ¢ C*(Q) N L(Q, T) N D, (%) € N(Divy)

we have E € N(Divy) since E < RotM,, € N(Divy). Hence R(Rots) C N(Divr), i.e., Divy Rots = 0
and for the adjoints we have sym Rott dev Grad = 0. Analogously we see the other two inclusions. [

Remark 3.8. The latter considerations show that the sequence

o
Grad grad TRTq
lhistl= il

{0} —— H(®) R(®:S) = D(Q,T) =5 L2(©) RT,
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and thus also its dual or adjoint sequence

{O} 0 LQ(Q) div Divg DD(Q,S) sym Rotrp R (Q,T) — dev Grad Hl(Q) LRTq RTO

sym
are Hilbert complexes. Here mrt, : L2(Q) — RTq denotes the orthogonal projector onto RTq with adjoint

TR, = (RT, @ RTo — L2(Q), the canonical embedding. The first complex might by called Grad grad-
complex and the second one div Div-complex.

3.1. Topologically Trivial Domains. We start with a useful lemma, which will be shown in the Ap-
pendix, collecting a few differential identities, which will be utilized in the proof of the subsequent main
theorem.

Lemma 3.9. Let u, V, and E be distributional scalar, vector, and tensor fields. Then
(i) 2skw GradV = spnrotV,
(ii) RotspnV = (divV)I— (Grad V)" and, as a consequence, tr RotspnV = 2divV,
(iii) Div(uI) = gradu and Rot(uI) = —spngradu,
(iv) 2graddivV = 3Div (dev (Grad V) "),
(v) skwRot E = spn H and Div(sym Rot E) = rot H with 2H = DivE" — grad(tr E),
(vi) Div(spnV) = —rot V.

Observe that we already know that N(Grad grad) = {0} and N(dev Grad) = RTy. If the topology of
the underlying domain is trivial, we will now characterize the remaining kernels and the ranges of the

o o] (o]
linear operators Grad grad, Rotg, Divy, and dev Grad, sym Rotr, div Divs.

Theorem 3.10. Let  be additionally topologically trivial. Then

(i) I%O(Q, S) = N(Ri)tg) = R(Gradograd) = Grad grad IS|2(Q),
(i) Dy(Q,T) = N(Divr) = R(Rots) = Rot H (2, ),
(iii) RT, “® — N(rar,) = R(Divs) = DivH(Q,T),
(iv) Reym,0(€2, T) = N(symRotr) = R(dev Grad) = dev Grad H(Q),
(v) DD, (9, S) = N(divDivs) = R(sym Rott) = sym Rot H*(Q, T),
(vi) L2(Q) = N(0) = R(div Divs) = div Div H*(2,S).

The corresponding linear and continuous (regular) potential operators are given by
Gradgrad PgroadPGroad : ﬁO(Q’S) — |f|2(Q)7
P o =sym(1-2Grad P spn'skw)P. : D,y(Q,T) — H'(Q,S),

otg

L o
P —dev(1+ Grad " P tr)Po CRT, 7@ — HY(Q,T),

Dive Div
Paevraa = Grad ™ (1 + §<grad* Div())1) : Ry o2, T) — HL(0),
PoymRoty = dev Prog (1 + spnrot™' Div) : DDy (Q,S) — HY(Q,T),
Piv Divs = sym Ppiy Paiy : L2(Q) — H?*(Q),S).
Remark 3.11. We note that
HY(Q,S) = symH'(Q), HY(Q,T) =devH'(Q), HY(Q,S)=symH'(Q), H'(QT)=devH(Q)

as, e.g., devHY(Q) € HY(Q,T) = devH'(Q,T) C devH(Q). The same holds for the corresponding
spaces of skew-symmetric tensor fields as well. Moreover:
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(i) Theorem 3.10 holds also for the other set of canonical boundary conditions, which follows directly
from the proof.

(ii) A closer inspection shows, that for (iii) and (vi), i.e., PD and Pgiv Divs, only the potential

v

operators corresponding to the divergence, i.e., Po , P o , Ppiy, Paiv, are involved. As Lemma
v v

2.27 does not need any topological assumptions, (iii) and (vi), together with the representations

of the potential operators, hold for general topologies as well.

Proof of Theorem 3.10. Note that by Lemma 3.2 (iii), Lemma 3.3, and Lemma 3.7 all inclusions of
the type R(...) C N(...) easily follow. Therefore it suffices to show that N(...) is included in the
corresponding space appearing at the end of each line in (i) - (vi), which itself is obviously included in
R(...). Throughout the proof we will frequently use the formulas of Lemma 3.9.

ad (i): Let M € Ry(©2,S) = N(Rots). Applying Lemma 2.25 for m = 0 row-wise, there is a vector field
V= PGo dM € HY(Q) with M = Grad V. Since skw M = 0 and 2skw GradV = spnrot V, it follows

that rot V = 0. By Lemma 2.25 for m = 1 there is a function u :== P o« V € H?*(Q) with V = gradu.

grad

Hence M = Grad V = Grad grad u € Grad grad H2(£2). So R,(£2,S) C Grad grad H?(Q2), which completes
the proof of (i). Note that

P . M=u=P.P.MeH(@Q),

Grad grad grad Grad
from which it directly follows that P o is linear and bounded.
Grad grad

ad (ii): Let E € IODO(Q,T) = N(DOiVT). Then there is a tensor field N := PR%tE € I(-)ll(Q) with
E = RotN, see Lemma 2.26 for m = 0 applied row-wise. Since trE = 0 and tr RotsymN = 0,
it follows that trRotskwIN = 0. Now let V := spn~!skwN ¢ Ifil(Q)7 i.e.,, skwIN = spnV. Since
trRotspnV = 2 divV, it follows that divV = 0. Therefore, there is a vector field H := PrgtV € ﬁZ(Q)
such that V = rot H, see Lemma 2.26 for m = 1. So we have

Rot skw N = Rot spnrot H = 2 Rot skw Grad H = —2 Rot sym Grad H.

Hence
E = Rot N = Rot sym N + Rot skw N = Rot M, M :=sym N — 2sym Grad H € H' (), S),

So E)O(Q, T) C Rot ISII(Q, S), which completes the proof of (ii). Note that

= = — o -1 o
PRStSE =M =sym PR%tE 2 sym Grad (Prot spn~ -~ skw PRotE)

= sym (1 — 2 Grad Prgt spn~! SkW)PR%tE € H'(Q,S),

from which it directly follows that PRQt is linear and bounded.
ots

1 o

ad (iii): Let V € RT, " = N(rgr,). As V € (R3) 2@ there is a tensor field F = P,V eH(Q)

L2(
) as well as

with V = DivF, see Lemma 2.27 for m = 0 applied row-wise. We have DivF € RT,
€ 1 o

DivdevF € RT, Y@ Hence grad(tr F) = Div((tr F)I) € RT, Lz(m, which implies tr F € HY(Q) N LZ(Q).

Therefore, there is a vector field H := Pd9 tr F € H2(Q) with tr F = div H, see Lemma 2.27 for m = 1.

Thus v

Div((tr F)I) = grad div H = ;Div (dev (Grad H)").
Hence

1 1 o
V =DivF = DivdevF + 3 Div((tr F)I) = Div E, E :=dev (F + i(Grad H)") € HY(Q,T).
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1 o
So RT, Y@ c Div H! (9, T), which completes the proof of (iii). Note that

1
P.V:i=E=dev(Po V+-(GradP. ttP. V)")
Div 2 div Div

Divy
1 o
=dev(l+;Grad' P, tr)P. V € H(Q,T),
2 div Div
from which it directly follows that PD_o is linear and bounded.

ivr
ad (iv): Let E€ R (Q,T) = N(symRotr). Then (trivially) Divsym Rot E = 0 and it follows

sym,0

1 1
rot H =0 with H:= 5(Div E" —grad(trE)) = 5 Div E'

and
(3.4) skw Rot E = spn H.
So H € Ry'(Q). Therefore, there is a unique scalar field u := grad ™" H € L2(f2), such that
H = grad u,
see Corollary 2.30 for m = 1. As Rot(uI) = —spngrad u implies sym Rot(uI) = 0, we see
F:=E+uleR,, ().

Moreover, by (3.4)
skw Rot F = skw Rot E 4+ skw Rot(uI) = spn H — spn gradu = 0.

Hence F € R,(Q). Therefore, there is a unique vector field V := Grad ™' F € H'(Q) N L2(2), such that
F = Grad V, see Lemma 2.25 for m = 0. So we have

E=GradV —ul
From the additional condition tr E = 0 it follows that 3u = tr Grad V' = div V' leading to
E =devGradV, V € HY(Q).

So R (92, T) C dev Grad H!(Q2), which completes the proof of (iv). Note that

sym,0

PievGradE =V = Grad™' (E + %(gmr1 DivE")I)

= Grad™" (1 + %(gradf1 Div(-)")I)E € H'(Q),

from which it directly follows that Pjey qrad is linear and bounded.
ad (v): Let M € DDy(2,S) = N(divDivs). So DivM € Dy '(Q) and there is a unique vector field

V :=rot7!DivM € ISO(Q), such that

DivM = rot V = — Div(spn V),
see Corollary 2.31 for m = 1. Hence Div(M +spnV) =0, i.e., M +spnV € Dy(?), and by Lemma 2.26
there is a tensor field F := Prot(M +spn V) € H(Q), such that

M +spnV = RotF.
Observe that M is symmetric and spn V is skew-symmetric. Thus
M =symRotF and spnV =skwRotF, F c H'(Q),

and hence
M =symRotF =symRotE with E:=devF e H'(Q,T),

as devF = F — 1(tr F) I and sym Rot((tr F)I) = 0. So DD (€2, S) C symRot H!(, T), which completes
the proof of (v). Note that

FPiymRotyM := E = dev Prot (M + spn rot~! Div M)
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= dev PRt (1 + spnrot ! Div)M c HY(Q,T),
from which it directly follows that Pyym Rot, is linear and bounded.
ad (vi): Let u € L2(Q) = N(0). Then there is a vector field V = Pg,u € HY(Q) with u = divV, see

Lemma 2.27 for m = 0, and a tensor field N = Pp;,V € H?(Q) such that V = DivN, see Lemma 2.27
for m = 1 applied row-wise. Since div Divskw N = 0, it follows that

u = divDivN = divDivM with M =:sym N € H*(Q,S).
So L2(Q) c div Div H?(£2,S), which completes the proof of (vi). Note that
Piiy Divstt := M = sym Ppiy Pyiyu € H*(, S),
from which it directly follows that Pgiy piv, is linear and bounded. O

Provided that the domain §2 has trivial topology, Theorem 3.10 implies that the densely defined, closed

(o] [e] [e]
and unbounded linear operators Grad grad, Rotg, Divy, and their adjoints div Divs, sym Rotr, dev Grad
have closed ranges and that all relevant cohomology groups are trivial, as

N(Grad grad) N N(0) = {0} N L2(Q) = {0},
N(Rotg) N N(div Divs) = Ry(2,5) N DDy(£2,S) = Ry (€2, S) N sym Rot H'(2, T)
— N(Rotg) N R(sym Rotr) = {0},
N(Dive) N N(sym Roty) = Dy (2, T) N Ry, (2, T) = Do(Q, T) N dev Grad H! ()
— N(Divr) N R(dev Grad) = {0},

1
N(mgrr,) N N(dev Grad) = RT, "~ NRT, = {0}.

In this case, the reduced operators are
A = Gradgrad H2( ) C L2(Q) — RO(Q S),
A, = Rots : R(Q,S) N DD, (9, S) € DD, (2, S) — Dy (%, T),

Ay = Divr : D(Q,T) N Ry, (2 T) C ,

sym,0 sym O(

)
T) — RT, @
Ay = divDivs : DD(2,S) N RO(Q S) c RO(Q S) — L2(Q),

)

Al = symRotr : Ry, (2 T) NDy(2,T) € Dy(2,T) — DDy (42, S),

sym

A; = —dev Grad : H'(Q) NRT, e RT, JEO R QT

sym,O(
as

o iR
R(divDivg) = L(Q),  R(Divy) = RT,".

The functional analysis toolbox Section 2.1, e.g., Lemma 2.10, immediately lead to the following implica-
tions about Helmholtz type decompositions, Friedrichs/Poincaré type estimates and continuous inverse
operators.

Theorem 3.12. Let Q be additionally topologically trivial. Then all occurring ranges are closed and all
related cohomology groups are trivial. Moreover, the Helmholtz type decompositions

DDO(Q7S)3 L2(QaT) = E)O(Qa T) D R

L2(Q7S) RO(Q S) L2(Q,T) syrn,O(

L2(Q,S) 0, T)

hold. The kernels can be represented by the following closed ranges

R,(2,S) = Grad grad H2(Q),
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symRot H'(Q, T) = DD, (€2, S) = sym Rot R, (€2, T) = sym Rot (Ry,,,, (2, T) N Dy (2,T)),

sym sym (

Rot H!(€2, S) = Dy (€2, T) = Rot R(Q, S) = Rot (R(,S) N DDy(2,S)),

L 2
R (€,T) = dev Grad H'(Q) = dev Grad (H}(Q) N RT,~),

sym,0
and it holds
div Div H*(2, S) = L*(Q2) = div DivDD((, S) = div Div (DD(£2,S) N ﬁO(Q, S)),
Div H! (2, T) = RT, " = N(ngr,) = Div D(2,T) = Div (D(,T) 1R,y (. T)).

All potentials depend continuously on the data. The potentials on the very right hand sides are uniquely
determined. There exist positive constants cgg, ¢p, cr such that the Friedrichs/Poincaré type estimates

Yu € |S|2(Q) |u\L2(Q) < cgq | Gradgradu|l_2(m,
¥M € DD(2,S) N Ry(2,S) M2 ) < cog | divDiv M, .
VE € D(Q,T) N R, (2 T) Bl < 0| DIVE| ),

vV e H(Q)N RTjLQ(Q) V]2 < o ldevGrad V], g, .
¥M € R(2,S) N DDy(Q,S) Ml ) < cr | Rot Ml g, .

VE € R,,,.(2,T) N Dy(Q,T) [ ) < cr [symRot Bl ,

hold. Moreover, the reduced versions of the operators
Gracf grad, div Divg, D?V'[[‘, dev Grad, R(z)tg, sym Rotr
have continuous inverse operators
(Grradoglraud)_1 : I?QO(Q,S) — ISIQ(Q)7
(div Divg) ™" : L2(©2) — DD(R,S) N Ry (%, S),

o 1 o
(Divy) ™' :RT, " — D(Q,T)NR Q,T),

sym,O(

1L
(devGrad)™': R (Q,T) — H(Q)N RT, L2<Q)7

sym,0

(Rots)~! : Dy(€2, T) — R(2,S) N DDy(2,S),

(sym Rotr) ™" : DDy(2,S) — R, (2, T) N Dy(2,T)

sym(
with norms (1 + C%g)l/27 (1+ C2D)1/2: resp. (1+ CQR)I/Q'

Remark 3.13. Let Q be additionally topologically trivial. The Friedrichs/Poincaré type estimate for
Rot M in the latter theorem can be slightly sharpened. Utilizing Lemma 3.4 we observe tr Rot M = 0 and
thus dev Rot M = Rot M for M € R(£,S). Hence

VM € R(Q,S) N DD, (£,S) \M\LQ(Q) < cr|devRot M|L2(Q).
Similarly and trivially we see
Yu € H?(Q) |u\L2(Q) < cgg | sym Grad grad u|L2(Q).

Recalling Remark 3.8 we have the following result.
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Remark 3.14. Let Q) be additionally topologically trivial. Theorem 3.10 and Theorem 3.12 easily lead to
the following results in terms of complexes: The sequence

TRTo

{O} 0 |(3|2(Q) Grad grad ﬁ(Q, S) Rotg 6 (Q, T) Divr LQ(Q) RTO
and thus also its dual or adjoint sequence

div Divg — dev Grad LRTo
— e

{0} —2— 12(Q) DD(Q,S) & R (Q,T) H(Q) RT,

sym(

are closed and exact Hilbert complexes.
Remark 3.15. The part

{0} 0 ﬁQ(Q) Grad grad ﬁ(Q, S) Rotg LQ(Q)
of the Hilbert complex from above and the related adjoint complex

div Divg
—

{0} —2— 12(Q) DD(Q,S) & R (Q,T)

sym(
have been discussed in [24] for problems in general relativity.

Remark 3.16. In 2D and under similar assumptions we obtain by completely analogous but much simpler
arguments that the Hilbert complexes

{O} 0 |S|2(Q) Grad grad ﬁ(Q; S) Rotg L2 (Q) TRT, RT,’

{0} —2— 12(0) &P pp(q,s)

LRTq

HY(Q) «—— RT,

sym Rot
PliCAsaalahtnil

are dual to each other, closed and exact. Contrary to the 3D case, the operator Rots maps a tensor field
to a vector field and the operator sym Rot =2 sym Grad is applied row-wise to a vector field and maps this
vector field to a tensor field. The associated Helmholtz decomposition is

L2(2,S) = Ry(,S) &, ¢, DD, (2, S)

L2(Q,S)
with
I?(O(Q,S) = Grad grad ISIZ(Q), DD, (£, S) = sym Rot H' (Q).
Theorem 3.10 leads to the following so called regular decompositions.

Theorem 3.17. Let Q be additionally topologically trivial. Then

R(2,S) = H'(2,S) + Ry(,S), R,(2,S) = Grad grad H2(Q),
D(Q,T) = H'(2,T) + Dy(2, T), D,y(2,T) = Rot H'(2,),
Ry (@, T) = HL(Q,T) + Ry, (2, T), Roymo(Q,T) = dev Grad H'(€2),
DD(,S) = H*(,S) + DD, (2, S), DD, (9,S) = sym Rot H (2, T)

with linear and continuous decomposition resp. potential operators

]

(Q,S) — H*(Q),

Ko

(Q,S) — H'(Q,S),

Xo

Po o . Po o .
R(Q,8),H(Q,S) R(£2,5),H2(Q)

(o)

D(Q,T) — H'(Q,T),

. D(Q,T) — H'(Q,S),

Po o : Po o
D(Q,T),H (Q,T) D(Q2,T),H!(£,S)

Pe ammi@n | Rym(@T) — HY(Q,T), P : Ry (2, T) — HY(Q),

sym

P

Reym (2,T),H(Q)

sym

. 2 . 1
pp(e.8) H2(es) | DD S) — HY(Q,S), Poosy i  PD(ES) — HH(Q,T).
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Proof. Let, e.g., E € R, (Q,T). Then

symRot E € DD, (£, S) = sym Rot H (22, T)

sym

with linear and continuous potential operator PsymRrot; : DDy(2,S) — H(Q,T) by Theorem 3.10.

Thus, there is E e H(©, T) depending linearly and continuously on E with sym RotE = sym Rot E.
Hence,
E-EcR, ((Q,T)=devGrad H'(Q)

with linear and continuous potential operator Pyev Grad : Rsym,O(Q?T> — HL(Q) by Theorem 3.10.

Hence, there exists V € HY(Q) with E — E =devGradV and V depends linearly and continuously on E.
The other assertions are proved analogously. (I

3.2. General Bounded Strong Lipschitz Domains. In this section we consider bounded strong
Lipschitz domains §2 of general topology and will extend results of the previous section as follows. The

Grad grad- and the Div div-complexes remain closed and all associated cohomology groups are finite-
dimensional. Moreover, the respective inverse operators are continuous resp. compact, and corresponding
Friedrichs/Poincaré type estimates hold. We will show this by verifying the compactness properties of
Lemma 2.7 for the various linear operators of the complexes. Then Lemma 2.5, Remark 2.6, and Theorem
2.9 immediately lead to the desired results. Using Rellich’s selection theorem we have the following
compact embeddings

D(Grad grad) N D(0) = H2(Q) & L2(),
D(nrr,) N D(dev Grad) = H1(Q) & L2(Q).

The two missing compactness results that would immediately lead to the desired results are

(3.5) D(Rots) N D(div Divs) = R(€2,S) N DD (2, S) & L2(0,5),
(3.6) D(Divr) N D(sym Roty) = D(2,T) AR, (2,T) 2 L2(Q,T).

The main aim of this section is to show the compactness of the two crucial embeddings (3.5)-(3.6). As
a first step we consider a trivial topology.

Lemma 3.18. Let Q be additionally topologically trivial. Then the embeddings (3.5) and (3.6), i.e.,
R(2,S) NDD(2,8) = LA(Q,S), R, (2,T)ND(Q,T) — L2(Q,T),
are compact.

Proof. Let (M,,) be a bounded sequence in R(Q2,S)NDD(£2,S). By Theorem 3.12 and Theorem 3.10 we
have

R(,S) NDD(R,S) = (Ry(€2,S) NDD(R,S)) & (R(2,S) N DD,(2,S)),

L2(2,S)
Ry(2,S) = Grad grad H2(Q),
DD, (f2,S) = sym Rot H' (22, T)

with linear and continuous potential operators. Therefore, we can decompose

R(2,S)NDD(Q,8) 5 M, = M,,, + M,.4 € (Ry(2,S) NDD(2,S)) & (R(€2,S) N DDy(2,S))

L2(Q,S)

with M, , € Grad grad H*(2) N DD(1,S), Rot M,, ¢ = Rot M,,, and M,,, = Grad grad u,, u,, € H*(Q),
as well as M,, 4 € R(,S) N symRot H(Q, T), divDivM,,, = divDivM,, and M, 4 = symRot E,,,
E, € HY(Q,T), and both u,, and E,, depend continuously on M,,, i.e.,

|un‘H2(Q) S C|M S C|Mn|L2(Q)’ |En‘H1(Q) S C|Mn,d‘L2(Q) S C|Mn‘L2(Q)'

n,r|L2(Q)
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By Rellich’s selection theorem, there exist subsequences, again denoted by (u,) and (E,,), such that (u,,)
converges in H(Q2) and (E,) converges in L%(Q). Thus with M,, ,, := M,, — M,,,, and similarly for
Mn,m,m Mn,m,dy Up,m s En,ma we see

|Mn,m,r|i2 Q) = <Mn m,r, Grad grad un,m>|_2(ﬂ) = (div Div Mn,m,rvun,m>|_2(g)
<le DIV Mn ,My un m>L2(Q) S c ‘un,m|L2(Q)a

|Mn,m,d |ig < n,m,d, Sy Rot En,m>L2(Q) = <R0t Mn,m,d7 En,m>|_2 Q)
= (Rot I\ En,m> <c |En,m ||_2(Q)-

L2(©)
Hence, (M,,) is a Cauchy sequence in L%(Q,S). So
R(©,S) NDD(Q,S) — L2(Q,S)

is compact. To show the second compact embedding, let (E,) C R Q,T) N D(Q,T) be a bounded

sequence. By Theorem 3.12 and Theorem 3.10 we have

sym (

Q,T) ND(QT) = (Ryym o(2T) ND(Q,T)) & Q,T) ND,(2,T)),

R

Rsym( sym,O( L2(Q,T) (Rsym(

Q,T) = dev Grad H'(Q),

sym,O(
Dy(2,T) = Rot H'(2,S)

with linear and continuous potential operators. Therefore, we can decompose

Rsym(Qﬂ T) N D(Q, T) > ETL = ETLJ + ETL,d € (Rsym,O(Qv T) N D(Q7 T)) @L2(Q,T) (Rsym(Qv T) n DO(Qv T))

with E,,, € dev Grad H}(Q) N B(Q,T), symRot E,, ¢ = symRotE,,, E,,, = devGrad V,,, V,, € H(Q), as

well as E, 4 € Rsym(Q,']I‘) NRot HY(Q,S), DivE, , = DivE,, and E, 4 = Rot M,,, M,, € H!(Q2,S), and
both V,, and M,, depend continuously on E,,, i.e.,

[V, |Hl <c|Em\L2 <c|E |M,, |H1(Q <c\End|L2 <c|E, |L2

n‘Lz Q)
By Rellich’s selection theorem, there exist subsequences, again denoted by (V, ) and (M,,), such that (V,,)

converges in |_2(Q) and (M,,) converges in L2 (Q). Thus with E,, ,,, := E,, — E,,,, and similarly for E,, ,,, ,
E.md, Vam, My m, we see

| D '|L2 @ = (Ey m,r,dev Grad V;, m>L2(Q) = —(DivE, mr, V">m>L2(Q)
(DB Ve < Vil
|Epm.d |L2(Q) (En.m.d, Rot Mn1m>L2(Q) (symRot Ey, m d, Mn,m>,_2(9)
= (sym Rot Emm,Mn,m)Lz(Q) < C|Mn,m\|_2(m-

Note, that here the symmetry of M,, ,,, is crucial. Finally, (E,,) is a Cauchy sequence in L?(Q, T). So

Ry (2, T) ND(Q,T) — L*(Q,T)
is compact. .

For general topologies we will use a partition of unity argument. The next lemma, which we will prove
in the Appendix, provides the necessary tools for this.

Lemma 3.19. Let ¢ € EOO(R3).
(i) If M € R(Q) resp. R(2,S) resp. R(Q,T), then M € R(Q) resp. R(Q2,S) resp. R(Q,T) and
(3.7) Rot(pM) = ¢ Rot M + grad ¢ x M.
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(ii) If M € R(Q) resp. R(Q,S) resp. R(Q,T), then oM € R(Q) resp. R(£,S) resp. R(Q,T) and

(3.7) holds.
(iii) IfE € [o)(Q) Tesp. E)(Q,T) resp. E)(Q,S), then pE € E)(Q) resp. E)(Q,T) Tesp. E)(Q,S) and
(3.8) Div(¢E) = ¢ DivE 4 grad ¢ - E.
(iv) If E € D(Q2) resp. D(Q,T) resp. D(2,S), then ¢E € D(Q) resp. D(Q,T) resp. D(Q,S) and
(3.8) holds.
(v) IfE € Ry,,(Q,T), then pE € Ry, (2, T) and

sym Rot(pE) = ¢ sym Rot E + sym(grad ¢ x E).
(vi) If M € DD(,S), then oM € DD*~1(Q,S) and
div Div(¢pM) = ¢ div Div M + 2 grad ¢ - Div M + tr(Grad grad ¢ - M).

By mollifying these formulas extend to ¢ € CO1(R3) resp. ¢ € CHL(R3).

Here grad ¢ x resp. grady- is applied row-wise to a tensor M and we see grad ¢ - M = M grad .
Moreover, we introduce

DD%1(Q,S) = {M € L*(2,S) : divDivM € H™1(Q)}.
Another auxiliary result required for the compactness proof is contained in the next lemma.

Lemma 3.20. The regular (type) decomposition

DD% (2, S) = H'(Q) - I+ DD (1, S)
holds, where + denotes the direct sum. More precisely, for each M € DD%~1(,S) there are unique
u € HY(Q) and My € DD (£, S) such that M = uI+ Mjy. The scalar function u € H*() is given as the

unique solution of the Dirichlet-Poisson problem

(grad u, grad ) = —(divDivM, ¢),, forall ¢ € Ifll(Q),

L2(Q) 1)
and the decomposition is continuous, more precisely there exists ¢ > 0, such that

< c|diVDiVM|H,1(Q), M —uIf ,

[l ) < @ < ¢Mlppo10):

Proof. The unique solution u € H(£2) satisfies
H™'(Q) > divDivuI = divgrad u = div Div M,
ie., Mp: =M —ul e DD,(,S), which shows the decomposition. Moreover,

Jul gy < (1 + c;) |divDiv M|,

Q)
shows, that u depends continuously on M and hence also M since
|M0||_2(Q) < |M‘L2(Q) + ‘u|L2(Q) < \/5(1 + Cé) |M|DD0=*1(Q,S)'

Let ul € DDy(Q,S) with u € H1(2). Then 0 = divDivulI = divgradu = Au, yielding u = 0. Hence,
the decomposition is direct, completing the proof. (I

Lemma 3.21. The embeddings (3.5)-(3.6), i.e.,

R(2,S) NDD(,8) — L2(Q,S), R, (2,T)ND(Q,T) < L2(Q,T),

are compact.



28 DIRK PAULY AND WALTER ZULEHNER

Proof. Let (U;) be an open covering of Q, such that Q; := QN U; is topologically trivial for all . As Q is
compact, there is a finite subcovering denoted by (U;)i=1,....; with I € N. Let (¢;) with ¢, € C*(U;) be
a partition of unity subordinate to (U;). Suppose (E,) C Ry, (2, T) N D(€, T) is a bounded sequence.

Then E,, = Zi[=1 iBEn and (9;En) C Ry, (€2, T) N D(;, T) is a bounded sequence for all i by Lemma
3.19. As Q; is topologically trivial, there exists a subsequence, again denoted by (¢;E,), which is a

sym (

Cauchy sequence in L2(€2;) by Lemma 3.18. Picking successively subsequences yields that (¢;E,) is
a Cauchy sequence in L?(€2;) for all i. Hence (E,) is a Cauchy sequence in L*(Q). So the second

embedding of the lemma is compact Let (M,,) C R(£2,S) N DD(£2,S) be a bounded sequence. Then

M, = ZZ 1 piM,, and (% n) C R(Q S) N DD%~1(Q;,S) is a bounded sequence for all i by Lemma

3.19 as | Div M, |,,- 1o S |Mn‘|_2(n)- Using Lemma 3.20 we decompose

SpiMn = ui,nI + MO,i,n (S Hl(Ql) -1 —|— (R(Q“S) M DDO(Q“S))

Moreover, (u;,,) is bounded in H'(€;) and (My,;,,) is bounded in (R(€;,S) N DDy(£;,S)). By Rellich’s
selection theorem and Lemma 3.18 as well as picking successively subsequences we get that (p;M,,) is a
Cauchy sequence in L2(€2;) for all i. Hence (M,,) is a Cauchy sequence in L?(Q2), showing that the first
embedding of the lemma is also compact and finishing the proof. O

Utilizing the crucial compact embeddings of Lemma 3.21, we can apply the functional analysis toolbox
Section 2.1 to the (linear, densely defined, and closed ‘complex’) operators Ag, A1, Ag, A;, A}, A5 In
this general case the reduced operators are

Ao = Gradgrad H2(Q) C L?(Q) — Grad grad ﬁQ(Q)a

A; = Rots : R(2,S) NsymRot R, (2, T)  symRot Ry, (2, T) — Rot R(,S),

sym sym

o o 1
Ay = Divy : D(Q,T) Ndev Grad H () C dev Grad H(Q) — RT, ",

A’ = div Divg : DD(Q,S) N Grad grad H2(Q) ¢ Grad grad H2(2) — L2(€),

A = symRotr : (Q,T) NRot R(2,S) C Rot R(Q,S) — sym Rot R, (2, T),

sym sym

Ay = —dev Grad : H'(Q) NRT, R RT, T ey Grad H1(Q)

as

div Div DD(€, §) = R(div Divg) = N(Grad grad) 2@ = {0} 2@ — [2(Q),

o o 1
DivD(L, T) = R(Divy) = N(dev Grad) @ = RT,

Note that by the compact embeddings of Lemma 3.21 all ranges are actually closed and we can skip the
closure bars. We obtain the following theorem.

Theorem 3.22. [t holds:
(i) The ranges

(Grad grad) = Grad grad H? (Q),

)=

L?(Q) = R(div Divs) = div Div DD(,S) = div Div (DD(£2, S) N Grad grad H (),
(Rots) Rot R(Q, S) = Rot ( (2,S) NsymRot R, (2, T)),

)=

R(sym Rotr) = sym Rot R, (?, T) = sym Rot (R,,,, (€2, T) N Rot I(i(Q, S)),

sym sym
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Lo o o o
RT," = R(Divy) = DivD(Q,T) = Div (D(Q, T) N dev Grad H' (%)),

1
R(dev Grad) = dev Grad H'(Q2) = dev Grad (H'(2) NRT, Lzm))
are closed. The more regular potentials on the right hand sides are uniquely determined and
depend linearly and continuously on the data, see (v).
(ii) The cohomology groups

Hp(2,S) = Ry(2,S) NDD,(2,S),  Hy(QT) := Dy(2,T) MR, (2, T)

sym,O(

are finite dimensional and may be called Dirichlet resp. Neumann tensor fields.
(iii) The Hilbert complezes from Remark 3.8, i.e.,

0 —% p2() S2dend ps) 2L pro,T) 2V 12() 0 RT,

and its adjoint
{0} 0 L2<Q) div Divg DD (Q, S) sym Rotr Rsym(Q, T) — dev Grad Hl (Q) LRTo RT(),

are closed. They are also exact, if and only if Hp(2,S) = {0}, Hy(Q, T) = {0}. The latter holds,
if Q 4s topologically trivial.
(iv) The Helmholtz type decompositions

L2(Q,S) = Grad grad H(Q) ® DD, (€, S)

12(Q,9)

=Ry (£,S) @LQ(QS) sym Rot Rsym(Q, T)

= Grad grad ISIQ(Q) @ ) Hp(Q2,S) ® symRot R, (Q2, T),

L2(Q,S

L*(Q,T) = Rot R(2,S) By g 1) Reymo(2 T)

L2(Q,S) sym

= IOJO(Q7 T) @ dev Grad H! ()

L2(Q,T)
=Rot R(Q,S) &, 1y HN(2, T) &2, 1) dev Grad H(Q)

are valid.
(v) There exist positive constants cgg, cp, Cr, such that the Friedrichs/Poincaré type estimates

Yu € If|2(Q) |u|L2(Q) < cgg | Grad grad u||_2(m7
¥M € DD(Q,S) N Grad grad H2(02) M g < g | divDiv M, g,
VE € D(Q, T) N dev Grad H'(Q) Bl ) < o | DIVE| L.

YV € HY(Q) N RT, [Vliao < o dev Grad Vi, g,
VM € R(2,S) Nsym Rot R, (2,T) M, < g | Rot Ml g, .

VE € R, (2,T) N Rot R(,S) |El 2y < cr [symRot E|, o

hold'.

. e}
'Note Rot M = dev Rot M for M € R(£,S) and thus for all M € R(2,S) N sym Rot Ry, (2, T)

|M|L2(Q) < cr|Rot M|L2(Q) = cr | dev Rot M‘L2(Q)'
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(vi) The inverse operators
(Grad grad) ™! : Grad grad H?(Q) — H?*(Q),
(div Divg) ™' : L%(Q) — DD(,S) N Grad grad |S|2(Q),
o 1 [}
(Divy) ™' : RT, ¥ — D(Q,T) N dev Grad H' (),
— 1 2
(dev Grad) ™! : dev Grad H'(Q) — H}(Q) NRT, """,

(Rots)~" : Rot R(€2,S) — R(®,S) N sym Rot R, (2,T),

sym(

(sym Rotr) ™"+ sym Rot R_,,,, (2, T) — R_,,. (2, T) N Rot R(2, S)

Sym
are continuous with norms (1 + cég)l/2 resp. (1+c3)7?, resp. (1+c&)"/?, and their modifications
(Gra(flogmd)*1 : Grad grad IS|2(Q) — IS|I(Q) C L%(),
(div Divg) ™" : L%(Q) — Grad grad H*(Q2) C L?(€),S),
o 1.
ivp) 7L Y™, devGrad HY(Q) € L2(Q,T),
D LRT,"
L
(dev Grad) ™! : dev Grad H' () — RT, " c L2(),

(Rotg)~" : Rot R(©,S) — sym Rot R, (Q, T) C L(,S),

sym(
(symRotr) ™" : sym Rot R, (€2, T) — Rot R(2,S) C L*(Q,T)
are compact with norms cgg, Cp, T€SP. CR.

We note

Ry(2,S) = Grad grad H*(Q) &, (.5 Ho(2,S),

DDO(Qa S) = sym Rot Rsym(Q7 T) @LZ(Q,S) HD(Qa S)v
Dy(2, T) = Rot R(2,8) &2 g, o Hn(2,T),
Ryym.o(©2,T) = dev Grad H' (Q) @, om M (2, T).

Finally, even parts of Theorem 3.10 and Theorem 3.17 extend to the general case, i.e., we have regular
potentials and regular decompositions for bounded strong Lipschitz domains as well.

Theorem 3.23. The regular decompositions

(i) R(Q,S) = H'(Q,S) + Grad grad H2(Q),
(ii) D(Q,T) = H'(, T) + Rot H (2, ),
(iii) Reym (2, T) = H' (2, T) + dev Grad H' (),
(iv) DD(,S) = H3(Q,S) + DDy (%, S)

hold with linear and continuous (regular) potential operators.

Proof. As in the proof of Lemma 3.21, let (U;) be an open covering of €2, such that €; :== QN U; is
topologically trivial for all i. As Q is compact, there is a finite subcovering denoted by (U;);=1,....r with

I € N. Let (p;) with ¢; € C*(U;) be a partition of unity subordinate to (U;) and let additionally
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¢; € C°(U;) with ¢ilsupp, = 1. To prove (i), suppose M € R(€2,S). By Lemma 3.19 and Theorem 3.17
we have

©:M € R(9;,S) = HY(9;,S) + Ry (€%, S) = H'(Q;,S) + Grad grad H*(Q;).
Hence, ;M = M; + Grad gradu; with M; € HY(Q;,S) and u; € H*(Q;). Let M, and 4; denote the
extensions by zero of M; and u;. Then M; € HY(Q,S) and 4; € H2(2). Thus

M = Z oM = ZI\A/L + Gradgradzm € ﬁl(Q,S) + Grad grad IE|2(Q),

and all applied operations are continuous. Similarly we proof (ii). To show (iii), let E € R
Lemma 3.19 and Theorem 3.17 we have

@B € R, (2, T) = H'(Q, T) + Ry, 0(€2%, T) = H' (€, T) + dev Grad H' (€2;).
Hence, o;E = E; + dev Grad V; with E; € H'(2;,T) and V; € H1(£;). In ©; we observe
oiE = ¢; o, E = ¢;E; + ¢; dev Grad V;
= ¢;B; — dev(V; - grad " ¢;) + dev Grad(¢;V;) € HY(Q;, T) + dev Grad H' ().

Let E; and V; denote the extensions by zero of ¢;E; — dev(V; - gradT ¢;) and ¢;V;. Then E; € H(Q,T)
and V; € H' (). Thus

E= ngiE = ZE’ + dev GradZVi € HY(Q,T) + dev Grad H*(Q),

(Q,T). By

sym

and all applied operations are continuous. To show (iv), let M € DD((,S). Then div DivM € L?(Q) and
by Theorem 3.10 and Remark 3.11 (i) there is some M € H2(Q,S), together with a linear and continuous

potential operator, with div DivM = div Div M. Therefore, we have M — M e DD(£2,S), completing
the proof. 0

o o
Applying Rotg, Divy, and sym Rotr, div Divg to the latter regular decompositions we get the following
regular potentials.

Theorem 3.24. It holds

(i) R(Rots) = Rot R(©2,S) = Rot H'(2, ),
1 o o o
(ii) RT, " = R(Divr) = DivD(Q,T) = DivH'(Q,T),
(iii) R(sym Rotr) = sym Rot Ry, (€2, T) = sym Rot H!(Q,T),

(iv) L2(Q) = R(div Divs) = div DivDD(f,S) = div Div H*(2,S)
with corresponding linear and continuous (regqular) potential operators (on the right hand sides).

Remark 3.25. While the results about the reqular potentials in Theorem 3.24 hold in full generality for
all operators, one may wonder that the regular decompositions from Theorem 3.23 hold in full generality
only for (i)-(iii), but not for (iv), i.e., we just have in (iv)

DD(Q,S) = H*(Q,S) + DDy (2,S) D H*(Q,S) + sym Rot H' (2, T).
The reason for the failure of the partition of unity argument from the proof of Theorem 3.23 is the
following: Let M € DD(Q,S). By Lemma 5.19 (vi) we just get ;M € DD%~1(€;,S), see also the proof
of Lemma 3.21. Using Lemma 3.20 and Theorem 3.17 we can decompose
oM = u; T+ symRot E; € H(Q;) - T+ sym Rot H*(€;, T)
as DD (£2;,S) = sym Rot HY(Q;, T). In Q; we observe
©oiM = ¢ip;M = ¢p;ju; I+ ¢; symRot E;



32 DIRK PAULY AND WALTER ZULEHNER

= ¢yu; I — sym(grad ¢; x E;) + sym Rot(¢;E;) € HY(Q;,S) + sym Rot H! (Q;, T).
Let 1\711- and El denote the extensions by zero of p;u; 1 —sym(grad ¢; X E;) and ¢;E;. Then Ml € HY(Q,S)
and E; € HY(Q,T) and thus
M = ngiM = ZI\A/IZ + symRotZEi € HY(Q,S) + sym Rot HY(Q, T),
i i i

and all applied operations are continuous. Therefore, we obtain
H?(Q,S) 4+ sym Rot H (2, T) € H*(©,S) + DD, (2, S) = DD(Q,S) € H(Q,S) + sym Rot H! (2, T).
So we have lost one Sobolev order in the summand H(£,S).

4. APPLICATION TO BIHARMONIC PROBLEMS

By A? = div Div Grad grad, a standard (primal) variational formulation of (1.1) in R3 reads as follows:

For given f € H2(Q), find v € H2(Q2) such that

(4.1) (Grad grad u, Grad grad ¢)L2(Q) = (f, ¢>H_2(Q) for all ¢ € H*(Q).
Existence, uniqueness, and continuous dependence on f of a solution to (4.1) is guaranteed by the theorem

of Lax-Milgram, see, e.g., [16, 15] or Lemma 3.3. Note that then

M := Grad grad u € Ry(€2,5) ©,a.0 <. Hp(2,S) C LX(Q,S)

L2(Q,5)
with divDivM = f € H72(Q). In other words the operator
(4.2) divDiv : L%(Q,S) — H7%(Q)
is surjective and

(4.3) divDiv : Ry(,5) S, ) Hp(2S) — H2(Q)

L2(Q,S
is bijective and even a topological isomorphism by the bounded inverse theorem. For our decomposition
result we need the following variant of the Hilbert complex from Theorem 3.22.

RTo — Hi(Q) —dvGrd g (@,T) 220, ppo-i(qs) SYPY, y-10) —2 (o},
where we recall DD%~1(Q,S) from Lemma 3.20. This is obviously also a closed Hilbert complex as
div Div : DD%~1(Q,S) — H™1(Q) is surjective as well by (4.2). Observe that

H'(Q,S) c DD (), S) C L*(Q,S).
For right-hand sides f € H™'(Q) we consider the following mixed variational problem for u and the
Hessian M of u: Find M € DD%~1(Q,S) and u € If|1(Q) such that

(4.4) (M, ®) ., ) + (1, divDiv @), o =0 for all ¥ € DD (0, S),

(4.5) (div Div M, )y ) = —(f, V)10 for all ¥ € HY(Q).
The first row and the second row of this mixed problem are variational formulations of (1.2) and (1.3),
respectively. We recall the following two results related to these mixed problems from [14].
Theorem 4.1. Let f € H71(Q). Then:
(i) Problem (4.4)-(4.5) is a well-posed saddle point problem.
(ii) The wvariational problems (4.1) and (4.4)-(4.5) are equivalent, i.e., if u € H2() solves (4.1),
then M = — Grad grad u lies in DD%~1(€,S) and (M, u) solves (4.4)-(4.5). And, vice versa, if

(M, u) € DD%71(Q,S) x Ifll(Q) solves (4.4)-(4.5), then u € If|2(Q) with Gradgradu = —M and
u solves (4.1).
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Although only two-dimensional biharmonic problems were considered in [14], the proof of the latter
theorem is completely identical for the three-dimensional case. The same holds for Lemma 3.20.
Proof. To show (i), we first note that (®,¥) — (P, \II>L2(Q) is coercive over the kernel of (4.5), i.e., for

® € DD,(2,S) we have (@, ®) = |®|?
as

2

@) = = DDO—1(0.5)" Moreover, the inf-sup-condition holds,

L2(Q)

(g, div Div ‘I)>H—1(Q)
inf sup
0 et () 02@en0—1 (25) | 8134 012 () [ ®lppo. 1 (o)

—(p,divDiveT)

- | grad |
inf HZ () inf L@

= O;g@EﬁI(Q) \grad <)O|L2(Q)|()OI|DDO,71(Q7S) o¢¢€ﬁ1(9) (|g0 I|ﬁ2(ﬂ) + |diV DiV((p I)||2_|_1(Q)) /2

‘grad(p||_2(g)

= inf

overn(@) (el o + |grad gl

L2(Q) )
by choosing ® := —pI € Hl(Q) -I < DD%~1(€,S) and observing
— (i, div Div(pT))y -1 () = — (¢, divgrad o)y 1 o) = | grad |,

<¢7 div grad 90>H—1 (Q)

|divDiv(gpI)|H,1(Q) = sup
0#¢€ﬁ1(9) ‘gradd)‘p(g)
= sup jgrad 6, rad wLQ(Q) = | grad y|
- 5 ) - L2 (@)
0£per () |grad¢‘|_z(9)

Note that both the primal problem (4.1) and the mixed problem (4.4)-(4.5) are well-posed. So, it suffices

to show the first part of (ii) only. The reverse direction follows then automatically. Let u € H?(2) solve
(4.1). Then M := — Grad gradu € DD%~1(Q,S) with divDivM = —f in H=2(Q) and hence in H=1().
Thus (4.5) holds. Moreover, for ¥ € DD%~1(Q,S) we see

(M, &) —(Grad grad u, ®) —(u,div Div ®) —(u,div Div ®)

L2(Q) L2(Q) — H-2(Q) — H-1(Q)

and hence (4.4) is true. Therefore, (M, u) solves (4.4)-(4.5). O

Remark 4.2. For convenience of the reader, we give additionally a proof of the other direction as well:
If (M, u) in DD%71(2,S) x HY(Q) solves (4.4)-(4.5), then divDivM = —f in H71(Q) and (4.4) holds.
Especially, (4.4) holds for ¥ € H2(Q2,S) C HY(Q,S) c DD%~1(Q,S), i.e

(4.6) —(M, ¥) = (u,div Div ¥) = (u, div Div ®)

L2(Q) H=1(Q) L2()"

But then (4.6) holds for all ¥ € H2(Q2) as sym ¥ € H3(Q,S) and

(4.7) —(M,W)LQ(Q) = —(M, sym \II>L2(Q) = (u, div Div sym 'II>L2(Q) = (u, div Div \II>L2(Q),

since div Divskw W = 0 by
(div Div skw W, ¢>L2(Q) = (skw ¥, Grad grad ¢) L2y = 0

for all p € E‘X’(Q) (4.7) yields that u € IS|2(Q) with Grad gradu = —M. Finally, for all ¢ € IS|2(Q)
(Grad grad u, Grad grad ¢>L2( —(M, Grad grad ¢>L2(Q —(div Div M,(Z))H_Q(Q) = (f, ¢>H_2(Q),

showing that u € H2(€2) solves (4.1).
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We note that the decomposition of DD%~1(2,S) in Lemma 3.20 is different to the Helmholtz type
decomposition of the larger space L%(Q2,S) in Theorem 3.12 and Theorem 3.22 and does not involve the

Hessian of scalar functions in H?(£2). Using the decomposition of DD%~1(€2,S) in Lemma 3.20, we have
the following decomposition result for the biharmonic problem. Let (M, u) € DD%~1(Q,S) x H}(Q) be
the unique solution of (4.4)-(4.5). Using Lemma 3.20 we have the following direct decompositions for
M, ¥ € DD 1(Q,S)
M=pI+M, ¥=¢lt+P,, p, 0 € HY(Q), My, ¥y € DDy(Q,S).
This allows to rewrite (4.4)-(4.5) equivalently in terms of (p, Mg, u) and for all (¢, ¥q, ), i.e.,
<pIa (pI>|_2(Q) + <MOa \I’0>|_2(Q) + <pIa ‘I’0>|_2(Q) + <M07 ¢I>L2(Q) + <ua div DlV(‘P I)>H—1(Q) =0,
<diV DiV(p I)v 1Z)>H—1(Q) = _<f» 1/J>H_1(Q)
or equivalently
<grad U, grad <'0>L2(Q) + 3<p7 <'0>L2(Q) + <M0a lI’O>|_2(Q) + <pa tr \IIO>L2(Q) + <tI‘ M07 90>|_2(Q) =0,
<gradpa grad 1’/}>L2(Q) = _<f» w>H—1(Q)’
which leads to the equivalent system
+<M07 ‘IIO>L2(Q) + <p7 tr \I’0>|_2(Q) =0,
<gradpv grad 1/1>|_2(Q) = _<f» w>H—1(Q)'

Theorem 4.3. The variational problem (4.4)-(4.5) is equivalent to the following well-posed and uniquely
solvable variational problem. For f € H71(Q) find p € HY(Q), My € DDy (1,S), and u € H'(2) such that

(4.8) (gradu, grad @) 5 gy + (¢t Mo, ) 2 + 3(P: )2y = 0,
(4.9) (Mo, ‘I’O>L2(Q) + (p, tr lI’O>|_2(Q) =0,
(4'1()) (gradp, grad’(/}>|_2(9) = _<f7 ¢>H71(Q)

for all ¢ € HL(Q2), ¥y € DDy (€,S), and p € HL(Q). Moreover, the unique solution (M, u) of (4.4)-(4.5)
is given by M := pI+ My and u for the unique solution (p, Mo, u) of (4.11)-(4.13).
If  is additionally topologically trivial, then by Theorem 3.12 or Theorem 3.22
DD, (f2,S) =symRotR Q,T) N Dy(2,T))

and we obtain the following result.

sym (Qv T) = Sym Rot (Rsym(

Theorem 4.4. Let ) be additionally topologically trivial. The variational problem (4.4)-(4.5) is equivalent
to the following well-posed and uniquely solvable variational problem. For f € H=Y(Q) find p € HY(),

E € R, (2 T) N Dy(2T), and u € H(Q) such that

(4.11) (grad u, grad @)LQ(Q) + (trsym Rot E, @)LQ(Q) + 3{p, 90>L2(Q) =0,

(4.12) (sym Rot E, sym Rot @)LQ(Q) + (p, tr sym Rot @)LQ(Q) =0,

(4.13) {gradp, grad ¥) 5 o) = = {f, V)1 (q)

for allp € HY(Q), ® € R,,,(2, T) N Dy(Q,T), and ¢ € H'(Q). Moreover, the unique solution (M, u) of
(4.4)-(4.5) is given by M := pI+ symRot E and u for the unique solution (p,E,u) of (4.11)-(4.13).

Note that, e.g., (trsym Rot E,@)LQ(Q) = (sym Rot E,@I)LQ(Q) and 3<p,<p>L2(Q) = (pI,<pI>L2(Q).
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Proof. (4.4)-(4.5) is equivalent to (4.8)-(4.10) and hence also to (4.11)-(4.13), if the latter system is well-

posed. By Theorem 3.12 or Theorem 3.22 the bilinear form (sym Rot -,sym Rot -) is coercive over

L2(©)
Ry (22, T) N Dy (2, T), which shows the consecutive unique solvability of (4.11)-(4.13). O

The three problems in the previous theorem are weak formulations of the following three second-order
problems in strong form. A homogeneous Dirichlet Poisson problem for the auxiliary scalar function p

Ap=f inQ, p=0 onl,
a second-order inhomogeneous Neumann type Rot sym Rot-Div-system for the auxiliary tensor field E
trE =0, Rot sym Rot E = — Rot(pI) = spn grad p, DivE =0 in Q,
nxsymRotE =—n xpl=pspnn =20, En=0 on I,
and, finally, a homogeneous Dirichlet Poisson problem for the original scalar function u
Au=3p+trsymRotE = tr(pI + symRot E) in u=0 onT.
In other words, the system (4.11)-(4.13) has triangular structure

3 trsymRoty  —A| |P
Rots(-I) RotgsymRoty 0 El=1]0
-A 0 0 U —f
with (trsym Rotr)* = Rotg(-I). Indeed we see that E € Ry, (€2, T) N Dy (2, T) with

(sym Rot E, sym Rot <I>>L2(Q) + (p, tr sym Rot @) =0

L2(2)
for all @ € Ry, (2, T) N Dy(2, T) is equivalent to E € Ry, (2, T) N Dy(£2, T) and

(4.14) (symRot E + pI, sym Rot ®) =0

sym(
L2(Q)

for all ® € R, (€2, T) as by Theorem 3.12

sym(

o

(4.15) symRot (Ry,,(Q2,T) N1 Dy(22, T)) = symRot R

Now (4.14) shows that

sym sym (Qv T) .

symRot E + pI € D(symRoty) = D(Rots) = R(%,S)
with Rot(sym Rot E + pI) = 0.

o
Finally, we want to get rid of the complicated space Ry, (€2, T)NDg (2, T) in the variational formulation
in Theorem 4.4, which might be very complicated to implement in forthcoming numerical applications
using finite elements due to the solenoidal and homogeneous normal boundary conditions. For given

p € H'(Q) the part (4.12), i.e., find E € Ry, (2, T) N Dy (2, T) such that

(4.16) (sym Rot E, sym Rot @) + (p, tr sym Rot ®) =0

L2(Q) L2(Q)

for all ® € R, (€2, T)NDy (2, T), of the variational system (4.11)-(4.13), has also a saddle point structure.

sym

By Theorem 3.12 we have (4.15) as well as

Dy (€, T) = Ryyp (2 T) 200 = dev Grad (H!(9) NRT, ) Mo,
Hence (4.16) is equivalent to find E € Ry, (€2, T) such that
(4.17) (sym Rot E, sym Rot §>L2(Q) + (p, tr sym Rot <I'>L2(Q) =0,
(4.18) (E, dev Grad @) =0

L2(2)
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1
for all ® € R,,,(2,T) and & € H'(2) NRT, " . Observe that

(E,V):= (E,0) € (Q,T) x (H'(Q)N RTjL”“))

sym
solves the modified variational system

(4.19) (sym Rot E, sym Rot <I>>L2(Q) + (®,dev Grad V)
(4.20) (E,dev Grad @)

—(p, tr sym Rot ®)
=0

L2(Q) L2(Q)

L ()
L
for all @ € R.,,,,(2, T) and ® € H'(Q) NRT, ¥ " On the other hand, any solution

Lo,
(E,V) € Ry (2, T) x (H(Q) NRT, ")
of (4.19)-(4.20) satisfies V' =0, as (4.19) tested with
® := dev Grad V € devGrad H'(Q) = R

shows dev Grad V' = 0 and thus V' € RTy by Lemma 3.2 yielding V' = 0. Note that (4.19)-(4.20) has the
saddle point structure

Q,T)

sym,O(

E
|4

_ | Rots(v-1) . (dev Grad)* = — Divy.

0

Rots sym Roty dev Grad
- DiV’H‘ 0

We obtain the following theorem.

Theorem 4.5. Let Q) be additionally topologically trivial. The variational problem (4.11)-(4.13) is equiva-

lent to the following well-posed and uniquely solvable variational system. For f € H71(Q) find p € H}(),
1 o

E € R, (2. T), V e H(Q) NRT, ™, and u € HY() such that

(4.21) (grad u, grad 90>L2(Q) + (trsym Rot E, @}LQ(Q) + 3(p,

P2
(4.22) (symRot E,symRot <I>>L2(Q) + (®, dev Grad V}LQ(Q) + (p, trsym Rot <I>>L2(
(4.23) (E, dev Grad <I>>L2(Q)
(4.24) (grad p, grad ¢) , L) = <f,’l/)> 1)

o 1 o
for ally € H'(Q), ® € R, (Q,T), ® € H'(Q)NRT, YO and o € H(Q). Moreover, the unique solution
(p, E,V,u) of (4.21)-(4.24) satisfies V =0 and (p,E, u) is the unique solution of (4.11)-(4.13).

Note that the system (4.21)-(4.24) has the block triangular saddle point structure

3 tr sym Rotr 0 _Al [P 0

Ri)ts( -I) Ri)tg symRotr devGrad 0 E |0

0 ~ Divy 0 o[V |o
A 0 0 0| lul Lor

with (trsym Rotr)* = Rots(-)I and (dev Grad)* = — Divr.

Proof. We only have to show well-posedness of the partial system (4.22)-(4.23). First note that by
Theorem 3.12 the bilinear form (sym Rot -, symRot -) , L2() IS coercive over R, (2, T)NDy(£, T), which

equals the kernel of (4.23). Indeed it follows from (4.23) that

gym(

1 o
E € dev Grad (H'(Q) NRT, ") 2@ = Dy (2, T).
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1
Moreover, the inf-sup-condition is satisfied as by picking for fixed 0 # ® € H!(Q) N RT, P the tensor
® := devGrad ® € devGradH}(Q) =R (©,T) we have

sym,0

i, wp (P, dev Grad <I>>L2(Q) o | dev Grad fI)|L2(Q) - 1
0APEH (Q), ®ER,,,, () ‘@‘Rsym(Q)T)‘@|H1(Q) T 0£BeH (Q), |(I)|H1(Q) T c
®L 5, RTo ®L .y RTo
by Lemma 3.2 (iv). O

Remark 4.6. The corresponding result for the two-dimensional case is completely analogous with the

[e]
exception that the tensor potential E € R 0, T)NDy(Q,T) is to be replaced by a much simpler vector

(
sym
potential N € HY(Q). Furthermore, observe that

(sym Rot N, sym Rot ®) sym Grad’ N, sym Grad* D)

L) = L2(2)

holds for vector fields N,® € H'(Q). Here the superscript 1 denotes the rotation of a vector field by
90°. Note that the complicated second-order inhomogeneous Neumann type Rot sym Rot-Div-system for
the auziliary tensor field E is replaced in 2D by a much simpler inhomogeneous Neumann linear elasticity

1
problem, where the standard Sobolev space HY(Q) resp. HY(Q) NRM ™ can be used. Here RM denotes
the space of rigid motions. This yields the decomposition result in [14] for the two-dimensional case,
which was shortly mentioned in the introduction.
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APPENDIX A. PROOFS OF SOME USEFUL IDENTITIES

Note that for a,b € R® and 4 € R3*%3

Aszz — Az
(A1) spna:spnb=2a-b, skwA = —spn |A;3— A3
2
Ag1 — Ar2
hold and hence for skew-symmetric A
(A.2) spna: A =spna:spnspn ' A=2a-spn ' A,

i.e., spn* = 2spn~'. Moreover, we have for two matrices 4, B
A" :B=1tr(AB) =tr(BA)=B' : A= A:B".
The assertions of Lemma 3.4 and Lemma 3.9 are contained in the assertions of the following lemma.

Lemma A.1. For smooth functions, vector fields and tensor fields we have
(i) skwGradgradu =0,
(ii) divDivM =0, if M is skew-symmetric,
(iii) Rot(uI) = —spngradu,
(iv) trRot M = 2div(spn~! skw M),
especially tr Rot M = 0, if M is symmetric,
(v) Div(uI) = gradu,
(vi) trGradV =divV,
(vii) Div(spnV) = —rotV,
especially Div(skw M) = —rot V for V = spn~!skw M,
(viii) Rot(spnV) = (divV)I— (Grad V)T,
especially Rot skw M = (divV)I— (Grad V)T for V = spn~!skw M,
(ix) skwGradV = §spnrot V and Rot(sym Grad V) = — Rot(skw Grad V') = —% Rot(spnrot V),
(x) skwRot M =spnV and Div(sym Rot M) = — Div(skw Rot M) = rot V'
with V =1 (DivMT — grad(tr M)),
especially Div(sym Rot M) = — Div(skw Rot M) = % rot DivM', if tr M = 0,
(xi) graddivV = 2 Divdev (GradV)'.

These formulas hold for distributions as well.

Proof. (i)-(ix) and the first identity in (x) follow by elementary calculations. For the second identity in

(x) observe that 0 = Div Rot M = Div(sym Rot M) + Div(skw Rot M) for M € C*°(R?) and hence, using
the first identity in (x) and (vii), we obtain

Div(sym Rot M) = — Div(skw Rot M) = — Div(spn V') = rot V.
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To see (xi) we compute

0 = DivRotspn V' = Div ((div V) I) — Div(Grad V)"
1
= Div ((divV)I) — Divdev (Grad V)" — 5 Div ((tr (Grad V) ")I)

2 2
=3 Div ((divV)I) — Divdev (Grad V)" = 3 grad divV — Divdev (Grad V).
Therefore, the stated formulas hold in the smooth case. By density these formulas extend to u, V', and
M in respective Sobolev spaces. Let us give proofs for distributions as well. For this, let m € Ny and
u€eH™(Q),VeH ™), Me H™(Q) and ¢ € C*(Q), € C*(Q), and & € C>*(). By

(u,0;0; ¢) = (u,0; 0; p) or (with (ii)) (u,div Divskw ®) =0

H-m () H-m ()’ H—m(Q)

we see that Gradgradu € H™™72(Q) is symmetric and hence (i). Note that the formal adjoint is

(skw Grad grad)* = div Divskw. If M is skew-symmetric we have (M, Grad grad go)H_m(Q) =0, i.e., (ii).
We compute with (iv)
(uI,Rot @)H,m(ﬂ) = (u, tr(Rot 'I>)>H,m(Q) = 2(u, div(spn~' skw (1))>Hfm(s2)
—(spn grad u, skw (I)>H—m—1(Q) = —(spngrad u, <I>>H_m_1(ﬂ),
showing (iii). Formally, (tr Rot)* = Rot(-I). Hence by (iii)
(M, Rot(p I)>H—m(Q) = —(M, spn grad cp)H_m(Q) = —(skw M, spn grad ('0>H""’(Q)
= —2(spn~ ! skw M, grad @)H,m(m = 2(divspn ! skw M, <p>H,,,,L,1(Q),

yielding (iv). (v) follows by

_<U’ I’ Grad ¢)>H m(Q < (Grad ¢)>H7'm(ﬂ) = _<u7 diV ¢)>H77n(£2)'
Formally, (tr Grad)* = — Div(-I). Thus by (v)
7<V7 DIV(SOI)>H m(Q <V gradgp>Hfm(Q) = <div‘/a¢>H—m—l(Q)7

yielding (vi). We have the formal adjoint (Divspn)* = (Divskw spn)* = —2spn~!skw Grad, and by the
formula 2 skw Grad ® = spnrot @ from (ix), we obtain (vii), i.e.,

—2(V,spn~ ! skw Grad ®) —(V, rot ®)

H-m(Q) H-m(Q)"

Using the formal adjoint (Rotspn)* = 2spn~! skw Rot we calculate with (x)

2(V,spn~! skw Rot ®) = (V,Div®" — grad(tr ®))

H=m(Q) H=m(Q)

—(Grad V, @ "), .y g +(diVVitr @) g

i.e., (viii) holds. Formally (skw Grad)* = — Divskw. Using (vii) we see

. _ 1
—(V, Div skw ¢>H*M(Q) = (V,rot spn~ ' skw (I)>H*M(Q) = §<spnr0tV,skW '1>>H,m,1(9),

which proves (ix). We compute by (viii)
(M, Rot skw ®) = (tr M, div(spn ! skw ®)) — (M, Grad(spn~! skw ‘I))>Hfm(ﬂ)

ot (DivM " spn~! skw ®),_

Hfm(Q) anz(ﬂ)

= —(grad(tr M), spn~* skw ®)

Hf'mfl( 'mfl(Q)

1
(spnDiv M T, skw ®)

1
= (spn(grad tr M), skw q)>H—m—1(Q) +3

H—m—l(Q)?

showing the first formula in (x) and the second one follows by DivRot = 0 and (vii). To prove (xi) we
observe

(V, Div(dev Grad @) " Tn = (V,Divdev(Grad ®) ")

-m(Q) H="(Q)

2 .
= §<‘/, grad div ¢>H—m,(ﬂ)’
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completing the proof. O

Proof of Lemma 3.19. For M € IOR(Q, S) there exists a sequence (®,,) C EOO(Q) NL%(Q,S) with &, — M
in R(Q). But then (o®,,) C C°(Q) NL3(€,S) with p®,, — M in R(Q), proving oM € R(£,S), as we
have Rot(¢®,,) = ¢ Rot ®,, + grad ¢ x ®,,. This formula also shows for ¥ € C>°(2) (note ¥ € C>(12))

(¢M, Rot ¥) , ,, = (M, p Rot \II>L2(Q) = (M, Rot(¢ ¥)) 5, — (M, gradp x ¥)

(A.3) (@) (@)
= (Rot M, ap‘I’}LQ(Q) + (grad ¢ x M, @)

L2(Q)7

L2(Q)

and thus Rot(¢M) = ¢ Rot M + grad ¢ x M. Analogously we prove the other cases of (i). Similarly we
show (iii) using the formula Div(¢®,,) = ¢ Div®,, + grad ¢ - ®,,. To show (ii), let M € R(,S). Then
©M € L?(€,S) and (A.3) shows oM € R(Q,S) with the desired formula. Analogously the other cases of
(i) follow. Similarly we prove (iv). Let E € Ry, (Q, T) and ® € C*°(Q). Then ¢E € L*(Q, T) and with
p® e C®(NQ) we get

(pE, Rot sym ®)

sym (

L2(0) = (E; ¢ Rotsym®),, o = (E,Rot sym(o ®)) o) —

= (symRot E, gp<I>>L2(Q) + (grad ¢ x E, sym ®)

(E, grad ¢ x sym @)LQ(Q)

L2(Q)
which shows ¢E € Ry,,,(Q,T) and sym Rot(¢E) = ¢ sym Rot E + sym(grad ¢ x E) and hence (v). To
prove (vi), let M € DD(,S) and ¢ € E‘X’(Q) Then oM € L%(£2,S) and we compute by
Grad grad(y ¢) = ¢ Grad grad ¢ + ¢ Grad grad ¢ + 2sym ((grad v)(grad qS)T) ,
(grad @) (grad ¢) T = Grad(¢ grad ¢) — ¢ Grad grad ¢
the identity

Grad grad(y ¢) = ¢ Grad grad ¢ — ¢ Grad grad ¢ + 2 sym ( Grad(¢ grad ¢)).
Finally with ¢¢ € E"O(Q) we get
(pM, Grad grad ¢>L2(Q) = (M, p Grad grad ¢>L2(Q)
= <M, Grad grad(p ¢)>L2(Q) + (M, ¢ Grad grad @)LQ(Q) — 2<M, sym (Grad(d) grad go)) >L2(Q)
= (divDiv M, <p¢>|_2(m + (M : Grad grad ¢, ¢>L2(Q) — 2(M, Grad(¢ grad 4,0)>L2(Q)
= (p divDiv M, ¢>L2(Q) + <tr(M - Grad grad @), ¢>L2(Q) +2 (DivM, ¢ grad ()0>H71(Q) ,

= (DivM - grad ¢, ¢>H,1(Q)

which shows (vi), i.e., M € DD%~1(€,S) and
div Div(eM) = ¢ divDiv M + 2 grad ¢ - Div M + tr(Grad grad ¢ - M).
The proof is finished. O
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