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Abstract

This paper is concerned with the derivation of computable and guaranteed upper
and lower bounds of the difference between the exact and the approximate solution
of a boundary value problem for static Maxwell equations. Our analysis is based
upon purely functional argumentation and does not attract specific properties of an
approximation method. Therefore, the estimates derived in the paper at hand are
applicable to any approximate solution that belongs to the corresponding energy
space. Such estimates (also called error majorants of the functional type) have been
derived earlier for elliptic problems [19, 20].
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1 Introduction and notation

The main goal of this paper is to derive guaranteed and computable upper and lower
bounds of the difference between the exact solution of an electro-magneto static bound-
ary value problem and any approximation from the corresponding energy space. We
discuss the method with the paradigm of a prototypical electro-magneto static problem
in a bounded domain. The generalized formulation is given by the integral identity (2.6).
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We show that (as in many other problems of mathematical physics) certain transforma-
tions of (2.6) lead to guaranteed and fully computable majorants and minorants of the
approximation error. However, the case considered here has special features that make
(at some points) the derivation procedure different from, e.g., that which has been earlier
applied to other elliptic type problems. This happens because the corresponding differ-
ential operator has a nonzero kernel (which contains curl-free vector fields) and the set of
trial functions in (2.6) is restricted to a rather special subspace. For these reasons, the
derivation of the estimates is based on Helmholtz-Weyl decompositions of vector fields,
orthogonal projections onto subspaces, and on a certain version of a Poincaré-Friedrich
estimate for the differential operator curl. First, we show that the distance between the
exact solution E and the approximate solution Ẽ (measured throughout the semi-norm
generated by the operator curl) is equal to some norm of the so-called residual functional
`Ẽ (cf. (3.1)). If Ẽ satisfies the boundary condition exactly, i.e. τt,γẼ = G, then the latter
functional vanishes if and only if curl Ẽ coincides with curlE. Lemma 10 shows that an
error majorant can be expressed throughout a certain norm of `Ẽ (cf. (3.2)). However, in
general, computing of this norm is hardly possible because it requires finding a supremum
over an infinite number of vector fields.

Theorem 14 provides a computable form of the upper bound. The corresponding
estimate (3.12) shows that the error majorant is the sum of five terms, which can be
thought of as penalties for possible violations of the relations (2.1)-(2.4). It contains
only known vector fields and global constants depending on geometrical properties of the
domain. Moreover, it is easy to see that the upper bound vanishes if and only if Ẽ coincides
with the exact solution E and a ’free variable’ Y encompassed in the estimate coincides
with µ−1 curl Ẽ. Also, we show that the estimates derived are sharp in the sense that the
estimates (3.13) and (3.14) have no irremovable gap between the left and right hand sides
(Remark 16). Finally, in Section 4, we derive lower estimates of the difference between
exact and approximate solutions. The corresponding result is presented by Theorem 21.
This estimate is also computable, guaranteed and sharp provided that the approximation
exactly satisfies the prescribed boundary condition.

Throughout this paper, we consider a bounded domain Ω ⊂ R3 with Lipschitz contin-
uous boundary γ and denote the corresponding outward unit normal vector by n. E and
H stand for the electric and magnetic vector fields, respectively, while ε and µ denote
positive definite, symmetric matrices with measurable, bounded coefficients that describe
properties of the media (dielectricity and permeability, respectively). For the sake of
brevity, matrices (matrix-valued functions) with such properties are called ’admissible’.
We note that the corresponding inverse matrices are admissible as well. In particular,
there exists a constant cµ > 0, such that for a.e. x ∈ Ω

cµ|ξ|2 ≤ µ−1(x)ξ · ξ, ∀ ξ ∈ R3. (1.1)

By L2(Ω) we denote the usual scalar L2-Hilbert space of square integrable functions over

Ω and by H(Ω) the Hilbert space of real-valued L2-vector fields, i.e. L2(Ω,R3). For the
sake of simplicity we restrict our analysis to the case of real valued functions and vector
fields. The generalization to complex valued spaces is straight forward.

Orthogonality and the orthogonal sum with respect to the scalar product of H(Ω) is
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denoted by ⊥ and ⊕, respectively, i.e. Φ⊥Ψ if

〈Φ,Ψ〉Ω :=

∫
Ω

Φ ·Ψ dλ = 0,

where λ denotes Lebesgue’s measure. Moreover, by ⊥ν (respectively ⊕ν) we indicate the
orthogonality (respectively orthogonal sum) in terms of the weighted L2-scalar product
〈νΦ,Ψ〉Ω generated by an admissible matrix ν.

Throughout the paper we will utilize the following functional spaces:

H(curl,Ω) :=
{

Ψ ∈ H(Ω) | curl Ψ ∈ H(Ω)
}
,

H(curl0,Ω) := {Ψ ∈ H (curl,Ω) | curl Ψ = 0} ,

H(curl◦,Ω) :=
◦
C∞(Ω), closure in H(curl,Ω),

H(curl◦0,Ω) := H(curl◦,Ω) ∩ H(curl0,Ω).

Analogously, we define the spaces associated with the operators div and grad. Further-
more, we introduce the spaces (containing the so-called Dirichlet and Neumann fields)

HD,ε(Ω) := H(curl◦0,Ω) ∩ ε−1 H(div0,Ω)

=
{

Ψ ∈ H(Ω) | curl Ψ = 0, div εΨ = 0, n×Ψ|γ = 0
}
,

HN,µ(Ω) := H(curl0,Ω) ∩ µ−1 H(div◦0,Ω)

=
{

Ψ ∈ H(Ω) | curl Ψ = 0, div µΨ = 0, n · µΨ|γ = 0
}
.

Here and later on we write E ∈ ε−1 H(div0,Ω) if εE ∈ H(div0,Ω). These are finite dimen-
sional spaces, whose dimensions are denoted by dD and dN , respectively. In fact, these
numbers are equal to the so-called Betti numbers of Ω and depend only on topological
properties of the domain (for a detailed presentation see [10]). A basis of HD,ε(Ω) shall
be given by special vector fields {H1, . . . , HdD}.

Finally, we note that being equipped with the proper inner products all the above
introduced functional spaces are Hilbert spaces.

The classical formulation of the electro-magneto static problem for a given vector field
F (driving force) and given ε, µ reads as follows: Find a magnetic field

H ∈ H(curl,Ω) ∩ µ−1 H(div◦0,Ω) ∩HN,µ(Ω)⊥µ

and a corresponding electric field

E ∈ H(curl◦, div0 ε,⊥ε,Ω) := H(curl◦,Ω) ∩ ε−1 H(div0,Ω) ∩HD,ε(Ω)⊥ε ,

such that in Ω
curlH = F, curlE = µH.

In other words, the problem is to find vector fields H ∈ H(curl,Ω) ∩ µ−1 H(div,Ω) and

E ∈ H(curl, div ε,Ω) := H(curl,Ω) ∩ ε−1 H(div,Ω),
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such that

curlH = F, curlE = µH in Ω,

div µH = 0, div εE = 0 in Ω,

n · µH|γ = 0, n× E|γ = 0 on γ,

µH ⊥ HN,µ(Ω), εE ⊥ HD,ε(Ω),

where the homogeneous boundary conditions are to be understood in the weak sense.
This coupled problem is equivalent to an electro-magneto static Maxwell problem in

second order form, which in classical terms reads as follows: Find an electric field E in
H(curl◦, div0 ε,⊥ε,Ω), such that µ−1 curlE belongs to H(curl,Ω) and

curlµ−1 curlE = F

holds in Ω, i.e. find E ∈ H(curl, div ε,Ω), such that µ−1 curlE ∈ H(curl,Ω) and

curlµ−1 curlE = F in Ω, (1.2)

div εE = 0 in Ω, (1.3)

n× E|γ = 0 on γ, (1.4)

εE ⊥ HD,ε(Ω). (1.5)

Once E has been found, the magnetic field is given by H := µ−1 curlE.
We note that the problem

curlµ−1 curlE + κ2E = F in Ω,

n× E|γ = 0 on γ

with positive κ was considered in [2] in the context of functional type a posteriori error
estimates. From the mathematical point of view, this problem is much simpler as the
problem (1.2)-(1.5) since the zero order term makes the underlying operator positive
definite.

2 Variational formulation and solution theory

Henceforth, we consider (1.2)-(1.5) assuming that the boundary condition on γ may be in-
homogeneous (physically, such a condition is motivated by the presence of electric currents
on the boundary). Hence, we intend to discuss the following prototypical electro-magneto
static Maxwell problem in second order form: Find an electric field E in H(curl, div ε,Ω),
such that

curlµ−1 curlE = F in Ω, (2.1)

div εE = 0 in Ω, (2.2)

n× E|γ = G on γ, (2.3)

εE ⊥HD,ε(Ω), (2.4)
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i.e., find E in

H(curl, div0 ε,⊥ε,Ω) := H(curl,Ω) ∩ ε−1 H(div0,Ω) ∩HD,ε(Ω)⊥ε

satisfying (2.1) and (2.3). There are at least two methods to prove existence of the
solution. One is based upon Helmholtz-Weyl decompositions (see, e.g. [9, 14, 15, 17,
10, 11]). The second method consists of introducing and studying a suitable generalized
statement of the problem (2.1)-(2.4). In this paper, we use the second method because it
provides a natural way of deriving error estimates. Both methods are based on Poincaré-
Friedrich estimates, see Remark 8, and (if it is needed) exploit suitable extension operators
for the boundary data. On this way, we also need a certain version of the Poincaré-
Friedrich estimate, namely

||Ψ||Ω ≤ cp ||curl Ψ||Ω ∀Ψ ∈ H(curl◦, div0 ε,⊥ε,Ω). (2.5)

Of course, there exist more general variants of Poincaré-Friedrich’s estimate (2.5) for
vector fields. Here, we refer to Remark 8.

Now, let Eγ be some vector field in H(curl, div0 ε,⊥ε,Ω) satisfying the boundary con-
dition (2.3) in the generalized sense, i.e., E − Eγ ∈ H(curl◦,Ω). The generalized solution

E ∈ H(curl◦, div0 ε,⊥ε,Ω) + Eγ ⊂ H(curl, div0 ε,⊥ε,Ω)

of (2.1)-(2.4) is then defined by the relation〈
µ−1 curlE, curlW

〉
Ω

= 〈F,W 〉Ω ∀W ∈ H(curl◦, div0 ε,⊥ε,Ω). (2.6)

If F ∈ H(Ω) then by the Cauchy-Scharz inequality the right hand side of (2.6) is a
linear and continuous functional over H(curl◦, div0 ε,⊥ε,Ω). By (2.5) the left hand side
of (2.6) is a strongly coercive bilinear form over H(curl◦, div0 ε,⊥ε,Ω). Thus, under these
assumptions the problem (2.6) is uniquely solvable in H(curl◦, div0 ε,⊥ε,Ω) +Eγ by Lax-
Milgram’s theorem.

First, we note some Helmholtz-Weyl decompositions of H(Ω), i.e. decompositions into
solenoidal and curl-free fields, which will be used frequently throughout our analysis.

Lemma 1 H(Ω) can be decomposed as

H(Ω) = εH(curl◦0,Ω)⊕ε−1 curl H(curl,Ω)

= εgrad H(grad◦,Ω)⊕ε−1 H(div0,Ω)

= εgrad H(grad◦,Ω)⊕ε−1 εHD,ε(Ω)⊕ε−1 curl H(curl,Ω) (2.7)

and

H(Ω) = H(curl◦0,Ω)⊕ε ε−1curl H(curl,Ω)

= grad H(grad◦,Ω)⊕ε ε−1 H(div0,Ω)

= grad H(grad◦,Ω)⊕ε HD,ε(Ω)⊕ε ε−1curl H(curl,Ω), (2.8)

where all closures are taken in H(Ω) and H(grad◦,Ω) =
◦
H1(Ω). Moreover,

curl H(curl,Ω) = H(div0,⊥,Ω) := H(div0,Ω) ∩HD,ε(Ω)⊥.
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Remark 2 Let us denote the ε-orthogonal projection onto ε−1curl H(curl,Ω) in (2.8) by
π. Then we have for all Φ ∈ H(curl,Ω)

τt,γπΦ = τt,γΦ, curl πΦ = curl Φ (2.9)

and for all Ψ ∈ H(Ω)

div επΨ = 0, επΨ⊥HD,ε(Ω), curl(1− π)Ψ = 0, τt,γ(1− π)Ψ = 0.

The latter line can be written in a more compact and precise way as

πH(Ω) = ε−1curl H(curl,Ω) = H(div0 ε,⊥ε,Ω), (1− π)H(Ω) = H(curl◦0,Ω).

Remark 3 Note that by (2.1) F must be solenoidal and perpendicular in H(Ω) to
H(curl◦0,Ω). Using the Helmholtz-Weyl decomposition (2.7) we decompose the vector field

F ∈ H(Ω), i.e. F = εFD + εFgrad + Fcurl. Then, for any W ∈ H(curl◦, div0 ε,⊥ε,Ω) we
compute 〈F,W 〉Ω = 〈Fcurl,W 〉Ω. Hence, the functional on the right hand side of (2.6) can
not distinguish between F and the projection Fcurl.

The following theorem states the main existence result.

Theorem 4 Let F ∈ H(div0,⊥,Ω) and let Eγ ∈ H(curl, div0 ε,⊥ε,Ω) satisfy the bound-
ary condition (2.3). Then the boundary value problem (2.1)-(2.4) is uniquely weakly solv-
able in H(curl◦, div0 ε,⊥ε,Ω) + Eγ. The solution operator is continuous.

Remark 5 The kernel of (2.1)-(2.3) equals HD,ε(Ω). We only have to show curlE = 0
but this follows immediately since E ∈ H(curl◦,Ω) and thus,

0 =
〈
curlµ−1 curlE,E

〉
Ω

=
〈
µ−1 curlE, curlE

〉
Ω
.

Remark 6 The boundary data G and its extension Eγ can be described in more detail.
Since the papers [1, 3, 4] and the more general paper of Weck [23] we know that even
for Lipschitz domains, where the non scalar trace business is a challenging task, there
exist a bounded linear tangential trace operator τt,γ and a corresponding bounded linear
tangential extension operator τ̌t,γ (right inverse) mapping H(curl,Ω) to special tangential
vector fields on the boundary, i.e.

H
−1/2
t (curls, γ) :=

{
ψ ∈ H

−1/2
t (γ) | curls ψ ∈ H−1/2(γ)

}
,

and vice verse. Here, curls denotes the surface curl. Using the Helmholtz-Weyl decompo-
sition (2.8) we even get an improved extension operator. We have

τt,γ : H(curl,Ω)→ H
−1/2
t (curls, γ),

τ̌t,γ : H
−1/2
t (curls, γ)→ H(curl, div0 ε,⊥ε,Ω).

Applied to smooth vector fields we have τt,γ = n× · |γ. Now, we may specify the boundary

data G ∈ H
−1/2
t (curls, γ) and the extension Eγ := τ̌t,γG ∈ H(curl, div0 ε,⊥ε,Ω) as well as

our variational formulation for E = E◦ + τ̌t,γG: Find E◦ ∈ H(curl◦, div0 ε,⊥ε,Ω), such
that

b(E◦,W ) :=
〈
µ−1 curlE◦, curlW

〉
Ω

= 〈F,W 〉Ω −
〈
µ−1 curl τ̌t,γG, curlW

〉
Ω

=: `(W )

holds for all W ∈ H(curl◦, div0 ε,⊥ε,Ω).
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Remark 7 Henceforth, we assume that G is given by a tangential trace of some vector
field Ǧ ∈ H(curl,Ω).

Remark 8 More general variants of the Poincaré-Friedrich estimate for vector fields
(2.5) are known. For instance, we have

||Ψ||Ω ≤ cp

(
||curl Ψ||Ω + ||div εΨ||Ω + ||τt,γΨ||H−1/2

t (curls,γ)
+

dD∑
n=1

|〈εΨ, Hn〉Ω|

)
,

which holds for all Ψ ∈ H(curl, div ε,Ω). This estimate may be proved by an indirect
argument using a ’Maxwell compact embedding property’ of Ω, which holds true not only
for Lipschitz domains, but also, if the homogeneous boundary condition is considered,
for more irregular domains (cone properties), see [18]. For inhomogeneous boundary
conditions the Lipschitz assumption can not be weakened. Actually, it is just the continuity
of the solution operator of the corresponding electro static boundary value problem, see
[5, 6, 7].

3 Upper bounds for the deviation from the exact so-

lution

Let Ẽ be an approximation of E ∈ H(curl◦, div0 ε,⊥ε,Ω)+Eγ ⊂ H(curl, div0 ε,⊥ε,Ω). We
assume that Ẽ belongs to H(curl, div ε,Ω), which means that, in general, the boundary
condition, the divergence-free condition, and the orthogonality to the Dirichlet fields might
be violated, i.e. the approximation field may be such that

τt,γẼ 6= G, div εẼ 6= 0,
〈
εẼ,H

〉
6= 0 for some H ∈ HD,ε(Ω).

Moreover, for the subsequent analysis and then also for the numerical application, which
is even more important, it is sufficient to assume just Ẽ ∈ H(curl,Ω).

Our goal is to obtain upper bounds for the difference between curlE and curl Ẽ in
terms of the weighted norm

||Ψ||µ−1,Ω :=
∣∣∣∣µ−1/2Ψ

∣∣∣∣
Ω

=
〈
µ−1Ψ,Ψ

〉1/2

Ω
.

First, we use (2.6) and get for all W ∈ H(curl◦, div0 ε,⊥ε,Ω)〈
µ−1 curl(E − Ẽ), curlW

〉
Ω

= 〈F,W 〉Ω −
〈
µ−1 curl Ẽ, curlW

〉
Ω

=: `Ẽ(W ), (3.1)

where `Ẽ is a linear and continuous functional over H(curl◦, div0 ε,⊥ε,Ω) as well as over
H(curl,Ω). Furthermore, `Ẽ does not depend on the exact solution E.

Remark 9 Obviously, `Ẽ vanishes if curlE = curl Ẽ. Furthermore, if Ẽ satisfies the
boundary condition exactly, i.e. τt,γẼ = G, then `Ẽ = 0 if and only if curlE = curl Ẽ (or
what is equivalent if and only if E = πẼ). This holds by the following argument using the
Helmholtz-Weyl decomposition: If τt,γẼ = G then E − πẼ ∈ H(curl◦, div0 ε,⊥ε,Ω). Thus
curl(E − πẼ) = 0 by `Ẽ = 0. But then E − πẼ is a Dirichlet field and hence must vanish
by orthogonality. Finally curl πẼ = curl Ẽ.
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The second step is based upon the following result:

Lemma 10 Let E ∈ H(curl, div0 ε,⊥ε,Ω) be the exact solution and Ẽ ∈ H(curl,Ω) be
an approximation. Furthermore, let `Ẽ be as above and let c` > 0 exist, such that〈

µ−1 curl(E − Ẽ), curlW
〉

Ω
= `Ẽ(W ) ≤ c` ||curlW ||µ−1,Ω

holds for all W ∈ H(curl◦, div0 ε,⊥ε,Ω). Then∣∣∣∣∣∣curl(E − Ẽ)
∣∣∣∣∣∣
µ−1,Ω

≤ c` + 2 ||curlT ||µ−1,Ω (3.2)

holds for all T ∈ H(curl,Ω), for which the tangential trace coincides with the tangential
trace of E − Ẽ, i.e. G− τt,γẼ, on the boundary γ. If additionally τt,γẼ = G then∣∣∣∣∣∣curl(E − Ẽ)

∣∣∣∣∣∣
µ−1,Ω

≤ c`. (3.3)

Proof We use the Helmholtz-Weyl decomposition (2.8) and the projection π from Remark
2. We consider a vector field T ∈ H(curl,Ω) with τt,γT = G− τt,γẼ and define the vector
field

W := E − π(T + Ẽ) = E − Ẽ + (1− π)Ẽ − πT ∈ H(curl◦, div0 ε,⊥ε,Ω),

which holds by (2.9). Hence, curlW = curl(E − Ẽ) − curlT . Using Cauchy-Schwarz’
inequality we obtain

||curlW ||2µ−1,Ω =
〈
µ−1 curl(E − Ẽ), curlW

〉
Ω
−
〈
µ−1 curlT, curlW

〉
Ω

≤
(
c` + ||curlT ||µ−1,Ω

)
||curlW ||µ−1,Ω

and thus ||curlW ||µ−1,Ω ≤ c` + ||curlT ||µ−1,Ω. By the triangle inequality we get (3.2). (3.3)
is trivial setting T := 0. �

Using the trace and extension operators from Remark 6 we obtain the following result:

Corollary 11 Let the assumptions of Lemma 10 be satisfied. Then∣∣∣∣∣∣curl(E − Ẽ)
∣∣∣∣∣∣
µ−1,Ω

≤ c` + 2
∣∣∣∣∣∣curl τ̌t,γ(G− τt,γẼ)

∣∣∣∣∣∣
µ−1,Ω

≤ c` + 2cγ

∣∣∣∣∣∣G− τt,γẼ∣∣∣∣∣∣
H
−1/2
t (curls,γ)

.
(3.4)

Here cγ > 0 is the constant in the inequality

||curl τ̌t,γψ||µ−1,Ω ≤ cγ ||ψ||H−1/2
t (curls,γ)

∀ψ ∈ H
−1/2
t (curls, γ). (3.5)
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Proof Setting T := τ̌t,γ(G − τt,γẼ) in (3.2) and using (3.5) proves (3.4). We note that
(3.3) follows directly from the corollary as well. �

Lemma 10 and Corollary 11 imply the following result.

Theorem 12 Let E, Ẽ be as in Lemma 10. Then∣∣∣∣∣∣curl(E − Ẽ)
∣∣∣∣∣∣
µ−1,Ω

≤ cp√
cµ
||F − curlY ||Ω +

∣∣∣∣∣∣Y − µ−1 curl Ẽ
∣∣∣∣∣∣
µ,Ω

+ 2cγ

∣∣∣∣∣∣G− τt,γẼ∣∣∣∣∣∣
H
−1/2
t (curls,γ)

,
(3.6)

where Y is an arbitrary vector field in H(curl,Ω).

Proof For any Y ∈ H(curl,Ω) and any W ∈ H(curl◦,Ω) we have

−〈curlY,W 〉Ω + 〈Y, curlW 〉Ω = 0. (3.7)

Combining (3.1) and (3.7), we obtain for all W ∈ H(curl◦, div0 ε,⊥ε,Ω)〈
µ−1 curl(E − Ẽ), curlW

〉
Ω

= 〈F − curlY,W 〉Ω +
〈
Y − µ−1 curl Ẽ, curlW

〉
Ω

= `Ẽ(W ).
(3.8)

By Cauchy-Schwarz’ inequality, Poincaré-Friedrich’s estimate (2.5) and (1.1) we estimate
the right hand side `Ẽ(W ) of (3.8)

|〈F − curlY,W 〉Ω| ≤ ||F − curlY ||Ω ||W ||Ω ≤ cp ||F − curlY ||Ω ||curlW ||Ω
≤ cp√

cµ
||F − curlY ||Ω ||curlW ||µ−1,Ω ,

(3.9)

∣∣∣〈Y − µ−1 curl Ẽ, curlW
〉

Ω

∣∣∣ ≤ ∣∣∣∣∣∣Y − µ−1 curl Ẽ
∣∣∣∣∣∣
µ,Ω
||curlW ||µ−1,Ω . (3.10)

Now, Lemma 10 and Corollary 11complete the proof. �

We remark that the latter estimate is unable to measure adequately the deviation
of the divergence of εẼ to 0 (this is obvious since εẼ even does not need to have any
divergence). On the other hand, even if div εẼ 6= 0 then the semi-norm ||curl · ||µ−1,Ω could

not feel the lack of the constraint div εẼ = 0. The same holds true for the deviation of
εẼ from the orthogonality to the Dirichlet fields. However, it is not difficult to transform
the estimate into a form, in which the estimate is represented in terms of the semi-norm

|||Ψ|||Ω := ‖ curl Ψ‖µ−1,Ω + ||div εΨ||Ω +

dD∑
n=1

|〈εΨ, Hn〉Ω| (3.11)

on H(curl, div ε,Ω), which obviously is a norm on

H(curl◦, div ε,Ω) := H(curl◦,Ω) ∩ ε−1 H(div,Ω).
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Remark 13 These two facts can be seen applying the Helmholtz-Weyl decomposition
(2.8) and the projection π. In particular, by (2.9) replacing Ẽ by πẼ in Theorem 12 would
change nothing. In other words, the part of Ẽ containing the eventually non vanishing
divergence term (1 − π)Ẽ can be added to any term in (3.6) without changing anything.
To get the ’full’ norm (3.11) we just add the terms∣∣∣∣∣∣div ε(E − Ẽ)

∣∣∣∣∣∣
Ω

=
∣∣∣∣∣∣div εẼ

∣∣∣∣∣∣
Ω

=
∣∣∣∣∣∣div ε(1− π)Ẽ

∣∣∣∣∣∣
Ω

and the sum of∣∣∣〈ε(E − Ẽ), Hn

〉
Ω

∣∣∣ =
∣∣∣〈εẼ,Hn

〉
Ω

∣∣∣ =
∣∣∣〈ε(1− π)Ẽ,Hn

〉
Ω

∣∣∣ .
Of course, the terms in the first equalities make sense for εẼ ∈ H(div,Ω) only.

Theorem 14 Let E, Ẽ be as in Lemma 10 and additionally Ẽ ∈ H(curl, div ε,Ω). Then∣∣∣∣∣∣∣∣∣E − Ẽ∣∣∣∣∣∣∣∣∣
Ω
≤M+(Ẽ;Y ) :=

cp√
cµ
||F − curlY ||Ω +

∣∣∣∣∣∣Y − µ−1 curl Ẽ
∣∣∣∣∣∣
µ,Ω

+ 2cγ

∣∣∣∣∣∣G− τt,γẼ∣∣∣∣∣∣
H
−1/2
t (curls,γ)

+
∣∣∣∣∣∣div εẼ

∣∣∣∣∣∣
Ω

+

dD∑
n=1

∣∣∣〈εẼ,Hn

〉
Ω

∣∣∣ (3.12)

holds for any Y ∈ H(curl,Ω). If E − Ẽ even belongs to H(curl◦, div ε,Ω), i.e. if the
approximation Ẽ satisfies the boundary condition exactly, then ||| · |||Ω is a norm for E− Ẽ
and we have for all Y ∈ H(curl,Ω)∣∣∣∣∣∣∣∣∣E − Ẽ∣∣∣∣∣∣∣∣∣

Ω
≤M+(Ẽ;Y ) =

cp√
cµ
||F − curlY ||Ω +

∣∣∣∣∣∣Y − µ−1 curl Ẽ
∣∣∣∣∣∣
µ,Ω

+
∣∣∣∣∣∣div εẼ

∣∣∣∣∣∣
Ω

+

dD∑
n=1

∣∣∣〈εẼ,Hn

〉
Ω

∣∣∣ . (3.13)

Remark 15 If Ẽ satisfies the prescribed boundary condition and εẼ is solenoidal and
perpendicular to Dirichlet fields, then (3.6) or (3.12), (3.13) imply for all Y ∈ H(curl,Ω)∣∣∣∣∣∣∣∣∣E − Ẽ∣∣∣∣∣∣∣∣∣

Ω
=
∣∣∣∣∣∣curl(E − Ẽ)

∣∣∣∣∣∣
µ−1,Ω

≤M+(Ẽ;Y ) =
cp√
cµ
||F − curlY ||Ω +

∣∣∣∣∣∣Y − µ−1 curl Ẽ
∣∣∣∣∣∣
µ,Ω

(3.14)

and the left hand side is a norm for E−Ẽ. The estimates (3.6)-(3.14) show that deviations
from exact solutions contain weighted residuals of basic relations with weights given by
constants in the corresponding embedding inequalities. These are typical features of the
so-called functional a posteriori error estimates.

Remark 16 We see that M+(Ẽ;Y ) = 0, if and only if Ẽ := E and Y := µ−1 curlE (by
Lemma 19 we then have Y ∈ H(curl,Ω)). Moreover, we note that (3.13) and (3.14) are
sharp, which easily can be seen by setting Y := µ−1 curlE ∈ H(curl,Ω). In other words,
if Ẽ ∈ H(curl, div ε,Ω) satisfies the boundary condition exactly then∣∣∣∣∣∣∣∣∣E − Ẽ∣∣∣∣∣∣∣∣∣

Ω
= inf

Y ∈H(curl,Ω)
M+(Ẽ;Y ).
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Remark 17 In Theorem 12 and Theorem 14 we can replace the boundary term on the

right hand side by 2 ||curlT ||µ−1,Ω or 2
∣∣∣∣∣∣curl τ̌t,γ(G− τt,γẼ)

∣∣∣∣∣∣
µ−1,Ω

using Lemma 10 and

Corollary 11. Especially for numerical applications the first choice is recommendable.
Hence, we may assume that G is always given by a tangential trace of some vector field
Ǧ ∈ H(curl,Ω), i.e. τt,γǦ = G. Then T := Ǧ − Ẽ and we do not have to know the
constant cγ.

Remark 18 If the domain is ’simple’ in terms of a vanishing second Betti number, i.e.
there are no ’handles’, then there exist no Dirichtlet fields. Thus, for instance, in Theorem
14 the last summand in the respective estimates does not occur.

4 Lower bounds for the error

Now, we proceed to derive computable lower bounds of the error. First, we present
the following subsidiary result:

Lemma 19 If E satisfies (2.6) then µ−1 curlE ∈ H(curl,Ω) and curlµ−1 curlE = F .

Proof We need to show that〈
µ−1 curlE, curl Φ

〉
Ω

= 〈F,Φ〉Ω ∀Φ ∈
◦
C∞(Ω). (4.1)

Using π from Remark 2, we obtain W = πΦ ∈ H(curl◦, div0 ε,⊥ε,Ω) provided that

Φ ∈
◦
C∞(Ω). Thus, by (2.6) and the fact that curl(1− π)Φ = 0, we get〈
µ−1 curlE, curl Φ

〉
Ω

=
〈
µ−1 curlE, curl πΦ

〉
Ω

= 〈F, πΦ〉Ω ∀Φ ∈
◦
C∞(Ω). (4.2)

Since F ∈ H(div0,⊥,Ω) = curl H(curl,Ω), we get (by approximation) 〈F, πΦ〉Ω = 〈F,Φ〉Ω
and (4.1) follows. To be more precise, we select Fn ∈ H(curl,Ω), for which (curlFn)n∈N

converges in H(Ω) to F , using πΦ ∈ H(curl◦,Ω) and curl(1− π)Φ = 0. Then

〈curlFn, πΦ〉Ω = 〈Fn, curl πΦ〉Ω = 〈Fn, curl Φ〉Ω = 〈curlFn,Φ〉Ω ∀Φ ∈
◦
C∞(Ω).

�

Lemma 19 implies

Remark 20 Let E ∈ H(curl,Ω) and some F be given. Then the following three asser-
tions are equivalent:

(i) µ−1 curlE ∈ H(curl,Ω) and curlµ−1 curlE = F .

(ii) F ∈ H(Ω) and 〈
µ−1 curlE, curl Φ

〉
Ω

= 〈F,Φ〉Ω ∀Φ ∈ H(curl◦,Ω).
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(iii) F ∈ H(div0,⊥,Ω) and〈
µ−1 curlE, curl Φ

〉
Ω

= 〈F,Φ〉Ω ∀Φ ∈ H(curl◦, div0 ε,⊥ε,Ω).

Theorem 21 Let Ẽ ∈ H(curl,Ω) be an approximation. Then∣∣∣∣∣∣curl(E − Ẽ)
∣∣∣∣∣∣2
µ−1,Ω

≥ sup
W

M−(Ẽ;W ),

where

M−(Ẽ;W ) := 2 〈F,W 〉Ω −
〈
µ−1 curl(2Ẽ +W ), curlW

〉
Ω

and the supremum is taken over H(curl◦,Ω). This estimate is sharp if E − Ẽ belongs to
the latter space, i.e. if the approximation Ẽ satisfies the boundary condition exactly.

Proof We start with the obvious identity∣∣∣∣∣∣curl(E − Ẽ)
∣∣∣∣∣∣2
µ−1,Ω

= sup
Y ∈H(Ω)

(
2
〈
µ−1 curl(E − Ẽ), Y

〉
Ω
− ||Y ||2µ−1,Ω

)
.

Thus, for all W ∈ H(curl,Ω) we obtain the estimate∣∣∣∣∣∣curl(E − Ẽ)
∣∣∣∣∣∣2
µ−1,Ω

≥ 2
〈
µ−1 curl(E − Ẽ), curlW

〉
Ω
− ||curlW ||2µ−1,Ω

= 2
〈
µ−1 curlE, curlW

〉
Ω
−
〈
µ−1 curl(2Ẽ +W ), curlW

〉
Ω
.

Clearly, this estimate is sharp because we can always put W = E−Ẽ. However, to exclude
the unknown exact solution E from the right hand side we needW ∈ H(curl◦, div0 ε,⊥ε,Ω).
Then, by (2.6) 〈

µ−1 curlE, curlW
〉

Ω
= 〈F,W 〉Ω (4.3)

and by Lemma 19 (4.3) even holds for all W ∈ H(curl◦,Ω). Thus, for all W ∈ H(curl◦,Ω)∣∣∣∣∣∣curl(E − Ẽ)
∣∣∣∣∣∣2
µ−1,Ω

≥M−(Ẽ;W ). (4.4)

Obviously, this lower bound is sharp if we can set W = E − Ẽ ∈ H(curl◦,Ω). �

The following result is trivial:

Corollary 22 Let Ẽ ∈ H(curl, div ε,Ω) be an approximation. Then

∣∣∣∣∣∣∣∣∣E − Ẽ∣∣∣∣∣∣∣∣∣2
Ω
≥ sup

W∈H(curl◦,Ω)

M−(Ẽ;W ) +
∣∣∣∣∣∣div εẼ

∣∣∣∣∣∣2
Ω

+

dD∑
n=1

〈
εẼ,Hn

〉2

Ω
.



Two-Sided A Posteriori Error Bounds for Electro-Magneto Static Problems 13

Remark 23 In general, the lower bound is not sharp because if E − Ẽ /∈ H(curl◦,Ω)
then we can not put W = E − Ẽ anymore. In fact, with µ−1 curlE ∈ H(curl,Ω) and
curlµ−1 curlE = F by Lemma 19 we get for all W ∈ H(curl,Ω)〈

µ−1 curlE, curlW
〉

Ω
= 〈F,W 〉Ω +

〈
τ̃t,γµ

−1 curlE, τt,γW
〉
γ
. (4.5)

Here, we introduced a second tangential trace τ̃t,γ, called the normal trace in terms of differ-
ential forms, mapping again H(curl,Ω) to special tangential vector fields on the boundary
as well, i.e.

H
−1/2
t (divs, γ) :=

{
ψ ∈ H

−1/2
t (γ) | divs ψ ∈ H−1/2(γ)

}
,

where divs denotes the surface divergence. In [3, 4] and, more general, in [23], see also
[13, Lemma 3.7, q = 1], it has been pointed out that even for Lipschitz domains the
integration by parts formula (4.5) remains valid in some sophisticated sense. For smooth
vector fields we have τ̃t,γ = −n× (n× · )|γ. Hence, we obtain the estimate∣∣∣∣∣∣curl(E − Ẽ)

∣∣∣∣∣∣2
µ−1,Ω

≥M−(Ẽ;W ) + 2
〈
τ̃t,γµ

−1 curlE, τt,γW
〉
γ

for all W ∈ H(curl,Ω), which is sharp and coincides with (4.4) if W ∈ H(curl◦,Ω).
But the unknown exact solution E still appears on the right-hand side, i.e. the second
tangential trace of µ−1 curlE on γ. Furthermore, if the term 〈τ̃t,γµ−1 curlE, τγW 〉γ is
positive then (4.3) can not be sharp.
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Series B. Scientific Computing, No. B. 16/2008, ISBN 978-951-39-3343-2, ISSN 1456-
436X.

[14] Picard, R., ‘Randwertaufgaben der verallgemeinerten Potentialtheorie’, Math. Meth-
ods Appl. Sci., 3, (1981), 218-228.

[15] Picard, R., ‘On the boundary value problems of electro- and magnetostatics’, Proc.
Roy. Soc. Edinburgh Sect. A, 92, (1982), 165-174.

[16] Picard, R., ‘An Elementary Proof for a Compact Imbedding Result in Generalized
Electromagnetic Theory’, Math. Z., 187, (1984), 151-164.

[17] Picard, R., ‘Some decomposition theorems their applications to non-linear potential
theory and Hodge theory’, Math. Methods Appl. Sci., 12, (1990), 35-53.



Two-Sided A Posteriori Error Bounds for Electro-Magneto Static Problems 15

[18] Picard, R., Weck, N., Witsch, K. J., ‘Time-Harmonic Maxwell Equations in the
Exterior of Perfectly Conducting, Irregular Obstacles’, Analysis (Munich), 21, (2001),
231-263.

[19] Repin, S., ‘A posteriori error estimates for variational problems with uniformly con-
vex functionals’, Math. Comp., 69, (230), (2000), 481-500.

[20] Repin, S., A posteriori estimates for partial differential equations, Radon Series
Comp. Appl. Math., ISBN: 978-3-11-019153-0, Walter de Gruyter, Berlin, (2008).

[21] Weber, C., ‘A local compactness theorem for Maxwell’s equations’, Math. Methods
Appl. Sci., 2, (1980), 12-25.

[22] Weck, N., ‘Maxwell’s boundary value problems on Riemannian manifolds with non-
smooth boundaries’, J. Math. Anal. Appl., 46, (1974), 410-437.

[23] Weck, N., ‘Traces of Differential Forms on Lipschitz Boundaries’, Analysis (Munich),
24, (2004), 147-169.

[24] Witsch, K. J., ‘A Remark on a Compactness Result in Electromagnetic Theory’,
Math. Methods Appl. Sci., 16, (1993), 123-129.

Dirk Pauly Sergey Repin

Universität Duisburg-Essen V.A. Steklov Mathematical Institute
Fakultät für Mathematik St. Petersburg Branch
Campus Essen
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