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Solution Theory and Functional A Posteriori Error Estimates
for General First Order Systems with Applications to Electro-Magneto-Statics

DIRK PAULY

Abstract. We prove a solution theory and functional a posteriori error estimates for general linear first

order systems of type

A2 x = f, A*
1 x = g

for two densely defined and closed (possibly unbounded) linear operators A1 and A2. As a prototypical

application we will discuss the system of electro-magneto statics with mixed tangential and normal
boundary conditions

rotE = F, − div εE = g.

Second order systems of type

A*
2 A2 x = f, A*

1 x = g

will be considered as well.
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1. Introduction

For ` = 0, . . . , 4 let H` be Hilbert spaces and for ` = 0, . . . , 3 let

A` : D(A`) ⊂ H` → H`+1

be densely defined and closed (possibly unbounded) linear operators. Here, D(A) denotes the domain of
definition of a linear operator A and we introduce by N(A) and R(A) its kernel and range, respectively.
Inner product, norm, orthogonality, orthogonal sum and difference of (or in) an Hilbert space H will be
denoted by 〈 · , · 〉H, | · |H, ⊥H, and ⊕H, 	H, respectively. We note that D(A), equipped with the graph
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2 DIRK PAULY

inner product, is a Hilbert space itself. Moreover, we assume that the operators A` satisfy the sequence
or complex property, this is for ` = 0, . . . , 2

R(A`) ⊂ N(A`+1)(1.1)

or equivalently A`+1 A` ⊂ 0. For ` = 0, . . . , 3 the (Hilbert space) adjoint operators

A*
` : D(A*

`) ⊂ H`+1 → H`

defined by the relation

∀x ∈ D(A`) ∀ y ∈ D(A*
`) 〈A` x, y〉H`+1

= 〈x,A*
` y〉H`

satisfy the sequence or complex property

R(A*
`+1) ⊂ N(A*

`), ` = 0, . . . , 2,(1.2)

or equivalently A*
` A*

`+1 ⊂ 0. We note (A*
`)
∗ = A` = A`, i.e., (A`,A

*
`) is a dual pair. For ` = 1, . . . , 3 the

complex

D(A`-1)
A`-1−−−−→ D(A`)

A`−−−−→ H`+1
(1.3)

is called closed, if the ranges R(A`-1) and R(A`) are closed, and called exact, if R(A`-1) = N(A`). By
the closed range theorem, (1.3) is closed resp. exact, if and only if the adjoint complex

H`-1
A*
`-1←−−−− D(A*

`-1)
A*
`←−−−− D(A*

`)
(1.4)

is closed resp. exact.
The aim of this paper is to prove functional a posteriori error estimates in the spirit of Sergey Repin,

see, e.g., [3, 2, 8], for the linear system

A2 x = f,

A*
1 x = g,

π2 x = k

(1.5)

with x ∈ D2, where we define for ` = 1, . . . , 3

D` := D(A`) ∩D(A*
`-1), K` := N(A`) ∩N(A*

`-1)

and π` : H` → K` denotes the orthonormal projector onto the cohomology group, i.e., the kernel K`.
Obviously, f ∈ R(A2), g ∈ R(A*

1), and k ∈ K2 are necessary for solvability of (1.5) and there exists
at most one solution to (1.5). A proper solution theory for (1.5), i.e., existence of a solution of (1.5)
depending continuously on the data, will be given in the next section.

Let x̃ ∈ H2 be a possibly non-conformingi “approximation” for the exact solution

x ∈ D2 = D(A2) ∩D(A*
1)

of (1.5). Proving functional a posteriori error estimates for the linear problem (1.5) means, that we will
present two-sided estimates for the error

e := x− x̃ ∈ H2

with the following properties:

¬ There exist two functionals M∓, a lower and an upper bound, such that

∀ zi, yj M−(z1, . . . , zI ; x̃, f, g, k) ≤ |e|H2
≤M+(y1, . . . , yJ ; x̃, f, g, k),(1.6)

were the zi and the yj belong to some suitable Hilbert spaces. The functionalsM∓ are guaranteed
lower and upper bounds for the norm of the error |e|H2

and explicitly computable as long as at
least upper bounds for the natural Friedrichs/Poincaré type constants for the operators A1 and
A2 are knownii. The bounds M∓ do not depend on the possibly unknown exact solution x, but
only on the data, the approximation x̃, and the “free” vectors zi, yj .

iA conforming “approximation” x̃ belongs to D2.
iiJust needed for the upper bound M+.
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 The lower and upper bound M∓ are sharp, i.e.,

max
z1,...,zI

M−(z1, . . . , zI ; x̃, f, g, k) = |e|H2
= min
y1,...,yJ

M+(y1, . . . , yJ ; x̃, f, g, k).(1.7)

® The minimization over zi and yj is “simple”, typically a minimization of quadratic functionals.

We will also present functional a posteriori error estimates for linear second order systems such as

A*
2 A2 x = f,

A*
1 x = g,

π2 x = k

(1.8)

with x ∈ D2 such that A2 x ∈ D(A*
2), i.e., x ∈ D(A*

1) ∩D(A*
2 A2). These will follow immediately by the

theory developed for the first order system (1.5), since the pair (x, y) ∈
(
D(A2) ∩ D(A*

1)
)
×
(
D(A3) ∩

D(A*
2)
)

defined by y := A2 x ∈ D(A*
2) ∩R(A2) solves the system

A2 x = y, A3 y = 0,

A*
1 x = g, A*

2 y = f,

π2 x = k, π3 y = 0.

Analogously, we can treat problems such as

A*
2 A2 x = f,

A1 A*
1 x = g,

π2 x = k

(1.9)

as well, related to the generalized Hodge-Helmholtz decomposition of f + g + k ∈ H2.
Our main applications will be the linear systems of electro-magneto statics as well as related rot rot

systems and, as a simple example, the Laplacian.

2. Functional Analysis Tool Box

Let ` ∈ {0, . . . , 3} resp. ` ∈ {1, . . . , 4}. By the projection theorem, the Helmholtz type decompositions

H` = N(A`)⊕H` R(A*
`) = R(A`-1)⊕H` N(A*

`-1)(2.1)

hold. The complex properties (1.1)-(1.2) yield

N(A`) = R(A`-1)⊕H` K`, N(A*
`-1) = K` ⊕H` R(A*

`), K` = N(A`) ∩N(A*
`-1).

Therefore, we get the refined Helmholtz type decomposition

H` = R(A`-1)⊕H` K` ⊕H` R(A*
`).(2.2)

Using the Helmholtz type decompositions (2.1) we define the reduced operators

A` := A` |R(A*
`)

: D(A`) ⊂ R(A*
`)→ R(A`), D(A`) := D(A`) ∩R(A*

`) = D(A`) ∩N(A`)
⊥H` ,

A*
` := A*

` |R(A`)
: D(A*

`) ⊂ R(A`)→ R(A*
`), D(A*

`) := D(A*
`) ∩R(A`) = D(A*

`) ∩N(A*
`)
⊥H`+1 ,

which are also densely defined and closed linear operators. We note that A` and A*
` are indeed adjoint

to each other, i.e., (A`,A*
`) is a dual pair as well. Now the inverse operators

(A`)−1 : R(A`)→ D(A`), (A*
`)
−1 : R(A*

`)→ D(A*
`)

exist, since A` and A*
` are injective by definition, and they are bijective, as, e.g., for x ∈ D(A`) and

y := A` x ∈ R(A`) we get (A`)−1y = x by the injectivity of A`. Furthermore, by the Helmholtz type
decompositions (2.1) we have

D(A`) = N(A`)⊕H` D(A`), D(A*
`) = N(A*

`)⊕H` D(A*
`)(2.3)
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and thus we obtain for the ranges

R(A`) = R(A`), R(A*
`) = R(A*

`).(2.4)

By the closed range and closed graph theorems we get immediately the following lemma.

Lemma 2.1. Let ` ∈ {0, . . . , 3}. The following assertions are equivalent:

(i) ∃ c` ∈ (0,∞) ∀x ∈ D(A`) |x|H` ≤ c`|A` x|H`+1

(i∗) ∃ c∗` ∈ (0,∞) ∀ y ∈ D(A*
`) |y|H`+1

≤ c∗` |A
*
` y|H`

(ii) R(A`) = R(A`) is closed in H`+1.

(ii∗) R(A*
`) = R(A*

`) is closed in H`.
(iii) (A`)−1 : R(A`)→ D(A`) is continuous and bijective with norm bounded by (1 + c2`)

1/2.

(iii∗) (A*
`)
−1 : R(A*

`)→ D(A*
`) is continuous and bijective with norm bounded by (1 + c∗`

2)1/2.

Proof. Note that by the closed range theorem (ii) ⇔ (ii∗) holds. Hence, by symmetry it is sufficient to
show (i) ⇔ (ii) ⇔ (iii).

(i)⇒(ii) Pick a sequence (yn) ⊂ R(A`) converging to y ∈ H`+1 in H`+1. By (2.4) there exists a sequence
(xn) ⊂ D(A`) with yn = A` xn. (i) implies that (xn) is a Cauchy sequence in H` and hence there
exists some x ∈ H` with xn → x in H`. As A` is closed, we get x ∈ D(A`) and A` x = y ∈ R(A`).

(ii)⇒(iii) Note that (A`)−1 : R(A`)→ D(A`) is a densely defined and closed linear operator. By (ii), R(A`)
is closed and hence itself a Hilbert space. By the closed graph theorem (A`)−1 is continuous.

(iii)⇒(i) For x ∈ D(A`) let y := A` x ∈ R(A`). Then x = (A`)−1y as A` is injectiveiii. Therefore,

|x|H` =
∣∣(A`)−1y

∣∣
H`
≤
∣∣(A`)−1

∣∣
R(A`),R(A*

`)
|y|H`+1

= c`|A` x|H`+1

with c` :=
∣∣(A`)−1

∣∣
R(A`),R(A*

`)
.

If (i) holds we have for y ∈ R(A`) and x := (A`)−1y ∈ D(A`)∣∣(A`)−1y
∣∣
H`
≤ c`|A` x|H`+1

= c`|y|H`+1

and hence∣∣(A`)−1
∣∣
R(A`),R(A*

`)
= sup

06=y∈R(A`)

∣∣(A`)−1y
∣∣
H`

|y|H`+1

≤ c`,

∣∣(A`)−1
∣∣2
R(A`),D(A`)

= sup
06=y∈R(A`)

∣∣(A`)−1y
∣∣2
D(A`)

|y|2H`+1

= sup
06=y∈R(A`)

∣∣(A`)−1y
∣∣2
H`

+ |y|2H`+1

|y|2H`+1

≤ c2` + 1,

finishing the proof. �

From now on we assume that we always choose the best Friedrichs/Poincaré type constants c`, c
∗
` , if

they exist in (0,∞), i.e., c` and c∗` are given by the Rayleigh quotients

1

c`
:= inf

06=x∈D(A`)

|A` x|H`+1

|x|H`
,

1

c∗`
:= inf

06=y∈D(A*
`)

|A*
` y|H`
|y|H`+1

.

Moreover, we see

c` = sup
06=x∈D(A`)

|x|H`
|A` x|H`+1

= sup
06=y∈R(A`)

∣∣(A`)−1y
∣∣
H`

|y|H`+1

=
∣∣(A`)−1

∣∣
R(A`),R(A*

`)
,

as 0 6= x ∈ D(A`) implies 0 6= A` x and for y := A` x with x ∈ D(A`) we have (A`)−1y = x, both by the
injectivity of A`. Analogously, we get

c∗` = sup
06=y∈D(A*

`)

|y|H`+1

|A*
` y|H`

= sup
0 6=x∈R(A*

`)

∣∣(A*
`)
−1x

∣∣
H`+1

|x|H`
=
∣∣(A*

`)
−1
∣∣
R(A*

`),R(A`)
.

iiiIt holds A`
(
x− (A`)−1y

)
= 0 and thus x = (A`)−1y.
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Lemma 2.2. Let ` ∈ {0, . . . , 3}. Assume that c` ∈ (0,∞) or c∗` ∈ (0,∞) exists. Then c` = c∗` .

We note that also in the case c` =∞ or c∗` =∞ we have c` = c∗` =∞.

Proof. Let, e.g., c∗` exist in (0,∞). By Lemma 2.1 also c` exists in (0,∞) and the ranges R(A`) = R(A`)
and R(A*

`) = R(A*
`) are closed. Then for x ∈ D(A`) = D(A`)∩R(A*

`) there is y ∈ D(A*
`) with x = A*

` y.

More precisely, y := (A*
`)
−1x ∈ D(A*

`) is uniquely determined and we have |y|H`+1
≤ c∗` |A

*
` y|H` . But

then

|x|2H` = 〈x,A*
` y〉H` = 〈A` x, y〉H`+1

≤ |A` x|H`+1
|y|H`+1

≤ c∗` |A` x|H`+1
|A*

` y|H` ,
yielding |x|H` ≤ c∗` |A` x|H`+1

. Therefore, c` ≤ c∗` and by symmetry we obtain c` = c∗` . �

A standard indirect argument shows the following lemma.

Lemma 2.3. Let ` ∈ {0, . . . , 3} and let D(A`) = D(A`) ∩R(A*
`) ↪→ H` be compact. Then the assertions

of Lemma 2.1 and Lemma 2.2 hold. Moreover, the inverse operators

A`−1 : R(A`)→ R(A*
`), (A*

`)
−1 : R(A*

`)→ R(A`)

are compact with norms
∣∣A`−1

∣∣
R(A`),R(A*

`)
=
∣∣(A*

`)
−1
∣∣
R(A*

`),R(A`)
= c`.

Proof. If, e.g., Lemma 2.1 (i) was wrong, there exists a sequence (xn) ⊂ D(A`) with |xn|H` = 1 and
A` xn → 0. As (xn) is bounded in D(A`) we can extract a subsequence, again denoted by (xn), with
xn → x ∈ H` in H`. Since A` is closed, we have x ∈ D(A`) and A` x = 0. Hence x ∈ N(A`). On the

other hand, (xn) ⊂ D(A`) ⊂ R(A*
`) = N(A`)

⊥ implies x ∈ N(A`)
⊥. Thus x = 0, in contradiction to

1 = |xn|H` → |x|H` = 0. �

Lemma 2.4. Let ` ∈ {0, . . . , 3}. The embedding D(A`) ↪→ H` is compact, if and only if the embedding

D(A*
`) ↪→ H`+1 is compact. In this case all assertions of Lemma 2.1 and Lemma 2.2 are valid.

Proof. By symmetry it is enough to show one direction. Let, e.g., the embedding D(A`) ↪→ H` be

compact. By Lemma 2.1 and Lemma 2.3, especially R(A`) = R(A`) and R(A*
`) = R(A*

`) are closed. Let

(yn) ⊂ D(A*
`) = D(A*

`) ∩R(A`) be a D(A*
`)-bounded sequence. We pick a sequence (xn) ⊂ D(A`) with

yn = A` xn, i.e., xn = (A`)−1yn. As (A`)−1 : R(A`) → D(A`) is continuous, (xn) is bounded in D(A`)
and thus contains a subsequence, again denoted by (xn), converging in H` to some x ∈ H`. Now

|yn − ym|2H`+1
=
〈
yn − ym,A`(xn − xm)

〉
H`+1

=
〈

A*
`(yn − ym), xn − xm

〉
H`
≤ c |xn − xm|H`

as (yn) is D(A*
`)-bounded. Finally, we see that (yn) is a Cauchy sequence in H`+1. �

Let us summarize:

Corollary 2.5. Let ` ∈ {0, . . . , 3} and, e.g., let R(A`) be closed. Then

1

c`
= inf

06=x∈D(A`)

|A` x|H`+1

|x|H`
= inf
y∈D(A*

`)

|A*
` y|H`
|y|H`+1

exists in (0,∞). Furthermore:

(i) The Poincaré type estimates

∀x ∈ D(A`) |x|H` ≤ c`|A` x|H`+1
,

∀ y ∈ D(A*
`) |y|H`+1

≤ c`|A*
` y|H`

hold.
(ii) The ranges R(A`) = R(A`) and R(A*

`) = R(A*
`) are closed. Moreover, D(A`) = D(A`) ∩R(A*

`)

and D(A*
`) = D(A*

`) ∩R(A`) with

A` : D(A`) ⊂ R(A*
`)→ R(A`), A*

` : D(A*
`) ⊂ R(A`)→ R(A*

`).
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(iii) The Helmholtz type decompositions

H` = N(A`)⊕H` R(A*
`), H`+1 = N(A*

`)⊕H`+1
R(A`),

D(A`) = N(A`)⊕H` D(A`), D(A*
`) = N(A*

`)⊕H`+1
D(A*

`)

hold.
(iv) The inverse operators

A`−1 : R(A`)→ D(A`), (A*
`)
−1 : R(A*

`)→ D(A*
`)

are continuous and bijective with norms
∣∣(A`)−1

∣∣
R(A`),D(A`)

=
∣∣(A*

`)
−1
∣∣
R(A*

`),D(A*
`)

= (1 + c2`)
1/2

and
∣∣(A`)−1

∣∣
R(A`),R(A*

`)
=
∣∣(A*

`)
−1
∣∣
R(A*

`),R(A`)
= c`.

Corollary 2.6. Let ` ∈ {0, . . . , 3} and, e.g., let D(A`) ↪→ H` be compact. Then R(A`) is closed and the
assertions of Corollary 2.5 hold. Moreover, the inverse operators

A`−1 : R(A`)→ R(A*
`), (A*

`)
−1 : R(A*

`)→ R(A`)

are compact.

So far, we did not use the complex property (1.1) except of proving the refined Helmholtz type
decomposition (2.2), which we did not need until now. Hence Lemma 2.1, Lemma 2.2, Lemma 2.3,
Lemma 2.4, and Corollary 2.5, Corollary 2.6 hold without the complex property (1.1). On the other
hand, using (1.1) we obtain the following result:

Lemma 2.7. Let ` ∈ {1, . . . , 3}. Then the refined Helmholtz type decompositions

H` = R(A`-1)⊕H` K` ⊕H` R(A*
`), K` = N(A`) ∩N(A*

`-1),

N(A`) = R(A`-1)⊕H` K`, N(A*
`-1) = K` ⊕H` R(A*

`),

R(A`-1) = R(A`-1) = N(A`)	H` K`, R(A*
`) = R(A*

`) = N(A*
`-1)	H` K`,

D(A`) = R(A`-1)⊕H` K` ⊕H` D(A`), D(A*
`-1) = D(A*

`-1)⊕H` K` ⊕H` R(A*
`),

D` = D(A*
`-1)⊕H` K` ⊕H` D(A`), D` = D(A`) ∩D(A*

`-1)

hold. If the range R(A`-1) or R(A`) is closed, the respective closure bars can be dropped and the assertions
of Corollary 2.5 are valid. Especially, if R(A`-1) and R(A`) are closed, the assertions of Corollary 2.5
and the refined Helmholtz type decompositions

H` = R(A`-1)⊕H` K` ⊕H` R(A*
`), K` = N(A`) ∩N(A*

`-1),

N(A`) = R(A`-1)⊕H` K`, N(A*
`-1) = K` ⊕H` R(A*

`),

R(A`-1) = R(A`-1) = N(A`)	H` K`, R(A*
`) = R(A*

`) = N(A*
`-1)	H` K`,

D(A`) = R(A`-1)⊕H` K` ⊕H` D(A`), D(A*
`-1) = D(A*

`-1)⊕H` K` ⊕H` R(A*
`),

D` = D(A*
`-1)⊕H` K` ⊕H` D(A`), D` = D(A`) ∩D(A*

`-1)

hold.

Observe that

D(A`) = D(A`) ∩R(A*
`) ⊂ D(A`) ∩N(A*

`-1) ⊂ D(A`) ∩D(A*
`-1) = D`,

D(A*
`-1) = D(A*

`-1) ∩R(A`-1) ⊂ D(A*
`-1) ∩N(A`) ⊂ D(A*

`-1) ∩D(A`) = D`.
(2.5)

Lemma 2.8. Let ` ∈ {1, . . . , 3}. The embeddings D(A`) ↪→ H`, D(A`-1) ↪→ H`-1, and K` ↪→ H` are
compact, if and only if the embedding D` ↪→ H` is compact. In this case, K` has finite dimension.

Proof. Note that, by Lemma 2.4, D(A`-1) ↪→ H`-1 is compact, if and only if D(A*
`-1) ↪→ H` is compact.
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⇒: Let (xn) ⊂ D` be a D`-bounded sequence. By the refined Helmholtz type decomposition of
Lemma 2.7 we decompose

xn = a∗n + kn + an ∈ D(A*
`-1)⊕H` K` ⊕H` D(A`).

with A` xn = A` an and A*
`-1 xn = A*

`-1 a
∗
n. Hence (an) is bounded in D(A`) and (a∗n) is bounded

in D(A*
`-1) and we can extract H`-converging subsequences of (an), (a∗n), and (kn).

⇐: If D` ↪→ H` is compact, so is K` ↪→ H`. Moreover, by (2.5)

D(A`) ⊂ D` ↪→ H`, D(A*
`-1) ⊂ D` ↪→ H` .

Finally, if K` ↪→ H` is compact, the unit ball in K` is compact, showing that K` has finite dimension. �

Lemma 2.8 implies immediately the following result.

Corollary 2.9. Let ` ∈ {1, . . . , 3} and let D` ↪→ H` be compact. Then R(A`-1) and R(A`) are closed,
and, besides the assertions of Corollary 2.6, the refined Helmholtz type decompositions of Lemma 2.7 hold
and the cohomology group K` is finite dimensional.

Remark 2.10. Let ` ∈ {1, . . . , 3}. Under the assumption that the embedding D` ↪→ H` is compact, all
the assertions of this section hold. Especially, the complex

D(A`-1)
A`-1−−−−→ D(A`)

A`−−−−→ H`+1

together with its adjoint complex

H`-1
A*
`-1←−−−− D(A*

`-1)
A*
`←−−−− D(A*

`)

is closed. These complexes are even exact, if additionally K` = {0}.

Defining and recalling the orthonormal projectors

πA`-1 := π
R(A`-1)

: H` → R(A`-1), πA*
`

:= π
R(A*

`)
: H` → R(A*

`), π` : H` → K`,(2.6)

we have π` = 1− πA`-1 − πA*
`

as well as

πA`-1 H` = πA`-1D(A`) = πA`-1N(A`) = R(A`-1) = R(A`-1),

πA*
`
H` = πA*

`
D(A*

`-1) = πA*
`
N(A*

`-1) = R(A*
`) = R(A*

`)

and

πA`-1D(A*
`-1) = πA`-1D` = D(A*

`-1), πA*
`
D(A`) = πA*

`
D` = D(A`).

Moreover

∀ ξ ∈ D(A*
`-1) πA`-1ξ ∈ D(A*

`-1) ∧ A*
`-1 πA`-1ξ = A*

`-1 ξ,

∀ ζ ∈ D(A`) πA*
`
ζ ∈ D(A`) ∧ A` πA*

`
ζ = A` ζ.

We also introduce the orthogonal projectors onto the kernels

πN(A*
`-1) := 1− πA`-1 : H` → N(A*

`-1), πN(A`) := 1− πA*
`

: H` → N(A`).

3. Solution Theory

From now on and throughout this paper we suppose the following.

General Assumption 3.1. R(A1) and R(A2) are closed and K2 is finite dimensional.

Remark 3.2. The General Assumption 3.1 is satisfied, if, e.g., D2 ↪→ H2 is compact. The finite dimen-
sion of the cohomology group K2 may be dropped.



8 DIRK PAULY

3.1. First Order Systems. We recall the linear first order system (1.5) from the introduction: Find
x ∈ D2 = D(A2) ∩D(A*

1) such that

A2 x = f,

A*
1 x = g,

π2 x = k.

(3.1)

Theorem 3.3. (3.1) is uniquely solvable in D2, if and only if f ∈ R(A2), g ∈ R(A*
1), and k ∈ K2. The

unique solution x ∈ D2 is given by

x := xf + xg + k ∈ D(A2)⊕H2
D(A*

1)⊕H2
K2 = D2,

xf := (A2)−1f ∈ D(A2),

xg := (A*
1)−1g ∈ D(A*

1)

and depends continuously on the data, i.e., |x|H2
≤ c2|f |H3

+ c1|g|H1
+ |k|H2

, as

|xf |H2 ≤ c2|f |H3 , |xg|H2 ≤ c1|g|H1 .

It holds

πA*
2
x = xf , πA1x = xg, π2 x = k, |x|2H2

= |xf |2H2
+ |xg|2H2

+ |k|2H2
.

The partial solutions xf and xg can be found by the following two variational formulations: There exist

unique potentials yf ∈ D(A*
2) and zg ∈ D(A1), such that

∀φ ∈ D(A*
2) 〈A*

2 yf ,A
*
2 φ〉H2

= 〈f, φ〉H3
,(3.2)

∀ϕ ∈ D(A1) 〈A1 zg,A1 ϕ〉H2
= 〈g, ϕ〉H1

.(3.3)

Moreover, (3.2) and (3.3) even hold for all φ ∈ D(A*
2) and for all ϕ ∈ D(A1), respectively, as f ∈ R(A2)

and g ∈ R(A*
1). Hence we have A*

2 yf ∈ D(A2) ∩ R(A*
2) = D(A2) with A2 A*

2 yf = f as well as

A1 zg ∈ D(A*
1) ∩R(A1) = D(A*

1) with A*
1 A1 zg = g, yielding

A*
2 yf = xf , A1 zg = xg.

Proof. As pointed out in the introduction, we just need to show existence. We use the results of Section
2. Let f ∈ R(A2), g ∈ R(A*

1), k ∈ K2 and define x, xf , and xg according to the theorem. For the
orthogonality we refer to Lemma 2.7. Moreover, xf , xg, and k solve the linear systems

A2 xf = f, A2 xg = 0, A2 k = 0,

A*
1 xf = 0, A*

1 xg = g, A*
1 k = 0,

π2 xf = 0, π2 xg = 0, π2 k = k.

Thus x solves (3.1) and we have by Corollary 2.5 |xf |H2
≤ c2|f |H3

and |xg|H2
≤ c1|g|H1

, which completes

the solution theory. To find the variational formulation for xf ∈ D(A2) = D(A2) ∩ R(A*
2), we observe

xf = A*
2 yf with yf := (A*

2)−1xf ∈ D(A*
2) and

∀φ ∈ D(A*
2) 〈A*

2 yf ,A
*
2 φ〉H2

= 〈xf ,A*
2 φ〉H2

= 〈A2 xf , φ〉H3
= 〈f, φ〉H3

.(3.4)

Using Corollary 2.5 (iii) or Lemma 2.7 we can split any φ ∈ D(A*
2) = N(A*

2)⊕H3D(A*
2) into φ = φN +φR

(null space and range) with φN ∈ N(A*
2), φR ∈ D(A*

2), and A*
2 φ = A*

2 φR. Utilizing (3.4) for φR and
orthogonality, i.e., f ∈ R(A2) = N(A*

2)⊥H3 , we get

〈A*
2 yf ,A

*
2 φ〉H2

= 〈A*
2 yf ,A

*
2 φR〉H2

= 〈f, φR〉H3
= 〈f, φ〉H3

.

Therefore, (3.4) holds for all φ ∈ D(A*
2). On the other hand, (3.4) is coercive over D(A*

2) by the

Friedrichs/Poincaré type estimate of Corollary 2.5 (i) and hence a unique yf ∈ D(A*
2) exists by Riesz’

representation theorem (or Lax-Milgram’s lemma) solving (3.4). But then (3.4) holds for all φ ∈ D(A*
2)

as well, yielding x̃f := A*
2 yf ∈ D(A2) with A2 x̃f = f . Since x̃f ∈ D(A2) ∩R(A*

2) = D(A2) ⊂ R(A*
2) we
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have x̃f = (A2)−1f = xf and especially A*
1 x̃f = 0 and π2 x̃f = 0. Analogously, we obtain a variational

formulation for xg as well. �

Remark 3.4. By orthogonality and with A2 x = A2 xf = f and A*
1 x = A*

1 xg = g we even have

|x|2H2
=
∣∣xf ∣∣2H2

+
∣∣xg∣∣2H2

+ |k|2H2
≤ c22|f |2H3

+ c21|g|2H1
+ |k|2H2

,

|x|2D2
=
∣∣xf ∣∣2H2

+ |f |2H3
+
∣∣xg∣∣2H2

+ |g|2H1
+ |k|2H2

≤ (1 + c22)|f |2H3
+ (1 + c21)|g|2H1

+ |k|2H2
.

Note that

yf = (A*
2)−1xf = (A*

2)−1(A2)−1f ∈ D(A*
2), zg = (A1)−1xg = (A1)−1(A*

1)−1g ∈ D(A1)

holds with A2 A*
2 yf = f and A*

1 A1 zg = g. Hence xf , xg, k, and yf , zg solve the first resp. second order
systems

A2 xf = f, A2 xg = 0, A2 k = 0, A2 A*
2 yf = f, A*

1 A1 zg = g,

A*
1 xf = 0, A*

1 xg = g, A*
1 k = 0, A3 yf = 0, A*

0 zg = 0,

π2 xf = 0, π2 xg = 0, π2 k = k, π3 yf = 0, π1 zg = 0.

We also emphasize that the variational formulations (3.2)-(3.3) have a saddle point structure. We have
already seen that, provided f ∈ R(A2) and g ∈ R(A*

1), the formulations (3.2)-(3.3) are equivalent to the

following two problems: Find yf ∈ D(A*
2) and zg ∈ D(A1), such that

∀φ ∈ D(A*
2) 〈A*

2 yf ,A
*
2 φ〉H2

= 〈f, φ〉H3
,(3.5)

∀ϕ ∈ D(A1) 〈A1 zg,A1 ϕ〉H2 = 〈g, ϕ〉H1 .(3.6)

Moreover, yf ∈ D(A*
2) = D(A*

2) ∩ R(A2) if and only if yf ∈ D(A*
2) and yf⊥H3

N(A*
2) as well as

zg ∈ D(A1) = D(A1) ∩ R(A*
1) if and only if zg ∈ D(A1) and zg⊥H1N(A1). Therefore, the variational

formulations (3.5)-(3.6) are equivalent to the following two saddle point problems: Find yf ∈ D(A*
2) and

zg ∈ D(A1), such that

∀φ ∈ D(A*
2) 〈A*

2 yf ,A
*
2 φ〉H2

= 〈f, φ〉H3
∧ ∀ θ ∈ N(A*

2) 〈yf , θ〉H3
= 0,(3.7)

∀ϕ ∈ D(A1) 〈A1 zg,A1 ϕ〉H2
= 〈g, ϕ〉H1

∧ ∀ψ ∈ N(A1) 〈zg, ψ〉H1
= 0.(3.8)

Remark 3.5. The finite dimensionality of K2 may be dropped. Then all other assertions of Theorem 3.3
and all variational and saddle point formulations remain valid. Note that R(A1) and R(A2) are closed,
if D(A1) ↪→ H1 and D(A2) ↪→ H2 are compact.

3.1.1. Trivial Cohomology Groups. By Lemma 2.7 it holds

N(A1) = R(A0)⊕H1
K1, N(A*

2) = R(A*
3)⊕H3

K3.

In the special case, that R(A0) and R(A*
3) are closed and additionally

K1 = {0}, K3 = {0},

we see that the two saddle point problems (3.7)-(3.8) are equivalent to: Find yf ∈ D(A*
2) and zg ∈ D(A1),

such that

∀φ ∈ D(A*
2) 〈A*

2 yf ,A
*
2 φ〉H2 = 〈f, φ〉H3 ∧ ∀ϑ ∈ D(A*

3) 〈yf ,A*
3 ϑ〉H3 = 0,(3.9)

∀ϕ ∈ D(A1) 〈A1 zg,A1 ϕ〉H2 = 〈g, ϕ〉H1 ∧ ∀ τ ∈ D(A0) 〈zg,A0 τ〉H1 = 0.(3.10)

Let us consider the following modified system: Find

(yf , vf ) ∈ D(A*
2)×D(A*

3), (zg, wg) ∈ D(A1)×D(A0),

such that

∀ (φ, ϑ) ∈ D(A*
2)×D(A*

3) 〈A*
2 yf ,A

*
2 φ〉H2

+ 〈φ,A*
3 vf 〉H3

= 〈f, φ〉H3
∧ 〈yf ,A*

3 ϑ〉H3
= 0,(3.11)

∀ (ϕ, τ) ∈ D(A1)×D(A0) 〈A1 zg,A1 ϕ〉H2 + 〈ϕ,A0 wg〉H1 = 〈g, ϕ〉H1 ∧ 〈zg,A0 τ〉H1 = 0.(3.12)
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The unique solutions yf , zg of (3.9)-(3.10) yield solutions (yf , 0), (zg, 0) of (3.11)-(3.12). On the other

hand, for any solutions (yf , vf ), (zg, wg) of (3.11)-(3.12) we get A*
3 vf = 0 and A0 wg = 0 by testing

with φ := A*
3 vf ∈ R(A*

3) = N(A*
2) ⊂ D(A*

2) and ϕ := A0 wg ∈ R(A0) = N(A1) ⊂ D(A1) since

f ∈ R(A2)⊥H3
N(A*

2) and g ∈ R(A*
1)⊥H1

N(A1), respectively. Hence, as vf ∈ D(A*
3) and wg ∈ D(A0)

we see vf = 0 and wg = 0. Thus, yf , zg are the unique solutions of (3.9)-(3.10). The latter arguments
show that (3.9)-(3.10) and (3.11)-(3.12) are equivalent and both are uniquely solvable. Furthermore, the
saddle point formulations (3.11)-(3.12) are accessible by the standard inf-sup-theory: The bilinear forms
〈A*

2 · ,A*
2 · 〉H2

and 〈A1 · ,A1 · 〉H2
are coercive over the respective kernels, which are N(A3) = R(A2) and

N(A*
0) = R(A*

1), i.e., over D(A*
2) and D(A1), and satisfy the inf-sup-conditionsiv

inf
06=ϑ∈D(A*

3)
sup

06=φ∈D(A*
2)

〈φ,A*
3 ϑ〉H3

|φ|D(A*
2)|ϑ|D(A*

3)

≥ inf
06=ϑ∈D(A*

3)

|A*
3 ϑ|H3

|ϑ|D(A*
3)

= (c23 + 1)−
1/2,

inf
06=τ∈D(A0)

sup
0 6=ϕ∈D(A1)

〈ϕ,A0 τ〉H1

|ϕ|D(A1)|τ |D(A0)
≥ inf

06=τ∈D(A0)

|A0 τ |H1

|τ |D(A0)
= (c20 + 1)−

1/2,

which follows immediately by choosing φ := A*
3 ϑ ∈ R(A*

3) = N(A*
2) and ϕ := A0 τ ∈ R(A0) = N(A1).

Now, if D(A*
3) and D(A0) are still not suitable and provided that the respective cohomology groups are

trivial, we can repeat the procedure to obtain additional saddle point formulations for vf and wg. Note

that (3.11)-(3.12) is equivalent to find (yf , vf , zg, wg) ∈ D(A*
2)×D(A*

3)×D(A1)×D(A0), such that for

all (φ, ϑ, ϕ, τ) ∈ D(A*
2)×D(A*

3)×D(A1)×D(A0)

〈A*
2 yf ,A

*
2 φ〉H2

+ 〈φ,A*
3 vf 〉H3

+ 〈yf ,A*
3 ϑ〉H3

+ 〈A1 zg,A1 ϕ〉H2
+ 〈ϕ,A0 wg〉H1

+ 〈zg,A0 τ〉H1

= 〈f, φ〉H3
+ 〈g, ϕ〉H1

.
(3.13)

3.2. Second Order Systems. We recall the linear second order system (1.8), i.e., findv

x ∈ D̃2 :=
{
ξ ∈ D2 : A2 ξ ∈ D(A*

2)
}

=
{
ξ ∈ D(A2) ∩D(A*

1) : A2 ξ ∈ D(A*
2)
}

= D(A2) ∩D(A*
2 A2)

such that

A*
2 A2 x = f,

A*
1 x = g,

π2 x = k.

(3.14)

Theorem 3.6. (3.14) is uniquely solvable in D̃2, if and only if f ∈ R(A*
2), g ∈ R(A*

1), and k ∈ K2. The

unique solution x ∈ D̃2 is given by

x := xf + xg + k ∈
(
D(A2)⊕H2 D(A*

1)⊕H2 K2

)
∩ D̃2 = D̃2,

xf := (A2)−1(A*
2)−1f ∈ D(A2) ∩ D̃2,

xg := (A*
1)−1g ∈ D(A*

1) ∩ D̃2

and depends continuously on the data, i.e., |x|H2 ≤ c22|f |H2 + c1|g|H1 + |k|H2 , as

|xf |H2 ≤ c22|f |H2 , |xg|H2 ≤ c1|g|H1 .

It holds
πA*

2
x = xf , πA1

x = xg, π2 x = k, |x|2H2
= |xf |2H2

+ |xg|2H2
+ |k|2H2

.

ivNote that

inf
0 6=ϑ∈D(A*

3
)

|A*
3 ϑ|2H3

|ϑ|2
D(A*

3
)

= inf
0 6=ϑ∈D(A*

3
)

|A*
3 ϑ|2H3

|ϑ|2H4
+ |A*

3 ϑ|2H3

=
(

sup
0 6=ϑ∈D(A*

3
)

|ϑ|2H4
+ |A*

3 ϑ|2H3

|A*
3 ϑ|2H3

)−1
=

1

c23 + 1
,

inf
0 6=τ∈D(A0)

|A0 τ |2H1

|τ |2
D(A0)

= inf
0 6=τ∈D(A0)

|A0 τ |2H1

|τ |2H0
+ |A0 τ |2H1

=
(

sup
0 6=τ∈D(A0)

|τ |2H0
+ |A0 τ |2H1

|A0 τ |2H1

)−1
=

1

c20 + 1

hold.
vWe generally define D̃` :=

{
ξ ∈ D` : A` ξ ∈ D(A*

` )
}

= D(A`) ∩D(A*
` A`) for ` = 1, . . . , 3.
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The partial solutions xf and xg can be found by the following two variational formulations: There exist
unique potentials x̃f ∈ D(A2) and zg ∈ D(A1), such that

∀ ξ ∈ D(A2) 〈A2 x̃f ,A2 ξ〉H3
= 〈f, ξ〉H2

,(3.15)

∀ϕ ∈ D(A1) 〈A1 zg,A1 ϕ〉H2 = 〈g, ϕ〉H1 .(3.16)

Moreover, (3.15) and (3.16) even hold for all ξ ∈ D(A2) and for all ϕ ∈ D(A1), respectively. Hence

A2 x̃f ∈ D(A*
2) ∩ R(A2) = D(A*

2) with A*
2 A2 x̃f = f and A1 zg ∈ D(A*

1) ∩ R(A1) = D(A*
1) with

A*
1 A1 zg = g, yielding

x̃f = xf , A1 zg = xg.

Proof. The necessary conditions are clear. To show uniqueness, let x ∈ D̃2 solve

A*
2 A2 x = 0, A*

1 x = 0, π2 x = 0.

Hence x ∈ N(A*
1) ∩K⊥H2

2 and also x ∈ N(A2) as A2 x ∈ D(A*
2) and

|A2 x|2H3
= 〈x,A*

2 A2 x〉H2 = 0,

yielding x ∈ K2 ∩K
⊥H2
2 = {0}. To prove existence, let f ∈ R(A*

2), g ∈ R(A*
1), k ∈ K2 and define x, xf ,

and xg according to the theorem. Again the orthogonality follows directly by Lemma 2.7. Moreover, xf ,
xg, and k solve the linear systems

A*
2 A2 xf = f, A2 xg = 0, A2 k = 0,

A*
1 xf = 0, A*

1 xg = g, A*
1 k = 0,

π2 xf = 0, π2 xg = 0, π2 k = k.

Thus x solves (3.14) and we have by Corollary 2.5 |xf |H2 ≤ c2|A2 xf |H3 ≤ c22|f |H2 and |xg|H2 ≤ c1|g|H1 ,
completing the solution theory. That the partial solutions can be obtained by the described variational
formulations is clear resp. follows analogously to the proof of Theorem 3.3. �

Remark 3.7. By orthogonality and with A2 x = (A*
2)−1f , A*

2 A2 x = f , and A*
1 x = g we even have

|x|2H2
=
∣∣xf ∣∣2H2

+
∣∣xg∣∣2H2

+ |k|2H2
≤ c42|f |2H2

+ c21|g|2H1
+ |k|2H2

,

|x|2
D̃2

=
∣∣xf ∣∣2H2

+
∣∣A2 x

∣∣2
H3

+ |f |2H2
+
∣∣xg∣∣2H2

+ |g|2H1
+ |k|2H2

≤ (1 + c22 + c42)|f |2H3
+ (1 + c21)|g|2H1

+ |k|2H2
.

Remark 3.8. Since the second order system (3.14) decomposes into the two first order systems of shape
(1.5) resp. (3.1), i.e.,

A2 x = y, A3 y = 0,

A*
1 x = g, A*

2 y = f,

π2 x = k, π3 y = 0

for the pair (x, y) ∈ D2 × D3 with y := A2 x ∈ D(A*
2) ∩ R(A2) = D(A*

2), the solution theory follows
directly by Theorem 3.3 as well. One just has to solve and set

y := (A*
2)−1f ∈ D(A*

2) ⊂ R(A2),

x := (A2)−1y + (A*
1)−1g + k ∈

(
D(A2)⊕H2 D(A*

1)⊕H2 K2

)
∩ D̃2 = D̃2.

Note that

x̃f = xf = (A2)−1(A*
2)−1f ∈ D(A2), zg = (A1)−1xg = (A1)−1(A*

1)−1g ∈ D(A1)

holds with A*
2 A2 xf = f and A*

1 A1 zg = g. Hence xf , xg, k, and zg solve the first resp. second order
systems

A2 xf = (A*
2)−1f, A2 xg = 0, A2 k = 0, A*

2 A2 xf = f, A*
1 A1 zg = g,
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A*
1 xf = 0, A*

1 xg = g, A*
1 k = 0, A*

1 xf = 0, A*
0 zg = 0,

π2 xf = 0, π2 xg = 0, π2 k = k, π2 xf = 0, π1 zg = 0.

As before we emphasize that the variational formulations (3.15)-(3.16) have again saddle point structure.
Provided f ∈ R(A*

2) and g ∈ R(A*
1) the formulations (3.15)-(3.16) are equivalent to the following two

problems: Find xf ∈ D(A2) and zg ∈ D(A1), such that

∀ ξ ∈ D(A2) 〈A2 xf ,A2 ξ〉H3 = 〈f, ξ〉H2 ,(3.17)

∀ϕ ∈ D(A1) 〈A1 zg,A1 ϕ〉H2
= 〈g, ϕ〉H1

.(3.18)

Moreover, similar to the first order case, xf ∈ D(A2) = D(A2) ∩ R(A*
2) if and only if xf ∈ D(A2) and

xf⊥H2N(A2) as well as zg ∈ D(A1) = D(A1) ∩ R(A*
1) if and only if zg ∈ D(A1) and zg⊥H1N(A1).

Therefore, the variational formulations (3.17)-(3.18) are equivalent to the following two saddle point
problems: Find xf ∈ D(A2) and zg ∈ D(A1), such that

∀ ξ ∈ D(A2) 〈A2 xf ,A2 ξ〉H3 = 〈f, ξ〉H2 ∧ ∀ ζ ∈ N(A2) 〈xf , ζ〉H2 = 0,(3.19)

∀ϕ ∈ D(A1) 〈A1 zg,A1 ϕ〉H2
= 〈g, ϕ〉H1

∧ ∀ψ ∈ N(A1) 〈zg, ψ〉H1
= 0.(3.20)

We emphasize that the considerations leading to (3.9)-(3.10) and (3.11)-(3.12) can be repeated here,
giving similar saddle point formulations as well.

Remark 3.9. Remark 3.5 holds word by word also for Theorem 3.6.

4. Functional A Posteriori Error Estimates

Having establishes a solution theory including suitable variational formulations, we now turn to the
so-called functional a posteriori error estimates. Note that General Assumption 3.1 is supposed to hold.

4.1. First Order Systems. Let x ∈ D2 be the exact solution of (3.1) and x̃ ∈ H2, which may be
considered as a non-conforming approximation of x. Utilizing the notations from Theorem 3.3 we define
and decompose the error

H2 3 e := x− x̃ = eA1 + eK2 + eA*
2
∈ R(A1)⊕H2 K2 ⊕H2 R(A*

2),

eA1
:= πA1

e = xg − πA1
x̃ ∈ R(A1),

eA*
2

:= πA*
2
e = xf − πA*

2
x̃ ∈ R(A*

2),

eK2 := π2 e = k − π2 x̃ ∈ K2

(4.1)

using the Helmholtz type decompositions of Lemma 2.7. By orthogonality it holds

|e|2H2
= |eA1

|2H2
+ |eK2

|2H2
+ |eA*

2
|2H2
.(4.2)

4.1.1. Upper Bounds. Testing (4.1) with A1 ϕ for ϕ ∈ D(A1) we get for all ζ ∈ D(A*
1) by orthogonality

and Corollary 2.5 (i)

〈eA1
,A1 ϕ〉H2

= 〈e,A1 ϕ〉H2
= 〈A*

1 x, ϕ〉H1
− 〈x̃− ζ + ζ,A1 ϕ〉H2

= 〈g −A*
1 ζ, ϕ〉H1

−
〈
πA1

(x̃− ζ),A1 ϕ
〉
H2

≤ |g −A*
1 ζ|H1

|ϕ|H1
+
∣∣πA1

(x̃− ζ)
∣∣
H2
|A1 ϕ|H2

≤
(
c1|g −A*

1 ζ|H1
+
∣∣πA1

(x̃− ζ)
∣∣
H2

)
|A1 ϕ|H2

.

(4.3)

As eA1
∈ R(A1) = R(A1), we have eA1

= A1 ϕe with ϕe := (A1)−1eA1
∈ D(A1). Choosing ϕ := ϕe in

(4.3) we obtain

∀ ζ ∈ D(A*
1) |eA1

|H2
≤ c1|g −A*

1 ζ|H1
+
∣∣πA1

(x̃− ζ)
∣∣
H2
≤ c1|g −A*

1 ζ|H1
+ |x̃− ζ|H2

.(4.4)
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Analogously, testing with A*
2 φ for φ ∈ D(A*

2) we get for all ξ ∈ D(A2) by orthogonality and Corollary
2.5 (i)

〈eA*
2
,A*

2 φ〉H2
= 〈e,A*

2 φ〉H2
= 〈A2 x, φ〉H3

− 〈x̃− ξ + ξ,A*
2 φ〉H2

= 〈f −A2 ξ, φ〉H3 −
〈
πA*

2
(x̃− ξ),A*

2 φ
〉
H2

≤ |f −A2 ξ|H3
|φ|H3

+
∣∣πA*

2
(x̃− ξ)

∣∣
H2
|A*

2 φ|H2

≤
(
c2|f −A2 ξ|H3 +

∣∣πA*
2
(x̃− ξ)

∣∣
H2

)
|A*

2 φ|H2 .

(4.5)

As eA*
2
∈ R(A*

2) = R(A*
2), we have eA*

2
= A*

2 φe with φe := (A*
2)−1eA*

2
∈ D(A*

2). Choosing φ := φe in

(4.5) we obtain

∀ ξ ∈ D(A2) |eA*
2
|H2 ≤ c2|f −A2 ξ|H3 +

∣∣πA*
2
(x̃− ξ)

∣∣
H2
≤ c2|f −A2 ξ|H3 + |x̃− ξ|H2 .(4.6)

Finally, for all ϕ ∈ D(A1) and all φ ∈ D(A*
2) we get by orthogonality

|eK2
|2H2

= 〈eK2
, k − π2 x̃+ A1 ϕ+ A*

2 φ〉H2
= 〈eK2

, k − x̃+ A1 ϕ+ A*
2 φ〉H2

(4.7)

and thus

∀ϕ ∈ D(A1) ∀φ ∈ D(A*
2) |eK2 |H2 ≤ |k − x̃+ A1 ϕ+ A*

2 φ|H2 .(4.8)

Let us summarize:

Theorem 4.1. Let x ∈ D2 be the exact solution of (3.1) and x̃ ∈ H2. Then the following estimates hold
for the error e = x− x̃ defined in (4.1):

(i) The error decomposes according to (4.1)-(4.2), i.e.,

e = eA1
+ eK2

+ eA*
2
∈ R(A1)⊕H2

K2 ⊕H2
R(A*

2), |e|2H2
= |eA1

|2H2
+ |eK2

|2H2
+ |eA*

2
|2H2
.

(ii) The projection eA1 = πA1e = xg − πA1 x̃ ∈ R(A1) satisfies

|eA1 |H2 = min
ζ∈D(A*

1)

(
c1|A*

1 ζ − g|H1 + |ζ − x̃|H2

)
and the minimum is attained at

ζ̂ := eA1
+ x̃ = πA1

e+ x̃ = −(1− πA1
)e+ x = −πN(A*

1)e+ x ∈ D(A*
1)

since A*
1 ζ̂ = A*

1 x = g.
(iii) The projection eA*

2
= πA*

2
e = xf − πA*

2
x̃ ∈ R(A*

2) satisfies

|eA*
2
|H2

= min
ξ∈D(A2)

(
c2|A2 ξ − f |H3

+ |ξ − x̃|H2

)
and the minimum is attained at

ξ̂ := eA*
2

+ x̃ = πA*
2
e+ x̃ = −(1− πA*

2
)e+ x = −πN(A2)e+ x ∈ D(A2)

since A2 ξ̂ = A2 x = f .
(iv) The projection eK2 = π2 e = k − π2 x̃ ∈ K2 satisfies

|eK2
|H2

= min
ϕ∈D(A1)

min
φ∈D(A*

2)
|k − x̃+ A1 ϕ+ A*

2 φ|H2

and the minimum is attained at

ϕ̂ := (A1)−1πA1 x̃ ∈ D(A1), φ̂ := (A*
2)−1πA*

2
x̃ ∈ D(A*

2)

since A1 ϕ̂+ A*
2 φ̂ = (πA1

+ πA*
2
)x̃ = (1− π2)x̃.

For conforming approximations we get:

Corollary 4.2. Let the assumptions of Theorem 4.1 be satisfied.
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(i) If x̃ ∈ D(A*
1), then e ∈ D(A*

1) and hence eA1 = πA1e ∈ D(A*
1) with A*

1 eA1 = A*
1 e and

|eA1 |H2 ≤ c1|A*
1 x̃− g|H1 = c1|A*

1 e|H1

by setting ζ := x̃, which also follows directly by the Friedrichs/Poincaré type estimate.
(ii) If x̃ ∈ D(A2), then e ∈ D(A2) and hence eA*

2
= πA*

2
e ∈ D(A2) with A2 eA*

2
= A2 e and

|eA*
2
|H2
≤ c2|A2 x̃− f |H3

= c2|A2 e|H3

by setting ξ := x̃, which also follows directly by the Friedrichs/Poincaré type estimate.
(iii) If x̃ ∈ D2, then e ∈ D2 and

|e|2D2
= |eA1 |2H2

+ |eK2 |2H2
+ |eA*

2
|2H2

+ |A2 e|2H3
+ |A*

1 e|2H1

≤ |eK2
|2H2

+ (1 + c22)|A2 e|2H3
+ (1 + c21)|A*

1 e|2H1

with
eK2

= k − π2 x̃, A2 e = f −A2 x̃, A*
1 e = g −A*

1 x̃,

which again also follows immediately by the Friedrichs/Poincaré type estimates.

Remark 4.3. Corollary 4.2 (iii) shows, that for very conforming x̃ ∈ D2 the weighted least squares
functional

F(x̃) := |k − π2 x̃|2H2
+ (1 + c22)|A2 x̃− f |2H3

+ (1 + c21)|A*
1 x̃− g|2H1

is equivalent to the conforming error, i.e.,

|e|2D2
≤ F(x̃) ≤ (1 + max{c1, c2}2)|e|2D2

.

Recalling the variational resp. saddle point formulations (3.5)-(3.6) resp. (3.7)-(3.8) and that the
partial solutions are given by

xf = A*
2 yf ∈ D(A2), xg = A1 zg ∈ D(A*

1),

a possible numerical method, using these variational formulations in some finite dimensional subspaces
to find ỹf ∈ D(A*

2) and z̃g ∈ D(A1), such as the finite element method, will always ensure

x̃f := A*
2 ỹf ∈ R(A*

2) = N(A2)⊥H2 ⊂ N(A*
1), x̃g := A1 z̃g ∈ R(A1) = N(A*

1)⊥H2 ⊂ N(A2)

and thus
x̃⊥ := x̃f + x̃g ∈ R(A*

2)⊕H2 R(A1) = K
⊥H2
2 ,

but maybe not x̃f ∈ D(A2) or x̃g ∈ D(A*
1). Therefore, a reasonable assumption for our non-conforming

approximations is

x̃ = x̃⊥ + k, x̃⊥ ∈ K
⊥H2
2 ,

with eK2
= π2 e = π2(x− x̃) = −π2 x̃⊥ = 0.

Corollary 4.4. Let x ∈ D2 be the exact solution of (3.1) and x̃ := k+ x̃⊥ with some x̃⊥ ∈ K
⊥H2
2 . Then

for the error e defined in (4.1) it holds:

(i) According to (4.1)-(4.2) the error decomposes, i.e.,

e = x− x̃ = xf + xg − x̃⊥ = eA1
+ eA*

2
∈ R(A1)⊕H2

R(A*
2) = K

⊥H2
2 , eK2

= 0,

and |e|2H2
= |eA1

|2H2
+ |eA*

2
|2H2

. Hence there is no error in the “kernel” part.

(ii) The projection eA1 = πA1e = xg − πA1 x̃ = xg − πA1 x̃⊥ ∈ R(A1) satisfies

|eA1 |H2 = min
ζ∈D(A*

1)

(
c1|A*

1 ζ − g|H1 + |ζ − x̃|H2

)
= min
ζ∈D(A*

1)

(
c1|A*

1 ζ − g|H1
+ |ζ − x̃⊥|H2

)
(exchanging ζ by ζ + k) and the minima are attained at

ζ̂ := eA1
+ x̃ = πA1

e+ x̃ = −(1− πA1
)e+ x = −πN(A*

1)e+ x ∈ D(A*
1),

ζ̂⊥ := eA1
+ x̃⊥ = πA1

e+ x̃⊥ = −(1− πA1
)e+ x− k = −πN(A*

1)e+ x− k ∈ D(A*
1)
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since A*
1 ζ̂⊥ = A*

1 ζ̂ = A*
1 x = g.

(iii) The projection eA*
2

= πA*
2
e = xf − πA*

2
x̃ = xf − πA*

2
x̃⊥ ∈ R(A*

2) satisfies

|eA*
2
|H2 = min

ξ∈D(A2)

(
c2|A2 ξ − f |H3 + |ξ − x̃|H2

)
= min
ξ∈D(A2)

(
c2|A2 ξ − f |H3 + |ξ − x̃⊥|H2

)
(exchanging ξ by ξ + k) and the minima are attained at

ξ̂ := eA*
2

+ x̃ = πA*
2
e+ x̃ = −(1− πA*

2
)e+ x = −πN(A2)e+ x ∈ D(A2),

ξ̂⊥ := eA*
2

+ x̃⊥ = πA*
2
e+ x̃⊥ = −(1− πA*

2
)e+ x− k = −πN(A2)e+ x− k ∈ D(A2)

since A2 ξ̂⊥ = A2 ξ̂ = A2 x = f .

4.1.2. Lower Bounds. In any Hilbert space H we have

∀ ĥ ∈ H |ĥ|2H = max
h∈H

(
2〈ĥ, h〉H − |h|2H

)
(4.9)

and the maximum is attained at ĥ. We recall (4.1) and (4.2), especially

|e|2H2
= |eA1

|2H2
+ |eK2

|2H2
+ |eA*

2
|2H2
.

Using (4.9) for H = R(A1) and orthogonality we get

|eA1
|2H2

= max
ϕ∈D(A1)

(
2〈eA1

,A1 ϕ〉H2
− |A1 ϕ|2H2

)
= max
ϕ∈D(A1)

(
2〈e,A1 ϕ〉H2

− |A1 ϕ|2H2

)
= max
ϕ∈D(A1)

(
2〈g, ϕ〉H1

− 〈2x̃+ A1 ϕ,A1 ϕ〉H2

)
and the maximum is attained at ϕ̂ ∈ D(A1) with A1 ϕ̂ = eA1 . Analogously for H = R(A*

2)

|eA*
2
|2H2

= max
φ∈D(A*

2)

(
2〈f, φ〉H3

− 〈2x̃+ A*
2 φ,A

*
2 φ〉H2

)
and the maximum is attained at φ̂ ∈ D(A*

2) with A*
2 φ̂ = eA*

2
. Finally for H = K2 and by orthogonality

|eK2
|2H2

= max
θ∈K2

(
2〈eK2

, θ〉H2
− |θ|2H2

)
= max
θ∈K2

〈
2(k − x̃)− θ, θ

〉
H2

and the maximum is attained at θ̂ = eK2
.

Theorem 4.5. Let x ∈ D2 be the exact solution of (3.1) and x̃ ∈ H2. Then the following estimates hold
for the error e = x− x̃ defined in (4.1):

(i) The error decomposes according to (4.1)-(4.2), i.e.,

e = eA1
+ eK2

+ eA*
2
∈ R(A1)⊕H2

K2 ⊕H2
R(A*

2), |e|2H2
= |eA1

|2H2
+ |eK2

|2H2
+ |eA*

2
|2H2
.

(ii) The projection eA1
= πA1

e = xg − πA1
x̃ ∈ R(A1) satisfies

|eA1 |2H2
= max
ϕ∈D(A1)

(
2〈g, ϕ〉H1 − 〈2x̃+ A1 ϕ,A1 ϕ〉H2

)
and the maximum is attained at, e.g., ϕ̂ := (A1)−1eA1

∈ D(A1).
(iii) The projection eA*

2
= πA*

2
e = xf − πA*

2
x̃ ∈ R(A*

2) satisfies

|eA*
2
|2H2

= max
φ∈D(A*

2)

(
2〈f, φ〉H3 − 〈2x̃+ A*

2 φ,A
*
2 φ〉H2

)
and the maximum is attained at, e.g., φ̂ := (A*

2)−1eA*
2
∈ D(A*

2).
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(iv) The projection eK2 = π2 e = k − π2 x̃ ∈ K2 satisfies

|eK2
|2H2

= max
θ∈K2

〈
2(k − x̃)− θ, θ

〉
H2

and the maximum is attained at θ̂ := eK2
∈ K2.

If x̃ := k + x̃⊥ with some x̃⊥ ∈ K
⊥H2
2 , see Corollary 4.4, then eK2

= 0, and in (ii) and (iii) x̃ can be

replaced by x̃⊥ as k⊥H2 R(A1)⊕H2 R(A*
2).

4.1.3. Two-Sided Bounds. We summarize our results from the latter sections.

Corollary 4.6. Let x ∈ D2 be the exact solution of (3.1) and x̃ ∈ H2. Then the following estimates hold
for the error e = x− x̃ defined in (4.1):

(i) The error decomposes according to (4.1)-(4.2), i.e.,

e = eA1
+ eK2

+ eA*
2
∈ R(A1)⊕H2

K2 ⊕H2
R(A*

2), |e|2H2
= |eA1

|2H2
+ |eK2

|2H2
+ |eA*

2
|2H2
.

(ii) The projection eA1
= πA1

e = xg − πA1
x̃ ∈ R(A1) satisfies

|eA1
|2H2

= min
ζ∈D(A*

1)

(
c1|A*

1 ζ − g|H1
+ |ζ − x̃|H2

)2
= max
ϕ∈D(A1)

(
2〈g, ϕ〉H1

− 〈2x̃+ A1 ϕ,A1 ϕ〉H2

)
and the minimum resp. maximum is attained at

ζ̂ := eA1 + x̃ ∈ D(A*
1), ϕ̂ := (A1)−1eA1 ∈ D(A1)

with A*
1 ζ̂ = A*

1 x = g.
(iii) The projection eA*

2
= πA*

2
e = xf − πA*

2
x̃ ∈ R(A*

2) satisfies

|eA*
2
|2H2

= min
ξ∈D(A2)

(
c2|A2 ξ − f |H3

+ |ξ − x̃|H2

)2
= max
φ∈D(A*

2)

(
2〈f, φ〉H3 − 〈2x̃+ A*

2 φ,A
*
2 φ〉H2

)
and the minimum resp. maximum is attained at

ξ̂ := eA*
2

+ x̃ ∈ D(A2), φ̂ := (A*
2)−1eA*

2
∈ D(A*

2)

with A2 ξ̂ = A2 x = f .
(iv) The projection eK2

= π2 e = k − π2 x̃ ∈ K2 satisfies

|eK2
|2H2

= min
ϕ∈D(A1)

min
φ∈D(A*

2)
|k − x̃+ A1 ϕ+ A*

2 φ|2H2

= max
θ∈K2

〈
2(k − x̃)− θ, θ

〉
H2

and the minimum resp. maximum is attained at

ϕ̂ := (A1)−1πA1 x̃ ∈ D(A1), φ̂ := (A*
2)−1πA*

2
x̃ ∈ D(A*

2), θ̂ := eK2 ∈ K2

with A1 ϕ̂+ A*
2 φ̂ = (πA1

+ πA*
2
)x̃ = (1− π2)x̃.

If x̃ := k + x̃⊥ with some x̃⊥ ∈ K
⊥H2
2 , see Corollary 4.4, then eK2 = 0, and in (ii) and (iii) x̃ can be

replaced by x̃⊥. In this case, for the attaining minima it holds

ζ̂⊥ := eA1
+ x̃⊥ ∈ D(A*

1), ξ̂⊥ := eA*
2

+ x̃⊥ ∈ D(A2).
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4.2. Second Order Systems. Let x ∈ D̃2 be the exact solution of (3.14). Recalling Remark 3.8 we

introduce the additional quantity y := A2 x ∈ D(A*
2). Then (3.14) decomposes into two first order

systems of shape (1.5) resp. (3.1), i.e.,

A2 x = y, A3 y = 0,

A*
1 x = g, A*

2 y = f,

π2 x = k, π3 y = 0

for the pair (x, y) ∈ D2×D3. Hence, we can immediately apply our results for the first order systems. Let
x̃ ∈ H2 and ỹ ∈ H3, which may be considered as non-conforming approximations of x and y, respectively.
Utilizing the notations from Theorem 3.6 we define and decompose the errors

H2 3 e := x− x̃ = eA1
+ eK2

+ eA*
2
∈ R(A1)⊕H2

K2 ⊕H2
R(A*

2),

H3 3 h := y − ỹ = hA2
+ hK3

+ hA*
3
∈ R(A2)⊕H3

K3 ⊕H3
R(A*

3),
(4.10)

eA1
:= πA1

e = xg − πA1
x̃ ∈ R(A1), hA2

:= πA2
h = y − πA2

ỹ ∈ R(A2),

eA*
2

:= πA*
2
e = xy − πA*

2
x̃ ∈ R(A*

2), hA*
3

:= πA*
3
h = −πA*

3
ỹ ∈ R(A*

3),

eK2
:= π2 e = k − π2 x̃ ∈ K2, hK3

:= π3 e = −π3 ỹ ∈ K3

using the Helmholtz type decompositions of Lemma 2.7 and noting πA2
y = y as y ∈ R(A2). By orthogo-

nality it holds

|e|2H2
= |eA1

|2H2
+ |eK2

|2H2
+ |eA*

2
|2H2
, |h|2H3

= |hA2
|2H3

+ |hK3
|2H3

+ |hA*
3
|2H3
.(4.11)

Therefore, the results of the latter section can be applied to eA1 , eK2 , eA*
2
, hA2 , hK3 , hA*

3
. Especially, by

Corollary 4.6 we obtain

|eA1
|2H2

= min
ζ∈D(A*

1)

(
c1|A*

1 ζ − g|H1
+ |ζ − x̃|H2

)2
= max
ϕ∈D(A1)

(
2〈g, ϕ〉H1

− 〈2x̃+ A1 ϕ,A1 ϕ〉H2

)
(4.12)

and the minimum resp. maximum is attained at ζ̂ = eA1 + x̃ ∈ D(A*
1) and ϕ̂ = (A1)−1eA1 ∈ D(A1) with

A*
1 ζ̂ = A*

1 x = g,

|eA*
2
|2H2

= min
ξ∈D(A2)

(
c2|A2 ξ − y|H3 + |ξ − x̃|H2

)2
= max
φ∈D(A*

2)

(
2〈y, φ〉H3 − 〈2x̃+ A*

2 φ,A
*
2 φ〉H2

)
(4.13)

and the minimum resp. maximum is attained at ξ̂ = eA*
2

+ x̃ ∈ D(A2) and φ̂ = (A*
2)−1eA*

2
∈ D(A*

2) with

A2 ξ̂ = A2 x = y,

|eK2 |2H2
= min
ϕ∈D(A1)

min
φ∈D(A*

2)
|k − x̃+ A1 ϕ+ A*

2 φ|2H2
= max
θ∈K2

〈
2(k − x̃)− θ, θ

〉
H2

(4.14)

and the minimum resp. maximum is attained at ϕ̂ = (A1)−1πA1
x̃ ∈ D(A1), φ̂ = (A*

2)−1πA*
2
x̃ ∈ D(A*

2),

and θ̂ = eK2 ∈ K2 with A1 ϕ̂+ A*
2 φ̂ = (πA1 + πA*

2
)x̃ = (1− π2)x̃. If x̃ = k + x̃⊥ with some x̃⊥ ∈ K

⊥H2
2 ,

then eK2
= 0, and x̃ can be replaced by x̃⊥. If the General Assumption 3.1 holds also for A3, i.e., R(A3)

is closed and (not neccessarily) K3 is finite dimensional, we get the corresponding results for hA2 , hK3 ,
hA*

3
as well. Replacing A1 by A2 and A2 by A3, Corollary 4.6 yields

|hA2
|2H3

= min
ζ∈D(A*

2)

(
c2|A*

2 ζ − f |H2
+ |ζ − ỹ|H3

)2
= max
ϕ∈D(A2)

(
2〈f, ϕ〉H2

− 〈2ỹ + A2 ϕ,A2 ϕ〉H3

)
(4.15)

and the minimum resp. maximum is attained at ζ̂ = hA2 + ỹ ∈ D(A*
2) and ϕ̂ = (A2)−1hA2 ∈ D(A2) with

A*
2 ζ̂ = A*

2 y = f ,

|hA*
3
|2H3

= min
ξ∈D(A3)

(
c3|A3 ξ|H4

+ |ξ − ỹ|H3

)2
= max
φ∈D(A*

3)

(
− 〈2ỹ + A*

3 φ,A
*
3 φ〉H3

)
(4.16)
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and the minimum resp. maximum is attained at ξ̂ = hA*
3

+ ỹ ∈ D(A3) and φ̂ = (A*
3)−1hA*

3
∈ D(A*

3) with

A3 ξ̂ = A3 y = 0, i.e., ξ̂ ∈ N(A3),

|hK3 |2H3
= min
ϕ∈D(A2)

min
φ∈D(A*

3)
| − ỹ + A2 ϕ+ A*

3 φ|2H3
= max
θ∈K3

(
− 〈2ỹ + θ, θ〉H3

)
(4.17)

and the minimum resp. maximum is attained at ϕ̂ = (A2)−1πA2 ỹ ∈ D(A2), φ̂ = (A*
3)−1πA*

3
ỹ ∈ D(A*

3),

and θ̂ = hK3
∈ K3 with A2 ϕ̂+ A*

3 φ̂ = (πA2
+ πA*

3
)ỹ = (1− π3)ỹ. If ỹ = ỹ⊥ ∈ K

⊥H3
3 , then hK3

= 0, and

ỹ can be replaced by ỹ⊥. The upper bound for |hA*
3
|H3

in (4.16) equals

|hA*
3
|H3

= min
ξ∈N(A3)

|ξ − ỹ|H3
= |ξ̂ − ỹ|H3

, ξ̂ = hA*
3

+ ỹ ∈ N(A3),

and so the constant c3 does not play a role. In (4.13) the unknown exact solution y still appears in the
upper and in the lower bound. The term A2 ξ − y ∈ R(A2) of the upper bound in (4.13) can be handled
as an error hξ = y − ỹξ with ỹξ = A2 ξ. As hξ = πA2

hξ = hξ,A2
we get by (4.15)

|A2 ξ − y|H3 = |hξ|H3 = min
ζ∈D(A*

2)

(
c2|A*

2 ζ − f |H2 + |ζ −A2 ξ|H3

)
.

Another option to compute an upper bound in (4.13) is the following one: As y ∈ D(A*
2) we observe

A2 ξ − y ∈ D(A*
2) if ξ ∈ D(A*

2 A2). The minimum in (4.13) is attained at ξ̂ = eA*
2

+ x̃ ∈ D(A2) with

A2 ξ̂ = A2 x = y. Since ξ̂ ∈ D(A*
2 A2) and A*

2 A2 ξ̂ = A*
2 y = f we obtain

|eA*
2
|H2 = min

ξ∈D(A*
2 A2)

(
c2|A2 ξ − y|H3 + |ξ − x̃|H2

)
= min
ξ∈D(A*

2 A2)

(
c22|A*

2 A2 ξ − f |H2 + |ξ − x̃|H2

)
,

where the latter equality follows by the Friedrichs/Poincaré inequality. To get a lower bound for |eA*
2
|2H2

in (4.13) we observe eA*
2
∈ R(A*

2) = R(A*
2 A2) and derive

|eA*
2
|2H2

= max
φ∈D(A*

2 A2)

(
2〈eA*

2
,A*

2 A2 φ〉H2 − |A*
2 A2 φ|2H2

)
= max
φ∈D(A*

2 A2)

(
2〈e,A*

2 A2 φ〉H2
− |A*

2 A2 φ|2H2

)
= max
φ∈D(A*

2 A2)

(
2〈f, φ〉H2

− 〈2x̃+ A*
2 A2 φ,A

*
2 A2 φ〉H2

)
.

We summarize the two sided bounds:

Theorem 4.7. Additionally to the General Assumption 3.1, suppose that R(A3) is closed. Let x ∈ D̃2

be the exact solution of (3.14), y := A2 x, and let (x̃, ỹ) ∈ H2×H3. Then the following estimates hold for
the errors e = x− x̃ and h = y − ỹ defined in (4.10):

(i) The errors decompose, i.e.,

e = eA1
+ eK2

+ eA*
2
∈ R(A1)⊕H2

K2 ⊕H2
R(A*

2), |e|2H2
= |eA1

|2H2
+ |eK2

|2H2
+ |eA*

2
|2H2
,

h = hA2 + hK3 + hA*
3
∈ R(A2)⊕H3 K3 ⊕H3 R(A*

3), |h|2H3
= |hA2 |2H3

+ |hK3 |2H3
+ |hA*

3
|2H3
.

(ii) The projection eA1
= πA1

e = xg − πA1
x̃ ∈ R(A1) satisfies

|eA1
|2H2

= min
ζ∈D(A*

1)

(
c1|A*

1 ζ − g|H1
+ |ζ − x̃|H2

)2
= max
ϕ∈D(A1)

(
2〈g, ϕ〉H1

− 〈2x̃+ A1 ϕ,A1 ϕ〉H2

)
and the minimum resp. maximum is attained at

ζ̂ := eA1
+ x̃ ∈ D(A*

1), ϕ̂ := (A1)−1eA1
∈ D(A1)

with A*
1 ζ̂ = A*

1 x = g.
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(iii) The projection eA*
2

= πA*
2
e = xy − πA*

2
x̃ ∈ R(A*

2) satisfies

|eA*
2
|2H2

= min
ξ∈D(A2)

min
ζ∈D(A*

2)

(
c22|A*

2 ζ − f |H2
+ c2|ζ −A2 ξ|H3

+ |ξ − x̃|H2

)2
= min
ξ∈D(A*

2 A2)

(
c22|A*

2 A2 ξ − f |H2
+ |ξ − x̃|H2

)2
= max
φ∈D(A*

2 A2)

(
2〈f, φ〉H2

− 〈2x̃+ A*
2 A2 φ,A

*
2 A2 φ〉H2

)
and the minima resp. maximum are attained at

ξ̂ := eA*
2

+ x̃ ∈ D(A*
2 A2), ζ̂ := hξ + A2 ξ = y ∈ D(A*

2), φ̂ := (A2)−1(A*
2)−1eA*

2
∈ D(A*

2A2)

with A2 ξ̂ = A2 x = y and A*
2 A2 ξ̂ = A*

2 y = f as well as A*
2 ζ̂ = A*

2 y = f .
(iv) The projection eK2

= π2 e = k − π2 x̃ ∈ K2 satisfies

|eK2
|2H2

= min
ϕ∈D(A1)

min
φ∈D(A*

2)
|k − x̃+ A1 ϕ+ A*

2 φ|2H2

= max
θ∈K2

〈
2(k − x̃)− θ, θ

〉
H2

and the minimum resp. maximum is attained at

ϕ̂ := (A1)−1πA1
x̃ ∈ D(A1), φ̂ := (A*

2)−1πA*
2
x̃ ∈ D(A*

2), θ̂ := eK2
∈ K2

with A1 ϕ̂+ A*
2 φ̂ = (πA1 + πA*

2
)x̃ = (1− π2)x̃.

(v) The projection hA2
= πA2

h = y − πA2
ỹ ∈ R(A2) satisfies

|hA2 |2H3
= min
ζ∈D(A*

2)

(
c2|A*

2 ζ − f |H2 + |ζ − ỹ|H3

)2
= max
ϕ∈D(A2)

(
2〈f, ϕ〉H2

− 〈2ỹ + A2 ϕ,A2 ϕ〉H3

)
and the minimum resp. maximum is attained at

ζ̂ := hA2
+ ỹ ∈ D(A*

2), ϕ̂ := (A2)−1hA2
∈ D(A2)

with A*
2 ζ̂ = A*

2 y = f .
(vi) The projection hA*

3
= πA*

3
h = −πA*

3
ỹ ∈ R(A*

3) satisfies

|hA*
3
|2H3

= min
ξ∈D(A3)

(
c3|A3 ξ|H4 + |ξ − ỹ|H3

)2
= min
ξ∈N(A3)

|ξ − ỹ|2H3

= max
φ∈D(A*

3)

(
− 〈2ỹ + A*

3 φ,A
*
3 φ〉H3

)
and the minimum resp. maximum is attained at

ξ̂ := hA*
3

+ ỹ ∈ N(A3), φ̂ := (A*
3)−1hA*

3
∈ D(A*

3)

with A3 ξ̂ = A3 y = 0.
(vii) The projection hK3 = π3 e = −π3 ỹ ∈ K3 satisfies

|hK3
|2H3

= min
ϕ∈D(A2)

min
φ∈D(A*

3)
| − ỹ + A2 ϕ+ A*

3 φ|2H3

= max
θ∈K3

(
− 〈2ỹ + θ, θ〉H3

)
and the minimum resp. maximum is attained at

ϕ̂ := (A2)−1πA2 ỹ ∈ D(A2), φ̂ := (A*
3)−1πA*

3
ỹ ∈ D(A*

3), θ̂ := hK3 ∈ K3

with A2 ϕ̂+ A*
3 φ̂ = (πA2

+ πA*
3
)ỹ = (1− π3)ỹ.

If x̃ = k + x̃⊥ with some x̃⊥ ∈ K
⊥H2
2 , then eK2

= 0, and in (ii) and (iii) x̃ can be replaced by x̃⊥. If

ỹ = ỹ⊥ ∈ K
⊥H3
3 , then hK3

= 0, and in (v) and (vi) ỹ can be replaced by ỹ⊥.
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Remark 4.8. A reasonable assumption provided by standard numerical methods is ỹ ∈ R(A2). Hence it
often holds hA*

3
= hK3 = 0.

4.3. Computing the Error Functionals. We propose a suitable way to compute the most important
error functionals in Theorem 4.1, Corollary 4.4, and Corollary 4.6. Let us discuss, e.g.,

|eA*
2
|H2

= min
ξ∈D(A2)

(
c2|A2 ξ − f |H3

+ |ξ − x̃|H2

)
, x̃ ∈ H2 .(4.18)

As for all ξ ∈ D(A2) and all t > 0

|eA*
2
|2H2
≤ (1 + t−1) c22 |A2 ξ − f |2H3

+ (1 + t)|ξ − x̃|2H2
=: F(x̃; ξ, t),

we have for ξ = ξ̂ from Theorem 4.1, Corollary 4.4 or Corollary 4.6

|eA*
2
|2H2
≤ inf
t∈(0,∞)

inf
ξ∈D(A2)

F(x̃; ξ, t) ≤ inf
t∈(0,∞)

F(x̃; ξ̂, t) = inf
t∈(0,∞)

(1 + t)|eA*
2
|2H2

= |eA*
2
|2H2
.

Thus

|eA*
2
|2H2

= min
t∈[0,∞],
ξ∈D(A2)

F(x̃; ξ, t) = min
t∈[0,∞],
ξ∈D(A2)

(
(1 + t−1) c22 |A2 ξ − f |2H3

+ (1 + t)|ξ − x̃|2H2

)
(4.19)

and the minimum is attained at (t, ξ) = (0, ξ̂). For fixed ξ ∈ D(A2) the minimal tξ ∈ [0,∞] is given by

tξ =

c2
|A2 ξ − f |H3

|ξ − x̃|H2

, if ξ 6= x̃,

∞ , if ξ = x̃.

We note that the case tξ =∞ can only happen if x̃ ∈ D(A2). In any case, inserting tξ into (4.19) we get
back (4.18), i.e.,

|eA*
2
|2H2
≤ min
ξ∈D(A2)

(
c2|A2 ξ − f |H3 + |ξ − x̃|H2

)2
= |eA*

2
|2H2
.

On the other hand, for fixed t > 0 the minimization of F (ξ) := F(x̃; ξ, t) over ξ ∈ D(A2) is equivalent to
find ξt ∈ D(A2), such that

∀ ξ ∈ D(A2)
t

2c22(1 + t)
F ′(ξt)(ξ) = 〈A2 ξt − f,A2 ξ〉H3 +

t

c22
〈ξt − x̃, ξ〉H2 = 0.(4.20)

Especially A2 ξt − f ∈ D(A*
2) with A*

2(A2 ξt − f) = t
c22

(x̃ − ξt) and hence (4.20) is the standard weak

formulation of the coercive problem (in formally strong form) (A*
2 A2 + t

c22
)ξt = A*

2 f + t
c22
x̃, i.e.,

∀ ξ ∈ D(A2) 〈A2 ξt,A2 ξ〉H3
+

t

c22
〈ξt, ξ〉H2

= 〈f,A2 ξ〉H3
+

t

c22
〈x̃, ξ〉H2

.(4.21)

The strong form holds rigorously if f ∈ R(A2) ∩D(A*
2) = D(A*

2). Moreover, as f ∈ R(A2) we even have

A2 ξt − f ∈ D(A*
2) with A*

2(A2 ξt − f) =
t

c22
(x̃− ξt).

Inserting ξt into (4.19) and using the Friedrichs/Poincaré type estimate shows

|eA*
2
|2H2
≤ min
t∈[0,∞]

(
(1 + t−1) c22 |A2 ξt − f |2H3

+ (1 + t)|ξt − x̃|2H2

)
≤ min
t∈[0,∞]

(
(1 + t−1) c42

∣∣A*
2(A2 ξt − f)

∣∣2
H2

+ (1 + t)|ξt − x̃|2H2

)
= min
t∈[0,∞]

(1 + t)2|ξt − x̃|2H2
= |ξt − x̃|2H2

.

(4.22)

A suitable algorithm for computing a good pair (t, ξ) for approximately minimizing (4.19) is the following:

Algorithm 4.9. Computing (t, ξ) in (4.19), i.e., an upper bound for |eA*
2
|H2

:

• initialization: Set n := 0. Pick ξ0 ∈ D(A2) with ξ0 6= x̃.
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• loop: Set n := n+ 1. Compute tn = c2
|A2 ξn−1 − f |H3

|ξn−1 − x̃|H2

and then ξn by solving (4.21), i.e.,

∀ ξ ∈ D(A2) c22〈A2 ξn,A2 ξ〉H3
+ tn〈ξn, ξ〉H2

= c22〈f,A2 ξ〉H3
+ tn〈x̃, ξ〉H2

.

Compute FA*
2
(x̃; ξn, tn) := (1 + t−1

n ) c22 |A2 ξn − f |2H3
+ (1 + tn)|ξn − x̃|2H2

.

• stop if FA*
2
(x̃; ξn, tn)−FA*

2
(x̃; ξn−1, tn−1) is small.

Similarly we propose the following algorithm:

Algorithm 4.10. Computing an upper bound for |eA1
|H2

:

• initialization: Set n := 0. Pick ζ0 ∈ D(A*
1) with ζ0 6= x̃.

• loop: Set n := n+ 1. Compute tn = c1
|A*

1 ζn−1 − g|H1

|ζn−1 − x̃|H2

and then ζn by solving

∀ ζ ∈ D(A*
1) c21〈A*

1 ζn,A
*
1 ζ〉H1 + tn〈ζn, ζ〉H2 = c21〈g,A*

1 ζ〉H1
+ tn〈x̃, ζ〉H2

.

Compute FA1
(x̃; ζn, tn) := (1 + t−1

n ) c21 |A*
1 ζn − g|2H1

+ (1 + tn)|ζn − x̃|2H2
.

• stop if FA1
(x̃; ζn, tn)−FA1

(x̃; ζn−1, tn−1) is small.

5. Applications

5.1. Prototype First Order System: Electro-Magneto Statics. As a prototypical example for a
first order system we will discuss the system of electro-magneto statics with mixed boundary conditions.
Let Ω ⊂ R3 be a bounded weak Lipschitz domain, see [1, Definition 2.3], and let Γ := ∂ Ω denote
its boundary (Lipschitz manifold), which is supposed to be decomposed into two relatively open weak
Lipschitz subdomains (Lipschitz submanifolds) Γt and Γn := Γ\Γt see [1, Definition 2.5]. Let us consider
the linear first order system (in classical strong formulation) for a vector field E : Ω→ R3

rotE = F in Ω, n× E = 0 at Γt,

−div εE = g in Ω, n · εE = 0 at Γn,(5.1)

πHE = H in Ω.

Here, ε : Ω → R3×3 is a symmetric, uniformly positive definite L∞-matrix field and n denotes the outer
unit normal at Γ. Let us put µ := ε−1. The usual Lebesgue and Sobolev (Hilbert) spaces will be denoted

by L2(Ω), H`(Ω), ` ∈ N0, and (in the distributional sense) we introduce

R(Ω) :=
{
E ∈ L2(Ω) : rotE ∈ L2(Ω)

}
, D(Ω) :=

{
E ∈ L2(Ω) : divE ∈ L2(Ω)

}
.

With the test functions or test vector fields

C∞Γt
(Ω) :=

{
ϕ|Ω : ϕ ∈ C∞(R3), suppϕ compact in R3, dist(suppϕ,Γt) > 0

}
, C∞∅ (Ω) = C∞(Ω),

we define as closures of test functions resp. test fields

H1
Γt

(Ω) := C∞Γt
(Ω)

H1(Ω)

, RΓt
(Ω) := C∞Γt

(Ω)
R(Ω)

, DΓn
(Ω) := C∞Γn

(Ω)
D(Ω)

,

generalizing homogeneous scalar, tangential, and normal traces on Γt and Γn, respectively. Moreover, we
introduce the closed subspaces

R0(Ω) := {E ∈ R(Ω) : rotE = 0}, D0(Ω) := {E ∈ D(Ω) : divE = 0},

RΓt,0(Ω) := RΓt
(Ω) ∩ R0(Ω), DΓn,0(Ω) := DΓn

(Ω) ∩ D0(Ω),

and the Dirichlet-Neumann fields including the corresponding orthonormal projector

Ht,n,ε(Ω) := RΓt,0(Ω) ∩ µDΓn,0(Ω), πH : L2
ε(Ω)→ Ht,n,ε(Ω).

Here, L2
ε(Ω) denotes L2(Ω) equipped with the inner product 〈 · , · 〉

L2
ε(Ω)

:= 〈ε · , · 〉
L2(Ω)

. Let H1 := L2(Ω),

H4 := L2(Ω) (both scalar valued) and H2 := L2
ε(Ω), H3 := L2(Ω) (both vector valued) as well as

A1 := gradΓt
: D(A1) := H1

Γt
(Ω) ⊂ L2(Ω)→ L2

ε(Ω),
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A2 := rotΓt : D(A2) := RΓt
(Ω) ⊂ L2

ε(Ω)→ L2(Ω),

A3 := divΓt : D(A3) := DΓt
(Ω) ⊂ L2(Ω)→ L2(Ω).

In [1] it has been shown that the adjoints are

A*
1 = grad∗Γt

= −divΓn ε : D(A*
1) = µDΓn

(Ω) ⊂ L2
ε(Ω)→ L2(Ω),

A*
2 = rot∗Γt

= µ rotΓn : D(A*
2) = RΓn

(Ω) ⊂ L2(Ω)→ L2
ε(Ω),

A*
3 = div∗Γt

= − gradΓn
: D(A*

3) = H1
Γn

(Ω) ⊂ L2(Ω)→ L2(Ω).

For the kernels we have

N(A1) =

{
{0} , if Γt 6= ∅,
R , if Γt = ∅,

N(A*
1) = µDΓn,0(Ω),

N(A2) = RΓt,0(Ω), N(A*
2) = RΓn,0(Ω),

N(A3) = DΓt,0(Ω), N(A*
3) =

{
{0} , if Γt 6= Γ,

R , if Γt = Γ.

As A1, A2, A3 define a well known complex, see, e.g., [1, Lemma 2.2], so do their adjoints, i.e., forvi

∅ 6= Γt 6= Γ

{0} 0−−−−→ H1
Γt

(Ω)
A1=gradΓt−−−−−−−→ RΓt

(Ω)
A2=rotΓt−−−−−−→ DΓt

(Ω)
A3=divΓt−−−−−−→ L2(Ω)

0−−−−→ {0},

{0} 0←−−−− L2(Ω)
A*

1=− divΓn ε←−−−−−−−− µDΓn
(Ω)

A*
2=µ rotΓn←−−−−−−− RΓn

(Ω)
A*

3=− gradΓn←−−−−−−−− H1
Γn

(Ω)
0←−−−− {0}.

Using the latter operators A2 and A*
1, the linear first order system (5.1) (in weak formulation) has the

form of (1.5) resp. (3.1), i.e., find a vector field

E ∈ D2 = D(A2) ∩D(A*
1) = RΓt

(Ω) ∩ µDΓn
(Ω),

such that

rotΓt E = F,

−divΓn εE = g,

πHE = H,

(5.2)

where K2 = Ht,n,ε(Ω). In [1, Theorem 5.1] the embedding D2 ↪→ H2, i.e.,

RΓt
(Ω) ∩ µDΓn

(Ω) ↪→ L2
ε(Ω),

was shown to be compact. Hence also the embedding D3 = D(A3) ∩D(A*
2) ↪→ H3, i.e.,

DΓt
(Ω) ∩ RΓn

(Ω) ↪→ L2(Ω),

is compact. Thus, by the results of the functional analysis toolbox Section 2, all occurring ranges are
closed, certain Helmholtz type decompositions hold, corresponding Friedrichs/Poincaré type estimates

viFor Γt = ∅ we have

R ιR−−−−−→ H1(Ω)
A1=grad−−−−−−→ R(Ω)

A2=rot−−−−−→ D(Ω)
A3=div−−−−−→ L2(Ω)

0−−−−−→ {0},

R πR←−−−−− L2(Ω)
A*

1=− divΓ ε←−−−−−−−−− µDΓ(Ω)
A*

2=µ rotΓ←−−−−−−− RΓ(Ω)
A*

3=− gradΓ←−−−−−−−−− H1
Γ(Ω)

0←−−−−− {0},
which also shows the case Γt = Γ by interchanging Γt and Γn and shifting ε. More precisely, for Γt = Γ it holds

{0} 0−−−−−→ H1
Γ(Ω)

A1=gradΓ−−−−−−−→ RΓ(Ω)
A2=rotΓ−−−−−−→ DΓ(Ω)

A3=divΓ−−−−−−→ L2(Ω)
πR−−−−−→ R,

{0} 0←−−−−− L2(Ω)
A*

1=− div ε
←−−−−−−−− µD(Ω)

A*
2=µ rot

←−−−−−− R(Ω)
A*

3=− grad
←−−−−−−−− H1(Ω)

ιR←−−−−− R.
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are valid, and the respective inverse operators are continuous resp. compact. Especially, the reduced
operators are

A1 := g̃radΓt
: D(A1) = H1

Γt
(Ω) ∩ L2(Ω) ⊂ L2(Ω)→ gradH1

Γt
(Ω),

A2 := r̃otΓt : D(A2) = RΓt
(Ω) ∩ µ rotRΓn

(Ω) ⊂ µ rotRΓn
(Ω)→ rotRΓt

(Ω),

A3 := d̃ivΓt : D(A3) = DΓt
(Ω) ∩ gradH1

Γn
(Ω) ⊂ gradH1

Γn
(Ω)→ L2(Ω),

where gradH1
Γt

(Ω) and µ rotRΓn
(Ω) have to be understood as closed subspaces of L2

ε(Ω), and L2(Ω) has

to be replaced by L2
⊥(Ω) := L2(Ω) ∩ R⊥L2(Ω) in A1, if Γt = ∅, and in A3, if Γt = Γ, with adjoints

A*
1 = g̃rad

∗
Γt

= −d̃ivΓnε : D(A*
1) = µDΓn

(Ω) ∩ gradH1
Γt

(Ω) ⊂ gradH1
Γt

(Ω)→ L2(Ω),

A*
2 = r̃ot

∗
Γt

= µ r̃otΓn : D(A*
2) = RΓn

(Ω) ∩ rotRΓt
(Ω) ⊂ rotRΓt

(Ω)→ µ rotRΓn
(Ω),

A*
3 = d̃iv

∗
Γt

= −g̃radΓn
: D(A*

3) = H1
Γn

(Ω) ∩ L2(Ω) ⊂ L2(Ω)→ gradH1
Γn

(Ω),

where L2(Ω) has to be replaced by L2
⊥(Ω) in A*

1, if Γt = ∅, and in A*
3, if Γt = Γ. Note that the reduced

operators possess bounded resp. compact inverse operators. For the ranges we have

R(A1) = R(A1) ⊂ N(A2), i.e., gradH1
Γt

(Ω) = grad
(
H1

Γt
(Ω) ∩ L2(Ω)

)
⊂ RΓt,0(Ω),

R(A2) = R(A2) ⊂ N(A3), i.e., rotRΓt
(Ω) = rot

(
RΓt

(Ω) ∩ µ rotRΓn
(Ω)
)
⊂ DΓt,0(Ω),

R(A3) = R(A3), i.e., divDΓt
(Ω) = div

(
DΓt

(Ω) ∩ gradH1
Γn

(Ω)
)
,

R(A*
1) = R(A*

1), i.e., divDΓn
(Ω) = div

(
DΓn

(Ω) ∩ ε gradH1
Γt

(Ω)
)
,

R(A*
2) = R(A*

2) ⊂ N(A*
1), i.e., µ rotRΓn

(Ω) = µ rot
(
RΓn

(Ω) ∩ rotRΓt
(Ω)
)
⊂ µDΓn,0(Ω),

R(A*
3) = R(A*

3) ⊂ N(A*
2), i.e., gradH1

Γn
(Ω) = grad

(
H1

Γn
(Ω) ∩ L2(Ω)

)
⊂ RΓn,0(Ω),

where L2(Ω) has to be replaced by L2
⊥(Ω) for Γt = ∅ resp. Γt = Γ. Note that the assertions of R(A3),

R(A*
2), R(A*

3) are already included in those of R(A1), R(A2), R(A*
1) by interchanging Γt and Γn and

setting ε := id. Furthermore, the following Friedrichs/Poincaré type estimates hold:

∀u ∈ D(A1) = H1
Γt

(Ω) ∩ L2(Ω) |u|
L2(Ω)

≤ cfp | gradu|
L2
ε(Ω)

,

∀E ∈ D(A*
1) = µDΓn

(Ω) ∩ gradH1
Γt

(Ω), |E|
L2
ε(Ω)
≤ cfp |div εE|

L2(Ω)
,

∀E ∈ D(A2) = RΓt
(Ω) ∩ µ rotRΓn

(Ω), |E|
L2
ε(Ω)
≤ cm | rotE|

L2(Ω)
,

∀E ∈ D(A*
2) = RΓn

(Ω) ∩ rotRΓt
(Ω), |E|

L2(Ω)
≤ cm | rotE|

L2
µ(Ω)

,

∀E ∈ D(A3) = DΓt
(Ω) ∩ gradH1

Γn
(Ω), |E|

L2(Ω)
≤ c̃fp |divE|

L2(Ω)
,

∀u ∈ D(A*
3) = H1

Γn
(Ω) ∩ L2(Ω) |u|

L2(Ω)
≤ c̃fp | gradu|

L2(Ω)
,

where the Friedrichs/Poincaré and Maxwell constants cfp, cm, c̃fp, are given by the respective Raleigh

quotients, and L2(Ω) has to be replaced by L2
⊥(Ω) for Γt = ∅ resp. Γt = Γ. Again note that the latter

two assertions are already included in the first two inequalities by interchanging Γt and Γn and setting
ε := id. Finally, the following Helmholtz decompositions hold:

H1 = L2(Ω) = divDΓn
(Ω)⊕

L2(Ω)

{
{0} , if Γt 6= ∅,
R , if Γt = ∅,

H2 = L2
ε(Ω) = gradH1

Γt
(Ω)⊕

L2
ε(Ω)

µDΓn,0(Ω)

= RΓt,0(Ω)⊕
L2
ε(Ω)

µ rotRΓn
(Ω)

= gradH1
Γt

(Ω)⊕
L2
ε(Ω)
Ht,n,ε(Ω)⊕

L2
ε(Ω)

µ rotRΓn
(Ω),
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H3 = L2(Ω) = gradH1
Γn

(Ω)⊕
L2(Ω)

DΓt,0(Ω)

= RΓn,0(Ω)⊕
L2(Ω)

rotRΓt
(Ω)

= gradH1
Γn

(Ω)⊕
L2(Ω)

Hn,t(Ω)⊕
L2(Ω)

rotRΓt
(Ω), Hn,t(Ω) = RΓn,0(Ω) ∩ DΓt,0(Ω),

H4 = L2(Ω) = divDΓt
(Ω)⊕

L2(Ω)

{
{0} , if Γt 6= Γ,

R , if Γt = Γ.

The latter two decompositions are already given by the first two ones by interchanging Γt and Γn and
setting ε := id. Especially, it holds

gradH1
Γt

(Ω) = RΓt,0(Ω)	
L2
ε(Ω)
Ht,n,ε(Ω), µ rotRΓn

(Ω) = µDΓn,0(Ω)	
L2
ε(Ω)
Ht,n,ε(Ω),

gradH1
Γn

(Ω) = RΓn,0(Ω)	
L2(Ω)

Hn,t(Ω), rotRΓt
(Ω) = DΓt,0(Ω)	

L2(Ω)
Hn,t(Ω).

If Γt = Γ and Γ is connected, then the Dirichlet fields are trivial, i.e.,

Ht,n,ε(Ω) = RΓ,0(Ω) ∩ µD0(Ω) = {0}.

If Γt = ∅ and Ω is simply connected, then the Neumann fields are trivial, i.e.,

Ht,n,ε(Ω) = R0(Ω) ∩ µDΓ,0(Ω) = {0}.
Now we can apply the general results of Theorem 3.3 and Corollary 4.6.

Theorem 5.1. (5.1) resp. (5.2) is uniquely solvable, if and only if

F ∈ rotRΓt
(Ω) = DΓt,0(Ω)	

L2(Ω)
Hn,t(Ω), g ∈ L2(Ω), H ∈ Ht,n,ε(Ω),

where L2(Ω) has to be replaced by L2
⊥(Ω) if Γt = ∅. The unique solution E ∈ RΓt

(Ω) ∩ µDΓn
(Ω) is given

by

E := EF + Eg +H ∈
(
RΓt

(Ω) ∩ µ rotRΓn
(Ω)
)
⊕

L2
ε(Ω)

(
µDΓn

(Ω) ∩ gradH1
Γt

(Ω)
)
⊕

L2
ε(Ω)
Ht,n,ε(Ω)

= RΓt
(Ω) ∩ µDΓn

(Ω),

EF := (r̃otΓt)
−1F ∈ RΓt

(Ω) ∩ µ rotRΓn
(Ω) = RΓt

(Ω) ∩ µDΓn,0(Ω) ∩Ht,n,ε(Ω)
⊥

L2ε(Ω) ,

Eg := −(d̃ivΓnε)
−1g ∈ µDΓn

(Ω) ∩ gradH1
Γt

(Ω) = µDΓn
(Ω) ∩ RΓt,0(Ω) ∩Ht,n,ε(Ω)

⊥
L2ε(Ω)

and depends continuously on the data, i.e., |E|
L2
ε(Ω)
≤ cm |F |L2(Ω)

+ cfp |g|L2(Ω)
+ |H|

L2(Ω)
, as

|EF |L2
ε(Ω)
≤ cm |F |L2(Ω)

, |Eg|L2
ε(Ω)
≤ cfp |g|L2(Ω)

.

Moreover, |E|2
L2
ε(Ω)

= |EF |2
L2
ε(Ω)

+ |Eg|2
L2
ε(Ω)

+ |H|2
L2
ε(Ω)

.

The partial solutions EF and Eg, solving

rotΓt EF = F, rotΓt Eg = 0,

−divΓn εEF = 0, −divΓn εEg = g,

πHEF = 0, πHEg = 0,

can be found and computed by the following two variational formulations: There exist unique potentials

UF ∈ RΓn
(Ω)∩ rotRΓt

(Ω) and ug ∈ H1
Γt

(Ω), where H1
Γt

(Ω) has to be replaced by H1(Ω)∩L2
⊥(Ω), if Γt = ∅,

such that

∀Φ ∈ RΓn
(Ω) 〈rotUF , rot Φ〉

L2
µ(Ω)

= 〈F,Φ〉
L2(Ω)

,(5.3)

∀ϕ ∈ H1
Γt

(Ω) 〈gradug, gradϕ〉
L2
ε(Ω)

= 〈g, ϕ〉
L2(Ω)

.(5.4)

It holds

µ rotUF = EF , gradug = Eg.
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Moreover, the variational formulation (5.3) is equivalent to the following saddle point problem: Find

UF ∈ RΓn
(Ω), such that

∀Φ ∈ RΓn
(Ω) 〈rotUF , rot Φ〉

L2
µ(Ω)

= 〈F,Φ〉
L2(Ω)

∧ ∀Ψ ∈ RΓn,0(Ω) 〈UF ,Ψ〉L2(Ω)
= 0.(5.5)

As RΓn,0
(Ω) = gradH1

Γn
(Ω)⊕

L2(Ω)
Hn,t(Ω) we may specify: In the special case

Hn,t(Ω) = {0},

the saddle point problem (5.5) is equivalent to: Find UF ∈ RΓn
(Ω), such that

∀Φ ∈ RΓn
(Ω) 〈rotUF , rot Φ〉

L2
µ(Ω)

= 〈F,Φ〉
L2(Ω)

∧ ∀ψ ∈ H1
Γn

(Ω) 〈UF , gradψ〉
L2(Ω)

= 0.(5.6)

Following the procedure leading to (3.11)-(3.12) we observe that (5.6) is equivalent to the following saddle

point formulation: Find (UF , uF ) ∈ RΓn
(Ω)× H1

Γn
(Ω), such that for all (Φ, ψ) ∈ RΓn

(Ω)× H1
Γn

(Ω)

〈rotUF , rot Φ〉
L2
µ(Ω)

+ 〈Φ, graduF 〉L2(Ω)
= 〈F,Φ〉

L2(Ω)
∧ 〈UF , gradψ〉

L2(Ω)
= 0,(5.7)

where H1
Γn

(Ω) has to be replaced by H1(Ω) ∩ L2
⊥(Ω), if Γt = Γ. Every solution of (5.7) satisfies uF = 0

and the inf-sup-condition reads

inf
06=ψ∈H1

Γn
(Ω)

sup
06=Φ∈RΓn

(Ω)

〈Φ, gradψ〉
L2(Ω)

|Φ|
RΓn

(Ω)
|ψ|

H1
Γn

(Ω)

≥ inf
06=ψ∈H1

Γn
(Ω)

| gradψ|
L2(Ω)

|ψ|
H1

Γn
(Ω)

= (c̃2fp + 1)−
1/2.

Note that in H1
Γn

(Ω) resp. H1(Ω) ∩ L2
⊥(Ω) we can also use the H1-half norm | · |

H1
Γn

(Ω)
= | grad · |

L2(Ω)

yielding

inf
0 6=ψ∈H1

Γn
(Ω)

sup
06=Φ∈RΓn

(Ω)

〈Φ, gradψ〉
L2(Ω)

|Φ|
RΓn

(Ω)
|ψ|

H1
Γn

(Ω)

≥ 1.

Remark 5.2. We emphasize that in [5], see also [4, 6], the following has been proved: If Γt = ∅ or
Γt = Γ, and Ω is convex, then

cm ≤ ε cp ≤ ε
diam Ω

π
,

where the Poincaré constant cp and ε are given by

1

cp
:= inf

06=ϕ∈H1(Ω)∩L2
⊥(Ω)

| gradϕ|
L2(Ω)

|ϕ|
L2(Ω)

,
1

ε
:= inf

0 6=Φ∈L2(Ω)

|Φ|
L2(Ω)

|Φ|
L2
ε(Ω)

.

Moreover, for Γt = ∅ and convex Ω we have

1

ε
cp ≤ cfp ≤ εcp, c̃fp = cf < cp,

where the Friedrichs constant cf and ε are given by

1

cf
:= inf

0 6=ϕ∈H1
Γ(Ω)

| gradϕ|
L2(Ω)

|ϕ|
L2(Ω)

,
1

ε
:= inf

06=Φ∈L2(Ω)

|Φ|
L2
ε(Ω)

|Φ|
L2(Ω)

.

For Γt = Γ and convex Ω it holds

1

ε
cf ≤ cfp ≤ εcf , cf < cp = c̃fp.

We can apply the main functional a posteriori error estimate Corollary 4.6 to (5.1) resp. (5.2).

Theorem 5.3. Let E ∈ RΓt
(Ω) ∩ µDΓn

(Ω) be the exact solution of (5.1) resp. (5.2) and Ẽ ∈ L2
ε(Ω).

Then the following estimates hold for the error e = E − Ẽ defined in (4.1):

(i) The error decomposes, i.e., e = egrad +eH+erot ∈ gradH1
Γt

(Ω)⊕
L2
ε(Ω)
Ht,n,ε(Ω)⊕

L2
ε(Ω)

µ rotRΓn
(Ω)

and
|e|2

L2
ε(Ω)

= |egrad|2L2
ε(Ω)

+ |eH |
2

L2
ε(Ω)

+ |erot|2L2
ε(Ω)

.
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(ii) The projection egrad = πgrade = Eg − πgradẼ ∈ gradH1
Γt

(Ω) satisfies

|egrad|2L2
ε(Ω)

= min
Φ∈µDΓn

(Ω)

(
cfp|div εΦ + g|

L2(Ω)
+ |Φ− Ẽ|

L2
ε(Ω)

)2
= max
ϕ∈H1

Γt
(Ω)

(
2〈g, ϕ〉

L2(Ω)
− 〈2Ẽ + gradϕ, gradϕ〉

L2
ε(Ω)

)
and the minimum resp. maximum is attained at

Φ̂ := egrad + Ẽ ∈ µDΓn
(Ω), ϕ̂ := (g̃radΓt

)−1egrad ∈ H1
Γt

(Ω)

with −div ε Φ̂ = −div εE = g, where H1
Γt

(Ω) has to be replaced by H1(Ω) ∩ L2
⊥(Ω), if Γt = ∅.

(iii) The projection erot = πrote = EF − πrotẼ ∈ µ rotRΓn
(Ω) satisfies

|erot|2L2
ε(Ω)

= min
Φ∈RΓt

(Ω)

(
cm| rot Φ− F |

L2(Ω)
+ |Φ− Ẽ|

L2
ε(Ω)

)2
= max

Ψ∈RΓn
(Ω)

(
2〈F,Ψ〉

L2(Ω)
− 〈2Ẽ + µ rot Ψ, µ rot Ψ〉

L2
ε(Ω)

)
and the minimum resp. maximum is attained at

Φ̂ := erot + Ẽ ∈ RΓt
(Ω), Ψ̂ := (µ r̃otΓn)

−1erot ∈ RΓn
(Ω) ∩ rotRΓt

(Ω)

with rot Φ̂ = rotE = F .
(iv) The projection eH = πHe = H − πHẼ ∈ Ht,n,ε(Ω) satisfies

|eH |
2

L2
ε(Ω)

= min
ϕ∈H1

Γt
(Ω)

min
Φ∈RΓn

(Ω)

|H − Ẽ + gradϕ+ µ rot Φ|2
L2
ε(Ω)

= max
Ψ∈Ht,n,ε(Ω)

〈
2(H − Ẽ)−Ψ,Ψ

〉
L2
ε(Ω)

and the minimum resp. maximum is attained at

ϕ̂ := (g̃radΓt
)−1πgradẼ ∈ H1

Γt
(Ω), Φ̂ := (µ r̃otΓn)

−1πrotẼ ∈ RΓn
(Ω) ∩ rotRΓt

(Ω)

resp. Ψ̂ := eH ∈ Ht,n,ε(Ω) with grad ϕ̂ + µ rot φ̂ = (πgrad + πrot)Ẽ = (1 − πH)Ẽ, where H1
Γt

(Ω)

has to be replaced by H1(Ω) ∩ L2
⊥(Ω), if Γt = ∅.

If Ẽ := H + Ẽ⊥ with some Ẽ⊥ ∈ Ht,n,ε(Ω)
⊥

L2ε(Ω) , then eH = 0, and in (ii) and (iii) Ẽ can be replaced by

Ẽ⊥. In this case, for the attaining minima it holds

Φ̂⊥ := egrad + Ẽ⊥ ∈ µDΓn
(Ω), Φ̂⊥ := erot + Ẽ⊥ ∈ RΓt

(Ω).

Remark 5.4. For conforming approximations Corollary 4.2 and Remark 4.3 yield the following:

(i) If Ẽ ∈ µDΓn
(Ω), then e ∈ µDΓn

(Ω) and

|egrad|L2
ε(Ω)
≤ cfp|div ε Ẽ + g|

L2(Ω)
= cfp|div ε e|

L2(Ω)
.

(ii) If Ẽ ∈ RΓt
(Ω), then e ∈ RΓt

(Ω) and

|erot|L2
ε(Ω)
≤ cm| rot Ẽ − F |

L2(Ω)
= cm| rot e|

L2(Ω)
.

(iii) If Ẽ ∈ RΓt
(Ω)∩µDΓn

(Ω), then e ∈ RΓt
(Ω)∩µDΓn

(Ω) and this very conforming error is equivalent
to the weighted least squares functional

F(Ẽ) := |H − πHẼ|
2

L2
ε(Ω)

+ (1 + c2m)| rot Ẽ − F |2
L2(Ω)

+ (1 + c2fp)|div ε Ẽ + g|2
L2(Ω)

,

i.e., |e|2
RΓt

(Ω)∩µDΓn
(Ω)
≤ F(Ẽ) ≤ (1 + max{cfp, cm}2)|e|2

RΓt
(Ω)∩µDΓn

(Ω)
.
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5.2. Prototype Second Order Systems: Laplacian and rot rot. As prototypical examples for second
order systems we will discuss the Laplacian and the rot rot-system, both with mixed boundary conditions.
Suppose the assumptions of Section 5.1 are valid and recall the notations. For simplicity and to avoid
case studies we assume ∅ 6= Γt 6= Γ.

5.2.1. The Laplacian. Suppose g ∈ L2(Ω). Let us consider the linear second order equation (in classical
strong formulation) of the perturbed negative Laplacian with mixed boundary conditions for a function
u : Ω→ R

−div ε gradu = g in Ω, u = 0 at Γt, n · ε gradu = 0 at Γn.(5.8)

The corresponding variational formulation, which is uniquely solvable by Lax-Milgram’s lemma, is the

following: Find u ∈ H1
Γt

(Ω), such that

∀ϕ ∈ H1
Γt

(Ω) 〈gradu, gradϕ〉
L2
ε(Ω)

= 〈g, ϕ〉
L2(Ω)

.

Then, by definition and the results of [1], we get ε gradu ∈ DΓn
(Ω) with −div ε gradu = g. Hence, by

setting

E := gradu ∈ µDΓn
(Ω) ∩ gradH1

Γt
(Ω) = µDΓn

(Ω) ∩ RΓt,0(Ω) ∩Ht,n,ε(Ω)
⊥

L2ε(Ω)

we see that the pair (u,E) solves the linear first order system (in classical strong formulation) of electro-
magneto statics type with mixed boundary conditions

gradu = E, rotE = 0 in Ω, u = 0, n× E = 0 at Γt,

−div εE = g in Ω, n · εE = 0 at Γn,(5.9)

πHE = 0 in Ω.

Similar to the latter subsection we define the operators A1, A2, A3 and also A0, A4 together with the
respective adjoints and reduced operators by the complexes

{0} A0=0−−−−→ H1
Γt

(Ω)
A1=gradΓt−−−−−−−→ RΓt

(Ω)
A2=rotΓt−−−−−−→ DΓt

(Ω)
A3=divΓt−−−−−−→ L2(Ω)

A4=0−−−−→ {0},

{0} A*
0=0←−−−− L2(Ω)

A*
1=− divΓn ε←−−−−−−−− µDΓn

(Ω)
A*

2=µ rotΓn←−−−−−−− RΓn
(Ω)

A*
3=− gradΓn←−−−−−−−− H1

Γn
(Ω)

A∗4=0←−−−− {0}.

As before, all basic Hilbert spaces are L2(Ω) except of H2 = L2
ε(Ω). Then (5.8) turns to

A*
1 A1 u = g,

A*
0 u = 0u = 0,

π1 u = π{0}u = 0

and this system is (again) uniquely solvable by Theorem 3.6 as g ∈ L2(Ω) = R(A*
1) with solution u

depending continuously on the data. (5.9) reads

A1 u = gradΓt
u = E, A2E = rotΓt E = 0,

A*
0 u = 0u = 0, A*

1E = −divΓn εE = g,

π1 u = π{0}u = 0, π2E = πHE = 0.

We can apply the main functional a posteriori error estimates from Theorem 4.7.

Theorem 5.5. Let u ∈ H1
Γt

(Ω) be the exact solution of (5.8), E := gradu, and (ũ, Ẽ) ∈ L2(Ω)× L2
ε(Ω).

Then the following estimates hold for the errors eu := u− ũ and eE := E − Ẽ:

(i) The error eE decomposes, i.e.,

eE = eE,grad + e
E,H + eE,rot ∈ gradH1

Γt
(Ω)⊕

L2
ε(Ω)
Ht,n,ε(Ω)⊕

L2
ε(Ω)

µ rotRΓn
(Ω)

and

|eE |2L2
ε(Ω)

= |eE,grad|2L2
ε(Ω)

+ |e
E,H |

2

L2
ε(Ω)

+ |eE,rot|2L2
ε(Ω)

.
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(ii) eu = πdiveu ∈ divDΓn
(Ω) = L2(Ω) and

|eu|2L2(Ω)
= min
ϕ∈H1

Γt
(Ω)

min
Φ∈µDΓn

(Ω)

(
c2fp|div εΦ + g|

L2(Ω)
+ cfp|Φ− gradϕ|

L2
ε(Ω)

+ |ϕ− ũ|
L2(Ω)

)2
= min

ϕ∈H1
Γt

(Ω),

gradϕ∈µDΓn
(Ω)

(
c2fp|div ε gradϕ+ g|

L2(Ω)
+ |ϕ− ũ|

L2(Ω)

)2
= max

φ∈H1
Γt

(Ω),

gradφ∈µDΓn
(Ω)

(
2〈g, φ〉

L2(Ω)
+ 〈2ũ− div ε gradφ, div ε gradφ〉

L2(Ω)

)
and the minima resp. maximum are attained at

ϕ̂ := eu + ũ ∈ H1
Γt

(Ω), Φ̂ := E ∈ µDΓn
(Ω), φ̂ := (g̃radΓt

)−1(−d̃ivΓnε)
−1 ∈ H1

Γt
(Ω)

with grad ϕ̂, grad φ̂ ∈ µDΓn
(Ω) and grad ϕ̂ = gradu = E and −div ε grad ϕ̂ = − div εE = g as

well as −div ε Φ̂ = −div εE = g.

(iii) The projection eE,grad = πgradeE = E − πgradẼ ∈ gradH1
Γt

(Ω) satisfies

|eE,grad|2L2
ε(Ω)

= min
Φ∈µDΓn

(Ω)

(
cfp|div εΦ + g|

L2(Ω)
+ |Φ− Ẽ|

L2
ε(Ω)

)2
= max
ϕ∈H1

Γt
(Ω)

(
2〈g, ϕ〉

L2(Ω)
− 〈2Ẽ + gradϕ, gradϕ〉

L2
ε(Ω)

)
and the minimum resp. maximum is attained at

Φ̂ := eE,grad + Ẽ ∈ µDΓn
(Ω), ϕ̂ := (g̃radΓt

)−1eE,grad ∈ H1
Γt

(Ω)

with − div ε Φ̂ = − div εE = g.

(iv) The projection eE,rot = πroteE = −πrotẼ ∈ µ rotRΓn
(Ω) satisfies

|eE,rot|2L2
ε(Ω)

= min
Φ∈RΓt

(Ω)

(
cm| rot Φ|

L2(Ω)
+ |Φ− Ẽ|

L2
ε(Ω)

)2
= min

Φ∈RΓt,0
(Ω)

|Φ− Ẽ|2
L2
ε(Ω)

= max
Ψ∈RΓn

(Ω)

(
− 〈2Ẽ + µ rot Ψ, µ rot Ψ〉

L2
ε(Ω)

)
and the minimum resp. maximum is attained at

Φ̂ := eE,rot + Ẽ ∈ RΓt,0(Ω), Ψ̂ := (µ r̃otΓn)
−1eE,rot ∈ RΓn

(Ω) ∩ rotRΓt
(Ω)

with rot Φ̂ = rotE = 0.
(v) The projection e

E,H = πHeE = −πHẼ ∈ Ht,n,ε(Ω) satisfies

|e
E,H |

2

L2
ε(Ω)

= min
ϕ∈H1

Γt
(Ω)

min
Φ∈RΓn

(Ω)

| − Ẽ + gradϕ+ µ rot Φ|2
L2
ε(Ω)

= max
Ψ∈Ht,n,ε(Ω)

(
−
〈
2Ẽ + Ψ,Ψ

〉
L2
ε(Ω)

)
and the minimum resp. maximum is attained at

ϕ̂ := (g̃radΓt
)−1πgradẼ ∈ H1

Γt
(Ω), Φ̂ := (µ r̃otΓn)

−1πrotẼ ∈ RΓn
(Ω) ∩ rotRΓt

(Ω)

resp. Ψ̂ := e
E,H ∈ Ht,n,ε(Ω) with grad ϕ̂+ µ rot φ̂ = (πgrad + πrot)Ẽ = (1− πH)Ẽ.

If Ẽ := Ẽ⊥ with some Ẽ⊥ ∈ Ht,n,ε(Ω)
⊥

L2ε(Ω) , then e
E,H = 0, and in (iii) and (iv) Ẽ can be replaced by

Ẽ⊥. In this case, for the attaining minima it holds

Φ̂⊥ := eE,grad + Ẽ⊥ ∈ µDΓn
(Ω), Φ̂⊥ := eE,rot + Ẽ⊥ ∈ RΓt,0(Ω).
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For conforming approximations Ẽ ∈ gradH1
Γt

(Ω) we have eE,rot = e
E,H = 0 and eE = eE,grad.

Especially, if ũ ∈ H1
Γt

(Ω) and Ẽ := grad ũ with a conforming approximation ũ ∈ H1
Γt

(Ω), the estimates

of the latter theorem simplify. More precisely, (ii) turns to the following result: If ũ ∈ H1
Γt

(Ω), then

eu ∈ H1
Γt

(Ω) and we can choose, e.g., ϕ := ũ yielding, e.g.,

|eu|L2(Ω)
≤ min

Φ∈µDΓn
(Ω)

(
c2fp|div εΦ + g|

L2(Ω)
+ cfp|Φ− grad ũ|

L2
ε(Ω)

)
,

which might not be sharp anymore. Similarly, the results of (iii) read as follows: If ũ belongs to H1
Γt

(Ω),

then Ẽ := grad ũ ∈ gradH1
Γt

(Ω) and grad(u− ũ) = eE = eE,grad ∈ gradH1
Γt

(Ω) as well as

|eE |2L2
ε(Ω)

= min
Φ∈µDΓn

(Ω)

(
cfp|div εΦ + g|

L2(Ω)
+ |Φ− grad ũ|

L2
ε(Ω)

)2
= max
ϕ∈H1

Γt
(Ω)

(
2〈g, ϕ〉

L2(Ω)
− 〈grad(2ũ+ ϕ), gradϕ〉

L2
ε(Ω)

)(5.10)

and the minimum resp. maximum is attained at

Φ̂ := eE + grad ũ = gradu ∈ µDΓn
(Ω), ϕ̂ := (g̃radΓt

)−1eE ∈ H1
Γt

(Ω)

with − div ε Φ̂ = − div εE = g. Note that (5.10) are the well known functional a posteriori error estimates
for the energy norm associated to the Laplacian, see, e.g., [8].

5.2.2. The rot rot-operator. Suppose F ∈ rotRΓt
(Ω) = DΓt,0

(Ω) ∩Hn,t(Ω)
⊥

L2(Ω) and g ∈ L2(Ω) as well as

H ∈ Hn,t(Ω). Let us consider the linear second order equation (in classical strong formulation) of the
perturbed rot rot-operator with mixed boundary conditions for a vector field B : Ω→ R3

rotµ rotB = F in Ω, n×B = 0 at Γn,

div νB = g in Ω, n · νB = 0, n× µ rotB = 0 at Γt,(5.11)

πH̃B = H in Ω.

Here πH̃ : L2(Ω)→ Hn,t(Ω) and for simplicity we set ν := id for the matrix field ν. The partial solution
Bg can be computed by solving a Laplace problem. The corresponding variational formulation, which is
uniquely solvable by Lax-Milgram’s lemma, to find the partial solution BF of

rotµ rotBF = F in Ω, n×BF = 0 at Γn,

divBF = 0 in Ω, n ·BF = 0, n× µ rotBF = 0 at Γt,

πH̃BF = 0 in Ω,

is the following: Find BF ∈ RΓn
(Ω) ∩ rotRΓt

(Ω), such thatvii

∀Φ ∈ RΓn
(Ω) 〈rotBF , rot Φ〉

L2
µ(Ω)

= 〈F,Φ〉
L2(Ω)

.(5.12)

Then, by definition and the results of [1], we get µ rotBF ∈ RΓt
(Ω) with rotµ rotBF = F . Hence, by

setting

E := µ rotBF ∈ RΓt
(Ω) ∩ µ rotRΓn

(Ω) = RΓt
(Ω) ∩ µDΓn,0(Ω) ∩Ht,n,ε(Ω)

⊥
L2ε(Ω)

we see that the pair (B,E) solves the linear first order system (in classical strong formulation) of electro-
magneto statics type with mixed boundary conditions

µ rotB = µ rotBF = E, rotE = F in Ω, n×B = 0, n · εE = 0 at Γn,

divB = g, div εE = 0 in Ω, n ·B = 0, n× E = 0 at Γt,(5.13)

πH̃B = H, πHE = 0 in Ω.

viiNote that (5.12) holds for all Φ ∈ RΓn
(Ω) ∩ rotRΓt

(Ω) if and only if it holds for all Φ ∈ RΓn
(Ω) since F ∈ rotRΓt

(Ω).
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Let us define operators T1, T2, T3 using A1, A2, A3 together with the respective adjoints and reduced
operators by the complexes

{0} 0−−−−→ H1
Γt

(Ω)
T∗3 :=A1=gradΓt−−−−−−−−−−→ RΓt

(Ω)
T∗2 :=A2=rotΓt−−−−−−−−−→ DΓt

(Ω)
T∗1 :=A3=divΓt−−−−−−−−−→ L2(Ω)

0−−−−→ {0},

{0} 0←−−−− L2(Ω)
T3:=A*

1=− divΓn ε←−−−−−−−−−−−− µDΓn
(Ω)

T2:=A*
2=µ rotΓn←−−−−−−−−−− RΓn

(Ω)
T1:=A*

3=− gradΓn←−−−−−−−−−−−− H1
Γn

(Ω)
0←−−−− {0}.

As before, all basic Hilbert spaces are L2(Ω) except of H3 = L2
ε(Ω), corresponding to the domain of

definition of T3. Then (5.11) turns to

T∗2 T2B = rotΓt µ rotΓn B = F,

T∗1 B = divΓt B = g,

π2B = πH̃B = H

and this system is uniquely solvable by Theorem 3.6 as F ∈ R(T∗2), g ∈ R(T∗1), and H ∈ K2 with solution
B depending continuously on the data. (5.13) reads

T2B = µ rotΓn B = E, T3E = −divΓn εE = 0,

T∗1 B = divΓt B = g, T∗2 E = rotΓt E = F,

π2B = πH̃B = H, π3E = πHE = 0.

Again, we can apply the main functional a posteriori error estimates from Theorem 4.7.

Theorem 5.6. Let B ∈ RΓn
(Ω) ∩ DΓt

(Ω) be the exact solution of (5.11), E := µ rotB ∈ RΓt
(Ω), and

(B̃, Ẽ) ∈ L2(Ω)× L2
ε(Ω). Then the following estimates hold for the errors eB := B− B̃ and eE := E− Ẽ:

(i) The errors eB and eE decompose, i.e.,

eB = eB,grad + eB,H̃ + eB,rot ∈ gradH1
Γn

(Ω)⊕
L2(Ω)

Hn,t(Ω)⊕
L2(Ω)

rotRΓt
(Ω),

eE = eE,grad + e
E,H + eE,rot ∈ gradH1

Γt
(Ω)⊕

L2
ε(Ω)
Ht,n,ε(Ω)⊕

L2
ε(Ω)

µ rotRΓn
(Ω)

and

|eB |2L2(Ω)
= |eB,grad|2L2(Ω)

+ |eB,H̃|
2

L2(Ω)
+ |eB,rot|2L2(Ω)

,

|eE |2L2
ε(Ω)

= |eE,grad|2L2
ε(Ω)

+ |e
E,H |

2

L2
ε(Ω)

+ |eE,rot|2L2
ε(Ω)

.

(ii) The projection eB,grad = πgradeB = Bg − πgradB̃ ∈ gradH1
Γn

(Ω) satisfies

|eB,grad|2L2(Ω)
= min

Φ∈DΓt
(Ω)

(
c̃fp|div Φ− g|

L2(Ω)
+ |Φ− B̃|

L2(Ω)

)2
= max
ϕ∈H1

Γn
(Ω)

(
2〈g, ϕ〉

L2(Ω)
+ 〈2B̃ − gradϕ, gradϕ〉

L2(Ω)

)
and the minimum resp. maximum is attained at

Φ̂ := eB,grad + B̃ ∈ DΓt
(Ω), ϕ̂ := −(g̃radΓn

)−1eB,grad ∈ H1
Γn

(Ω)

with div Φ̂ = divB = g.

(iii) The projection eB,rot = πroteB = BE − πrotB̃ ∈ rotRΓt
(Ω) satisfies

|eB,rot|2L2(Ω)
= min

Ψ∈RΓn
(Ω)

min
Φ∈RΓt

(Ω)

(
c2m| rot Φ− F |

L2(Ω)
+ cm|Φ− µ rot Ψ|

L2
ε(Ω)

+ |Ψ− B̃|
L2(Ω)

)2
= min

Ψ∈RΓn
(Ω),

µ rot Ψ∈RΓt
(Ω)

(
c2m| rotµ rot Ψ− F |

L2(Ω)
+ |Ψ− B̃|

L2(Ω)

)2
= max

Θ∈RΓn
(Ω),

µ rot Θ∈RΓt
(Ω)

(
2〈F,Θ〉

L2(Ω)
− 〈2Ẽ + rotµ rot Θ, rotµ rot Θ〉

L2(Ω)

)
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and the minima resp. maximum is attained at

Ψ̂ := eB,rot + B̃ ∈ RΓn
(Ω), Φ̂ := E ∈ RΓt

(Ω),

and Θ̂ := (µ r̃otΓn)
−1(r̃otΓt)

−1eB,rot ∈ RΓn
(Ω) ∩ rotRΓt

(Ω) with µ rot Ψ̂, µ rot Θ̂,∈ RΓt
(Ω) and

µ rot Ψ̂ = µ rotB = E and rotµ rot Ψ̂ = rotE = F as well as rot Φ̂ = rotE = F .
(iv) The projection eB,H̃ = πH̃eB = H − πH̃B̃ ∈ Hn,t(Ω) satisfies

|eB,H̃|
2

L2(Ω)
= min
ϕ∈H1

Γn
(Ω)

min
Φ∈RΓt

(Ω)

|H − B̃ − gradϕ+ rot Φ|2
L2(Ω)

= max
Ψ∈Hn,t(Ω)

〈
2(H − B̃)−Ψ,Ψ

〉
L2(Ω)

and the minimum resp. maximum is attained at

ϕ̂ := −(g̃radΓn
)−1πgradB̃ ∈ H1

Γn
(Ω), Φ̂ := (r̃otΓt)

−1πrotB̃ ∈ RΓt
(Ω) ∩ µ rotRΓn

(Ω)

resp. Ψ̂ := eB,H̃ ∈ Hn,t(Ω) with − grad ϕ̂+ rot φ̂ = (πgrad + πrot)B̃ = (1− πH̃)B̃.

(v) The projection eE,grad = πgradeE = −πgradẼ ∈ gradH1
Γt

(Ω) satisfies

|eE,grad|2L2
ε(Ω)

= min
Φ∈µDΓn

(Ω)

(
cfp|div εΦ|

L2(Ω)
+ |Φ− Ẽ|

L2
ε(Ω)

)2
= min

Φ∈µDΓn,0
(Ω)

|Φ− Ẽ|2
L2
ε(Ω)

= max
ϕ∈H1

Γt
(Ω)

(
− 〈2Ẽ + gradϕ, gradϕ〉

L2
ε(Ω)

)
and the minimum resp. maximum is attained at

Φ̂ := eE,grad + Ẽ ∈ µDΓn,0(Ω), ϕ̂ := (g̃radΓt
)−1eE,grad ∈ H1

Γt
(Ω)

with −div ε Φ̂ = −div εE = 0.
(vi) The projection eE,rot = πroteE = E − πrotẼ ∈ µ rotRΓn

(Ω) satisfies

|eE,rot|2L2
ε(Ω)

= min
Φ∈RΓt

(Ω)

(
cm| rot Φ− F |

L2(Ω)
+ |Φ− Ẽ|

L2
ε(Ω)

)2
= max

Ψ∈RΓn
(Ω)

(
2〈F,Ψ〉

L2(Ω)
− 〈2Ẽ + µ rot Ψ, µ rot Ψ〉

L2
ε(Ω)

)
and the minimum resp. maximum is attained at

Φ̂ := eE,rot + Ẽ ∈ RΓt
(Ω), Ψ̂ := (µ r̃otΓn)

−1eE,rot ∈ RΓn
(Ω) ∩ rotRΓt

(Ω)

with rot Φ̂ = rotE = F .
(vii) The projection e

E,H = πHeE = −πHẼ ∈ Ht,n,ε(Ω) satisfies

|e
E,H |

2

L2
ε(Ω)

= min
ϕ∈H1

Γt
(Ω)

min
Φ∈RΓn

(Ω)

| − Ẽ + gradϕ+ µ rot Φ|2
L2
ε(Ω)

= max
Ψ∈Ht,n,ε(Ω)

(
−
〈
2Ẽ + Ψ,Ψ

〉
L2
ε(Ω)

)
and the minimum resp. maximum is attained at

ϕ̂ := (g̃radΓt
)−1πgradẼ ∈ H1

Γt
(Ω), Φ̂ := (µ r̃otΓn)

−1πrotẼ ∈ RΓn
(Ω) ∩ rotRΓt

(Ω)

resp. Ψ̂ := e
E,H ∈ Ht,n,ε(Ω) with grad ϕ̂+ µ rot φ̂ = (πgrad + πrot)Ẽ = (1− πH)Ẽ.

If B̃ = H + B̃⊥ with some B̃⊥ ∈ Hn,t(Ω)
⊥

L2(Ω) , then eB,H̃ = 0, and in (ii) and (iii) B̃ can be replaced by

B̃⊥. If Ẽ = Ẽ⊥ with some Ẽ⊥ ∈ Ht,n,ε(Ω)
⊥

L2ε(Ω) , then e
E,H = 0, and in (v) and (vi) Ẽ can be replaced

by Ẽ⊥.
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A reasonable assumption is, that we have conforming approximations

B̃g ∈ gradH1
Γn

(Ω) = RΓn,0(Ω) ∩Hn,t(Ω)⊥, B̃F ∈ RΓn
(Ω)

of Bg ∈ DΓt
(Ω) ∩ gradH1

Γn
(Ω) and BF ∈ RΓn

(Ω) ∩ rotRΓt
(Ω) and hence a conforming approximation

Ẽ := µ rot B̃F ∈ µ rotRΓn
(Ω)

of E ∈ RΓt
(Ω) ∩ µ rotRΓn

(Ω), which implies eE = eE,rot ∈ µ rotRΓn
(Ω) and eE,grad = e

E,H = 0 as well as

B̃ −H = B̃F + B̃g ∈ RΓn
(Ω) and eB ∈ RΓn

(Ω). In this case the estimates of the latter theorem simplify.

More precisely, e.g., (iii) turns to the following result: If B̃F , B̃g ∈ RΓn
(Ω), then B̃, eB ∈ RΓn

(Ω) and we

can choose, e.g., Ψ := B̃ yielding, e.g.,

|eB,rot|L2(Ω)
≤ min

Φ∈RΓt
(Ω)

(
c2m| rot Φ− F |

L2(Ω)
+ cm|Φ− µ rot B̃|

L2
ε(Ω)

)
,

which might not be sharp anymore. Similarly, the results of (vi) read as follows: If B̃F ∈ RΓn
(Ω), then

Ẽ := µ rot B̃F ∈ µ rotRΓn
(Ω) and µ rot(B − B̃F ) = eE = eE,rot ∈ µ rotRΓn

(Ω) as well as

|eE |2L2
ε(Ω)

= min
Φ∈RΓt

(Ω)

(
cm| rot Φ− F |

L2(Ω)
+ |Φ− µ rot B̃F |L2

ε(Ω)

)2
= max

Ψ∈RΓn
(Ω)

(
2〈F,Ψ〉

L2(Ω)
− 〈µ rot(2B̃F + Ψ), µ rot Ψ〉

L2
ε(Ω)

)(5.14)

and the minimum resp. maximum is attained at

Φ̂ := eE + µ rot B̃F ∈ RΓt
(Ω), Ψ̂ := (µ r̃otΓn)

−1eE ∈ RΓn
(Ω) ∩ rotRΓt

(Ω)

with rot Φ̂ = rotE = F . Note that (5.14) are in principle the functional a posteriori error estimates for
the energy norm associated to the rot rot-operator, which have been proved in [7].

5.3. More Applications. There are a lot more applications. If we denote the exterior derivative and the
co-derivative associated with some compact Riemannian manifold by d and δ, we can discuss problems
like

dE = F, δ dE = F, δ dE = F,

δ εE = G, δ εE = G, d δ εE = G,

πE = H, πE = H, πE = H

for mixed tangential and normal boundary conditions for some differential form E. Moreover, problems
in linear elasticity, Stokes equations, biharmonic theory, rot rot rot rot-operators, . . . fit into our general
framework. Note that all these problems feature the underlying complexes (1.3)-(1.4), such as

H1
Γt

(Ω)
A1=gradΓt−−−−−−−→ RΓt

(Ω)
A2=rotΓt−−−−−−→ DΓt

(Ω)
A3=divΓt−−−−−−→ L2(Ω),

L2(Ω)
A*

1=− divΓn←−−−−−−−− DΓn
(Ω)

A*
2=rotΓn←−−−−−− RΓn

(Ω)
A*

3=− gradΓn←−−−−−−−− H1
Γn

(Ω)

for electro-magnetics,

D0
Γt

(Ω)
A1=dΓt−−−−−→ D1

Γt
(Ω)

A2=dΓt−−−−−→ D2
Γt

(Ω)
A3=dΓt−−−−−→ L2,3(Ω),

L2,0(Ω)
A*

1=δΓn←−−−−− ∆1
Γn

(Ω)
A*

2=δΓn←−−−−− ∆2
Γn

(Ω)
A*

3=δΓn←−−−−− ∆3
Γn

(Ω)

for generalized electro-magnetics (differential forms),

H2
Γt

(Ω)
A1=Grad gradΓt−−−−−−−−−−→ RΓt

(Ω; S)
A2=RotS,Γt−−−−−−−→ DΓt

(Ω;T)
A3=DivT,Γt−−−−−−−→ L2(Ω),

L2(Ω)
A*

1=div DivS,Γn←−−−−−−−−−− DDΓn
(Ω;S)

A*
2=sym RotT,Γn←−−−−−−−−−− Rsym,Γn

(Ω;T)
A*

3=− dev GradΓn←−−−−−−−−−−− H1
Γn

(Ω)
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for biharmonic and Stokes problems, and

H1
Γt

(Ω)
A1=sym GradΓt−−−−−−−−−−→ RR>Γt

(Ω; S)
A2=RotRot>S,Γt−−−−−−−−−−→ DΓt

(Ω;S)
A3=DivS,Γt−−−−−−−→ L2(Ω),

L2(Ω)
A*

1=−DivS,Γn←−−−−−−−−− DΓn
(Ω;S)

A*
2=RotRot>S,Γn←−−−−−−−−−− RR>Γn

(Ω;S)
A*

3=− sym GradΓn←−−−−−−−−−−−− H1
Γn

(Ω)

for linear elasticity.
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