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Abstract

This paper is concerned with the derivation of conforming and non-conforming
functional a posteriori error estimates for elliptic boundary value problems in exte-
rior domains. These estimates provide computable and guaranteed upper and lower
bounds for the difference between the exact and the approximate solution of the
respective problem. We extend the results from [5] to non-conforming approxima-
tions, which might not belong to the energy space and are just considered to be
square integrable. Moreover, we present some numerical tests.
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1 Introduction

As in [5], we consider the standard elliptic Dirichlet boundary value problem

− divA∇u = f in Ω, (1.1)

u = u0 on Γ, (1.2)

where Ω ⊂ RN withN ≥ 3 is an exterior domain, i.e., a domain with compact complement,
having for simplicity a Lipschitz continuous boundary Γ := ∂Ω. Moreover, A : Ω→ RN×N

is a real and symmetric L∞(Ω)-matrix valued function such that

∃α > 0 ∀ ξ ∈ RN ∀x ∈ Ω A(x)ξ · ξ ≥ α−2|ξ|2

holds. As usual, when working with exterior domain problems, we use the polynomially
weighted Lebesgue spaces

L2
s(Ω) := {u : ρsu ∈ L2(Ω)}, ρ := (1 + r2)1/2 ∼= r, s ∈ R,

where r(x) := |x| is the absolute value. Throughout the paper at hand we just need the
values s ∈ {−1, 0, 1} of weights. If s = 0, then we write L2(Ω) := L2

0(Ω). Moreover, we
introduce the polynomially weighted Sobolev spaces

H1
−1(Ω) := {u : u ∈ L2

−1(Ω), ∇u ∈ L2(Ω)},
D(Ω) := {v : v ∈ L2(Ω), div v ∈ L2

1(Ω)},

which we equip as L2
s(Ω) with the respective scalar products. We will not distinguish in

our notation between scalar and vector valued spaces. Moreover, to model homogeneous
boundary traces we define as closure of test functions

◦
H1
−1(Ω) :=

◦
C∞(Ω)

H1
−1(Ω)

.

Note that all these spaces are Hilbert spaces and we have for the norms

|u|2L2
s(Ω) = |ρsu|2L2(Ω) =

∫
Ω

(1 + r2)s|u|2 dλ,

|u|2
H1
−1(Ω)

=
∣∣ρ−1u

∣∣2
L2(Ω)

+ |∇u|2L2(Ω) ,

|v|2
D(Ω)

= |v|2L2(Ω) + |ρ div v|2L2(Ω) .

Also, let us introduce for vector fields v ∈ L2(Ω) the weighted norm

|v|L2(Ω),A := 〈v, v〉1/2
L2(Ω),A

:= 〈Av, v〉1/2
L2(Ω)

=
∣∣A1/2v

∣∣
L2(Ω)

. (1.3)

Let

cN :=
2

N − 2
, cN,α := αcN .
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From [2, p. 57] we cite the Poincaré estimate III (see also the appendix of [5])

∀u ∈
◦
H1
−1(Ω) |u|L2

−1(Ω) ≤ cN |∇u|L2(Ω) ≤ cN,α |∇u|L2(Ω),A , (1.4)

which is the proper coercivity estimate for the problem at hand. Using this estimate it is

not difficult to get by standard Lax-Milgram theory unique solutions û ∈
◦
H1
−1(Ω) + {u0}

of (1.1)-(1.2) depending continuously on the data for any f ∈ L2
1(Ω) and u0 ∈ H1

−1(Ω).
Note that the solution û satisfies the variational formulation

∀u ∈
◦
H1
−1(Ω) 〈∇û,∇u〉L2(Ω),A = 〈A∇û,∇u〉L2(Ω) = 〈f, u〉L2(Ω) , (1.5)

where we use the L2(Ω)-inner product notation also for the L2
−1(Ω)-L2

1(Ω)-duality. Note
that

〈f, u〉L2(Ω) =

∫
Ω

fu dλ

is well defined since the product fu belongs to L1(Ω). Moreover, we note that

A∇û ∈ D(Ω), − divA∇û = f.

Let ũ be an approximation of û. The aim of this contribution is twofold. First, we ex-
tend the results from [5] to non-conforming approximations ũ which no longer necessarily

belong to the natural energy space H1
−1(Ω) and hence lack regularity. We will just assume

that we have been given an approximation ṽ ∈ L2(Ω) of A∇û without any regularity
except of L2(Ω). Second, we validate the conforming a posteriori error estimates for the
problem (1.1)-(1.2) by numerical computations in the exterior domain Ω and therefore
demonstrate that this technique also works in unbounded domains. Such a posteriori er-
ror estimates have been extensively derived and discussed earlier for problems in bounded
domains, see e.g. [4, 7, 8] and the literature cited there. The underlying general idea is
to construct estimates via Lagrangians. In linear problems this can be done by splitting
the residual functional into two natural parts using simply integration by parts relations,
which then immediately yield guaranteed and computable lower and upper bounds. In
fact, one adds a zero to the weak form.

2 Conforming A Posteriori Estimates

For the convenience of the reader, we repeat also in the conforming case the main argu-
ments from [5] to obtain the desired a posteriori estimates. We want to deduce estimates
for the error

e := û− ũ

in the natural energy norm |∇e|L2(Ω),A. In this section we only consider conforming ap-

proximations, i.e., ũ ∈
◦
H1
−1(Ω) + {u0} and therefore e ∈

◦
H1
−1(Ω).
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Introducing an arbitrary vector field v ∈ D(Ω) and inserting a zero into (1.5), we have

for all u ∈
◦
H1
−1(Ω)

〈∇(û− ũ),∇u〉L2(Ω),A = 〈f, u〉L2(Ω) − 〈A∇ũ− v + v,∇u〉L2(Ω)

= 〈f + div v, u〉L2(Ω) −
〈
∇ũ− A−1v,∇u

〉
L2(Ω),A

(2.1)

since u satisfies the homogeneous boundary condition. Therefore, by (1.4)

〈∇e,∇u〉L2(Ω),A ≤ |f + div v|L2
1(Ω) |u|L2

−1(Ω) +
∣∣∇ũ− A−1v

∣∣
L2(Ω),A

|∇u|L2(Ω),A

≤
(
cN,α |f + div v|L2

1(Ω) +
∣∣∇ũ− A−1v

∣∣
L2(Ω),A︸ ︷︷ ︸

=: M+(∇ũ, v; f, A) =: M+(∇ũ, v)

)
|∇u|L2(Ω),A . (2.2)

Taking u := e ∈
◦
H1
−1(Ω) we obtain the upper bound

|∇e|L2(Ω),A ≤ inf
v∈D(Ω)

M+(∇ũ, v). (2.3)

We note that for v := A∇û we have M+(∇ũ, v) = |∇e|L2(Ω),A. Therefore, in (2.3) we even
have equality.

The lower bound can be obtained as follows. Let u ∈
◦
H1
−1(Ω). Then, by the trivial

inequality |∇(û− ũ)−∇u|2L2(Ω),A ≥ 0 and (1.5) we obtain

|∇(û− ũ)|2L2(Ω),A ≥ 2 〈∇(û− ũ),∇u〉L2(Ω),A − |∇u|
2
L2(Ω),A

= 2 〈f, u〉L2(Ω) − 〈∇(2ũ+ u),∇u〉L2(Ω),A︸ ︷︷ ︸
=: M−(∇ũ, u; f, A) =: M−(∇ũ, u)

and hence we get the lower bound

|∇e|2L2(Ω),A ≥ sup

u∈
◦
H1
−1(Ω)

M−(∇ũ, u). (2.4)

Again, we note that for u := û− ũ = e we have M−(∇ũ, u) = |∇e|2L2(Ω),A. Therefore, also
in (2.4) equality holds. Let us summarize:

Theorem 1 (conforming a posteriori estimates) Let ũ ∈
◦
H1
−1(Ω) + {u0}. Then

max
u∈
◦
H1
−1(Ω)

M−(∇ũ, u) = |∇(û− ũ)|2L2(Ω),A = min
v∈D(Ω)

M2
+(∇ũ, v),

where the upper and lower bounds are given by

M+(∇ũ, v) = cN,α |f + div v|L2
1(Ω) +

∣∣∇ũ− A−1v
∣∣
L2(Ω),A

,

M−(∇ũ, u) = 2 〈f, u〉L2(Ω) − 〈∇(2ũ+ u),∇u〉L2(Ω),A .
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The functional error estimators M+ and M− are referred as the majorant and the mi-
norant, respectively. They possess the usual features, e.g., they contain just one constant
cN,α, which is well known, and they are sharp. Hence the variational problems for M±
provide themselves new and equivalent variational formulations for the system (1.1)-(1.2).
Moreover, since the functions u and vector fields v are at our disposal, one can generate
different numerical schemes to estimate the energy norm of the error |∇e|L2(Ω),A. For
details see, e.g., [3, 4, 8] and references therein.

Remark 2 It is often desirable to have the majorant in the quadratic form

M2
+(∇ũ, v) ≤ inf

β>0

(
c2
N,α(1 + 1/β) |f + div v|2L2

1(Ω) + (1 + β)
∣∣∇ũ− A−1v

∣∣2
L2(Ω),A

)
.

This form is well suited for computations, since the minimization with respect to the vector
fields v ∈ D(Ω) over some finite dimensional subspace (e.g., generated by finite elements)
reduces to solving a system of linear equations.

Remark 3 If v ≈ A∇û, then the first term of the majorant is close to zero and the
second term can be used as an error indicator to study the distribution of the error over
the domain, i.e.,

(∇ũ− A−1v) · (A∇ũ− v) ≈ ∇(ũ− û) · A∇(ũ− û) in Ω.

The question how to measure the actual performance of the error indicator (‘the accuracy
of the symbol ≈’) is addressed extensively in the forthcoming book [3].

3 Non-Conforming A Posteriori Estimates

To achieve estimates for non-conforming approximations ũ /∈
◦
H1
−1(Ω) + {u0}, we utilize

the simple Helmholtz decomposition

L2(Ω) = ∇
◦
H1
−1(Ω)⊕A A−1D0(Ω), (3.1)

where D0(Ω) := {v ∈ D(Ω) : div v = 0} and ⊕A denotes the orthogonal sum with
respect to the weighted A-L2(Ω)-scalar product, see (1.3). The decomposition (3.1) follows
immediately from the projection theorem in Hilbert spaces

L2(Ω) = ∇
◦
H1(Ω)⊕A A−1D0(Ω)

and the fact that ∇
◦
H1
−1(Ω) = ∇

◦
H1(Ω) is closed in L2(Ω) by (1.4). Note that the negative

divergence
− div : D(Ω) ⊂ L2(Ω)→ L2(Ω)

is the adjoint of the gradient

◦
∇ :

◦
H1(Ω) ⊂ L2(Ω)→ L2(Ω),
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i.e.,
◦
∇∗ = − div, and thus L2(Ω) = R(

◦
∇) ⊕ N(

◦
∇∗). Here, we have used the unweighted

standard Sobolev spaces
◦
H1(Ω) and D(Ω) and the notation R and N for the range and

the null space or kernel of a linear operator, respectively.
Let us now assume that we have an approximation ṽ ∈ L2(Ω) of A∇û. According to

(3.1) we decompose the ‘gradient-error’ orthogonally

L2(Ω) 3 E := ∇û− A−1ṽ = ∇ϕ+ A−1ψ, ϕ ∈
◦
H1
−1(Ω), ψ ∈ D0(Ω) (3.2)

and note that it decomposes by Pythagoras’ theorem into

|E|2L2(Ω),A = |∇ϕ|2L2(Ω),A +
∣∣A−1ψ

∣∣2
L2(Ω),A

, (3.3)

which allows us to estimate the two error terms separately.

For u ∈
◦
H1
−1(Ω) we have by orthogonality

〈∇ϕ,∇u〉L2(Ω),A = 〈E,∇u〉L2(Ω),A = 〈f, u〉L2(Ω) − 〈ṽ,∇u〉L2(Ω) .

Now we can proceed exactly as in (2.1) and (2.2) replacing A∇ũ by ṽ. More precisely, for

all v ∈ D(Ω)

〈∇ϕ,∇u〉L2(Ω),A = 〈f, u〉L2(Ω) − 〈ṽ − v + v,∇u〉L2(Ω)

= 〈f + div v, u〉L2(Ω) − 〈ṽ − v,∇u〉L2(Ω)

and hence

〈∇ϕ,∇u〉L2(Ω),A ≤ |f + div v|L2
1(Ω) |u|L2

−1(Ω) +
∣∣A−1(ṽ − v)

∣∣
L2(Ω),A

|∇u|L2(Ω),A

≤
(
cN,α |f + div v|L2

1(Ω) +
∣∣A−1(ṽ − v)

∣∣
L2(Ω),A︸ ︷︷ ︸

= M+(A−1ṽ, v; f, A) = M+(A−1ṽ, v)

)
|∇u|L2(Ω),A .

Setting u := ϕ yields

|∇ϕ|L2(Ω),A ≤ inf
v∈D(Ω)

M+(A−1ṽ, v). (3.4)

This estimate is no longer sharp contrary to the conforming case. We just have the
equality M+(A−1ṽ, v) = |E|L2(Ω),A for v = A∇û.

For v ∈ D0(Ω) and u ∈
◦
H1
−1(Ω) + {u0}, we have by orthogonality and since û − u

belongs to
◦
H1
−1(Ω)〈

A−1ψ,A−1v
〉
L2(Ω),A

=
〈
E,A−1v

〉
L2(Ω),A

= 〈∇(û− u), v〉L2(Ω)︸ ︷︷ ︸
= 0

+
〈
∇u− A−1ṽ, A−1v

〉
L2(Ω),A

≤
∣∣∇u− A−1ṽ

∣∣
L2(Ω),A︸ ︷︷ ︸

=: M̃+(A−1ṽ,∇u;A) =: M̃+(A−1ṽ,∇u)

∣∣A−1v
∣∣
L2(Ω),A

.
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Setting v := ψ yields ∣∣A−1ψ
∣∣
L2(Ω),A

≤ inf
u∈
◦
H1
−1(Ω)+{u0}

M̃+(A−1ṽ,∇u). (3.5)

Again, this estimate is no longer sharp. We just have M̃+(A−1ṽ,∇u) = |E|L2(Ω),A for
u = û.

For the lower bounds we pick an arbitrary u ∈
◦
H1
−1(Ω) and compute

|∇ϕ|2L2(Ω),A ≥ 2 〈∇ϕ,∇u〉L2(Ω),A︸ ︷︷ ︸
= 〈E,∇u〉L2(Ω),A

− |∇u|2L2(Ω),A

= 2 〈∇û,∇u〉L2(Ω),A − 2
〈
A−1ṽ,∇u

〉
L2(Ω),A

− |∇u|2L2(Ω),A

= 2 〈f, u〉L2(Ω) −
〈
∇u+ 2A−1ṽ,∇u

〉
L2(Ω),A

= M−(A−1ṽ, u; f, A) = M−(A−1ṽ, u).

Substituting u = ϕ shows that this lower bound is sharp since M−(A−1ṽ, u) = |∇ϕ|2L2(Ω),A.

Now we choose v ∈ D0(Ω) and u ∈
◦
H1
−1(Ω) + {u0} getting∣∣A−1ψ

∣∣2
L2(Ω),A

≥ 2
〈
A−1ψ,A−1v

〉
L2(Ω),A︸ ︷︷ ︸

=
〈
E,A−1v

〉
L2(Ω),A

−
∣∣A−1v

∣∣2
L2(Ω),A

= 2
〈
∇(û− u), A−1v

〉
L2(Ω),A︸ ︷︷ ︸

= 0

+2
〈
∇u− A−1ṽ, A−1v

〉
L2(Ω),A

−
∣∣A−1v

∣∣2
L2(Ω),A

=
〈
2∇u− A−1(2ṽ + v), A−1v

〉
L2(Ω),A

=: M̃−(A−1ṽ, A−1v,∇u;A) =: M̃−(A−1ṽ, A−1v,∇u),

since û − u ∈
◦
H1
−1(Ω). Also, this second lower bound is still sharp since we have

M̃−(A−1ṽ, A−1v,∇u) = |A−1ψ|2L2(Ω),A for v = ψ and any u ∈
◦
H1
−1(Ω) + {u0}.

Theorem 4 (non-conforming a posteriori estimates) Let ṽ ∈ L2(Ω). Then∣∣∇û− A−1ṽ
∣∣2
L2(Ω),A

≤M+(ṽ) := inf
v∈D(Ω)

M2
+(A−1ṽ, v) + inf

u∈
◦
H1
−1(Ω)+{u0}

M̃2
+(A−1ṽ,∇u),

∣∣∇û− A−1ṽ
∣∣2
L2(Ω),A

≥M−(ṽ) := sup

u∈
◦
H1
−1(Ω)

M−(A−1ṽ, u) + sup

u∈
◦
H1
−1(Ω)+{u0}

sup
v∈D0(Ω)

M̃−(A−1ṽ, A−1v,∇u),
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where

M+(A−1ṽ, v) = cN,α |f + div v|L2
1(Ω) +

∣∣A−1(ṽ − v)
∣∣
L2(Ω),A

,

M̃+(A−1ṽ,∇u) =
∣∣∇u− A−1ṽ

∣∣
L2(Ω),A

,

M−(A−1ṽ, u) = 2 〈f, u〉L2(Ω) −
〈
∇u+ 2A−1ṽ,∇u

〉
L2(Ω),A

,

M̃−(A−1ṽ, A−1v,∇u) =
〈
2∇u− A−1(2ṽ + v), A−1v

〉
L2(Ω),A

.

Moreover, as in Remark 2

M2
+(A−1ṽ, v) ≤ inf

β>0

(
c2
N,α(1 + 1/β) |f + div v|2L2

1(Ω) + (1 + β)
∣∣A−1(ṽ − v)

∣∣2
L2(Ω),A

)
.

Remark 5 The lower bound is still sharp also in this non-conforming estimate. As
shown before, taking u = ϕ yields M−(A−1ṽ, u) = |∇ϕ|2L2(Ω),A and for v = ψ and arbitrary

u ∈
◦
H1
−1(Ω) + {u0} we have M̃−(A−1ṽ, A−1v,∇u) = |A−1ψ|2L2(Ω),A. Thus, we even have∣∣∇û− A−1ṽ

∣∣2
L2(Ω),A

≥M−(ṽ) ≥ |∇ϕ|2L2(Ω),A +
∣∣A−1ψ

∣∣2
L2(Ω),A

=
∣∣∇û− A−1ṽ

∣∣2
L2(Ω),A

,

i.e., M−(ṽ) = |∇û− A−1ṽ|2L2(Ω),A. The upper bound might no longer be sharp. Taking
e.g. u := û and v = A∇û we get

M+(A−1ṽ, v) = M̃+(A−1ṽ,∇u) =
∣∣∇û− A−1ṽ

∣∣
L2(Ω),A

and thus M+(ṽ) ≤ 2 |∇û− A−1ṽ|2L2(Ω),A. So, an overestimation by 2 is possible.

Remark 6 For conforming approximations ṽ = A∇ũ, i.e., A−1ṽ = ∇ũ, with some

ũ ∈
◦
H1
−1(Ω) + {u0}, we obtain the estimates from Theorem 1 since

inf
u∈
◦
H1
−1(Ω)+{u0}

M̃+(A−1ṽ,∇u) = inf
u∈
◦
H1
−1(Ω)+{u0}

|∇(u− ũ)|L2(Ω),A = 0

and

sup

u∈
◦
H1
−1(Ω)+{u0}

sup
v∈D0(Ω)

M̃−(A−1ṽ, A−1v,∇u)︸ ︷︷ ︸
=
〈
2∇(u− ũ)− A−1v,A−1v

〉
L2(Ω),A

= sup
v∈D0(Ω)

−
∣∣A−1v

∣∣2
L2(Ω),A

= 0

because 〈∇(u− ũ), A−1v〉L2(Ω),A = 〈∇(u− ũ), v〉L2(Ω) = 0 by u− ũ ∈
◦
H1
−1(Ω).

Remark 7 The terms M̃± measure the boundary error. To see this, let us introduce

the scalar trace operator γ : H1
−1(Ω) → H1/2(Γ) and a corresponding extension operator

γ̌ : H1/2(Γ) → H1(Ω). These are both linear and continuous (let’s say with constants cγ
and cγ̌) and γ is surjective. Moreover, γ̌ is a right inverse to γ. For an approximation
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ṽ = A∇ũ with ũ ∈ H1
−1(Ω) we define ǔ := ũ + γ̌γ(u0 − ũ). Then γǔ = γu0 and hence

ǔ− u0 ∈
◦
H1
−1(Ω). We obtain

inf
u∈
◦
H1
−1(Ω)+{u0}

M̃+(A−1ṽ,∇u)︸ ︷︷ ︸
= |∇(u− ũ)|L2(Ω),A

≤ |∇(ǔ− ũ)|L2(Ω),A = |∇γ̌γ(u0 − ũ)|L2(Ω),A ≤ cγ̌ |γ(u0 − ũ)|H1/2(Γ)

and since v ∈ D0(Ω) by partial integration using the normal trace γνv ∈ H−1/2(Γ)

sup

u∈
◦
H1
−1(Ω)+{u0}

sup
v∈D0(Ω)

M̃−(A−1ṽ, A−1v,∇u)︸ ︷︷ ︸
= 2 〈∇(u− ũ), v〉L2(Ω) −

∣∣A−1v
∣∣2
L2(Ω),A

≥ sup
v∈D0(Ω)

(
2 〈∇(ǔ− ũ), v〉L2(Ω) −

∣∣A−1v
∣∣2
L2(Ω),A

)
= sup

v∈D0(Ω)

(
2 〈γ(u0 − ũ), γνv〉H1/2(Γ),H−1/2(Γ)

−
∣∣A−1v

∣∣2
L2(Ω),A

)
.

Remark 8 The results of this contribution extend easily and in a canonical way to exte-
rior elliptic boundary value problems with pure Neumann or mixed boundary conditions,
such as

− divA∇u = f in Ω,

u = u0 on Γ1,

ν · A∇u = v0 on Γ2,

where the boundary Γ decomposes into two parts Γ1 and Γ2.

4 Numerical Tests

Let BR := {x ∈ RN : |x| < R} denote the open ball, ER := {x ∈ RN : |x| > R} the
exterior domain and SR := {x ∈ RN : |x| = R} the sphere of radius R centered at the
origin, respectively, as well as ΩR := Ω ∩ BR. Moreover, let N = 3, thus cN = 2. In our
examples we set A = id, f = 0 and u0 = 1. Hence we have α = 1 and cN,α = 2.

Therefore, we will consider the exterior Dirichlet Laplace problem, i.e., find û ∈ H1
−1(Ω)

such that

∆û = 0 in Ω, (4.1)

û = 1 on Γ. (4.2)

It is classical that any solution u ∈ L2
−1(Ω) (Even u ∈ L2

s(Ω) with some s ≥ −3/2 is
sufficient.) of ∆u = 0 in ER can be represented as as a spherical harmonics expansion
with only negative powers, more precisely as a series of spherical harmonics Yn,m of order
n multiplied by proper powers of the radius r−(n+1), i.e., for r > R

uΦ(r, θ, ϕ) =
∑
n≥0

−n≤m≤n

ζn,mr
−n−1Yn,m(θ, ϕ), ζn,m ∈ R, (4.3)
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RN

ER

SRΓ

ΩR

R

RN \ Ω

Figure 1: Domains.

where uΦ := u ◦ Φ and Φ denotes the usual polar coordinates, see e.g. [1, 9].

Remark 9 For Ω = E1 the unique solution of (4.1)-(4.2) is û = 1/r, which is the first
term in the expansion (4.3) corresponding to n = 0. We note that even û ∈ L2

s(Ω) as well
as |∇û| = 1/r2 ∈ L2

s+1(Ω) hold for every s < −1/2. For any 1 < R < R′ it is also the
unique solution of the exterior Dirichlet Laplace problem

∆û = 0 in ER,

û = 1/R on SR

with û ∈ H1
−1(ER) and of the Dirichlet Laplace problem

∆û = 0 in BR′ ∩ ER,
û = 1/R on SR,

û = 1/R′ on SR′

with û ∈ H1(BR′ ∩ ER).

Of course, the system (4.1)-(4.2) is equivalent to find û ∈ H1
−1(Ω) with û|Γ = 1 and

∀ϕ ∈
◦
H1
−1(Ω) 〈∇û,∇ϕ〉L2(Ω) = 0,

or to minimize the energy

E(u) := |∇u|2L2(Ω)

over the set {u ∈ H1
−1(Ω) : u|Γ = 1}. In order to generate an approximate solution ũ, we

split Ω into an unbounded and a bounded subdomain, namely ER and ΩR, where we pick
R > 0 such that R3 \Ω ⊂ BR. The domains are depicted in Figure 1. Our approximation
method is based on the assumption that if R is ‘large enough’, then the first term of the
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expansion (4.3) dominates in the unbounded subdomain ER and hence we simply assume

from our approximation ũ ∈ H1
−1(Ω) the asymptotic behavior

ũ|ER =
ζ

r
,

where ζ is an unknown real constant. In the bounded subdomain ΩR, the approximation
ũR := ũ|ΩR ∈ H1(ΩR) must satisfy the boundary condition ũR|Γ = 1 and the continuity

condition ũR|SR = ζ/R to ensure ũ ∈ H1
−1(Ω). Then, for approximations of the prescribed

type, the problem is reduced to minimize the energy

E(ũR,ζ , ζ) := E(ũ) = |∇ũ|2L2(Ω) = |∇ũR,ζ |2L2(ΩR) +
4πζ2

R

with respect to ζ ∈ R and ũR,ζ ∈ H1(ΩR) with ũR,ζ |Γ = 1 and ũR,ζ |SR = ζ/R. We
propose an iteration procedure to minimize the quadratic energy or functional E , which
is described in Algorithm 1. It is based on the decomposition

ũR,ζ = ũR,ζ,0 + ũR,1 +
ζ

R
ũR,2,

where ũR,ζ,0 ∈
◦
H1(ΩR) and ũR,1, ũR,2 ∈ H1(ΩR) satisfy certain boundary conditions, i.e.,

ũR,1|Γ = 1, ũR,1|SR = 0, ũR,2|Γ = 0, ũR,2|SR = 1, (4.4)

as well as

∆ũR,2 6= 0. (4.5)

The two functions ũR,1, ũR,2 take only care of the boundary conditions and are fixed during
the iteration procedure. This means that the energy E(ũR,ζ , ζ) is minimized with respect

to ζ ∈ R and ũR,ζ,0 in
◦
H1(ΩR). We note that (4.5) is crucial for the iteration process since

otherwise the update ũk in Algorithm 1 would not depend on the previous ζk.

The conforming estimates from Theorem 1 involving the free variables u ∈
◦
H1
−1(Ω)

and v ∈ D(Ω) are used to estimate the approximation error. For the variable u we simply

choose uR ∈
◦
H1(ΩR) and extend uR by zero to Ω, which defines a proper u. To restrict

all computations to ΩR, the best choice for v in ER is v|ER := ∇ũ|ER = −ζr−2er with

the unit radial vector er(x) := x/|x|. Picking vector fields vR as restrictions from D(Ω)

to ΩR, i.e., vR ∈ D(ΩR), we need that the extensions

v :=

{
vR in ΩR

−ζr−2er in ER
(4.6)

belong to D(Ω). Hence, er · v, the normal component of v, must be continuous across SR.
Therefore, we get on SR the transmission condition eR · vR = −ζ/R2. Thus, any vR in

V(ΩR) := {ψ ∈ D(ΩR) : eR · ψ|SR = −ζ/R2},
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Algorithm 1 Minimization of the energy E(ũR,ζ , ζ)

• step 0: Pick any ũR,1, ũR,2 ∈ H1(ΩR) with (4.4) and (4.5) and set k := 1 and ζk := 1.

• step 1: Minimize the quadratic energy

Ek(u) := E(u+ ũR,1 +
ζk
R
ũR,2, ζk)

with respect to u ∈
◦
H1(ΩR), i.e., find u ∈

◦
H1(ΩR) such that

∀ϕ ∈
◦
H1(ΩR) 〈∇u,∇ϕ〉L2(ΩR) = −〈∇ũR,1,∇ϕ〉L2(ΩR) −

ζk
R
〈∇ũR,2,∇ϕ〉L2(ΩR) .

Set ũk := u.

• step 2: Minimize the second order polynomial

pk(ζ) := E(ũk + ũR,1 +
ζ

R
ũR,2, ζ) =

∣∣∣∣∇ũk +∇ũR,1 +
ζ

R
∇ũR,2

∣∣∣∣2
L2(ΩR)

+
4πζ2

R

with respect to ζ, i.e., set ζ := −R
〈∇(ũk + ũR,1),∇ũR,2〉L2(ΩR)

4πR + |∇ũR,2|2L2(ΩR)

.

Set ζk+1 := ζ.

• step 3: Set k := k + 1 and return to step 1, unless |ζk − ζk−1|/|ζk| is small.

• step 4: Set ũR,ζ,0 := ũk−1, ζ := ζk and

ũ :=


ũR,ζ := ũR,ζ,0 + ũR,1 +

ζ

R
ũR,2 in ΩR

ζ

r
in ER

.

which is extended by (4.6) to Ω belongs to D(Ω). We note that then ∇ũ = v and
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div v = ∆ũ = 0 holds in ER. Now, the estimates from Theorem 1 read

|∇e|2L2(Ω) = |∇(û− ũ)|2L2(Ω)

≤ inf
v∈D(Ω)

inf
β>0

(
4(1 + 1/β) |div v|2L2

1(Ω) + (1 + β) |∇ũ− v|2L2(Ω)

)
= inf

v∈D(Ω)

inf
β>0

(
4(1 + 1/β)

∫
Ω

(1 + r2)| div v|2 dλ+ (1 + β)

∫
Ω

|∇ũ− v|2 dλ
)

≤ inf
vR∈V(ΩR)

inf
β>0

(
4(1 + β)

∫
ΩR

(1 + r2)| div vR|2 dλ+ (1 + β)

∫
ΩR

|∇ũ− vR|2 dλ
)

︸ ︷︷ ︸
=: M2

+,R,β(∇ũ, vR)

and

|∇e|2L2(Ω) = |∇(û− ũ)|2L2(Ω)

≥ sup

u∈
◦
H1
−1(Ω)

−〈∇(2ũ+ u),∇u〉L2(Ω) = sup

u∈
◦
H1
−1(Ω)

−
∫

Ω

∇(2ũ+ u) · ∇u dλ

≥ sup

uR∈
◦
H1(ΩR)

−
∫

ΩR

∇(2ũ+ uR) · ∇uR dλ︸ ︷︷ ︸
=: M−,R(∇ũ, uR)

.

Therefore, we have reduced the computations of the lower and upper bounds to mini-
mization problems taking place only in the bounded domain ΩR.

Example 1 We set Ω := E1, i.e., Ω is the exterior of the closed unit ball. As already
mentioned, this problem admits the unique solution û = 1/r. Hence, we know ζ = 1 a
priori, but ignore it for the computations. We use the symmetry of the problem and thus
our computations take place in just one octant of ΩR. The mesh and the computational
domain are depicted in Figure 2. The resulting relative errors and error estimates are
presented in Table 1 for three different values of R. Additionally, we study the error
indicator generated by the majorant, see Remark 3. The exact error contribution over
an element T is |∇e|2L2(T ) and the one indicated by the second term of the majorant is

|∇ũ− vR|2L2(T ), where vR is obtained via the minimization of the majorant. Both quantities
are depicted on the plane x1 + x3 = 0 in Figure 3.

The boundary value problem in step 1 of Algorithm 1 was solved by the finite ele-
ment method. We applied first order nodal tetrahedral elements, where the mesh was
constructed by Comsol 4.3 and the emerging system of linear equations was solved using
a standard Matlab solver. When minimizing the majorant M2

+,R,β(∇ũ, vR) with respect
to vR ∈ V(ΩR), we applied second order tetrahedral finite elements for each compo-
nent of vR with vR|SR = −ζR−2eR and hence eR · vR|SR = −ζ/R2. Similarly, the mi-
norant M−,R(∇ũ, uR) was maximized using second order tetrahedral finite elements for

uR ∈
◦
H1(ΩR). A natural choice is to use H(div)-conforming Raviart-Thomas elements [6]

to compute vR. However, H1-elements are applicable for smooth problems.
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Figure 2: Computational domains and meshes (one octant of ΩR, where R = 10) for
Example 1 (left) and Example 2 (right).

Table 1: Example 1, the exact error and the computed error estimates.

R Nt
M2

+,R,β(∇ũ,vR)

|∇ũ|2
L2(Ω)

|∇e|2
L2(Ω)

|∇ũ|2
L2(Ω)

M−,R(∇ũ,uR)

|∇ũ|2
L2(Ω)

5 1926 4.57% 3.75% 3.61%
5 6223 1.39% 1.31% 1.29%
5 17742 0.63% 0.62% 0.61%

10 2214 7.19% 5.68% 5.43%
10 5264 2.82% 2.55% 2.51%
10 11506 1.80% 1.68% 1.65%
20 3446 7.26% 5.73% 5.47%
20 6676 2.95% 2.64% 2.60%
20 13370 1.86% 1.74% 1.71%

Example 2 We set Ω := R3 \ [−1, 1]3, i.e., Ω is the exterior of a closed cube. For
this problem, the exact solution û is not known. The octant of ΩR for R = 10 used in
computations is depicted in Figure 2. In Algorithm 1, we selected ũR,1 and ũR,2 as finite
element solutions of Dirichlet Laplace problems with proper boundary conditions. The
respective error bounds are presented in Table 2.

These examples show that functional a posteriori error estimates provide two-sided
bounds of the error. Of course, the accuracy depends on the method used to generate
the free variables v and u in the majorant and minorant, respectively. The applied
methods should be selected balancing the desired accuracy of the error estimate and the
computational expenditures.

Acknowledgements We heartily thank Sergey Repin for his continuous support and
the many nice and enlightening discussions.
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Figure 3: Example 1, true error |∇e|2L2(T ) (left) and error indicator |∇ũ− vR|2L2(T ) (right).

Table 2: Error bounds for Example 2.

Nt
M2

+,R,β(∇ũ,vR)

|∇ũ|2
L2(Ω)

M−,R(∇ũ,uR)

|∇ũ|2
L2(Ω)

2513 12.52% 4.65%
5015 9.48% 2.91%

13772 7.08% 1.63%
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A Appendix: Easier but Weaker Estimates

We want to point out that we can prove a variant of Theorem 4 by another, much simpler
technique using just the triangle inequality instead of the Helmholtz decomposition. The
drawbacks are that we get for the upper bound a factor larger than 1, e.g. 5, which
overestimates a bit more, and for the lower bound we miss one term. To see this, let

u ∈
◦
H1
−1(Ω) + {u0}. Then

|E|L2(Ω),A =
∣∣∇û− A−1ṽ

∣∣
L2(Ω),A

≤ |∇(û− u)|L2(Ω),A +
∣∣∇u− A−1ṽ

∣∣
L2(Ω),A

,

and we can further estimate by Theorem 1 with ũ = u for any v ∈ D(Ω)

|E|L2(Ω),A ≤ cN,α |f + div v|L2
1(Ω) +

∣∣∇u− A−1v
∣∣
L2(Ω),A︸ ︷︷ ︸

= M+(∇u, v)

+
∣∣∇u− A−1ṽ

∣∣
L2(Ω),A

≤ cN,α |f + div v|L2
1(Ω) +

∣∣A−1(ṽ − v)
∣∣
L2(Ω),A︸ ︷︷ ︸

= M+(A−1ṽ, v)

+2
∣∣∇u− A−1ṽ

∣∣
L2(Ω),A︸ ︷︷ ︸

= M̃+(A−1ṽ,∇u)

.

Therefore, we get the same upper bound but with less good factors, i.e., for any θ > 0

|E|2L2(Ω),A ≤ M̃+(ṽ) := (1 + 4/θ) inf
v∈D(Ω)

M2
+(A−1ṽ, v)

+ (4 + θ) inf
u∈
◦
H1
−1(Ω)+{u0}

M̃2
+(A−1ṽ,∇u)

with M̃+(ṽ) ≥M+(ṽ). E.g. for θ = 1 we have 1+4/θ = 4+θ = 5 and M̃+(ṽ) = 5M+(ṽ).

For the lower bound and u ∈
◦
H1
−1(Ω) we simply have

|E|2L2(Ω),A =
∣∣∇û− A−1ṽ

∣∣2
L2(Ω),A

≥ 2
〈
∇û− A−1ṽ,∇u

〉
L2(Ω),A

− |∇u|2L2(Ω),A

= 2 〈f, u〉L2(Ω) −
〈
∇u+ 2A−1ṽ,∇u

〉
L2(Ω),A

= M−(A−1ṽ, u)

and the additional term M̃−(A−1ṽ, A−1v,∇u) does not appear. Thus,

|E|2L2(Ω),A ≥ M̃−(ṽ) := sup

u∈
◦
H1
−1(Ω)

M−(A−1ṽ, u)

with M̃−(ṽ) ≤M−(ṽ).


