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Some Poincaré type inequalities for quadratic matrix fields
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We present some Poincaré type inequalities for quadratic matrix fields with applications e.g. in gradient plasticity or fluid
dynamics. In particular, an application to the pseudostress-velocity formulation of the stationary Stokes problem is discussed.
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1 Results

Let Ω ⊂ R3 be a bounded domain with Lipschitz boundary Γ. Moreover, let γ 6= ∅ be a relatively open subset of Γ. The
usual L2-Sobolev spaces for the gradient, rotation and divergence with homogeneous scalar, tangential resp. normal trace
on γ will be denoted by H1

γ(Ω), Hγ(curl,Ω), Hγ(div,Ω), respectively. A matrix-valued function T : Ω → R3×3 belongs
to the Sobolev space Hγ(Curl,Ω) resp. Hγ(Div,Ω), if its rows are elements of Hγ(curl,Ω) resp. Hγ(div,Ω), and the
differential operators Curl and Div act row-wise. Moreover, we will use the standard matrix operations symT = 1

2 (T +T>),
skew T = 1

2 (T − T>) and dev T = T − trT/3 · 1, where 1 denotes the identity matrix. The standard L2-norms for scalar,
vector- or matrix-valued functions are denoted by | · |. The following inequalities hold:

Theorem 1.1 There exists a constant c > 0 such that for all T ∈ Hγ(Curl,Ω)

c |T | ≤ |dev symT |+ |CurlT |.
See also our papers [7–11].

P r o o f. The proof follows in close lines our paper [10] and relies on three essential tools, namely • the Maxwell estimate
(a Poincaré-type estimate for curl and div); • the Helmholtz decomposition; • Korn’s first inequality. The only minor change
is to prove a stronger version of Korn’s first inequality:

∀ v ∈ H1
γ(Ω) c |∇v| ≤ | dev sym∇v|.

The rest of the proof is identically to [10].

Theorem 1.2 There exists a constant c > 0 such that for all T ∈ Hγ(Div,Ω) the estimate

c |T | ≤ | dev T |+ |Div T |
holds true. Especilly, for S ∈ Hγ(Curl,Ω)

c |CurlS| ≤ |dev CurlS|
holds, since CurlS ∈ Hγ(Div,Ω) is solenoidal.

P r o o f. Let γ̃ := Γ \ γ be the complement of γ. Following [12], we first prove

∃ c > 0 ∀ f ∈ L2(Ω) ∃ v ∈ H1
γ̃(Ω) div v = f, |v|+ |∇v| ≤ c|f |.

Then, we utilize the idea of [1, Lemma 3.1] and obtain with some v ∈ H1
γ̃(Ω) solving div v = trT

| trT |2 = 〈trT, div v〉 = 〈trT, tr∇v〉 = 〈trT · 1,∇v〉 = 3〈T,∇v〉 − 3〈dev T,∇v〉
= −3〈Div T, v〉 − 3〈dev T,∇v〉 ≤ c

(
|dev T |+ |Div T |

)
| trT |,

which completes the proof, since it is sufficient to estimate trT .

Corollary 1.3 There exists a constant c > 0 such that for all T ∈ Hγ(Curl,Ω)

c |T | ≤ |dev symT |+ |dev CurlT |.
P r o o f. Since S := CurlT ∈ Hγ(Div,Ω) with DivS = 0 the assertion follows immediately by a combination of

Theorem 1.1 and Theorem 1.2.

Remark 1.4 The results from Theorem 1.2 remain true in the Lp-setting with 1 < p <∞. They even extend to T ∈ Lp(Ω)
only. Then Div T ∈W−1,pγ (Ω) and we have

c |T |p ≤ |dev T |p + |Div T |−1,p,γ .
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2 Application

Let us study the following first-order system formulation of the stationary Stokes equations: For some given vector field f in
L2(Ω) find a scalar function p ∈ L2(Ω), a vector-valued function u ∈ H1

γ(Ω) and a matrix-valued function σ ∈ Hγ̃(Div,Ω),
such that the system

σ − µ sym∇u+ p · 1 = 0, Div σ = f, div u = 0

holds in Ω. This system is equivalent to

dev σ − µ sym∇u = 0, Div σ = f,

where the pressure p has been eliminated and can be computed afterwards as p = − trσ/3. For this first-order system, a least
squares formulation based on minimizing the quadratic functional

|dev σ − µ sym∇u|2 + |Div σ − f |2

with respect to (u, σ) ∈ H1
γ(Ω)×Hγ̃(Div,Ω) was studied in [3, section 3.2]. The well-posedness of this least squares problem

is shown based on a coercivity result of the form

|dev σ − µ sym∇u|2 + |Div σ|2 ≥ c
(
|Div σ|2 + |σ|2 + |∇u|2 + |u|2

)
(1)

to hold with a constant c > 0 for all (u, σ) ∈ H1
γ(Ω) ×Hγ̃(Div,Ω). In order to obtain (1) and since the H1(Ω)-norm of u

is controlled by | sym∇u| using Korn’s first and Poincaré’s inequalities, σ, more precisely trσ, needs to be controlled by the
first-order system, i.e., the result of Theorem 1.2 is required. The inequality (1) is then proved in a way similar to the ellipticity
proof in [4, Theorem 3.1] using

〈dev σ, sym∇u〉 = 〈sym dev σ,∇u〉 = 〈symσ − 1

3
trσ · 1,∇u〉 = 〈σ,∇u〉 − 〈skew σ,∇u〉 − 1

3
〈trσ, div u〉

= −〈Div σ, u〉 − 〈skew σ,∇u〉 − 1

3
〈trσ, div u〉

and

| skew σ| = | skew(dev σ − µ sym∇u)| ≤ | dev σ − µ sym∇u| ,

µ|div u| = | tr(dev σ − µ sym∇u)| ≤
√

3|dev σ − µ sym∇u| .

In [4], a result similar to Theorem 1.2 has been obtained indirectly by examination of the incompressible limit of a first-order
system linear elasticity formulation.

A widely used result in the literature on mixed methods is for the inequality of Theorem 1.2 to hold for all σ ∈ H(Div,Ω)
which satisfy 〈trσ, 1〉 = 0. This result dates back to [1], see also [2, section IV.3] and is useful in the mixed framework where
the boundary conditions on the normal stress is only treated weakly. Such mixed approaches have been analyzed recently for
the stationary Stokes problem in [5] and [6].
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