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Uniqueness of Integrable Solutions to V( = G(, (|r = 0 for Integrable
Tensor-Coefficients G' and Applications to Elasticity
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Let @ C RY be bounded Lipschitz and §) # T' C 99 relatively open. We show that the solution to the linear first order
system

V(=G(, (r=0 (D
vanishes if G € L' (Q; RN >Ny and ¢ € WHH(Q;RY), (e.g. ¢ € L%, G € L?). We prove
-1l C°(2,T5R?) = [0,00),  u > [sym(VuP ™)z

to be a norm if P € L°(Q;R3*3) with Curl P € LP(Q;R®**3), Curl P~! € L9(;R3*3) for some p,q > 1 with
1/p+1/qg = 1and det P > ¢t > 0. We give a new proof for the so called ‘in-finitesimal rigid displacement lemma’ in
curvilinear coordinates: Let ® € H'(Q; R?), Q C R?, satisfy sym(V® ' V) = 0 for some ¥ € W (Q; R*)NH?(Q; R?)
with det V¥ > ¢ > 0. Then there are a € R and a constant skew-symmetric matrix A € so0(3), such that & = AV + a.
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1 Introduction

Korn’s inequality plays a very important role in linear elasticity. [1-5] This is reason enough to consider the question, whether
it also holds for non-constant coefficients:

Je>0 VueHy (TR [sym(VuP ™) i2(q) > cluln(g)- 2

Quadratic forms of this type arise in applications to geometrically exact models of shells, plates and membranes, in micromor-
phic and Cosserat type models and in plasticity, [6-9]. And indeed, Korn’s inequality with non-constant coefficients does hold,
if P, Pt Curl P € C1(Q;R3*3) as Neff has shown in [3], see also [10]. It has been proved in [10] to hold for continuous
P~1, whereas it can be violated for P~! € L>°(Q) or P~ € SO(3) a.e. The counterexamples, given by Pompe in [10-12],
each use the fact that for such P an expression of the form of

lull := | sym(VuP ™)Lz 3)

is not a norm (it has a nontrivial kernel) on the spaces of functions considered. We aim to understand this expression better.
By considering the first order system of equations (1) and proving the uniqueness of its solution, we can show that (3) is a
norm on C°(Q, T;R3) := {u € C°(Q;R3) : dist(suppu,T’) > 0}, where C°(Q;R3) := {u|q : u € C(R3;R3)}.

The main part of our proof that || - || is a norm consists in obtaining v = 0 from sym(VuP~') = 0. By taking P = V¥ to
be a gradient, we present another proof of the infinitesimal rigid displacement lemma (which is important for linear elasticity
in curvilinear coordinates; [13-15]), in dimension N = 3 which yields ® = AV + a with A € so(N), a € RY. We need
slightly more regularity than in [13] however. The key tool for obtaining our results is Neff’s formula for the Curl of the
product of two matrices, the first of which is skew-symmetric (see [3]).

2 Results

Let us first note that by V we denote not only the gradient of a scalar-valued function, but also (as an usual gradient row-wise)
the derivative or Jacobian of a vector-field. The Curl of a matrix is to be taken row-wise as usual curl for vector fields.

Theorem 2.1 (Unique Continuation) Let Q C RN, N € N, be a Lipschitz domain, T be a relatively open and non-empty
subset of 0Q and G € L' (Q; RWXN)XNY 1r ¢ ¢ WHL(Q; RY) solves

V(=G( (r=0,
then ¢ = 0.
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362 Section 14: Applied analysis

The differential equation itself cannot guarantee that a weak solution ¢ € L!(Q, R") necessarily belongs to W11 (Q; RY).
But this can be ensured by requiring higher integrability of G and ¢, since for bounded domains, e.g., the conditions G € L?(Q)
and ¢ € L2(Q2) imply V¢ € L}(Q) and hence ¢ € W1(€); then an application of the theorem ensures that ¢ = 0. Thus we
obtain the uniqueness of L2(£2)-solutions if the coefficients G are square-integrable. Of course, the same holds if ¢ € LP(Q)
for arbitrary p > 1. Then G at least needs to be an L9(2)-function, where 1/p +1/g = 1.

Theorem 2.2 (Norm) Let Q C R? be a Lipschitz domain, ) # T' C 9 be relatively open, P € L>(Q;R3*3) with
det P > ¢t >0, Curl P € LP(Q; R3*3), Curl P~ € L9(Q; R3*3) for some p,q > 1 with 1/p+ 1/q = 1. Then

-1 : C2 (2,15 R?) = [0,00),  ww [ sym(VuP ™)z “4)

defines a norm.

Remark 2.3 In the case of p = ¢ = 2 and for P € SO(3) ae., Curl P~! € L2(€) is no additional condition, since then
Curl P € L%(Q) & Curl P71 € L%(Q). (Note thatif P € SO(3) a.e., then P, Curl P € LP(Q) is equivalent to P € W1P((Q),
cf. [16].)

Remark 2.4 Since the norms [|-|| and |- |1 (q) are not shown to be equivalent, it is not clear whether the spaces H} (2, T') =

C (9, I‘)"'"Hl(m and C (€, I‘)”H" coincide. However, by [10], these norms are equivalent if P € C°(Q) with det P > ¢+ >
0.

Theorem 2.5 (Infinitesimal Rigid Displacement Lemma) Let 2 C R3 be a Lipschitz; domain. Moreover, let ® €
WLEP(Q; R3) and ¥ € WH°(Q; R3) N W29(Q; R3) with det V¥ > ¢t > 0ace. andp,q > 1, 1/p+1/qg=1If

sym(Ve ' Vo) =0

then there exist a € R® and a constant skew-symmetric matrix A € s0(3), such that ® = AV + a.

3 Sketch of proofs

An application of Gronwall’s inequality yields Theorem 2.1 for €2 being an interval. The case where ) is a cube, and I" a face
of it can be reduced to this situation, ensuring also the unique continuation property for (1). For a general Lipschitz domain )
we use a transformation of I' and a neighborhood thereof onto such a cube. The proofs of Theorem 2.2 and Theorem 2.5 both
rely heavily on the formula for the Curl of a product of two matrices, which reads (see [3])

Curl(XY) = mat Ly (vecVaxl X) + X Curl Y, det Ly = —2(detY)?

in the special case of a skew-symmetric X. There mat: R? — R3*3, vec: R3*3 — R, axl: s0(3) — R® and L: R3*3 —
R9*? denote usual identification operators. It is used to reduce Theorem 2.2 to (1) where an application of Theorem 2.1 yields
the definiteness. This formula is also used to prove the infinitesimal rigid displacement lemma: With a suitable approximation
of A= V®(VV)~!itis possible to show that the weak partial derivatives of A vanish.

These results have been announced in [17] and published with details in [18].
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