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Abstract
Functional error estimates are well-established tools for a posteriori error estima-
tion and related adaptive mesh-refinement for the finite element method (FEM). The
presentworkproposes afirst functional error estimate for the boundary elementmethod
(BEM). One key feature is that the derived error estimates are independent of the BEM
discretization and provide guaranteed lower and upper bounds for the unknown error.
In particular, our analysis covers Galerkin BEM and the collocation method, what
makes the approach of particular interest for scientific computations and engineering
applications. Numerical experiments for the Laplace problem confirm the theoretical
results.
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1 Introduction

Let � ⊂ R
d , d ≥ 2, be a bounded Lipschitz domain with polygonal boundary

� := ∂�. To present the main ideas and our first numerical results, we consider the
Poisson problem with inhomogeneous Dirichlet boundary data g, i.e.,

�u = 0 in �, u = g on �. (1)

Throughout the paper, we assume that d ∈ {2, 3}. However, all results can easily
be extended to higher dimensions. For the numerical solution of (1), we employ the
boundary element method (BEM); see, e.g., [27,42,44]. Again for the ease of presen-
tation, let us consider an indirect ansatz based on the single-layer potential

(˜V φ)(x) :=
∫

�

G(x − y) φ(y) dy = u(x) for all x ∈ � (2)

with unknown integral density φ, where, for z ∈ R
d\{0}, G(z) = − 1

2π log |z| for
d = 2 resp. G(z) = 1

4π |z|−1 for d = 3 denotes the fundamental solution of the
Laplacian. Taking the trace on �, the potential ansatz leads to the weakly-singular
integral equation

(V φ)(x) = g(x) for almost all x ∈ �, (3)

where the integral representation of g = V φ coincides with that of u = ˜V φ (at least
for bounded densities) but is now evaluated on � (instead of inside �). For ellipticity
of the operator V , we suppose that diam(�) < 1 in case of d = 2, which can always be
achieved by scaling. Given a triangulationF�

h of the boundary �, the latter equation is
solved by the lowest-order BEM and provides some piecewise constant approximation
φh , i.e.,

φ ≈ φh ∈ P0(F�
h ), (4)

where the precise discretization (e.g., Galerkin BEM, collocation, etc.) will not be
exploited by our analysis. However, as a BEM inherent characteristic, we obtain an
approximation of the potential u ≈ uh := ˜V φh , which satisfies the Laplace problem

�uh = 0 in �. (5)

Note that here—contrary to the usual notations—uh is not a discrete function but
computed by an integral operator applied to a discrete function, i.e., uh is data sparse.
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We emphasize that (5) is the key argument for the error identity

max
τ∈L2(�)
div τ=0

(

2 〈g − uh |� , n · τ |�〉� − ||τ ||2
L2(�)

)

= ∣

∣

∣

∣∇(u − uh)
∣

∣

∣

∣

2
L2(�)

= min
w∈H1(�)

w|�=g−uh |�
||∇w||2

L2(�)
, (6)

where 〈· , ·〉� denotes the extended L2(�) scalar product (see Theorem 4 below).
The identities (6) generate a posteriori error estimates of the functional type that are
independent of the discretization and provide fully guaranteed lower and upper bounds
for the unknown error without any constants at all. In general, these functional type a
posteriori estimates involve only constants in basic functional inequalities associated
with the concrete problem (e.g., Poincaré–Friedrichs type or trace inequalities) and are
applicable for any approximation from the admissible energy class (see [1,2,37,39] or
the monograph [40] and the references cited therein). In particular, the equations (6)
have also been used in [40] for the analysis of errors arising in the Trefftz method.

From (6), constant-free (i.e., with known constant 1) lower and upper bounds for
the unknown potential error ||∇(u − uh)||L2(�) can be obtained by choosing arbi-
trary instances of τ and w. In the present work, we compute these bounds by solving
problems in a suitable boundary layer S ⊂ � along � by use of the finite element
method (FEM). Moreover, these bounds are then employed to drive an adaptive mesh-
refinement for the triangulation F�

h of � and, as novelty, also quantify the accuracy
||∇(u − uh)||L2(�) of the BEM induced potential uh = ˜V φh in each step of the adap-
tive algorithm. In particular, the latter quantification is essentially constant-free (up
to data oscillations terms arising for the FEM majorant) and can thus also be used as
reasonable stopping criterion for adaptive BEM computations. Especially for practical
applications, this is an important step forward, since there exist neither a posteriori
error estimateswith constant 1 nor estimates for physically relevant errors.While avail-
able results focus on the density φh (see, e.g., [9,11,12,17,23,36] for some prominent
results or the surveys [10,20] and the references therein), estimating rather the energy
error of uh circumvents, in particular, BEM-natural challenges like the localization
of non-integer Sobolev norms. It is quite natural that these serious advantages of the
proposed error estimation strategy are associated with certain technical complications
that arise because we need to generate a volume mesh at least for some boundary
layer S ⊂ � along � on which we solve auxiliary FEM problems. However, the ratio
between the number of degrees of freedom (DoF) for obtaining the error estimates and
the BEMDoF remains bounded, so that additional computational expenditures remain
limited. Moreover, examples show that very good error bounds can be obtained when
the ratio is between one and three. Finally, we note that the generation of the volume
mesh appears to be a standard problem for FEM mesh generation, where usually, like
in computer aided design (CAD), only the surface � is given.

Outline. The remainder of this work is organized as follows: In Section 2, we col-
lect the necessary notations as well as the fundamental properties of (Galerkin) BEM.
In Section 3, we formulate our approach for functional a posteriori error estimation.
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Theorem 4 states the error identity (6). Theorem 5 provides a computable upper bound
on (6) by means of an H1-conforming FEM approach as well as a computable lower
bound on (6) by means of an H(div)-conforming mixed FEM approach. Section 4
shows how these findings can be used to steer an adaptive mesh-refinement. Algo-
rithm 10 formulates such a strategy with reliable error control on ||∇(u − uh)||L2(�).
In Section 5, we employ the proposed adaptive algorithm to underpin our theoreti-
cal findings by some numerical experiments with lowest-order Galerkin BEM in 2D.
Section 6 concludes the work with natural extensions of our approach (even covered
by our analytical results) like higher-order BEM, alternative BEM discretizations like
collocation, direct BEM formulations, and error control for exterior domain problems
(where � is unbounded), underlining the independence of our error estimators of
the actual problem and approximation method. The final Section 7 summarizes the
contributions of the present work and addresses possible topics for future research.

2 Preliminaries and notation

2.1 Domains and function spaces

Throughout this paper, let � ⊂ R
d , d ∈ {2, 3}, be a bounded Lipschitz domain (i.e.,

locally below the graph of some Lipschitz function) with boundary � = ∂� and
exterior unit normal vector field n. For all numerical results involving discretisations,
we assume that � is a polygon. We denote by 〈· , ·〉L2(�) and || · ||L2(�) the standard

inner product and norm in L2(�), respectively, where, e.g., � ∈ {�,�}. Based on
L2(�), we define the Hilbert spaces

H1(�) := {

ϕ ∈ L2(�) : ∇ϕ ∈ L2(�)
}

,

H(div,�) := {

σ ∈ L2(�) : div σ ∈ L2(�)
}

.

The corresponding inner products and (induced) norms are 〈· , ·〉H1(�) and || · ||H1(�)

resp. 〈 · , · 〉H(div,�) and || · ||H(div,�). Moreover, introducing the scalar trace operator
(·)|� : H1(�) → L2(�), our analysis also employs the closed subspace of H1(�)

H1
0(�) := {

ϕ ∈ H1(�) : ϕ|� = 0
}

and the trace spaceH1/2(�) := {

ϕ|� : ϕ ∈ H1(�)
}

equippedwith the natural quotient
norm

|| f ||H1/2(�) := inf
{||ϕ||H1(�) : ϕ ∈ H1(�) with ϕ|� = f

}

for all f ∈ H1/2(�).

A standard construction (see the subsequent Remark 1) yields a harmonic extension
operator ̂(·) : H1/2(�) → H1(�) which satisfies ||∇ ̂f ||L2(�) ≤ || f ||H1/2(�) for all

f ∈ H1/2(�).
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Remark 1 In fact, the minimal extension ϕ ∈ H1(�) of f ∈ H1/2(�) satisfies
|| f ||H1/2(�) = ||ϕ||H1(�) and can be found as the unique weak solution of

−�ϕ + ϕ = 0 in �, ϕ|� = f on �. (7)

The ansatz ̂f = ϕ + ϕ0 with ϕ0 ∈ H1
0(�) solving �ϕ0 = −ϕ yields a harmonic

extension ̂f ∈ H1(�) of f ∈ H1/2(�), i.e.,

� ̂f = 0 in �, ̂f |� = f on �. (8)

From ||∇ ̂f ||2
L2(�)

= 〈∇ ̂f , ∇ϕ〉L2(�), it follows that ||∇ ̂f ||L2(�) ≤ ||∇ϕ||L2(�) ≤
|| f ||H1/2(�). ��

Finally, we need the dual space H−1/2(�) := H1/2(�)′ equipped with the natural
norm

|| f ||H−1/2(�) := sup
0 �=ψ∈H1/2(�)

〈ψ , f 〉�
||ψ ||H1/2(�)

,

where the H1/2(�) × H−1/2(�)-duality product 〈· , ·〉� extends, as usual, the L2(�)

scalar product 〈· , ·〉L2(�). We stress that � = ∂� and hence H1/2(�) = ˜H
1/2

(�).

We recall the Gelfand triple H1/2(�) ⊂ L2(�) ⊂ H−1/2(�) and refer to [8] for the
fact that H−1/2(�) can also be characterised as the range of normal traces n · (·)|� :
H(div,�) → H−1/2(�) of H(div,�)-vector fields, i.e.,

H−1/2(�) = {

n · σ |� : σ ∈ H(div,�)
}

.

Definition 2 (Boundary layer) A subset S ⊂ � is called a boundary layer, if it is a
Lipschitz domain with � ⊂ ∂S, which admits a conforming triangulation T S

h into
simplices. We then define �c := ∂S \ �. In particular, we define the corresponding
induced triangulation of � by

F�
h := T S

h |� := {

F : F ⊂ � and F is a face of some simplex T ∈ T S
h

}

. (9)

For q ∈ N0 and Pq being the space of polynomials of degree q, we define

Pq(T S
h ) := {

ϕh ∈ L∞(S) : ϕh |T ∈ Pq for all T ∈ T S
h

}

,

Pq(F�
h ) := {

ψh ∈ L∞(�) : ψh |F ∈ Pq for all F ∈ F�
h

}

.

Moreover, for p ∈ N, we employ the standard H1-conforming FEM spaces

S p(T S
h ) := {

ϕh ∈ C0(S) : ϕh |T ∈ P p for all T ∈ T S
h

} ⊂ H1(S),

S p
0 (T S

h ) := {

ϕh ∈ S p(T S
h ) : ϕh |∂S = 0

} ⊂ H1
0(S),

S p
�c (T S

h ) := {

ϕh ∈ S p(T S
h ) : ϕh |�c = 0

}

.
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942 S. Kurz et al.

LetF S
h denote the set of all interior faces, i.e., all F ∈ F S

h admit unique T+, T− ∈ T S
h

with F = T+ ∩ T−. For q ∈ N0, we define the H(div)-conforming Raviart–Thomas
space

RTq(T S
h ) = {

σ h ∈ L∞(S) : ∀ T ∈ T S
h ∃ (a, b) ∈ Pq(Rd)d × Pq(Rd) ∀ x ∈ T

σ h(x) = a(x) + b(x) x and ∀ F ∈ F S
h nF · [σ h]F = 0

} ⊂ H(div, S),

where nF is a normal vector for the face F ∈ F S
h and [σ h]F := σ h |T+ −σ h |T− denotes

the jump of σ h across F . Based on that, we let

Rq
�c(T S

h ) := {

σ h ∈ RTq(T S
h ) : n · σ h |�c = 0

}

.

Remark 3 In the proofs of Section 3 below, we exploit that for arbitrary vh ∈ S p
�c (T S

h )

and σ h ∈ RTq
�c (T S

h ) the definitions

v̌h :=
{

vh in S

0 in � \ S
and σ̌ h :=

{

σ h in S

0 in � \ S
(10)

provide conforming extensions v̌h ∈ H1(�) and σ̌ h ∈ H(div,�). In particular, we
will implicitly identify vh (resp. σ h) with its zero-extension v̌h (resp. σ̌ h). ��

2.2 General problem setting

From now on, we assume that �, �, and a boundary layer S together with �c and
corresponding FEM spaces are given. Let g ∈ H1/2(�) and let u ∈ H1(�) be the
unique solution of the homogeneous Dirichlet–Laplace problem

�u = 0 in �, (11a)

u = g on �. (11b)

In particular, we have ∇u ∈ H(div,�) with div∇u = 0. Note that u = ĝ ∈ H1(�) is
the unique harmonic extension of g with ||∇u||L2(�) ≤ ||g||H1/2(�); see (8).

2.3 Weakly-singular integral equation

The single-layer potential (2) provides a continuous linear operator ˜V : H−1/2(�) →
H1(�). Moreover, its concatenation with the trace defines a continuous linear operator
V : H−1/2(�) → H1/2(�), which is elliptic on H−1/2(�) (under the scaling condition
diam(�) < 1 for d = 2). Hence, the Lax–Milgram lemma guarantees existence and
uniqueness of φ ∈ H−1/2(�) such that

〈V φ , ψ〉� = 〈g , ψ〉� for all ψ ∈ H−1/2(�). (12)
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According to theHahn–Banach theorem, the latter variational formulation is equivalent
to the identity V φ = g in H1/2(�) from (3). For details on elliptic boundary integral
equations, we refer, e.g., to the monographs [30,34].

2.4 Galerkin boundary elementmethod

Given a triangulation F�
h of �, the lowest-order Galerkin BEM seeks φh ∈ P0(F�

h ),
which solves the discretized weak form

〈V φh , ψh〉L2(�) = 〈g , ψh〉L2(�) for all ψh ∈ P0(F�
h ). (13)

The Lax–Milgram lemma also applies to the conforming Galerkin discretization and
proves existence and uniqueness of φh ∈ P0(F�

h ). We note that in the discrete ver-
sion (13) of (12) the H1/2(�) × H−1/2(�) duality product coincides, in fact, with the
L2(�) scalar product. For details on the (Galerkin) boundary elementmethod, we refer,
e.g., to the monographs [27,42,44].

3 Functional a posteriori BEM error estimation

In this section, we prove the error identity (6) and provide efficiently computable
upper and lower bounds for the potential error ||∇(u − uh)||L2(�), where u ∈ H1(�)

solves (11) and uh := ˜V φh is defined in (2).

3.1 Functional error identity

The fact that the error u − uh satisfies (11a) exactly is a powerful tool. However,
the consideration of the potential uh from a BEM comes with a drawback: it is not a
discrete function and lacks further a priori knowledge like the Galerkin orthogonality,
which is obviously never available for any approximation uh := ˜V φh ≈ u ∈ H1(�).
Functional a posteriori error estimates are eminently suitable for the BEM, since
they do not require any such a priori assumption. On top of that, for problems with
homogeneous (volume) right-hand sides, they provide constant-free error identities.
For the Laplacian, the key argument is the Dirichlet principle:

Harmonic functions are minimisers of the Dirichlet energy ||∇w||2
L2(�)

.

Note that the boundary residual g − uh |� ∈ H1/2(�) is essential for both the majorant
M and the minorant M, see (14) in Theorem 4 for definitions, and comprises all
relevant information about the error.

Theorem 4 (Functional a posteriori error identities) Let g ∈ H1/2(�) and let u ∈
H1(�) be the unique solution of (11). For any approximation v ∈ H1(�) with �v = 0,
the equalities (6) hold true. More precisely,
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944 S. Kurz et al.

max
τ∈L2(�)
div τ=0

M(τ ; v|�, g) = ∣

∣

∣

∣∇(u − v)
∣

∣

∣

∣

2
L2(�)

= min
w∈H1(�)

w|�=g−v|�
M(∇w), (14a)

where

M(τ ; v|�, g) := 2 〈g − v|� , n · τ |�〉� − ||τ ||2
L2(�)

,

M(∇w) := ||∇w||2
L2(�)

. (14b)

The unique maximiser is τ = ∇(u − v). The unique minimiser is w = u − v.

Proof The proof is split into two parts.

• Upper bound: Let w̃ ∈ H1(�)with w̃|� = u|� = g. Since we have�(u −v) = 0
and u − w̃ ∈ H1

0(�), integration by parts shows that

∣

∣

∣

∣∇(u − v)
∣

∣

∣

∣

2
L2(�)

= 〈∇(u − w̃) , ∇(u − v)
〉

L2(�)
︸ ︷︷ ︸

=0

+〈∇(w̃ − v) , ∇(u − v)
〉

L2(�)
.

This yields ||∇(u − v)||L2(�) ≤ ||∇(w̃ − v)||L2(�). The substitution w := w̃ − v

proves that

∣

∣

∣

∣∇(u − v)
∣

∣

∣

∣

L2(�)
≤ inf

w∈H1(�)
w|�=g−v|�

||∇w||L2(�).

The unique infimum is attained at w = u − v.
• Lower bound: In any Hilbert space H with inner product 〈· , ·〉H and induced
norm || · ||H, it holds that

||a||2H = max
b∈H

(

2 〈a , b〉H − ||b||2H
)

for all a ∈ H,

where the maximum is unique and attained for b = a. Since

∇(u − v) ∈ H := {

σ ∈ H(div,�) : div σ = 0
}

,

we have

∣

∣

∣

∣∇(u − v)
∣

∣

∣

∣

2
L2(�)

= ∣

∣

∣

∣∇(u − v)
∣

∣

∣

∣

2
H = max

τ∈L2(�)
div τ=0

(

2
〈∇(u − v) , τ

〉

L2(�)
− ||τ ||2

L2(�)

)

= max
τ∈L2(�)
div τ=0

(

2 〈g − v|� , n · τ |�〉� − ||τ ||2
L2(�)

)

.

In particular, the maximum is attained for τ = ∇(u −v). This concludes the proof.

��
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To ease the readability, the remainder of this chapter focusses on our numerical
setup. For the functional analytic framework in a Sobolev space setting, which might
be of independent interest, we refer to the appendix of the extended preprint [32] of
this work.

3.2 Computable error bounds

Weaimat error bounds obtained by solving FEMproblems on a boundary layer S ⊂ �.
For the maximization problem in (14), the constraint div τ = 0 can be realized by a
mixed formulation (see also [32, Lemma 15] of the extended preprint of this work).
However, the boundary condition w|� = g − v|� cannot be satisfied exactly by any
piecewise polynomial solution wh corresponding to (14). Therefore, the upper bound
involves an additional oscillation term given by a discretisation operator Jh , which
will be the L2(�)-orthogonal projection in the numerical experiments of Sections 5
and 6 below.

Theorem 5 (Computable bounds via boundary layer) Let v ∈ H1(�) with �v = 0. Let
p ∈ N and let Jh : H1/2(�) → S p(F�

h ) := {

ϕh |� : ϕh ∈ S p(T S
h )

}

be an arbitrary
projection operator. Moreover, let wh ∈ S p(T S

h ) be the unique solution of

〈∇wh , ∇ϕh〉L2(S) = 0 for all ϕh ∈ S p
0 (T S

h ) with wh |∂S =
{

Jh(g − v|�) on �,

0 on �c.

(15)

For q ∈ N0, let the pair (τ h, ωh) ∈ RTq
�c(T S

h ) × Pq(T S
h ) be the unique solution of

〈τ h , σ h〉L2(S) + 〈div σ h , ωh〉L2(S) = 〈g − v|� , n · σ h |�〉L2(�), (16a)

〈div τ h , ψh〉L2(S) = 0 (16b)

for all pairs (σ h, ψh) ∈ RTq
�c(T S

h ) × Pq(T S
h ). Then, it holds that

2 〈g − v|� , n · τ h |�〉L2(�) − ||τ h ||2
L2(S)

≤ ||∇(u − v)||2
L2(�)

(17a)

≤ ||∇wh ||L2(S) + ∣

∣

∣

∣(1 − Jh)(g − v|�)
∣

∣

∣

∣

H1/2(�)
. (17b)

Proof It is well-known that (15) admits a unique solution wh ∈ S p(T S
h ), being the

natural FEM discretization of an homogeneous Dirichlet–Laplace problem with inho-
mogeneous Dirichlet conditions; see, e.g., [5,7,41]. To prove the upper bound (17b),
let ̂fh ∈ H1(�) be the (unique) harmonic extension of fh := (1 − Jh)(g − v|�); see
Remark 1. Then, Theorem 4 and ||∇ ̂fh ||L2(�) ≤ || fh ||H1/2(�) lead to

∣

∣

∣

∣∇(u − v)
∣

∣

∣

∣

L2(�)
= min

w∈H1(�)
w|�=g−v|�

||∇w||L2(�)
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946 S. Kurz et al.

≤ min
w∈H1(�)

w|�=g−v|�

∣

∣

∣

∣∇(w − ̂fh)
∣

∣

∣

∣

L2(�)
+ ||∇ ̂fh ||L2(�)

≤ min
w∈H1(�)

w|�=Jh(g−v|�)

||∇w||L2(�) + || fh ||H1/2(�),

wherewe havefinally employed the substitutionw− ̂fh � w. Since the zero-extension
of wh belongs to H1(�) according to Remark 3 and satisfies the correct boundary
condition, this proves the computable upper bound (17b).

For existence and uniqueness of (16), we refer, e.g., to [6,8]. Since div τ h ∈
Pq(T S

h ) ⊂ L2(�) by definition of RTq(T S
h ), it follows from (16b) that τ h ∈

RTq
�c(T S

h ) ⊂ H(div, S) with div τ h = 0 in S. According to Remark 3, the zero-
extension of τ h belongs to H(div,�) with div τ h = 0 in �. The computable lower
bound (17a) thus follows from Theorem 4. ��

In order to circumvent the implementation of the constraint div τ = 0, it is also an
option to reformulate the maximization problem in (14) by means of potentials. While
the 3Dcase involves vector potentials, for 2D such an approach is particularly attractive
due to the possible use of scalar potentials. In the following, we thus concentrate on
d = 2 (and refer, for d = 3, to the appendix of the extended preprint [32] of this
work). To this end, we recall the definitions of the 2D curl operators

curl ϕ =
[−∂2ϕ

∂1ϕ

]

for ϕ : � → R resp. curl ϕ = ∂1ϕ2 − ∂2ϕ1 for ϕ : � → R
2.

Note that div curl ϕ = 0. For ϕ ∈ H1(�), we thus have curl ϕ ∈ H(div,�) so that
the Neumann trace n · curl ϕ|� ∈ H−1/2(�) is well-defined. In particular, we have

〈∇ϕ , ∇ψ〉L2(�) = 〈curl ϕ , curlψ〉L2(�) for all ϕ,ψ ∈ H1(�).

Corollary 6 (Computable lower bound via boundary layer—H1-conforming) Suppose
that d = 2. Let v ∈ H1(�) with �v = 0. For p ∈ N, let w̃h ∈ S p

�c (T S
h ) be the unique

solution of

〈∇w̃h , ∇ϕh〉L2(S) = 〈g − v|� , n · curl ϕh |�〉L2(�) for all ϕh ∈ S p
�c (T S

h ). (18)

Then, it holds that

2〈g − v|� , n · curl w̃h |�〉L2(�) − ||∇w̃h ||2
L2(S)

≤ ∣

∣

∣

∣∇(u − v)
∣

∣

∣

∣

2
L2(�)

. (19)

Proof It is well-known that (18) admits a unique solution w̃h ∈ S p
�c (T S

h ) being the
natural FEMdiscretization of amixedDirichlet–Neumann–Laplace problem; see, e.g.,
[7]. According to Remark 3, the zero-extension of w̃h belongs to H1(�) and hence
τ̃ h := curl w̃h ∈ H(div,�) satisfies that div τ̃ h = 0 with n ·curl w̃h |� = n · τ̃ h |� and
||̃τ h ||L2(�) = ||curl w̃h ||L2(�) = ||∇w̃h ||L2(�). The claim thus follows from Theorem 4.

��
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Fig. 1 Example geometry � = (0, 1/2)2 with FEM triangulation Th (gray, left), induced BEM mesh F�
h

on � = ∂� (red), generated boundary layer S with mesh T S
h (blue), and interior boundary �c (green),

illustrated from left to right

4 Adaptive algorithm

4.1 Triangulations andmesh-refinement

In our numerical experiments, we start from a conforming simplicial triangulation Th

such that � ⊂ ⋃

T ∈Th
T ⊆ �. We obtain the boundary layer S ⊂ � as the second-

order patch of � with respect to Th , i.e.,

T S
h := {

T ∈ Th : ∃ T ′ ∈ Th, T ′ ∩ � �= ∅ �= T ∩ T ′} and

S := interior
(

⋃

T ∈T S
h

T
)

. (20)

Moreover, recall the BEM mesh F�
h := T S

h |� = Th |� from (9). These definitions are
illustrated in Fig. 1.

For (local) mesh-refinement, we employ newest 2D vertex bisection [31,45]; see
also [25, Section 5.2] for a short but precise statement of the algorithm and the MAT-
LAB implementation we build on. The adaptive strategy will only mark elements of
T S

h , but refinement will be done with respect to the full triangulation Th . In particular,
we stress that the second-order patch S will generically change, if the triangulation
Th is refined; see, e.g., Fig. 2. In this way, we guarantee that the number of degrees of
freedom with respect to T S

h will increase proportionally to those with respect to F�
h ;

see also Tables 2, 3, 4 and 5 below, where #F�
h denotes the number of BEM elements,

while #T S
h denotes the number of FEM elements in the boundary layer S ⊂ �.

4.2 Data oscillations

The upper bound (17b) in Theorem 5 involves the data approximation term
∣

∣

∣

∣(1 −
Jh)(g −uh |�)

∣

∣

∣

∣

H1/2(�)
, where uh := ˜V φh . Besides the fact that we still have to specify

the operator Jh : H1/2(�) → S p(F�
h ) from Theorem 5, we note that the nonlocal

nature of the H1/2(�)-norm makes this term hardly computable.

123



948 S. Kurz et al.

In the following, we choose

Jh : L2(�) → S p(F�
h ) = {

ϕh |� : ϕh ∈ S p(Th)
}

, (21a)

as the L2(�)-orthogonal projection onto S p(F�
h ), which is uniquely determined by

〈Jhϕ , ψh〉L2(�) = 〈ϕ , ψh〉L2(�) for all ϕ ∈ L2(�) and all ψh ∈ S p(F�
h ). (21b)

For d = 2, it follows under mild conditions on F�
h that Jh is H1(�)-stable, i.e.,

||∇ Jh f ||L2(�) ≤ Cstab||∇ f ||L2(�) for all f ∈ H1(�); (22)

see [15].We note that these conditions are automatically satisfied forF�
h = Th |� , since

Th is only refined by newest vertex bisection. For d = 3, the H1(�)-stability (22) is
known for low-order FEM (on the 2D manifold �); see [31] for p = 1 and [26] for
p ∈ {1, . . . , 12}. We recall the following result from [4]:

Lemma 7 If the L2(�)-orthogonal projection Jh : L2(�) → S p(F�
h ) from (21) is

H1(�)-stable (22), then it holds for all f ∈ H1(�) that

C−1
osc

∣

∣

∣

∣(1 − Jh) f
∣

∣

∣

∣

H1/2(�)
≤ min

fh∈S p(F�
h )

∣

∣

∣

∣ f − fh
∣

∣

∣

∣

H1/2(�)

≤ Cosc min
fh∈S p(F�

h )

∣

∣

∣

∣h1/2∇�( f − fh)
∣

∣

∣

∣

L2(�)
,

where h ∈ L∞(�) is the local mesh-width function defined by h|F := diam(F) for all
F ∈ F�

h . The constant Cosc > 0 depends only on Cstab and the shape regularity of
Th.

Provided that the given Dirichlet boundary data satisfy g ∈ H1(�), the foregoing
lemma allows to dominate the data approximation term by

C−2
osc

∣

∣

∣

∣(1 − Jh)(g − uh |�)
∣

∣

∣

∣

H1/2(�)

≤ ∣

∣

∣

∣h1/2∇�((1 − Jh)(g − uh |�))
∣

∣

∣

∣

L2(�)
=: osch, (23)

where osch is, in fact, computable, while the constant Cosc is generic and hardly
accessible. With v = uh , the upper bound (17b) becomes

∣

∣

∣

∣∇(u − uh)
∣

∣

∣

∣

L2(�)
≤ ||∇wh ||L2(S) + ∣

∣

∣

∣(1 − Jh)(g − uh |�)
∣

∣

∣

∣

H1/2(�)

≤ ||∇wh ||L2(S) + C2
osc osch,

(24)

where wh ∈ S p(T S
h ) solves (15). For the use in the adaptive algorithm, we note that
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osc2h =
∑

T ∈T S
h

osch(T )2, where

osch(T )2 :=
∑

F∈F�
h

F⊂T

diam(F) ||∇�((1− Jh)(g−uh |�))||2
L2(F)

. (25)

Remark 8 In our numerical experiments, we will consider p = 1 as well as p = 2 to
compute the uppermost bound in (24). Since the lower bound (17a) is independent of
the data approximation, we did only implement the lowest-order case q = 0. ��
Remark 9 Instead of the L2(�)-orthogonal projection, one can also employ the Scott–
Zhang projector; see [5,21]. Then, Lemma 7 as well as (23) hold accordingly. For
d = 2, one can also employ nodal projection. While generic H1/2(�)-functions do not
have to be continuous and Lemma 7 fails, one can still prove (23); see [21,22]. ��

4.3 Adaptive algorithm

The above discussed estimates and relations yield the following adaptive algorithm,
whose performance is verified in a series of numerical tests presented in the next
section.

Algorithm 10 Let p ∈ N and let 0 < θ ≤ 1 be a fixed marking parameter. Let Th be a
conforming initial triangulation of �. Let ε > 0 be the tolerance for the energy error
∣

∣

∣

∣∇(u − uh)
∣

∣

∣

∣

L2(�)
with uh = ˜V φh. Then, perform the following steps (i)-(ix):

(i) Extract the BEM triangulation F�
h = Th |� from (9).

(ii) Extract the patch S ⊂ � of � and the corresponding triangulation T S
h from (20).

(iii) Compute the BEM solution φh ∈ P0(F�
h ) of (13).

(iv) Compute Jh(g − uh |�) together with its oscillations osch(T ) of (25) for all
T ∈ Th.

(v) Compute the FEM solution wh ∈ S p(T S
h ) of (15) for the majorant (17b).

(vi) Compute the error indicators

ηh(T ) =
{

||∇wh ||L2(T ) for T ∈ T S
h ,

0 for T ∈ Th \ T S
h .

(26)

(vii) If M(∇wh) = ∑

T ∈T S
h

ηh(T )2 ≤ ε2, then break.

(viii) Otherwise, determine a set Mh ⊆ T S
h of minimal cardinality such that

θ
∑

T ∈T S
h

[

ηh(T )2 + osch(T )2
] ≤

∑

T ∈Mh

[

ηh(T )2 + osch(T )2
]

. (27)

(ix) Refine (at least) all T ∈ Mh ⊆ Th by newest vertex bisection to obtain a new
triangulation Th.
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Remark 11 (Evaluation of uh = ˜V φh) A subtle point in our approach is the computa-
tion of Jh(g − uh |�) to solve the auxiliary FEM problem (15) and the computation of
osch from (23) to compute the upper bound (24) in Theorem 5. Similarly, the solution
of the auxiliary FEM problem (16) and the computation of the lower bound (17a)
require to compute 〈g − uh |� , n · σ h |�〉L2(�) for the basis functions σ h ∈ RTq

�c(T S
h )

(and analogous comments apply for the alternative lower bound (18)–(19) fromCorol-
lary 6). All of this is subtle, since uh = ˜V φh is not a discrete function (but data sparse,
since φh is discrete). At these points, our implementation follows the approach of [3],
which can briefly be sketched as follows:

(i) Note that, due to the mapping properties of the single-layer potential, uh = ˜V φh is
continuous (since φh ∈ L∞(�)), and that, at least for affine boundaries in 2D and
piecewise polynomial φh , closed formulae for point evaluations uh(x) = ˜V φh(x)

at arbitrary x ∈ R
2 are known.

(ii) To compute Jh(g − uh |�) ∈ S p(F�
h ), we approximate g − uh |� ≈ q ∈ P p′

(F�
h )

by a F�
h -piecewise interpolation polynomial q of degree p′ > p. Replacing

g − uh |� ≈ q in (21) so that all arising integrals can be computed exactly (by
quadrature), we approximate Jh(g − uh |�) ≈ Jhq. Moreover, we approximate
the local contributions of osch from (25) via ||∇�((1 − Jh)(g −uh |�))||2

L2(F)
≈

||∇�(q − Jhq)||2
L2(F)

, where again the right-hand side can be computed exactly by

means of quadrature which only relies on point evaluations of q(x) (and hence
g − uh |�).

(iii) It is an empirical observation in [3] that p′ := p + 1 is sufficiently accurate. If
g −uh |� is smooth, one can even show that the quadrature error is of higher order.
Moreover, one can optimize the interpolation nodes (per element) and the quadra-
ture nodes (to compute the approximate integrals in (21) and (23)) to minimize
the number of (expensive) point evaluations of uh = ˜V φh .

(iv) Similar ideas must also be used for any BEM error estimator which involves the
residual (see, e.g., [3]). By means of matrix compression techniques like planel
clustering orH-matrices (see, e.g., [28] and the references therein), one can even
lower the cost of the point evaluations of uh = ˜V φh . However, this is not exploited
by our current implementation.

(v) Analogous ideas are used to compute the lower error bounds of Theorem 5 resp.
Corollary 6.

��
Remark 12 (Comments on the minorant)

(i) We stress that a reliable adaptive algorithm requires only a computable upper error
bound. From that perspective, theminorant should be viewed as an option for even-
tual practical applications, which might be computed in one final step, i.e., after
having achieved the error tolerance by the stopping criterion of Algorithm 10(vii).
If desired, as in [43], the minorant can then be improved by solving (16) or (18)
adaptively (by only a few post-processing steps), while uh is fixed and the addi-
tional mesh refinement of T S

h (resp. Th) is only steered by the minorant.
(ii) Another option is to include the computation of the lower bound into each step of

the algorithm to provide guaranteed intervals for the error: For instance, computing
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the FEM solution (τ h, φh) ∈ RT0�c (T S
h ) × P0(T S

h ) of (16), we can also assemble
the discrete minorant

Mh(τ h; uh |�, g) = 2 〈g − uh |� , n · τ h |�〉L2(�) − ||τ h ||2
L2(S)

(28)

from Theorem 5. Then again, at least in terms of Algorithm 10, the minorant is
computed on a mesh (and in particular on the boundary layer S) steered by the
majorant alone; see Fig. 2. This procedure already leads to a satisfying minorant
(see all experiments in Sect. 5), but obviously not to the most accurate minorant
possible.

(iii) The latter approach can be improved in several ways: First, one can solve (15)
and (16) (resp. (18)) by adaptive FEM on separate (generically) different boundary
layers. Second, one can consider higher-order elements for the auxiliary FEM
problems. Finally, another option is to include the local contributions of (28),

νh(T ) := 2 〈g − uh |� , n · τ h |�〉L2(�∩T ) − ||τ h ||2
L2(T )

(29)

for all T ∈ T S
h , into themarking procedure. Figure 5 visualizes some results, where

(instead of the marking strategy in Algorithm 10(viii)) the mesh is now steered by
the size of the confidence interval of the error, i.e., ηh(T )+ osch(T )− νh(T ), and
the minorant improves. Overall, all these approaches are computationally more
costly and only make sense, if sharp confidence intervals of the error are needed
during the full runtime of the adaptive algorithm. In our understanding of reliable
algorithms, there are not many practical situations in which the minorant becomes
relevant before the final solution uh has been computed and fixed. ��

5 Numerical experiments

This section reports on some 2D numerical experiments to underline the accuracy of
the introduced error estimates and the performance of the proposed adaptive strategy
from Algorithm 10. All computations are done in Matlab 1 , where we build on the
toolbox Hilbert from [3] for the lowest-order BEM, on [25] for P1-FEM (p = 1 in
(21)) resp. [24] for P2-FEM (p = 2 in (21)), and on [6] for the lowest-order RT-FEM.
Throughout, we consider Algorithm 10 for uniform mesh-refinement (i.e., θ = 1) as
well as for adaptive mesh-refinement (i.e., 0 < θ < 1).

Example 5.1 (Smooth potential in square domain) We consider problem (1) with pre-
scribed exact solution

u(x) = cosh(x1) cos(x2) for all x ∈ � := (0, 1/2)2 (30)

on the square domain � with diameter diam(�) = √
1/2. We start Algorithm 10 with

an initial triangulation Th of � into #Th = 128 right triangles.

1 Codes can be requested from the corresponding author: dirk.praetorius@asc.tuwien.ac.at
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(a) (b)

(c) (d)

Fig. 2 Adaptively generated meshes in Example 5.1 for p = 1 and θ = 0.6. We indicate the boundary layer
S (blue), the boundary� (red), and the interior boundary�c = ∂S \ � (green). The triangles T ∈ T S

h ⊂ Th

are indicated in blue. The triangles T ∈ Th\T S
h are indicated in gray

Fig. 3 Comparison of adaptivemesh-refinement with θ = 0.4 (solid) vs. uniformmesh-refinement (dashed)
in Example 5.1. Themajorant is computed byP1-FEM (left) andP2-FEM (right).We compare the potential
error ||∇(u − uh)||L2(�)

, the majorant ||∇wh ||L2(�)
from (17b), the data oscillations osch from (23), and

the minorant M(τh)1/2 from (28)
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Table 1 Uniform mesh-refinement in Example 5.1

� #F�
h

#T S
h

#F�
h

||∇(u − uh)||L2(�)
||∇wh ||L2(S)

||∇wh ||L2(S)

||∇(u−uh )||L2(�)

||∇wh ||L2(S)

M(τh )1/2

0 32 2.25 8.01e − 2 5.75e − 2 0.71 19.16

1 64 2.63 5.12e − 2 3.63e − 2 0.71 28.67

2 128 2.81 3.23e − 2 2.30e − 2 0.71 31.96

3 256 2.91 2.03e − 2 1.45e − 2 0.71 32.56

4 512 2.95 1.28e − 2 9.11e − 3 0.71 32.66

5 1024 2.98 8.08e − 3 5.74e − 3 0.71 32.67

6 2048 2.99 5.09e − 3 3.62e − 3 0.71 32.67

7 4096 3.00 3.21e − 3 2.28e − 3 0.71 32.67

We focus on the degrees of freedom, the potential error ||∇(u − uh)||L2(�)
, the accuracy of the P1-FEM

majorant ||∇wh ||L2(S)
from (17b), and the quotient of the majorant and minorant

Table 2 Adaptive mesh-refinement with θ = 0.4 in Example 5.1

� #F�
h

#T S
h

#F�
h

dof(T S
h ) ||∇(u − uh)||L2(�)

||∇wh ||L2(S)

||∇wh ||L2(S)

||∇(u−uh )||L2(�)

||∇wh ||L2(S)

M(τh )1/2

0 32 2.25 15 8.01e − 2 5.75e − 2 0.71 19.16

4 40 2.33 28 4.97e − 2 3.58e − 2 0.72 16.17

10 59 2.44 60 2.33e − 2 1.65e − 2 0.71 9.78

16 77 2.66 103 9.95e − 3 7.29e − 3 0.73 4.50

22 112 2.60 148 3.81e − 3 3.48e − 3 0.91 2.51

28 165 2.82 234 1.88e − 3 2.03e − 3 1.08 2.11

34 253 2.83 343 8.27e − 4 8.92e − 4 1.08 2.80

40 383 2.81 512 4.18e − 4 4.91e − 4 1.18 1.89

46 575 2.70 707 1.66e − 4 1.89e − 4 1.14 2.20

52 860 2.63 978 6.96e − 5 7.94e − 5 1.14 2.78

58 1072 2.61 1389 3.92e − 5 4.92e − 5 1.25 2.15

64 1869 2.61 2008 2.04e − 5 2.55e − 5 1.25 1.82

70 2748 2.58 2803 1.06e − 5 1.34e − 5 1.27 1.73

76 4007 2.55 3976 5.00e − 6 6.12e − 6 1.22 2.16

80 5259 2.53 5077 3.50e − 6 4.58e − 6 1.31 1.90

We focus on the degrees of freedom, the potential error ||∇(u − uh)||L2(�)
, the accuracy of the P1-FEM

majorant ||∇wh ||L2(�)
from (17b), and the quotient of the majorant and minorant

Even though u as well as its Dirichlet data g = u|� are smooth, we note that the
sought integral density φ ∈ H−1/2(�) of the indirect formulation (3) has no physical
meaning and usually lacks smoothness (by inheriting the generic singularities from the
interior as well as the exterior domain problem). Consequently, one may expect that
uniform mesh-refinement (on the boundary) will not reveal the optimal convergence
behavior ||φ − φh ||H−1/2(�) = O(h3/2) = O(N−3/2), where N = #F�

h is the number
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Fig. 4 Influence of the marking parameter θ ∈ {0.2, 0.4, 0.6, 0.8} on adaptive mesh-refinement in Exam-
ple 5.1. The majorant is computed by P1-FEM (left) and P2-FEM (right). We compare the potential error
(solid) ||∇(u − uh)||L2(�)

as well as the majorant (dashed) ||∇wh ||L2(�)
from (17b)

Fig. 5 Left: Comparison of two versions of the minorant by either solving (16) with RT0-elements or
(18) with P1-elements on both T S

h and Th with respect to the adaptive mesh-refinement with θ = 0.4 in

Example 5.1. We observe that solving on full Th instead of the boundary layer T S
h leads only to a marginal

improvement of the minorant. Right: We compute two versions of the triple (majorant, error, minorant) in
Example 5.1 with θ = 0.4. First, we repeat the computations obtained by Algorithm 10 (solid lines). In the
second case, we add the local contributions −νh of the minorant from (29) to the error indicator in (27),
i.e., the minorant is now part of the adaptive mesh-refinement strategy (dashed)

of elements of a uniform mesh F�
h of � and 3/2 is the best possible convergence rate

for a piecewise constant approximation φ ≈ φh ∈ P0(F�
h ).

The initial meshes and some adaptively generated meshes are visualized in Fig. 2.
Figure 3 shows the resulting potential error and the computed minorant (17a) and
majorant (17b), as well as the corresponding data oscillations (23) for p = 1 resp. p =
2. Here, the potential error ||∇(u − uh)||L2(�) ≈ ||∇ Ih(u − uh)||L2(�) is computed

by numerical quadrature. More precisely, we employ the P2-nodal interpolant Ih :
C(�) → S2(T unif

h ) on a (three times) uniform refinement T unif
h of the finest adaptive

mesh Th . We stress that the plot neglects the non-accessible constant Cosc from (23).
The results for p = 1 and p = 2 are similar. For uniform mesh-refinement, we obtain
the expected reduced order of convergence. For adaptive mesh-refinement, we regain
the optimal order of convergence. Moreover, for adaptive mesh-refinement, we see
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Fig. 6 Adaptively generated meshes in Example 5.2 for p = 1 and θ = 0.6; see Fig. 2 for the color code

Fig. 7 Comparison of adaptive vs. uniform mesh-refinement in Example 5.2. The majorant is computed by
P1-FEM. Left:We compare the potential error ||∇(u−uh)||L2(�)

, the majorant ||∇wh ||L2(�)
from (17b), the

data oscillations osch from (23), and the minorantM(τh)1/2 from (28) for uniform (dashed) and adaptive
mesh-refinement (solid) with θ = 0.4. Right: We compare the potential error (solid) and the majorant
(dashed) for adaptive mesh-refinement for various choices of θ

that the majorant is, in fact, a sharp estimate for the (in general unknown) potential
error.

The computed minorant is less accurate. With reference to Remark 12, we stress
that the minorant is always computed with lowest-order Raviart-Thomas elements on
the same boundary layer as the majorant (which is obtained by adaptivity driven by
the majorant). In Fig. 5, we even see that the minorant hardly enhances when the
mixed problem (16) is solved on the full domain Th . In our view, this indicates that the
numerical treatment of the boundary residual g−uh |� and its oscillations is a key-point
for accuracy, i.e., one should consider higher-order elements for the minorant.

The empirical values for uniform (resp. adaptive) mesh-refinement are also pro-
vided in Table 1 (resp. Table 2). In particular, we note that the ratio between the
FEM DoF for obtaining the error estimates and the BEM DoF remains bounded,
so that additional computational expenditures remain limited. The same observation
is made if we compare the corresponding expenditures in terms of CPU time. Fig-
ure 4 compares the numerical results for different choices of the adaptivity parameter
θ ∈ {0.2, 0.4, 0.6, 0.8}. We observe that any choice of θ regains, in fact, the optimal
convergence rate.
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Fig. 8 Adaptively generated meshes in Example 5.3 for p = 1 and θ = 0.6; see Fig. 2 for the color code

Example 5.2 (Smooth potential in L-shaped domain) We consider problem (1) with
prescribed exact solution

u(x) = cosh(x1) cos(x2)

for all x ∈ � := (0, 1/2)2\([(1/4, 1/2] × [0, 1/4]) (31)

on the L-shaped domain � with diameter diam(�) = √
1/2. We start Algorithm 10

with an initial triangulation Th of � into #T0 = 384 right triangles.
As in Sect. 5.1, the potential u is smooth, but the sought density φ of the indirect

BEM formulation lacks regularity. The initial meshes as well as some adaptively
generated meshes are visualized in Fig. 6. Figure 7 visualizes some numerical results
for uniform and adaptive mesh-refinement, where we proceed as in Sect. 5.1. Since
p = 1 and p = 2 lead to similar results (not displayed), we only report the results for
p = 1.

As expected from theory, the shape of � does not impact the functional error
estimates: Overall, the results obtained correspond to those from Sect. 5.1, where
uniform mesh-refinement leads to a suboptimal convergence behavior, which is cured
by means of the proposed adaptive strategy.

Example 5.3 (Non-smooth potential in L-shaped domain) We consider problem (1)
with prescribed exact solution

u(x) = r2/3 cos(2ϕ/3)

for all x ∈ � := (0, 1/2)2\([(1/4, 1/2] × [0, 1/4]) (32)

given in standard polar coordinates x = x(r , ϕ) on the L-shaped domain � with
diameter diam(�) = √

1/2. We start Algorithm 10 with an initial triangulation T0 of
� into #T0 = 384 right triangles.

Unlike Sects. 5.1 and 5.2, the potential u is non-smooth at (0, 0). The initial meshes
as well as some adaptively generated meshes are visualized in Fig. 8. Numerical
convergence results are visualized inFig. 9.Moreover, Table 3 provides someempirical
values for adaptive mesh-refinement. Our observations are the same as in Sects. 5.1
and 5.2 and underline that the functional error bounds do not rely on any a priori
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Fig. 9 Comparison of adaptive vs. uniform mesh-refinement in Example 5.3. The majorant is computed by
P1-FEM. Left:We compare the potential error ||∇(u−uh)||L2(�)

, the majorant ||∇wh ||L2(�)
from (17b), the

data oscillations osch from (23), and the minorantM(τh)1/2 from (28) for uniform (dashed) and adaptive
mesh-refinement (solid) with θ = 0.4. Right: We compare the potential error (solid) and the majorant
(dashed) for adaptive mesh-refinement for various choices of θ

smoothness of the unknown potential u: While uniform mesh-refinement leads to a
suboptimal convergence behavior, the proposed adaptive strategy regains the optimal
convergence rate.

Figure 10 provides some estimator competition. We consider the functional error
estimator proposed in the present work, the residual estimator μR from [9,11,12], the
h−h/2 error estimatorμH from [23], the two-level error estimatorμT from [17,29,36],
and Faermann’s residual estimator μF from [18,19]. For lowest-order BEM, all these
estimators are provided by the Matlab toolbox Hilbert [3]. We recall that

μT � μH � ||φ − φh ||H−1/2(�) � μF � μR,

where the constants hidden in� and� depend only on�; see, e.g., [10,16]. In addition,
we stress that the converse estimate ||φ − φh ||H−1/2(�) � μT � μH is equivalent to
a saturation assumption [16]. Moreover, as mentioned earlier, there always holds the
bound ||∇(u − uh)||L2(�) � ||φ − φh ||H−1/2(�), where the hidden constant depends on
�. We consider Algorithm 10 (with θ = 0.4), where instead of ηh(T ) from (26),
we use ηh(T )2 := ∑

F∈F�
h ,F⊂T μh(F)2, where μh(F) denote the local contributions

of μh ∈ {μR, μH , μT , μF }. Figure 10 provides the numerical results. All adaptive
strategies yield optimal decay ||∇(u − uh)||L2(�) = O(N−3/2) with N = #F�

h . At
the same time, we also see that the proposed functional estimator provides the most
accurate bound on the potential error ||∇(u − uh)||L2(�).

6 Extension of the analysis

So far, we have considered functional a posteriori error estimation for an indirect
BEM formulation (12) discretized by Galerkin BEM (13). The following sections
address some obvious extensions of our analysis. While the subsequent numerical
experiments (as well as those from Sect. 5) focus on d = 2, we again stress that the
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Table 3 Adaptive mesh-refinement with θ = 0.4 in Example 5.3

� #F�
h

#T S
h

#F�
h

dof(T S
h ) ||∇(u − uh)||L2(�)

||∇wh ||L2(S)

||∇wh ||L2(S)

||∇(u−uh )||L2(�)

||∇wh ||L2(S)

M(τh )1/2

0 64 2.63 33 5.87e − 2 3.72e − 2 0.64 2.79

6 76 2.57 39 3.32e − 2 2.30e − 2 0.69 6.41

12 93 2.62 46 1.75e − 2 1.21e − 2 0.69 7.60

18 116 2.60 81 8.65e − 3 6.16e − 3 0.71 5.40

24 141 2.68 132 3.80e − 3 2.95e − 3 0.78 4.04

30 201 2.68 215 1.65e − 3 1.49e − 3 0.90 3.28

36 300 2.65 336 7.26e − 4 7.74e − 4 1.07 3.02

42 454 2.59 491 3.34e − 4 3.82e − 4 1.14 3.31

48 667 2.62 715 1.51e − 4 1.69e − 4 1.12 3.21

54 961 2.60 1023 7.66e − 5 8.95e − 5 1.17 2.85

60 1412 2.56 1447 3.76e − 5 4.55e − 5 1.21 3.06

66 2042 2.57 2048 1.88e − 5 2.30e − 5 1.22 2.73

72 3031 2.53 2927 9.28e − 6 1.18e − 5 1.27 3.00

78 4548 2.51 4283 4.40e − 6 4.80e − 6 1.23 3.38

80 5232 2.49 4835 3.61e − 6 4.54e − 6 1.26 3.39

We focus on the degrees of freedom, the potential error ||∇(u − uh)||L2(�)
, the accuracy of the P1-FEM

majorant ||∇wh ||L2(�)
from (17b), and the quotient of the majorant and minorant

theoretical results also apply to arbitrary dimensions, in particular to d = 3. However,
3D experiments are beyond the scope of this work and left to future research.

6.1 Collocation BEM

It is worth noting that all results of Sect. 3 hold, in particular, for any v = ˜V φh with
arbitrary φh ∈ H−1/2(�). Consequently, the computable bounds of Theorem 5 (resp.
Corollary 6) hold for any approximation φh ≈ φ. In particular, Algorithm 10 can also
be applied to (e.g., lowest-order) collocation BEM,where φh ∈ P0(F�

h ) is determined
by collocation conditions

(V φh)(xF ) = g(xF ) for all F ∈ F�
h , (33)

where xF ∈ F is an appropriate collocation node (e.g., the center of mass). We
stress that well-posedness of collocation BEM is non-obvious (see, e.g., [13,14,35]).
However, this does not affect our developed functional a posteriori error bounds.

6.2 Other BEM ansatz spaces

With the same argument as for collocation BEM, one can replace the discrete BEM
ansatz space P0(F�

h ) � φh by an arbitrary discrete space Ph ⊆ H−1/2(�) (e.g.,
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Fig. 10 Numerical results for adaptive mesh-refinement (θ = 0.4) in Example 5.3 for different a posteriori
BEM error estimators. Left: We plot both the potential error ||∇(u − uh)||L2(�)

(solid) as well as the
corresponding error estimator (dashed), which drives the adaptive strategy. Our functional estimator is the
majorant ||∇wh ||L2(�)

from (17b) based on P1-FEM. Right: For either estimator μh , we plot the quotient
μh/||∇(u − uh)||L2(�)

to visualize the accuracy of the estimator with respect to the potential error

Fig. 11 Numerical results for adaptive mesh-refinement (θ = 0.4) in Example 6.4 (left) and Example 6.5
(right). We plot the potential error ||∇(u − uh)||L2(�)

, the majorant ||∇wh ||L2(�)
from (17b) based on

P1-FEM, the data oscillations osch from (38), and the minorant M(τh)1/2 from (28)

higher-order piecewise polynomials, splines, isogeometric NURBS, etc.). For r ∈ N0
and Ph = Pr (F�

h ), we expect that the choices p = r + 1 and q = r will lead to
accurate computable upper and lower bounds in Theorem 5. The numerical validation
of this expectation is, however, beyond the scope of the present work.

6.3 Direct BEM approach

The indirectBEMapproachmakes ansatz (12) for the unknown solution of (11).Unlike
this, the direct BEM approach is based on the Green’s third identity: Any solution
of (11) can be written as the sum of a single-layer and a double-layer potential, i.e.,

u(x) = [˜V φ](x) − [˜K g](x)

:= [˜V φ](x) −
∫

�

∂n(y)G(x − y) g(y) dy for all x ∈ �, (34)
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Table 4 Adaptive mesh-refinement with θ = 0.4 in Example 6.4

� #F�
h

#T S
h

#F�
h

dof(T S
h ) ||∇(u − uh)||L2(�)

||∇wh ||L2(S)

||∇wh ||L2(S)

||∇(u−uh )||L2(�)

||∇wh ||L2(S)

M(τh )1/2

0 32 2.25 15 2.30e − 3 1.92e − 3 0.83 0.78

5 49 2.61 54 1.61e − 3 1.43e − 3 0.89 0.88

11 88 2.76 110 8.68e − 4 9.12e − 4 1.05 1.09

17 147 2.79 161 3.61e − 4 3.53e − 4 0.98 1.15

23 172 2.76 203 1.98e − 4 1.90e − 4 0.96 1.00

29 295 2.93 387 1.23e − 4 1.25e − 4 1.02 1.15

35 377 2.85 442 6.23e − 5 6.68e − 5 1.07 1.24

41 599 2.89 743 4.25e − 5 4.50e − 5 1.06 1.15

47 770 2.88 901 2.12e − 5 2.26e − 5 1.06 1.20

53 1210 2.93 1533 1.33e − 5 1.40e − 5 1.06 1.16

59 1652 2.96 2005 7.09e − 6 7.64e − 6 1.08 1.23

65 2500 2.99 3228 4.36e − 6 4.69e − 6 1.08 1.18

71 3696 2.91 4988 2.38e − 6 2.55e − 6 1.07 1.18

77 5099 2.99 6483 1.50e − 6 1.66e − 6 1.11 1.18

We focus on the degrees of freedom, the potential error ||∇(u − uh)||L2(�)
, the accuracy of the P1-FEM

majorant ||∇wh ||L2(�)
from (17b), and the quotient of the majorant and minorant

Table 5 Adaptive mesh-refinement with θ = 0.4 in Example 6.5

� #F�
h

#T S
h

#F�
h

dof(T S
h ) ||∇(u − uh)||L2(�)

||∇wh ||L2(S)

||∇wh ||L2(S)

||∇(u−uh )||L2(�)

||∇wh ||L2(S)

M(τh )1/2

0 64 2.63 33 1.74e − 2 1.61e − 2 0.93 0.74

6 69 2.62 37 5.30e − 3 4.64e − 3 0.88 0.80

12 77 2.69 42 2.20e − 3 2.22e − 3 1.01 0.95

18 100 2.57 46 9.06e − 4 1.04e − 3 1.15 1.21

24 140 2.50 79 5.07e − 4 5.60e − 4 1.10 1.16

30 208 2.58 159 3.25e − 4 3.76e − 4 1.16 1.16

36 279 2.61 248 1.88e − 4 2.21e − 4 1.18 1.20

42 404 2.59 381 1.10e − 4 1.20e − 4 1.09 1.19

48 549 2.62 531 6.35e − 5 7.14e − 5 1.12 1.30

54 780 2.67 790 3.93e − 5 4.33e − 5 1.10 1.23

60 1085 2.67 1131 2.28e − 5 2.46e − 5 1.08 1.33

66 1550 2.73 1695 1.35e − 5 1.42e − 5 1.05 1.29

72 2203 2.71 2372 7.78e − 6 7.92e − 6 1.02 1.32

78 3166 2.74 3442 4.80e − 6 5.20e − 6 1.08 1.29

We focus on the degrees of freedom, the potential error ||∇(u − uh)||L2(�)
, the accuracy of the P1-FEM

majorant ||∇wh ||L2(�)
from (17b), and the quotient of the majorant and minorant
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where g = u|� ∈ H1/2(�) is the trace of u (i.e., the Dirichlet data) and φ = n ·∇u|� ∈
H−1/2(�) is the normal derivative (i.e., the Neumann data). Taking the trace of this
identity and respecting the jump properties of the double-layer potential (see, e.g.,
[27,30,34,42,44]), one sees that

g = V φ − (K − 1/2)g in H1/2(�),

where K formally coincides with ˜K , but is evaluated for x ∈ � instead. Elementary
calculations then lead to the variational formulation

〈V φ , ψ〉� = 〈(K + 1/2)g , ψ〉� for all ψ ∈ H−1/2(�). (35)

We stress that the factor 1/2 is only valid almost everywhere on� and hence correct for
the variational formulation and Galerkin BEM, while collocation BEMwould require
a modification at corners (and additionally along edges in 3D); see [30,34,44].

Usual implementations approximate g ≈ gh ∈ S p(F�
h ) so that the integral opera-

tors in (35) are only evaluated for discrete functions.Overall, the lowest-orderGalerkin
BEM formulation then reads

〈V φh , ψh〉L2(�) = 〈(K + 1/2) gh , ψh〉L2(�) for all ψh ∈ P0(F�
h ). (36)

As above, the Lax–Milgram lemma proves that (35) (resp. (36)) admit unique solutions
φ ∈ H−1/2(�) (resp.φh ∈ P0(F�

h )).Moreover, the computed densityφh is now indeed
an approximation of the Neumann data n · ∇u|� = ∂nu|� = φ ≈ φh . Defining

uh(x) = [˜V φh](x) − [˜K gh](x) for x ∈ �, (37)

one obtains an approximation uh of the solution u = ˜V φ − ˜K g of (11) (resp. (34)).
We stress that uh |� = V φh + (1/2 − K )gh so that the data oscillation term in the
upper bound of Theorem 5 reads

||∇(u − uh)||L2(�) ≤ min
w∈H1(�)

w|�=Jh(g−uh |�)

||∇w||L2(�)

+ ||(1 − Jh)
(

g − V φh − (1/2 − K )gh
)||H1/2(�)

≤ min
w∈H1(�)

w|�=Jh(g−uh |�)

||∇w||L2(�) + C2
osc osch, (38a)

where Jh : L2(�) → S1(F�
h ) is the L2(�)-orthogonal projection and

osch := ||h1/2∇�

[

(1 − Jh)
(

g − V φh − (1/2 − K )gh
)]||L2(�); (38b)

see Sect. 4.2. In our implementation, we also employed gh = Jh g ∈ S1(F�
h ).
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Fig. 12 Adaptively generated meshes (θ = 0.6) in Example 6.7. We indicate the boundary layer S (blue),
the boundary � (red), and the interior boundary �c = ∂S \ � (green); see Fig. 2 for the color code

Example 6.4 (Direct BEM for smooth potential in square domain) We consider the
setting (30) from Sect. 5.1. Applying the direct BEM approach (35), we know that
φh ≈ φ = n · ∇u|� , where φ (as well as the potential u) is smooth. In this particular
situation, we know that uniform mesh-refinement would already lead to the optimal
convergence behavior (not displayed). The same is observed for the proposed adaptive
strategy, where we even observe that the majorant ||∇wh ||L2(�) from (17b) as well as

the minorant M(τ h)1/2 from (28) provide sharp error bounds for the potential error
||∇(u − uh)||L2(�); see Fig. 11 (left) as well as Table 4.

Example 6.5 (Direct BEM for non-smooth potential in L-shaped domain)We consider
the setting (32) from Sect. 5.3. Applying the direct BEM approach (35), we know that
φh ≈ φ = n · ∇u|� , where φ (as well as the potential u) is only non-smooth with
a singularity at (0, 0). Also for this case, the proposed adaptive strategy regains the
optimal convergence rate; see Fig. 11 (right) as well as Table 5. Even though the
quotient ||∇wh ||L2(�)/M(τ h)1/2 of the computable upper and lower bound is larger
than for the smooth problem of Sect. 6.4, we observe that the lower bound is, in fact,
much more accurate for the direct BEM than for the indirect BEM computations from
Sect. 5.

6.4 Exterior domains

One particular strength of BEM is that it naturally allows to consider also exterior
domain problems formulated on unbounded Lipschitz domains �c := R

d\�. In this
case, the homogeneous Dirichlet–Laplace problem subject to given inhomogeneous
boundary data g reads

�u = 0 in �c, u = g on �, (39a)

supplemented by the radiation (decay) condition (for |x | → ∞)

u(x) = O(log |x |) for d = 2 resp. u(x) = O(1/|x |) for d = 3. (39b)
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Fig. 13 Comparison of adaptive vs. uniformmesh-refinement in Example 6.7, Themajorant is computed by
P1-FEM. Left: Since the potential error ||∇(u − uh)||L2(�)

is unknown and osch = 0, we only compare the

majorant ||∇wh ||L2(�)
from (17b) and the minorantM(τh)1/2 from (28) for uniform (dashed) and adaptive

mesh-refinement (solid) with θ = 0.4. Right: We compare the majorant for adaptive mesh-refinement for
various choices of θ

We note that the latter radiation condition is naturally incorporated into the potential
operators (due to the choice of the fundamental solution with right decay) arising in
BEM, e.g., any single-layer potential ˜V φh satisfies (39b).

We note that the functional error identities from Theorem 4 (with � being replaced
by the exterior domain �c) remain valid (in principal) for any

v ∈ L2loc(�
c) := {

ϕ : ϕ|�∩�c ∈ L2(� ∩ �c) for all compact � ⊂ R
d}

with ∇v ∈ L2(�c) and �v = 0. More precisely, a proper solution theory for (39) is
available in the weighted Sobolev space H1−1(�

c) defined by, e.g., for d = 3,

H1−1(�
c) := {

ϕ : ϕ(·)/| · | ∈ L2(�c), ∇ϕ ∈ L2(�c)
};

see, e.g., [33,38], where also functional a posteriori error estimates for corresponding
exterior domain problems for the Poisson equation−�u = f have been proved. Con-
sequently, the computable upper and lower bounds of Theorem 5 (resp. Corollary 6)
hold (with appropriate modifications) for any approximation φh ≈ φ and v := ˜V φh .
In particular, Algorithm 10 can also be applied to BEM for exterior domain problems.

Example 6.7 (Direct BEM for exterior problem) To illustrate the latter observation,
we consider the exterior domain

�c := R
2\�, � = (0, 1/2)2\([(1/4, 1/2] × [0, 1/4]),

where � is the L-shaped domain from Sect. 5.2. We consider (39) with constant
Dirichlet data

g = 1 = (1/2 − K )1 on �, (40)
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where K is the double-layer integral operator. Consequently, the corresponding indi-
rect BEM formulation (12) turns out to be a direct BEM formulation for the exterior
domain problem [34,42], where all data oscillation terms vanish. Thus, one can expect
that the sought density φ ∈ H−1/2(�) has singularities at the convex corners of � (but
not at the reentrant corner).

WeemployAlgorithm10 (withGalerkinBEM).The initialmeshTh with #Th = 416
right triangles is a triangulation of (−1/4, 3/4)2\� ⊂ �c; see Fig. 12. Somenumerical
results are shown in Fig. 13. Since the exact potential u is unknown,we cannot compute
the potential error ||∇(u − uh)||L2(�). However, adaptive mesh-refinement leads to the
optimal convergence behavior of majorant and minorant (and hence also of ||∇(u −
uh)||L2(�)).

7 Conclusion

We have presented, for the first time, functional error estimates for BEM. Not only
that the presented estimates are independent of the specific discretization method (i.e.,
Galerkin or collocation), they also provide guaranteed upper and lower bounds for the
unknown energy error. This is in contrast to existing techniques, which usually con-
tain generic constants. The error bounds are obtained by solving auxiliary variational
problems by FEM on a boundary layer S ⊂ �. One possible disadvantage of our
approach is that it needs a volume mesh for S to solve the auxiliary FEM problems.
However, this appears to be a standard problem for FEM mesh generation.

In the paper, we consider the Dirichlet problem of the Laplace equation, but the
approach is expected to generalize to other boundary value problems. In the considered
case, the upper error bound is based on the Dirichlet principle, while the lower error
bound is based either on a variational problem in terms of a potential (scalar stream
function in 2D and vector potential in 3D) or a mixed problem (in 2D and 3D). The
upper bound is localized and drives an adaptive refinement of the boundary mesh.
Since S contains always two layers of elements, it geometrically shrinks towards the
boundary during refinement. This way, the ratio between the FEM DoF for obtaining
the error estimates and the BEMDoF remains bounded.We have examined various 2D
test problems on square and L-shaped domains, with and without singular potential,
including exterior problems. The proposed adaptive algorithm exhibited excellent
performance. In all cases, the optimal convergence rates could be achieved.

Ongoing work concerns the further analysis of the oscillations of g − uh |� and
the implementation of higher-order L2-projections, which may overcome the lack of
accuracy of the majorant and minorant observed in our numerical experiments for
very coarse BEM meshes. An implementation of the proposed algorithm in 3D and
the extension to electromagnetic problems is also the subject of future research.
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