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ABSTRACT
We prove a comprehensive solution theory using tools from
functional analysis, show corresponding variational formula-
tions, and present functional a posteriori error estimates for
general linear first order systems of type

A2x ¼ f ;
A"
1x ¼ g;

for two densely defined and closed (possibly unbounded) lin-
ear operators A1 and A2 having the complex property A2A1 ¼
0. As a prototypical application we will discuss the system of
electro-magneto statics in 3D with mixed tangential and nor-
mal boundary conditions

rot E ¼ F;

#div eE ¼ g:

Our theory covers a lot more applications in 2D, 3D, and ND,
such as general differential forms and all kind of systems aris-
ing, e.g., in general relativity, biharmonic problems, Stokes
equations, or linear elasticity, to mention just a few, for
example

dE ¼ F; RotSM ¼ F; DivTT ¼ F; Rot Rot>S S ¼ F;
# deE ¼ G; divDivSeM ¼ G; symRotTeT ¼ G; #DivS eS ¼ G;

all with possibly mixed boundary conditions of generalized
tangential and normal type. Second order systems of types

A"
2A2x ¼ f ; A"

2A2x ¼ f ;
A"
1x ¼ g; A1A"

1x ¼ g

will be considered as well using the same techniques.
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1. Introduction

Throughout this article we assume the following: For ‘ 2 Z let H‘ be
Hilbert spaces. Moreover, let
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A‘ : D A‘ð Þ & H‘ ! H‘þ1

be densely defined and closed (possibly unbounded) linear operators. In
applications, often almost all operators A‘ will be zero, i.e., only finitely
many A‘ are different from zero, typically A0;A1;A2;A3;A4 in 3D PDE
applications or A0;A1, … , AN;ANþ1 in ND PDE applications. Here, DðAÞ
denotes the domain of definition of a linear operator A and we introduce
by NðAÞ and RðAÞ its kernel and range, respectively. Inner product, norm,
orthogonality, orthogonal sum and difference of (or in) an Hilbert space H
will be denoted by h ( ; ( iH; j ( jH , ?H , and !H;)H , respectively. We
note that DðAÞ, equipped with the graph inner product, is a Hilbert space
itself. Moreover, we assume that the operators A‘ satisfy the sequence or
complex property, this is for all ‘

R A‘ð Þ & N A‘þ1ð Þ (1.1)

or equivalently A‘þ1A‘ & 0. Then the (Hilbert space) adjoint operators

A"
‘ : D A"

‘

! "
& H‘þ1 ! H‘

defined by the relation

8 x 2 D A‘ð Þ 8 y 2 D A"
‘

! "
hA‘x; yiH‘þ1

¼ hx;A"
‘yiH‘

satisfy also the sequence or complex property, i.e., for all ‘

R A"
‘þ1

! "
& N A"

‘

! "
(1.2)

or equivalently A"
‘A

"
‘þ1 & 0. We note A""

‘ ¼ A‘ ¼ A‘ , i.e., ðA‘;A"
‘Þ are dual

pairs. The complex

(1.3)

is called closed, if all ranges R(A ‘) are closed, and called exact, if RðA‘Þ ¼
NðA‘þ1Þ holds for all ‘. By the closed range theorem, (1.3) is closed resp.
exact, if and only if the adjoint complex

(1.4)

is closed resp. exact. For all ‘ and by the projection theorem the Helmholtz
type decompositions

H‘ ¼ N A‘ð Þ!H‘R A"
‘

! "
; N A‘ð Þ ¼ R A"

‘

! "?H‘ ;

H‘ ¼ R A‘# 1ð Þ!H‘N A"
‘# 1

! "
; N A"

‘# 1

! "
¼ R A‘# 1ð Þ?H‘

hold. Moreover, the complex properties (1.1) and (1.2) show

N A‘ð Þ ¼ R A‘# 1ð Þ!H‘K‘; N A"
‘# 1

! "
¼ K‘!H‘R A"

‘

! "
;

where we introduce the cohomology groups
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K‘ :¼ N A‘ð Þ \ N A"
‘# 1

! "
:

Therefore, we obtain the refined Helmholtz type decompositions

H‘ ¼ R A‘# 1ð Þ!H‘K‘!H‘R A"
‘

! "
:

Note that, if A‘ has closed range then by the closed range theorem and
the projection theorem

R A‘ð Þ ¼ N A"
‘

! "?H‘þ1 ; R A"
‘

! "
¼ N A‘ð Þ?H‘ :

Finally, we define for all ‘ the domains of definition for our mixed
problems

D‘ :¼ D A‘ð Þ \ D A"
‘# 1

! "
:

1.1. Aims and main results

The central aim of this article is to prove functional a posteriori error esti-
mates in the spirit of Sergey Repin, see, e.g., [1–5], for the linear system

A2x ¼ f ;
A"
1x ¼ g;

p2x ¼ k
(1.5)

with

x 2 D2 ¼ D A2ð Þ \ D A"
1

! "
;

where p2 : H2 ! K2 ¼ NðA2Þ \ NðA"
1Þ denotes the orthonormal projector

onto the cohomology group or kernel K2. We recall the complex property
A2A1 ¼ 0, and hence also A"

1A
"
2 ¼ 0. Obviously, f 2 RðA2Þ; g 2 RðA"

1Þ, and
k 2 K2 are necessary for solvability of (1.5) and there exists at most one
solution to (1.5). A proper solution theory for (1.5), i.e., existence of a solu-
tion of (1.5) depending continuously on the data, will be given in the next
section. The main result for this is Theorem 3.3 and reads as follows:

Theorem I (Theorem 3.3) Let R(A1) and R(A2) be closed. Then (1.5) is
uniquely solvable in D2, if and only if f 2 RðA2Þ; g 2 RðA"

1Þ , and k 2 K2 .
The solution x 2 D2 depends linearly and continuously on the data, i.e.,
jxjH2

* c2jf jH3
þ c1jgjH1

þ jkjH2
.

Remark 2 (Lemma 2.1, Lemma 2.3, (2.4))

(i) By the closed range theorem, R(A1) resp. R(A2) is closed, if and only if
RðA"

1Þ resp. RðA"
2Þ is closed. Moreover, R(A1) and R(A2) are closed, if,

e.g., D2 ,!H2 is compact, see Lemma 2.3, in which case K2 is also finite
dimensional, see General Assumption 3.1 and Remark 3.2.
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(ii) By the closed graph theorem the following assertions are equivalent:
+ The range R(A1) is closed in H2.
+ There exists 0< c<1 such that for all / 2 DðA1Þ \ NðA1Þ?H1 it

holds j/jH1
* cjA1/jH2

.
+ The inverse A# 1

1 : RðA1Þ ! DðA1Þ \ NðA1Þ?H1 is continuous, where
A1 is the corresponding reduced operator of A1, i.e., the restriction of
A1 to DðA1Þ \ NðA1Þ?H1 .

(iii) If R(A1) is closed, then c1 is defined as the best possible constant in (ii)
and hence equals the norm of the inverse A# 1

1 regarded as operator
from R(A1) to NðA1Þ?H1 . Moreover, c1 is also given by the Rayleigh
quotient

inf
06¼/2D A1ð Þ\N A1ð Þ?H1

jA1/j2H2

j/j2H1

¼ 1
c21

¼ k1;

which defines the smallest positive eigenvalue k1 of the selfadjoint oper-
ator1 A"

1A1.
(iv) Similar results and definitions as in (ii) and (iii) hold for the constant

c2 provided that R(A2) is closed.
(v) The unique solution x 2 D2 in Theorem I is simply given by x ¼

A# 1
2 f þ ðA"

1Þ
# 1g þ k.

Although the solution theory is based on pure functional analysis and oper-
ator theory, we shall give a few variational (multiple) saddle point formula-
tions as well propose methods for computing the exact solution x 2 D2 .
These formulations are not only alternatives to prove Theorem I, but also
suggestions for possible numerical methods in future applications, and will
be discussed extensively, see, e.g., Theorem 3.5, Theorem 3.10, Theorem
3.12, Theorem 3.14, and Theorem 3.17. One of these results reads
as follows:

Theorem III (Theorem 3.12) Let R(A1) and R(A2) be closed. Moreover, let
f 2 RðA2Þ and g 2 RðA"

1Þ. The unique solution x 2 D2 in Theorem I can be
found by the following two variational double saddle point formulations:

(i) There exists a unique triple ðx̂; z; hÞ 2 DðA2Þ , ðDðA1Þ \ RðA"
1ÞÞ , K2 ,

such that for all triples ðn; u ; jÞ 2 DðA2Þ , ðDðA1Þ \ RðA"
1ÞÞ , K2

hA2x̂;A2niH3
þ hA1z; niH2

þ hh; niH2
¼ hf ;A2niH3

;
hx̂;A1uiH2

¼ hg;uiH1
;

hx̂; j iH2
¼ hk; j iH2

:

1Thus k1 is also the smallest positive eigenvalue of the selfadjoint operator A1A"1.
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It holds z¼ 0 and h¼ 0 as well as A2x̂ ¼ f and p2x̂ ¼ k . Moreover,
the variational formulation holds for all u 2 DðA1Þ , and thus x̂ 2
DðA"

1Þ with A"
1x̂ ¼ g. Finally, x̂ ¼ x from Theorem I.

(ii) There exists a unique triple ðx̂; y; hÞ 2 DðA"
1Þ , ðDðA"

2Þ \ RðA2ÞÞ , K2 ,
such that for all triples ðf;/; jÞ 2 DðA"

1Þ , ðDðA"
2Þ \ RðA2ÞÞ , K2

hA"
1x̂;A

"
1fiH1

þ hA"
2y; fiH2

þ hh; fiH2
¼ hg;A"

1fiH1
;

hx̂;A"
2/iH2

¼ hf ;/iH3
;

hx̂; j iH2
¼ hk; j iH2

:

It holds y¼ 0 and h¼ 0 as well as A"
1x̂ ¼ g and p2x̂ ¼ k . The variational

formulation holds for all / 2 DðA"
2Þ , and thus x̂ 2 DðA2Þ with A2x̂ ¼ f .

Finally, x̂ ¼ x from Theorem I.
Theorem III (i) resp. (ii) is a weak formulation of

A"
2A2x̂ þ A1z þ h ¼ A"

2f ; A"
1x̂ ¼ g; p2x̂ ¼ k;

resp.

A1A"
1x̂ þ A"

2yþ h ¼ A1g; A2x̂ ¼ f ; p2x̂ ¼ k;

i.e., in formal matrix notation

A"
2A2 A1 iK2

A"
1 0 0

p2 ¼ i"K2
0 0

2

64

3

75
x̂
z
h

2

4

3

5¼
A"
2f
g
k

2

4

3

5;
A1A"

1 A"
2 iK2

A2 0 0
p2 ¼ i"K2

0 0

2

64

3

75
x̂
y
h

2

4

3

5¼
A1g
f
k

2

4

3

5;

respectively, where iK2 is the canonical embedding of K2 into H2 . Note
z¼ 0, h¼ 0 resp. y¼ 0, h¼ 0. Often the additional condition z 2 RðA"

1Þ
resp. y 2 RðA2Þ is unpleasant, especially for possible numerical applications,
and hence the saddle point idea has to be repeated until DðA‘Þ ¼ DðA‘Þ ,
i.e., RðA"

‘Þ ¼ H‘ resp. DðA"
‘Þ ¼ DðA"

‘Þ, i.e., RðA‘Þ ¼ H‘þ1 holds for some ‘.
In 3D we typically have only the operators A0;A1;A2;A3;A4 with adjoints
A"
0;A

"
1;A

"
2;A

"
3;A

"
4 forming the Hilbert complexes and it holds RðA"

0Þ ¼ H0

and RðA4Þ ¼ H5. Hence the biggest system in 3D arising for A2 resp. A"
1 as

leading operator to compute x̂ ¼ x is

A"
2A2 A1 0 iK2 0
A"
1 0 A0 0 iK1

0 A"
0 0 0 0

p2 ¼ i"K2
0 0 0 0

0 p1 ¼ i"K1
0 0 0

2

666664

3

777775

x̂
z
u
h2
h1

2

66664

3

77775
¼

A"
2f
g
0
k
0

2

66664

3

77775

resp.
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A1A"
1 A"

2 0 0 iK2 0 0
A2 0 A"

3 0 0 iK3 0
0 A3 0 A"

4 0 0 iK4

0 0 A4 0 0 0 0
p2 ¼ i"K2

0 0 0 0 0 0
0 p3 ¼ i"K3

0 0 0 0 0
0 0 p4 ¼ i"K4

0 0 0 0

2

6666666664

3

7777777775

x̂
y
v
w
h2
h3
h4

2

666666664

3

777777775

¼

A1g
f
0
0
k
0
0

2

666666664

3

777777775

:

Note z¼ 0, u¼ 0, h2 ¼ 0; h1 ¼ 0 resp. y¼ 0, v¼ 0, w¼ 0, h2 ¼ 0; h3 ¼
0; h4 ¼ 0.

Remark 4 Particularly interesting cases are those for which RðA"
1Þ in

Theorem III (i) or R(A2) in Theorem III (ii) already have finite co-dimension,
i.e., in the best cases RðA"

1Þ ¼ H1 or RðA2Þ ¼ H3 , i.e., NðA1Þ ¼ f0g or
NðA"

2Þ ¼ f0g . Fortunately, these situations are typical in many applications,
as we will see at the end of the introduction or in more detail in the
Application Section 5. Indeed, typically NðA1Þ ¼ f0g or at least
dimNðA1Þ<1 and NðA"

3Þ ¼ f0g or at least dimNðA"
3Þ<1.

Let ex 2 H2 and let us consider ex as a possibly (very) nonconforming2

“approximation” for the exact solution

x 2 D2 ¼ D A2ð Þ \ D A"
1

! "

of (1.5). Proving functional a posteriori error estimates, also called a poste-
riori error estimates of functional type, for the linear problem (1.5) means,
that we will present two-sided estimates for the error

e :¼ x#ex 2 H2

with the following properties:

j There exist two functionals M7, a lower and an upper bound, such that

8 zi; yj M# z1; :::; zI;ex; f ; g; kð Þ * jejH2
* Mþ y1; :::; yJ;ex; f ; g; kð Þ;

(1.6)

were the zi and the yj belong to some suitable Hilbert spaces. The func-
tionals M7 are guaranteed lower and upper bounds for the norm of the
error jejH2

and explicitly computable as long as at least upper bounds
for the natural Friedrichs/Poincar!e type constants c1 and c2 for the oper-
ators A1 and A2 are known3. The bounds M7 do not depend on the

2A conforming “approximation” ex would belong to D2.
3Just needed for the upper bound Mþ .
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possibly and generally unknown exact solution x, but only on the data,
the approximation ex, and the “free” vectors zi, yj.
k The lower and upper bound M7 are sharp, i.e.,

max
z1 ;:::;zI

M# z1; :::; zI;ex; f ; g; kð Þ ¼ jejH2
¼ min

y1 ;:::;yJ

Mþ y1; :::; yJ;ex; f ; g; kð Þ: (1.7)

➂ The minimization over zi and yj is “simple,” typically a minimization of
quadratic functionals.

➃ The bounds M7 are general in the sense that they do not depend on
any specific numerical method which might be used in some possible
application.

Concerning the error estimates the main result of this contribution is
Corollary 4.6, which summarizes Theorem 4.1, Theorem 4.5, and the corre-
sponding corollaries and reads as follows:

Theorem V (Corollary 4.6) Let R(A1) and R(A2) be closed. Moreover,
let x 2 D2 be the exact solution of (1.5) and let ex 2 H2 , regarded as
nonconforming approximation of x. Then the error e :¼ x#ex decomposes
orthogonally, i.e.,

e ¼ eA1 þ eK2 þ eA"
2
2 R A1ð Þ!H2K2!H2R A"

2

! "
;

jej2H2
¼ jeA1 j

2
H2

þ jeK2 j
2
H2

þ jeA"
2
j2H2

;

and the following a posteriori error estimates for the respective error
parts hold:

(i) The projection eA1 2 RðA1Þ satisfies

max
u2D A1ð Þ

M# ;A1 u;ex; gð Þ ¼ jeA1 j
2
H2

¼ min
f2D A"

1ð Þ
M2

þ;A1
f;ex; gð Þ;

M# ;A1 u;ex; gð Þ :¼ 2hg;uiH1
# h2ex þ A1u;A1uiH2

;

Mþ;A1 f;ex; gð Þ :¼ c1jA"
1f# gjH1

þ jf#exjH2
:

The maximum is attained at any û 2 DðA1Þ with A1û ¼ eA1 and f̂ :
¼ eA1 þ ex 2 DðA"

1Þ gives the minimum. It holds A"
1f̂ ¼ A"

1x ¼ g.
(ii) The projection eA"

2
2 RðA"

2Þ satisfies

max
/2D A"

2ð Þ
M# ;A"

2
/;ex; fð Þ ¼ jeA"

2
j2H2

¼ min
n2D A2ð Þ

M2
þ;A"

2
n;ex; fð Þ;

M# ;A"
2
/;ex; fð Þ :¼ 2hf ;/iH3

# h2ex þ A"
2/;A

"
2/iH2

;

Mþ;A"
2
n;ex; fð Þ :¼ c2jA2n# f jH3

þ jn#exjH2
:
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The maximum is attained at any /̂ 2 DðA"
2Þ with A"

2/̂ ¼ eA"
2
and n̂ :

¼ eA"
2
þ ex 2 DðA2Þ gives the minimum. It holds A2n̂ ¼ A2x ¼ f .

(iii) The projection eK2 ¼ p2e ¼ k# p2ex 2 K2 satisfies

max
h2K2

M# ;K2 h;ex; kð Þ ¼ jeK2 j
2
H2

¼ min
u2DðA1Þ;
/2DðA"

2
Þ

M2
þ;K2

u;/;ex; kð Þ

M# ;K2 h;ex; kð Þ :¼ h2 k#exð Þ# h; hiH2
;

Mþ;K2 u;/;ex; kð Þ :¼ jk#ex þ A1uþ A"
2/jH2

:

The maximum is attained at ĥ :¼ eK2 2 K2 and the minimum at any pair
ðû; /̂Þ 2 DðA1Þ , DðA"

2Þ with A1û þ A"
2/̂ ¼ ð1# p2Þex.

Remark VI (Corollary 4.6 continued, Section 4.3)

(i) In applications, often ex :¼ kþ ex? holds with some ex? 2 K
?H2
2 . In this

case eK2 ¼ 0 and in Theorem V (i) and Theorem V (ii) ex can be
replaced by ex? . Moreover, f̂? :¼ eA1 þ ex? 2 DðA"

1Þ and n̂? :¼
eA"

2
þ ex? 2 DðA2Þ holds for the attaining minima.

(ii) Differentiating the lower bound M# ;A1ðu ;ex; gÞ with respect to u
shows that a possible maximizer û 2 DðA1Þ of the maximum in
Theorem V (i) solves the variational formulation

8 u 2 D A1ð Þ hA1û;A1uiH2
¼ hg;uiH1

# hex;A1uiH2
; (1.8)

which implies A1û þ ex 2 DðA"
1Þ with A"

1ðA1û þ exÞ ¼ g and presents a
weak formulation4 of

A"
1A1û ¼ g#A"

1ex ¼ A"
1e ¼ A"

1eA1 :

By Remark II (ii) A1 is strictly positive over DðA1Þ \ NðA1Þ?H1 and hence
(1.8) admits a unique solution û 2 DðA1Þ \ NðA1Þ?H1 . A particularly simple
case is again given if N(A1) is finite dimensional or even NðA1Þ ¼ f0g ,
which occurs in many applications.

(ii’) On the other hand, considering the minimum in Theorem V (i) we
can roughly estimate the upper bound by, e.g.,

M2
þ;A1

f;ex; gð Þ * 2c21jA
"
1f# gj2H1

þ 2jf#exj2H2
:

Differentiating the right hand side with respect to f shows that the minim-
izer f̂ 2 DðA"

1Þ solves the variational formulation

8 f 2 D A"
1ð Þ c21hA"

1f̂;A
"
1fiH1

þ hf̂; fiH2
¼ c21hg;A"

1fiH1
þ hex; fiH2

; (1.9)

4Thus A1û # eA1 2 NðA"1Þ \ RðA1Þ ¼ NðA"1Þ \ NðA"1Þ
?H2 ¼ f0g.
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which implies A"
1f̂# g 2 DðA1Þ and c21A1ðA"

1f̂# gÞ ¼ ðex# f̂Þ , presents a
weak formulation of

c21A1A"
1f̂ þ f̂ ¼ c21A1g þ ex:

Unique solvability of (1.9) in DðA"
1Þ is trivial as the variational formulation

reproduces a graph inner product of DðA"
1Þ. An optimized minimization pro-

cess using a more careful estimate is explained in some detail in Section 4.3.

(iii) Similar arguments and formulations hold for Theorem V (ii) and (iii)
as well.

We shall also present a full theory, in particular functional a posteriori
error estimates, for linear second order systems such as

A"
2A2x ¼ f ;
A"
1x ¼ g;
p2x ¼ k

(1.10)

with x 2 D2 such that A2x 2 DðA"
2Þ , i.e., x 2 DðA"

1Þ \ DðA"
2A2Þ . This will

follow immediately by the theory developed for the first order system (1.5),
since the solution pair

x; yð Þ 2 D A2ð Þ \ D A"
1

! "! "
, D A3ð Þ \ D A"

2

! "! "

defined by y :¼ A2x 2 DðA"
2Þ \ RðA2Þ solves the system of first order sys-

tems

A2x ¼ y; A3y ¼ 0;
A"
1x ¼ g; A"

2y ¼ f ;
p2x ¼ k; p3y ¼ 0:

Analogously, we can treat problems such as

A"
2A2x ¼ f ;

A1A"
1x ¼ g;

p2x ¼ k
(1.11)

as well, which are strongly related to the generalized Hodge-Helmholtz
decomposition of f þ g þ k 2 H2.

1.2. Applications

Our main applications will be the linear first order systems of electro-mag-
neto statics as well as related second order rotrot systems and, as a very
simple example, the Laplacian, see Section 5, especially Theorem 5.12. In
this article, we only discuss homogeneous boundary conditions, noting that
the canonical extension to inhomogeneous boundary conditions is straight
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forward. As we shall give a detailed description of more applications fitting
our general theory for the linear systems (1.5), (1.10), (1.11) and for the
general complexes (1.3), (1.4) in Section 5.3, we just indicate a few applica-
tions by listing some interesting and important underlying complexes aris-
ing in, e.g., general electro-magneto statics, for differential forms on
Riemannian manifolds, in problems of linear elasticity, Stokes equations,
biharmonic theory, general relativity, rot rot rot rot-operators, to mention
just a few examples. Although all these systems are allowed to have mixed
generalized tangential and normal boundary conditions and inhomogen-
eous and anisotropic material properties, see Section 5.3, we will just pre-
sent the cases of full boundary conditions and homogeneous and isotropic
material parameters here in this introductory part. For this let X & R3 or
X & RN;N - 2, be a bounded weak Lipschitz domain.

+ electro-magnetics

A typical system for a vector field E is

rotCE ¼ F; # divE ¼ g:

This system is well understood, see, e.g., the pioneering work of Norbert
Weck [6] and Rainer Picard [7–9]. See also [10].

+ generalized electro-magnetics (differential forms)

A typical system for a differential form E is

dCE ¼ F; # dE ¼ G:

This system is well understood as well, see, e.g., [7–9, 11, 12].

+ biharmonic problems, Stokes problems, and general relativity

A typical system for a symmetric tensor field S resp. a deviatoric (trace
free) tensor field T is
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RotS;CS ¼ F; div DivSS ¼ g resp: DivT;CT ¼ F; symRotTT ¼ G:

+ linear elasticity

A typical system for a symmetric tensor field S is

RotRot>S;CS ¼ F; #DivSS ¼ G:

Here we denote the rigid motions and the global Raviart–Thomas fields
of X by

RM :¼ PjX : P xð Þ ¼ Qxþ b; Q 2 R3,3 skew# symmetric; b 2 R3
# $

;
RT :¼ PjX : P xð Þ ¼ a xþ b; a 2 R; b 2 R3

# $
:

2. Functional analysis tool box

Let ‘ 2 Z. By the projection theorem the Helmholtz type decompositions

H‘ ¼ N A‘ð Þ!H‘R A"
‘

! "
;H‘þ1 ¼ N A"

‘

! "
!H‘þ1R A‘ð Þ (2.1)

hold and define in a natural way the reduced operators

A‘ :¼ A‘jR A"
‘ð Þ : D A‘ð Þ & R A"

‘

! "
! R A‘ð Þ;

D A‘ð Þ :¼ D A‘ð Þ \ R A"
‘

! "
¼ D A‘ð Þ \ N A‘ð Þ?H‘ ;

A"
‘ :¼ A"

‘ jR A‘ð Þ : D A"
‘

! "
& R A‘ð Þ ! R A"

‘

! "
;

D A"
‘

! "
:¼ D A"

‘

! "
\ R A‘ð Þ ¼ D A"

‘

! "
\ N A"

‘

! "?H‘þ1 ;

which are also densely defined and closed linear operators. We note that
A‘ and A"

‘ are indeed adjoint to each other, i.e., ðA‘;A"
‘Þ is a dual pair as

well. Now the inverse operators

A# 1
‘ : R A‘ð Þ ! D A‘ð Þ; A"

‘

! "# 1
: R A"

‘

! "
! D A"

‘

! "

exist, since A‘ and A"
‘ are injective by definition, and they are bijective, as,

e.g., for x 2 DðA‘Þ and y :¼ A‘x 2 RðA‘Þ we get A# 1
‘ y ¼ x by the injectiv-

ity of A‘ . Furthermore, by the Helmholtz type decompositions (2.1) we
have

D A‘ð Þ ¼ N A‘ð Þ!H‘D A‘ð Þ; D A"
‘

! "
¼ N A"

‘

! "
!H‘D A"

‘

! "
(2.2)

and thus we obtain for the ranges

R A‘ð Þ ¼ R A‘ð Þ; R A"
‘

! "
¼ R A"

‘

! "
: (2.3)
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By the closed range and closed graph theorem we get immediately the
following lemma.

Lemma 2.1. The following assertions are equivalent:

(i) 9 c‘ 2 ð0;1Þ 8 x 2 DðA‘Þ jxjH‘
* c‘jA‘xjH‘þ1

(i’) 9 c"‘ 2 ð0;1Þ 8 y 2 DðA"
‘Þ jyjH‘þ1

* c"‘ jA"
‘yjH‘

(ii) RðA‘Þ ¼ RðA‘Þ is closed in H‘þ1.
(ii’) RðA"

‘Þ ¼ RðA"
‘Þ is closed in H‘.

(iii) A# 1
‘ : RðA‘Þ ! DðA‘Þ is continuous and bijective with norm bounded

by ð1þ c2‘Þ
1=2.

(iii’) ðA"
‘Þ

# 1 : RðA"
‘Þ ! DðA"

‘Þ is continuous and bijective with norm
bounded by ð1þ c"‘

2Þ1=2.

Proof. Note that by the closed range theorem (ii) () (ii") holds. Hence,
by symmetry it is sufficient to show (i) () (ii) () (iii).
(i) ) (ii) Pick a sequence ðynÞ & RðA‘Þ converging to y 2 H‘þ1 in H‘þ1.

By (2.3) there exists a sequence ðxnÞ & DðA‘Þ with yn ¼ A‘xn . (i) implies
that (xn) is a Cauchy sequence in H‘ and hence there exists some x 2 H‘

with xn ! x in H‘. As A‘ is closed, we get x 2 DðA‘Þ and A‘x ¼ y 2 RðA‘Þ.
(ii) ) (iii) Note that A# 1

‘ : RðA‘Þ ! DðA‘Þ is a densely defined and
closed linear operator. By (ii), R(A ‘) is closed and hence itself a Hilbert
space. By the closed graph theorem A# 1

‘ is continuous.
(iii) ) (i) For x 2 DðA‘Þ let y :¼ A‘x 2 RðA‘Þ. Then x ¼ A# 1

‘ y as A‘ is
injective.5 Therefore,

jxjH‘
¼ jA# 1

‘ yjH‘
* jA# 1

‘ jR A‘ð Þ;R A"
‘ð ÞjyjH‘þ1

¼ c‘jA‘xjH‘þ1

with c‘ :¼ jA# 1
‘ jRðA‘Þ;RðA"

‘ Þ
.

If (i) holds we have for y 2 RðA‘Þ and x :¼ A# 1
‘ y 2 DðA‘Þ

jA# 1
‘ yjH‘

* c‘jA‘xjH‘þ1
¼ c‘jyjH‘þ1

and hence

jA# 1
‘ jR A‘ð Þ;R A"

‘ð Þ ¼ sup
0 6¼y2R A‘ð Þ

jA# 1
‘ yjH‘

jyjH‘þ1

* c‘;

jA# 1
‘ j2R A‘ð Þ;D A‘ð Þ ¼ sup

0 6¼y2R A‘ð Þ

jA# 1
‘ yj2D A‘ð Þ

jyj2H‘þ1

¼ sup
06¼y2R A‘ð Þ

jA# 1
‘ yj2H‘

þ jyj2H‘þ1

jyj2H‘þ1

* c2‘ þ 1;

finishing the proof. w

5It holds A‘ðx#A# 1
‘ yÞ ¼ 0 and thus x ¼ A# 1

‘ y.
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From now on we assume that we always choose the best Friedrichs/
Poincar!e type constants c‘; c"‘ , if they exist in ð0;1Þ, i.e., c‘ and c"‘ are given
by the Rayleigh quotients

1
c‘
:¼ inf

0 6¼x2D A‘ð Þ

jA‘xjH‘þ1

jxjH‘

;
1
c"‘

:¼ inf
06¼y2D A"

‘ð Þ
jA"

‘yjH‘

jyjH‘þ1

:

Moreover, we see

c‘ ¼ sup
06¼x2D A‘ð Þ

jxjH‘

jA‘xjH‘þ1

¼ sup
06¼y2R A‘ð Þ

jA# 1
‘ yjH‘

jyjH‘þ1

¼ jA# 1
‘ jR A‘ð Þ;R A"

‘ð Þ; (2.4)

as 0 6¼ x 2 DðA‘Þ implies 0 6¼ A‘x and for y :¼ A‘x with x 2 DðA‘Þ we
have A# 1

‘ y ¼ x, both by the injectivity of A‘. Analogously, we get

c"‘ ¼ sup
06¼y2D A"

‘ð Þ

jyjH‘þ1

jA"
‘yjH‘

¼ sup
0 6¼x2R A"

‘ð Þ

j A"
‘

! "# 1xjH‘þ1

jxjH‘

¼ j A"
‘

! "# 1jR A"
‘ð Þ;R A‘ð Þ:

(2.5)

Lemma 2.2. Assume that c‘ 2 ð0;1Þ or c"‘ 2 ð0;1Þ exists. Then c‘ ¼ c"‘ .
We note that also in the case c‘ ¼ 1 or c"‘ ¼ 1 we have c‘ ¼ c"‘ ¼ 1.

Proof. Let, e.g., c"‘ exist in ð0;1Þ . By Lemma 2.1 also c‘ exists in ð0;1Þ
and the ranges RðA‘Þ ¼ RðA‘Þ and RðA"

‘Þ ¼ RðA"
‘Þ are closed. Then for

x 2 DðA‘Þ ¼ DðA‘Þ \ RðA"
‘Þ there is y 2 DðA"

‘Þ with x ¼ A"
‘y . More pre-

cisely, y :¼ ðA"
‘Þ

# 1x 2 DðA"
‘Þ is uniquely determined and we have jyjH‘þ1

*
c"‘ jA"

‘yjH‘
. But then

jxj2H‘
¼ hx;A"

‘yiH‘
¼ hA‘x; yiH‘þ1

* jA‘xjH‘þ1
jyjH‘þ1

* c"‘ jA‘xjH‘þ1
jA"

‘yjH‘
;

yielding jxjH‘
* c"‘ jA‘xjH‘þ1

. Therefore, c‘ * c"‘ and by symmetry we obtain
c‘ ¼ c"‘ . w

A standard indirect argument shows the following lemma.

Lemma 2.3. Let DðA‘Þ ¼ DðA‘Þ \ RðA"
‘Þ ,!H‘ be compact. Then the asser-

tions of Lemma 2.1 and Lemma 2.2 hold. Moreover, the inverse operators

A# 1
‘ : R A‘ð Þ ! R A"

‘

! "
; A"

‘

! "# 1
: R A"

‘

! "
! R A‘ð Þ

are compact with norms

jA# 1
‘ jR A‘ð Þ;R A"

‘ð Þ ¼ j A"
‘

! "# 1jR A"
‘ð Þ;R A‘ð Þ ¼ c‘:

Proof. If, e.g., Lemma 2.1 (i) was wrong, there exists a sequence ðxnÞ &
DðA‘Þ with jxnjH‘

¼ 1 and A‘xn ! 0. As (xn) is bounded in DðA‘Þ we can
extract a subsequence, again denoted by (xn), with xn ! x 2 H‘ in H‘.
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Since A‘ is closed, we have x 2 DðA‘Þ and A‘x ¼ 0. Hence x 2 NðA‘Þ. On
the other hand, ðxnÞ & DðA‘Þ & RðA"

‘Þ ¼ NðA‘Þ? implies x 2 NðA‘Þ? .
Thus x¼ 0, in contradiction to 1 ¼ jxnjH‘

! jxjH‘
¼ 0. w

Lemma 2.4. The embedding DðA‘Þ ,!H‘ is compact, if and only if the
embedding DðA"

‘Þ ,!H‘þ1 is compact. In this case all assertions of Lemma
2.1 and Lemma 2.2 are valid.

Proof. By symmetry it is enough to show one direction. Let, e.g., the
embedding DðA‘Þ ,!H‘ be compact. By Lemma 2.1 and Lemma 2.3, espe-
cially RðA‘Þ ¼ RðA‘Þ and RðA"

‘Þ ¼ RðA"
‘Þ are closed. Let ðynÞ & DðA"

‘Þ ¼
DðA"

‘Þ \ RðA‘Þ be a DðA"
‘Þ-bounded sequence. We pick a sequence ðxnÞ &

DðA‘Þ with yn ¼ A‘xn , i.e., xn ¼ A# 1
‘ yn . As A# 1

‘ : RðA‘Þ ! DðA‘Þ is con-
tinuous, (xn) is bounded in DðA‘Þ and thus contains a subsequence, again
denoted by (xn), converging in H‘ to some x 2 H‘. Now

jyn # ymj2H‘þ1
¼ hyn # ym;A‘ xn# xmð ÞiH‘þ1

¼ hA"
‘ yn# ymð Þ; xn# xmiH‘

* c jxn # xmjH‘

as ðynÞ is DðA"
‘Þ-bounded. Finally, we see that ðynÞ is a Cauchy sequence in

H‘þ1. w

Let us summarize:

Corollary 2.5. Let R(A‘) be closed. Then

1
c‘
¼ inf

06¼x2D A‘ð Þ

jA‘xjH‘þ1

jxjH‘

¼ inf
y2D A"

‘ð Þ
jA"

‘yjH‘

jyjH‘þ1

exists in ð0;1Þ. Furthermore:

(i) The Poincar!e type estimates

8 x 2 D A‘ð Þ jxjH‘
* c‘jA‘xjH‘þ1

;

8 y 2 D A"
‘

! "
jyjH‘þ1

* c‘jA"
‘yjH‘

hold.
(ii) The ranges RðA‘Þ ¼ RðA‘Þ and RðA"

‘Þ ¼ RðA"
‘Þ are closed. Moreover,

DðA‘Þ ¼ DðA‘Þ \ RðA"
‘Þ and DðA"

‘Þ ¼ DðA"
‘Þ \ RðA‘Þ with

A‘ : D A‘ð Þ & R A"
‘

! "
! R A‘ð Þ; A"

‘ : D A"
‘

! "
& R A‘ð Þ ! R A"

‘

! "
:

(iii) The Helmholtz type decompositions

H‘ ¼ N A‘ð Þ!H‘R A"
‘

! "
; H‘þ1 ¼ N A"

‘

! "
!H‘þ1R A‘ð Þ;

D A‘ð Þ ¼ N A‘ð Þ!H‘D A‘ð Þ; D A"
‘

! "
¼ N A"

‘

! "
!H‘þ1D A"

‘

! "

hold.
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iii. The inverse operators

A# 1
‘ : R A‘ð Þ ! D A‘ð Þ; A"

‘

! "# 1
: R A"

‘

! "
! D A"

‘

! "

are continuous and bijective with norms jA#1
‘ jRðA‘Þ;DðA‘Þ ¼

jðA"
‘Þ

#1jRðA"
‘ Þ;DðA

"
‘ Þ ¼ ð1þ c2‘Þ

1=2 and jA#1
‘ jRðA‘Þ;RðA"

‘ Þ
¼ jðA"

‘Þ
#1jRðA"

‘ Þ;RðA‘Þ ¼
c‘.

Corollary 2.6. Let DðA‘Þ ,!H‘ be compact. Then R(A‘) is closed and the
assertions of Corollary 2.5 hold. Moreover, the inverse operators

A# 1
‘ : R A‘ð Þ ! R A"

‘

! "
; A"

‘

! "# 1
: R A"

‘

! "
! R A‘ð Þ

are compact.

So far, we did not use the complex property (1.1). Hence, Lemma 2.1,
Lemma 2.2, Lemma 2.3, Lemma 2.4, and Corollary 2.5, Corollary 2.6 hold
without the complex property (1.1). Now the complex property (1.1) enters
the theory. Recall the Helmholtz type decompositions (2.1) in the form

H‘ ¼ N A‘ð Þ!H‘R A"
‘

! "
¼ R A‘# 1ð Þ!H‘N A"

‘# 1

! "

hold. Then the complex properties (1.1) and (1.2) yield

N A‘ð Þ ¼ R A‘# 1ð Þ!H‘K‘; N A"
‘# 1

! "
¼ K‘!H‘R A"

‘

! "
; K‘ ¼ N A‘ð Þ \ N A"

‘# 1

! "
:

Therefore, we get the refined Helmholtz type decomposition

H‘ ¼ R A‘# 1ð Þ!H‘K‘!H‘R A"
‘

! "
: (2.6)

Lemma 2.7. The refined Helmholtz type decompositions

H‘ ¼ R A‘# 1ð Þ!H‘K‘!H‘R A"
‘

! "
; K‘ ¼ N A‘ð Þ \ N A"

‘# 1

! "
;

N A‘ð Þ ¼ R A‘# 1ð Þ!H‘K‘; N A"
‘# 1

! "
¼ K‘!H‘R A"

‘

! "
;

R A‘# 1ð Þ ¼ R A‘# 1ð Þ ¼ N A‘ð Þ)H‘K‘; R A"
‘

! "
¼ R A"

‘

! "
¼ N A"

‘# 1

! "
)H‘K‘;

D A‘ð Þ ¼ R A‘# 1ð Þ!H‘K‘!H‘D A‘ð Þ; D A"
‘# 1

! "
¼ D A"

‘# 1

! "
!H‘K‘!H‘R A"

‘

! "
;

D‘ ¼ D A"
‘# 1

! "
!H‘K‘!H‘D A‘ð Þ; D‘ ¼ D A‘ð Þ \ D A"

‘# 1

! "

hold. If the range RðA‘# 1Þ or R(A‘) is closed, the respective closure bars can
be dropped and the assertions of Corollary 2.5 are valid. Especially, if
RðA‘# 1Þ and R(A‘) are closed, the assertions of Corollary 2.5 and the refined
Helmholtz type decompositions

H‘ ¼ R A‘# 1ð Þ!H‘K‘!H‘R A"
‘

! "
; K‘ ¼ N A‘ð Þ \ N A"

‘# 1

! "
;

N A‘ð Þ ¼ R A‘# 1ð Þ!H‘K‘; N A"
‘# 1

! "
¼ K‘!H‘R A"

‘

! "
;

R A‘# 1ð Þ ¼ R A‘# 1ð Þ ¼ N A‘ð Þ)H‘K‘; R A"
‘

! "
¼ R A"

‘

! "
¼ N A"

‘# 1

! "
)H‘K‘;

D A‘ð Þ ¼ R A‘# 1ð Þ!H‘K‘!H‘D A‘ð Þ; D A"
‘# 1

! "
¼ D A"

‘# 1

! "
!H‘K‘!H‘R A"

‘

! "
;

D‘ ¼ D A"
‘# 1

! "
!H‘K‘!H‘D A‘ð Þ; D‘ ¼ D A‘ð Þ \ D A"

‘# 1

! "

hold.
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Observe that

D A‘ð Þ ¼ D A‘ð Þ \ R A"
‘

! "
& D A‘ð Þ \ N A"

‘# 1

! "
& D A‘ð Þ \ D A"

‘# 1

! "
¼ D‘;

D A"
‘# 1

! "
¼ D A"

‘# 1

! "
\ R A‘# 1ð Þ & D A"

‘# 1

! "
\ N A‘ð Þ & D A"

‘# 1

! "
\ D A‘ð Þ ¼ D‘:

(2.7)

Lemma 2.8. The embeddings DðA‘Þ ,!H‘;DðA‘# 1Þ ,!H‘# 1 , and K‘ ,!H‘

are compact, if and only if the embedding D‘ ,!H‘ is compact. In this case,
K‘ has finite dimension.

Proof. Note that, by Lemma 2.4, DðA‘# 1Þ ,!H‘# 1 is compact, if and only
if DðA"

‘# 1Þ ,!H‘ is compact.
) Let ðxnÞ & D‘ be a D‘ -bounded sequence. By the refined Helmholtz

type decomposition of Lemma 2.7 we decompose

xn ¼ a"n þ kn þ an 2 D A"
‘# 1

! "
!H‘K‘!H‘D A‘ð Þ:

with A‘xn ¼ A‘an and A"
‘# 1xn ¼ A"

‘# 1a
"
n . Hence ðanÞ is bounded in DðA‘Þ

and ða"nÞ is bounded in DðA"
‘# 1Þ and we can extract H‘-converging subse-

quences of ðanÞ; ða"nÞ, and ðknÞ.
(: If D‘ ,!H‘ is compact, so is K‘ ,!H‘. Moreover, by (2.7)

D A‘ð Þ & D‘ ,!H‘; D A"
‘# 1

! "
& D‘ ,!H‘:

Finally, if K‘ ,!H‘ is compact, the unit ball in K‘ is compact, showing
that K‘ has finite dimension. w

Lemma 2.8. implies immediately the following result.

Corollary 2.9. Let D‘ ,!H‘ be compact. Then RðA‘# 1Þ and R(A‘) are closed,
and, besides the assertions of Corollary 2.6, the refined Helmholtz type
decompositions of Lemma 2.7 hold and the cohomology group K‘ is finite
dimensional.

Remark 2.10. Under the assumption that the embedding D‘ ,!H‘ is com-
pact, all the assertions of this section hold. Especially, the (short) complex

together with its adjoint complex

is closed. These complexes are even exact, if additionally K‘ ¼ f0g.
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Defining and recalling the orthonormal projectors

pA‘# 1 :¼ pR A‘# 1ð Þ : H‘ ! R A‘# 1ð Þ; pA"
‘
:¼ p

R A"
‘ð Þ : H‘ ! R A"

‘

! "
; p‘ : H‘ ! K‘;

(2.8)

we have p‘ ¼ 1# pA‘# 1 # pA"
‘
as well as

pA‘# 1H‘ ¼ pA‘# 1 D A‘ð Þ ¼ pA‘# 1 N A‘ð Þ ¼ R A‘# 1ð Þ ¼ R A‘# 1ð Þ;

pA"
‘
H‘ ¼ pA"

‘
D A"

‘# 1

! "
¼ pA"

‘
N A"

‘# 1

! "
¼ R A"

‘

! "
¼ R A"

‘

! "

and

pA‘# 1D A"
‘# 1

! "
¼ pA‘# 1D‘ ¼ D A"

‘# 1

! "
; pA"

‘
D A‘ð Þ ¼ pA"

‘
D‘ ¼ D A‘ð Þ:

Moreover

8n 2 D A"
‘# 1

! "
pA‘# 1n 2 D A"

‘# 1

! "
! A"

‘# 1pA‘# 1n ¼ A"
‘# 1n;

8f 2 D A‘ð Þ pA"
‘
f 2 D A‘ð Þ ! A‘pA"

‘
f ¼ A‘f:

We also introduce the orthogonal projectors onto the kernels

pN A"
‘# 1ð Þ :¼ 1# pA‘# 1 : H‘ ! N A"

‘# 1

! "
; pN A‘ð Þ :¼ 1# pA"

‘
: H‘ ! N A‘ð Þ:

3. Solution theory and variational formulations

From now on and throughout this article we suppose the following.
General Assumption 3.1. R(A1) and R(A2) are closed and K2 is finite

dimensional.

Remark 3.2. The General Assumption 3.1 is satisfied, if, e.g., D2 ,!H2 is
compact. The finite dimension of the cohomology group K2 may be dropped.

3.1. First order systems

We recall the linear first order system (1.5) from the introduction: Find
x 2 D2 ¼ DðA2Þ \ DðA"

1Þ such that

A2x ¼ f ;
A"
1x ¼ g;

p2x ¼ k:
(3.1)

Theorem 3.3. (3.1) is uniquely solvable in D2, if and only if f 2 RðA2Þ; g 2
RðA"

1Þ, and k 2 K2. The unique solution x 2 D2 is given by
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x :¼ xf þ xg þ k 2 D A2ð Þ!H2D A"
1

! "
!H2K2 ¼ D2;

xf :¼ A# 1
2 f 2 D A2ð Þ ¼ D A2ð Þ \ D2;

xg :¼ A"
1

! "# 1g 2 D A"
1

! "
¼ D A"

1

! "
\ D2

and depends continuously on the data, i.e., jxjH2
* c2jf jH3

þ c1jgjH1
þ jkjH2

,
as

jxf jH2
* c2jf jH3

; jxgjH2
* c1jgjH1

:

It holds

pA"
2
x ¼ xf ; pA1x ¼ xg; p2x ¼ k; jxj2H2

¼ jxf j2H2
þ jxgj2H2

þ jkj2H2
:

Proof. As pointed out in the introduction, we just need to show existence.
We use the results of Section 2. Let f 2 RðA2Þ; g 2 RðA"

1Þ; k 2 K2 and
define x, xf, and xg according to the theorem. For the orthogonality we
refer to Lemma 2.7. Moreover, xf, xg, and k solve the linear systems

A2xf ¼ f ; A2xg ¼ 0; A2k ¼ 0;
A"
1xf ¼ 0; A"

1xg ¼ g; A"
1k ¼ 0;

p2xf ¼ 0; p2xg ¼ 0; p2k ¼ k:

Thus x solves (3.1) and we have by Corollary 2.5 jxf jH2
* c2jf jH3

and
jxgjH2

* c1jgjH1
, which completes the proof of the solution theory. w

Remark 3.4. By orthogonality and with A2x ¼ A2xf ¼ f and A"
1x ¼ A"

1xg ¼
g we even have

jxj2H2
¼ jxf j2H2

þ jxgj2H2
þ jkj2H2

* c22jf j
2
H3

þ c21jgj
2
H1

þ jkj2H2
;

jxj2D2
¼ jxf j2H2

þ jf j2H3
þ jxgj2H2

þ jgj2H1
þ jkj2H2

* 1þ c22
! "

jf j2H3
þ 1þ c21
! "

jgj2H1
þ jkj2H2

:

3.1.1. Variational formulations
Recall the partial solutions

xf :¼ A# 1
2 f 2 D A2ð Þ ¼ D A2ð Þ \ R A"

2ð Þ ¼ D A2ð Þ \ N A"
1ð Þ \ K

?H2
2 ;

xg :¼ A"
1

! "# 1g 2 D A"
1

! "
¼ D A"

1ð Þ \ R A1ð Þ ¼ D A"
1ð Þ \ N A2ð Þ \ K

?H2
2 :

(3.2)

There are at least two obvious ways to get variational formulations for
finding each of the partial solutions xf and xg. Looking at xf 2 DðA2Þ the
first idea is to multiply the equation A2xf ¼ f by A2n with some n 2
DðA2Þ leading to

8 n 2 D A2ð Þ hA2xf ;A2niH3
¼ hf ;A2niH3

;

which is a weak formulation of the second order equation
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A"
2A2xf ¼ A"

2f ;

more precisely of A"
2ðA2xf # f Þ ¼ 0 . While the latter choice was straight

forward to find xf itself, the next choice searches for a potential yf, e.g., yf :
¼ ðA"

2Þ
# 1xf 2 DðA"

2Þ, of

xf ¼ A"
2yf 2 D A2ð Þ ¼ D A2ð Þ \ R A"

2

! "
¼ D A2ð Þ \ R A"

2

! "
;

see Remark 3.4. Multiplying by A"
2/ with some / 2 DðA"

2Þ gives

8 / 2 D A"
2

! "
hA"

2yf ;A
"
2/iH2

¼ hxf ;A"
2/iH2

¼ hA2xf ;/iH3
¼ hf ;/iH3

;

which is a weak formulation of the second order equation

A2A"
2yf ¼ f :

Similar ideas apply to find corresponding variational formulations for xg
as well.

Theorem 3.5. The partial solutions xf and xg in Theorem 3.3 can be found
by the following four variational formulations:

(i) There exists a unique exf 2 DðA2Þ such that

8 n 2 D A2ð Þ hA2exf ;A2niH3
¼ hf ;A2niH3

: (3.3)

(3.3) is even satisfied for all n 2 DðA2Þ . Moreover, A2exf ¼ f holds if
and only if f 2 RðA2Þ. In this case exf ¼ xf .

(i’) There exists a unique potential yf 2 DðA"
2Þ such that

8 / 2 D A"
2

! "
hA"

2yf ;A
"
2/iH2

¼ hf ;/iH3
: (3.4)

(3.4) even holds for all / 2 DðA"
2Þ if and only if f 2 RðA2Þ . In this

case we have

A"
2yf 2 D A2ð Þ \ R A"

2

! "
¼ D A2ð Þ

with A2A"
2yf ¼ f and hence A"

2yf ¼ xf .
(ii) There exists a unique exg 2 DðA"

1Þ such that

8 f 2 D A"
1

! "
hA"

1exg;A
"
1fiH1

¼ hg;A"
1fiH1

: (3.5)

(3.5) is even satisfied for all f 2 DðA"
1Þ . Moreover, A"

1exg ¼ g holds if
and only if g 2 RðA"

1Þ. In this case exg ¼ xg .
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(ii’) There exists a unique potential zg 2 DðA1Þ such that

8 u 2 D A1ð Þ hA1zg;A1uiH2
¼ hg;uiH1

: (3.6)

(3.6) even holds for all u 2 DðA1Þ if and only if g 2 RðA"
1Þ. In this case we

have

A1zg 2 D A"
1

! "
\ R A1ð Þ ¼ D A"

1

! "

with A"
1A1zg ¼ g and thus A1zg ¼ xg

Proof. Equation (3.3) is strictly positive (or coercive) over DðA2Þ by the
Friedrichs/Poincar!e type estimates of Corollary 2.5 (i) and hence a unique
exf 2 DðA2Þ exists by Riesz’ representation theorem (or Lax–Milgram’s
lemma) solving (3.3). By (2.3), i.e., RðA2Þ ¼ RðA2Þ , (3.3) holds for all n 2
DðA2Þ. Hence

8 n 2 D A2ð Þ hA2exf # f ;A2niH3
¼ 0;

yielding A2exf # f 2 RðA2Þ?H3 : Thus, if f 2 RðA2Þ; we see A2exf # f 2
RðA2Þ \ RðA2Þ?H3 ¼ f0g, i.e., A2exf ¼ f . As exf 2 DðA2Þ conclude exf ¼ xf by
the injectivity of A2, which completes the proof of (i).
Equation (3.4) is strictly positive over DðA"

2Þ by Corollary 2.5 (i) and
thus a unique yf 2 DðA"

2Þ exists by Riesz’ representation theorem solving
(3.4). Using Corollary 2.5 (iii) or Lemma 2.7 we can split any / 2 DðA"

2Þ ¼
NðA"

2Þ!H3DðA
"
2Þ into / ¼ /N þ /R (null space and range) with /N 2

NðA"
2Þ;/R 2 DðA"

2Þ, and A"
2/ ¼ A"

2/R. Let f 2 RðA2Þ. Utilizing (3.4) for /R
and orthogonality, i.e., f 2 RðA2Þ ¼ NðA"

2Þ
?H3 , we get

hA"
2yf ;A

"
2/iH2

¼ hA"
2yf ;A

"
2/RiH2

¼ hf ;/RiH3
¼ hf ;/iH3

:

Therefore, (3.4) holds for all / 2 DðA"
2Þ . On the other hand, if (3.4)

holds for all / 2 DðA"
2Þ , then A"

2yf 2 DðA2Þ with A2A"
2yf ¼ f . Hence6 f 2

RðA2Þ. Therefore, if f belongs to R(A2), we obtain A"
2yf 2 DðA2Þ \ RðA"

2Þ ¼
DðA2Þ with A2A"

2yf ¼ f and hence A"
2yf ¼ xf , again by the injectivity of

A2.
Analogously, we prove (ii) and (ii’). w

6Another proof is the following: Pick / 2 NðA"2Þ and get by (3.4) directly hf ;/iH3
¼ 0 . Thus f 2 NðA"2Þ

?H3 ¼
RðA2Þ.
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Remark 3.6. Note that

xf ¼ A# 1
2 f 2 D A2ð Þ; xg ¼ A"

1

! "# 1g 2 D A"
1

! "
;

yf ¼ A"
2

! "# 1xf ¼ A"
2

! "# 1A# 1
2 f 2 D A"

2

! "
; zg ¼ A# 1

1 xg ¼ A# 1
1 A"

1

! "# 1g 2 D A1ð Þ

hold with A2A"
2yf ¼ f and A"

1A1zg ¼ g . Hence xf, xg, k, and yf, zg solve the
first resp. second order systems

A2xf ¼ f ; A2xg ¼ 0; A2k ¼ 0; A"
2yf ¼ xf ; A2A"

2yf ¼ f ; A1zg ¼ xg; A"
1A1zg ¼ g;

A"
1xf ¼ 0; A"

1xg ¼ g; A"
1k ¼ 0; A3yf ¼ 0; A3yf ¼ 0; A"

0zg ¼ 0; A"
0zg ¼ 0;

p2xf ¼ 0; p2xg ¼ 0; p2k ¼ k; p3yf ¼ 0; p3yf ¼ 0; p1zg ¼ 0; p1zg ¼ 0:

Moreover:

(i) Equation (3.3) is a weak formulation of

A"
2A2exf ¼ A"

2f ; A"
1exf ¼ 0; p2exf ¼ 0;

i.e., in formal matrix notation

A"
2A2

A"
1

p2

2

4

3

5 exf
% &

¼
A"
2f
0
0

2

4

3

5:

(i’) Equation (3.4) is a weak formulation of

A2A"
2yf ¼ f ; A3yf ¼ 0; p3yf ¼ 0;

i.e., in formal matrix notation

A2A"
2

A3

p3

2

4

3

5 yf
% &

¼
f
0
0

2

4

3

5:

(ii) Equation (3.5) is a weak formulation of

A1A"
1exg ¼ A1g; A2exg ¼ 0; p2exg ¼ 0;

i.e., in formal matrix notation

A1A"
1

A2

p2

2

4

3

5 exg
% &

¼
A1g
0
0

2

4

3

5:

(ii’) Equation (3.6) is a weak formulation of

A"
1A1zg ¼ g; A"

0zg ¼ 0; p1zg ¼ 0;
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i.e., in formal matrix notation

A"
1A1

A"
0

p1

2

4

3

5 zg
% &

¼
g
0
0

2

4

3

5:

We also emphasize that the variational formulations (3.3)–(3.6) have a
saddle point structure. We have already seen that, provided f 2 RðA2Þ and
g 2 RðA"

1Þ, the formulations (3.3)–(3.6) are equivalent to the following four
problems: Find exf 2 DðA2Þ; yf 2 DðA"

2Þ, exg 2 DðA"
1Þ, and zg 2 DðA1Þ, such

that

8 n 2 D A2ð Þ hA2exf ;A2niH3
¼ hf ;A2niH3

; (3.7)

8 / 2 D A"
2

! "
hA"

2yf ;A
"
2/iH2

¼ hf ;/iH3
; (3.8)

8 f 2 D A"
1

! "
hA"

1exg;A
"
1fiH1

¼ hg;A"
1fiH1

; (3.9)

8 u 2 D A1ð Þ hA1zg;A1uiH2
¼ hg;uiH1

: (3.10)

Note that in the end one needs only two out of these four formulations
for computing

xf ¼ exf ¼ A"
2yf ; xg ¼ exg ¼ A1zg:

Moreover,

exf 2 D A2ð Þ ¼ D A2ð Þ \ R A"
2ð Þ () exf 2 D A2ð Þ ! exf 2 R A"

2ð Þ ¼ N A2ð Þ?H2 ;

yf 2 D A"
2

! "
¼ D A"

2ð Þ \ R A2ð Þ () yf 2 D A"
2ð Þ ! yf 2 R A2ð Þ ¼ N A"

2ð Þ?H3 ;

exg 2 D A"
1

! "
¼ D A"

1ð Þ \ R A1ð Þ () exg 2 D A"
1ð Þ ! exg 2 R A1ð Þ ¼ N A"

1ð Þ?H2 ;

zg 2 D A1ð Þ ¼ D A1ð Þ \ R A"
1ð Þ () zg 2 D A1ð Þ ! zg 2 R A"

1ð Þ ¼ N A1ð Þ?H1 :

Therefore, the variational formulations (3.7)–(3.10) are equivalent to the
following four saddle point problems: Find exf 2 DðA2Þ; yf 2 DðA"

2Þ , exg 2
DðA"

1Þ, and zg 2 DðA1Þ, such that

8 n 2 D A2ð Þ hA2exf ;A2niH3
¼ hf ;A2niH3

! 8 j 2 N A2ð Þ hexf ; j iH2
¼ 0;

(3.11)
8 / 2 D A"

2

! "
hA"

2yf ;A
"
2/iH2

¼ hf ;/iH3
! 8 h 2 N A"

2

! "
hyf ; hiH3

¼ 0;

(3.12)
8 f 2 D A"

1

! "
hA"

1exg;A
"
1fiH1

¼ hg;A"
1fiH1

! 8 k 2 N A"
1

! "
hexg; kiH2

¼ 0;

(3.13)
8 u 2 D A1ð Þ hA1zg;A1uiH2

¼ hg;uiH1
! 8 w 2 N A1ð Þ hzg;wiH1

¼ 0:

(3.14)

Let us additionally assume that R(A0) and R(A3) are closed. Using
Lemma 2.7, i.e.,
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N A1ð Þ ¼ R A0ð Þ!H1K1; N A"
1

! "
¼ R A"

2

! "
!H2K2; (3.15)

N A2ð Þ ¼ R A1ð Þ!H2K2; N A"
2

! "
¼ R A"

3

! "
!H3K3; (3.16)

the systems (3.11)–(3.14) may be further refined to the following four dou-
ble saddle point formulations: Find exf 2 DðA2Þ; yf 2 DðA"

2Þ , exg 2 DðA"
1Þ ,

and zg 2 DðA1Þ, such that

8 n 2 D A2ð Þ hA2exf ;A2niH3
¼ hf ;A2niH3

! 8 a 2 D A1ð Þ hexf ;A1aiH2
¼ 0

! 8 j 2 K2 hexf ; j iH2
¼ 0;

(3.17)
8 / 2 D A"

2ð Þ hA"
2yf ;A

"
2/iH2

¼ hf ;/iH3
! 8 b 2 D A"

3

! "
hyf ;A"

3biH3
¼ 0

! 8 h 2 K3 hyf ; hiH3
¼ 0;

(3.18)
8 f 2 D A"

1ð Þ hA"
1exg;A"

1fiH1
¼ hg;A"

1fiH1
! 8 c 2 D A"

2ð Þ hexg;A"
2ciH2

¼ 0
! 8 k 2 K2 hexg; kiH2

¼ 0;

(3.19)
8 u 2 D A1ð Þ hA1zg;A1uiH2

¼ hg;uiH1
! 8 d 2 D A0ð Þ hzg;A0diH1

¼ 0
! 8 w 2 K1 hzg;wiH1

¼ 0:

(3.20)

Remark 3.7. For possible numerical purposes and applications let us mention
a few observations:

(i) Using the variational formulation (3.11) or (3.17) corresponding to
xf ¼ exf 2 DðA2Þ for finding a numerical (discrete) approximation xf ;h
of xf proposes a D(A2)-conforming method in some finite dimensional
(discrete) subspace DhðA2Þ of D(A2) giving also a D(A2)-conforming dis-
crete solution xf ;h 2 DhðA2Þ & DðA2Þ.

(ii) Using the variational formulation (3.12) or (3.18) corresponding to
xf ¼ A"

2yf 2 RðA"
2Þ for finding a discrete approximation xf ;h ¼ A"

2yf ;h of
xf proposes a DðA"

2Þ -conforming method in some discrete subspace
DhðA"

2Þ of DðA"
2Þ giving a DðA"

2Þ -conforming discrete potential yf ;h 2
DhðA"

2Þ & DðA"
2Þ, but yielding a DðA"

1Þ-conforming solution as

xf ;h ¼ A"
2yf ;h 2 R A"

2

! "
¼ N A"

1

! "
\ K

?H2
2 & D A"

1

! "
:

(ii’) A possible discrete solution xf ;h ¼ A"
2yf ;h from (ii) satisfies automatically

the side conditions

A"
1xf ;h ¼ 0; p2xf ;h ¼ 0;
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i.e., even on the discrete level there is no error in the side conditions.
The other option from (i) yields a discrete solution xf ;h , which most
probably has got errors in the side conditions.

(iii) Similar observations hold for (3.13) or (3.19) with DðA"
1Þ-conforming

discrete solutions and (3.14) or (3.20) with D(A1)- resp. D(A2)-con-
forming discrete solutions.

Remark 3.8. The finite dimensionality of K2 may be dropped. Then all asser-
tions of Theorem 3.3 and Theorem 3.5 and all variational and saddle point
formulations remain valid. Note that R(A1) and R(A2) are closed, if
DðA1Þ ,!H1 and DðA2Þ ,!H2 are compact. Moreover, by Lemma 2.8
DðA1Þ ,!H1 and DðA2Þ ,!H2 are compact and K2 is finite dimensional if
and only if D2 ,!H2 is compact.

3.1.2. Trivial cohomology groups
The double saddle point formulations (3.17)–(3.20) can be simplified if
some assumptions on the cohomology groups are imposed. For this, let
additionally to our General Assumption 3.1 the two ranges R(A0) and
R(A3) be closed as well and let the cohomology groups K1 and K3 be trivial.
Thus all ranges RðA0Þ;RðA1Þ;RðA2Þ , and R(A3) are assumed to be closed
and we have

K1 ¼ 0f g; K3 ¼ 0f g:

Recalling (3.15) and (3.16) we see

N A1ð Þ ¼ R A0ð Þ; N A"
2

! "
¼ R A"

3

! "
:

If we now focus on the two double saddle point problems (3.18) and
(3.20) we get the following simplified versions: Find yf 2 DðA"

2Þ and zg 2
DðA1Þ, such that

8 / 2 D A"
2

! "
hA"

2yf ;A
"
2/iH2

¼ hf ;/iH3
! 8 b 2 D A"

3

! "
hyf ;A"

3biH3
¼ 0;

(3.21)

8 u 2 D A1ð Þ hA1zg;A1uiH2
¼ hg;uiH1

! 8 d 2 D A0ð Þ hzg;A0diH1
¼ 0:

(3.22)

Let us consider the following modified system: Find

yf ; vfð Þ 2 D A"
2

! "
, D A"

3

! "
; zg;wgð Þ 2 D A1ð Þ , D A0ð Þ;
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such that

8 /; bð Þ 2 D A"
2

! "
, D A"

3

! "
hA"

2yf ;A
"
2/iH2

þ hA"
3vf ;/iH3

¼ hf ;/iH3
! hyf ;A"

3biH3
¼ 0;

(3.23)
8 u; dð Þ 2 D A1ð Þ , D A0ð Þ hA1zg;A1uiH2

þ hA0wg;uiH1
¼ hg;uiH1

! hzg;A0diH1
¼ 0:

(3.24)

The unique solutions yf, zg of (3.21)–(3.22) yield solutions ðyf ; 0Þ; ðzg; 0Þ
of (3.23)–(3.24). On the other hand, for any solutions ðyf ; vf Þ; ðzg;wgÞ of
(3.23) and (3.24) we get A"

3vf ¼ 0 and A0wg ¼ 0 by testing with / :¼
A"
3vf 2 RðA"

3Þ ¼NðA"
2Þ &DðA"

2Þ and u :¼ A0wg 2 RðA0Þ ¼NðA1Þ &DðA1Þ
since f 2 RðA2Þ?H3NðA"

2Þ and g 2 RðA"
1Þ?H1NðA1Þ , respectively. Hence, as

vf 2DðA"
3Þ and wg 2DðA0Þ we see vf¼0 and wg¼0. Thus, yf, zg are the

unique solutions of (3.21) and (3.22). The latter arguments show that
(3.21) and (3.22) and (3.23) and (3.24) are equivalent and both are
uniquely solvable.

Remark 3.9. The saddle point formulations (3.23) and (3.24) are also access-
ible by the standard inf-sup-theory, which is widely used in the numerical
community. For this, let us note that the bilinear forms hA"

2 ( ;A"
2 ( iH2

and
hA1 ( ;A1 ( iH2

are strictly positive (coercive) over the respective kernels
given by each of the second forms, which are by assumption

N A3ð Þ ¼ N A3ð Þ?
' (?

¼ R A"
3

! "? ¼ N A"
2ð Þ? ¼ R A2ð Þ;

N A"
0

! "
¼ N A"

0

! "?' (?
¼ R A0ð Þ? ¼ N A1ð Þ? ¼ R A"

1ð Þ;

i.e., over DðA"
2Þ and DðA1Þ . Moreover, the inf-sup-conditions are satisfied.

For this, we compute by choosing / :¼ A"
3b 2 RðA"

3Þ ¼ NðA"
2Þ and u :¼

A0d 2 RðA0Þ ¼ NðA1Þ for some given 0 6¼ b 2 DðA"
3Þ and 0 6¼ d 2 DðA0Þ

jA"
3bjH3

jbjD A"
3ð Þ

* sup
06¼/2D A"

2ð Þ

hA"
3b;/iH3

jbjD A"
3ð Þj/jD A"

2ð Þ
*

jA"
3bjH3

jbjD A"
3ð Þ

* 1;

jA0djH1

jdjD A0ð Þ
* sup

06¼u2D A1ð Þ

hA0d;uiH1

jdjD A0ð ÞjujD A1ð Þ
*

jA0djH1

jdjD A0ð Þ
* 1;

which shows that actually equality holds. Thus, the inf-sup-conditions
follow7

7Note that by (2.4), (2.5), Lemma 2.4, and Corollary 2.5 (iv)

inf
0 6¼b2DðA"

3Þ

jA"3bj
2
H3

jbj2DðA"3Þ
¼

)
sup

0 6¼b2DðA"
3Þ

jbj2H4
þ jA"3bj

2
H3

jA"3bj
2
H3

*#1

¼
)
1þ sup

0 6¼b2DðA"
3Þ

jbj2H4

jA"3bj
2
H3

*#1

¼ 1
1þ c23

¼ jA#1
3 j#2

RðA3Þ;DðA3Þ;

inf
0 6¼d2DðA0Þ

jA0dj2H1

jdj2DðA0Þ
¼

)
sup

06¼d2DðA0Þ

jdj2H0
þ jA0dj2H1

jA0dj2H1

*#1

¼
)
1þ sup

0 6¼d2DðA0Þ

jdj2H0

jA0dj2H1

*#1

¼ 1
c20 þ 1

¼ jA#1
0 j

#2
RðA0Þ;DðA0Þ

hold.
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1 - inf
06¼b2D A"

3ð Þ
sup

0 6¼/2D A"
2ð Þ

hA"
3b;/iH3

jbjD A"
3ð Þj/jD A"

2ð Þ
¼ inf

06¼b2D A"
3ð Þ
jA"

3bjH3

jbjD A"
3ð Þ

¼ c23 þ 1
! "# 1=2

¼ j A"
3

! "# 1j# 1
R A"

3ð Þ;D A"
3ð Þ;

1 - inf
06¼d2D A0ð Þ

sup
06¼u2D A1ð Þ

hA0d;uiH1

jdjD A0ð ÞjujD A1ð Þ
¼ inf

06¼d2D A0ð Þ

jA0djH1

jdjD A0ð Þ
¼ c20 þ 1

! "# 1=2

¼ jA# 1
0 j# 1

R A0ð Þ;D A0ð Þ;

which are actually nothing else than the boundedness of the norms of
the respective inverse operators jðA"

3Þ
# 1jRðA"

3Þ;DðA
"
3Þ ¼ jA# 1

3 jRðA3Þ;DðA3Þ and
jA# 1

0 jRðA0Þ;DðA0Þ ¼ jðA"
0Þ

# 1jRðA"
0Þ;DðA

"
0Þ, i.e., the boundedness of the respective

inverse operators A# 1
3 ; ðA"

3Þ
# 1;A# 1

0 ; ðA"
0Þ

# 1, itself.
Now, if DðA"

3Þ and DðA0Þ are still not suitable and provided that the
respective cohomology groups are trivial, we can repeat the procedure to
obtain additional saddle point formulations for vf and wg. Note that (3.23)
and (3.24) is equivalent to find ðyf ; vf ; zg;wgÞ 2 DðA"

2Þ , DðA"
3Þ , DðA1Þ ,

DðA0Þ, such that for all ð/; b;u; dÞ 2 DðA"
2Þ , DðA"

3Þ , DðA1Þ , DðA0Þ
hA"

2yf ;A
"
2/iH2

þ hA"
3vf ;/iH3

þ hyf ;A"
3biH3

þ hA1zg;A1uiH2
þ hA0wg;uiH1

þ hzg;A0diH1
¼ hf ;/iH3

þ hg;uiH1
:

(3.25)

3.1.3. More variational formulations
Another idea is to compute the two partial solutions xf and xg from Theorem
3.3 together in just one variational formulation for the sum xf þ xg . For this,
let f 2 RðA2Þ and g 2 RðA"

1Þ . Recall that xf 2 DðA2Þ and xg 2 DðA"
1Þ are

given by the variational formulations in Theorem 3.5 (i) and (ii), i.e.,

8 n 2 D A2ð Þ hA2xf ;A2niH3
¼ hf ;A2niH3

; (3.26)

8 f 2 D A"
1

! "
hA"

1xg;A
"
1fiH1

¼ hg;A"
1fiH1

; (3.27)

respectively, compare also to the variational formulations (3.17) and (3.19).
As A"

1xf ¼ A"
1k ¼ 0 and A2xg ¼ A2k ¼ 0, these latter two formulations hold

for x ¼ xf þ xg þ k as well, i.e.,

8 n 2 D A2ð Þ hA2x;A2niH3
¼ hf ;A2niH3

; (3.28)

8 f 2 D A"
1

! "
hA"

1x;A
"
1fiH1

¼ hg;A"
1fiH1

: (3.29)

The first option is to use (3.28) together with a weak version of A"
1x ¼ g, i.e.,

8 u 2 D A1ð Þ hg;uiH1
¼ hA"

1x;uiH1
¼ hx;A1uiH2

:
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The second option is to use (3.29) together with a weak version of
A2x ¼ f , i.e.,

8 / 2 D A"
2

! "
hf ;/iH3

¼ hA2x;/iH3
¼ hx;A"

2/iH2
:

For simplicity, let us assume that the cohomology group K2 is trivial.

Theorem 3.10. Let K2 ¼ f0g . The unique solution x ¼ xf þ xg 2 D2 in
Theorem 3.3 can be found by the following two variational saddle point
formulations:

(i) There exists a unique pair ðex; zÞ 2 DðA2Þ , DðA1Þ such that

8 n;uð Þ 2 D A2ð Þ , D A1ð Þ hA2ex;A2niH3
þ hA1z; niH2

¼ hf ;A2niH3
;

(3.30)
hex;A1uiH2

¼ hg;uiH1
: (3.31)

It holds z¼ 0 as well as

8 n;uð Þ 2 D A2ð Þ , D A1ð Þ hA2ex;A2niH3
¼ hf ;A2niH3

; (3.32)

hex;A1uiH2
¼ hg;uiH1

: (3.33)

Moreover, A2ex ¼ f if and only if f 2 RðA2Þ. (3.31), (3.33) hold for all u 2
DðA1Þ if and only if g 2 RðA"

1Þ if and only if ex 2 DðA"
1Þ and A"

1ex ¼ g . In
this case, i.e., f 2 RðA2Þ and g 2 RðA"

1Þ, we have ex ¼ x from Theorem 3.3.

(ii). There exists a unique pair ðx̂; yÞ 2 DðA"
1Þ , DðA"

2Þ such that

8 f;/ð Þ 2 D A"
1

! "
, D A"

2

! "
hA"

1x̂;A
"
1fiH1

þ hA"
2y; fiH2

¼ hg;A"
1fiH1

; (3.34)

hx̂;A"
2/iH2

¼ hf ;/iH3
: (3.35)

It holds y¼ 0 as well as

8 f;/ð Þ 2 D A"
1

! "
, D A"

2

! "
hA"

1x̂;A
"
1fiH1

¼ hg;A"
1fiH1

; (3.36)

hx̂;A"
2/iH2

¼ hf ;/iH3
: (3.37)

Moreover, A"
1x̂ ¼ g if and only if g 2 RðA"

1Þ . (3.35), (3.37) hold for all
/ 2 DðA"

2Þ if and only if f 2 RðA2Þ if and only if x̂ 2 DðA2Þ and A2x̂ ¼ f .
In this case, i.e., f 2 RðA2Þ and g 2 RðA"

1Þ , we have x̂ ¼ x from
Theorem 3.3.

Proof. We prove unique solvability by standard saddle point theory. By
Corollary 2.5 (i) the principal part of (3.30) is strictly positive over the ker-
nel of (3.31), which is

D A2ð Þ \ N A"
1

! "
¼ D A2ð Þ \ R A"

2

! "
¼ D A2ð Þ;

as K2 ¼ f0g. Moreover, we have for 0 6¼ u 2 DðA1Þ
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jA1ujH2

jujD A1ð Þ
* sup

06¼n2D A2ð Þ

hA1u; niH2

jujD A1ð ÞjnjD A2ð Þ
*

jA1ujH2

jujD A1ð Þ
* 1

by choosing n :¼ A1u 2 RðA1Þ ¼ NðA2Þ, which shows that actually equality
holds. Hence

1 - inf
06¼u2D A1ð Þ

sup
06¼n2D A2ð Þ

hA1u; niH2

jujD A1ð ÞjnjD A2ð Þ
¼ inf

06¼u2D A1ð Þ

jA1ujH2

jujD A1ð Þ

- c21 þ 1
! "# 1=2 ¼ jA# 1

1 j# 1
R A1ð Þ;D A1ð Þ;

which shows that the inf-sup-condition is satisfied. Therefore, (3.30) and
(3.31) admits a unique solution. Picking n :¼ A1z 2 RðA1Þ ¼ NðA2Þ in
(3.30) yields jA1zj2H2

¼ 0 and hence z¼ 0 as z 2 DðA1Þ. Since A1z ¼ 0 even
(3.32) and (3.33) are valid. By (3.32) we see A2ex# f 2 RðA2Þ?H3 , showing
A2ex ¼ f if and only if f 2 RðA2Þ. Using the orthonormal projector pA"

1
and

by (3.33) we see for all u 2 DðA1Þ as pA"
1
u 2 DðA1Þ

hex;A1uiH2
¼ hex;A1pA"

1
uiH2

¼ hg; pA"
1
uiH1

¼ hpA"
1
g;uiH1

¼ hg;uiH1
;

if g 2 RðA"
1Þ . On the other hand, if (3.33) holds for all u 2 DðA1Þ , then

ex 2 DðA"
1Þ with A"

1ex ¼ g , especially g 2 RðA"
1Þ. Therefore, if f 2 RðA2Þ and

g 2 RðA"
1Þ , we have ex 2 DðA2Þ \ DðA"

1Þ ¼ D2 with A2ex ¼ f and A"
1ex ¼ g ,

finally showing ex ¼ x by the unique solvability of (3.1) from Theorem 3.3.
Analogously we prove (ii). w

Remark 3.11. Let us note the following:

(i) (3.30) and (3.31) is a weak formulation of

A"
2A2ex þ A1z ¼ A"

2f ; A"
1ex ¼ g;

i.e., in formal matrix notation

A"
2A2 A1

A"
1 0

+ ,
ex
z

+ ,
¼ A"

2f
g

+ ,
:

Note z¼ 0.
(ii) (3.34) and (3.35) is a weak formulation of

A1A"
1x̂ þ A"

2y ¼ A1g; A2x̂ ¼ f ;

i.e., in formal matrix notation
A1A"

1 A"
2

A2 0

+ ,
x̂
y

+ ,
¼ A1g

f

+ ,
:

Note y¼ 0.
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The restriction K2 ¼ f0g can easily be removed from Theorem 3.10 lead-
ing to double saddle point formulations as in (3.17)–(3.20).

Theorem 3.12. The unique solution x ¼ xf þ xg þ k 2 D2 in Theorem 3.3 can
be found by the following two variational double saddle point formulations:

(i) There exists a unique tripple ðex; z; hÞ 2 DðA2Þ , DðA1Þ , K2 such that

8 n;u; jð Þ 2 D A2ð Þ , D A1ð Þ , K2 hA2ex;A2niH3
þ hA1z; niH2

þ hh; niH2
¼ hf ;A2niH3

;
hex;A1uiH2

¼ hg;uiH1
;

hex; j iH2
¼ hk; j iH2

:

(3.38)

It holds z¼ 0 and h¼ 0 as well as

8 n;u; jð Þ 2 D A2ð Þ , D A1ð Þ , K2 hA2ex;A2niH3
¼ hf ;A2niH3

;

hex;A1uiH2
¼ hg;uiH1

;

hex; j iH2
¼ hk; j iH2

:

(3.39)

Moreover, A2ex ¼ f if and only if f 2 RðA2Þ . The second equations of
(3.38), (3.39) hold for all u 2 DðA1Þ if and only if g 2 RðA"

1Þ if and
only if ex 2 DðA"

1Þ and A"
1ex ¼ g . Furthermore, p2ex ¼ k . In this case,

i.e., f 2 RðA2Þ and g 2 RðA"
1Þ, we have ex ¼ x from Theorem 3.3.

(ii) There exists a unique triple ðx̂; y; hÞ 2 DðA"
1Þ , DðA"

2Þ , K2 such that

8 f;/; jð Þ 2 D A"
1

! "
, D A"

2

! "
, K2 hA"

1x̂;A
"
1fiH1

þ hA"
2y; fiH2

þ hh; fiH2
¼ hg;A"

1fiH1
;

hx̂;A"
2/iH2

¼ hf ;/iH3
;

hx̂; j iH2
¼ hk; j iH2

:

(3.40)
It holds y¼ 0 and h¼ 0 as well as

8 f;/; jð Þ 2 D A"
1

! "
, D A"

2

! "
, K2 hA"

1x̂;A
"
1fiH1

¼ hg;A"
1fiH1

;

hx̂;A"
2/iH2

¼ hf ;/iH3
;

hx̂; j iH2
¼ hk; j iH2

:

(3.41)

Moreover, A"
1x̂ ¼ g if and only if g 2 RðA"

1Þ . The second equations of
(3.40), (3.41) hold for all / 2 DðA"

2Þ if and only if f 2 RðA2Þ if and only if
x̂ 2 DðA2Þ and A2x̂ ¼ f . Furthermore, p2x̂ ¼ k. In this case, i.e., f 2 RðA2Þ
and g 2 RðA"

1Þ, we have x̂ ¼ x from Theorem 3.3.

Proof. Again we prove unique solvability by standard (double) saddle point
theory. The kernels of the operators encoded in the last two equations of
(3.38) are NðA"

1Þ and K
?H2
2 . Hence by Corollary 2.5 (i) the principal part of

the first equation in (3.38) is strictly positive over the latter kernels, i.e.,
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over

D A2ð Þ \ N A"
1

! "
\ K

?H2
2 ¼ D A2ð Þ \ R A"

2

! "
¼ D A2ð Þ:

Moreover, we have for u 2 DðA1Þ and j 2 K2 with ðu; j Þ 6¼ 0

jA1uj2H2
þ jj j2H2

' (1=2

juj2D A1ð Þ þ jj j2H2

' (1=2 * sup
0 6¼n2D A2ð Þ

hA1u; niH2
þ hj ; niH2

juj2D A1ð Þ þ jj j2H2

' (1=2
jnjD A2ð Þ

*
jA1ujH2

þ jj jH2

juj2D A1ð Þ þ jj j2H2

' (1=2 *
ffiffiffi
2

p

by choosing n :¼ A1uþ j 2 RðA1Þ!K2 ¼ NðA2Þ . Hence by Corollary
2.5 (i)

ffiffiffi
2

p
- inf

j 2 K2
u2D A1ð Þ

u; jð Þ 6¼ 0
sup

06¼n2D A2ð Þ

hA1u; niH2
þ hj ; niH2

juj2D A1ð Þ þ jj j2H2

' (1=2
jnjD A2ð Þ

- inf
j 2 K2

u2D A1ð Þ

u; jð Þ 6¼ 0

jA1uj2H2
þ jj j2H2

' (1=2

juj2D A1ð Þ þ jj j2H2

' (1=2
- inf

j 2 K2
u2D A1ð Þ

u; jð Þ 6¼ 0

jA1uj2H2
þ jj j2H2

' (1=2

c21 þ 1
! "

jA1uj2H2
þ jj j2H2

' (1=2

- c21 þ 1
! "#1=2 ¼ jA# 1

1 j# 1
R A1ð Þ;D A1ð Þ;

which shows that the inf-sup-condition is satisfied. Therefore, (3.38) admits
a unique solution. Picking8 n :¼ A1z 2 RðA1Þ ¼ NðA2Þ \ K

?H2
2 in (3.38)

yields jA1zj2H2
¼ 0 and hence z¼ 0 as z 2 DðA1Þ . Choosing n :¼ h 2 K2 ¼

NðA2Þ \ RðA1Þ?H2 in (3.38) shows jhj2H2
¼ 0. Since A1z ¼ h ¼ 0 even (3.39)

is valid. By the first equation of (3.39) we see A2ex# f 2 RðA2Þ?H3 , showing
A2ex ¼ f if and only if f 2 RðA2Þ. Using the orthonormal projector pA"

1
and

by the second equation of (3.39) we get for all u 2 DðA1Þ as pA"
1
u 2 DðA1Þ

hex;A1uiH2
¼ hex;A1pA"

1
uiH2

¼ hg; pA"
1
uiH1

¼ hpA"
1
g;uiH1

¼ hg;uiH1
;

if g 2 RðA"
1Þ. On the other hand, if the second equation of (3.39) holds for

all u 2 DðA1Þ , then ex 2 DðA"
1Þ with A"

1ex ¼ g , especially g 2 RðA"
1Þ .

Therefore, if f 2 RðA2Þ and g 2 RðA"
1Þ , we have ex 2 DðA2Þ \ DðA"

1Þ ¼ D2

with A2ex ¼ f and A"
1ex ¼ g . The third equation of (3.39) implies for all

j 2 K2

8We can test directly by n :¼ A1z þ h 2 RðA1Þ þ K2 ¼ NðA2Þ in (3.38) as well, since orthogonality shows
immediately 0 ¼ hA1z; niH2

þ hh; niH2
¼ jA1zj2H2

þ jhj2H2
.
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0 ¼ hex# k; j iH2
¼ hex# k; p2j iH2

¼ hp2ex# k; j iH2
;

i.e., p2ex ¼ k . Therefore, ex ¼ x by the unique solvability of (3.1) from
Theorem 3.3, which completes the proof of (i). Analogously we prove
(ii). w

Remark 3.13. Let us note the following:

(i) Using the saddle point formulation in Theorem 3.10 (i) or Theorem
3.12 (i) for finding a numerical approximation xh of x provides a
D(A2)-conforming approximation xh 2 DðA2Þ of (3.1), whereas using
the saddle point formulation in Theorem 3.10 (ii) or Theorem 3.12 (ii)
for finding a numerical approximation xh of x provides a DðA"

1Þ-con-
forming approximation xh 2 DðA"

1Þ of (3.1).
(ii) The variational formulations in Theorem 3.10 (i), (ii) or Theorem 3.12

(i), (ii) are exactly those from (3.17) and (3.19) for the special right
hand sides g¼ 0, f¼ 0, and k¼ 0, respectively.

(iii) Equation (3.38) is a weak formulation of

A"
2A2ex þ A1z þ h ¼ A"

2f ; A"
1ex ¼ g; p2ex ¼ k;

i.e., in formal matrix notation

A"
2A2 A1 iK2

A"
1 0 0

p2 ¼ i"K2
0 0

2

64

3

75
ex
z
h

2

4

3

5¼
A"
2f
g
k

2

4

3

5;

where iK2 is the canonical embedding of K2 into H2 . Note z¼ 0
and h¼ 0.

(iii’) Equation (3.40) is a weak formulation of

A1A"
1x̂ þ A"

2yþ h ¼ A1g; A2x̂ ¼ f ; p2x̂ ¼ k;

i.e., in formal matrix notation

A1A"
1 A"

2 iK2

A2 0 0
p2 ¼ i"K2

0 0

2

64

3

75
x̂
y
h

2

4

3

5¼
A1g
f
k

2

4

3

5:

Note y¼ 0 and h¼ 0.

Finally, we present double saddle point variational formulations for find-
ing the partial solutions in (3.17)–(3.20) as well.

Theorem 3.14. Let additionally R(A0) and R(A3) be closed. The partial solu-
tions xf ¼ exf 2 DðA2Þ; xg ¼ exg 2 DðA"

1Þ , and their potentials yf 2 DðA"
2Þ;

zg 2 DðA1Þ from Theorem 3.3, Theorem 3.5, (3.7)–(3.10), (3.11)–(3.14), and
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(3.17)–(3.20) can be found by the following four variational double saddle
point formulations:

(i) There exists a unique triple ðexf ; u; hÞ 2 DðA2Þ , DðA1Þ , K2 such that

8 n;u; jð Þ 2 D A2ð Þ , D A1ð Þ , K2

hA2exf ;A2niH3
þ hA1u; niH2

þ hh; niH2
¼ hf ;A2niH3

;
hexf ;A1uiH2

¼ 0;
hexf ; j iH2

¼ 0:

(3.42)

It holds u¼ 0 and h¼ 0 as well as (3.17). Moreover, A2exf ¼ f if and only
if f 2 RðA2Þ . The second equation of (3.42) holds for all u 2 DðA1Þ and
thus exf 2 NðA"

1Þ . Furthermore, p2exf ¼ 0 . Finally, if f 2 RðA2Þ , we have
exf ¼ xf from Theorem 3.3, see Theorem 3.5 (i).

(i’) There exists a unique triple ðyf ; v; hÞ 2 DðA"
2Þ , DðA"

3Þ , K3 such that

8 /; h; jð Þ 2 D A"
2ð Þ , D A"

3

! "
, K3

hA"
2yf ;A

"
2/iH2

þ hA"
3v;/iH3

þ hh;/iH3
¼ hf ;/iH3

;
hyf ;A"

3hiH3
¼ 0;

hyf ; j iH3
¼ 0:

(3.43)

It holds v¼ 0 if and only if f?H3RðA"
3Þ if and only if9 f 2 NðA3Þ. h¼ 0 if

and only if10 f?H3K3 . Thus v¼ 0 and h¼ 0 if and only if f 2 NðA3Þ \
K

?H3
3 ¼ RðA2Þ . Furthermore, (3.18) holds. Moreover, A"

2yf 2 DðA2Þ and
A2A"

2yf ¼ f if and only if f 2 RðA2Þ. The second equation of (3.43) holds for
all h 2 DðA"

3Þ and hence yf 2 NðA3Þ. Furthermore, p3yf ¼ 0. Finally, if f 2
RðA2Þ, we have A"

2yf ¼ xf from Theorem 3.3, see Theorem 3.5 (i’).

(ii) There exists a unique triple ðexg ; p; hÞ 2 DðA"
1Þ , DðA"

2Þ , K2 such that

8 f;/; jð Þ 2 D A"
1ð Þ , D A"

2

! "
, K2

hA"
1exg;A"

1fiH1
þ hA"

2p; fiH2
þ hh; fiH2

¼ hg;A"
1fiH1

;
hexg;A"

2/iH2
¼ 0;

hexg; j iH2
¼ 0:

(3.44)

It holds p¼ 0 and h¼ 0 as well as (3.19). Moreover, A"
1exg ¼ g if and only

if g 2 RðA"
1Þ . The second equation of (3.44) holds for all / 2 DðA"

2Þ and
thus exg 2 NðA2Þ . Furthermore, p2exg ¼ 0 . Finally, if g 2 RðA"

1Þ , we have
exg ¼ xg from Theorem 3.3, see Theorem 3.5 (ii).

9v¼ 0 implies f # h ¼ A2A"2yf 2 RðA2Þ & NðA3Þ and hence f 2 NðA3Þ.
10h¼ 0 implies f #A"3v ¼ A2A"2yf 2 RðA2Þ ?H3K3 and hence f?H3K3.
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(ii’) There exists a unique triple ðzg; q; hÞ 2 DðA1Þ , DðA0Þ , K1 such that

8 u; #; jð Þ 2 D A1ð Þ , D A0ð Þ , K1

hA1zg;A1uiH2
þ hA0q;uiH1

þ hh;uiH1
¼ hg;uiH1

;
hzg;A0#iH1

¼ 0;
hzg; j iH1

¼ 0:

(3.45)

It holds q¼ 0 if and only if g?H1RðA0Þ if and only if11 g 2 NðA"
0Þ. h¼ 0

if and only if12 g?H1K1 . Thus q¼ 0 and h¼ 0 if and only if g 2 NðA"
0Þ \

K
?H1
1 ¼ RðA"

1Þ . Furthermore, (3.20) holds. Moreover, A1zg 2 DðA"
1Þ and

A"
1A1zg ¼ g if and only if g 2 RðA"

1Þ . The second equation of (3.45) holds
for all # 2 DðA0Þ and hence zg 2 NðA"

0Þ. Furthermore, p1zg ¼ 0. Finally, if
g 2 RðA"

1Þ, we have A1zg ¼ xg from Theorem 3.3, see Theorem 3.5 (ii’).

Proof. The proof follows closely the lines of the proof of Theorem 3.12. w

Remark 3.15. Again we have formal matrix representations:

(i) Equation (3.42) is a weak formulation of

A"
2A2exf þ A1uþ h ¼ A"

2f ; A"
1exf ¼ 0; p2exf ¼ 0;

i.e., in formal matrix notation

A"
2A2 A1 iK2

A"
1 0 0

p2 ¼ i"K2
0 0

2

64

3

75
exf
u
h

2

4

3

5¼
A"
2f
0
0

2

4

3

5:

Note u¼ 0 and h¼ 0.

(i’) Equation (3.43) is a weak formulation of

A2A"
2yf þ A"

3vþ h ¼ f ; A3yf ¼ 0; p3yf ¼ 0;

i.e., in formal matrix notation

A2A"
2 A"

3 iK3

A3 0 0
p3 ¼ i"K3

0 0

2

64

3

75
yf
v
h

2

4

3

5¼
f
0
0

2

4

3

5:

Note v¼ 0 and h¼ 0.

11 q¼ 0 implies g# h ¼ A"1A1zg 2 RðA"1Þ & NðA"0Þ and hence g 2 NðA"0Þ.
12h¼ 0 implies g#A0q ¼ A"1A1zg 2 RðA"1Þ ?H1K1 and hence g?H1K1.
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(ii) Equation (3.44) is a weak formulation of

A1A"
1exg þ A"

2pþ h ¼ A1g; A2exg ¼ 0; p2exg ¼ 0;

i.e., in formal matrix notation

A1A"
1 A"

2 iK2

A2 0 0
p2 ¼ i"K2

0 0

2

64

3

75
exg
p
h

2

4

3

5¼
A1g
0
0

2

4

3

5:

Note p¼ 0 and h¼ 0.

(ii’) Equation (3.45) is a weak formulation of

A"
1A1zg þ A0qþ h ¼ g; A"

0zg ¼ 0; p1zg ¼ 0;

i.e., in formal matrix notation

A"
1A1 A0 iK1

A"
0 0 0

p1 ¼ i"K1
0 0

2

64

3

75
zg
q
h

2

4

3

5¼
g
0
0

2

4

3

5:

Note q¼ 0 and h¼ 0.

3.1.4. Even more variational formulations
In our variational formulations still the unpleasant spaces DðA‘Þ and
DðA"

‘Þ occur in the side conditions, see, e.g., Theorem 3.12, where

z 2 D A1ð Þ ¼ D A1ð Þ \ R A"
1

! "
; y 2 D A"

2

! "
¼ D A"

2

! "
\ R A2ð Þ:

We can even go one step further and remove these restrictions just by
applying the same ideas as before. E.g., in Theorem 3.12

z 2 R A"
1ð Þ ¼ N A"

0

! "
\ K

?H1
1 ¼ R A0ð Þ?H1 \ K

?H1
1 ;

y 2 R A2ð Þ ¼ N A3ð Þ \ K
?H3
3 ¼ R A"

3

! "?H3 \ K
?H3
3

can easily be formulated as additional side conditions. Of course, this pro-
cedure can be prolongated ad infinitum depending on the length of the
underlying complex.

Remark 3.16. In 3D applications the cohomology groups K0, K1 and K4, K5

are typically already trivial, see, e.g., the applications section 5.1. Also the
kernels N(A0) and N(A4) are always trivial. Moreover, the kernels N(A1) and
NðA"

3Þ are typically trivial or at least finite dimensional. The same applies to
the orthogonal complements of the kernels NðA"

0Þ and N(A4). In particular,
DðA1Þ ¼ DðA1Þ resp. DðA"

3Þ ¼ DðA"
3Þ or at least
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D A1ð Þ ¼ D A1ð Þ \ R A"
1

! "
¼ D A1ð Þ \ N A1ð Þ?H1 ;

D A"
3

! "
¼ D A"

3

! "
\ R A3ð Þ ¼ D A"

3

! "
\ N A"

3

! "?H4 ;

respectively, with N(A1) resp. NðA"
3Þ being finite dimensional. We always

have DðA0Þ ¼ DðA0Þ and DðA"
4Þ ¼ DðA"

4Þ.
For example Theorem 3.12 can be modified as follows:

Theorem 3.17. Let additionally RðA0Þ;RðA3Þ, and R(A4) be closed. Moreover,
let f 2 RðA2Þ and g 2 RðA"

1Þ . The unique solution x ¼ xf þ xg þ k 2 D2 in
Theorem 3.3 can be found by the following three variational quadruple resp.
sextuple saddle point formulations:

(i) There exists a unique five tuple ðex; z; u; h2; h1Þ 2 DðA2Þ , DðA1Þ ,
DðA0Þ , K2 , K1 such that for all ðn; u ; #; j; kÞ 2 DðA2Þ , DðA1Þ,
DðA0Þ , K2 , K1

hA2ex;A2niH3
þ hA1z; niH2

þ hh2; niH2
¼ hf ;A2niH3

;
hex;A1uiH2

þ hA0u;uiH1
þ hh1;uiH1

¼ hg;uiH1
;

hz;A0#iH1
¼ 0;

hex; j iH2
¼ hk; j iH2

;
hz; kiH1

¼ 0:

(3.46)

The third equation of (3.46) is valid for all # 2 DðA0Þ. It holds z¼ 0 and
h2¼ 0 as well as u¼ 0 and h1 ¼ 0. Moreover, A2ex ¼ f and ex 2 DðA"

1Þ with
A"
1ex ¼ g as well as p2ex ¼ k. Finally, ex ¼ x from Theorem 3.3.

(ii) There exists a unique five tuple ðx̂; y; v; h2; h3Þ 2 DðA"
1Þ , DðA"

2Þ ,
DðA"

3Þ , K2 , K3 such that for all ðf;/; h; j; kÞ 2 DðA"
1Þ , DðA"

2Þ,
DðA"

3Þ , K2 , K3

hA"
1x̂;A

"
1fiH1

þ hA"
2y; fiH2

þ hh2; fiH2
¼ hg;A"

1fiH1
;

hx̂;A"
2/iH2

þ hA"
3v;/iH3

þ hh3;/iH3
¼ hf ;/iH3

;
hy;A"

3hiH3
¼ 0;

hx̂; j iH2
¼ hk; j iH2

;
hy; kiH3

¼ 0:

(3.47)

The third equation of (3.47) is valid for all h 2 DðA"
3Þ. It holds y¼ 0 and

h2¼ 0 as well as v¼ 0 and h3¼ 0. Moreover, A"
1x̂ ¼ g and x̂ 2 DðA2Þ with

A2x̂ ¼ f as well as p2x̂ ¼ k. Finally, x̂ ¼ x from Theorem 3.3.

(ii’) There exists ðx̂; y; v;w; h2; h3; h4Þ 2 DðA"
1Þ , DðA"

2Þ , DðA"
3Þ ,

DðA"
4Þ , K2 , K3 , K4 , a unique seven tuple, such that for all ðf;/; h;

r ; j; k; mÞ 2 DðA"
1Þ , DðA"

2Þ , DðA"
3Þ , DðA"

4Þ , K2 , K3 , K4
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hA"
1x̂;A

"
1fiH1

þ hA"
2y; fiH2

þ hh2; fiH2
¼ hg;A"

1fiH1
;

hx̂;A"
2/iH2

þ hA"
3v;/iH3

þ hh3;/iH3
¼ hf ;/iH3

;
hy;A"

3hiH3
þ hA"

4w; hiH4
þ hh4; hiH4

¼ 0;
hv;A"

4riH4
¼ 0;

hx̂; j iH2
¼ hk; j iH2

;
hy; kiH3

¼ 0;
hv; !iH4

¼ 0:

(3.48)

The fourth equation of (3.48) is valid for all r 2 DðA"
4Þ . It holds y¼ 0,

h2¼ 0 and v¼ 0, h3¼ 0 as well as w¼ 0, h4¼ 0. Moreover, A"
1x̂ ¼ g and

x̂ 2 DðA2Þ with A2x̂ ¼ f as well as p2x̂ ¼ k . Finally, x̂ ¼ x from
Theorem 3.3.

Theorem 3.14 can be extended in the same way.

Remark 3.18. For (ii’) recall RðA3Þ ¼ NðA4Þ \ K
?H4
4 ¼ RðA"

4Þ
?H4 \ K

?H4
4 . Let

us also note that generally the solution and test spaces look like

D A‘ð Þ , D A‘# 1ð Þ , ( ( ( , D A‘# nþ1ð Þ , D A‘# nð Þ , K‘ , K‘# 1 , ( ( ( , K‘# nþ1;
D A"

‘

! "
, D A"

‘þ1

! "
, ( ( ( , D A"

‘þn# 1

! "
, D A"

‘þn

! "
, K‘þ1 , K‘þ2 , ( ( ( , K‘þn:

Moreover:

(i) Equation (3.46) is a weak formulation of

A"
2A2ex þ A1z þ h2 ¼ A"

2f ; A"
1ex þ A0uþ h1 ¼ g;

A"
0z ¼ 0; p2ex ¼ k; p1z ¼ 0;

i.e., in formal matrix notation

A"
2A2 A1 0 iK2 0
A"
1 0 A0 0 iK1

0 A"
0 0 0 0

p2 ¼ i"K2
0 0 0 0

0 p1 ¼ i"K1
0 0 0

2

666664

3

777775

ex
z
u
h2
h1

2

66664

3

77775
¼

A"
2f
g
0
k
0

2

66664

3

77775
:

Note z¼ 0, u¼ 0 and h2 ¼ 0; h1 ¼ 0.

(ii) Equation (3.47) is a weak formulation of

A1A"
1x̂ þ A"

2yþ h2 ¼ A1g; A2x̂ þ A"
3vþ h3 ¼ f ;

A3y ¼ 0; p2x̂ ¼ k; p3y ¼ 0;
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i.e., in formal matrix notation

A1A"
1 A"

2 0 iK2 0
A2 0 A"

3 0 iK3

0 A3 0 0 0
p2 ¼ i"K2

0 0 0 0
0 p3 ¼ i"K3

0 0 0

2

666664

3

777775

x̂
y
v
h2
h3

2

66664

3

77775
¼

A1g
f
0
k
0

2

66664

3

77775
:

Note y¼ 0, v¼ 0 and h2 ¼ 0; h3 ¼ 0.

(ii’) Equation (3.48) is a weak formulation of

A1A"
1x̂ þ A"

2yþ h2 ¼ A1g; A2x̂ þ A"
3vþ h3 ¼ f ;

A3yþ A"
4wþ h4 ¼ 0; A4v ¼ 0;

and p2x̂ ¼ k; p3y ¼ 0; p4v ¼ 0, i.e., in formal matrix notation

A1A"
1 A"

2 0 0 iK2 0 0
A2 0 A"

3 0 0 iK3 0
0 A3 0 A"

4 0 0 iK4

0 0 A4 0 0 0 0
p2 ¼ i"K2

0 0 0 0 0 0
0 p3 ¼ i"K3

0 0 0 0 0
0 0 p4 ¼ i"K4

0 0 0 0

2

6666666664

3

7777777775

x̂
y
v
w
h2
h3
h4

2

666666664

3

777777775

¼

A1g
f
0
0
k
0
0

2

666666664

3

777777775

:

Note y¼ 0, v¼ 0, w¼ 0 and h2 ¼ 0; h3 ¼ 0; h4 ¼ 0.

3.2. Second order systems

We recall the linear second order system (1.10), i.e., find13

x 2 eD2 :¼ n 2 D2 : A2n 2 D A"
2

! "# $

¼ n 2 D A2ð Þ \ D A"
1

! "
: A2n 2 D A"

2

! "# $

¼ D A"
1

! "
\ D A"

2A2
! "

such that

A"
2A2x ¼ f ;

A"
1x ¼ g;

p2x ¼ k:

(3.49)

Theorem 3.19. Equation (3.49) is uniquely solvable in eD2, if and only if f 2
RðA"

2Þ; g 2 RðA"
1Þ, and k 2 K2. The unique solution x 2 eD2 is given by

13We generally define eD‘fn 2 D‘ : A‘n 2 DðA"
‘Þg ¼ DðA"

‘# 1Þ \ DðA‘A"
‘Þ for ‘ ¼ 1; . . . ; 3.
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x :¼ xf þ xg þ k 2 D A2ð Þ!H2D A"
1

! "
!H2K2

! "
\ eD2 ¼ eD2;

xf :¼ A# 1
2 A"

2

! "# 1f 2 D A"
2A2

! "
¼ D A2ð Þ \ eD2;

xg :¼ A"
1

! "# 1g 2 D A"
1

! "
¼ D A"

1

! "
\ eD2

and depends continuously on the data, i.e., jxjH2
* c22jf jH2

þ c1jgjH1
þ jkjH2

,
as

jxf jH2
* c22jf jH2

; jxgjH2
* c1jgjH1

:

It holds

pA"
2
x ¼ xf ; pA1x ¼ xg; p2x ¼ k; jxj2H2

¼ jxf j2H2
þ jxgj2H2

þ jkj2H2
:

Proof. The necessary conditions are clear. To show uniqueness, let x 2 eD2 solve

A"
2A2x ¼ 0; A"

1x ¼ 0; p2x ¼ 0:

Hence x 2 NðA"
1Þ \ K

?H2
2 and also x 2 NðA2Þ as A2x 2 DðA"

2Þ and

jA2xj2H3
¼ hx;A"

2A2xiH2
¼ 0;

yielding x 2 K2 \ K
?H2
2 ¼ f0g: To prove existence, let f 2 RðA"

2Þ; g 2
RðA"

1Þ; k 2 K2 and define x, xf, and xg according to the theorem. Again the
orthogonality follows directly by Lemma 2.7. Moreover, xf, xg, and k solve
the linear systems

A"
2A2xf ¼ f ; A2xg ¼ 0; A2k ¼ 0;
A"
1xf ¼ 0; A"

1xg ¼ g; A"
1k ¼ 0;

p2xf ¼ 0; p2xg ¼ 0; p2k ¼ k:

Thus x solves (3.49) and we have by Corollary 2.5 jxf jH2
* c2jA2xf jH3

*
c22jf jH2

and jxgjH2
* c1jgjH1

, completing the proof of the solution theory. w

Remark 3.20. By orthogonality and with A2x ¼ ðA"
2Þ

# 1f , A"
2A2x ¼ f , and

A"
1x ¼ g we even have

jxj2H2
¼ jxf j2H2

þ jxgj2H2
þ jkj2H2

* c42jf j
2
H2

þ c21jgj
2
H1

þ jkj2H2
;

jxj2eD2
¼ jxf j2H2

þ jA2xj2H3
þ jf j2H2

þ jxgj2H2
þ jgj2H1

þ jkj2H2

* 1þ c22 þ c42
! "

jf j2H3
þ 1þ c21
! "

jgj2H1
þ jkj2H2

:

Remark 3.21. Since the second order system (3.49) decomposes into the two
first order systems of shape (1.5) resp. (3.1), i.e.,

A2x ¼ y; A3y ¼ 0;
A"
1x ¼ g; A"

2y ¼ f ;
p2x ¼ k; p3y ¼ 0
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for the pair ðx; yÞ 2 D2 , D3 with y :¼ A2x 2 DðA"
2Þ \ RðA2Þ ¼ DðA"

2Þ , the
solution theory follows directly by Theorem 3.3 as well. One just has to solve
and set

y :¼ A"
2

! "# 1f 2 D A"
2

! "
& R A2ð Þ;

x :¼ A# 1
2 yþ A"

1

! "# 1g þ k 2 D A2ð Þ!H2D A"
1

! "
!H2K2

! "
\ eD2 ¼ eD2:

3.2.1. Variational formulations
We note

D A"
2A2

! "
¼ D A"

2A2ð Þ ¼ D A"
2A2ð Þ \ D A2ð Þ ¼ D A"

2A2ð Þ \ R A"
2ð Þ

¼ D A"
2A2ð Þ \ N A"

1ð Þ \ K
?H2
2

¼ eD2 \ D A2ð Þ ¼ eD2 \ R A"
2ð Þ ¼ eD2 \ N A"

1ð Þ \ K
?H2
2 ;

D A"
1

! "
¼ D A"

1ð Þ \ R A1ð Þ ¼ D A"
1ð Þ \ N A2ð Þ \ K

?H2
2

¼ eD2 \ D A"
1

! "
¼ eD2 \ R A1ð Þ ¼ eD2 \ N A2ð Þ \ K

?H2
2

(3.50)

and recall

xf ¼ A# 1
2 A"

2

! "# 1f 2 D A"
2A2

! "
¼ D A"

2A2ð Þ \ R A"
2ð Þ ¼ D A"

2A2ð Þ \ N A"
1ð Þ \ K

?H2
2 ;

xg ¼ A"
1

! "# 1g 2 D A"
1

! "
¼ D A"

1ð Þ \ R A1ð Þ ¼ D A"
1ð Þ \ N A2ð Þ \ K

?H2
2 :

As in the corresponding section for the first order systems, there are sev-
eral options for variational formulations for finding each of the partial sol-
utions xf and xg, which all make sense from a functional analytical point of
view. Looking at Remark 3.21 it is clear that all variational formulations
proposed for the first order systems from the earlier sections are applicable
here as well. Especially for xg we do not observe anything new. On the
other hand, for the second order system related to xf we can do as follows:
The first option is to multiply the equation A"

2A2xf ¼ f by A"
2A2/ with

some / 2 DðA"
2A2Þ giving the variational formulation

8 / 2 D A"
2A2

! "
hA"

2A2xf ;A"
2A2/iH2

¼ hf ;A"
2A2/iH2

;

which is a weak formulation of the fourth order equation

A"
2A2

! "2xf ¼ A"
2A2f ;

more precisely of A"
2A2ðA"

2A2xf # f Þ ¼ 0. Perhaps a more convenient choice
is to multiply A"

2A2xf ¼ f by some n 2 DðA2Þ giving the variational formu-
lation

8 n 2 D A2ð Þ hA2xf ;A2niH3
¼ hf ; niH2

;

which is a weak formulation of the second order equation
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A"
2A2xf ¼ f :

The latter choices are finding straight forward xf itself. As a third option,
we propose a formulation to find a potential yf for xf. For this we go for a
second order potential yf with A"

2A2yf ¼ xf , e.g., yf :¼ A# 1
2 ðA"

2Þ
# 1xf 2

DðA"
2A2Þ, of
xf ¼ A"

2A2yf 2 D A"
2A2

! "
¼ D A"

2A2
! "

\ R A"
2

! "
¼ D A"

2A2
! "

\ R A"
2

! "
:

Multiplying by A"
2A2s with some s 2 DðA"

2A2Þ gives
8 s 2 D A"

2A2
! "

hA"
2A2yf ;A"

2A2siH2
¼ hxf ;A"

2A2siH2
¼ hA"

2A2xf ; siH2
¼ hf ; siH2

;

which is a weak formulation of the fourth order equation

A"
2A2

! "2yf ¼ f :

Theorem 3.22. The partial solutions xf and xg in Theorem 3.19 can be found
by the following variational formulations:

(i) There exists a unique x̂f 2 DðA"
2A2Þ, such that

8 / 2 D A"
2A2

! "
hA"

2A2x̂f ;A"
2A2/iH2

¼ hf ;A"
2A2/iH2

: (3.51)

Equation (3.51) even holds for all / 2 DðA"
2A2Þ. Moreover, A"

2A2x̂f ¼ f if
and only if f 2 RðA"

2Þ. In this case x̂f ¼ xf .

(i’) There exists a unique exf 2 DðA2Þ, such that

8 n 2 D A2ð Þ hA2exf ;A2niH3
¼ hf ; niH2

: (3.52)

Equation (3.52) even holds for all n 2 DðA2Þ if and only if f 2 RðA"
2Þ. In

this case we have

A2exf 2 D A"
2

! "
\ R A2ð Þ ¼ D A"

2

! "

with A"
2A2exf ¼ f and thus exf ¼ xf .

(i’’) There exists a unique potential yf 2 DðA"
2A2Þ, such that

8 s 2 D A"
2A2

! "
hA"

2A2yf ;A"
2A2siH2

¼ hf ; siH2
: (3.53)

Equation (3.53) even holds for all s 2 DðA"
2A2Þ if and only if f 2 RðA"

2Þ.
In this case we have

A"
2A2yf 2 D A"

2A2
! "

with ðA"
2A2Þ2yf ¼ f and hence A"

2A2yf ¼ xf .
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(ii) There exists a unique exg 2 DðA"
1Þ such that

8 f 2 D A"
1

! "
hA"

1exg;A
"
1fiH1

¼ hg;A"
1fiH1

: (3.54)

Equation (3.54) is even satisfied for all f 2 DðA"
1Þ . Moreover, A"

1exg ¼ g
holds if and only if g 2 RðA"

1Þ. In this case exg ¼ xg .

(ii’) There exists a unique potential zg 2 DðA1Þ, such that

8 u 2 D A1ð Þ hA1zg;A1uiH2
¼ hg;uiH1

: (3.55)

Equation (3.55) even holds for all u 2 DðA1Þ if and only if g 2 RðA"
1Þ. In

this case we have

A1zg 2 D A"
1

! "
\ R A1ð Þ ¼ D A"

1

! "

with A"
1A1zg ¼ g and hence A1zg ¼ xg

Proof. To show (i), let / 2 DðA"
2A2Þ. Then A2/ belongs to DðA"

2Þ and by
Corollary 2.5 (i) we see

jA"
2A2/jH2

- 1
c2
jA2/jH3

- 1
c22
j/jH2

:

Hence, the bilinear form in (3.51) is strictly positive over DðA"
2A2Þ and

thus Riesz’ representation theorem yields the unique solvability of (3.51).
From DðA2Þ ¼ NðA2Þ!H2DðA2Þ, see Corollary 2.5 (iii) or Lemma 2.7, and
(3.50) we get

D A"
2A2

! "
¼ N A2ð Þ!H2D A"

2A2
! "

¼ N A2ð Þ!H2D A"
2A2

! "
:

Therefore RðA"
2A2Þ ¼ RðA"

2A2Þ and thus (3.51) holds for all / 2
DðA"

2A2Þ as well. Let w 2 DðA"
2Þ and decompose it according to Corollary

2.5 (iii) or Lemma 2.7 into w ¼ wN þ wR 2 DðA"
2Þ ¼ NðA"

2Þ!H3DðA
"
2Þ (null

space and range) and, as DðA"
2Þ ¼ DðA"

2Þ \ RðA2Þ ¼ DðA"
2Þ \ RðA2Þ , fur-

ther into14

w ¼ wN þ A2/R 2 D A"
2

! "
¼ N A"

2

! "
!H3 D A"

2

! "
\ R A2ð Þ

! "
; /R 2 D A"

2A2
! "

:

Utilizing the latter decomposition and (3.51) we obtain for all w 2 DðA"
2Þ

hA"
2A2x̂f ;A"

2wiH2
¼ hA"

2A2x̂f ;A"
2A2/RiH2

¼ hf ;A"
2A2/RiH2

¼ hf ;A"
2wiH2

;

14Here it would be enough to decompose
w ¼ wN þ A2/R 2 DðA"2Þ ¼ NðA"2Þ!H3 ðDðA"2Þ \ RðA2ÞÞ; /R 2 DðA"2A2Þ:

56 D. PAULY



which shows A"
2A2x̂f # f 2 NðA2Þ ¼ RðA"

2Þ
?H2 . Thus, A"

2A2x̂f # f ¼ 0 , if
and only if f 2 RðA"

2Þ . In this case we have A"
2A2ðx̂f # xf Þ ¼ 0 and the

injectivity of A"
2 and A2 shows x̂f ¼ xf , which finishes the proof of (i).

The left hand side of (3.52) is strictly positive over DðA2Þ and thus
Riesz’ representation theorem yields the unique solvability of (3.52). Let us
recall that the orthonormal projector pA"

2
onto RðA"

2Þ satisfies A2pA"
2
n ¼

A2n and pA"
2
n 2 DðA2Þ for n 2 DðA2Þ and pA"

2
f ¼ f for f 2 RðA"

2Þ .
Therefore, if f 2 RðA"

2Þ, then (3.52) yields for n 2 DðA2Þ
hA2exf ;A2niH3

¼ hA2exf ;A2pA"
2
niH3

¼ hf ; pA"
2
niH2

¼ hpA"
2
f ; niH2

¼ hf ; niH2
;

i.e., (3.52) holds for n 2 DðA2Þ. On the other hand, if (3.52) holds for n 2
DðA2Þ , then A2exf 2 DðA"

2Þ and A"
2A2exf ¼ f , especially15 f 2 RðA"

2Þ . As in
this case exf 2 DðA2Þ and A2exf 2 DðA"

2Þ with A"
2A2exf ¼ f , we get exf ¼ xf

by the injectivity of A"
2 and A2, which shows (i’).

In (i”) the unique solvability follows as in (i). Let f 2 RðA"
2Þ . Using the

same arguments with the same projector pA"
2
as in (i’) we obtain by (3.53)

for all s 2 DðA"
2A2Þ

hA"
2A2yf ;A"

2A2siH2
¼ hA"

2A2yf ;A"
2A2pA"

2
siH2

¼ hf ; pA"
2
siH2

¼ hpA"
2
f ; siH2

¼ hf ; siH2
;

as pA"
2
s 2 DðA"

2A2Þ ¼ DðA"
2A2Þ by (3.50). Thus (3.53) holds for all s 2

DðA"
2A2Þ. On the other hand, if (3.53) holds for all s 2 DðA"

2A2Þ, then we
obtain hf ; siH2

¼ 0 for all s 2 NðA2Þ, showing f 2 NðA2Þ?H2 ¼ RðA"
2Þ. Now,

in this case of f 2 RðA"
2Þ ¼ RðA"

2Þ , we define h :¼ ðA"
2Þ

# 1f 2 DðA"
2Þ and

observe with A"
2h ¼ f that by (3.53) for all s 2 DðA"

2A2Þ
hA"

2A2yf ;A"
2A2siH2

¼ hf ; siH2
¼ hh;A2siH3

¼ hh; pA2A2siH3
: (3.56)

As in the proof of (i), let w 2 DðA"
2Þ and let it be decomposed into

w ¼ wN þ A2s 2 D A"
2

! "
¼ N A"

2

! "
!H3 D A"

2

! "
\ R A2ð Þ

! "
; s 2 D A"

2A2
! "

:

Using (3.56) and the latter decomposition we see for all w 2 DðA"
2Þ

hA"
2A2yf ;A"

2wiH2
¼ hA"

2A2yf ;A"
2A2siH2

¼ hh; pA2A2siH3

¼ hh; pA2wiH3
¼ hh;wiH3

;

since h 2 DðA"
2Þ & RðA2Þ . Thus A"

2A2yf 2 DðA2Þ and A2A"
2A2yf ¼ h 2

DðA"
2Þ, showing

A"
2A2A"

2A2yf ¼ A"
2h ¼ f :

15Another proof is the following: Pick n 2 NðA2Þ and get by (3.52) directly hf ; niH2
¼ 0. Thus f 2 NðA2Þ?H2 ¼

RðA"2Þ.
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Since ðA"
2A2Þ2yf ¼ ðA"

2A2Þ2yf we get A"
2A2ðA"

2A2yf # xf Þ ¼ 0 and injec-
tivity yields A"

2A2yf ¼ xf .
(ii) and (ii’) are clear from Theorem 3.5 (ii), (ii’). w

Remark 3.23. Note that

x̂f ¼ exf ¼ xf ¼ A# 1
2 A"

2

! "# 1f 2 D A"
2A2

! "
; exg ¼ xg ¼ A"

1

! "# 1g 2 D A"
1

! "
;

yf ¼ A# 1
2 A"

2

! "# 1xf ¼ A# 1
2 A"

2

! "# 1
' (2

f 2 D A"
2A2

! "2' (
;

zg ¼ A# 1
1 xg ¼ A# 1

1 A"
1

! "# 1g 2 D A"
1A1

! "

holds with A"
2A2xf ¼ f ;A"

2A2yf ¼ xf and A"
1xg ¼ g;A1zg ¼ xg . Hence xf, xg,

and yf, zg solve the first resp. second order systems

A"
2A2xf ¼ f ; A2xg ¼ 0; A"

2A2yf ¼ xf ; A"
2A2ð Þ2yf ¼ f ; A1zg ¼ xg; A"

1A1zg ¼ g;
A"
1xf ¼ 0; A"

1xg ¼ g; A"
1yf ¼ 0; A"

1yf ¼ 0; A"
0zg ¼ 0; A"

0zg ¼ 0;
p2xf ¼ 0; p2xg ¼ 0; p2yf ¼ 0; p2yf ¼ 0; p1zg ¼ 0; p1zg ¼ 0:

Moreover:

(i) Equation (3.51) is a weak formulation of

A"
2A2

! "2x̂f ¼ A"
2A2f ; A"

1x̂f ¼ 0; p2x̂f ¼ 0;

i.e., in formal matrix notation

A"
2A2ð Þ2
A"
1

p2

2

64

3

75 x̂f
% &

¼
A"
2A2f
0
0

2

4

3

5:

(i’) Equation (3.52) is a weak formulation of

A"
2A2exf ¼ f ; A"

1exf ¼ 0; p2exf ¼ 0;

i.e., in formal matrix notation

A"
2A2

A"
1

p2

2

4

3

5 exf
% &

¼
f
0
0

2

4

3

5:

(i’’) Equation (3.53) is a weak formulation of

A2A"
2

! "2yf ¼ f ; A"
1yf ¼ 0; p2yf ¼ 0;
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i.e., in formal matrix notation

A2A"
2ð Þ2

A"
1

p2

2

64

3

75 yf
% &

¼
f
0
0

2

4

3

5:

(ii) Equation (3.54) is a weak formulation of

A1A"
1exg ¼ A1g; A2exg ¼ 0; p2exg ¼ 0;

i.e., in formal matrix notation

A1A"
1

A2

p2

2

4

3

5 exg
% &

¼
A1g
0
0

2

4

3

5:

(ii’) Equation (3.55) is a weak formulation of

A"
1A1zg ¼ g; A"

0zg ¼ 0; p1zg ¼ 0;

i.e., in formal matrix notation

A"
1A1

A"
0

p1

2

4

3

5 zg
% &

¼
g
0
0

2

4

3

5:

As before we emphasize that the variational formulations (3.51)–(3.55) have
again saddle point structure. Provided f 2 RðA"

2Þ and g 2 RðA"
1Þ the formula-

tions (3.51)–(3.55) are equivalent to the following five problems: Find

x̂f ; yf 2 D A"
2A2

! "
¼ D A"

2A2
! "

¼ D A"
2A2

! "
\ R A"

2

! "
¼ D A"

2A2
! "

\ N A2ð Þ?H2 ;

exf 2 D A2ð Þ ¼ D A2ð Þ \ R A"
2

! "
¼ D A2ð Þ \ N A2ð Þ?H2 ;

exg 2 D A"
1

! "
¼ D A"

1

! "
\ R A1ð Þ ¼ D A"

1

! "
\ N A"

1

! "?H2 ;

zg 2 D A1ð Þ ¼ D A1ð Þ \ R A"
1

! "
¼ D A1ð Þ \ N A1ð Þ?H1 ;

such that

8 / 2 D A"
2A2

! "
hA"

2A2x̂f ;A"
2A2/iH2

¼ hf ;A"
2A2/iH2

; (3.57)

8 n 2 D A2ð Þ hA2exf ;A2niH3
¼ hf ; niH2

; (3.58)

8 s 2 D A"
2A2

! "
hA"

2A2yf ;A"
2A2siH2

¼ hf ; siH2
; (3.59)

8 f 2 D A"
1

! "
hA"

1exg;A
"
1fiH1

¼ hg;A"
1fiH1

; (3.60)

8 u 2 D A1ð Þ hA1zg;A1uiH2
¼ hg;uiH1

: (3.61)

Similar to the first order case, the variational formulations (3.57)–(3.61)
are equivalent to the following five saddle point problems: Find x̂f ; yf 2
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DðA"
2A2Þ;exf 2 DðA2Þ, exg 2 DðA"

1Þ; zg 2 DðA1Þ, such that

8 / 2 D A"
2A2ð Þ hA"

2A2x̂f ;A"
2A2/iH2

¼ hf ;A"
2A2/iH2

! 8 h 2 N A2ð Þ hx̂f ; hiH2
¼ 0;

8 n 2 D A2ð Þ hA2exf ;A2niH3
¼ hf ; niH2

! 8 j 2 N A2ð Þ hexf ; j iH2
¼ 0;

8 s 2 D A"
2A2ð Þ hA"

2A2yf ;A"
2A2siH2

¼ hf ; siH2
! 8 r 2 N A2ð Þ hyf ; riH2

¼ 0;
8 f 2 D A"

1ð Þ hA"
1exg ;A"

1fiH1
¼ hg;A"

1fiH1
! 8 k 2 N A"

1ð Þ hexg; kiH2
¼ 0;

8 u 2 D A1ð Þ hA1zg;A1uiH2
¼ hg;uiH1

! 8 w 2 N A1ð Þ hzg;wiH1
¼ 0:

At this point, we have followed the corresponding section for the first
order problems up to (3.11)–(3.14). We emphasize that all considerations
after (3.11)–(3.14) can be repeated here, giving similar saddle point formu-
lations for the second order problem as well. As an example we present a
corresponding result to Theorem 3.10 for finding the solution x ¼ xf þ xg
in just one variational saddle point formulation. For this, let us pick, e.g.,
the two formulations (3.58) and (3.60) together with the (very) weak ver-
sions of A"

1x ¼ g resp. A"
2A2x ¼ f .

Theorem 3.24. Let K2 ¼ f0g . The unique solution x ¼ xf þ xg 2 eD2 in
Theorem 3.19 can be found by the following two variational saddle point
formulations:

(i) There exists a unique pair ðex; zÞ 2 DðA2Þ , DðA1Þ such that

8 n;uð Þ 2 D A2ð Þ , D A1ð ÞhA2ex;A2niH3
þ hA1z; niH2

¼ hf ; niH2
; (3.62)

hex;A1uiH2
¼ hg;uiH1

: (3.63)

It holds z¼ 0, if and only if f 2 RðA"
2Þ, if and only if A2ex 2 DðA"

2Þ with
A"
2A2ex ¼ f . In this case

8 n;uð Þ 2 D A2ð Þ , D A1ð ÞhA2ex;A2niH3
¼ hf ; niH2

; (3.64)

hex;A1uiH2
¼ hg;uiH1

: (3.65)

Equations (3.63), (3.65) hold for all u 2 DðA1Þ if and only if g 2 RðA"
1Þ if

and only if ex 2 DðA"
1Þ with A"

1ex ¼ g. Moreover, if f 2 RðA"
2Þ and g 2 RðA"

1Þ,
we have ex ¼ x from Theorem 3.19.

(ii) There exists a unique pair ðx̂; yÞ 2 DðA"
1Þ , DðA"

2A2Þ such that

8 f;/ð Þ 2 D A"
1

! "
, D A"

2A2
! "

hA"
1x̂;A

"
1fiH1

þ hA"
2A2y; fiH2

¼ hg;A"
1fiH1

; (3.66)
hx̂;A"

2A2/iH2
¼ hf ;/iH2

: (3.67)

It holds y¼ 0 as well as

8 f;/ð Þ 2 D A"
1

! "
, D A"

2A2
! "

hA"
1x̂;A

"
1fiH1

¼ hg;A"
1fiH1

; (3.68)

hx̂;A"
2A2/iH2

¼ hf ;/iH2
: (3.69)
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Moreover, A"
1x̂ ¼ g if and only if g 2 RðA"

1Þ . (3.67), (3.69) hold for all
/ 2 DðA"

2A2Þ if and only if f 2 RðA"
2Þ if and only if x̂ 2 DðA"

2A2Þ with
A"
2A2x̂ ¼ f . In this case, i.e., f 2 RðA"

2Þ and g 2 RðA"
1Þ, we have x̂ ¼ x from

Theorem 3.19.

Proof. Unique solvability of (i) follows again by standard saddle point the-
ory as in Theorem 3.10 (i). Inserting n :¼ A1z 2 RðA1Þ ¼ NðA2Þ ¼
RðA"

2Þ
?H2 in (3.62) yields jA1zj2H2

¼ hf ;A1ziH2
and hence A1z ¼ 0 , even

z¼ 0 as z 2 DðA1Þ, if f 2 RðA"
2Þ. On the other hand, if A1z ¼ 0 then (3.62)

shows hf ; niH2
¼ 0 for all n 2 NðA2Þ, i.e., f 2 NðA2Þ?H2 ¼ RðA"

2Þ. Moreover,
if f 2 RðA"

2Þ , then (3.64) and (3.65) hold. Especially (3.64) yields A2ex 2
DðA"

2Þ and A"
2A2ex ¼ f . The assertions related to g follow as in the proof of

Theorem 3.10 (i). Theorem 3.19 yields ex ¼ x , which completes the proof
of (i).
For (ii), we pick w 2 DðA"

2Þ and decompose it as in the proof of
Theorem 3.22 (i) into

w ¼ wN þ A2/R 2 D A"
2

! "
¼ N A"

2

! "
!H3 D A"

2

! "
\ R A2ð Þ

! "
; /R 2 D A"

2A2
! "

:

If f¼ 0, then using the latter decomposition we see for all w 2 DðA"
2Þ

hx̂;A"
2wiH2

¼ hx̂;A"
2A2/RiH2

¼ 0;

which holds if and only if x̂ 2 NðA2Þ . Thus the kernel of (3.67) equals
NðA2Þ . By Corollary 2.5 (i) the principal part of (3.66) is strictly positive
over the kernel of (3.67), which is

D A"
1

! "
\ N A2ð Þ ¼ D A"

1

! "
\ R A1ð Þ ¼ R A1ð Þ

as we just have derived and since K2 ¼ f0g . Moreover, we have for
0 6¼ / 2 DðA"

2A2Þ
jA"

2A2/jH2

j/jD A"
2A2ð Þ

* sup
0 6¼f2D A"

1ð Þ

hA"
2A2/; fiH2

j/jD A"
2A2ð ÞjfjD A"

1ð Þ
*

jA"
2A2/jH2

j/jD A"
2A2ð Þ

* 1

by choosing16 f :¼ A"
2A2/ 2 RðA"

2A2Þ ¼ RðA"
2Þ ¼ NðA"

1Þ, which shows that
actually equality holds. Hence

1 - inf
06¼/2D A"

2A2ð Þ
sup

0 6¼f2D A"
1ð Þ

hA"
2A2/; fiH2

j/jD A"
2A2ð ÞjfjD A"

1ð Þ

¼ inf
06¼/2D A"

2A2ð Þ
jA"

2A2/jH2

j/jD A"
2A2ð Þ

- c42 þ c22 þ 1
! "# 1=2 ¼ jA# 1

2 A"
2

! "# 1j# 1
R A"

2ð Þ;D A"
2A2ð Þ;

16Indeed we can easily see RðA"2A2Þ ¼ RðA"2Þ, since RðA"2A2Þ & RðA"2Þ holds and for f 2 RðA"2Þ ¼ RðA"
2Þ there is

/ :¼ A# 1
2 ðA"

2Þ
# 1f 2 DðA"

2A2Þ with f ¼ A"2A2/ 2 RðA"
2A2Þ ¼ RðA"2A2Þ.
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which shows that the inf-sup-condition is satisfied. Therefore, (3.66) and
(3.67) admits a unique solution by the saddle point theory. Picking f :¼
A"
2A2y 2 RðA"

2Þ ¼ NðA"
1Þ in (3.66) yields jA"

2A2yj2H2
¼ 0 and hence y¼ 0 as

y 2 DðA"
2A2Þ ¼ DðA"

2A2Þ: Since A"
2A2y ¼ 0 even (3.68) and (3.69) are

valid. By (3.68) we see A"
1x̂# g 2 RðA"

1Þ
?H1 , showing A"

1x̂ ¼ g if and only if
g 2 RðA"

1Þ . Using the orthonormal projector pA"
2
and by (3.69) we see for

all / 2 DðA"
2A2Þ as pA"

2
/ 2 DðA"

2A2Þ ¼ DðA"
2A2Þ

hx̂;A"
2A2/iH2

¼ hx̂;A"
2A2pA"

2
/iH2

¼ hf ; pA"
2
/iH2

¼ hpA"
2
f ;/iH2

¼ hf ;/iH2
;

if f 2 RðA"
2Þ. On the other hand, if (3.69) holds for all / 2 DðA"

2A2Þ, then
hf ;/iH2

¼ 0 for all / 2 NðA2Þ and hence f 2 NðA2Þ?H2 ¼ RðA"
2Þ. Now, fol-

lowing the proof of Theorem 3.22 (i”), let f 2 RðA"
2Þ ¼ RðA"

2Þ as well as
define h :¼ ðA"

2Þ
# 1f 2 DðA"

2Þ and observe with A"
2h ¼ f that by (3.69) for

all / 2 DðA"
2A2Þ

hx̂;A"
2A2/iH2

¼ hf ;/iH2
¼ hA"

2h;/iH2
¼ hh;A2/iH3

¼ hh; pA2A2/iH3
: (3.70)

As before, let w 2 DðA"
2Þ and let it be decomposed into

w ¼ wN þ A2/ 2 D A"
2

! "
¼ N A"

2

! "
!H3 D A"

2

! "
\ R A2ð Þ

! "
; / 2 D A"

2A2
! "

:

Using (3.70) and the latter decomposition we see for all w 2 DðA"
2Þ

hx̂;A"
2wiH2

¼ hx̂;A"
2A2/iH2

¼ hh; pA2A2/iH3
¼ hh; pA2wiH3

¼ hh;wiH3
;

since h 2 DðA"
2Þ & RðA2Þ. Thus x̂ 2 DðA2Þ and A2x̂ ¼ h 2 DðA"

2Þ, showing
x̂ 2 DðA"

2A2Þ with
A"
2A2x̂ ¼ A"

2h ¼ f :

Finally, if f 2 RðA"
2Þ and g 2 RðA"

1Þ, we have x̂ 2 DðA"
2A2Þ \ DðA"

1Þ ¼ eD2

with A"
2A2x̂ ¼ f and A"

1x̂ ¼ g and thus x̂ ¼ x by Theorem 3.19, completing
the proof. w

Remark 3.25. Let us note the following:

(i) Equations (3.62) and (3.63) is a weak formulation of

A"
2A2ex þ A1z ¼ f ; A"

1ex ¼ g;

i.e., in formal matrix notation

A"
2A2 A1

A"
1 0

+ ,
ex
z

+ ,
¼ f

g

+ ,
:

Note z¼ 0.
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(ii) Equations (3.66) and (3.67) is a weak formulation of

A1A"
1x̂ þ A"

2A2y ¼ A1g; A"
2A2x̂ ¼ f ;

i.e., in formal matrix notation

A1A"
1 A"

2A2

A"
2A2 0

+ ,
x̂
y

+ ,
¼ A1g

f

+ ,
:

Note y¼ 0.

A corresponding result to Theorem 3.12 can be formulated as well, skip-
ping the assumption K2 ¼ f0g in Theorem 3.24.

Theorem 3.26. The unique solution x ¼ xf þ xg þ k 2 eD2 in Theorem 3.19
can be found by the following two variational double saddle point
formulations:

(i) There exists a unique triple ðex; z; hÞ 2 DðA2Þ , DðA1Þ , K2 such that

8 n;u; jð Þ 2 D A2ð Þ , D A1ð Þ , K2

hA2ex;A2niH3
þ hA1z; niH2

þ hh; niH2
¼ hf ; niH2

;

hex;A1uiH2
¼ hg;uiH1

;

hex; j iH2
¼ hk; j iH2

:

(3.71)

It holds z¼ 0 and h¼ 0, if and only if f 2 RðA"
2Þ , if and only if A2ex 2

DðA"
2Þ with A"

2A2ex ¼ f . In this case

8 n;u; jð Þ 2 D A2ð Þ , D A1ð Þ , K2 hA2ex;A2niH3
¼ hf ; niH2

;
hex;A1uiH2

¼ hg;uiH1
;

hex; j iH2
¼ hk; j iH2

:
(3.72)

(3.71), (3.72) hold for all u 2 DðA1Þ if and only if g 2 RðA"
1Þ if and only

if ex 2 DðA"
1Þ with A"

1ex ¼ g . Furthermore, p2ex ¼ k. Moreover, if f 2 RðA"
2Þ

and g 2 RðA"
1Þ, we have ex ¼ x from Theorem 3.19.

(ii) There exists a unique triple ðx̂; y; hÞ 2 DðA"
1Þ , DðA"

2A2Þ , K2 such that

8 f;/; jð Þ 2 D A"
1ð Þ , D A"

2A2ð Þ , K2

hA"
1x̂;A

"
1fiH1

þ hA"
2A2y; fiH2

þ hh; fiH2
¼ hg;A"

1fiH1
;

hx̂;A"
2A2/iH2

¼ hf ;/iH2
;

hx̂; j iH2
¼ hk; j iH2

:

(3.73)

It holds y¼ 0 and h¼ 0 as well as

8 f;/; jð Þ 2 D A"
1ð Þ , D A"

2A2ð Þ , K2 hA"
1x̂;A

"
1fiH1

¼ hg;A"
1fiH1

;
hx̂;A"

2A2/iH2
¼ hf ;/iH2

;
hx̂; j iH2

¼ hk; j iH2
:

(3.74)
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Moreover, A"
1x̂ ¼ g if and only if g 2 RðA"

1Þ . (3.73), (3.74) hold for all
/ 2 DðA"

2A2Þ if and only if f 2 RðA"
2Þ if and only if x̂ 2 DðA"

2A2Þ with
A"
2A2x̂ ¼ f . Furthermore, p2x̂ ¼ k . In this case, i.e., f 2 RðA"

2Þ and g 2
RðA"

1Þ, we have x̂ ¼ x from Theorem 3.19.

Remark 3.27. Let us note the following:

(i) Literally, Remark 3.13 (i) holds here as well.
(ii) Equation (3.71) is a weak formulation of

A"
2A2ex þ A1z þ h ¼ f ; A"

1ex ¼ g; p2ex ¼ k;

i.e., in formal matrix notation

A"
2A2 A1 iK2

A"
1 0 0

p2 ¼ i"K2
0 0

2

64

3

75
ex
z
h

2

4

3

5¼
f
g
k

2

4

3

5:

Note z¼ 0 and h¼ 0.

(ii’) Equation (3.73) is a weak formulation of

A1A"
1x̂ þ A"

2A2yþ h ¼ A1g; A"
2A2x̂ ¼ f ; p2x̂ ¼ k;

i.e., in formal matrix notation

A1A"
1 A"

2A2 iK2

A"
2A2 0 0

p2 ¼ i"K2
0 0

2

64

3

75
x̂
y
h

2

4

3

5¼
A1g
f
k

2

4

3

5:

Note y¼ 0 and h¼ 0.

For the partial solutions and potentials in Theorem 3.19 and Theorem
3.22 a corresponding result to Theorem 3.14 can be proved as well. It reads
as follows:

Theorem 3.28. Let additionally R(A0) be closed. The partial solutions xf ¼
x̂f ¼ exf 2 DðA"

2A2Þ; xg ¼ exg 2 DðA"
1Þ; and their potentials yf 2 DðA"

2A2Þ;
zg 2 DðA1Þ from Theorem 3.19, Theorem 3.22, and (3.57)–(3.61) can be found
by the following six variational double saddle point formulations:

(i) There exists a unique triple ðx̂f ;w; hÞ 2 DðA"
2A2Þ , DðA1Þ , K2 such that

8 w;u; jð Þ 2 D A"
2A2ð Þ , D A1ð Þ , K2

hA"
2A2x̂f ;A"

2A2wiH2
þ hA1w;wiH2

þ hh;wiH2
¼ hf ;A"

2A2wiH2
;

hx̂f ;A1uiH2
¼ 0;

hx̂f ; j iH2
¼ 0:

(3.75)
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It holds w¼ 0 and h¼ 0. Moreover, A2x̂f 2 DðA"
2Þ and A"

2A2x̂f ¼ f if and
only if f 2 RðA"

2Þ . The second equation of (3.75) holds for all u 2 DðA1Þ
and thus x̂f 2 NðA"

1Þ. Furthermore, p2x̂f ¼ 0. Finally, if f 2 RðA"
2Þ, we have

x̂f ¼ xf from Theorem 3.19, see Theorem 3.22 (i).

(i’) There exists a unique triple ðexf ; u; hÞ 2 DðA2Þ , DðA1Þ , K2 such
that

8 n;u; jð Þ 2 D A2ð Þ , D A1ð Þ , K2

hA2exf ;A2niH3
þ hA1u; niH2

þ hh; niH2
¼ hf ; niH2

;
hexf ;A1uiH2

¼ 0;
hexf ; j iH2

¼ 0:

(3.76)

It holds u¼ 0 if and only if f?H2RðA1Þ if and only if f 2 NðA"
1Þ. h¼ 0 if

and only if f?H2K2 . Thus u¼ 0 and h¼ 0 if and only if f 2 NðA"
1Þ \

K
?H2
2 ¼ RðA"

2Þ. Moreover, A2x̂f 2 DðA"
2Þ and A"

2A2exf ¼ f if and only if f 2
RðA"

2Þ . The second equation of (3.76) holds for all u 2 DðA1Þ and hence
exf 2 NðA"

1Þ . Furthermore, p2exf ¼ 0 . Finally, if f 2 RðA"
2Þ , we have exf ¼ xf

from Theorem 3.19, see Theorem 3.22 (i’).

(i’’) There exists a unique triple ðyf ; v; hÞ 2 DðA"
2A2Þ , DðA1Þ , K2 such

that

8 w;u; jð Þ 2 D A"
2A2ð Þ , D A1ð Þ , K2

hA"
2A2yf ;A"

2A2wiH2
þ hA1v;wiH2

þ hh;wiH2
¼ hf ;wiH2

;
hyf ;A1uiH2

¼ 0;
hyf ; j iH2

¼ 0:

(3.77)

It holds v¼ 0 if and only if f?H2RðA1Þ if and only if f 2 NðA"
1Þ. h¼ 0 if

and only if f?H2K2: Thus v¼ 0 and h¼ 0 if and only if f 2 NðA"
1Þ \

K
?H2
2 ¼ RðA"

2Þ. Moreover, A"
2A2yf 2 DðA"

2A2Þ and ðA"
2A2Þ2yf ¼ f if and only

if f 2 RðA"
2Þ . The second equation of (3.77) holds for all u 2 DðA1Þ and

thus yf 2 NðA"
1Þ: Furthermore, p2yf ¼ 0: Finally, if f 2 RðA"

2Þ , we have
A"
2A2yf ¼ xf from Theorem 3.19, see Theorem 3.22 (i”).

(ii) There exists a unique triple ðexg; p; hÞ 2 DðA"
1Þ , DðA"

2Þ , K2 such
that

8 f;/; jð Þ 2 D A"
1ð Þ , D A"

2

! "
, K2

hA"
1exg;A"

1fiH1
þ hA"

2p; fiH2
þ hh; fiH2

¼ hg;A"
1fiH1

;
hexg;A"

2/iH2
¼ 0;

hexg; j iH2
¼ 0:

(3.78)

It holds p¼ 0 and h¼ 0. Moreover, A"
1exg ¼ g if and only if g 2 RðA"

1Þ .
The second equation of (3.78) holds for all / 2 DðA"

2Þ and thus exg 2 NðA2Þ.
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Furthermore, p2exg ¼ 0 . Finally, if g 2 RðA"
1Þ , we have exg ¼ xg from

Theorem 3.19, see Theorem 3.22 (ii).

(ii’) There exists a unique triple ðx̂g; q; hÞ 2 DðA"
1Þ , DðA"

2A2Þ , K2 such
that

8 f;w; jð Þ 2 D A"
1ð Þ , D A"

2A2ð Þ , K2

hA"
1x̂g;A

"
1fiH1

þ hA"
2A2q; fiH2

þ hh; fiH2
¼ hg;A"

1fiH1
;

hx̂g;A"
2A2wiH2

¼ 0;
hx̂g; j iH2

¼ 0:

(3.79)

It holds q¼ 0 and h¼ 0. Moreover, A"
1x̂g ¼ g if and only if g 2 RðA"

1Þ .
The second equation of (3.79) holds for all w 2 DðA"

2A2Þ and thus x̂g 2
NðA2Þ as x̂g ?H2 RðA"

2A2Þ ¼ RðA"
2Þ. Furthermore, p2x̂g ¼ 0. Finally, if g 2

RðA"
1Þ, we have x̂g ¼ xg from Theorem 3.19, see Theorem 3.22 (ii).

(ii’’) There exists a unique triple ðzg ; r; hÞ 2 DðA1Þ , DðA0Þ , K1 such
that

8 u; #; jð Þ 2 D A1ð Þ , D A0ð Þ , K1

hA1zg;A1uiH2
þ hA0r;uiH1

þ hh;uiH1
¼ hg;uiH1

;
hzg;A0#iH1

¼ 0;
hzg; j iH1

¼ 0:

(3.80)

It holds r¼ 0 if and only if g?H1RðA0Þ if and only if g 2 NðA"
0Þ. h¼ 0 if

and only if g?H1K1 . Thus r¼ 0 and h¼ 0 if and only if g 2 NðA"
0Þ \

K
?H1
1 ¼ RðA"

1Þ. Moreover, A1zg 2 DðA"
1Þ and A"

1A1zg ¼ g if and only if g 2
RðA"

1Þ . The second equation of (3.80) holds for all # 2 DðA0Þ and hence
zg 2 NðA"

0Þ . Furthermore, p1zg ¼ 0 . Finally, if g 2 RðA"
1Þ , we have A1zg ¼

xg from Theorem 3.19, see Theorem 3.22 (ii’).

Proof. The proof utilizes the same techniques as used before. w

Remark 3.29. The formulations in Theorem 3.28 (i’) resp. Theorem 3.28 (ii’)
are the same as in Theorem 3.26 (i) resp. Theorem 3.26 (ii) except of the
right hand sides. We note that ex ¼ x can also be found by the formulation
presented in Theorem 3.28 (i).

Remark 3.30. Again we have formal matrix representations:

(i) Equation (3.75) is a weak formulation of

A"
2A2

! "2x̂f þ A1wþ h ¼ A"
2A2f ; A"

1x̂f ¼ 0; p2x̂f ¼ 0;
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i.e., in formal matrix notation

A"
2A2ð Þ2 A1 iK2

A"
1 0 0

p2 ¼ i"K2
0 0

2

64

3

75
x̂f
w
h

2

4

3

5¼
A"
2A2f
0
0

2

4

3

5:

Note w¼ 0 and h¼ 0.

(i’) Equation (3.76) is a weak formulation of

A"
2A2exf þ A1uþ h ¼ f ; A"

1exf ¼ 0; p2exf ¼ 0;

i.e., in formal matrix notation

A"
2A2 A1 iK2

A"
1 0 0

p2 ¼ i"K2
0 0

2

64

3

75
exf
u
h

2

4

3

5¼
f
0
0

2

4

3

5:

Note u¼ 0 and h¼ 0.

(i’’) Equation (3.77) is a weak formulation of

A2A"
2

! "2yf þ A1vþ h ¼ f ; A"
1yf ¼ 0; p2yf ¼ 0;

i.e., in formal matrix notation

A2A"
2ð Þ2 A1 iK2

A"
1 0 0

p2 ¼ i"K2
0 0

2

64

3

75
yf
v
h

2

4

3

5¼
f
0
0

2

4

3

5:

Note v¼ 0 and h¼ 0.

(ii) Equation (3.78) is a weak formulation of

A1A"
1exg þ A"

2pþ h ¼ A1g; A2exg ¼ 0; p2exg ¼ 0;

i.e., in formal matrix notation

A1A"
1 A"

2 iK2

A2 0 0
p2 ¼ i"K2

0 0

2

64

3

75
exg
p
h

2

4

3

5¼
A1g
0
0

2

4

3

5:

Note p¼ 0 and h¼ 0.

(ii’) Equation (3.79) is a weak formulation of

A1A"
1x̂g þ A"

2A2qþ h ¼ A1g; A"
2A2x̂g ¼ 0; p2x̂g ¼ 0;
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i.e., in formal matrix notation

A1A"
1 A"

2A2 iK2

A"
2A2 0 0

p2 ¼ i"K2
0 0

2

64

3

75
x̂g
q
h

2

4

3

5¼
A1g
0
0

2

4

3

5:

Note q¼ 0 and h¼ 0.

(ii’’) Equation (3.80) is a weak formulation of

A"
1A1zg þ A0r þ h ¼ g; A"

0zg ¼ 0; p1zg ¼ 0;

i.e., in formal matrix notation

A"
1A1 A0 iK1

A"
0 0 0

p1 ¼ i"K1
0 0

2

64

3

75
zg
r
h

2

4

3

5¼
g
0
0

2

4

3

5:

Note r¼ 0 and h¼ 0.

There is also an analogon for the quadruple saddle point formulations
presented in Theorem 3.17. Let us recall from Theorem 3.26 z 2 DðA1Þ
and y 2 DðA"

2A2Þ, i.e.,

z 2 R A"
1ð Þ ¼ N A"

0

! "
\ K

?H1
1 ¼ R A0ð Þ?H1 \ K

?H1
1 ;

y 2 R A"
2ð Þ ¼ N A"

1ð Þ \ K
?H2
2 ¼ R A1ð Þ?H2 \ K

?H2
2 :

Theorem 3.31. Let additionally R(A0) be closed. Moreover, let f 2 RðA"
2Þ

and g 2 RðA"
1Þ. The unique solution x ¼ xf þ xg þ k 2 eD2 in Theorem 3.19

can be found by the following two variational quadruple saddle point
formulations:

(i) There exists a unique five tuple ðex; z; u; h2; h1Þ 2 DðA2Þ , DðA1Þ ,
DðA0Þ , K2 , K1 such that for all ðn; u ; #; j; kÞ 2 DðA2Þ , DðA1Þ,
DðA0Þ , K2 , K1

hA2ex;A2niH3
þ hA1z; niH2

þ hh2; niH2
¼ hf ; niH2

;
hex;A1uiH2

þ hA0u;uiH1
þ hh1;uiH1

¼ hg;uiH1
;

hz;A0#iH1
¼ 0;

hex; j iH2
¼ hk; j iH2

;
hz; kiH1

¼ 0:

(3.81)

The third equation of (3.81) is valid for all # 2 DðA0Þ. It holds z¼ 0 and
h2¼ 0 as well as u¼ 0 and h1 ¼ 0. Moreover, A2ex 2 DðA"

2Þ with A"
2A2ex ¼ f

and ex 2 DðA"
1Þ with A"

1ex ¼ g as well as p2ex ¼ k . Finally, ex ¼ x from
Theorem 3.19.
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(ii) There exists a unique five tuple ðx̂; y; v; h2; ĥ2Þ 2 DðA"
1Þ , DðA"

2A2Þ ,
DðA1Þ , K2 , K2 such that for all ðf;/; w ; j; kÞ 2 DðA"

1Þ , DðA"
2A2Þ,

DðA1Þ , K2 , K2

hA"
1x̂;A

"
1fiH1

þ hA"
2A2y; fiH2

þ hh2; fiH2
¼ hg;A"

1fiH1
;

hx̂;A"
2A2/iH2

þ hA1v;/iH2
þ hĥ2;/iH2

¼ hf ;/iH2
;

hy;A1wiH2
¼ 0;

hx̂; j iH2
¼ hk; j iH2

;
hy; kiH2

¼ 0:

(3.82)

The third equation of (3.82) is valid for all w 2 DðA1Þ. It holds y¼ 0 and
h2¼ 0 as well as v¼ 0 and ĥ2 ¼ 0 . Moreover, A"

1x̂ ¼ g and x̂ 2 DðA"
2A2Þ

with A"
2A2x̂ ¼ f as well as p2x̂ ¼ k. Finally, x̂ ¼ x from Theorem 3.19.

(ii’) There is ðx̂;y;v;u;h2; ĥ2;h1Þ 2DðA"
1Þ,DðA"

2A2Þ,DðA1Þ,DðA0Þ,
K2 ,K2 ,K1 , a unique seven tuple, such that for all
ðf;/;w ;#;j;k;mÞ 2
DðA"

1Þ,DðA"
2A2Þ,DðA1Þ,DðA0Þ,K2,K2,K1

hA"
1x̂;A

"
1fiH1

þ hA"
2A2y;fiH2

þ hh2;fiH2
¼ hg;A"

1fiH1
;

hx̂;A"
2A2/iH2

þ hA1v;/iH2
þ hĥ2;/iH2

¼ hf ;/iH2
;

hy;A1wiH2
þ hA0u;wiH1

þ hh1;wiH1
¼ 0;

hv;A0#iH1
¼ 0;

hx̂; j iH2
¼ hk; j iH2

;
hy;kiH2

¼ 0;
hv;!iH1

¼ 0:

(3.83)

The fourth equation of (3.83) is valid for all # 2 DðA0Þ . It holds y¼ 0,
h2¼ 0 and v¼ 0, ĥ2 ¼ 0 as well as u¼ 0 and h1 ¼ 0 . Moreover, A"

1x̂ ¼ g
and x̂ 2 DðA"

2A2Þ with A"
2A2x̂ ¼ f as well as p2x̂ ¼ k. Finally, x̂ ¼ x from

Theorem 3.19.

Theorem 3.28. can be extended in the same way.

Remark 3.32. Let us note that generally the solution and test spaces look like

D A‘ð Þ , D A‘# 1ð Þ , ( ( ( , D A‘# nþ1ð Þ , D A‘# nð Þ , K‘ , K‘# 1 , ( ( ( , K‘# nþ1;
D A"

‘

! "
, D A"

‘þ1A‘þ1
! "

, D A‘ð Þ , D A‘# 1ð Þ , ( ( (
( ( ( , D A‘# nþ1ð Þ , D A‘# nð Þ , K‘þ1 , K‘þ1 , K‘ , K‘# 1 , ( ( ( , K‘# nþ1:

Moreover:
(i) Equation (3.81) is a weak formulation of

A"
2A2ex þ A1z þ h2 ¼ f ; A"

1ex þ A0uþ h1 ¼ g; A"
0z ¼ 0;

p2ex ¼ k; p1z ¼ 0;
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i.e., in formal matrix notation

A"
2A2 A1 0 iK2 0
A"
1 0 A0 0 iK1

0 A"
0 0 0 0

p2 ¼ i"K2
0 0 0 0

0 p1 ¼ i"K1
0 0 0

2

666664

3

777775

ex
z
u
h2
h1

2

66664

3

77775
¼

f
g
0
k
0

2

66664

3

77775
:

Note z¼ 0, u¼ 0 and h2 ¼ 0; h1 ¼ 0.

(ii) Equation (3.82) is a weak formulation of

A1A"
1x̂ þ A"

2A2yþ h2 ¼ A1g; A"
2A2x̂ þ A1vþ ĥ2 ¼ f ;

A"
1y ¼ 0; p2x̂ ¼ k; p2y ¼ 0;

i.e., in formal matrix notation

A1A"
1 A"

2A2 0 iK2 0
A"
2A2 0 A1 0 iK2

0 A"
1 0 0 0

p2 ¼ i"K2
0 0 0 0

0 p2 ¼ i"K2
0 0 0

2

666664

3

777775

x̂
y
v
h2
ĥ2

2

66664

3

77775
¼

A1g
f
0
k
0

2

66664

3

77775
:

Note y¼ 0, v¼ 0 and h2 ¼ 0; ĥ2 ¼ 0.

(ii’) Equation (3.83) is a weak formulation of

A1A"
1x̂ þ A"

2A2yþ h2 ¼ A1g; A"
2A2x̂ þ A1vþ ĥ2 ¼ f ;

A"
1yþ A0uþ h1 ¼ 0; A"

0v ¼ 0;

and p2x̂ ¼ k; p2y ¼ 0; p1v ¼ 0, i.e., in formal matrix notation

A1A"
1 A"

2A2 0 0 iK2 0 0
A"
2A2 0 A1 0 0 iK2 0
0 A"

1 0 A0 0 0 iK1

0 0 A"
0 0 0 0 0

p2 ¼ i"K2
0 0 0 0 0 0

0 p2 ¼ i"K2
0 0 0 0 0

0 0 p1 ¼ i"K1
0 0 0 0

2

6666666664

3

7777777775

x̂
y
v
u
h2
ĥ2
h1

2

666666664

3

777777775

¼

A1g
f
0
0
k
0
0

2

666666664

3

777777775

:

Note y¼ 0, v¼ 0, u¼ 0 and h2 ¼ 0; ĥ2 ¼ 0; h1 ¼ 0.
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4. Functional a posteriori error estimates

Having establishes a solution theory including suitable variational formula-
tions, we now turn to the so-called functional a posteriori error estimates.
Note that General Assumption 3.1 is supposed to hold.

4.1. First order systems

Let x 2 D2 be the exact solution of (3.1) and ex 2 H2, which may be consid-
ered as a nonconforming approximation of x. Utilizing the notations from
Theorem 3.3 we define and decompose the error

H2!e :¼ x#ex ¼ eA1 þ eK2 þ eA"
2
2 R A1ð Þ!H2K2!H2R A"

2ð Þ;
eA1 :¼ pA1e ¼ xg # pA1ex 2 R A1ð Þ;
eA"

2
:¼ pA"

2
e ¼ xf # pA"

2
ex 2 R A"

2ð Þ;
eK2 :¼ p2e ¼ k# p2ex 2 K2

(4.1)

using the Helmholtz type decompositions of Lemma 2.7. By orthogonality
it holds

jej2H2
¼ jeA1 j

2
H2

þ jeK2 j
2
H2

þ jeA"
2
j2H2

: (4.2)

4.1.1. Upper bounds
Testing (4.1) with A1u for u 2 DðA1Þ we get for all f 2 DðA"

1Þ by orthog-
onality and Corollary 2.5 (i)

heA1 ;A1uiH2
¼ he;A1uiH2

¼ hA"
1x;uiH1

# hex# fþ f;A1uiH2

¼ hg#A"
1f;uiH1

# hpA1 ex# fð Þ;A1uiH2

* jg#A"
1fjH1

jujH1
þ jpA1 ex# fð ÞjH2

jA1ujH2

* c1jg#A"
1fjH1

þ jpA1 ex# fð ÞjH2

! "
jA1ujH2

:

(4.3)

As eA1 2 RðA1Þ ¼ RðA1Þ; we have eA1 ¼ A1ue with ue :¼ A# 1
1 eA1 2

DðA1Þ. Choosing u :¼ ue in (4.3) we obtain

8 f 2 D A"
1ð Þ jeA1 jH2

* c1jg#A"
1fjH1

þ jpA1 ex# fð ÞjH2
* c1jg#A"

1fjH1
þ jex# fjH2

:

(4.4)

Analogously, testing with A"
2/ for / 2 DðA"

2Þ we get for all n 2 DðA2Þ
by orthogonality and Corollary 2.5 (i)

heA"
2
;A"

2/iH2
¼ he;A"

2/iH2
¼ hA2x;/iH3

# hex# nþ n;A"
2/iH2

¼ hf #A2n;/iH3
# hpA"

2
ex# nð Þ;A"

2/iH2

* jf #A2njH3
j/jH3

þ jpA"
2
ex# nð ÞjH2

jA"
2/jH2

* c2jf #A2njH3
þ jpA"

2
ex# nð ÞjH2

! "
jA"

2/jH2
:

(4.5)

As eA"
2
2 RðA"

2Þ ¼ RðA"
2Þ , we have eA"

2
¼ A"

2/e with /e :¼ ðA"
2Þ

# 1eA"
2
2

DðA"
2Þ. Choosing / :¼ /e in (4.5) we obtain
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8 n 2 D A2ð Þ jeA"
2
jH2

* c2jf #A2njH3
þ jpA"

2
ex# nð ÞjH2

* c2jf #A2njH3
þ jex# njH2

:

(4.6)

Finally, for all u 2 DðA1Þ and all / 2 DðA"
2Þ we get by orthogonality

jeK2 j
2
H2

¼ heK2 ; k# p2ex þ A1uþ A"
2/iH2

¼ heK2 ; k#ex þ A1uþ A"
2/iH2

(4.7)

and thus

8 u 2 D A1ð Þ 8 / 2 D A"
2

! "
jeK2 jH2

* jk#ex þ A1uþ A"
2/jH2

: (4.8)

Let us summarize:

Theorem 4.1. Let x 2 D2 be the exact solution of (3.1) and ex 2 H2 . Then
the following estimates hold for the error e ¼ x#ex defined in (4.1):

(i) The error decomposes according to (4.1) and (4.2), i.e.,

e ¼ eA1 þ eK2 þ eA"
2
2 R A1ð Þ!H2K2!H2R A"

2

! "
;

jej2H2
¼ jeA1 j

2
H2

þ jeK2 j
2
H2

þ jeA"
2
j2H2

:

(ii) The projection eA1 ¼ pA1e ¼ xg # pA1ex 2 RðA1Þ satisfies
jeA1 jH2

¼ min
f2D A"

1ð Þ
c1jA"

1f# gjH1
þ jf#exjH2

! "

and the minimum is attained at

f̂ :¼ eA1 þ ex ¼ pA1eþ ex ¼ # 1# pA1ð Þeþ x ¼ # pN A"
1ð Þeþ x 2 D A"

1

! "

since A"
1f̂ ¼ A"

1x ¼ g.

(iii) The projection eA"
2
¼ pA"

2
e ¼ xf # pA"

2
ex 2 RðA"

2Þ satisfies
jeA"

2
jH2

¼ min
n2D A2ð Þ

c2jA2n# f jH3
þ jn#exjH2

! "

and the minimum is attained at

n̂ :¼ eA"
2
þ ex ¼ pA"

2
eþ ex ¼ # 1# pA"

2ð Þeþ x ¼ # pN A2ð Þeþ x 2 D A2ð Þ

since A2n̂ ¼ A2x ¼ f .

(iv) The projection eK2 ¼ p2e ¼ k# p2ex 2 K2 satisfies

jeK2 jH2
¼ min

u2D A1ð Þ
min

/2D A"
2ð Þ
jk#ex þ A1uþ A"

2/jH2

and the minimum is attained at any û 2 DðA1Þ and /̂ 2 DðA"
2Þ solving

A1û ¼ pA1ex and A"
2/̂ ¼ pA"

2
ex since ðpA1 þ pA"

2
Þex ¼ ð1# p2Þex, especially at
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û :¼ A# 1
1 pA1ex 2 D A1ð Þ; /̂ :¼ A"

2

! "# 1pA"
2
ex 2 D A"

2

! "
:

For conforming approximations we get:

Corollary 4.2. Let the assumptions of Theorem 4.1 be satisfied.

(i) If ex 2 DðA"
1Þ , then e 2 DðA"

1Þ and hence eA1 ¼ pA1e 2 DðA"
1Þ with

A"
1eA1 ¼ A"

1e and

jeA1 jH2
* c1jA"

1ex# gjH1
¼ c1jA"

1ejH1

by setting f :¼ ex , which also follows directly by the Friedrichs/Poincar!e
type estimate.

(ii) If ex 2 DðA2Þ , then e 2 DðA2Þ and hence eA"
2
¼ pA"

2
e 2 DðA2Þ with

A2eA"
2
¼ A2e and

jeA"
2
jH2

* c2jA2ex# f jH3
¼ c2jA2ejH3

by setting n :¼ ex , which also follows directly by the Friedrichs/Poincar!e
type estimate.

(iii) If ex 2 D2, then e 2 D2 and

jej2D2
¼ jeA1 j

2
H2

þ jeK2 j
2
H2

þ jeA"
2
j2H2

þ jA2ej2H3
þ jA"

1ej
2
H1

* jeK2 j
2
H2

þ 1þ c22
! "

jA2ej2H3
þ 1þ c21
! "

jA"
1ej

2
H1

with

eK2 ¼ k# p2ex; A2e ¼ f #A2ex; A"
1e ¼ g#A"

1ex;

which again also follows immediately by the Friedrichs/Poincar!e
type estimates.

Remark 4.3. Corollary 4.2 (iii) shows, that for very conforming ex 2 D2 the
weighted least squares functional

F exð Þ :¼ jk# p2exj2H2
þ 1þ c22
! "

jA2ex# f j2H3
þ 1þ c21
! "

jA"
1ex# gj2H1

is equivalent to the conforming error, i.e.,

jej2D2
* F exð Þ * 1þmax c1; c2f g2

' (
jej2D2

:

Recalling the variational resp. saddle point formulations (3.8)–(3.10)
resp. (3.12)–(3.14) and that the partial solutions are given by

xf ¼ A"
2yf 2 D A2ð Þ; xg ¼ A1zg 2 D A"

1

! "
;

a possible numerical method, using these variational formulations in some
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finite dimensional subspaces to find eyf 2 DðA"
2Þ and ezg 2 DðA1Þ , such as

the finite element method, will always ensure

exf :¼ A"
2eyf 2 R A"

2

! "
¼ N A2ð Þ?H2 & N A"

1

! "
;

exg :¼ A1ezg 2 R A1ð Þ ¼ N A"
1

! "?H2 & N A2ð Þ

and thus

ex? :¼ exf þ exg 2 R A"
2

! "
!H2R A1ð Þ ¼ K

?H2
2 ;

but maybe not exf 2 DðA2Þ or exg 2 DðA"
1Þ. Therefore, a reasonable assump-

tion for our nonconforming approximations is

ex ¼ ex? þ k; ex? 2 K
?H2
2 ;

with eK2 ¼ p2e ¼ p2ðx#exÞ ¼ # p2ex? ¼ 0.

Corollary 4.4. Let x 2 D2 be the exact solution of (3.1) and ex :¼ kþ ex?
with some ex? 2 K

?H2
2 . Then for the error e defined in (4.1) it holds:

(i) According to (4.1) and (4.2) the error decomposes, i.e.,

e ¼ x#ex ¼ xf þ xg #ex? ¼ eA1 þ eA"
2
2 R A1ð Þ!H2R A"

2

! "
¼ K

?H2
2 ; eK2 ¼ 0;

and jej2H2
¼ jeA1 j

2
H2

þ jeA"
2
j2H2

. Hence there is no error in the “kernel” part.

(ii) The projection eA1 ¼ pA1e ¼ xg # pA1ex ¼ xg # pA1ex? 2 RðA1Þ satisfies
jeA1 jH2

¼ min
f2D A"

1ð Þ
c1jA"

1f# gjH1
þ jf#exjH2

! "

¼ min
f2D A"

1ð Þ
c1jA"

1f# gjH1
þ jf#ex?jH2

! "

(exchanging f by fþ k) and the minima are attained at

f̂ :¼ eA1 þ ex ¼ pA1eþ ex ¼ # 1# pA1ð Þeþ x ¼ # pN A"
1ð Þeþ x 2 D A"

1

! "
;

f̂? :¼ eA1 þ ex? ¼ pA1eþ ex? ¼ # 1# pA1ð Þeþ x# k ¼ # pN A"
1ð Þeþ x# k 2 D A"

1

! "

since A"
1f̂? ¼ A"

1f̂ ¼ A"
1x ¼ g.

(iii) The projection eA"
2
¼ pA"

2
e ¼ xf # pA"

2
ex ¼ xf # pA"

2
ex? 2 RðA"

2Þ satisfies
jeA"

2
jH2

¼ min
n2D A2ð Þ

c2jA2n# f jH3
þ jn#exjH2

! "

¼ min
n2D A2ð Þ

c2jA2n# f jH3
þ jn#ex?jH2

! "
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(exchanging n by nþ k) and the minima are attained at

n̂ :¼ eA"
2
þ ex ¼ pA"

2
eþ ex ¼ # 1# pA"

2ð Þeþ x ¼ # pN A2ð Þeþ x 2 D A2ð Þ;

n̂? :¼ eA"
2
þ ex? ¼ pA"

2
eþ ex? ¼ # 1# pA"

2ð Þeþ x# k ¼ # pN A2ð Þeþ x# k 2 D A2ð Þ

since A2n̂? ¼ A2n̂ ¼ A2x ¼ f .

4.1.2. Lower bounds
In any Hilbert space H we have

8 ĥ 2 H jĥj2H ¼ max
h2H

2hĥ; hiH # jhj2H
' (

(4.9)

and the maximum is attained at ĥ. We recall (4.1) and (4.2), especially

jej2H2
¼ jeA1 j

2
H2

þ jeK2 j
2
H2

þ jeA"
2
j2H2

:

Using (4.9) for H ¼ RðA1Þ and orthogonality we get

jeA1 j
2
H2

¼ max
u2D A1ð Þ

2heA1 ;A1uiH2
# jA1uj2H2

' (

¼ max
u2D A1ð Þ

2he;A1uiH2
# jA1uj2H2

' (

¼ max
u2D A1ð Þ

2hg;uiH1
# h2ex þ A1u;A1uiH2

! "

and the maximum is attained at any û 2 DðA1Þ with A1û ¼ eA1 :
Analogously for H ¼ RðA"

2Þ

jeA"
2
j2H2

¼ max
/2D A"

2ð Þ
2hf ;/iH3

# h2ex þ A"
2/;A

"
2/iH2

! "

and the maximum is attained at any /̂ 2 DðA"
2Þ with A"

2/̂ ¼ eA"
2
. Finally

for H ¼ K2 and by orthogonality

jeK2 j
2
H2

¼ max
h2K2

2heK2 ; hiH2
# jhj2H2

' (
¼ max

h2K2

h2 k#exð Þ# h; hiH2

and the maximum is attained at ĥ ¼ eK2 .

Theorem 4.5. Let x 2 D2 be the exact solution of (3.1) and ex 2 H2 . Then
the following estimates hold for the error e ¼ x#ex defined in (4.1):

(i) The error decomposes according to (4.1) and (4.2), i.e.,

e ¼ eA1 þ eK2 þ eA"
2
2 R A1ð Þ!H2K2!H2R A"

2

! "
;

jej2H2
¼ jeA1 j

2
H2

þ jeK2 j
2
H2

þ jeA"
2
j2H2

:
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(ii) The projection eA1 ¼ pA1e ¼ xg # pA1ex 2 RðA1Þ satisfies

jeA1 j
2
H2

¼ max
u2D A1ð Þ

2hg;uiH1
# h2ex þ A1u;A1uiH2

! "

and the maximum is attained at any û 2 DðA1Þ with A1û ¼ eA1 , e.g., at
û :¼ A# 1

1 eA1 2 DðA1Þ.

(iii) The projection eA"
2
¼ pA"

2
e ¼ xf # pA"

2
ex 2 RðA"

2Þ satisfies

jeA"
2
j2H2

¼ max
/2D A"

2ð Þ
2hf ;/iH3

# h2ex þ A"
2/;A

"
2/iH2

! "

and the maximum is attained at any /̂ 2 DðA"
2Þ with A"

2/̂ ¼ eA"
2
, e.g., /̂ :

¼ ðA"
2Þ

# 1eA"
2
2 DðA"

2Þ.

(iv) The projection eK2 ¼ p2e ¼ k# p2ex 2 K2 satisfies

jeK2 j
2
H2

¼ max
h2K2

h2 k#exð Þ# h; hiH2

and the maximum is attained at ĥ :¼ eK2 2 K2.
If ex :¼ kþ ex? with some ex? 2 K

?H2
2 , see Corollary 4.4, then eK2 ¼ 0, and

in (ii) and (iii) ex can be replaced by ex? as k ?H2 RðA1Þ!H2RðA"
2Þ.

4.1.3. Two-sided bounds
We summarize our results from the latter sections.

Corollary 4.6. Let x 2 D2 be the exact solution of (3.1) and ex 2 H2 . Then
the following estimates hold for the error e ¼ x#ex defined in (4.1):

(i) The error decomposes according to (4.1) and (4.2), i.e.,

e ¼ eA1 þ eK2 þ eA"
2
2 R A1ð Þ!H2K2!H2R A"

2

! "
;

jej2H2
¼ jeA1 j

2
H2

þ jeK2 j
2
H2

þ jeA"
2
j2H2

:

(ii) The projection eA1 ¼ pA1e ¼ xg # pA1ex 2 RðA1Þ satisfies

jeA1 j
2
H2

¼ min
f2D A"

1ð Þ
c1jA"

1f# gjH1
þ jf#exjH2

! "2

¼ max
u2D A1ð Þ

2hg;uiH1
# h2ex þ A1u;A1uiH2

! "

and the minimum resp. maximum is attained at

f̂ :¼ eA1 þ ex 2 D A"
1

! "
; û :¼ A# 1

1 eA1 2 D A1ð Þ

with A"
1f̂ ¼ A"

1x ¼ g, and at any û 2 DðA1Þ with A1û ¼ eA1.
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(iii) The projection eA"
2
¼ pA"

2
e ¼ xf # pA"

2
ex 2 RðA"

2Þ satisfies

jeA"
2
j2H2

¼ min
n2D A2ð Þ

c2jA2n# f jH3
þ jn#exjH2

! "2

¼ max
/2D A"

2ð Þ
2hf ;/iH3

# h2ex þ A"
2/;A

"
2/iH2

! "

and the minimum resp. maximum is attained at

n̂ :¼ eA"
2
þ ex 2 D A2ð Þ; /̂ :¼ A"

2

! "# 1eA"
2
2 D A"

2

! "

with A2n̂ ¼ A2x ¼ f , and at any /̂ 2 DðA"
2Þ with A"

2/̂ ¼ eA"
2
.

(iv) The projection eK2 ¼ p2e ¼ k# p2ex 2 K2 satisfies

jeK2 j
2
H2

¼ min
u2D A1ð Þ

min
/2D A"

2ð Þ
jk#ex þ A1uþ A"

2/j
2
H2

¼ max
h2K2

h2 k#exð Þ# h; hiH2

and the minimum resp. maximum is attained at

û :¼ A# 1
1 pA1ex 2 D A1ð Þ; /̂ :¼ A"

2

! "# 1pA"
2
ex 2 D A"

2

! "
; ĥ :¼ eK2 2 K2;

and at any û 2 DðA1Þ and /̂ 2 DðA"
2Þ with A1û ¼ pA1ex and A"

2/̂ ¼ pA"
2
ex.

If ex :¼ kþ ex? with some ex? 2 K
?H2
2 , see Corollary 4.4, then eK2 ¼ 0, and

in (ii) and (iii) ex can be replaced by ex? . In this case, for the attaining
minima it holds

f̂? :¼ eA1 þ ex? 2 D A"
1

! "
; n̂? :¼ eA"

2
þ ex? 2 D A2ð Þ:

4.2. Second order systems

Let x 2 eD2 be the exact solution of (3.49). Recalling Remark 3.21 we intro-
duce the additional quantity y :¼ A2x 2 DðA"

2Þ . Then (3.49) decomposes
into two first order systems of shape (1.5) resp. (3.1), i.e.,

A2x ¼ y; A3y ¼ 0;
A"
1x ¼ g; A"

2y ¼ f ;
p2x ¼ k; p3y ¼ 0

for the pair ðx; yÞ 2 D2 , D3. Hence, we can immediately apply our results
for the first order systems. Let ex 2 H2 and ey 2 H3 , which may be consid-
ered as nonconforming approximations of x and y, respectively. Utilizing
the notations from Theorem 3.19 we define and decompose the errors
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H2!e :¼ x # ex ¼ eA1 þ eK2 þ eA"
2
2 R A1ð Þ!H2K2!H2R A"

2

! "
;

H3!h :¼ y # ey ¼ hA2 þ hK3 þ hA"
3
2 R A2ð Þ!H3K3!H3R A"

3

! "
;

eA1 :¼ pA1e ¼ xg # pA1ex 2 R A1ð Þ; hA2 :¼ pA2h ¼ y# pA2ey 2 R A2ð Þ;
eA"

2
:¼ pA"

2
e ¼ xy# pA"

2
ex 2 R A"

2

! "
; hA"

3
:¼ pA"

3
h ¼ # pA"

3
ey 2 R A"

3

! "
;

eK2 :¼ p2e ¼ k# p2ex 2 K2; hK3 :¼ p3e ¼ # p3ey 2 K3

(4.10)

using the Helmholtz type decompositions of Lemma 2.7 and noting pA2y ¼
y as y 2 RðA2Þ. By orthogonality it holds

jej2H2
¼ jeA1 j

2
H2

þ jeK2 j
2
H2

þ jeA"
2
j2H2

; jhj2H3
¼ jhA2 j

2
H3

þ jhK3 j
2
H3

þ jhA"
3
j2H3

: (4.11)

Therefore, the results of the latter section can be applied to
eA1 ; eK2 ; eA"

2
; hA2 ; hK3 ; hA"

3
. Especially, by Corollary 4.6 we obtain

jeA1 j
2
H2

¼ min
f2D A"

1ð Þ
c1jA"

1f# gjH1
þ jf#exjH2

! "2 ¼ max
u2D A1ð Þ

2hg;uiH1
# h2ex þ A1u;A1uiH2

! "

(4.12)

and the minimum resp. maximum is attained at f̂ ¼ eA1 þ ex 2 DðA"
1Þ and

û ¼ A# 1
1 eA1 2 DðA1Þ with A"

1f̂ ¼ A"
1x ¼ g,

jeA"
2
j2H2

¼ min
n2D A2ð Þ

c2jA2n# yjH3
þ jn#exjH2

! "2 ¼ max
/2D A"

2ð Þ
2hy;/iH3

# h2ex þ A"
2/;A

"
2/iH2

! "

(4.13)

and the minimum resp. maximum is attained at n̂ ¼ eA"
2
þ ex 2 DðA2Þ and

/̂ ¼ ðA"
2Þ

# 1eA"
2
2 DðA"

2Þ with A2n̂ ¼ A2x ¼ y,

jeK2 j
2
H2

¼ min
u2D A1ð Þ

min
/2D A"

2ð Þ
jk#ex þ A1uþ A"

2/j
2
H2

¼ max
h2K2

h2 k#exð Þ# h; hiH2

(4.14)

and the minimum resp. maximum is attained at û ¼ A# 1
1 pA1ex 2 DðA1Þ ,

/̂ ¼ ðA"
2Þ

# 1pA"
2
ex 2 DðA"

2Þ , and ĥ ¼ eK2 2 K2 with A1û þ A"
2/̂ ¼ ðpA1 þ

pA"
2
Þex ¼ ð1# p2Þex . If ex ¼ kþ ex? with some ex? 2 K

?H2
2 , then eK2 ¼ 0, and

ex can be replaced by ex? . If the General Assumption 3.1 holds also for A3,
i.e., R(A3) is closed and (not neccessarily) K3 is finite dimensional, we get
the corresponding results for hA2 ; hK3 ; hA"

3
as well. Replacing A1 by A2 and

A2 by A3, Corollary 4.6 yields

jhA2 j
2
H3

¼ min
f2D A"

2ð Þ
c2jA"

2f# f jH2
þ jf#eyjH3

! "2 ¼ max
u2D A2ð Þ

2hf ;uiH2
# h2ey þ A2u;A2uiH3

! "

(4.15)

and the minimum resp. maximum is attained at f̂ ¼ hA2 þ ey 2 DðA"
2Þ and

û ¼ A# 1
2 hA2 2 DðA2Þ with A"

2f̂ ¼ A"
2y ¼ f ,
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jhA"
3
j2H3

¼ min
n2D A3ð Þ

c3jA3njH4
þ jn#eyjH3

! "2 ¼ max
/2D A"

3ð Þ
# h2ey þ A"

3/;A
"
3/iH3

! "
(4.16)

and the minimum resp. maximum is attained at n̂ ¼ hA"
3
þ ey 2 DðA3Þ and

/̂ ¼ ðA"
3Þ

# 1hA"
3
2 DðA"

3Þ with A3n̂ ¼ A3y ¼ 0, i.e., n̂ 2 NðA3Þ,

jhK3 j
2
H3

¼ min
u2D A2ð Þ

min
/2D A"

3ð Þ
j#ey þ A2uþ A"

3/j
2
H3

¼ max
h2K3

# h2ey þ h; hiH3

! "
(4.17)

and the minimum resp. maximum is attained at û ¼ A# 1
2 pA2ey 2 DðA2Þ ,

/̂ ¼ ðA"
3Þ

# 1pA"
3
ey 2 DðA"

3Þ , and ĥ ¼ hK3 2 K3 with A2û þ A"
3/̂ ¼ ðpA2 þ

pA"
3
Þey ¼ ð1# p3Þey . If ey ¼ ey? 2 K

?H3
3 , then hK3 ¼ 0, and ey can be replaced

by ey?. The upper bound for jhA"
3
jH3

in (4.16) equals

jhA"
3
jH3

¼ min
n2N A3ð Þ

jn#eyjH3
¼ jn̂#eyjH3

; n̂ ¼ hA"
3
þ ey 2 N A3ð Þ;

and so the constant c3 does not play a role. In (4.13) the unknown exact
solution y still appears in the upper and in the lower bound. The term
A2n# y 2 RðA2Þ of the upper bound in (4.13) can be handled as an error
hn ¼ y#eyn with eyn ¼ A2n. As hn ¼ pA2hn ¼ hn;A2 we get by (4.15)

jA2n# yjH3
¼ jhnjH3

¼ min
f2D A"

2ð Þ
c2jA"

2f# f jH2
þ jf#A2njH3

! "
:

Another option to compute an upper bound in (4.13) is the following
one: As y 2 DðA"

2Þ we observe A2n# y 2 DðA"
2Þ if n 2 DðA"

2A2Þ. The min-
imum in (4.13) is attained at n̂ ¼ eA"

2
þ ex 2 DðA2Þ with A2n̂ ¼ A2x ¼ y .

Since n̂ 2 DðA"
2A2Þ and A"

2A2n̂ ¼ A"
2y ¼ f we obtain

jeA"
2
jH2

¼ min
n2D A"

2
A2ð Þ

c2jA2n# yjH3
þ jn#exjH2

! "
¼ min

n2D A"
2
A2ð Þ

c22jA
"
2A2n# f jH2

þ jn#exjH2

' (
;

where the latter equality follows by the Friedrichs/Poincar!e inequality. To
get a lower bound for jeA"

2
j2H2

in (4.13) we observe eA"
2
2 RðA"

2Þ ¼ RðA"
2A2Þ

and derive

jeA"
2
j2H2

¼ max
/2D A"

2
A2ð Þ

2heA"
2
;A"

2A2/iH2
# jA"

2A2/j2H2

' (

¼ max
/2D A"

2
A2ð Þ

2he;A"
2A2/iH2

# jA"
2A2/j2H2

' (

¼ max
/2D A"

2
A2ð Þ

2hf ;/iH2
# h2ex þ A"

2A2/;A"
2A2/iH2

! "
:

We summarize the two sided bounds:

Theorem 4.7. Additionally to the General Assumption 3.1, suppose that
R(A3) is closed. Let x 2 eD2 be the exact solution of (3.49), y :¼ A2x, and let
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ðex;eyÞ 2 H2 ,H3 . Then the following estimates hold for the errors e ¼ x#ex
and h ¼ y#ey defined in (4.10):

(i) The errors decompose, i.e.,

e ¼ eA1 þ eK2 þ eA"
2
2 R A1ð Þ!H2K2!H2R A"

2

! "
;

jej2H2
¼ jeA1 j

2
H2

þ jeK2 j
2
H2

þ jeA"
2
j2H2

;

h ¼ hA2 þ hK3 þ hA"
3
2 R A2ð Þ!H3K3!H3R A"

3

! "
;

jhj2H3
¼ jhA2 j

2
H3

þ jhK3 j
2
H3

þ jhA"
3
j2H3

:

(ii) The projection eA1 ¼ pA1e ¼ xg # pA1ex 2 RðA1Þ satisfies

jeA1 j
2
H2

¼ min
f2D A"

1ð Þ
c1jA"

1f# gjH1
þ jf#exjH2

! "2

¼ max
u2D A1ð Þ

2hg;uiH1
# h2ex þ A1u;A1uiH2

! "

and the minimum resp. maximum is attained at

f̂ :¼ eA1 þ ex 2 D A"
1

! "
; û :¼ A# 1

1 eA1 2 D A1ð Þ

with A"
1f̂ ¼ A"

1x ¼ g.

(iii) The projection eA"
2
¼ pA"

2
e ¼ xy# pA"

2
ex 2 RðA"

2Þ satisfies

jeA"
2
j2H2

¼ min
n2D A2ð Þ

min
f2D A"

2ð Þ
c22jA

"
2f# f jH2

þ c2jf#A2njH3
þ jn#exjH2

' (2

¼ min
n2D A"

2
A2ð Þ

c22jA
"
2A2n# f jH2

þ jn#exjH2

' (2

¼ max
/2D A"

2
A2ð Þ

2hf ;/iH2
# h2ex þ A"

2A2/;A"
2A2/iH2

! "

and the minima resp. maximum are attained at

n̂ :¼ eA"
2
þ ex 2 D A"

2A2
! "

; f̂ :¼ hn þ A2n ¼ y 2 D A"
2

! "
;

/̂ :¼ A# 1
2 A"

2

! "# 1eA"
2
2 D A"

2A2
! "

with A2n̂ ¼ A2x ¼ y and A"
2A2n̂ ¼ A"

2y ¼ f as well as A"
2f̂ ¼ A"

2y ¼ f .

(iv) The projection eK2 ¼ p2e ¼ k# p2ex 2 K2 satisfies

jeK2 j
2
H2

¼ min
u2D A1ð Þ

min
/2D A"

2ð Þ
jk#ex þ A1uþ A"

2/j
2
H2

¼ max
h2K2

h2 k#exð Þ# h; hiH2
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and the minimum resp. maximum is attained at

û :¼ A# 1
1 pA1ex 2 D A1ð Þ; /̂ :¼ A"

2

! "# 1pA"
2
ex 2 D A"

2

! "
; ĥ :¼ eK2 2 K2

with A1û þ A"
2/̂ ¼ ðpA1 þ pA"

2
Þex ¼ ð1# p2Þex.

(v) The projection hA2 ¼ pA2h ¼ y# pA2ey 2 RðA2Þ satisfies

jhA2 j
2
H3

¼ min
f2D A"

2ð Þ
c2jA"

2f# f jH2
þ jf#eyjH3

! "2

¼ max
u2D A2ð Þ

2hf ;uiH2
# h2ey þ A2u;A2uiH3

! "

and the minimum resp. maximum is attained at

f̂ :¼ hA2 þ ey 2 D A"
2

! "
; û :¼ A# 1

2 hA2 2 D A2ð Þ

with A"
2f̂ ¼ A"

2y ¼ f .

(vi) The projection hA"
3
¼ pA"

3
h ¼ # pA"

3
ey 2 RðA"

3Þ satisfies

jhA"
3
j2H3

¼ min
n2D A3ð Þ

c3jA3njH4
þ jn#eyjH3

! "2 ¼ min
n2N A3ð Þ

jn#eyj2H3

¼ max
/2D A"

3ð Þ
# h2ey þ A"

3/;A
"
3/iH3

! "

and the minimum resp. maximum is attained at

n̂ :¼ hA"
3
þ ey 2 N A3ð Þ; /̂ :¼ A"

3

! "# 1hA"
3
2 D A"

3

! "

with A3n̂ ¼ A3y ¼ 0.

(vii) The projection hK3 ¼ p3e ¼ # p3ey 2 K3 satisfies

jhK3 j
2
H3

¼ min
u2D A2ð Þ

min
/2D A"

3ð Þ
j#ey þ A2uþ A"

3/j
2
H3

¼ max
h2K3

# h2ey þ h; hiH3

! "

and the minimum resp. maximum is attained at

û :¼ A# 1
2 pA2ey 2 D A2ð Þ; /̂ :¼ A"

3

! "# 1pA"
3
ey 2 D A"

3

! "
; ĥ :¼ hK3 2 K3

with A2û þ A"
3/̂ ¼ pA2 þ pA"

3ð Þey ¼ 1# p3ð Þey
If ex ¼ kþ ex? with some ex? 2 K

?H2
2 , then eK2 ¼ 0, and in (ii) and (iii) ex can

be replaced by ex? . If ey ¼ ey? 2 K
?H3
3 , then hK3 ¼ 0 , and in (v) and (vi) ey

can be replaced by ey?.
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Remark 4.8. A reasonable assumption provided by standard numerical
methods is ey 2 RðA2Þ. Hence it often holds hA"

3
¼ hK3 ¼ 0.

4.3. Computing the error functionals

We propose suitable ways to compute the most important error functionals
in Theorem 4.1, Corollary 4.4, and Corollary 4.6. For example, let us focus
on Corollary 4.6 (ii), i.e., for ex 2 H2 on the error estimates

max
u2D A1ð Þ

2hg;uiH1
# h2ex þ A1u;A1uiH2

! "
¼ jeA1 j

2
H2

¼ min
f2D A"

1ð Þ
c1jA"

1f# gjH1
þ jf#exjH2

! "2:

(4.18)

Before proceeding, let us note that instead of computing the maximum
resp. minimum of the lower resp. upper bound we can simply und cheaply
choose any u 2 DðA1Þ and any f 2 DðA"

1Þ given by any method or guess
and we obtain the guaranteed error bounds

2hg;uiH1
# h2ex þ A1u;A1uiH2

* jeA1 j
2
H2

* c1jA"
1f# gjH1

þ jf#exjH2

! "2:

4.3.1. Lower bounds
Considering the maximum on the left hand side of (4.18) we differentiate
the lower bound UðuÞ :¼ 2hg;uiH1

# h2ex þ A1u;A1uiH2
with respect to u.

Hence a maximizer û 2 DðA1Þ solves the variational formulation

8 u 2 D A1ð Þ 0 ¼ # 1
2
U0 ûð Þu ¼ hA1û;A1uiH2

þ hex;A1uiH2
# hg;uiH1

;

(4.19)

which implies A1û þ ex 2 DðA"
1Þ with

A"
1 A1û þ exð Þ ¼ g ¼ A"

1x

and presents a weak formulation of A"
1A1û ¼ g#A"

1ex ¼ A"
1e ¼ A"

1eA1. By

0 ¼ A"
1 A1û þ ex# xð Þ ¼ A"

1 A1û# eð Þ ¼ A"
1 A1û# eA1ð Þ

we observe A1û# eA1 2 NðA"
1Þ \ RðA1Þ ¼ NðA"

1Þ \ NðA"
1Þ

?H2 ¼ f0g, i.e., û
solves A1û ¼ eA1 , see Corollary 4.6 (ii). As A1 is strictly positive over
DðA1Þ ¼ DðA1Þ \ RðA"

1Þ ¼ DðA1Þ \ NðA1Þ?H1 , (4.19) admits a unique solu-
tion û 2 DðA1Þ . A particularly simple case is given if N(A1) is finite
dimensional or even trivial, which occurs in many applications. Otherwise
one has to work with the saddle point or double saddle point formulations
as we have discussed earlier. The previous considerations show that the
unique maximizer û 2 DðA1Þ is given by
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û ¼ A# 1
1 eA1 ;

which is already written down in Corollary 4.6 (ii). Moroever, we finally
note

û ¼ A# 1
1 eA1 ¼ A# 1

1 pA1e ¼ A# 1
1 pA1 x#exð Þ ¼ A# 1

1 xg # pA1ex
! "

¼ A# 1
1 A"

1

! "# 1g# pA1ex
' (

:

If ex 2DðA"
1Þ then pA1ex 2DðA"

1Þ with A"
1pA1ex ¼ A"

1ex and û ¼
A#1

1 ðA"
1Þ

#1ðg#A"
1exÞ.

Remark 4.9. The maximum in (4.18) is attained at any û 2 DðA1Þ with
A1û ¼ eA1 , especially at û ¼ A# 1

1 eA1 2 DðA1Þ. û 2 DðA1Þ can be found by
the variational formulation

8 u 2 D A1ð Þ hA1û;A1uiH2
¼ hg;uiH1

# hex;A1uiH2
;

which is coercive (positive) over D A1ð Þ:

4.3.2. Upper bounds
For the minimum on the right hand side of (4.18) we can roughly estimate
the upper bound by WðfÞ :¼ 2c21jA"

1f# gj2H1
þ 2jf#exj2H2

. Differentiating W
shows that the minimizer f"2 DðA"

1Þ of minf2DðA"
1ÞWðfÞ solves the vari-

ational formulation

8 f 2 D A"
1ð Þ 0 ¼ 1

4
W0 f

"
' (

f ¼ c21hA"
1 f

"# g;A"
1fiH1

þ hf"#ex; fiH2

¼ c21hA"
1 f

";A"
1fiH1

þ hf"; fiH2
# c21hg;A"

1fiH1
# hex; fiH2

;

(4.20)

which implies A"
1 f

"# g 2 DðA1Þ and c21A1ðA"
1 f

"# gÞ ¼ ðex# f"Þ; and presents
a weak formulation of

c21A1A"
1 f
"
þ f

"
¼ c21A1g þ ex:

Unique solvability of (4.20) in DðA"
1Þ is trivial, as the variational formula-

tion reproduces a graph inner product of DðA"
1Þ; and we have f"¼

ðc21A1A"
1 þ 1Þ# 1ðc21A1g þ exÞ: Moreover, as g 2 RðA"

1Þ it even holds A"
1 f

"#
g 2 DðA1Þ and hence by the Friedrichs/Poincar!e estimate, the equation for
f", and inserting f ¼ f" into Corollary 4.6 (ii)

jeA1 jH2
* c1jA"

1 f
"# gjH1

þ j f"#exjH2
* c21jA1 A"

1 f
"# g

! "
jH1

þ j f"#exjH2

¼ 2
j f"#exjH2

;

c21jA1 A"
1 f

"# g
! "

jH1
:

(

(4.21)
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This rough minimization process can be improved by using a bit more
careful estimate for the square term in (4.18). For this we observe for all
f 2 DðA"

1Þ and all t> 0

jeA1 j
2
H2

* 1þ t# 1ð Þ c21 jA"
1f# gj2H1

þ 1þ tð Þjf#exj2H2
¼: W ex; f; tð Þ

and obtain by choosing f ¼ f̂ ¼ eA1 þ ex 2 DðA"
1Þ from Theorem 4.1,

Corollary 4.4 or Corollary 4.6

jeA"
2
j2H2

* inf
t2 0;1ð Þ

inf
f2D A"

1ð Þ
W ex; f; tð Þ * inf

t2 0;1ð Þ
W ex; f̂; t
! "

¼ inf
t2 0;1ð Þ

1þ tð ÞjeA1 j
2
H2

¼ jeA1 j
2
H2
:

Thus

jeA1 j
2
H2

¼ min
f2D A"

1ð Þt2 0;1½ /;
W ex; f; tð Þ ¼ min

f2D A"
1ð Þt2 0;1½ /;

1þ t# 1ð Þ c21 jA"
1f# gj2H1

þ 1þ tð Þjf#exj2H2

' (
;

(4.22)

and the minimum is attained at ðt; fÞ ¼ ð0; f̂Þ . For fixed f 2 DðA"
1Þ the

minimal tf 2 ½0;1/ is given by

tf ¼
c1
jA"

1f# gjH1

jf # exjH2

; if f 6¼ ex;

1 ; if f ¼ ex:

8
><

>:

We note that the case tf ¼ 1 can only happen if ex 2 DðA"
1Þ . In any

case, inserting tf into (4.22) we get back the right hand side of (4.18), i.e.,

jeA"
2
j2H2

* min
f2D A"

1ð Þ
c1jA"

1f# gjH1
þ jf#exjH2

! "2 ¼ jeA1 j
2
H2
:

On the other hand, for fixed 0< t<1 the minimization of WtðfÞ :¼
Wðex; f; tÞ over f 2 DðA"

1Þ is equivalent to find ft 2 DðA"
1Þ, such that

8 f 2 D A"
1

! " t
2c21 1þ tð ÞW

0
t ftð Þ fð Þ ¼ hA"

1ft # g;A"
1fiH1

þ t
c21
hft #ex; fiH2

¼ 0:

(4.23)

Especially A"
1ft # g 2 D A1ð Þ with

A1 A"
1ft # g

! "
¼ t

c21
ex# ftð Þ 2 R A1ð Þ (4.24)

and hence (4.23) is a standard weak formulation of the coercive problem
(in formally strong form) ðA1A"

1 þ t
c21
Þft ¼ A1g þ t

c21
ex, i.e.,
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8 f 2 D A"
1

! "
hA"

1ft;A
"
1fiH1

þ t
c21
hft; fiH2

¼ hg;A"
1fiH1

þ t
c21
hex; fiH2

: (4.25)

Moreover, as g 2 RðA"
1Þ we even have A"

1ft # g 2 DðA1Þ and the strong
form holds rigorously if g 2 DðA1Þ . Furthermore, inserting ft into (4.22)
and using the Friedrichs/Poincar!e type estimate shows

jeA1 j
2
H2

* min
t2 0;1½ /

ðð1þ t# 1Þ c21 jA"
1ft # gj2H1

þ ð1þ tÞjft #exj2H2
Þ

* min
t2 0;1½ /

ðð1þ t# 1Þ c41 jA1ðA"
1ft # gÞj2H2

þ ð1þ tÞjft #exj2H2
Þ

¼
mint2 0;1½ / ð1þ tÞ2jft #exj2H2

;

mint2 0;1½ / ð1þ t# 1Þ2 c41 jA1ðA"
1ft # gÞj2H2

;

8
<

:

compare to (4.21). Hence the overestimation by the factor 2 is removed as
long as t is close to 0 or 1 . A suitable algorithm for computing a good
pair ðt; fÞ for approximately minimizing (4.22) is the following:

Algorithm 4.10. Computing a minimizer ðt; fÞ in (4.22), i.e., an upper
bound for jeA1 jH2

:

+ initialization: Set n :¼ 0. Pick f0 2 DðA"
1Þ with f0 6¼ ex.

+ loop: Set n :¼ nþ 1. Compute tn ¼ c1
jA"

1fn# 1 # gjH1
jfn# 1 #exjH2

and then fn 2 DðA"
1Þ

by solving

8 f 2 D A"
1

! "
c21hA

"
1fn;A

"
1fiH1

þ tnhfn; fiH2
¼ c21hg;A

"
1fiH1

þ tnhex; fiH2
:

Compute WA"
1
ðex; fn; tnÞ :¼ ð1þ t# 1

n Þ c21 jA"
1fn # gj2H1

þ ð1þ tnÞjfn#exj2H2
.

+ stop if WA"
1
ðex; fn; tnÞ#WA"

1
ðex; fn# 1; tn# 1Þ is small.

Remark 4.11. (4.25) shows for f ¼ ft

c21jA
"
1ftj

2
H1

þ tjftj2H2
¼ c21hg;A

"
1ftiH1

þ thex; ftiH2

* c21jgj
2
H1

þ tjexj2H2

' (1=2
c21jA

"
1ftj

2
H1

þ tjftj2H2

' (1=2

and thus

c21jA
"
1ftj

2
H1

þ tjftj2H2
* c21jgj

2
H1

þ tjexj2H2
:

By (4.24) and since A"
1ft # g 2 DðA1Þ we get

A"
1ft # g ¼ t

c21
A# 1

1 ex# ftð Þ
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and hence

jA"
1ft # gjH1

* c t1=2 jgjH1
þ t1=2jexjH2

' (

with c> 0 independent of t and ft. Let us assume tn ! 0 in Algorithm 4.10.

Then by the latter considerations ðA"
1fnÞ and ðt1=2n fnÞ are bounded and

A"
1fn ! g with the minimal rate t1=2n : Moreover, the projected sequence

ðpA1fnÞ & DðA"
1Þ is bounded in DðA"

1Þ by A"
1pA1fn ¼ A"

1fn and the
Friedrichs/Poincar!e estimate jpA1fnjH2

* c1jA"
1pA1fnjH1

. If DðA"
1Þ;! H2 is

compact, then we can extract a subsequence, again denoted by ðtnÞ , such
that pA1fn ! f" in H2. Thus f"2 DðA"

1Þ and A"
1 f

"¼ g as A"
1 is closed, which

shows f"¼ ðA"
1Þ

# 1g ¼ xg ¼ pA1x, see Theorem 3.3. As the limit xg is unique,
even the whole sequence pA1fn converges to xg. For the other part
ð1# pA1Þfn & NðA"

1Þ we apply the projector 1# pA1 to (4.24) and obtain
ð1# pA1Þðex# fnÞ ¼ 0, i.e., ð1# pA1Þfn ¼ ð1# pA1Þex is constant. Hence

fn ¼ pA1fn þ 1# pA1ð Þfn ! pA1xþ 1# pA1ð Þex ¼ eA1 þ ex ¼ f̂;

where f̂ 2 DðA"
1Þ is the unique minimizer from Corollary 4.6 (ii). Finally,

Algorithm 4.10 defines a sequence ðfnÞ converging in DðA"
1Þ to f̂ provided

that DðA"
1Þ;! H2 is compact and tn ! 0.

5. Applications

5.1. Prototype first order system: Electro-magneto statics

As a prototypical example for a first order system we will discuss the sys-
tem of electro-magneto statics with mixed boundary conditions. Let X &
R3 be a bounded weak Lipschitz domain, see [13, Definition 2.3], and let
C :¼ @X denote its boundary (Lipschitz manifold), which is supposed to be
decomposed into two relatively open weak Lipschitz subdomains (Lipschitz
submanifolds) Ct and Cn :¼ C n Ct see [13, Definition 2.5]. Let us consider
the linear first order system (in classical strong formulation) for a vector
field E : X ! R3

rotE ¼ F in X; n, E ¼ 0 at Ct;
# div eE ¼ g in X; n ( eE ¼ 0 at Cn;

pHE ¼ K in X:
(5.1)

Here, e : X ! R3,3 is a symmetric, uniformly positive definite L1

-matrix field and n denotes the outer unit normal at C . Let us put
l :¼ e# 1 . The usual Lebesgue and Sobolev (Hilbert) spaces will be
denoted by L2ðXÞ;H‘ðXÞ; ‘ 2 N0 , and (in the distributional sense) we
introduce
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R Xð Þ :¼ E 2 L2 Xð Þ : rotE 2 L2 Xð Þ
# $

;

D Xð Þ :¼ E 2 L2 Xð Þ : divE 2 L2 Xð Þ
# $

:

Let us also define

L2? Xð Þ :¼ L2 Xð Þ \ R?L2 Xð Þ ; H1
? Xð Þ :¼ H1 Xð Þ \ L2? Xð Þ:

With the test functions or test vector fields

C1
Ct

Xð Þ :¼ ujX : u 2 C1 R3ð Þ; suppu compact in R3; dist suppu;Ctð Þ>0
n o

;

C1
; Xð Þ ¼ C1 #Xð Þ;

we define as closures of test functions resp. test fields

H1
Ct

Xð Þ :¼ C1
Ct

Xð ÞH1 Xð Þ
; RCt Xð Þ :¼ C1

Ct
Xð ÞR Xð Þ

; DCn Xð Þ :¼ C1
Cn

Xð ÞD Xð Þ
;

generalizing homogeneous scalar, tangential, and normal traces on Ct and
Cn, respectively. Moreover, we introduce the closed subspaces

R0 Xð Þ :¼ E 2 R Xð Þ : rotE ¼ 0
# $

; D0 Xð Þ :¼ E 2 D Xð Þ : divE ¼ 0
# $

;
RCt ;0 Xð Þ :¼ RCt Xð Þ \ R0 Xð Þ; DCn;0 Xð Þ :¼ DCn Xð Þ \ D0 Xð Þ;

and the Dirichlet–Neumann fields including the corresponding orthonor-
mal projector

Ht;n;e Xð Þ :¼ RCt ;0 Xð Þ \ l DCn;0 Xð Þ; pH : L2e Xð Þ ! Ht;n;e Xð Þ:

Here, L2eðXÞ denotes L2ðXÞ equipped with the inner product
h ( ; ( iL2e ðXÞ :¼ he ( ; ( iL2ðXÞ . Let H1 :¼ L2ðXÞ;H4 :¼ L2ðXÞ (both scalar
valued) and H2 :¼ L2eðXÞ;H3 :¼ L2ðXÞ (both vector valued) as well as

A1 :¼ gradCt
: D A1ð Þ :¼ H1

Ct
Xð Þ & L2 Xð Þ! L2e Xð Þ;

A2 :¼ rotCt : D A2ð Þ :¼ RCt Xð Þ & L2e Xð Þ ! L2 Xð Þ;
A3 :¼ divCt : D A3ð Þ :¼ DCt Xð Þ & L2 Xð Þ ! L2 Xð Þ:

In [13] it has been shown that the adjoints are

A"
1 ¼ grad"Ct

¼ # divCne : D A"
1

! "
¼ l DCn Xð Þ & L2e Xð Þ ! L2 Xð Þ;

A"
2 ¼ rot"Ct

¼ lrotCn : D A"
2

! "
¼ RCn Xð Þ & L2 Xð Þ ! L2e Xð Þ;

A"
3 ¼ div"Ct

¼ # gradCn
: D A"

3

! "
¼ H1

Cn
Xð Þ & L2 Xð Þ ! L2 Xð Þ:
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As A1;A2;A3 define the well-known de Rham complex, see, e.g., [13,
Lemma 2.2], so do their adjoints, i.e., for17 ; 6¼ Ct 6¼ C

where we have introduced the additional canonical embedding and projec-
tion operators A0;A"

0;A4;A"
4 by

A0 ¼
.
i 0f g : H0 ¼ 0f g ; if Ct 6¼ ;
iR : H0 ¼ R ; if Ct ¼ ;

! L2 Xð Þ;

A4 ¼
.
p 0f g ; if Ct 6¼ C

pR ; if Ct ¼ C
: L2 Xð Þ !

.
0f g ; if Ct 6¼ C

R ; if Ct ¼ C
;

A"
4 ¼

.
i 0f g : H5 ¼ 0f g ; if Ct 6¼ C

iR : H5 ¼ R ; if Ct ¼ C
! L2 Xð Þ;

A"
0 ¼

.
p 0f g ; if Ct 6¼ ;
pR ; if Ct ¼ ;

: L2 Xð Þ !
.

0f g ; if Ct 6¼ ;
R ; if Ct ¼ ;

:

For the kernels we have

N A0ð Þ ¼ 0f g N A"
0

! "
¼

.
L2 Xð Þ ; if Ct 6¼ ;;
L2? Xð Þ ; if Ct ¼ ;; ;

N A1ð Þ ¼
.

0f g ; if Ct 6¼ ;;
R ; if Ct ¼ ;; N A"

1ð Þ ¼ l DCn;0 Xð Þ;

N A2ð Þ ¼ RCt ;0 Xð Þ; N A"
2ð Þ ¼ RCn;0 Xð Þ;

N A3ð Þ ¼ DCt;0 Xð Þ; N A"
3

! "
¼

.
0f g ; if Ct 6¼ C;
R ; if Ct ¼ C;

;

N A4ð Þ ¼ L2 Xð Þ ; if Ct 6¼ C;
L2? Xð Þ ; if Ct ¼ C;

; N A"
4ð Þ ¼ 0f g

.

and for the cohomology groups

17For Ct ¼ ; we have

which also shows the case Ct ¼ C by interchanging Ct and Cn and shifting e. More precisely, for Ct ¼ C
it holds
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K0 ¼ N A0ð Þ ¼ 0f g;
K1 ¼ N A1ð Þ \ N A"

0

! "
¼ 0f g;

K2 ¼ N A2ð Þ \ N A"
1ð Þ ¼ RCt ;0 Xð Þ \ l DCn;0 Xð Þ ¼ Ht;n;e Xð Þ;

K3 ¼ N A3ð Þ \ N A"
2ð Þ ¼ DCt ;0 Xð Þ \ RCn;0 Xð Þ ¼: Hn;t Xð Þ;

K4 ¼ N A4ð Þ \ N A"
3

! "
¼ 0f g;

K5 ¼ N A"
4ð Þ ¼ 0f g:

Using the latter operators A2 ¼ rotCt and A"
1 ¼ # divCne, the linear first

order system (5.1) (in weak formulation) has the form of (1.5) resp. (3.1),
i.e., find a vector field

E 2 D2 ¼ D A2ð Þ \ D A"
1

! "
¼ RCt Xð Þ \ l DCn Xð Þ;

such that

rotCtE ¼ F;

# divCneE ¼ g;

pHE ¼ K;

(5.2)

where K2 ¼ Ht;n;eðXÞ. In [13, Theorem 5.1] the embedding D2;! H2, i.e.,

RCt Xð Þ \ l DCn Xð Þ;! L2e Xð Þ;

was shown to be compact. Hence also the embedding D3 ¼ DðA3Þ \
DðA"

2Þ;! H3, i.e.,

DCt Xð Þ \ RCn Xð Þ;! L2 Xð Þ;

is compact. Thus, by the results of the functional analysis toolbox Section
2, all occurring ranges are closed, certain Helmholtz type decompositions
hold, corresponding Friedrichs/Poincar!e type estimates are valid, and the
respective inverse operators are continuous resp. compact. Especially, the
reduced operators are

A1 :¼ ggradCt
: D A1ð Þ ¼ H1

Ct
Xð Þ \ L2 Xð Þ & L2 Xð Þ ! grad H1

Ct
Xð Þ;

A2 :¼ frotCt : D A2ð Þ ¼ RCt Xð Þ \ l rotRCn Xð Þ & l rotRCn Xð Þ ! rotRCt Xð Þ;
A3 :¼ fdivCt : D A3ð Þ ¼ DCt Xð Þ \ gradH1

Cn
Xð Þ & gradH1

Cn
Xð Þ ! L2 Xð Þ;

where gradH1
Ct
ðXÞ and lrotRCnðXÞ have to be understood as closed subspa-

ces of L2eðXÞ, and L2ðXÞ has to be replaced by L2?ðXÞ in A1, if Ct ¼ ;, and
in A3, if Ct ¼ C, with adjoints

A"
1 ¼ ggrad

"
Ct
¼ # fdivCne : D A"

1

! "
¼ l DCn Xð Þ \ grad H1

Ct
Xð Þ & grad H1

Ct
Xð Þ ! L2 Xð Þ;

A"
2 ¼ frot"Ct

¼ l frotCn : D A"
2

! "
¼ RCn Xð Þ \ rot RCt Xð Þ & rotRCt Xð Þ ! lrot RCn Xð Þ;

A"
3 ¼ fdiv

"
Ct
¼ # ggradCn

: D A"
3

! "
¼ H1

Cn
Xð Þ \ L2 Xð Þ & L2 Xð Þ ! gradH1

Cn
Xð Þ;

where L2ðXÞ has to be replaced by L2?ðXÞ in A"
1 , if Ct ¼ ;, and in A"

3 , if
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Ct ¼ C . Note that the reduced operators possess bounded resp. compact
inverse operators. For the ranges we have

R A1ð Þ ¼ R A1ð Þ & N A2ð Þ; i:e:; grad H1
Ct

Xð Þ ¼ grad H1
Ct

Xð Þ \ L2 Xð Þ
' (

& RCt ;0 Xð Þ;
R A2ð Þ ¼ R A2ð Þ & N A3ð Þ; i:e:; rot RCt Xð Þ ¼ rot RCt Xð Þ \ lrot RCn Xð Þ

! "
& DCt;0 Xð Þ;

R A3ð Þ ¼ R A3ð Þ; i:e:; div DCt Xð Þ ¼ div DCt Xð Þ \ grad H1
Cn

Xð Þ
' (

;

R A"
1ð Þ ¼ R A"

1

! "
; i:e:; div DCn Xð Þ ¼ div DCn Xð Þ \ egrad H1

Ct
Xð Þ

' (
;

R A"
2ð Þ ¼ R A"

2

! "
& N A"

1ð Þ; i:e:; l rot RCn Xð Þ ¼ l rot RCn Xð Þ \ rot RCt Xð Þ
! "

& l DCn;0 Xð Þ;
R A"

3

! "
¼ R A"

3

! "
& N A"

2ð Þ; i:e:; grad H1
Cn

Xð Þ ¼ grad H1
Cn

Xð Þ \ L2 Xð Þ
' (

& RCn;0 Xð Þ;

where L2ðXÞ has to be replaced by L2?ðXÞ for Ct ¼ ; resp. Ct ¼ C . Note
that the assertions of RðA3Þ;RðA"

2Þ;RðA"
3Þ are already included in those of

RðA1Þ;RðA2Þ;RðA"
1Þ by interchanging Ct and Cn , and setting e :¼ id .

Furthermore, the following Friedrichs/Poincar!e type estimates hold:

8 u 2 D A1ð Þ ¼ H1
Ct

Xð Þ \ L2 Xð Þ jujL2 Xð Þ * cfp jgrad ujL2e Xð Þ;

8 E 2 D A"
1

! "
¼ l DCn Xð Þ \ grad H1

Ct
Xð Þ; jEjL2e Xð Þ * cfp jdiv eEjL2 Xð Þ;

8 E 2 D A2ð Þ ¼ RCt Xð Þ \ l rot RCn Xð Þ; jEjL2e Xð Þ * cm jrotEjL2 Xð Þ;

8 E 2 D A"
2

! "
¼ RCn Xð Þ \ rot RCt Xð Þ; jEjL2 Xð Þ * cm jrotEjL2l ;

8 E 2 D A3ð Þ ¼ DCt Xð Þ \ grad H1
Cn

Xð Þ; jEjL2 Xð Þ * ecfp jdivEjL2 Xð Þ;

8 u 2 D A"
3

! "
¼ H1

Cn
Xð Þ \ L2 Xð Þ jujL2 Xð Þ * ecfp jgrad ujL2 Xð Þ;

where the Friedrichs/Poincar!e and Maxwell constants cfp; cm;ecfp , are given
by the respective Raleigh quotients, and L2ðXÞ has to be replaced by L2?ðXÞ
for Ct ¼ ; resp. Ct ¼ C . Again note that the latter two assertions are
already included in the first two inequalities by interchanging Ct and Cn

and setting e :¼ id.

Remark 5.1. Let the Friedrichs and the Poincar!e constants cf ; cp as well as
upper and lower bounds for the matrix field e be defined by

1
cp

:¼ inf
06¼u2H1

? Xð Þ

jgradujL2 Xð Þ

jujL2 Xð Þ
;

1
#e
:¼ inf

06¼U2L2 Xð Þ

jUjL2 Xð Þ

jUjL2e Xð Þ
;

1
cf

:¼ inf
06¼u2H1

C Xð Þ

jgradujL2 Xð Þ

jujL2 Xð Þ
;

1
e
:¼ inf

06¼U2L2 Xð Þ

jUjL2e Xð Þ

jUjL2 Xð Þ
:

In [14], see also [15, 16], the following has been proved for bounded and
convex X:

(i) If Ct ¼ ; or Ct ¼ C, then cm * #e cp * #ediamX=p.
(ii) If Ct ¼ ; we have cp=#e * cfp * cp and ecfp ¼ cf < cp.
(iii) If Ct ¼ C it holds cf =#e * cfp * cf and cf < cp ¼ ecfp.
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Finally, the following Helmholtz decompositions hold:

H1 ¼ L2ðXÞ ¼
.
f0g ; if Ct 6¼ ;;
R ; if Ct ¼ ;;!L2ðXÞ

.
L2ðXÞ ; if Ct 6¼ ;;
L2?ðXÞ ; if Ct ¼ ;; ðH1 ¼ RðA0Þ!H1NðA"

0ÞÞ

¼
.
f0g ; if Ct 6¼ ;;
R ; if Ct ¼ ;;!L2ðXÞdivDCnðXÞ; ðH1 ¼ NðA1Þ!H1RðA"

1ÞÞ

H2 ¼ L2eðXÞ ¼ grad H1
Ct
ðXÞ!L2e ðXÞlDCn;0ðXÞ ðH2 ¼ RðA1Þ!H2NðA"

1ÞÞ
¼ RCt;0ðXÞ!L2e ðXÞl rot RCnðXÞ ðH2 ¼ NðA2Þ!H2RðA"

2ÞÞ
¼ grad H1

Ct
ðXÞ!L2e ðXÞHt;n;eðXÞ!L2e ðXÞl rot RCnðXÞ; ðH2 ¼ RðA1Þ!H2K2!H2RðA"

1ÞÞ

H3 ¼ L2ðXÞ ¼ grad H1
Cn
ðXÞ!L2ðXÞDCt ;0ðXÞ ðH3 ¼ RðA"

3Þ!H3NðA3ÞÞ
¼ RCn;0ðXÞ!L2ðXÞrot RCtðXÞ ðH3 ¼ NðA"

2Þ!H3RðA2ÞÞ
¼ grad H1

Cn
ðXÞ!L2ðXÞHn;tðXÞ!L2ðXÞrot RCtðXÞ; ðH3 ¼ RðA"

3Þ!H3K3!H3RðA2ÞÞ

H4 ¼ L2ðXÞ ¼
.
f0g ; if Ct 6¼ C;
R ; if Ct ¼ C;

!L2ðXÞ

.
L2ðXÞ ; if Ct 6¼ C;
L2?ðXÞ ; if Ct ¼ C;

ðH4 ¼ RðA"
4Þ!H4NðA4ÞÞ

¼
.
f0g ; if Ct 6¼ C;
R ; if Ct ¼ C;

!L2ðXÞdivDCtðXÞ: ðH4 ¼ NðA"
3Þ!H4RðA3ÞÞ

The latter two decompositions are already given by the first two ones by
interchanging Ct and Cn and setting e :¼ id. Especially, it holds

grad H1
Ct

Xð Þ ¼ RCt ;0 Xð Þ)L2e Xð ÞHt;n;e Xð Þ; l rot RCn Xð Þ ¼ l DCn;0 Xð Þ)L2e Xð ÞHt;n;e Xð Þ;
grad H1

Cn
Xð Þ ¼ RCn;0 Xð Þ)L2 Xð ÞHn;t Xð Þ; rot RCt Xð Þ ¼ DCt ;0 Xð Þ)L2 Xð ÞHn;t Xð Þ:

If Ct ¼ C and C is connected, then the Dirichlet fields are trivial, i.e.,

Ht;n;e Xð Þ ¼ RC;0 Xð Þ \ l D0 Xð Þ ¼ f0g:

If Ct ¼ ; and X is simply connected, then the Neumann fields are
trivial, i.e.,

Ht;n;e Xð Þ ¼ R0 Xð Þ \ l DC;0 Xð Þ ¼ 0f g:

Now we can apply the general results of Section 3 and Section 4.

Theorem 5.2 (Theorem 3.3). (5.1) resp. (5.2) is uniquely solvable, if and
only if

F 2 rotRCt Xð Þ ¼ DCt ;0 Xð Þ)L2 Xð ÞHn;t Xð Þ; g 2 L2 Xð Þ; K 2 Ht;n;e Xð Þ;

where L2ðXÞ has to be replaced by L2?ðXÞ if Ct ¼ ; . The unique solution
E 2 RCtðXÞ \ l DCnðXÞ is given by

E :¼ EF þ Eg þ K 2 RCt Xð Þ \ l rot RCn Xð Þ
! "

!L2e Xð Þ l DCn Xð Þ \ grad H1
Ct

Xð Þ
' (

!L2e Xð ÞHt;n;e Xð Þ

¼ RCt Xð Þ \ l DCn Xð Þ;

EF :¼ frotCt

! "# 1
F 2 RCt Xð Þ \ l rotRCn Xð Þ ¼ RCt Xð Þ \ l DCn;0 Xð Þ \ Ht;n;e Xð Þ?L2e Xð Þ ;

Eg :¼ # fdivCne
' (# 1

g 2 l DCn Xð Þ \ grad H1
Ct

Xð Þ ¼ l DCn Xð Þ \ RCt;0 Xð Þ \Ht;n;e Xð Þ?L2e Xð Þ

and depends continuously on the data, i.e., jEjL2e ðXÞ * cm jFjL2ðXÞ þ
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cfp jgjL2ðXÞ þ jKjL2ðXÞ, as
jEFjL2e Xð Þ * cm jFjL2 Xð Þ; jEgjL2e Xð Þ * cfp jgjL2 Xð Þ:

Moreover, jEj2L2e ðXÞ ¼ jEFj2L2e ðXÞ þ jEgj2L2e ðXÞ þ jKj2L2e ðXÞ.
The partial solutions EF and Eg, solving

rotCtEF ¼ F; rotCtEg ¼ 0;
# divCneEF ¼ 0; # divCneEg ¼ g;

pHEF ¼ 0; pHEg ¼ 0;

can be found and computed by the following four variational formulations:

Theorem 5.3 (Theorem 3.5). The partial solutions EF and Eg in Theorem
5.2 can be found by the following four variational formulations:

(i) There exists a unique eEF 2 RCtðXÞ \ lrotRCnðXÞ such that

8 U 2 RCt Xð Þ \ l rot RCn Xð Þ hroteEF; rotUiL2 Xð Þ ¼ hF; rotUiL2 Xð Þ:

(5.3)

Equation (5.3) is even satisfied for all U 2 RCtðXÞ. Moreover, the equation
roteEF ¼ F holds if and only if F 2 rotRCtðXÞ. In this case eEF ¼ EF.

(i’) There exists a unique potential HF 2 RCnðXÞ \ rot RCtðXÞ such that

8 W 2 RCn Xð Þ \ rot RCt Xð Þ hlrot HF; rotWiL2 Xð Þ ¼ hF;WiL2 Xð Þ:

(5.4)

Equation (5.4) even holds for all W 2 RCnðXÞ if and only if F 2 rotRCtðXÞ.
In this case we have

lrotHF 2 RCt Xð Þ \ lrotRCn Xð Þ

with rotlrotHF ¼ F and hence lrotHF ¼ EF

(ii) Let Ct 6¼ ;. There is a unique eEg 2 l DCnðXÞ \ gradH1
Ct
ðXÞ such that

8 H 2 l DCn Xð Þ \ gradH1
Ct

Xð Þ hdiv eeEg; div eHiL2 Xð Þ ¼ # hg; div eHiL2 Xð Þ:

(5.5)

Equation (5.5) is even satisfied for all H 2 l DCnðXÞ. Moreover, # div eeEg ¼
g and eEg ¼ Eg . In the case Ct ¼ ; the condition g 2 L2?ðXÞ has to be added,
i.e., # div eeEg ¼ g if and only if g 2 L2?ðXÞ and in this case eEg ¼ Eg .

(ii’) Let Ct 6¼ ;. There exists a unique potential ug 2 H1
Ct
ðXÞ such that

8 w 2 H1
Ct

Xð Þ hegrad ug; gradwiL2 Xð Þ ¼ hg;wiL2 Xð Þ: (5.6)
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It holds
grad ug 2 l DCn Xð Þ \ grad H1

Ct
Xð Þ

with # div egrad ug ¼ g and thus grad ug ¼ Eg . In the case Ct ¼ ; we
replace H1

Ct
ðXÞ by H1

?ðXÞ . Then (5.6) even holds for all w 2 H1ðXÞ if and
only if g 2 L2?ðXÞ. In this case the other assertions hold as stated before.

Remark 5.4 (Remark 3.6). Let us note the following:

(i) It holds gradH1
Ct
ðXÞ ¼ RCt ;0ðXÞ \Ht;n;eðXÞ

?L2e ðXÞ and

l rot RCn Xð Þ ¼ l DCn;0 Xð Þ \Ht;n;e Xð Þ?L2e Xð Þ ;

rot RCt Xð Þ ¼ DCt ;0 Xð Þ \Hn;t Xð Þ?L2 Xð Þ :

(ii) We have

EF ¼ frotCt

! "# 1
F 2 D frotCt

! "
¼ RCt Xð Þ \ lrot RCn Xð Þ;

HF ¼ l frotCn

! "# 1
EF ¼ l frotCn

! "# 1 frotCt

! "# 1
F 2 D frotCtl frotCn

! "
& RCn Xð Þ \ rotRCt Xð Þ;

Eg ¼ # fdivCne
' (# 1

g 2 D fdivCne
' (

¼ l DCn Xð Þ \ gradH1
Ct

Xð Þ;

ug ¼ ggradCt

' (# 1
Eg ¼ # ggradCt

' (# 1 fdivCne
' (# 1

g 2 D fdivCne ggradCt

' (
& H1

Ct
Xð Þ;

and these vector fields and functions solve

rotCtEF ¼ F; rotCtl rotCnHF ¼ F; # divCneEg ¼ g; # divCnegradCt
ug ¼ g;

# divCneEF ¼ 0; divCtHF ¼ 0; rotCtEg ¼ 0; p 0f g=Rug ¼ 0;
pHEF ¼ 0; peHHF ¼ 0; pHEg ¼ 0;

where peH : L2ðXÞ ! Hn;tðXÞ is the Neumann–Dirichlet orthonormal pro-
jector and pf0g=R denotes pf0g or pR if Ct ¼ ; . Mooreover, (5.3)–(5.6) are
weak formulations of

l rotCnrotCt
eEF ¼ l rotCnF; # divCneeEF ¼ 0; pHeEF ¼ 0;

rotCtlrotCnHF ¼ F; divCtHF ¼ 0; peHHF ¼ 0;

# gradCt
divCneeEg ¼ gradCt

g; rotCt
eEg ¼ 0; pHeEg ¼ 0;

# divCnegradCt
ug ¼ g; p 0f g=Rug ¼ 0;

i.e., in formal matrix notation
l rotCnrotCt

# divCne

pH

2

64

3

75 eEF

% &
¼

l rotCnF

0

0

2

64

3

75;
rotCtl rotCn

divCt

peH

2

664

3

775 HF
% &

¼
F

0

0

2

64

3

75;

# gradCt
divCne

rotCt

pH

2

64

3

75 eEg

h i
¼

gradCt
g

0

0

2

64

3

75;
# divCnegradCt

p 0f g=R

" #
ug

% &
¼

g

0

" #

:
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Remark 5.5 (Remark 3.7). Let us note the following, especially for possible
numerical purposes and applications.

(i) Using the variational formulation in Theorem 5.3 (i) corresponding to
EF ¼ eEF 2 RCtðXÞ for finding a numerical (discrete) approximation EF;h
of EF proposes a RCtðXÞ-conforming method in some finite dimensional
(discrete) subspace RCt ;hðXÞ of RCtðXÞ giving also a RCtðXÞ-conforming
discrete solution EF;h 2 RCt ;hðXÞ & RCtðXÞ.

(i’) Utilizing the variational formulation in Theorem 5.3 (i’) for EF ¼ lrotHF 2
lrotRCnðXÞ to find a discrete approximation EF;h ¼ lrotHF;h of EF proposes
a RCnðXÞ-conforming method in some discrete subspace RCn;hðXÞ of RCnðXÞ
giving then a RCnðXÞ -conforming discrete potential HF;h 2 RCn;hðXÞ &
RCnðXÞ, but yielding a l DCnðXÞ-conforming solution as

EF;h ¼ lrotHF;h 2 l rot RCn Xð Þ ¼ l DCn;0 Xð Þ \Ht;n;e Xð Þ?L2e Xð Þ & l DCn Xð Þ:

(ii) Using the variational formulation in Theorem 5.3 (ii) corresponding to
Eg ¼ eEg 2 l DCnðXÞ for finding a discrete approximation Eg;h of Eg pro-
poses a l DCnðXÞ -conforming method in some discrete subspace
l DCn;hðXÞ of l DCnðXÞ giving also a l DCnðXÞ -conforming discrete
solution Eg;h 2 l DCn;hðXÞ & l DCnðXÞ.

(ii’) Utilizing the variational formulation in Theorem 5.3 (ii’) for Eg ¼
grad ug 2 gradH1

Ct
ðXÞ to find a discrete approximation Eg;h ¼ grad ug;h

of Eg proposes a H1
Ct
ðXÞ -conforming method in some discrete subspace

H1
Ct ;hðXÞ of H1

Ct
ðXÞ giving then a H1

Ct
ðXÞ-conforming discrete potential

ug;h 2 H1
Ct ;hðXÞ & H1

Ct
ðXÞ, but yielding a RCtðXÞ-conforming solution as

Eg;h ¼ grad ug;h 2 grad H1
Ct

Xð Þ ¼ RCt ;0 Xð Þ \ Ht;n;e Xð Þ?L2e Xð Þ & RCt Xð Þ:

(iii) A possible discrete solution EF;h ¼ lrotHF;h from (ii’) satisfies automat-
ically the side conditions

# divCneEF;h ¼ 0; pHEF;h ¼ 0;

i.e., even on the discrete level there is no error in the side conditions. The
other option from (ii) yields a discrete solution EF;h , which most probably
has got errors in the side conditions.

(iii’) A possible discrete solution Eg;h ¼ grad ug;h from (iii’) satisfies auto-
matically the side conditions

rotCtEg;h ¼ 0; pHEg;h ¼ 0;

i.e., even on the discrete level there is no error in the side conditions. The
other option from (iii) yields a discrete solution Eg;h , which most probably
has got errors in the side conditions.
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Theorem 5.6 (Theorem 3.12). The unique solution E ¼ EF þ Eg þ K 2
RCtðXÞ \ l DCnðXÞ in Theorem 5.2 can be found by the following two vari-
ational double saddle point formulations:

(i) Let Ct 6¼ ;. There exists a unique tripple ðeE; u;HÞ 2 RCtðXÞ , H1
Ct
ðXÞ ,

Ht;n;eðXÞ such that for all ðU; u ;HÞ 2 RCtðXÞ ,H1
Ct
ðXÞ ,Ht;n;eðXÞ

hrot eE; rotUiL2 Xð Þ þ hegrad u;UiL2 Xð Þ þ heH;UiL2 Xð Þ ¼ hF; rot UiL2 Xð Þ;

heeE; grad uiL2 Xð Þ ¼ hg;uiL2 Xð Þ;

heeE;HiL2 Xð Þ ¼ heK;HiL2 Xð Þ:

(5.7)

It holds u¼ 0 and H¼ 0. roteE ¼ F if and only if F 2 rotRCtðXÞ:
Moreover, eeE 2 DCnðXÞ and # div eeE ¼ g as well as pHeE ¼ K. In this
case, i.e., F 2 rotRCtðXÞ, we have eE ¼ E from Theorem 5.2. If Ct ¼ ;,
we have to replace H1

Ct
ðXÞ by H1

?ðXÞ . Then (5.7) even holds for all
u 2 H1ðXÞ if and only if g 2 L2?ðXÞ if and only if eeE 2 DCðXÞ and
# div eeE ¼ g . Furthermore, pHeE ¼ K . In this case, i.e., F 2 rotRðXÞ
and g 2 L2?ðXÞ, we have eE ¼ E from Theorem 5.2.

(ii) Let Ct 6¼ ;: There exists a unique tripple ðÊ;U;HÞ 2 l DCnðXÞ ,
ðRCnðXÞ \ rotRCtðXÞÞ ,Ht;n;eðXÞ such that for all ðW;U;HÞ 2
l DCnðXÞ , ðRCnðXÞ \ rotRCtðXÞÞ ,Ht;n;eðXÞ

hdiv eÊ; div eWiL2 Xð Þ þ hrot U;WiL2 Xð Þ þ heH;WiL2 Xð Þ ¼ # hgidiv eWiL2 Xð Þ;

hÊ; rot UiL2 Xð Þ ¼ hF;UiL2 Xð Þ;

heÊ;HiL2 Xð Þ ¼ heK;HiL2 Xð Þ:

(5.8)

It holds U¼ 0 and H¼ 0 as well as # div eÊ ¼ g . (5.8) holds for all U 2
RCnðXÞ if and only if F 2 rotRCtðXÞ if and only if Ê 2 RCtðXÞ with rotÊ ¼ F.
Moreover, pHÊ ¼ K . In this case, i.e., F 2 rotRCtðXÞ , we have Ê ¼ E from
Theorem 5.2. If Ct ¼ ; , the condition g 2 L2?ðXÞ has to be added, i.e.,
# div eÊ ¼ g if and only if g 2 L2?ðXÞ. In this case, i.e., F 2 rotRðXÞ and g 2
L2?ðXÞ, we have eE ¼ E from Theorem 5.2.

Remark 5.7 (Remark 3.13). Let us note the following:

(i) Using the saddle point formulation in Theorem 5.6 (i) for finding a
numerical approximation Eh of E provides a RCtðXÞ -conforming
approximation Eh 2 RCtðXÞ of (5.1) or (5.2), whereas using the saddle
point formulation in Theorem 5.6 (ii) for finding a numerical approxi-
mation Eh of E provides a l DCnðXÞ-conforming approximation Eh 2
l DCnðXÞ of of (5.1) or (5.2).

(ii) Related variational formulations to those presented in Theorem 5.6
have recently been announced and proposed in [1].
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(iii) (5.7) and (5.8) are weak formulations of

l rotCnrotCt
eE þ gradCt

uþH ¼ l rotCnF; # divCneeE ¼ g; pHeE ¼ K;

# gradCt
divCneÊ þ l rotCnU þH ¼ gradCt

g; rotCt Ê ¼ F; pHÊ ¼ K;

i.e., in formal matrix notation

l rotCnrotCt gradCt
iH

# divCne 0 0

pH 0 0

2

64

3

75
eE
u

H

2

664

3

775 ¼
l rotCnF

g

K

2

64

3

75;

# gradCt
divCne l rotCn iH

rotCt 0 0

pH 0 0

2

64

3

75
Ê

U

H

2

664

3

775 ¼
gradCt

g

F

K

2

64

3

75:

Theorem 5.8 (Theorem 3.14). The partial solution vector fields EF ¼ eEF 2
RCtðXÞ \ lrotRCnðXÞ and Eg ¼ eEg 2 l DCnðXÞ \ gradH1

Ct
ðXÞ together with

their potentials HF 2 RCnðXÞ \ rotRCtðXÞ; ug 2 H1
Ct
ðXÞ resp. ug 2 H1

?ðXÞ
from Theorem 5.2 and Theorem 5.3 can be found by the following four vari-
ational double saddle point formulations:

(i) Let Ct 6¼ ; . There exists a unique tripple ðeEF; u;HÞ 2 RCtðXÞ,
H1

Ct
ðXÞ ,Ht;n;eðXÞ such that for all ðU; u ;HÞ 2 RCtðXÞ , H1

Ct
ðXÞ,

Ht;n;eðXÞ

hroteEF; rotUiL2 Xð Þ þ he grad u;UiL2 Xð Þ þ heH;UiL2 Xð Þ ¼ hF; rot UiL2 Xð Þ;

heeEF; graduiL2 Xð Þ ¼ 0;

heeEF;HiL2 Xð Þ ¼ 0:

(5.9)

It holds u¼ 0 and H¼ 0. roteEF ¼ F if and only if F 2 rotRCtðXÞ:
Moreover, eeEF 2 DCn;0ðXÞ and pHeEF ¼ 0. Hence, if F 2 rotRCtðXÞ, we have
eEF ¼ EF from Theorem 5.2, see Theorem 5.3 (i). If Ct ¼ ; , we have to
replace H1

Ct
ðXÞ by H1

?ðXÞ. Then (5.9) even holds for all u 2 H1ðXÞ and thus
eeEF 2 DC;0ðXÞ: Furthermore, pHeEF ¼ 0 . Again, if F 2 rotRðXÞ , we have
eEF ¼ EF from Theorem 5.2.

(i’) Let Ct 6¼ C . There exists a unique tripple ðHF; v;HÞ 2 RCnðXÞ ,
H1

Cn
ðXÞ ,Hn;tðXÞ such that for all ðW; w ;HÞ 2 RCnðXÞ , H1

Cn
ðXÞ,

Hn;tðXÞ
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hl rotHF; rotWiL2 Xð Þ # hgradv;WiL2 Xð Þ þ hH;WiL2 Xð Þ ¼ hF;WiL2 Xð Þ;

hHF; grad wiL2 Xð Þ ¼ 0;

hHF;HiL2 Xð Þ ¼ 0:

(5.10)

It holds v¼ 0 if and only if F?gradH1
Cn
ðXÞ if and only if F 2 DCt;0ðXÞ .

H¼ 0 if and only if F?Hn;tðXÞ . Thus v¼ 0 and H¼ 0 if and only if F 2
DCt ;0ðXÞ \ Hn;tðXÞ?L2ðXÞ ¼ rotRCtðXÞ: Moreover, lrotHF 2 RCtðXÞ and
rotlrotHF ¼ F if and only if F 2 rotRCtðXÞ: Furthermore, HF 2 DCt ;0ðXÞ
and peHHF ¼ 0: Hence, if F 2 rotRCtðXÞ: we have lrotHF ¼ EF from
Theorem 5.2, see Theorem 5.3 (i’). If Ct ¼ C, we have to replace H1

Cn
ðXÞ by

H1
?ðXÞ . Then (5.10) even holds for all w 2 H1ðXÞ and thus HF 2 DC;0ðXÞ .

Furthermore, peHHF ¼ 0 . Again, if F 2 rotRCðXÞ , we have lrotHF ¼ EF
from Theorem 5.2.

(ii) Let Ct 6¼ ; . There exists a unique tripple ðeEg;U;HÞ 2 l DCnðXÞ ,
ðRCnðXÞ \ rotRCtðXÞÞ ,Ht;n;eðXÞ such that for all ðW;U;HÞ 2
l DCnðXÞ , ðRCnðXÞ \ rotRCtðXÞÞ ,Ht;n;eðXÞ

hdiv eeEg; div eWiL2 Xð Þ þ hrotU;WiL2 Xð Þ þ heH;WiL2 Xð Þ ¼ # hg; div eWiL2 Xð Þ;

heEg; rotUiL2 Xð Þ ¼ 0;

heeEg;HiL2 Xð Þ ¼ 0:

(5.11)

It holds U¼ 0 and H¼ 0 as well as # div eeEg ¼ g . (5.11) holds for all
U 2 RCnðXÞ and hence eEg 2 RCt ;0ðXÞ. Moreover, pHeEg ¼ 0: Finally, we have
eEg ¼ Eg from Theorem 5.2, see Theorem 5.3 (ii). If Ct ¼ ; , the condition
g 2 L2?ðXÞ has to be added, i.e., # div eeEg ¼ g if and only if g 2 L2?ðXÞ:
Again, (5.11) holds for all U 2 RCðXÞ , eEg 2 R0ðXÞ , and pHeEg ¼ 0 . Finally,
if g 2 L2?ðXÞ, we have eEg ¼ Eg from Theorem 5.2.

(ii’) For Ct 6¼ ; see Theorem 5.3 (ii’). Let Ct ¼ ;. There exists a unique pair
ðug ; rÞ 2 H1ðXÞ , R such that

8 w; .ð Þ 2 H1 Xð Þ , R hegrad ug; gradwiL2 Xð Þ þ hiRr;wiL2 Xð Þ ¼ hg;wiL2 Xð Þ;
hug; iR.iL2 Xð Þ ¼ 0:

It holds r¼ 0 if and only if g?L2ðXÞiRR ¼ R if and only if g 2 L2?ðXÞ ¼
divDCðXÞ . Moreover, grad ug 2 l DCðXÞ with # div egrad ug ¼ g if and
only if g 2 L2?ðXÞ . The second equation of (5.12) shows ug 2 L2?ðXÞ , i.e.,
ug 2 H1

?ðXÞ. Finally, if g 2 L2?ðXÞ, we have grad ug ¼ Eg from Theorem 5.2,
see Theorem 5.3 (ii’).
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Remark 5.9 (Remark 3.15). (5.9)–(5.12) are weak formulations of

l rotCnrotCt
eEF þ gradCt

uþ H ¼ l rotCnF; # divCneeEF ¼ 0; pHeEF ¼ 0;
rotCtl rotCnHF # gradCn

vþH ¼ F; divCtHF ¼ 0; peHHF ¼ 0;

# gradCt
divCneeEg þ l rotCnU þH ¼ gradCt

g; rotCt
eEg ¼ 0; pHeEg ¼ 0;

# divCegrad;ug þ iRr ¼ g; pRug ¼ 0;

i.e., in formal matrix notation

l rotCnrotCt gradCt
iH

# divCne 0 0

pH 0 0

2

64

3

75
eEF

u

H

2

664

3

775¼
l rotCnF

0

0

2

64

3

75;

rotCtl rotCn # gradCt
ieH

divCt 0 0

peH 0 0

2

664

3

775

HF

v

H

2

64

3

75¼
F

0

0

2

64

3

75;

# gradCt
divCne l rotCn iH

rotCt 0 0

pH 0 0

2

64

3

75
eEg

U

H

2

664

3

775¼
gradCt

g

0

0

2

64

3

75;

# divC e grad;iRpR0
% & ug

r

" #
¼

g

0

" #
:

Theorem 5.10 (Theorem 3.17). Let F 2 rotRCtðXÞ and g 2 L2ðXÞ. If Ct ¼ ;,
let g 2 L2?ðXÞ . The unique solution E ¼ EF þ Eg þ K 2 RCtðXÞ \ l DCnðXÞ
in Theorem 5.2 can be found by the following three variational multiple sad-
dle point formulations:

(i) For Ct 6¼ ; see Theorem 5.6 (i). Let Ct ¼ ; . There is ðeE; u; r;HÞ 2
RðXÞ , H1ðXÞ , R,Ht;n;eðXÞ , a unique quadruple, such that for all
ðU; u ; ,;HÞ 2 RðXÞ , H1ðXÞ , R,Ht;n;eðXÞ

hroteE; rotUiL2 Xð Þ þ hegrad u;UiL2 Xð Þ þ heH;UiL2 Xð Þ ¼ hF; rotUiL2 Xð Þ;

heeE; graduiL2 Xð Þ þ hiRr;uiL2 Xð Þ ¼ hg;uiL2 Xð Þ;

hu; iR.iL2 Xð Þ ¼ 0;

heeE;HiL2 Xð Þ ¼ heK;HiL2 Xð Þ:

(5.13)

It holds u¼ 0, H¼ 0, and r¼ 0. Moreover, roteE ¼ F and eeE 2 DCðXÞ
with # div eeE ¼ g as well as pHeE ¼ K. Finally, eE ¼ E from Theorem 5.2.

(ii) Let Ct 6¼ C: There is ðÊ;U; v;H; eHÞ 2 l DCnðXÞ , RCnðXÞ , H1
Cn
ðXÞ ,

Ht;n;eðXÞ ,Hn;tðXÞ , a unique five tuple, such that for all
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ðW;U; w ;H; eHÞ 2 l DCnðXÞ , RCnðXÞ , H1
Cn
ðXÞ ,Ht;n;eðXÞ ,Hn;tðXÞ

hdiv eÊ; div eWiL2 Xð Þ þ hrotU;WiL2 Xð Þ þ heH;WiL2 Xð Þ ¼ # hg; div eWiL2 Xð Þ;

hÊ; rotUiL2 Xð Þ # hgradv;UiL2 Xð Þ þ heH;UiL2 Xð Þ ¼ hF;UiL2 Xð Þ;

# hU; gradwiL2 Xð Þ ¼ 0;

heÊ;HiL2 Xð Þ ¼ heK;HiL2 Xð Þ;

hU; eHiL2 Xð Þ ¼ 0:

(5.14)

It holds U¼ 0, H¼ 0 and v¼ 0, eH ¼ 0. Moreover, # div eÊ ¼ g and Ê 2
RCtðXÞ with rotÊ ¼ F as well as pHÊ ¼ K . Finally, Ê ¼ E from Theorem
5.2. If Ct ¼ C, we have to replace H1

Cn
ðXÞ by H1

?ðXÞ and the assertions hold
as before.

(ii’) Let Ct ¼ C . There is ðÊ;U; v; r;H; eHÞ 2 l DðXÞ , RðXÞ ,H1ðXÞ ,
R,Ht;n;eðXÞ ,Hn;tðXÞ: a unique six tuple, such that for all ðW;U;
w ;,;H; eHÞ 2 l DðXÞ , RðXÞ ,H1ðXÞ , R,Ht;n;eðXÞ ,Hn;tðXÞ

hdiv eÊ; div eWiL2 Xð Þ þ hrotU;WiL2 Xð Þ þ heH;WiL2 Xð Þ ¼ # hg; div eWiL2 Xð Þ;

hÊ; rotUiL2 Xð Þ # hgradv;UiL2 Xð Þ þ heH;UiL2 Xð Þ ¼ hF;UiL2 Xð Þ;
# hU; gradwiL2 Xð Þ þ hiRr;wiL2 Xð Þ ¼ 0;

hv; iR.iL2 Xð Þ ¼ 0;
heÊ;HiL2 Xð Þ ¼ heK;HiL2 Xð Þ;

hU; eHiL2 Xð Þ ¼ 0:

(5.14)

It holds U¼ 0, H¼ 0 and v¼ 0, eH ¼ 0 as well as r¼ 0. Moreover,
# div eÊ ¼ g and Ê 2 RCðXÞ with rotÊ ¼ F as well as pHÊ ¼ K . Finally,
Ê ¼ E from Theorem 5.2.

Theorem 5.8 can be extended in the same way.

Remark 5.11 (Remark 3.18). (5.13)–(5.15) are weak formulations of

l rotCroteE þ grad uþH ¼ l rotCF; # divCeeE þ iRr ¼ g; pRu ¼ 0;
# gradCt

divCneÊ þ l rotCnU þH ¼ gradCt
g; rotCt Ê# gradCn

vþ eH ¼ F; divCtU ¼ 0;
# gradCdiv eÊ þ lrotU þH ¼ gradCg; rotCÊ# gradvþ eH ¼ F; divCU þ iRr ¼ 0; pRv ¼ 0;

and pHeE ¼ K as well as pHÊ ¼ K; peHU ¼ 0, resp. pHÊ ¼ K; peHU ¼ 0, i.e.,
in formal matrix notation
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l rotCrot grad 0 iH
# divCe 0 iR 0

0 pR 0 0

pH 0 0 0

2

6664

3

7775

eE
u

r

H

2

6664

3

7775¼

l rotCF

g

0

K

2

6664

3

7775;

# gradCt
divCne l rotCn 0 iH 0

rotCt 0 # gradCn
0 ieH

0 divCt 0 0 0

pH 0 0 0 0

0 peH 0 0 0

2

66666664

3

77777775

Ê

U

v

H
eH

2

6666664

3

7777775
¼

gradCt
g

F

0

K

0

2

6666664

3

7777775
;

# gradCdiv e lrot 0 0 iH 0

rotC 0 # grad 0 0 ieH
0 divC 0 iR 0 0

0 0 pR 0 0 0

pH 0 0 0 0 0

0 peH 0 0 0 0

2

6666666664

3

7777777775

Ê

U

v

r

H
eH

2

666666664

3

777777775

¼

gradCg

F

0

0

K

0

2

666666664

3

777777775

:

We can apply the main functional a posteriori error estimate Corollary
4.6 to (5.1) resp. (5.2).

Theorem 5.12. Let E 2 RCtðXÞ \ l DCnðXÞ be the exact solution of (5.1)
resp. (5.2) and eE 2 L2eðXÞ . Then the following estimates hold for the error
e ¼ E# eE defined in (4.1):

(i) The error decomposes, i.e., e ¼ egrad þ eH þ erot 2 grad H1
Ct
ðXÞ!L2eðXÞ

Ht;n;eðXÞ!L2eðXÞl rot RCnðXÞ and

jej2L2e Xð Þ ¼ jegradj2L2e Xð Þ þ jeHj2L2e Xð Þ þ jerotj2L2e Xð Þ:

(ii) The projection egrad ¼ pgrade ¼ Eg # pgradeE 2 gradH1
Ct
ðXÞ satisfies

jegradj2L2e Xð Þ ¼ min
U2lDCn Xð Þ

cfpjdiv e Uþ gjL2 Xð Þ þ jU# eEjL2e Xð Þ

' (2

¼ max
u2H1

Ct
Xð Þ

2hg;uiL2 Xð Þ # h2eE þ grad u; egrad uiL2 Xð Þ

' (

and the minimum resp. maximum is attained at

Û :¼ egrad þ eE 2 l DCn Xð Þ; û :¼ ggradCt

' (# 1
egrad 2 H1

Ct
Xð Þ

with # div e Û ¼ # div e E ¼ g, where H1
Ct
ðXÞ has to be replaced by H1

?ðXÞ
, if Ct ¼ ;. In the latter case û is unique only up to a constant.
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(iii) The projection erot ¼ prote ¼ EF # proteE 2 lrotRCnðXÞ satisfies

jerotj2L2e Xð Þ ¼ min
U2RCt Xð Þ

cmjrotU# FjL2 Xð Þ þ jU# eEjL2e Xð Þ

' (2

¼ max
W2RCn Xð Þ

2hF;WiL2 Xð Þ # h2eE þ l rotW; rotWiL2 Xð Þ

' (

and the minimum resp. maximum is attained at

Û :¼ erot þ eE 2 RCt Xð Þ; Ŵ :¼ l frotCn

! "# 1
erot 2 RCn Xð Þ \ rotRCt Xð Þ

with rotÛ ¼ rotE ¼ F, and at any Ŵ 2 RCnðXÞ with lrotŴ ¼ erot.

(iv) The projection eH ¼ pHe ¼ H#pHeE 2 Ht;n;eðXÞ satisfies

jeHj2L2e Xð Þ ¼ min
u2H1

Ct
Xð Þ

min
U2RCn Xð Þ

jH# eE þ graduþ lrotUj2L2e Xð Þ

¼ max
W2Ht;n;e Xð Þ

h2 H# eEð Þ#W;WiL2e Xð Þ

and the minimum resp. maximum is attained at

û :¼ ggradCt

' (# 1
pgradeE 2 H1

Ct
Xð Þ; Û :¼ l frotCn

! "# 1
proteE 2 RCn Xð Þ \ rotRCt Xð Þ

resp. Ŵ :¼ eH 2 Ht;n;eðXÞ with gradû þ lrot/̂ ¼ ðpgrad þ protÞeE ¼
ð1# pHÞeE, and at any Û 2 RCnðXÞ with lrotÛ ¼ proteE, where H1

Ct
ðXÞ has

to be replaced by H1
?ðXÞ, if Ct ¼ ;. In the latter case û is unique only up to

a constant.
If eE :¼ H þ eE? with some eE? 2 Ht;n;eðXÞ

?L2e ðXÞ , then eH ¼ 0, and in (ii)
and (iii) eE can be replaced by eE? . In this case, for the attaining minima it
holds

Û? :¼ egrad þ eE? 2 l DCn Xð Þ; Û? :¼ erot þ eE? 2 RCt Xð Þ:

Remark 5.13. For conforming approximations Corollary 4.2 and Remark
4.3 yield the following:

(i) If eE 2 l DCnðXÞ, then e 2 l DCnðXÞ and

jegradjL2e Xð Þ * cfpjdiv e eE þ gjL2 Xð Þ ¼ cfpjdiv e ejL2 Xð Þ:

(ii) If eE 2 RCtðXÞ, then e 2 RCtðXÞ and

jerotjL2e Xð Þ * cmjroteE# FjL2 Xð Þ ¼ cmjrotejL2 Xð Þ:

(iii) If eE 2 RCtðXÞ \ l DCnðXÞ , then e 2 RCtðXÞ \ l DCnðXÞ and this very
conforming error is equivalent to the weighted least squares functional
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F eEð Þ :¼ jH# pHeEj2L2e Xð Þ þ 1þ c2m
! "

jroteE# Fj2L2 Xð Þ þ 1þ c2fp
' (

jdiv e eE þ gj2L2 Xð Þ;

i.e., jej2RCt ðXÞ\lDCn ðXÞ * F ðeEÞ * ð1þmaxfcfp; cmg2Þjej2RCt ðXÞ\lDCn ðXÞ.

5.2 Prototype second order systems: Laplacian and rotrot

As prototypical examples for second order systems we will discuss the
Laplacian and the rotrot -system, both with mixed boundary conditions.
Suppose the assumptions of Section 5.1 are valid and recall the notations.
For simplicity and to avoid case studies we assume ; 6¼ Ct 6¼ C.

5.2.1. The Laplacian
Suppose g 2 L2ðXÞ . Let us consider the linear second order equation (in
classical strong formulation) of the perturbed negative Laplacian with
mixed boundary conditions for a function u : X ! R

# div e grad u ¼ g in X; u ¼ 0 at Ct; n ( e grad u ¼ 0 at Cn: (5.16)

The corresponding variational formulation, which is uniquely solvable by
Lax-Milgram’s lemma, is the following: Find u 2 H1

Ct
ðXÞ, such that

8 u 2 H1
Ct

Xð Þ hgrad u; graduiL2e Xð Þ ¼ hg;uiL2 Xð Þ:

Then, by definition and the results of [2], we get egrad u 2 DCnðXÞ with
# div egrad u ¼ g. Hence, by setting

E :¼ grad u 2 l DCn Xð Þ \ grad H1
Ct

Xð Þ ¼ l DCn Xð Þ \ RCt;0 Xð Þ \Ht;n;e Xð Þ?L2e Xð Þ

we see that the pair (u, E) solves the linear first order system (in classical
strong formulation) of electro-magneto statics type with mixed boundary
conditions

grad u ¼ E; rot E ¼ 0 in X; u ¼ 0; n, E ¼ 0 at Ct;
# div eE ¼ g in X; n ( eE ¼ 0 at Cn;

pHE ¼ 0 in X:
(5.17)

Similar to the latter subsection we define the operators A1;A2;A3 and
also A0;A4 together with the respective adjoints and reduced operators by
the de Rham complexes

As before, all basic Hilbert spaces are L2ðXÞ except of H2 ¼ L2eðXÞ. Then
(5.16) turns to
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A"
1A1u ¼ g;

A"
0u ¼ p 0f gu ¼ 0;
p1u ¼ p 0f gu ¼ 0

and this system is (again) uniquely solvable by Theorem 3.19 as g 2
L2ðXÞ ¼ RðA"

1Þ with solution u depending continuously on the data. (5.17)
reads

A1u ¼ gradCt
u ¼ E; A2E ¼ rotCtE ¼ 0;

A"
0u ¼ p 0f gu ¼ 0; A"

1E ¼ # divCne E ¼ g;

p1u ¼ p 0f gu ¼ 0; p2E ¼ pHE ¼ 0:

We can apply the main functional a posteriori error estimates from
Theorem 4.7.

Theorem 5.14. Let u 2 H1
Ct
ðXÞ be the exact solution of (5.16), E :¼ grad u,

and ðeu; eEÞ 2 L2ðXÞ , L2eðXÞ. Then the following estimates hold for the errors
eu :¼ u#eu and eE :¼ E# eE:

(i) The error eE decomposes, i.e.,

eE ¼ eE;grad þ eE;H þ eE;rot 2 grad H1
Ct

Xð Þ!L2e Xð ÞHt;n;e Xð Þ!L2e Xð Þl rot RCn Xð Þ

and

jeEj2L2e Xð Þ ¼ jeE;gradj2L2e Xð Þ þ jeE;Hj2L2e Xð Þ þ jeE;rotj2L2e Xð Þ:

(ii) eu ¼ pdiveu 2 divDCnðXÞ ¼ L2ðXÞ and

jeuj2L2 Xð Þ ¼ min
u2H1

Ct
Xð Þ

min
U2lDCn Xð Þ

c2fpjdiv e Uþ gjL2 Xð Þ þ cfpjU# gradujL2e Xð Þ þ ju#eujL2 Xð Þ

' (2

¼ min
u2H1

Ct
Xð Þ;

gradu2lDCn Xð Þ

c2fpjdiv e grad uþ gjL2 Xð Þ þ ju#eujL2 Xð Þ

' (2

¼ max
/2H1

Ct
Xð Þ;

grad/2lDCn Xð Þ

2hg;/iL2 Xð Þ þ h2eu# div e grad/; div e grad/iL2 Xð Þ
! "

and the minima resp. maximum are attained at

û :¼ eu þ eu 2 H1
Ct

Xð Þ; Û :¼ E 2 l DCn Xð Þ;

/̂ :¼ ggradCt

' (# 1
# fdivCne

' (# 1
2 H1

Ct
Xð Þ

with grad û; grad /̂ 2 l DCnðXÞ and grad û ¼ grad u ¼ E and
# div e grad û ¼ # div e E ¼ g as well as # div e Û ¼ # div e E ¼ g.
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(iii) The projection eE;grad ¼ pgradeE ¼ E# pgradeE 2 gradH1
Ct
ðXÞ satisfies

jeE;gradj2L2e Xð Þ ¼ min
U2lDCn Xð Þ

cfpjdiv e Uþ gjL2 Xð Þ þ jU# eEjL2e Xð Þ

' (2

¼ max
u2H1

Ct
Xð Þ

2hg;uiL2 Xð Þ # h2eE þ gradu; graduiL2e Xð Þ

' (

and the minimum resp. maximum is attained at

Û :¼ eE;grad þ eE 2 l DCn Xð Þ; û :¼ ggradCt

' (# 1
eE;grad 2 H1

Ct
Xð Þ

with # div e Û ¼ # div e E ¼ g.

(iv) The projection eE;rot ¼ proteE ¼ # proteE 2 lrotRCnðXÞ satisfies

jeE;rotj2L2e Xð Þ ¼ min
U2RCt Xð Þ

cmjrotUjL2 Xð Þ þ jU# eEjL2e Xð Þ

' (2
¼ min

U2RCt ;0 Xð Þ
jU# eEj2L2e Xð Þ

¼ max
W2RCn Xð Þ

# h2eE þ l rotW; l rotWiL2e Xð Þ

' (

and the minimum resp. maximum is attained at

Û :¼ eE;rot þ eE 2 RCt ;0 Xð Þ; Ŵ :¼ l frotCn

! "# 1
eE;rot 2 RCn Xð Þ \ rotRCt Xð Þ

with rotÛ ¼ rotE ¼ 0.

(v) The projection eE;H ¼ pHeE ¼ # pHeE 2 Ht;n;eðXÞ satisfies

jeE;Hj2L2e Xð Þ ¼ min
u2H1

Ct
Xð Þ

min
U2RCn Xð Þ

j# eE þ graduþ lrotUj2L2e Xð Þ

¼ max
W2Ht;n;e Xð Þ

# h2eE þW;WiL2e Xð Þ

' (

and the minimum resp. maximum is attained at

û :¼ ggradCt

' (# 1
pgradeE 2 H1

Ct
Xð Þ; Û :¼ l frotCn

! "# 1
proteE 2 RCn Xð Þ \ rotRCt Xð Þ

resp. Ŵ :¼ eE;H 2 Ht;n;eðXÞ with gradû þ lrot/̂ ¼ ðpgrad þ protÞeE ¼
ð1# pHÞeE.
If eE :¼ eE? with some eE? 2 Ht;n;eðXÞ

?L2e ðXÞ , then eE;H ¼ 0, and in (iii) and
(iv) eE can be replaced by eE?. In this case, for the attaining minima it holds

Û? :¼ eE;grad þ eE? 2 l DCn Xð Þ; Û? :¼ eE;rot þ eE? 2 RCt ;0 Xð Þ:

For conforming approximations eE 2 gradH1
Ct
ðXÞ we have eE;rot ¼ eE;H ¼

0 and eE ¼ eE;grad . Especially, if eu 2 H1
Ct
ðXÞ and eE :¼ gradeu with a con-

forming approximation eu 2 H1
Ct
ðXÞ , the estimates of the latter theorem
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simplify. More precisely, (ii) turns to the following result: If eu 2 H1
Ct
ðXÞ ,

then eu 2 H1
Ct
ðXÞ and we can choose, e.g., u :¼ eu yielding, e.g.,

jeujL2 Xð Þ * min
U2lDCn Xð Þ

c2fpjdiv e Uþ gjL2 Xð Þ þ cfpjU# grad eujL2e Xð Þ

' (
;

which might not be sharp anymore. Similarly, the results of (iii) read as
follows: If eu belongs to H1

Ct
ðXÞ , then eE :¼ gradeu 2 gradH1

Ct
ðXÞ and

gradðu#euÞ ¼ eE ¼ eE;grad 2 gradH1
Ct
ðXÞ as well as

jeEj2L2e Xð Þ ¼ min
U2lDCn Xð Þ

cfpjdiv e Uþ gjL2 Xð Þ þ jU# grad eujL2e Xð Þ

' (2

¼ max
u2H1

Ct
Xð Þ

2hg;uiL2 Xð Þ # hgrad 2eu þ uð Þ; grad uiL2e Xð Þ

' (

and the minimum resp. maximum is attained at

Û :¼ eE þ grad eu ¼ grad u 2 l DCn Xð Þ; û :¼ ggradCt

' (# 1
eE 2 H1

Ct
Xð Þ

with # div e Û ¼ # div e E ¼ g . Note that (5.18) are the well known func-
tional a posteriori error estimates for the energy norm associated to the
Laplacian, see, e.g., [17].

5.2.2. The rot rot-operator
Suppose F 2 rotRCtðXÞ ¼ DCt;0ðXÞ \Hn;tðXÞ?L2ðXÞ and g 2 L2ðXÞ as well as
H 2 Hn;tðXÞ. Let us consider the linear second order equation (in classical
strong formulation) of the perturbed rotrot-operator with mixed boundary
conditions for a vector field B : X ! R3

rot l rotB ¼ F in X; n, B ¼ 0 at Cn;
div !B ¼ g in X; n ( !B ¼ 0; n, l rotB ¼ 0 at Ct;
peHB ¼ H in X:

(5.19)

Here peH : L2ðXÞ ! Hn;tðXÞ and for simplicity we set ! :¼ id for the
matrix field !. The partial solution Bg can be computed by solving a
Laplace problem. The corresponding variational formulation, which is
uniquely solvable by Lax-Milgram’s lemma, to find the partial solution BF
of

rot l rotBF ¼ F in X; n, BF ¼ 0 at Cn;
divBF ¼ 0 in X; n ( BF ¼ 0; n, l rotBF ¼ 0 at Ct;
peHBF ¼ 0 in X;

is the following: Find BF 2 RCnðXÞ \ rotRCtðXÞ, such that18

18Note that (5.20) holds for all U 2 RCn ðXÞ \ rotRCt ðXÞ if and only if it holds for all U 2 RCn ðXÞ since F 2
rotRCt ðXÞ.
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8 U 2 RCn Xð Þ hrotBF; rotUiL2l Xð Þ ¼ hF;UiL2 Xð Þ: (5.20)

Then, by definition and the results of [2], we get lrotBF 2 RCtðXÞ with
rotlrotBF ¼ F. Hence, by setting

E :¼ lrot BF 2 RCt Xð Þ \ lrot RCn Xð Þ ¼ RCt Xð Þ \ l DCn;0 Xð Þ \Ht;n;e Xð Þ?L2e Xð Þ

we see that the pair (B, E) solves the linear first order system (in classical
strong formulation) of electro-magneto statics type with mixed boundary
conditions

lrot B ¼ lrot BF ¼ E; rot E ¼ F in X; n, B ¼ 0; n ( eE ¼ 0 at Cn;
divB ¼ g; div eE ¼ 0 in X; n ( B ¼ 0; n, E ¼ 0 at Ct;
peHB ¼ H; pHE ¼ 0 in X:

(5.21)

Let us define operators T1;T2;T3 using A1;A2;A3 together with the
respective adjoints and reduced operators by the complexes

As before, all basic Hilbert spaces are L2ðXÞ except of H3 ¼ L2eðXÞ, corre-
sponding to the domain of definition of T3. Then (5.19) turns to

T"
2T2B ¼ rotCtl rotCnB ¼ F;

T"
1B ¼ divCtB ¼ g;
p2B ¼ peHB ¼ H

and this system is uniquely solvable by Theorem 3.19 as F 2 RðT"
2Þ; g 2

RðT"
1Þ , and H 2 K2 with solution B depending continuously on the data.

(5.21) reads

T2B ¼ l rotCnB ¼ E; T3E ¼ # divCne E ¼ 0;

T"
1B ¼ divCtB ¼ g; T"

2E ¼ rotCtE ¼ F;

p2B ¼ peHB ¼ H; p3E ¼ pHE ¼ 0:

Again, we can apply the main functional a posteriori error estimates
from Theorem 4.7.

Theorem 5.15. Let B 2 RCnðXÞ \ DCtðXÞ be the exact solution of (5.19), E :
¼ lrotB 2 RCtðXÞ , and ðeB; eEÞ 2 L2ðXÞ , L2eðXÞ . Then the following esti-
mates hold for the errors eB :¼ B# eB and eE :¼ E# eE:
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(i) The errors eB and eE decompose, i.e.,

eB ¼ eB;grad þ e
B;eH þ eB;rot 2 grad H1

Cn
Xð Þ!L2 Xð ÞHn;t Xð Þ!L2 Xð Þrot RCt Xð Þ;

eE ¼ eE;grad þ eE;H þ eE;rot 2 grad H1
Ct

Xð Þ!L2e Xð ÞHt;n;e Xð Þ!L2e Xð Þl rot RCn Xð Þ

and jeBj2L2 Xð Þ ¼ jeB;gradj2L2 Xð Þ þ je
B;eHj

2
L2 Xð Þ þ jeB;rotj2L2 Xð Þ;

jeEj2L2e Xð Þ ¼ jeE;gradj2L2e Xð Þ þ jeE;Hj2L2e Xð Þ þ jeE;rotj2L2e Xð Þ:

(ii) The projection eB;grad ¼ pgradeB ¼ Bg # pgradeB 2 gradH1
Cn
ðXÞ satisfies

jeB;gradj2L2 Xð Þ ¼ min
U2DCt Xð Þ

ecfpjdivU# gjL2 Xð Þ þ jU# eBjL2 Xð Þ

' (2

¼ max
u2H1

Cn
Xð Þ

2hg;uiL2 Xð Þ þ h2eB# gradu; graduiL2 Xð Þ

' (

and the minimum resp. maximum is attained at

Û :¼ eB;grad þ eB 2 DCt Xð Þ; û :¼ # ggradCn

' (#1
eB;grad 2 H1

Cn
Xð Þ

with divÛ ¼ divB ¼ g.

(iii) The projection eB;rot ¼ proteB ¼ BE# proteB 2 rotRCtðXÞ satisfies

jeB;rotj2L2 Xð Þ ¼ min
W2RCn Xð Þ

min
U2RCt Xð Þ

c2mjrotU# FjL2 Xð Þ þ cmjU# lrotWjL2e Xð Þ þ jW# eBjL2 Xð Þ

' (2

¼ min
lrotW2RCt Xð ÞW2RCn Xð Þ;

c2mjrot l rot W# FjL2 Xð Þ þ jW# eBjL2 Xð Þ

' (2

¼ max
lrotH2RCt Xð ÞH2RCn Xð Þ;

2hF;HiL2 Xð Þ # h2eE þ rot l rot H; rotl rotHiL2 Xð Þ

' (

and the minima resp. maximum is attained at

Ŵ :¼ eB;rot þ eB 2 RCn Xð Þ; Û :¼ E 2 RCt Xð Þ;

and Ĥ :¼ ðl frotCnÞ
# 1ðfrotCtÞ

# 1eB;rot 2 RCnðXÞ \ rotRCtðXÞ with lrotŴ;
lrotĤ;2 RCtðXÞ and lrotŴ ¼ lrotB ¼ E and rotlrotŴ ¼ rotE ¼ F as well
as rotÛ ¼ rotE ¼ F.

(iv) The projection e
B;eH ¼ peHeB ¼ H# peH

eB 2 Hn;tðXÞ satisfies

je
B;eHj

2
L2 Xð Þ ¼ min

u2H1
Cn

Xð Þ
min

U2RCt Xð Þ
jH# eB# graduþ rotUj2L2 Xð Þ

¼ max
W2Hn;t Xð Þ

h2 H# eBð Þ#W;WiL2 Xð Þ
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and the minimum resp. maximum is attained at

û :¼ # ggradCn

' (# 1
pgradeB 2 H1

Cn
Xð Þ; Û :¼ frotCt

! "# 1
proteB 2 RCt Xð Þ \ lrotRCn Xð Þ

resp. Ŵ :¼ e
B;eH 2 Hn;tðXÞ with # gradû þ rot/̂ ¼ ðpgrad þ protÞeB ¼

ð1# peHÞ
eB.

(v) The projection eE;grad ¼ pgradeE ¼ # pgradeE 2 gradH1
Ct
ðXÞ satisfies

jeE;gradj2L2e Xð Þ ¼ min
U2lDCn Xð Þ

cfpjdiv e UjL2 Xð Þ þ jU# eEjL2e Xð Þ

' (2
¼ min

U2lDCn ;0 Xð Þ
jU# eEj2L2e Xð Þ

¼ max
u2H1

Ct
Xð Þ

# h2eE þ grad u; grad uiL2e Xð Þ

' (

and the minimum resp. maximum is attained at

Û :¼ eE;grad þ eE 2 l DCn;0 Xð Þ; û :¼ ggradCt

' (#1
eE;grad 2 H1

Ct
Xð Þ

with # div e Û ¼ # div e E ¼ 0.

(vi) The projection eE;rot ¼ proteE ¼ E# proteE 2 lrotRCnðXÞ satisfies

jeE;rotj2L2e Xð Þ ¼ min
U2RCt Xð Þ

cmjrotU# FjL2 Xð Þ þ jU# eEjL2e Xð Þ

' (2

¼ max
W2RCn Xð Þ

2hF;WiL2 Xð Þ # h2eE þ lrotW; lrotWiL2e Xð Þ

' (

and the minimum resp. maximum is attained at

Û :¼ eE;rot þ eE 2 RCt Xð Þ; Ŵ :¼ l frotCn

! "# 1
eE;rot 2 RCn Xð Þ \ rotRCt Xð Þ

with rotÛ ¼ rotE ¼ F.

(vii) The projection eE;H ¼ pHeE ¼ # pHeE 2 Ht;n;eðXÞ satisfies

jeE;Hj2L2e Xð Þ ¼ min
u2H1

Ct
Xð Þ

min
U2RCn Xð Þ

j# eE þ grad uþ lrotUj2L2e Xð Þ

¼ max
W2Ht;n;e Xð Þ

# h2eE þW;WiL2e Xð Þ

' (

and the minimum resp. maximum is attained at

û :¼ ggradCt

' (# 1
pgradeE 2 H1

Ct
Xð Þ; Û :¼ l frotCn

! "# 1
proteE 2 RCn Xð Þ \ rotRCt Xð Þ

resp. Ŵ :¼ eE;H 2 Ht;n;eðXÞ with gradû þ lrot/̂ ¼ ðpgrad þ protÞeE ¼
ð1# pHÞeE.

108 D. PAULY



If eB ¼ H þ eB? with some eB? 2 Hn;tðXÞ?L2ðXÞ , then e
B;eH ¼ 0 , and in (ii)

and (iii) eB can be replaced by eB?. If eE ¼ eE? with some eE? 2 Ht;n;eðXÞ
?L2e ðXÞ ,

then eE;H ¼ 0, and in (v) and (vi) eE can be replaced by eE?.
A reasonable assumption is, that we have conforming approximations

eBg 2 gradH1
Cn

Xð Þ ¼ RCn;0 Xð Þ \Hn;t Xð Þ?; eBF 2 RCn Xð Þ

of Bg 2 DCtðXÞ \ gradH1
Cn
ðXÞ and BF 2 RCnðXÞ \ rotRCtðXÞ and hence a

conforming approximation

eE :¼ lrot eBF 2 lrotRCn Xð Þ

of E 2 RCtðXÞ \ lrotRCnðXÞ , which implies eE ¼ eE;rot 2 lrotRCnðXÞ and
eE;grad ¼ eE;H ¼ 0 as well as eB#H ¼ eBF þ eBg 2 RCnðXÞ and eB 2 RCnðXÞ .
In this case the estimates of the latter theorem simplify. More precisely,
e.g., (iii) turns to the following result: If eBF; eBg 2 RCnðXÞ , then eB; eB 2
RCnðXÞ and we can choose, e.g., W :¼ eB yielding, e.g.,

jeB;rotjL2 Xð Þ * min
U2RCt Xð Þ

c2mjrotU# FjL2 Xð Þ þ cmjU# lrot eBjL2e Xð Þ

' (
;

which might not be sharp anymore. Similarly, the results of (vi) read as fol-
lows: If eBF 2 RCnðXÞ, then eE :¼ l rot eBF 2 lrotRCnðXÞ and l rot ðB# eBFÞ ¼
eE ¼ eE;rot 2 l rotRCnðXÞ as well as

jeEj2L2e Xð Þ ¼ min
U2RCt Xð Þ cmjrotU# FjL2 Xð Þ þ jU# l rot eBFjL2e Xð Þ

' (2

¼ max
W2RCn Xð Þ 2hF;WiL2 Xð Þ # hlrot 2eBF þW

! "
; l rotWiL2e Xð Þ

' (

and the minimum resp. maximum is attained at

Û :¼ eE þ l rot eBF 2 RCt Xð Þ; Ŵ :¼ l frotCn

! "# 1
eE 2 RCn Xð Þ \ rotRCt Xð Þ

with rot Û ¼ rot E ¼ F . Note that (5.22) are in principle the functional a
posteriori error estimates for the energy norm associated to the rotrot
-operator, which have been proved in [8].

5.3. More applications

There are plenty more applications fitting our general theory for the sys-
tems (1.5), (1.10), (1.11), i.e.,

A2x ¼ f ; A"
2A2x ¼ f ; A"

2A2x ¼ f ;
A"
1x ¼ g; A"

1x ¼ g; A1A"
1x ¼ g;

p2x ¼ k; p2x ¼ k; p2x ¼ k:

E.g., if we denote the exterior derivative and the co-derivative associated
with some Riemannian manifold having compact closure by d and d , we
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can discuss problems like

dE ¼ F; # dldE ¼ F; # dldE ¼ F;

# deE ¼ G; # deE ¼ G; # ddeE ¼ G;

pE ¼ H; pE ¼ H; pE ¼ H

for mixed tangential and normal boundary conditions for some differential
form E. Moreover, problems in linear elasticity, Stokes equations, bihar-
monic theory, general relativity, rot rot rot rot-operators, to mention just
a few examples, fit into our general framework. Note that all these prob-
lems feature the underlying complexes (1.3) and (1.4). More precisely, let
X & R3 or X & RN;N - 2 , be a bounded weak Lipschitz domain with
weak Lipschitz interface, and, for simplicity, let us just present homoge-
neous material parameters with e ¼ id; l ¼ id and skip the cohomology
projector p. Then we have the following complexes and linear systems:

+ electro-magnetics (as already extensively discussed before)

E.g., we can handle the systems

rotCtE ¼ F; rotCnrotCtE ¼ F; # gradCn
divCtE ¼ F;

# divCnE ¼ g; # divCnE ¼ g; rotCnE ¼ G;

or

# divCngradCt
u ¼ f ; rotCnrotCtE ¼ F;

# gradCt
divCnE ¼ G:

+ generalized electro-magnetics (differential forms)

E.g., we can handle the systems

dCtE ¼ F; # dCndCtE ¼ F; dCtE ¼ F; # dCndCtE ¼ F;

# dCnE ¼ G; # dCnE ¼ G; # dCtdCnE ¼ G; # dCtdCnE ¼ G:

+ biharmonic problems, Stokes problems, and general relativity
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E.g., we can handle the systems

RotS;Ct S ¼ F; DivT;CtT ¼ F;
divDivS;CnS ¼ g; symRotT;Cn

T ¼ G;

or

symRotT;CnRotS;Ct S ¼ F; # devGradCnDivT;CtT ¼ F;
divDivS;CnS ¼ g; symRotT;CnT ¼ G;

or

RotS;Ct S ¼ F; DivT;CtT ¼ F;
Grad gradCt

div DivS;CnS ¼ G; RotS;Ctsym RotT;CnT ¼ G;

or

div DivS;CnGradgradCt
u ¼ f ; #DivT;CtdevGradCnE ¼ F:

+ linear elasticity

E.g., we can handle the systems

RotRot>S;Ct
S ¼ F; RotRot>S;Cn

RotRot>S;Ct
S ¼ F; RotRot>S;Ct

S ¼ F;
#DivS;CnS ¼ G; #DivS;CnS ¼ G;# symGradCt

DivS;CnS ¼ G;

or

RotRot>S;Cn
RotRot>S;Ct

S ¼ F; #DivS;Cnsym GradCtE ¼ G;
# sym GradCtDivS;CnS ¼ G:
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