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ABSTRACT

We prove a comprehensive solution theory using tools from
functional analysis, show corresponding variational formula-
tions, and present functional a posteriori error estimates for
general linear first order systems of type

Ax = f,
Alx =g,
for two densely defined and closed (possibly unbounded) lin-
ear operators A; and A, having the complex property A;A; =
0. As a prototypical application we will discuss the system of
electro-magneto statics in 3D with mixed tangential and nor-
mal boundary conditions
rotE = F,
—diveE = g.
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Our theory covers a lot more applications in 2D, 3D, and ND,
such as general differential forms and all kind of systems aris-
ing, e.g., in general relativity, biharmonic problems, Stokes
equations, or linear elasticity, to mention just a few, for
example

dE = F, RotsM = F, DivrT = F, Rot RotdS = F,

—8¢E = G, divDivseM = G, symRotyelT = G, —Divg €5 =G,

all with possibly mixed boundary conditions of generalized
tangential and normal type. Second order systems of types

A;AzX = f, A;Azx = f,
Alx=g, AAix=g

will be considered as well using the same techniques.

1. Introduction

Throughout this article we assume the following: For /€ Z let H, be
Hilbert spaces. Moreover, let
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Ay D(Ag) C Hy — Hyy,4

be densely defined and closed (possibly unbounded) linear operators. In
applications, often almost all operators A, will be zero, i.e., only finitely
many A, are different from zero, typically Ag, A;, A, A3, Ay in 3D PDE
applications or Ag, Ay, ..., Ay,Ayn;1 in ND PDE applications. Here, D(A)
denotes the domain of definition of a linear operator A and we introduce
by N(A) and R(A) its kernel and range, respectively. Inner product, norm,
orthogonality, orthogonal sum and difference of (or in) an Hilbert space H
will be denoted by ( -, - )y,| - |g> Lu, and Dy, O, respectively. We
note that D(A), equipped with the graph inner product, is a Hilbert space
itself. Moreover, we assume that the operators A, satisfy the sequence or
complex property, this is for all ¢

R(A;) C N(Appy) (1.1)

or equivalently Ayy; A, C 0. Then the (Hilbert space) adjoint operators
A; :D(A}) C Hyy — Hy
defined by the relation
V x€D(A) VY y€D(4)) (Ax, y)p,,, = (% Ay,

satisfy also the sequence or complex property, i.e., for all £

R(A7) © N(A) 12
or equivalently AjA; ; C 0. We note A;* = Ay = Ay, ie, (As, A}) are dual
pairs. The complex

S AL DAY A D(Ag) S L (1.3)

is called closed, if all ranges R(A ;) are closed, and called exact, if R(A;) =
N(A/41) holds for all £. By the closed range theorem, (1.3) is closed resp.
exact, if and only if the adjoint complex

* N * « A*l
E D(A7,) — D(A]) (14)

is closed resp. exact. For all / and by the projection theorem the Helmholtz
type decompositions

Hy = N(A)®p,R(A7), N(Ar) = R(A]) ™,

Hy=R(A;-1)®u,N(A;_,), N(A;_,) = R(A-1)"™

hold. Moreover, the complex properties (1.1) and (1.2) show

N(A¢) = R(Ay_1)®u,K;, N(A] ) = K/®u,R(A}),

where we introduce the cohomology groups
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K;:=N(A)) NN(A]_)).

Therefore, we obtain the refined Helmholtz type decompositions

H; = R(A¢_1)®p,KDp,R(A)).

Note that, if A, has closed range then by the closed range theorem and
the projection theorem

R(A;) = N(A) ™1, R(A}) = N(A,)™.

Finally, we define for all ¢ the domains of definition for our mixed
problems

Dy := D(A;) ND(A;_,).

1.1. Aims and main results

The central aim of this article is to prove functional a posteriori error esti-
mates in the spirit of Sergey Repin, see, e.g., [1-5], for the linear system

Azx :f,
Alx =g, (1.5)
THx = k

with
x €Dy, = D(A2) ﬂD(AT),

where m, : H, — K, = N(A;) N N(A]) denotes the orthonormal projector
onto the cohomology group or kernel K,. We recall the complex property
A;A; =0, and hence also AJA] = 0. Obviously, f € R(A;),g € R(A}), and
k € K, are necessary for solvability of (1.5) and there exists at most one
solution to (1.5). A proper solution theory for (1.5), i.e., existence of a solu-
tion of (1.5) depending continuously on the data, will be given in the next
section. The main result for this is Theorem 3.3 and reads as follows:

Theorem I (Theorem 3.3) Let R(A;) and R(A,) be closed. Then (1.5) is
uniquely solvable in D,, if and only if f € R(A;),g € R(A]), and k € K.
The solution x € D, depends linearly and continuously on the data, i.e.,
|’C|H2 < CZ[ﬂHS +a |g|Hl + |k|H2'

Remark 2 (Lemma 2.1, Lemma 2.3, (2.4))

(i) By the closed range theorem, R(A;) resp. R(A;) is closed, if and only if
R(A}) resp. R(AY) is closed. Moreover, R(A;) and R(A,) are closed, if,
e.g., D, — H, is compact, see Lemma 2.3, in which case K, is also finite
dimensional, see General Assumption 3.1 and Remark 3.2.
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(ii) By the closed graph theorem the following assertions are equivalent:
The range R(A,) is closed in H,.
There exists 0 <c<oo such that for all ¢ € D(A;) N N(A;)™™ it
holds |l < clA1dls,
o The inverse A ' : R(A;) — D(A;) NN(A,)"™ is continuous, where
Ay is the corresponding reduced operator of Ay, i.e., the restriction of
A, to D(A;) NN(A;)"™.

(iii)  If R(A,) is closed, then c; is defined as the best possible constant in (ii)
and hence equals the norm of the inverse A ' regarded as operator
from R(A,) to N(Al)L”l. Moreover, c; is also given by the Rayleigh
quotient

Aol 1

— A1,
0£peD(A)N(A) [Pl Cf

which defines the smallest positive eigenvalue 4, of the selfadjoint oper-
ator’ ATA,.
(iv)  Similar results and definitions as in (ii) and (iii) hold for the constant
¢, provided that R(A;) is closed.
(v)  The unique solution x € D, in Theorem I is simply given by x =

A+ (A) g+ ke

Although the solution theory is based on pure functional analysis and oper-
ator theory, we shall give a few variational (multiple) saddle point formula-
tions as well propose methods for computing the exact solution x € D,.
These formulations are not only alternatives to prove Theorem I, but also
suggestions for possible numerical methods in future applications, and will
be discussed extensively, see, e.g., Theorem 3.5, Theorem 3.10, Theorem
3.12, Theorem 3.14, and Theorem 3.17. One of these results reads
as follows:

Theorem III (Theorem 3.12) Let R(A;) and R(A,) be closed. Moreover, let
f € R(A,) and g € R(A]). The unique solution x € D, in Theorem I can be
found by the following two variational double saddle point formulations:

(i)  There exists a unique triple (x,z,h) € D(A;) x (D(A;) NR(A])) x K,
such that for all triples (&, ¢, k) € D(A;) x (D(A;) NR(A])) x K

<A25C, 1A2£>H3 + <A1z7 é>H2 + <h7 5>H2 = <f7 A26>H37
G A = (8, O
<x= K>H2 = <k= K>H2'

"Thus 1, is also the smallest positive eigenvalue of the selfadjoint operator A;A.
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It holds z=0 and h=0 as well as A;x =f and m,x = k. Moreover,
the variational formulation holds for all ¢ € D(A,), and thus X €
D(AY) with Aix = g. Finally, x = x from Theorem I.
(i)  There exists a unique triple (x,y,h) € D(A]) x (D(A5) NR(A)) x K3,
such that for all triples ({, d,x) € D(A]) x (D(A;) NR(A,)) X K,
<AT&7ATC>H1 + <A§y7 C>Hz + (h, C>H2 = (g ATQHN
<5C,A;¢>H2 = <fa ¢>H3a
(x, K>H2 = (k, K)Hz'
It holds y=0 and h=0 as well as Ajx = g and myx = k. The variational
formulation holds for all ¢ € D(AS), and thus x € D(Ay) with Ayx =f.
Finally, x = x from Theorem I.
Theorem III (i) resp. (ii) is a weak formulation of

A;Az)AC + AIZ -+ h= A;f, AT?AC =4, TEz)AC = k,
resp.
AlATJAC + A;y + h= /\1g7 A25C :f, TCz)AC = k,
i.e., in formal matrix notation
AA, A i | [k Asf AA] A ik | [ X Ag
A} 0 0flz|l=]g¢ |, Ay Ollyl=1|71|
h k

nzzz}‘(z 0 0 h k 7I2=l;22 0 0

o

respectively, where 1g, is the canonical embedding of K, into H,. Note
z=0, h=0 resp. y=0, h=0. Often the additional condition z € R(A}])
resp. ¥ € R(A;) is unpleasant, especially for possible numerical applications,
and hence the saddle point idea has to be repeated until D(.Ay) = D(A/),
ie., R(A}) = Hy resp. D(A;) = D(A}), i.e, R(Ay) = Hy4; holds for some /.
In 3D we typically have only the operators Ag, A;, A,, Az, Ay with adjoints
A5, A7, A5, A}, A} forming the Hilbert complexes and it holds R(Aj) = H,
and R(A4) = Hs. Hence the biggest system in 3 D arising for A, resp. A] as
leading operator to compute X = x is

A;Az A1 0 IK, 0 X A;f
Y 0 Ay 0 g z g
0 Aj 0O 0 O ul|l=1,2~0
Ty = Ik, 0 0O 0 0 h, k
0 =1 0 0 0 hy 0

resp.
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AAT A 0 0 w 0 0]|[% Ag
A 0 AL 0 0 1 0]y f
0 A; 0 AZ 0 0 Ik, v 0
0 0 Ay 0 0 0 0 w| = 0
n=1 0 o 0 0 0 o0/|n k
0 m=1, 0 0 0 0 0|]|h 0
0 0 m=1, 0 0 0 0||m] |0

Note z=0, u=0, h, =0,h; =0 resp. y=0, v=0, w=0, hy =0,h; =
0,hy = 0.

Remark 4 Particularly interesting cases are those for which R(A]) in
Theorem III (i) or R(A,) in Theorem III (ii) already have finite co-dimension,
ie, in the best cases R(A]) = H; or R(A;) = Hj, ie, N(A;) = {0} or
N(A}) = {0}. Fortunately, these situations are typical in many applications,
as we will see at the end of the introduction or in more detail in the
Application  Section 5. Indeed, typically N(A;) ={0} or at least
dimN(A;) < oo and N(A}) = {0} or at least dimN(A}) < co.

Let X € H, and let us consider X as a possibly (very) nonconforming’
“approximation” for the exact solution

of (1.5). Proving functional a posteriori error estimates, also called a poste-

riori error estimates of functional type, for the linear problem (1.5) means,
that we will present two-sided estimates for the error

e:=x—x € H,

with the following properties:

@ There exist two functionals M=, a lower and an upper bound, such that

v Ziayj M—(zla "'721;36af7g5 k) S |e|H2 S M+(yla"'7y];%af7ga k)7
(1.6)

were the z; and the y; belong to some suitable Hilbert spaces. The func-
tionals M= are guaranteed lower and upper bounds for the norm of the
error |e|y, and explicitly computable as long as at least upper bounds
for the natural Friedrichs/Poincaré type constants c; and ¢, for the oper-
ators A; and A, are known’. The bounds M= do not depend on the

2A conforming “approximation” X would belong to D,.

3Just needed for the upper bound M.
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possibly and generally unknown exact solution x, but only on the data,

the approximation x, and the “free” vectors z;, y;.

® The lower and upper bound M+ are sharp, i.e.,

max M _(z1, ..., z5; X, f, §, k) = |e|ly, = min My (1, ..., y5;%,f, 8, k). (1.7)
1Y)

2] 5] Yoo

@ The minimization over z; and y; is “simple,” typically a minimization of
Y p Yp y
quadratic functionals.
® The bounds M+ are general in the sense that they do not depend on
5 y p
any specific numerical method which might be used in some possible
application.

Concerning the error estimates the main result of this contribution is
Corollary 4.6, which summarizes Theorem 4.1, Theorem 4.5, and the corre-
sponding corollaries and reads as follows:

Theorem V (Corollary 4.6) Let R(A;) and R(A,) be closed. Moreover,
let x € D, be the exact solution of (1.5) and let x € H,, regarded as
nonconforming approximation of x. Then the error e :=x—Xx decomposes
orthogonally, i.e.,

e =exp +eg, + en; € R<A1)@H2K2®H2R(A§)a
2 2 2 2
lelr, = lea, |k, + lex |m, + leas |,

and the following a posteriori error estimates for the respective error
parts hold:

(i)  The projection e, € R(A,) satisfies

max M*yAl((p;aag) = ‘eAlliIZ = min Mi.,Al(g;%?g)v

»ED(Ay) ggD(Ai‘)
M A (3%, 8) == 2(g, @)y, — (2% + A1, A19)

Mo (§%,8) i= e AT =gy, + [0 =X,

The maximum is attained at any ¢ € D(A;) with A1Q = es, and {:
= ex, + x € D(A]) gives the minimum. It holds Aj{ = Ajx = g.
(ii) The projection ex; € R(A}) satisfies

max M _ a:(¢h;x,f) = lea; éz = “rr;in ./\/li’A;(f;},f),
ce

((JED(A;) (A2

M —,A;(Q{);},f) = 2(f, ¢>H3 —(2x + A;Q'%A;@sz
M+,A§(f§%af) = 0] Ay _f|H3 + 1€ _BE|H2‘
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The maximum is attained at any ¢ € D(A%) with AA;[b = ey; and ¢
= ex: +x € D(Ay) gives the minimum. It holds Ay = Ayx = f.
(ili) The projection ex, = me = k — myx € K, satisfies

max M _ g, (0;x, k) = |eK2]H = m1n M+K2(g0 ¢;x, k)

0cKy @eD(Ay
¢>6D(A*>

~ k0%, k) = (2(k—x) -0, 0>H2,
M+,K2(§07 ¢; x, k) = |k —x+ A+ A;¢|H2'

The maximum is attained at 0:= ex, € Ky and the minimum at any pair
(¢, ¢) € D(A1) x D(A;) with A1 + Aj¢p = (1 — mp)x.

Remark VI (Corollary 4.6 continued, Section 4.3)

(i)  In applications, often x := k+x, holds with some x, € KZLHZ. In this
case ex, =0 and in Theorem V (i) and Theorem V (ii) X can be
replaced by X, . Moreover, (|, :=ex +%, € D(AY) and &, :=
ea; + X1 € D(Az) holds for the attaining minima.

(ii)  Differentiating the lower bound M _ A (@;x,g) with respect to @
shows that a possible maximizer ¢ € D(A,) of the maximum in
Theorem V (i) solves the variational formulation

VoeDA) (A0, M)y, = (g @)y, — (X A1@)y,,  (L8)
which implies A;p +x € D(A]) with AJ(A1p +x) =g and presents a
weak formulation® of
ATA1p = g—Alx = Aje = Ale,,.
By Remark II (i) A, is strictly positive over D(A;) N N(A,)™ and hence
(1.8) admits a unique solution ¢ € D(A;) N N(A;)™". A particularly simple

case is again given if N(A;) is finite dimensional or even N(A;) = {0},
which occurs in many applications.

(i')  On the other hand, considering the minimum in Theorem V (i) we
can roughly estimate the upper bound by, e.g.,

+A1(ng)<2C1|AC g|Hl+2|C x|H2

Differentiating the right hand side with respect to { shows that the minim-
izer { € D(AY) solves the variational formulation

VIeD@A)  ALAD, + {0k = @Ay + & D, (19)

“Thus A1p —ea, € N(AT) NR(AT) = N(AT) N N(AD) 2 = {0},
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~

which implies A*l‘z —g € D(A)) and ciA, (ATE —g) = (x—={), presents a
weak formulation of
cfAlA”f(A: + é’ = cfAlg +x.

Unique solvability of (1.9) in D(A]) is trivial as the variational formulation
reproduces a graph inner product of D(AY). An optimized minimization pro-
cess using a more careful estimate is explained in some detail in Section 4.3.

(iii) ~ Similar arguments and formulations hold for Theorem V (ii) and (iii)
as well.

We shall also present a full theory, in particular functional a posteriori
error estimates, for linear second order systems such as

A;Azx :f,
A’fx =g, (1.10)
THx = k

with x € D, such that A,x € D(A}), ie, x € D(A]) N D(AJA;). This will
follow immediately by the theory developed for the first order system (1.5),
since the solution pair

(x,y) € (D(A2) ND(A})) x (D(As) N D(A}))

defined by y := A,x € D(A5) NR(A;) solves the system of first order sys-
tems

A2x =), A3)’ = 07

Alx =g, Ay =1,
mx = k, n3y = 0.

Analogously, we can treat problems such as

A;AzX :f,
AAix =g, (1.11)
Tox = k

as well, which are strongly related to the generalized Hodge-Helmholtz
decomposition of f + g+ k € H,.

1.2. Applications

Our main applications will be the linear first order systems of electro-mag-
neto statics as well as related second order rotrot systems and, as a very
simple example, the Laplacian, see Section 5, especially Theorem 5.12. In
this article, we only discuss homogeneous boundary conditions, noting that
the canonical extension to inhomogeneous boundary conditions is straight
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forward. As we shall give a detailed description of more applications fitting
our general theory for the linear systems (1.5), (1.10), (1.11) and for the
general complexes (1.3), (1.4) in Section 5.3, we just indicate a few applica-
tions by listing some interesting and important underlying complexes aris-
ing in, e.g., general electro-magneto statics, for differential forms on
Riemannian manifolds, in problems of linear elasticity, Stokes equations,
biharmonic theory, general relativity, rot rot rot rot-operators, to mention
just a few examples. Although all these systems are allowed to have mixed
generalized tangential and normal boundary conditions and inhomogen-
eous and anisotropic material properties, see Section 5.3, we will just pre-
sent the cases of full boundary conditions and homogeneous and isotropic
material parameters here in this introductory part. For this let Q C R® or
Q c RY,N > 2, be a bounded weak Lipschitz domain.

e clectro-magnetics

{0y 2T Hr(o) AT R() Ao pg) A 2(g) Ao g

LQ(Q) Azzfdiv D(Q) A;:rot Anggt'ad Al=wr

(0} Ao=T (0} R
A typical system for a vector field E is

rotrE=F, —divE=g.

R(©) H(Q)

This system is well understood, see, e.g., the pioneering work of Norbert
Weck [6] and Rainer Picard [7-9]. See also [10].

e generalized electro-magnetics (differential forms)

Ag=tigq Aq=dpr A,_q=dp Ag=dp A =dp A =dp . AnN41=TR
(0} {0} DY.(2) 1=dp q—1=9r D ) q=dr D%(0) g+1=9r - An=dr 12N (q) NHLZTR o

Af=m A¥=_34 A* 5 AX¥=—35 A 5 A 5 AN =t
0 < £ -1 1 v v N R
(0} SOTTHOY 20y A 2 AT-1(q) L AT(Q) 9t LN bV () + R

A typical system for a differential form E is
drE=F, —JdE=G.

This system is well understood as well, see, e.g., [7-9, 11, 12].

e biharmonic problems, Stokes problems, and general relativity

Ag= A, =Cr: . As=Rotg A3=Divy
{0} 0=t{0} H%(Q) A1=Grad gradp Rr( 2=Rotg 1 3=Divy 1

;8) 2 DL T) L2(Q) 2= RT

Al =div Divg A =sym Rotr A= dev Grad
P B

Ab=n . A% =y
[0 &0 2q) HI(Q) &3 RT

DD(%;5) Roym (€ T)

A typical system for a symmetric tensor field S resp. a deviatoric (trace
free) tensor field T is
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RotsrS = F, divDivsS=g¢ resp. DivprT =F, symRot;T = G.

e linear elasticity

Ag=RotRotd 1 Az=Divg

Ap=t —sym Gradp . =
{0y 20T g1y ArmwmGrade, ppTi@:s) o R b S) L2(Q) M=, RM

(0} Ag=7(0} L2(0) A} =—Divg Aj=RotRot] RRT(9:5) Ay=— sym Grad H(9) A% =trm RM

D(Q;5)

A typical system for a symmetric tensor field S is

RotRot S = F, —DivsS=G.

Here we denote the rigid motions and the global Raviart-Thomas fields
of Q by

RM:={P|, : P(x)=Qx+b, Q&R skew— symmetric, b € R*},
RT:={Plg : P(x)=ax+b, acR, beR*}.

2, Functional analysis tool box

Let ¢ € Z. By the projection theorem the Helmholtz type decompositions

H; = N(A;)®y,R(A}),Heyy = N (A7) B, R(A) (2.1)
hold and define in a natural way the reduced operators

Ay = Ag|m : D(Ag) C R(AZ) — R(Ag),

D(A¢):= D(A¢) NR(A}) = D(As) N N(A,) "™,
A = Allzas D(A}) C R(Ar) — R(A}),
D(A;):= D(A;) NR(A;) = D(A}) N N(A}) "+,

which are also densely defined and closed linear operators. We note that
Ay and A; are indeed adjoint to each other, ie., (A, A;) is a dual pair as
well. Now the inverse operators
A7 R(A7) = D(A),  (4;) ' R(A}) — D(4))

exist, since A, and A; are injective by definition, and they are bijective, as,
e.g. for x € D(Ay) and y := Ayx € R(A;) we get A, 'y = x by the injectiv-
ity of Ay. Furthermore, by the Helmholtz type decompositions (2.1) we
have

D(A) = N(A)®uD(A),  D(AD) = N(A)@uD(A)  (22)
and thus we obtain for the ranges

R(A;) = R(Ay), R(A}) = R(A)). (2.3)
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By the closed range and closed graph theorem we get immediately the
following lemma.

Lemma 2.1. The following assertions are equivalent:

(i) J e (0,00)V xe€ D(A) xlg, < colAexly,,,
() 3Fqe(0,00)VyeDA) Py, <clAly,
(i)  R(Ay¢) = R(Ay) is closed in Hy, ;.
(it") ( ) R(Ay) is closed in Hy.
(iii) R(A¢) — D(Ay) is continuous and bijective with norm bounded
b)’ (1 ‘l‘ ct) v
(i) (A}) "' :R(A;) — D(A)) is continuous and bijective with norm
bounded by (1 + c;*)"/*.

Proof. Note that by the closed range theorem (ii) <= (ii*) holds. Hence,
by symmetry it is sufficient to show (i) <= (ii) <= (iii).

(i) = (ii) Pick a sequence (y,) C R(A;) converging to y € Hyy; in Hyy;.
By (2.3) there exists a sequence (x,) C D(As) with y, = Asx,. (i) implies
that (x,) is a Cauchy sequence in H, and hence there exists some x € Hy
with x, — x in Hy. As Ay is closed, we get x € D(Ay) and Ayx = y € R(Ay).

(i) = (iii) Note that A, ':R(A;) — D(A;) is a densely defined and
closed linear operator. By (ii), R(A ;) is closed and hence itself a Hilbert
space. By the closed graph theorem A, ' is continuous.

(iii) = (i) For x € D(A) let y := Ayx € R(Ay). Then x = A, 'y as Ay is
injective.” Therefore,

1 1
|x|H/ =|A, )’|H£ <|A, |R(Ag),R(AZ) )’|HHl = C£|AEX‘HM

with Cy = |./42 |R (A¢),R(A})*
If (i) holds we have for y € R(A¢) and x:= A, 'y € D(A)

A7 Yy, < el Ay, = clyly,,

and hence

B ’Ag y|H
AT hiaoagn) = 5o <
74 R(Az)yR(A‘f) 0+£yeR(A¢) |y|H[+1

A, A, +
’Ae RA/) by = sup A, )’|D(A/,): su |4, )’|H[ |y|H;+1<C£

2
oAver(a) V., 0yeR(Ar) v,

+1,

finishing the proof. 0

*It holds As(x — A, 'y) = 0 and thus x = A, 'y
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From now on we assume that we always choose the best Friedrichs/
Poincaré type constants ¢y, ¢}, if they exist in (0, 00), i.e., ¢, and ¢ are given
by the Rayleigh quotients

1 Apx 1 Ay
—:= inf 7| ! |H[“ —:= inf | [y‘H/

Cy 0#x€D(Ay) ’x‘H[ ’ C; O?é)’ED( ) |y|H/+1

Moreover, we see

|x|Hé A 71)’|H1 —-1
= sup ———= sup ——F=1A4, | s (2.4)
0#x€D(Ay) |AZx|H[+1 0£y€R(A) |y|H1+1 ‘ R(A()"R(AK)
as 0 # x € D(Ay) implies 0 # Ayx and for y := Ayx with x € D(A;) we
have A, 'y = x, both by the injectivity of A;. Analogously, we get

%\ — 1
CZ _ sup |y|H£+1 _ ‘('Af) x‘HiH

= [(A?) " lr(ar) an-
0#£yeD(A )| fy|Hé 07£xER(A;) |x|Hk (A7) :R(A)

(2.5)

Lemma 2.2. Assume that ¢, € (0,00) or ¢, € (0,00) exists. Then ¢; = cj.
We note that also in the case ¢, = 0o or ¢; = 0o we have ¢, = ¢j = oo.

Proof. Let, e.g., ¢; exist in (0,00). By Lemma 2.1 also ¢, exists in (0, 00)
and the ranges R(A;) = R(Ay) and R(Aj) = R(A;) are closed. Then for
x € D(Ay) = D(Ay) NR(A}) there is y € D(A;) with x = Ajy. More pre-
cisely, y := (A}) " 'x € D(A}) is uniquely determined and we have |y| H <
¢;|A7y|y, But then

’le (x, A/J’>H¢ (Asx, )’>H¢+1 <| fx‘HMb"HM < C/’AKX‘H,+1|A1/)’|H,7
yielding |x|y, < cj[Asx[y,, . Therefore, ¢, < ¢; and by symmetry we obtain
c=c. 0

A standard indirect argument shows the following lemma.

Lemma 2.3. Let D(A;) = D(A;) NR(A})) — Hy be compact. Then the asser-
tions of Lemma 2.1 and Lemma 2.2 hold. Moreover, the inverse operators

A7V i R(A) — R(AY), (A7) R(A}) — R(A)
are compact with norms
_ o —1
A, 1|R(A[),R(A;) - |(Ae) ‘R(A;),R(A[) =y

Proof. If, e.g., Lemma 2.1 (i) was wrong, there exists a sequence (x,) C
D(Ay) with |x,|y, = 1 and Asx, — 0. As (x,) is bounded in D(A,) we can
extract a subsequence, again denoted by (x,), with x, — x € H, in H,
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Since A, is closed, we have x € D(Ay) and Ayx = 0. Hence x € N(A;). On
the other hand, (x,) C D(A/) C R(A;) = N(A,)" implies x € N(A;)" .
Thus x=0, in contradiction to 1 = |x,|y, — |x|y, = 0. O

Lemma 2.4. The embedding D(Ay) — Hy is compact, if and only if the
embedding D(A)) < Hyyy is compact. In this case all assertions of Lemma
2.1 and Lemma 2.2 are valid.

Proof. By symmetry it is enough to show one direction. Let, e.g., the
embedding D(Ay) — H, be compact. By Lemma 2.1 and Lemma 2.3, espe-
cially R(A¢) = R(A;) and R(A;) = R(A;) are closed. Let (y,) C D(A;) =
D(A}) NR(Ay) be a D(Aj)-bounded sequence. We pick a sequence (x,) C
D(Ay) with y, = Agx,, ie, x, = A, 'y,. As A, ' : R(A;) — D(A,) is con-
tinuous, (x,) is bounded in D(A;) and thus contains a subsequence, again
denoted by (x,,), converging in H, to some x € H,. Now

Vn _)’mﬁ{lﬂ = n = Yms Ae(Xn — Xm)) ..,
= <AZ()’H —Ym),Xn _xm>Hé <c |x _xrn|H1
as (yn) is D(A})-bounded. Finally, we see that (y,) is a Cauchy sequence in
Hyt. O
Let us summarize:

Corollary 2.5. Let R(A,) be closed. Then

1 Apx A
1 |5|H4+1: inf |4)’|Hg

co ozxeD(A)  |x|g, yeD( A7) |)’|H[+1

exists in (0,00). Furthermore:

(i)  The Poincaré type estimates
vV x € D(A) x|y, < colAexly, .,
VyeD(A)  ln., < clAiyly,

hold.
(i)  The ranges R(Ay) = R(A;) and R(A}) = R(A;) are closed. Moreover,
D(A;) = D(A¢) NR(A}) and D(A;) = D(A)) N R(A,) with

Ay : D(A;) C R(A7) — R(Ag), Aj:D(A;) CR(A;) — R(A).
(iii) The Helmholtz type decompositions
H; = N(A,)®m,R(A}), Hpiy = N(A))®n,., R(Ay),
D(A;) = N(A))®y,D(A;), D(A}) = N(A})®p,, D(A))

hold.
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iii. The inverse operators
A R(A)) — D(Ay), (Az) :R(A}) — D(A4))

are  continuous and  bijective wzth norms | A, | Aé) (A) =
’(AZ)ilyR(A;),D(A}f):(1+C/)1/2 and | A; sk R(AD) =|(A)~! |R(an) RA) =
Cy.

Corollary 2.6. Let D(Ay) — H; be compact. Then R(A,) is closed and the
assertions of Corollary 2.5 hold. Moreover, the inverse operators

A7 R(A) — R(A)),  (A)) T R(AY) — R(A))
are compact.

So far, we did not use the complex property (1.1). Hence, Lemma 2.1,
Lemma 2.2, Lemma 2.3, Lemma 2.4, and Corollary 2.5, Corollary 2.6 hold
without the complex property (1.1). Now the complex property (1.1) enters
the theory. Recall the Helmholtz type decompositions (2.1) in the form

Hy = N(Ag)@HéR(A;f) =R(A/_ I)EBH[N(A}L 1)
hold. Then the complex properties (1.1) and (1.2) yield
N(A;) = R(Ar_1)®y,K;, N(Aj_,) = K®PpR(A}), Ki=N(A)NN(A;_,).

Therefore, we get the refined Helmholtz type decomposition
H; = R(A¢-1)®u,Ki®Pu,R(A7). (2.6)

Lemma 2.7. The refined Helmholtz type decompositions

Hy = R(A¢—1)®n,KiDn,R(A), Ky =N(A) NN(A]_,),
N(Ar) = R(Ar—1)®p Ky, N(A;_,) = K®@uR(A}),
R(A; 1) = R(A, 1) = N(A)eu K, R(A]) = R(A]) = N(A]_,)enKs,
D(A;) = R(Ar— 1)@y, KDy, D(A), D(Aj_,) =D(A;_,)®uKSuR(A;),
Dy = D(A;_)®u,KiBu,D(Ay), Dy, =D(A;)ND(A;_,)

hold. If the range R(A;_1) or R(A,) is closed, the respective closure bars can
be dropped and the assertions of Corollary 2.5 are valid. Especially, if
R(Ay_1) and R(A,) are closed, the assertions of Corollary 2.5 and the refined
Helmholtz type decompositions

Hy = R(A[ 1)®HéK£®H( ( ) K, = N(Ag) n NSAZ 1),
N(A;) = R(Ar_ 1)@y Ky, N(A;_,) = KBy R(A
R(A;-1) = R(A¢-1) = N(Ar)on Ke, R(A}) = R(A}) = N(A;_))onKe,
D(A¢) = R(Ay—1)®n,Ki®u,D(Ar), D(Aj_,) = D(A;_,)®uKi®u,R(A;),
D, = D(.Aé 1)@HfKE@H¢ (Ap), D, =D(A,) N D(AZL l)

hold.
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Observe that

D(A;) = D(A¢) NR(A;) € D(Ag) NN (Aj_,) C D(A;) ND(A;_,) = Dy,
D(A;_,) =D(A;_,)NR(A;—1) CD(A;_,) NN(A;) C D(A;_,) ND(A;) = Dy.
(2.7)

Lemma 2.8. The embeddings D(A;) — Hy,D(A;_1) — Hy_,, and Ky— Hy
are compact, if and only if the embedding D, — H, is compact. In this case,
Ky has finite dimension.

Proof. Note that, by Lemma 2.4, D(A;_;) — Hy_; is compact, if and only
if D(A; _,) — H is compact.

= Let (x,) C D; be a Dy-bounded sequence. By the refined Helmholtz
type decomposition of Lemma 2.7 we decompose

Xy = a, + k, + a, € D(A)_,)®u, KDy, D(Ay).

with Ayx, = Asa, and A} |x, = A; a’. Hence (a,) is bounded in D(A/)
and (a}) is bounded in D(A; ;) and we can extract H,-converging subse-
quences of (ay), (a}), and (k,).

«: If D;— Hy is compact, so is K, — H,. Moreover, by (2.7)

D(A¢) C Dy—H;, D(A;_,) C D;—H,.

Finally, if K, — H; is compact, the unit ball in K, is compact, showing
that K, has finite dimension. 0

Lemma 2.8. implies immediately the following result.

Corollary 2.9. Let Dy — H; be compact. Then R(A;_) and R(A,) are closed,
and, besides the assertions of Corollary 2.6, the refined Helmholtz type
decompositions of Lemma 2.7 hold and the cohomology group K, is finite
dimensional.

Remark 2.10. Under the assumption that the embedding Dy — H, is com-
pact, all the assertions of this section hold. Especially, the (short) complex

D(Ar1) % D(Ar) —2 Hep
together with its adjoint complex
Het 22 D(AL,) «— D(A})

is closed. These complexes are even exact, if additionally K, = {0}.
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Defining and recalling the orthonormal projectors

Ty = gy He— R(Ay—1), mpri=m (

R AZ) :H[HR(AZ), Ty :Hg—>Kg,

(2.8)
we have my =1 —my, |, — Ta; as well as
T, Hy = ma,  D(Ar) = ma, , N(A¢) = R(Ar—1) = R(Ar),
maHy = ma:D(A]_,) = ma:N(A;_)) = R(A]) =R(A))

and

ma,D(A}_ ) = 7ma,_ Dy =D(A;_,), ma:D(Ar) = ma:Dy = D(Ay).

Moreover
VfGD(ALl) TCA[—ISED(Azfl) A AL TA = A G,
V(€ D(A) ma:{ € D(A) A Agma:{ = Al

We also introduce the orthogonal projectors onto the kernels

TN(ap ) = 1—my, , :Ho— N(A]_)), 7@, =1—7a : Ho— N(Ay).

3. Solution theory and variational formulations

From now on and throughout this article we suppose the following.
General Assumption 3.1. R(A;) and R(A,) are closed and K, is finite
dimensional.

Remark 3.2. The General Assumption 3.1 is satisfied, if, e.g, D, — H, is
compact. The finite dimension of the cohomology group K, may be dropped.

3.1. First order systems

We recall the linear first order system (1.5) from the introduction: Find
x € D, = D(A;) N D(A7]) such that

Azx :f,
Alx=g, (3.1)
THX = k.

Theorem 3.3. (3.1) is uniquely solvable in D,, if and only if f € R(A;),g €
R(AY), and k € K,. The unique solution x € D, is given by
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x:=x7 + X, + k € D(A;)®p,D(A]) B, K> = Dy,

xp = A, 'f € D(A;) = D(A;) N Dy,

%= (A]) 'g € D(A]) = D(A}) N Dy

x|H2 < CZWH3 +a ‘g’Hl + ‘k’Hz’

and depends continuously on the data, i.e.,
as

’xf’Hz < CZWHSJ |xg‘H2 <a |g‘H1'
It holds

2 2 2 2
TasX =Xf, TAX=X, Tox =k, |xg = x|y, + x|y, + [kl -

Proof. As pointed out in the introduction, we just need to show existence.
We use the results of Section 2. Let f € R(A;),g € R(A]),k € K, and
define x, x5 and x, according to the theorem. For the orthogonality we
refer to Lemma 2.7. Moreover, X5 X,, and k solve the linear systems

AzXf :f, Azxg = O, Azk = 0,

Alxp =0, Ajx; =g, Alk=0,

Toxf =0, mx, =0, mk=k

Thus x solves (3.1) and we have by Corollary 2.5 |x¢|; < clf|y, and
|%¢lp, < c1lgly,> which completes the proof of the solution theory. O

Remark 3.4. By orthogonality and with Ayx = Ayxy = f and Alx = Ajx, =
g we even have

2 2 2 2 2 2 2
MHZ = ’xf’Hz + ’xg|H2 + |k‘H2 < C%Wm "‘Cﬂg’Hl + ‘k’sz

Il = bsrli, =+ T, + elzr, + 11, + IKkle, < (U4 )T, + (1+ ) gl + kI,

3.1.1. Variational formulations
Recall the partial solutions

5= Ay 'f € D(A) = D(A) NR(A) = D(A) NN(A) NG ™,
xg = (A) "lg € D(AY) = D(AY) NR(A;) = D(A}) N N(A;) NK;™.
(32)

There are at least two obvious ways to get variational formulations for
finding each of the partial solutions x; and x,. Looking at x; € D(A;) the
first idea is to multiply the equation Axy =f by A,{ with some ¢ €
D(A,) leading to

v é S D(A2> <*A2-xf71A25>H3 = <fv A2§>H37

which is a weak formulation of the second order equation
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Al xy = AXf,

more precisely of AJ(A,xf—f) = 0. While the latter choice was straight
forward to find x; itself, the next choice searches for a potential y; e.g., yr :

= (43) "y € D(A3), of
xp = Abys € D(A;) = D(A;) NR(A;) = D(A) NR(A3),
see Remark 3.4. Multiplying by A}¢ with some ¢ € D(A3) gives
Vo eD(A) (A Adla, = (3, Asd)u, = (Aaxy D), = {Fs )i
which is a weak formulation of the second order equation

A Ay =1,

Similar ideas apply to find corresponding variational formulations for x,
as well.

Theorem 3.5. The partial solutions x; and x4 in Theorem 3.3 can be found
by the following four variational formulations:

(i)  There exists a unique x; € D(A;) such that
VEeD(A) (A, M)y, = (f, Axd) (3.3)

(3.3) is even satisfied for all £ € D(A,). Moreover, Ayxy = f holds if
and only if f € R(A,). In this case Xf = xy.
()  There exists a unique potential y; € D(A}) such that

VeD(A)  (Apr Ay = {f. By (3.4

(3.4) even holds for all ¢ € D(A3) if and only if f € R(A;). In this
case we have

Ajyr € D(A;) NR(A3) = D(A,)

with AyASyr = f and hence Ajy; = x;.
(ii)  There exists a unique X, € D(A]) such that

V{eD(A])  (AX, A0y = (&A1), (3.5)

(3.5) is even satisfied for all { € D(A}). Moreover, Ajx, = g holds if
and only if g € R(A]). In this case x; = X,.
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(ii')  There exists a unique potential z; € D(A;) such that
V ¢ € D(A)) (Arzg, M)y, = (€, 0) g, - (3.6)

(3.6) even holds for all ¢ € D(A,) if and only if g € R(A]). In this case we
have

Aizg € D(A]) NR(A) = D(A})

with ATA zy = g and thus A 1z, = X,

Proof. Equation (3.3) is strictly positive (or coercive) over D(A,) by the
Friedrichs/Poincaré type estimates of Corollary 2.5 (i) and hence a unique
xr € D(A;) exists by Riesz’ representation theorem (or Lax-Milgram’s
lemma) solving (3.3). By (2.3), i.e., R(A;) = R(A;), (3.3) holds for all ¢ €
D(A,). Hence

VEED(A)  (Axy—f Ay, =

yielding Azxf —f € R(Ay)"">. Thus, if f € R(A;), we see Azxf —fe
R(A;) NR(A)M = {0}, ie, Axxy = f. As Xy € D(A;) conclude x; = x; by
the injectivity of A,, which completes the proof of (i).

Equation (3.4) is strictly positive over D(A;) by Corollary 2.5 (i) and
thus a unique y; € D(A;) exists by Riesz’ representation theorem solving
(3.4). Using Corollary 2.5 (iii) or Lemma 2.7 we can split any ¢ € D(A}) =
N(A3)®u,D(A;) into ¢ = ¢y + ¢r (null space and range) with ¢y €
N(A3), g € D(A3), and A5 = A5¢g. Let f € R(A,). Utilizing (3.4) for ¢y
and orthogonality, i.e., f € R(A;) = N(A})™, we get

<A§yf’A ¢> < 2yf7A ¢R> <f (bR H; — (f ¢>

Therefore, (3.4) holds for all ¢ € D(A5). On the other hand, if (3.4)
holds for all ¢ € D(A}), then Ajys € D(A,) with AyAjy; = f. Hence® f €
R(A;). Therefore, if f belongs to R(A,), we obtain AJyr € D(A;) NR(A}) =
D(A,) with A;AJyr =f and hence Ajyr = xf, again by the injectivity of
A,.

Analogously, we prove (ii) and (ifi’). O

®Another proof is the following: Pick ¢ € N(A3) and get by (3.4) directly (f, )y, = 0. Thus f € N(A R
R(A;).



36 D. PAULY

Remark 3.6. Note that
x = A 'f € D(A,), xg = (A)) " 'g e D(AY),
) —1 «\ —1 — * — — * 1
yr=(A) = (A3) A fED(A), g =A xg= A '(A]) g€ D(A)

hold with A,ASyr = f and ATA 1z, = g. Hence x5 X, k, and ys z, solve the

first resp. second order systems

Agxp =f, Ayxg =0, Ayk =0, AJyr = x5, MyAlyr =f, A1z = X, ATA1z, =g,
Azyr =0, Ajzg =0, Ayzg =0,

myr =0, mzg =0, Mz, = 0.

Alxp =0, Alx, =g, ATk=0, Azyf =0,
mxr =0, mx, =0, mk=k, my; =0,
Moreover:

Equation (3.3) is a weak formulation of

(i)
A§A23c’f = A;f7 A*{';Zf = 0, TEZSC/f = 0,

i.e., in formal matrix notation

AJA, Alf
A | [F]=| 0
(%) 0

Equation (3.4) is a weak formulation of

@)
AzAz)’f :f7 A3}Vf = Oa T3)f = 07

i.e., in formal matrix notation
AyAS f
A D)= |0
T3 0

Equation (3.5) is a weak formulation of

(ii)
AIATSEg = Alg, Ag}g = 0, TCZ’J\C/g = 0,
i.e., in formal matrix notation
Ale;i< _ Alg
Ay | [%] =
V%) 0

Equation (3.6) is a weak formulation of
AlAiz, =g, Ayz, =0, mzg=0,

(ii")
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i.e., in formal matrix notation

ATAI g
Ay [z]=0
m 0

We also emphasize that the variational formulations (3.3)-(3.6) have a
saddle point structure. We have already seen that, provided f € R(A;,) and
g € R(A7]), the formulations (3.3)-(3.6) are equivalent to the following four
problems: Find xf € D(A,),yr € D(A3), X, € D(A]), and z; € D(A;), such
that

VEED(A) (AT Ay, = (. Axdh, (37)
Ve D(A;) ( A >H2 {f, ¢>H3 (3.8)
v (€ D(A7) <A*xg,A* Vi, = (& AL >Hl (3.9)
V¢ eD(A) (Aizg, Ai@)y, = (g @)y, (3.10)

Note that in the end one needs only two out of these four formulations
for computing

xXp=Xr = Ayr, Xg =X, = A1z,.

Moreover,
Xr € D(A) = D(A)) NR(A}) <= X €D(A) A X € R(A}) = N(Ay)™™,
yr € D(A}) =D(A}) NR(A2) <= yr€D(A}) A yr € R(Ay) = N(A;)™S,
X, € D(A}) =D(A})NR(A;)) <= *x€D(A]) A X €R(A;)=N(A})™,
z, € D(A)) = D(A)) NR(A}) <= 2z €D(A)) A z €R(A}) = N(A)"™.

Therefore, the variational formulations (3.7)-(3.10) are equivalent to the
following four saddle point problems: Find x; € D(A;),yr € D(A}), X, €
D(A}), and z, € D(A;), such that

V EED(A) (A Ay = (fLAE)y, A Y KEN(A,) (XK, =0,

(3.11)

V¢ €D(A;) (Apr Ay, = (f. o)y, ~ Y OEN(A]) (. 0)y =0,

(3.12)
VIeD(A]) (A% A0y = (€A D A Y2AEN(A]) (X, Ay =0,

(3.13)
Vo € D(A1) (Aizg, Aip)y, = (& @)y, A VY EN(A) (25 Y)y, =0.

(3.14)

Let us additionally assume that R(A,) and R(Aj;) are closed. Using
Lemma 2.7, i.e,,
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N(A1) = R(Ag)®n K1, N(A}) = R(A})®nK;, (3.15)
N(A;) = R(A)®u,K;, N(A}) = R(A})DPnu,Ks, (3.16)
the systems (3.11)-(3.14) may be further refined to the following four dou-

ble saddle point formulations: Find Xy € D(A;),yr € D(A}), X, € D(A]),
and z, € D(A,), such that

V é c D(Az) <A2}f’A2€>H3 = <f, A2€>H3 A V o e D(Al) <3(,'/f,A10(>H2 =0

A YVrkeK (Xf,K) g, =0,
(3.17)

V ¢ €D(A;) (A Asd)y, = ([ )y, A YV BED(A) (r A3B)y, =0
A VOEK; <yf79>H3:O7
(3.18)

V {eD(A]) (Aixg, AjQy, = (&A1 Oy, A V7yeEDA;) (X, Ay, =0
A VAieK, <%g7 j‘>H2 =0,
(3.19)

YV @ € D(A) (Aizg, A1)y, = (€ @)y, A V 0€D(Ag) (zg,A00)y, =0
A Yy ek (zg, )y, = 0.
(3.20)

Remark 3.7. For possible numerical purposes and applications let us mention
a few observations:

(i)  Using the variational formulation (3.11) or (3.17) corresponding to
xf = Xy € D(A;) for finding a numerical (discrete) approximation xgj,
of x; proposes a D(Aj)-conforming method in some finite dimensional
(discrete) subspace D(A,) of D(A,) giving also a D(A,)-conforming dis-
crete solution x;j, € Dy(Az) C D(A,).

(ii)  Using the variational formulation (3.12) or (3.18) corresponding to
xr = ASys € R(A}) for finding a discrete approximation xgj, = Alysp of
xp proposes a D(A}) -conforming method in some discrete subspace
Dy(A3) of D(A3) giving a D(A})-conforming discrete potential yf €
Dy(A3) C D(A3), but yielding a D(A])-conforming solution as

xin = Alyrn € R(AY) = N(AY) NK,™ € D(A}).

(i) A possible discrete solution x;j, = Ajys, from (ii) satisfies automatically
the side conditions

ATXle = 0, TXfh = 0,
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i.e., even on the discrete level there is no error in the side conditions.
The other option from (i) yields a discrete solution xsj, which most
probably has got errors in the side conditions.
(iii)  Similar observations hold for (3.13) or (3.19) with D(A})-conforming
discrete solutions and (3.14) or (3.20) with D(A;)- resp. D(A,)-con-
forming discrete solutions.

Remark 3.8. The finite dimensionality of K, may be dropped. Then all asser-
tions of Theorem 3.3 and Theorem 3.5 and all variational and saddle point
formulations remain valid. Note that R(A;) and R(A,) are closed, if
D(A,)—H, and D(A,)— H, are compact. Moreover, by Lemma 2.8
D(A;) — H, and D(A,) — H, are compact and K, is finite dimensional if
and only if D, — H, is compact.

3.1.2. Trivial cohomology groups

The double saddle point formulations (3.17)-(3.20) can be simplified if
some assumptions on the cohomology groups are imposed. For this, let
additionally to our General Assumption 3.1 the two ranges R(A,) and
R(A3) be closed as well and let the cohomology groups K; and Kj be trivial.
Thus all ranges R(A¢),R(A;),R(A,), and R(A;3) are assumed to be closed
and we have

K, ={0}, K;={o}.
Recalling (3.15) and (3.16) we see

N(A1) = R(Ag), N(A;) =R(A}).

If we now focus on the two double saddle point problems (3.18) and
(3.20) we get the following simplified versions: Find y; € D(A}) and z, €
D(A;), such that

V¢ eD(A;) (AppAid)y, = (b, A Y BED(AT) (y, ASf)y, =0,
(3.21)
A (ONS D(Al) <A1Zg7A1(p>H2 = <g, (,D>H1 A YV oeE D(Ao) <Zg71A05>H1 =0.
(3.22)
Let us consider the following modified system: Find

07> vr) € D(A3) x D(A3), (2, W) € D(A1) x D(Ay),
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such that
v (¢’ﬁ) € D(Az) X D('Aﬁ) <A;yf7A*¢> + <A Vf, > <fv > Hy, N <yfaA§ﬁ>H3 -
(3.23)
V (¢,0) € D(A1) x D(Ao) (Aizg, A1@)py, + (Aowg, @) g = (8, @) gy, A (Zg5 Ad)py, = 0.
(3.24)

The unique solutions ys z, of (3.21)-(3.22) yield solutions (yy,0), (z,,0)
of (3.23)-(3.24). On the other hand, for any solutions (yf, vf), (zg, wg) of
(3.23) and (3.24) we get Ajyy =0 and Agwy =0 by testing with ¢ :=
Alvr € R(A;) =N(AJ) CD(A}) and ¢:=Agw, € R(Ag) =N(A;) C D(A;)
since f € R(A;) Ly,N(A5) and g€ R(A})Ly,N(A,), respectively. Hence, as
v € D(A3) and w, € D(Ay) we see vy=0 and w,=0. Thus, y; z, are the
unique solutions of (3.21) and (3.22). The latter arguments show that
(3.21) and (3.22) and (3.23) and (3.24) are equivalent and both are
uniquely solvable.

Remark 3.9. The saddle point formulations (3.23) and (3.24) are also access-
ible by the standard inf-sup-theory, which is widely used in the numerical
community. For this, let us note that the bilinear forms (A3 - A} - )y and
(A) - A - >H2 are strictly positive (coercive) over the respective kernels
given by each of the second forms, which are by assumption

L
N(&) = (N(&)) = R(A) = N(A))* = R(A),
L
N(ag) = (N(A)") = RA)* = N(AD* = R(A)),
ie, over D(A}) and D(A;). Moreover, the inf-sup-conditions are satisfied.
For this, we compute by choosing ¢ := A € R(A;) =N(A}) and ¢ :=
A¢d € R(Ag) = N(A,) for some given 0 # § € D(A3) and 0 # 6 € D(Ao)
Al _ (N3 D), _ Al
———= < su
|ﬂ‘D<A§) 0£peD(A}) ﬁ|D(A;) d)‘D(A;) ’ﬂ‘D(A*)
|[Aod|p, (Aod, @), < A0,

<1,

< <1,
|5|D(A0) 0£peD(A | |D (Ao) |(P|D |5|D(A0)

which shows that actually equality holds. Thus, the inf-sup-conditions
follow’

’Note that by (2.4), (2.5), Lemma 2.4, and Corollary 2.5 (iv)

2 *Q12 \—
AR, 1B, + ASBE T Bl V'
— sup —A———2 ) = (1 sup o 7172*|A3 lr(ha).o043)
04Beb(A) Blomg) — \ozpenian  IAZBIR, oxpeo(4) [A3 Bl e
| onam:( M)‘L(H L ) =g
0£3ED(A0) [Blf ) \ozoeD(4) A0, ozsenlr) [Aodl, Cz 1 e

hold.
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Al Al )
1> 1nf su < ﬁ ¢>H3 _ lnf | 3ﬁ‘H3 _ (Cg_’_ 1) 1/2
O?éﬁED(As)Oyéd)eD( )Blogan) [¥ln(as)  open(4) Bloa;)
%\ — 1, —1
= 1(A5) " la(a) o)
Ayo Ayo _
1> inf sup B0 e Aol 24 )"
0£6€D(A0) 0£pen(a) |9lp(ag)@lp(ay) 07&5613 (4o) [9] p(ay)

—|A RAO D(A)’

which are actually nothing else than the boundedness of the norms of
the respectlve inverse operators |(A ;)_1|R(A; =|4;" |R(As),p(4s) 2nd
| Ay ]R (Ao),D(Ay) ](A*)_llR A). ( ) ie., the boundedness of the respective
inverse operators A, (.A*) - C(AD) T dtself.

Now, if D(Aj) and D(.AO) are st111 not suitable and provided that the
respective cohomology groups are trivial, we can repeat the procedure to
obtain additional saddle point formulations for v, and w,. Note that (3.23)
and (3.24) is equivalent to find (yr, vf, 2y, w,) € D(A}) X D(A]) x D(A;) X
D(Ay), such that for all (¢, 8, ¢,d) € D(A5) x D(A3) x D(A;) x D(Ap)

< 2)/f,A*(]’)> + <A*Vf’ >H3 + <yf’ A§ﬁ>H3 + <Alzg7A1§D>H2 + <A0Wg7 ¢>Hl

+ <Zg’A0 H — <fv¢ Hy, T <g, (P>H1-
(3.25)

3.1.3. More variational formulations
Another idea is to compute the two partial solutions x; and x, from Theorem
3.3 together in just one variational formulation for the sum x; + x,. For this,
let f € R(A;) and g € R(A}). Recall that xf € D(A;) and x, € D(A]) are
given by the variational formulations in Theorem 3.5 (i) and (ii), i.e.,
V é I~ D<A2) <A2Xf,A26>H3 = (f, A25>H37 (326)
V {eD(A]) (Alx, A0y = (g, Ay, (3.27)
respectively, compare also to the variational formulations (3.17) and (3.19).
As Alxy = ATk = 0 and Ayx, = Axk = 0, these latter two formulations hold
for x = xr + xg + k as well, i.e,
V é € D(Az) <1A2.9C7 A2€>H3 = (f, A2§>H37 (328)
V(eD(A]) (Aix, A0y = (g Ay, (3.29)

The first option is to use (3.28) together with a weak version of Ajx = g, i.e,
V ¢ €D(A) (& @), = (A%, @)y, = (X, A1),
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The second option is to use (3.29) together with a weak version of
Ayx =f,ie,

v (b € D(A;) (fa ¢>H3 = <A2X, ¢>H3 = <x7 A;¢>H2
For simplicity, let us assume that the cohomology group K, is trivial.

Theorem 3.10. Let K, = {0} . The unique solution x = xf + x; € D, in
Theorem 3.3 can be found by the following two variational saddle point
formulations:

(i)  There exists a unique pair (x,z) € D(A;) x D(A;) such that
V (& ¢) € D(Ay) x D(A))  (AxX, Ax)y, + (Aiz, &)y, = (f, Axd)yy,
(3.30)
<}7A1¢>H2 = (g, (P>H1- (3.31)
It holds z=0 as well as

¥ (& 9) € D(As) x D(A) (A%, Al = {f, Asl) (3.32)
x,A1@)y, = (g @), (3.33)
Moreover, Ayx = f if and only if f € R(A;). (3.31), (3.33) hold for all ¢ €

D(A;) if and only if g € R(A}) if and only if x € D(A]) and Ajx =g. In
this case, i.e., f € R(Az) and g € R(A}), we have x = x from Theorem 3.3.

(ii). There exists a unique pair (x,y) € D(A}) x D(A3) such that
¥ ((,¢) € D(A]) x D(A3)  (Ajx, ATOp, + (A%, O, = (€A, (3:34)
(& A3, = f, P, (3.35)
It holds y =0 as well as
V¥ ((,¢) € D(A]) x D(A;)  (Ajx, A{Q)y, = (€. A]Dn,, (3.36)
(% A30), = (f, D)m,- (3.37)
Moreover, Aix =g if and only if g € R(A}). (3.35), (3.37) hold for all
¢ € D(AY) if and only if f € R(A,) if and only if x € D(A;) and Ax =f.
In this case, ie, f € R(Ay) and g€ R(A]), we have x =x from
Theorem 3.3.

Proof. We prove unique solvability by standard saddle point theory. By
Corollary 2.5 (i) the principal part of (3.30) is strictly positive over the ker-
nel of (3.31), which is

D(A;) NN(A]) = D(Az) NR(A3) = D(A,),
as K, = {0}. Moreover, we have for 0 # ¢ € D(A4,)
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A A
\ 1<P|H2< su (A1, f)HZ <| 1(p|H2<1

‘€D|D(A1)  0#£EeD(Ay) ’@’D |€|D (A) ’€0|D (A)

by choosing & := A;¢p € R(A;) = N(A;), which shows that actually equality
holds. Hence

A A
1> inf  sup M by, el
0#pED(A1) 0££€D(A,) W’D (A1) |5|D (Az) 076<peD Ay) |(p\D (A1)
1/2
> (@ +1) " = A7 o

which shows that the inf-sup-condition is satisfied. Therefore, (3.30) and
(3.31) admits a umque solution. Picking ¢:= Ajz € R(A;) = N(A;) in
(3.30) yields |A12|H = 0 and hence z=0 as z € D(A,). Since Alz =0 even
(3.32) and (3.33) are valid. By (3.32) we see A,x —f € R(A ) %, showing
Ayx = f if and only if f € R(A;). Using the orthonormal projector ms: and
by (3.33) we see for all ¢ € D(A;) as ma:¢ € D(A;)

(X, A10)y, = (X, Aima )y, = (€A @)y, = (Targ, @), = (€ P,

if g € R(A]). On the other hand, if (3.33) holds for all ¢ € D(A;), then
x € D(A]) with AJx = g, especially g € R(A]). Therefore, if f € R(A;) and
g € R(A]), we have x € D(A;) ND(A}) = D, with A,x =f and Ajx =g,
finally showing x = x by the unique solvability of (3.1) from Theorem 3.3.
Analogously we prove (ii). O

Remark 3.11. Let us note the following:
(i) (3.30) and (3.31) is a weak formulation of
A;Az} + Az = A;kf, AT;CJ =4,

i.e., in formal matrix notation
1Y
Al 0|z g |
Note z=0.
(ii)  (3.34) and (3.35) is a weak formulation of
AIATJAC —+ A;y = Alg; Az.’AC :f,
i.e., in formal matrix notation
el
Ay 0 ||y 1l

Note y=0.
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The restriction K, = {0} can easily be removed from Theorem 3.10 lead-
ing to double saddle point formulations as in (3.17)-(3.20).

Theorem 3.12. The unique solution x = x; + x; + k € D, in Theorem 3.3 can
be found by the following two variational double saddle point formulations:

(i)  There exists a unique tripple (x,z,h) € D(Ay) x D(A;) x K such that

V (&, 0,x) € D(A2) x D(A1) x Kz (AgX, Axl)yy, + (A1z, &)y, + (b, Oy, = (f, A2,
<%7 él¢>Hz - <g7 (p>H17
<xa K>H2 = <kv K)Hz

(3.38)
It holds z=0 and h=0 as well as
V (& ¢,x) € D(Ay) x D(A) x Ky (AX, Ayd)y, = (f, Axd)
<327A1(P>H2 = 7(p>H1a

<3C/7 K>H2 = <k7 K>H2'
(3.39)

Moreover, Ayx = f if and only if f € R(A;). The second equations of
(3.38), (3.39) hold for all ¢ € D(A,) if and only lfg € R(A}) if and
only if x € D(A]) and Ajx = g. Furthermore, m,x = k. In this case,
ie, f € R(Ay) and g € R(A]), we have x = x from Theorem 3.3.
(i)  There exists a unique triple (x,y,h) € D(A}) x D(A3) x Ky such that
V ((,¢,x) € D(A]) x D(A;) x Ko (AT%, ATQ)y, + (A3, Oy, + (1, O, = (€, AT,
<x»A§ >Hz = {f, ¢>H3a
(& 1), = (K k), -
(3.40)
It holds y=0 and h=0 as well as

¥ (¢,x) € D(A]) x D(A;) x Ky (A[%, A{D)y, = (g, A{D)p,,
<5C7A§¢>H2 = {f, ¢>H3a (3.41)
(%, 1), = (k; 1),
Moreover, Ajx =g if and only if g € R(A]). The second equations of
(3.40), (3.41) hold for all ¢ € D(A3) if and only if f € R(A;) if and only if

X € D(A;y) and Ayx = f. Furthermore, myx = k. In this case, i.e., f € R(A;)
and g € R(A]), we have X = x from Theorem 3.3.

Proof. Again we prove unique solvability by standard (double) saddle point
theory. The kernels of the operators encoded in the last two equations of
(3.38) are N(A]) and K, " Hence by Corollary 2.5 (i) the principal part of
the first equation in (3.38) is strictly positive over the latter kernels, i.e.,
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over
D(A;) N N(AY) NK;™ = D(A;) NR(A}) = D(Ay).
Moreover, we have for ¢ € D(A;) and x € K, with (¢,x) # 0

2 2 \/2
<|A1(P|H2 + |K|H2> < (A0, f> + (x, 5>H2
= sup

2 2 \/2 0£E€D(A,) 1/2
(|(p|D(A1)+|K|H2) : <|(p|DA1 +|K|H2) |£|D(A2)

A
< !M@+M%ﬂ§ﬂ
(Iola,) + Iz,
by choosing &:= A9+ x € R(A;)PK, = N(A;) . Hence by Corollary
2.5 (i)
V2> inf (A19. ), + (K, )y,

K € K2 sup 1/2
(@, k) # 0 0£E€D(A,) <|(/)|D (A1) + |K|Hz) |5|D(A2)

1/2
1/2 2 2

| Mo + ) | (110l + Iz, )

ZKE;gED(AI (| 19l + Il > inf - :

12 ke KPP ) 2 2 \/2
e <|(/)|%J(A1) + |K|§iz) (p,K) #0 ((Cl + 1)|A1(70|H2 + |K|H2>

v

—1/2 —1,-1
(C% + 1) = |4 1|R(A1),D(A1)7

which shows that the inf- sup -condition is satisfied. Therefore, (3 38) admits
a unique solution. Picking® ¢:= A;z € R(A;) = N(A,) N K, ™ in (3.38)
yields \Alz\H =0 and hence z=0 as z € D(A;). Choosing é =hek, =
N(Ax)N R(AI)LH2 in (3.38) shows |h[H = 0. Since Ajz =h = 0 even (3.39)
is valid. By the first equation of (3.39) we see A,x —f € R(Az) s, showing
Ayx = f if and only if f € R(A;). Using the orthonormal projector 7+ and
by the second equation of (3.39) we get for all ¢ € D(A;) as ma:¢ € D(A;)

(X, A10)y, = (X, Aima )y, = (& Tar @)y, = (Targ, @)y, = (€ P,

if g € R(A}). On the other hand, if the second equation of (3.39) holds for
all ¢ € D(A;), then x € D(A]) with Ajx =g, especially g € R(A]) .
Therefore, if f € R(A;) and g € R(A]), we have x € D(A;) N D(A]) =D
with A,x =f and Ajx =g. The third equation of (3.39) implies for all
K €K,

8We can test directly by &:=A;z+h eR(A1)+Kz N(A;) in (3.38) as well, since orthogonality shows
immediately 0 = (Az,£),, + (h, &), |A1z|HZ + \h|H
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0= (x—kKx)y = (X—kmr)y = (mx—kKx)y,

i.e., mpx = k. Therefore, x = x by the unique solvability of (3.1) from
Theorem 3.3, which completes the proof of (i). Analogously we prove
(ii). O

Remark 3.13. Let us note the following:

(i)  Using the saddle point formulation in Theorem 3.10 (i) or Theorem
3.12 (i) for finding a numerical approximation x; of x provides a
D(A)-conforming approximation x, € D(A,) of (3.1), whereas using
the saddle point formulation in Theorem 3.10 (ii) or Theorem 3.12 (ii)
for finding a numerical approximation xj of x provides a D(AY)-con-
forming approximation x;, € D(A]) of (3.1).

(ii)  The variational formulations in Theorem 3.10 (i), (ii) or Theorem 3.12
(i), (ii) are exactly those from (3.17) and (3.19) for the special right
hand sides g=0, f=0, and k=0, respectively.

(iii) Equation (3.38) is a weak formulation of

A;Az;& + A1Z -+ h = A;f, AT}E =4, TC23C/ = k,
i.e., in formal matrix notation
A;Az A1 Ik,
A0 0
Ty=1 0 0

Y

ASf
g
k

=N X

where 1k, is the canonical embedding of K, into H,. Note z=10
and h=0.
(iii’) Equation (3.40) is a weak formulation of

AMATx+Ay+h=A1g, Ax=f, mx=k,

i.e., in formal matrix notation

AAT A i | [k Ag
A, 0 ollyl=]|Ff
Ty = lf(z 0 0 h k

Note y=0 and h=0.

Finally, we present double saddle point variational formulations for find-
ing the partial solutions in (3.17)-(3.20) as well.

Theorem 3.14. Let additionally R(A,) and R(A3) be closed. The partial solu-
tions xp = Xy € D(A;),x, =X, € D(A]), and their potentials y; € D(A3),
z, € D(A:) from Theorem 3.3, Theorem 3.5, (3.7)-(3.10), (3.11)-(3.14), and
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(3.17)-(3.20) can be found by the following four variational double saddle
point formulations:

(i)  There exists a unique triple (x¢,u,h) € D(A;) x D(A1) x K such that

v (éa @, K) S D<A2) X D(Al) X KZ
<A23éf7A26>H3 + <A1u7 €>H2 + <h7 §>H2 = <f) A26>H3a
<35f7i“1(p>H2 = 07
(xXf, 1)y, = 0.

It holds u=0 and h=0 as well as (3.17). Moreover, Ayx; = f if and only
if f € R(A;). The second equation of (3.42) holds for all ¢ € D(Ay) and
thus Xy € N(A]). Furthermore, m,x; = 0. Finally, if f € R(A;), we have
Xf = xy from Theorem 3.3, see Theorem 3.5 (i).

(3.42)

()  There exists a unique triple (ys, v, h) € D(A}) x D(A}) x K3 such that
V (¢,0,x) € D(A;) x D(A;) x K3

<A§yf7A;¢>H2 + <A§Va ¢>H3 + <h7 ¢>H3 = (fv ¢>H37 (3 43)
<yf7A§9>H3 =0, .
<yf, K)H; =0.

It holds v=0 if and only if f L z,R(A}) if and only if’ f € N(A3). h=0 if
anld only if® f1yKs. Thus v=0 and h=0 if and only if f € N(A3) N
K;™ = R(A;) . Furthermore, (3.18) holds. Moreover, Ajy; € D(A;) and
Ay AJyr = f if and only if f € R(A;). The second equation of (3.43) holds for
all 0 € D(A3) and hence y; € N(Asz). Furthermore, msy; = 0. Finally, if f €

>

R(A;), we have AJys = x¢ from Theorem 3.3, see Theorem 3.5 (i’)

(ii)  There exists a unique triple (Xg,p,h) € D(A]) x D(A3) x K; such that

V ({,¢,x) € D(A}) x D(A}) x K,

(ATxg, ATy, + (A0, O, + (1, Oy, = (g

<35g7f‘;¢>H2 = 07

(Xg, k), =0

It holds p=0 and h=0 as well as (3.19). Moreover, Aix, = g if and only

if g € R(A}). The second equation of (3.44) holds for all ¢ € D(A}) and

thus X, € N(Ay). Furthermore, myxy = 0. Finally, if g € R(A]), we have
Xg = X, from Theorem 3.3, see Theorem 3.5 (ii).

Al (3.44)

®v=0 implies f — h = A;A}yr € R(A;) C N(A3) and hence f € N(A3).
% =0 implies f—Ajv = A)Asyr € R(A;) Lu,Ks and hence f 1y, Ks.
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(i’)  There exists a unique triple (z,,g, 1) € D(A;) x D(Ap) x K; such that
V (¢,9,x) € D(A;) x D(Ap) x K;
(Mizg A1@) g, + (Aoqs @)y, + (B @)y, = (&5 @)y
<Zg, Ao’l9>H1 = 0,
(zg, K)Hl =0.

It holds g =0 if and only if g1y R(A) if and only if'' g € N(A}). h=0
if and only if'> gLy K;. Thus g=0 and h=0 if and only if g € N(A}) N
KlL " = R(A}]). Furthermore, (3.20) holds. Moreover, Az, € D(A}) and
AlA 1z, = g if and only if g € R(A]). The second equation of (3.45) holds
for all ¥ € D(Aq) and hence z, € N(Aj). Furthermore, 7,2, = 0. Finally, if
g € R(A]), we have Az, = x; from Theorem 3.3, see Theorem 3.5 (ii’).

(3.45)

Proof. The proof follows closely the lines of the proof of Theorem 3.12. O

Remark 3.15. Again we have formal matrix representations:

(i)  Equation (3.42) is a weak formulation of
A;Az%f +Aju+h= A;f, AT?CJf =0, nz%f =0,

i.e., in formal matrix notation

A;Az A1 le %f A;f
Al 0 ollul=]0
Ty = 1}2-2 0 0 h 0

Note u=0 and h=0.

(i)  Equation (3.43) is a weak formulation of
MASyr +Av+h=f, Ay =0, my =0,

i.e., in formal matrix notation

AAS AT ik | [y f
A3 0 0 Vv = 0
=1, 0 0 h 0

Note v=0 and h=0.

" g=0implies g—h = AjAizy € R(A}) C N(A;) and hence g € N(A3).
2h =0 implies g — Agg = ATA1zg € R(A}) Lu,Kq and hence gLy, K.
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(ii)  Equation (3.44) is a weak formulation of
AIAX, +Asp+h=A1g, Ax, =0, mx, =0,

i.e., in formal matrix notation

AJAT A ik | [ X Ag
A, 0o o0||p|=
Ty = lI*Q 0 0 h 0

Note p=0 and h=0.

(i)  Equation (3.45) is a weak formulation of
ATAizg +Aig+h=g, Ajzg=0, mz,=0,

i.e., in formal matrix notation

ATAI A() 13:¢] Zg g
Ab 0 o0f|ql=1]0
m = 1;21 0 0 h 0

Note =0 and h=0.

3.1.4. Even more variational formulations
In our variational formulations still the unpleasant spaces D(A;) and
D(A}) occur in the side conditions, see, e.g., Theorem 3.12, where

z€ D(A;) =D(A;) NR(A}), yeD(A)) =D(A5) NR(A).

We can even go one step further and remove these restrictions just by
applying the same ideas as before. E.g., in Theorem 3.12

z € R(A7) = N(A)) N K™ = R(Ao)™ NK; ™,
y € R(A2) = N(A;) N K, ™ = R(A;)™ n K, ™

can easily be formulated as additional side conditions. Of course, this pro-
cedure can be prolongated ad infinitum depending on the length of the
underlying complex.

Remark 3.16. In 3D applications the cohomology groups Ky K; and K, Ks
are typically already trivial, see, e.g., the applications section 5.1. Also the
kernels N(Ay) and N(A,) are always trivial. Moreover, the kernels N(A;) and
N(A3) are typically trivial or at least finite dimensional. The same applies to
the orthogonal complements of the kernels N(Aj) and N(A,). In particular,
D(A;) = D(A;) resp. D(A;) = D(A}) or at least
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D(A;) = D(A;) NR(A}) = D(A;) N N(A;) ",
D(A3) = D(A}) NR(A;) = D(A}) N N(A3) ™™,
respectively, with N(A;) resp. N(A}) being finite dimensional. We always
have D(Ay) = D(Ay) and D(A}) = D(A}).
For example Theorem 3.12 can be modified as follows:
Theorem 3.17. Let additionally R(Ao), R(A3), and R(A,) be closed. Moreover,
let f € R(A;) and g € R(A]). The unique solution x = xf + x; +k € D, in

Theorem 3.3 can be found by the following three variational quadruple resp.
sextuple saddle point formulations:

(i)  There exists a unique five tuple (X,z,u,hy,h) € D(A;) x D(A;) X
D(Ay) X K X Ky such that for all (§ ¢,9,k,A) € D(A;) X D(A;)X
D(Ap) x K, x K;

<A2}=A25>H3 + <AIZ= é> <h27 >H2 = (f? A2£>H37
(%, A10)y, + (Ao, @)y, + (i, @)y, = (€5 Q)
(z, A019>H1 =0, (3.46)
<327 K>H2 - <k’ K>H27
(z, /I)Hl =0.

The third equation of (3.46) is valid for all ¥ € D(Ay). It holds z=0 and
h,=0 as well as u=0 and h; = 0. Moreover, Ayx = f and X € D(A]) with
Alx = g as well as n,x = k. Finally, x = x from Theorem 3.3.

(i)  There exists a unique five tuple (X,y,v,hy, h3) € D(A]) x D(A}) X
D(A;) x Ky x Kz such that for all (C,$,0,%,A) € D(A]) x D(A})x
D(A;) X K; X K3

(A1%, ATO p, + (A, Op, + (2, O, = (€, AT Dy,

<5‘7A§¢>H2 (A3, ¢> + (hs, >H3 {f, ¢>H3a
(y, A* >H3 =0, (3.47)
> _

The third equation of (3.47) is valid for all 0 € D(A}). It holds y=0 and
h,=0 as well as v=0 and h;=0. Moreover, Ajx = g and x € D(A;) with
Ay)x = f as well as myx = k. Finally, X = x from Theorem 3.3.

(i)  There exists (%,y,v,w, hy, h3, hy) € D(A]) x D(A}) x D(A}) x
D(A)) x Ky X K3 X Ky, a unique seven tuple, such that for all (C, $,0,
o,K, A, V) € D(A]) x D(A;) x D(A}) x D(A}) x Ky X Kz x K4
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<A*5C A*C> <A§)’7 > <h2> H, — <g’ATC>H17

9
(x, A*¢> + (A3v, ¢>H3 (hs, >H3 = {f, ¢>H37
(0, A30)y, + (Ayw, O)yy, + (ha, O)yy, = 0,
(v, A}0)y, =0, (3.48)
(x, 10y, = (k1) g,
<)/ }*>H3 =0,
(v,v)y, =0.

The fourth equation of (3.48) is valid for all ¢ € D(A}). It holds y=0,
h,=0 and v=0, h3=0 as well as w=0, hy;=0. Moreover, Ajx =g and
x € D(Ay) with Ayx=/f as well as mx =k . Finall, X =x from
Theorem 3.3.

Theorem 3.14 can be extended in the same way.

Remark 3.18. For (ii’) recall R(A3) = N(A4) N KLH‘1 = R(A})™™ N KjH“. Let
us also note that generally the solution and test spaces look like

D(A[) X D(Ag 1) - X D(Ag n+1) X D(.A[,n) XKy xKyp_1 X-+- X% Kg,nJrl,
D(A}) x D(A}‘H) - X D(A7,, 1) x D(A},,) X Kepx X Kpyg X -+ X Kpype
Moreover:

(i)  Equation (3.46) is a weak formulation of
A;AZ}—FAlZ—th:A;f, AT;C/—FA()M—Fhl =4,

. -
Ajz=0, mx=k, mz=0,

i.e., in formal matrix notation

A;Az A] 0 IK, 0 X Azf
Aik 0 Ao 0 Ik, z g
0 A 0 0 oflul=]o0
Ty, = lK 0 0 0 0 I/lz k
0 T = l}}l 0 0 0 hl 0

Note z=0, u=0 and h, = 0,h; = 0.

(ii)  Equation (3.47) is a weak formulation of
AlAT)AC—i-A;y—i—hz :Alg, A25C+A§V+I’l3 :f,
Ay =0, mx=k, my=0,
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i.e., in formal matrix notation

ALAT A0 i, 0]k
Az 0 A; 0 IK; y

0 A; 0 0 0 v

Ty = I, 0 0 0 O h,
0 T3 = l}%3 0 0 0 h3

Note y=0, v=0 and h, = 0,h; = 0.

(i)  Equation (3.48) is a weak formulation of

AIATJAC + A;y—i— ]’lz = Alg, Az)AC + A;V—i— h3 :f,

A3}/ + AZW + h4 = O, A4V = 0,

and myx = k, 3y = 0,m4v = 0, i.e., in formal matrix notation

AAT Al 0 0 w, 0 0
A2 0 A; 0 0 IK; 0

0 A, 0 A 0 0 g

0 0 Ay 0O 0 0 0
m=1 0 0 0 0 0 0
0 m=1y 0 0 0 0 0

0 0 m=1; 0 0 0 0

Note y=0, v=0, w=0 and h, = 0,h; = 0,hy = 0.

3.2. Second order systems

o»o\?
2

ST

hy

We recall the linear second order system (1.10), i.e., find"?

x €Dy :={¢eD, : Ay¥ e D(A)}

— {¢ € D(A) ND(A]) : Asé € D(A3)}

= D(A}) ND(A3A,)

such that
ASArx =f,
Ajx =g,
Tx = k.

oo»oo\?
oQ

(3.49)

Theorem 3.19. Equation (3.49) is uniquely solvable in 5~2, if and only if f €
R(A%),g € R(A)), and k € K,. The unique solution x € D, is given by

3We generally define D,{& € D, : A& € D(A*()} = D(A*,_1) N D(AA*) for £=1,...,3.
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X = Xf + Xg + ke (D(AZ)@HZD(AT)@HZKZ) N 52 = 52,
xp = A7 V(A Tf € D(ASA,) = D(A,) N D,
xg = (A}) " 'g € D(A}) = D(A;) N D,

and depends continuously on the data, i.e., |x|y < S|f|y, + cilgly, + [Klg,,
as

|xf|H2 < CglﬂHza |xg|H2 < Cl|g|H1'
It holds

2 2 2 2
TaX =X, TAX=Xg, Tox =k, |x[y =[xl + Ixly, + 1kl -

Proof. The necessary conditions are clear. To show uniqueness, let x € D, solve
AJA)x =0, Ajx=0, mx=0.
Hence x € N(A]) N KZL”2 and also x € N(A;) as Ayx € D(A}) and
(Al = (x, AjA)y, =0,

yielding x € K; N KzL " ={0}. To prove existence, let f € R(A}),g €
R(A}),k € K; and define x, x5 and x, according to the theorem. Again the
orthogonality follows directly by Lemma 2.7. Moreover, x5 X, and k solve
the linear systems
A;AzXf :f, Azxg = 0, Azk = 0,
Alxp =0, Ajx,=g¢, Ak=0,
mxr =0, mx, =0, mk=k

Thus x solves (3.49) and we have by Corollary 2.5 |x¢|y < ¢ Asxs|y, <
S|fly, and |xgly, < c1lgly,» completing the proof of the solution theory. [

Remark 3.20. By orthogonality and with Ayx = (A3) ™ 'f, AlAxx = f, and
Alx = g we even have
2 2 2 2 2 2 2
|’C|12L12 = |xf|12{2 + |xg|H22+ |k|H22S Cg[ﬂ}gz + C%|g2|H1 + |I;|H2?
|x|52 = ’xf’Hz + ‘AZx’H3 + WHZ + ‘xg|H2 + L‘>’|Hl + |k‘H2
2 2 2
< (1+ 6+ &)l + (1+ ) lglz, + [k,

Remark 3.21. Since the second order system (3.49) decomposes into the two
first order systems of shape (1.5) resp. (3.1), i.e.,
Ax =y, Aszy=0,

A’{x:g, A;y:f’
mx =k, my=0
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for the pair (x,y) € D, x Dy with y := Ayx € D(A}) NR(A;) = D(A;), the
solution theory follows directly by Theorem 3.3 as well. One just has to solve
and set

y = (.A;) 7lf € D(.AZ) C R(Ay), B B
X = Az_ 1y+ (.AT) *lg_i_ ke (D(Az)@HZD('AT)@HzKZ) N D, = D,.

3.2.1. Variational formulations
We note

D(A3A4;) = D(A5A;) = D(A5A;) N D(A;) = D(AjA;) N R(A3)
= D(A3A,) NN(AY) NK;™
=D,ND(A,) =D, NR(AY) =D, NN(A) NK ™, (3.50)

D(A;) = D(A}) NR(A) = D(A]) N N(A;) NK; ™

= D,ND(A;) = Dy NR(A) = D, NN(A;) N K, ™
and recall
xr = Ay (AD) T'f € D(ALAL) = D(A3A;) N R(AS) = D(A3A;) N N(A]) N K, ™,

x, = (A}) ~'g € D(A;) = D(A}) NR(A) = D(A}) N N(Az) N K;™.

As in the corresponding section for the first order systems, there are sev-
eral options for variational formulations for finding each of the partial sol-
utions x; and x,, which all make sense from a functional analytical point of
view. Looking at Remark 3.21 it is clear that all variational formulations
proposed for the first order systems from the earlier sections are applicable
here as well. Especially for x, we do not observe anything new. On the
other hand, for the second order system related to x; we can do as follows:
The first option is to multiply the equation AJA,x; =f by AJA;¢ with
some ¢ € D(A}A,) giving the variational formulation

VeDAA)  (AAyy, ASAd)y = (f, ASArd)y
which is a weak formulation of the fourth order equation
(A3A2) % = AJASf,

more precisely of AJA,(AjAxs —f) = 0. Perhaps a more convenient choice
is to multiply AJA;x; = f by some ¢ € D(A;) giving the variational formu-
lation

v é S D(AZ) <A2xf7A2é>H3 = (f? €>H27

which is a weak formulation of the second order equation
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A; AzXf == f

The latter choices are finding straight forward x; itself. As a third option,
we propose a formulation to find a potential y, for x For this we go for a
second order potential y; with AjA,yr = x7, eg, yri=A;, '(A5) x5 €
D(A;A2)> of

xp = AJAzyr € D(AJA;) = D(A3A;) NR(A}) = D(A3A) NR(A3).
Multiplying by AjA,t with some t € D(A;A,) gives
VreD(AA)  (AjAgyy, AsArT) = (x7, AJArT) = (ASAxy, 1)y = (f,T) gy,

which is a weak formulation of the fourth order equation
fh \2
(ASA;) yp =f.

Theorem 3.22. The partial solutions x; and x, in Theorem 3.19 can be found
by the following variational formulations:
(i)  There exists a unique Xy € D(A3A,), such that
VpeD(AA)  (AAxs, AJAd)y = (fLAA ). (3.51)
Equation (3.51) even holds for all ¢ € D(AJA,). Moreover, A;Axxsr = f if
and only if f € R(A}). In this case Xf = xy.

() There exists a unique Xy € D(A,), such that
Ve D(-AZ) <A2%f;A25>H3 = <f> §>H2' (3.52)

Equation (3.52) even holds for all £ € D(A;) if and only if f € R(A}). In
this case we have

AxxX; € D(A}) NR(A;) = D(A;)
with AJAxx = f and thus Xp = x;.

(i”)  There exists a unique potential y; € D(A5A;), such that
V 1€ D(AA,) (ASA2yp, ASAGT) = (f, 7). (3.53)

Equation (3.53) even holds for all T € D(A}A;) if and only if f € R(A3).
In this case we have

A5Ayyr € D(ASA,)
with (A3A2)’yr = f and hence A3Aryr = xy.
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(ii)  There exists a unique X, € D(A]) such that
V{eD(A])  (Ax, Ay = (& A )y, (3.54)

Equation (3.54) is even satisfied for all { € D(A]). Moreover, Aix, = g
holds if and only if g € R(A]). In this case X, = x,.

(i)  There exists a unique potential z; € D(A,), such that
V ¢ € D(A,) (A1zg, A1)y, = (€ @)y, - (3.55)

Equation (3.55) even holds for all ¢ € D(A,) if and only if g € R(A}). In
this case we have
Aizg € D(A}) NR(A;) = D(AY)

with AJA 1z, = g and hence Az, = x,

Proof. To show (i), let ¢ € D(A}A;). Then Ay¢ belongs to D(A;) and by
Corollary 2.5 (i) we see

. 1 1
|ASA20y, > — A2y, > 5 [Py,

Hence, the bilinear form in (3.51) is strictly positive over D(A5.A,) and
thus Riesz’ representation theorem yields the unique solvability of (3.51).
From D(A,) = N(A,)®u,D(A,), see Corollary 2.5 (iii) or Lemma 2.7, and
(3.50) we get

D(A3A;) = N(A)®u,D(A3A;) = N(A2)®p, D(A3A,).

Therefore R(A;A;) = R(AA;) and thus (3.51) holds for all ¢ €
D(A3A;) as well. Let y € D(A3) and decompose it according to Corollary
2.5 (iii) or Lemma 2.7 into ¥ = Yy + Y € D(A}) = N(A})@y,D(A3) (null
space and range) and, as D(A}) = D(A}) NR(A;) = D(A5) NR(Ay), fur-
ther into'*

Y =y + Aydp € D(AS) = N(A})®n, (D(A;) NR(A2)), ¢ € D(ASA).

Utilizing the latter decomposition and (3.51) we obtain for all € D(A})
<A;A25CfaA;’zb>H2 = (A;AZQfaA;A2¢R>H2 = <f>A§A2¢R>H2 = (fv A;I//>H27

"Here it would be enough to decompose
U = Uy + Ardg € D(A) = N(A)Dp, (D(A) NR(A2)),  dg € D(ASA,).
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which shows AJA,X; —f € N(A;) = R(A})™* . Thus, Ak —f =0, if
and only if f € R(A}). In this case we have AJA,(X;f —x7) =0 and the
injectivity of A3 and A, shows X; = xs, which finishes the proof of (i).

The left hand side of (3.52) is strictly positive over D(A;) and thus
Riesz’ representation theorem yields the unique solvability of (3.52). Let us
recall that the orthonormal projector ma; onto R(A) satisfies Ayma:¢ =
Ayl and mp;l € D(A;) for (€ D(A;) and masf =f for f € R(AY).
Therefore, if f € R(A}), then (3.52) yields for é € D(Az)

<A23C/f;A2€>H3 = <A2:’Zf7A27TA§6>H3 <f TEA* H2 7tA2f 6 H, — <f7 £>H2a

i.e., (3.52) holds for £ € D(A,). On the other hand, if (3.52) holds for ¢ €
D(A,), then A,x; € D(A;) and AjA,X = f, especially’® f € R(A}). As in
this case Xy € D(A;) and Ayxy € D(A;) with AJA,Xr = f, we get Xf = x¢
by the injectivity of A5 and A,, which shows (1).

In (i”) the unique solvability follows as in (i). Let f € R(A}). Using the
same arguments with the same projector ma: as in (i) we obtain by (3.53)
for all T € D(A3A;)

(ASAqzyr, ASApT)y = (A Azyf,A A27'cA Oy, = (> a0y,
TCAzf >H2

as mp:T € D(AJA;) = D(AJA;) by (3.50). Thus (3.53) holds for all T €
D(A3A;). On the other hand, if (3.53) holds for all T € D(A}A,), then we
obtain (f, 7), = 0 for all T € N(A;), showing f € N(Ay) = R(A%). Now,
in this case of f € R(A}) = R(A}), we define h:= (A) ™ 'f € D(A;) and
observe with AJh = f that by (3.53) for all 7 € D(A5A;)

<A§Azyf,A§Azr>H2 = {f, ’L'>H2 = (h,Aﬂ)H3 = (h, EA2A2T>H3. (3.56)
As in the proof of (i), let y € D(A}) and let it be decomposed into
¥ =Yy + Ayt € D(A}) = N(A)®n, (D(A}) NR(A;)), 1€ D(AA,).
Using (3.56) and the latter decomposition we see for all y € D(A%)
(A3A2yp, AWy, = (Ag Aoy, Ay AaT)y, = (B, Ta, AaT)
= (b ¥y, = () w,s

since h € D(A;) C R(Ay) . Thus AjA,yr € D(A;) and AASA,yp=h e
D(A3), showing

>Another proof is the following: Pick & € N(A;) and get by (3.52) directly (f, E)y, =0. Thus f € N(A) ™ =
R(A3).
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Since (A3A;)°yr = (A5Ay)%yr we get A5 Ay (A5 Aryr —x¢) = 0 and injec-
tivity yields A3 A,yr = xy.

(ii) and (ii’) are clear from Theorem 3.5 (ii), (ii’). O
Remark 3.23. Note that
k=% =x = A, '(4) T feD(LA), Fo=x=(A) 'geD(A),

- — *\ T 2 *

yr = Ay () "y = (A4 (A5) ) e p((A3)?),
ze= A 'xg = A 1 (A]) g e D(4[A)

holds with ASAyxr = f, AJAsyy = x; and Ajxy = g, A1z = X,. Hence x5 X,
and yg z, solve the first resp. second order systems

Ahoxs =1, Awxg=0, AjAyr=x7, (AJA)°yr=f, Aizg=12x, AjAizz=g,

Alxp =0, Alx,=g, Alyr =0, Alyr =0, Ajzg =0, Agz, = 0,
7[2Xf = 07 ﬂzxg = O, 7T2)/f = 0, szyf = 0, nlzg = O, nlzg =0.
Moreover:

(i)  Equation (3.51) is a weak formulation of
(A3A:) % = AJAof, Ajxp =0, mis =0,

i.e., in formal matrix notation

(AA2)” | AAof
Ar |[x]=] o
) 0

(i)  Equation (3.52) is a weak formulation of
AjAz}f :f, AT%f = 0, nﬂf = 0,
i.e., in formal matrix notation
AJA, B f
Aj [Xf} =10
) 0

(i)  Equation (3.53) is a weak formulation of

* 2 *
(A2A5) 7y =f, Ay =0, mys=0,
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i.e., in formal matrix notation

(A2A3)? f
A |[r]=1o
/(%) 0

(i)  Equation (3.54) is a weak formulation of
AIAT%g = Alg, Asz\C/g = 0, 7T23€Jg = 0,

i.e., in formal matrix notation

AIAT _ Alg
Ay | [%] =
(%) 0

(i)  Equation (3.55) is a weak formulation of
AlAiz, =g, Ajz, =0, mzg=0,

i.e., in formal matrix notation

ATAI g
Ay |lz] =10
m 0

As before we emphasize that the variational formulations (3.51)-(3.55) have
again saddle point structure. Provided f € R(A}) and g € R(A]) the formula-
tions (3.51)-(3.55) are equivalent to the following five problems: Find

x7,yr € D(A3A;) = D(A3A;) = D(A}A;) NR(A3) = D(A}A;) NN(Ay)™ ™,

)

%r € D(A;) = D(A) N R(A*) = D(A;) N N(Ay) 2,

%, € D(A;) = D(AY) NR(A,) = D(A}) N N(A}) ™™,

zg € D(A;) = D(A;) N R(A*) D(A;) N N(A)™,

such that

V ¢ € D(A3A:)  (AjAsky, A3Ard)y = (fL ASA0) (3.57)
V ¢ € D(Ay) (Aaxs, Aal) = (f5 Oy (3.58)
V 1€ D(AAY)  (AjAnyy, ASArT)y = (f, 7). (3.59)
vV { € D(A]) (AT%g, Al p, = (8, A1 n,, (3.60)
V @ € D(A;) (Arzg, A1)y, = (€ 0y, (3.61)

Similar to the first order case, the variational formulations (3.57)-(3.61)
are equivalent to the following five saddle point problems: Find Xf,yr €



60 D. PAULY

D(AA,), % € D(A,), %y € D(AY), z, € D(A;), such that

V ql’) c D(A;Az) <A;A256f,A*A2¢>H = <f A*A2¢>H2 A V 0 S N(Az) <5Cf, 0>H2 = 0,
YV ¢ € D(A,) (Azxf,AZQH = {f, f) A YV KkEN(Ay) (x, K>H2 =0,
V 7 € D(A3A;) (AJAzyr, A AZ‘E>H = {f,z >H2 A Y o €eN(Ay) f,a)HZ =0,
V (€ D(A)) (ATxg, A{Q)y, = (8 A0y, A VAEN(A]) (x5, 4)y, =0,
V ¢ € D(A)) <AlzgaA1(P>H = (g >H1 A VY eNA) <Zga >H1 =0.

At this point, we have followed the corresponding section for the first
order problems up to (3.11)-(3.14). We emphasize that all considerations
after (3.11)-(3.14) can be repeated here, giving similar saddle point formu-
lations for the second order problem as well. As an example we present a
corresponding result to Theorem 3.10 for finding the solution x = x7 + x,
in just one variational saddle point formulation. For this, let us pick, e.g.,
the two formulations (3.58) and (3.60) together with the (very) weak ver-
sions of Ajx = g resp. AJA,x = f.

Theorem 3.24. Let K, = {0} . The unique solution x = x; + x, € D, in
Theorem 3.19 can be found by the following two variational saddle point
formulations:

(i)  There exists a unique pair (x,z) € D(A;) x D(A;) such that
V (& ¢) € D(A;) x D(A;)(Asx, A2€>H3 (Aiz, )y, = (f, £>H2 (3.62)
(x, A1<p>H2 (g, ) (3.63)

It holds z=0, if and only if f € R(A}), if and only if Ayx € D(A}) with
ASAx =f. In thzs case

V (& ¢) € D(A;) x D(A)(AX, Ax)y, = (f, 5>H2 (3.64)
(&, A1p)y, = (g @)y, (3.65)
Equations (3.63), (3.65) hold for all ¢ € D(A,) if and only if g € R(A]) if

and only if x € D(A]) with A]x = g. Moreover, if f € R(A5) and g € R(A}),
we have X = x from Theorem 3.19.

(i) There exists a unique pair (X,y) € D(A]) x D(A3A;) such that
¥ ((,@) € D(A]) x D(A34)  (ATx, ATy, + (A3A20, O, = (8 AT, (3.66)
(& A ) = (f, D) (3.67)
It holds y =0 as well as
¥V ((,9) € D(A]) x D(A3A:)  (AL%, ALy, = (&A1), (3.68)
(x, A;A2¢>H2 = (f, (]5>H2. (3.69)
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Moreover, A1x =g if and only if g € R(A}). (3.67), (3.69) hold for all
¢ € D(AA,) zf and only if f € R(A3) if and only if x € D(AJA;) with
ASAyx = f. In this case, ie., f € R(A}) and g € R(A]), we have x = x from
Theorem 3.19.

Proof. Unique solvability of (i) follows again by standard saddle point the-
ory as in Theorem 3.10 (i). Inserting ¢:=A;z€ R(A;) =N(A,) =
R(AY)™ in (3.62) yields \Alzﬁ{z = (f,A1z)y, and hence Az =0, even
z=0as z € D(A,), if f € R(A3). On the other hand, if A;z = 0 then (3.62)
shows (f, &)y, =0 for all £ € N(A,), ie, f € N(A,)™ = R(A3}). Moreover,
if f € R(A}), then (3.64) and (3.65) hold. Especially (3.64) yields A,x €
D(A}) and AJA,x = f. The assertions related to g follow as in the proof of
Theorem 3.10 (i). Theorem 3.19 yields x = x, which completes the proof
of (i).

For (ii), we pick ¥ € D(A]) and decompose it as in the proof of
Theorem 3.22 (i) into

Y =y + Ardp € D(A}) = N(A})®u, (D(A;) NR(A2)), ¢ € D(AA).

If f=0, then using the latter decomposition we see for all € D(A?)
<5C>A§¢>H2 = <&7A2A2¢R>H2 =0,

which holds if and only if X € N(A,). Thus the kernel of (3.67) equals
N(A;). By Corollary 2.5 (i) the principal part of (3.66) is strictly positive
over the kernel of (3.67), which is

D(A7) NN(Az) = D(A7) NR(A;) = R(A,)
as we just have derived and since K, = {0} . Moreover, we have for
04 ¢ € D(AJA)
[A3A204, (834:0, Oy, _ [A3A8l,
ST o up < <1
’¢|D(A§A2) Oség“ED(A’l‘) M"D(A;AZ) ‘C‘D(Ai) ’d)lD(A Az)

by choosing'® { := AjA;¢ € R(A}A;) = R(A}) = N(A}), which shows that
actually equality holds. Hence

(A3A20, (),

1> inf sup
0£peD(A34,) 04eD(A}) |¢|D(A;A2) |C|D(A;)
. |AS A2, ~1)2 o —1
= inf 2T (Céz1 + C% + 1) = A, (-’4 ) ‘R(A ).D(A;4)

o£pen(Ass) [Plp(as4,)

'®Indeed we can ea5|ly see R(A3A;) = R(A3), since R(A3A;) C R(A3) holds and for { € R(A;) = R(A3) there is
b= A, ' (A) 7T e D(AA) with £ = A;Arh € R(A;A2) = R(AAy).
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which shows that the inf-sup-condition is satisfied. Therefore, (3.66) and
(3.67) admits a unique solution by the saddle point theory. Picking { :=
ASA,y € R(A}) = N(A]) in (3.66) yields |A§A2y\125,2 =0 and hence y=0 as
y € D(A5A;) = D(ASA,). Since A5Ay =0 even (3.68) and (3.69) are
valid. By (3.68) we see A’k —g € R(A})™™, showing Ai% = g if and only if
g € R(A]). Using the orthonormal projector my: and by (3.69) we see for
all ¢ € D(AJA;z) as ma; € D(A5A;) = D(AJA)

(x, A*A2<]5>H2 (%, AJA;Tp ¢>H2 (f, mas ) H, — (masf, @) H = = {f, ¢>sz

if f € R(A3). On the other hand, if (3.69) holds for all ¢ € D(AJA;), then
(f, )y, = 0 for all ¢ € N(A;) and hence f € N(A,)™ = R(A%). Now, fol-
lowing the proof of Theorem 3.22 (i”), let f € R(A;) = R(A}) as well as
define h := (A}) " 'f € D(A}) and observe with A%h = f that by (3.69) for
all ¢ € D(A3A,)

(%, 83820) g, = {f P, = (Ah, D), = (B As)yy, = (h,ma, Ax) - (3.70)
As before, let y € D(A}) and let it be decomposed into
Y =Yy +Ap € D(A}) = N(A;)Ow, (D(A3) NR(A2)), ¢ € D(A3A).

Using (3.70) and the latter decomposition we see for all iy € D(A})
(& A, = (5 A A P)p, = (h Ta Aa @)y, = (s Ta ) ey = (),

since h € D(A}) C R(A;). Thus ¥ € D(A;) and Ayx = h € D(A}), showing
x € D(AJA;) with

AlAnk = ASh =f.

Finally, if f € R(A}) and g € R(A}), we have X € D(A}A,) N D(A%) = D,
with AJA,x = f and Ajx = g and thus X = x by Theorem 3.19, completing
the proof. O

Remark 3.25. Let us note the following:

(i) Equations (3.62) and (3.63) is a weak formulation of
AAx+Aiz=f, Ax=g,
i.e., in formal matrix notation
e e[
A} 0|z gl

Note z=0.
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(ii) Equations (3.66) and (3.67) is a weak formulation of
AlAS{)AC + A;Azy == Alg, A;Az&' :f,

i.e., in formal matrix notation
AIA’{ AZAZ X . Alg

A corresponding result to Theorem 3.12 can be formulated as well, skip-
ping the assumption K, = {0} in Theorem 3.24.

Note y=0.

Theorem 3.26. The unique solution x = x; + x; + k € D, in Theorem 3.19
can be found by the following two variational double saddle point
formulations:

(i)  There exists a unique triple (x,z,h) € D(Ay) x D(A;) x Ky such that
V (& ¢,x) € D(Ay) x D(A;) x K,
<A232’A2€>H3 + (Aiz, QHZ + (h, 6>H2 = (f, €>H27
(x, A1 H, — (g (P>H17
(%, 1), = (ks K) g, -
It holds z=0 and h=0, if and only if f € R(A}), if and only if Ayx €
D(A%) with A5A)x = f. In this case

V (& ,k) € D(Ay) x D(A1) x Ky (Asx, Ay, = (f, Oy,
<}7é1¢>H2 = <g7 (p>H17 (3.72)
<x7 K>H2 = <k7 K>H2'

(3.71), (3.72) hold for all ¢ € D(A,) if and only if g € R(A}) if and only
if x € D(A]) with AJx = g. Furthermore, m,x = k. Moreover, if f € R(A})
and g € R(A]), we have X = x from Theorem 3.19.

(3.71)

(ii) There exists a unique triple (x,y,h) € D(A]) x D(A3A;) x K, such that
V ({,¢,x) € D(A]) x D(A3A) X Ky
<ATx7ATC>H1 + (AjAzy, C>{12 + (h, C>H2 = (g, ATC>H1=
<x’A§A2¢>H2 = {f, ¢>H2>

<5€7 K>H2 = <k= K>H2‘

(3.73)

It holds y=0 and h=0 as well as
V (L, ¢,x) € D(A]) X D(AA) X Ky (A%, ATy, = (8, A10)p,,
<5€7 AZAAZQ»HZ = (f? ¢>H27 (3-74)
<x= K>H2 = <k= K>H2'
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Moreover, A1x =g if and only if g € R(A}). (3.73), (3.74) hold for all
¢ € D(AJAy) if and only if f € R(A5) if and only if x € D(AJA;) with
ASAyx = f. Furthermore, myx = k. In this case, i.e, f € R(A5) and g€
R(A}), we have X = x from Theorem 3.19.

Remark 3.27. Let us note the following:

(i)  Literally, Remark 3.13 (i) holds here as well.
(i)  Equation (3.71) is a weak formulation of

A;Az% + Alz -+ h :f, AT/J\C/ =4, 7'5236/ = k,

i.e., in formal matrix notation

A;Az Al le 36
A] 0 0 z|=|g

=1 0 0 h

Note z=0 and h=0.
(i)  Equation (3.73) is a weak formulation of

AlAT)AC + A;Azy + h= A1g7 A;Az& :f, 7'5256' = k,

i.e., in formal matrix notation

1&11’\1< A;Az IK, X Alg
AA, 0 0 |y|=
Ty = Ik, 0 0 h k

Note y=0 and h=0.

For the partial solutions and potentials in Theorem 3.19 and Theorem
3.22 a corresponding result to Theorem 3.14 can be proved as well. It reads
as follows:

Theorem 3.28. Let additionally R(Ay) be closed. The partial solutions xj =
xf =Xr € D(AJA,), x, =X, € D(A)), and their potentials y; € D(A3A,),
z, € D(A1) from Theorem 3.19, Theorem 3.22, and (3.57)-(3.61) can be found
by the following six variational double saddle point formulations:

(i) There exists a unique triple (Xr, w, h) € D(AA;) x D(A;) x K, such that
V (Y, 0, k) € D(A}A;) X D(A;) x K,
<A§A2xf7A§A2'p>H2 + <A1W7 lﬁ>H2 + <h7 lp)Hz - <f’ A§A2w>H2’ (3 75)
<5Cf7 :AIQD>H2 = 07 '
<Xf, K>H2 =0.
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It holds w=0 and h=0. Moreover, AyX; € D(A}) and ASA,Xp = f if and
only if f € R(A}). The second equation of (3.75) holds for all ¢ € D(A;)
and thus Xy € N(A]). Furthermore, myx; = 0. Finally, if f € R(A}), we have
Xr = xy from Theorem 3.19, see Theorem 3.22 (i).

()  There exists a unique triple (Xr,u,h) € D(A;) x D(A;) x K, such

that
V (& ¢,K) € D(A;) x D(A;) x K;
<A2§f7 A26>H3 + <A1u’ é> < >H2 <f7 €>H27 (3.76)
<xf7 AI(P>H - Oa '
<xf7 >H =0.

It holds u=0 if and only if f Ly,R(A,) if and only if f € N(A]). h=0 if
anfl only if f1p,Ky. Thus u=0 and h=0 if and only if f € N(A])N
K;™ = R(A}). Moreover, AyXs € D(A3) and A5Axy = f if and only if f €
R(AY). The second equation of (3.76) holds for all ¢ € D(A;) and hence
Xr € N(A]). Furthermore, m,x; = 0. Finally, if f € R(A}), we have X; = xf
from Theorem 3.19, see Theorem 3.22 (i’).

(i”)  There exists a unique triple (yr,v,h) € D(AJA;) x D(A;) x K, such
that
V (Y, ¢, k) € D(A}A;) X D(A;) x K,
(A3, AU, + (Al + ), = W o
O/f7A1q)>H2 = 07 .
<)’f= K>H2 =

It holds v=0 if and only if f Ly,R(A;) if and only if f € N(A]). h=0 if
anld only if f1p,K;. Thus v=0 and h=0 if and only if f € N(A])N
K, ™ = R(A}). Moreover, A5Azy; € D(A3A;) and (A’Z‘Az)zyf = f if and only
if f € R(A}). The second equation of (3.77) holds for all ¢ € D(A;) and
thus yr € N(A]). Furthermore, myys = 0. Finally, if f € R(A5), we have
ASAsyr = xp from Theorem 3.19, see Theorem 3.22 (i”).

(ii)  There exists a unique triple (xg,p,h) € D(A]) x D(A;) X K, such

that
¥ ({,¢,x) € D(A]) x D(A;) x K,
(A} g;A1C>H1 + (A3p, Oy <xg’Xl*,¢; :(<) Aj ) (3.78)
<xg7 > 0

It holds p=0 and h=0. Moreover, Aix, = g if and only if g € R(A])
The second equation of (3.78) holds for all ¢ € D(A3) and thus x; € N(A,).
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Furthermore, m,X, =0 . Finally, if g € R(A]), we have X, =x, from
Theorem 3.19, see Theorem 3.22 (ii).

(i)  There exists a unique triple (Xg,q,h) € D(A]) x D(AJA;) x K, such
that

YV ({, ¥, k) € D(A]) x D(A3A,) X K,
(ATxg, ATOy, + (A2A24, Oy, + (1, Oy, =

| < 7AYC>H17
<xg7AzA2¢>H2 - 07
0

(3.79)

It holds g=0 and h=0. Moreover, Aix, = g if and only if g € R(A]).
The second equation of (3.79) holds for all y € D(AJA;) and thus X, €
N(A;) as X, Ly, R(ASA;) = R(A}). Furthermore, myx, = 0. Finally, if g €
R(A]), we have Xy = x4 from Theorem 3.19, see Theorem 3.22 (ii).

(ii”)  There exists a unique triple (z,,7,h) € D(A;) x D(Ag) x K; such
that
v (@7197 K) < D(AI) X D(AO) X Kl
<AlzgaA1(p>H2 + <A0T, (p>H1 + <h7 (P>H1 = < 7(p>H1a (3 80)
<Zg, 1%()19>H1 = 0, ’
(zg, k), = 0.

It holds r=0 if and only if g1y R(Ao) if and only if g € N(Ag). h=0 if
anLd only if glyKy. Thus r=0 and h=0 if and only if g € N(A;)N
K™ = R(A}). Moreover, Az, € D(A}) and AjAiz, = g if and only if g €
R(AY). The second equation of (3.80) holds for all ¥ € D(Ay) and hence
z, € N(Ay). Furthermore, m1z, = 0. Finally, if g € R(A]), we have Az, =
X, from Theorem 3.19, see Theorem 3.22 (ii’).

Proof. The proof utilizes the same techniques as used before. O

Remark 3.29. The formulations in Theorem 3.28 (i’) resp. Theorem 3.28 (ii’)
are the same as in Theorem 3.26 (i) resp. Theorem 3.26 (ii) except of the
right hand sides. We note that x = x can also be found by the formulation
presented in Theorem 3.28 (i).

Remark 3.30. Again we have formal matrix representations:

(i)  Equation (3.75) is a weak formulation of
(A;Az)zfcf —|— A1W —|— I’l - A;Azf, AT)ACf - 0, 7T25Cf - 0,
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i.e., in formal matrix notation

(A3A)? A i | [% ASAof
A0 of|lw|=1]To
T, = 1}22 0 0 h 0

Note w=0 and h=0.

(i)  Equation (3.76) is a weak formulation of
AzAZSEf +Au+h Zf, ATBC} =0, nﬁf =0,

i.e., in formal matrix notation
A;Az A1 le %f

AT O 0 u =
=1 0 0 h

o o

Note u=0 and h=0.

(i”)  Equation (3.77) is a weak formulation of
(AzAz)zyf +Awv+h=f, Ay =0, my;=0,

i.e., in formal matrix notation

(A2A3)° Ay i, | [y f
AL 0 o |lv]=]0
T, = l}gz 0 0 h 0

Note v=0 and h=0.
(i)  Equation (3.78) is a weak formulation of

AIAT%g + A;p +h= Alg, A235g =0, 77:235g =0,
i.e., in formal matrix notation

AAT AL g | R
A, 0 o0llpl=1]o0
TCz:l?(z 0 0 h

Note p=0 and h=0.

(ii’)  Equation (3.79) is a weak formulation of
AlATJACg + A;Azq + h= Alg, A;Az&g = 0, 7'525Cg = 0,
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i.e., in formal matrix notation

AIAAik A;Az Ik, 5Cg Alg
AA, 0 0flgl=]o0
Ty = I, 0 0 h 0

Note =0 and h=0.

(ii”)  Equation (3.80) is a weak formulation of
AfAizg +Agr +h=g, Ajz, =0, mzy,=0,

i.e., in formal matrix notation

AAL Ay ik | [z g
T = l;l 0 0 h 0

Note r=0 and h=0.

There is also an analogon for the quadruple saddle point formulations
presented in Theorem 3.17. Let us recall from Theorem 3.26 z € D(A)
and y € D(A}A), ie.,

z € R(AT) = N(A)) N K™ = R(Ao)™ NK; ™,
y € R(A}) = N(AY) N KL”Z = R(A))'™ N KLHZ

Theorem 3.31. Let additionally R(A,) be closed. Moreover, let f € R(A3)
and g € R(AY). The unique solution x = x; + x; +k € D, in Theorem 3.19
can be found by the following two variational quadruple saddle point
formulations:

(i) There exists a unique five tuple (X,z,u,hy,h) € D(A;) x D(Ay) X
D(Ap) x Ky X Ky such that for all (& @,9,%x,1) € D(A;) x D(A;)x
D(A()) x K, X K

<A2357 1A2€>H3 + <A1Z, E>H2 + <h27é H, = <_f’ é>H2a

)
<367 A190>H2 + <A0u7 §D>Hl + <h17 @)Hl = < 7QD>H17
<Z’A019>H
)
)

=0, (3.81)
<x7 K H, = <k’ K>H2’
(z, )y, = 0.

The third equation of (3.81) is valid for all ¥ € D(Ay). It holds z=0 and
h,=0 as well as u=0 and h; = 0. Moreover, Ayx € D(A}) with AJAx = f
and x € D(A]) with A]x =g as well as myx = k. Finally, x =x from
Theorem 3.19.
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(ii)  There exists a unique five tuple (x,y,v, hy, hy) € D(A]) x D(AJA;) x
D(A;) x K x Ky such that for all (C, d,,x,L) € D(A]) x D(AJA;)x
D(Al) X Ky X K,

<A>1k5C’ ATQHI + <A;A2y’ C>H2 + <Ah27 C>H2 = <g’ ATQHN
<5C,A§A2(]5>H2 + <A1V7 ¢>H2 + <h27 ¢>H2 = <fa ¢>H2a
(y, A1¢>H2 =0, (3.82)
<5C7 K)Hz = <k’ K>H27
o, )y, = 0.

The third equation of (3.82) is valid for all Yy € D(A,). It holds y=0 and
h,=0 as well as v=0 and h, = 0. Moreover, Ajx =g and x € D(A}A;)
with AJAxX = f as well as myx = k. Finally, x = x from Theorem 3.19.

(i)  There is (%,y,v,u,hy,hy,hy) € D(AY) x D(A}A;) x D(A1) x D(Ap)x
Ky xKy,xKy , a wunique seven tuple, such that for all
(G bV 0,0 v) €
D(A}) x D(A3A;) x D(A;) x D(Ap) x Ky X K3 X K
<AT&7ATC> + <A*A2y7 > <h27 >H2 <g’ A* >H1
<5€>A’£Az¢>>H2 (Arv, )y, + (2, b)Yy, = (f D) i,
<Y=A1W>H2 <A0” ¢>H1 <h17 >H1
(v,Ag0)y =0, (3.83)
(%, 1)y, = (k, K) by
<y /1>H 7

(v,v)y, =0.

The fourth equation of (3.83) is valid for all ¥ € D(Ao). It holds y=0,
hy=0 and v=0, h, =0 as well as u=0 and h; = 0. Moreover, Ajx =g
and x € D(A5A,) with ASAx = f as well as myx = k. Finally, X = x from
Theorem 3.19.

[

Theorem 3.28. can be extended in the same way.

Remark 3.32. Let us note that generally the solution and test spaces look like

D(Al) X D(Az—l) X X D(Aé—n—&-l) X D(Af_n) X Kg X K@—l X oo X Ké—n—&-l’
D(A;) x D(A}, Ars1) x D(A¢) x D(A_y) x
X D(Ap—py1) X D(A;_,) X Kpyy X Koy X Kp X Kp_y X o+ X Ky 1.

Moreover:
(i)  Equation (3.81) is a weak formulation of
AAx+Aiz+h=f, Alx+Awu+h =g Ajz=0,

7[2% = k, mz =0,
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i.e., in formal matrix notation

A;Az Al 0 IK, 0 SC/ f
Aik 0 Ao 0 Ik, z g

0 Ag 0 0 0 ul=10

Ty = Ik, 0 0 0 0 h, k
0 T, = 1}}1 0 0 0 hy 0

Note z=0, u=0 and h, = 0,h; = 0.

(i)  Equation (3.82) is a weak formulation of
AMAZ+AAy+hy =Alg, ASAK+Av+hy =],
Aly=0, mx=k my=0,

i.e., in formal matrix notation

A1Px1k A;AZ 0 IK, 0 X Alg
A;Az 0 Al 0 IK, y f
0 Al 0 0 oflv]=]o0
M =1, 0 0 0 0]|h k
0 =1, 0 0 0 h, 0

Note y=0, v=0 and h, = O,fzz =0.
(i)  Equation (3.83) is a weak formulation of

AATR 4 ASAy + T = Arg,  ASAK +Av+hy =T,
Aly+ Agu+h =0, Alv=0,

and myx =k, myy = 0, myv = 0, i.e., in formal matrix notation

AJAT ALA, 0 0 1, 0 0][%
A;Az 0 Al 0 0 IK, 0 y
0 A} 0 A, 0 0 g ||w
0 0 A 0 0 0 0]||ul-=
m=1 0 0 0 0 0 0]|h
0 Ty = I, 0 60 0 0 O h;
0 0 m=1, 0 0 0 0|k |

Note y=0, v=0, u=0 and h; :O,I:lz =0,h; =0.

oowoo\n?
oq
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4. Functional a posteriori error estimates

Having establishes a solution theory including suitable variational formula-
tions, we now turn to the so-called functional a posteriori error estimates.
Note that General Assumption 3.1 is supposed to hold.

4.1. First order systems

Let x € D, be the exact solution of (3.1) and x € H,, which may be consid-
ered as a nonconforming approximation of x. Utilizing the notations from
Theorem 3.3 we define and decompose the error

HZBe =Xx—x= €A, + €K, + eA; € R(Al)eaHsz@HzR(A;),

ea, = nAle:xg—nAIEER(AI), (4 1)
= . .

ea; 1= maze = Xy — masX € R(A3),

ex, =me=k—mx €K,

using the Helmholtz type decompositions of Lemma 2.7. By orthogonality
it holds

2 2 2 2
|‘5‘H2 = ‘6A1|H2 + |eKz|H2 + ’eA§|H2- (4.2)

4.1.1. Upper bounds
Testing (4.1) with A;¢@ for ¢ € D(A;) we get for all { € D(A]) by orthog-
onality and Corollary 2.5 (i)

<3A17A1§D>H2 = <ea A1€D>H2 = <A”{x, QD>EI - <32 —{+¢, A190>H2
= <g— ATC, (P>H1 - <7ZA1 (X: C)?A1§D>H2
< lg— Al loly, + Ima, (= Ol | A1 0],
< (alg—Ajly, +1ma &= Oly,) [A10ly,-
As ex, € R(A)) = R(A;), we have ey, = Ajp, with @, := A, ‘e, €
D(A;). Choosing ¢ := ¢, in (4.3) we obtain
VIeDA])  lealy, < alg—Ally, + 7, (= Oly, < alg— Ally, + 18—y,
(4.4)
Analogously, testing with Aj¢ for ¢ € D(A;) we get for all & € D(A;)
by orthogonality and Corollary 2.5 (i)
<eA§7A§¢>H2 = <eaA;¢>H2 = <A2x7 ¢>I;I} - <36_ 6 + 67A§¢>H2
= (f_A2€7 ¢>H3 - <TCA3 (X: é)aAz¢>H2
< |f— A26|H3|¢|H3 + |7TAi(x - é)|H2|A;¢|H2
< (ealf = Axlly, + [mas (8 = O, ) A3,
As ex; € R(A}) = R(A}), we have ey = Aj¢p, with ¢, := (A;)  lex; €
D(A3). Choosing ¢ := ¢, in (4.5) we obtain

(4.3)

(4.5)
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VEeD(Ay)  lenly, < calf = Aol + |mas (8 = Oy, < calf = Asllyy, + [ — &,
(4.6)
Finally, for all ¢ € D(A;) and all ¢ € D(A}) we get by orthogonality
|eK2|1%-12 = <eKz’ k— 71:25E + A0+ A§¢>H2 = <eKz’ k—x+ Arp + A;¢>H2
(4.7)
and thus

VoeDA) Voce D(A;) |eK2|Hz <lk—x+ A0 +A§¢|H2. (4.8)
Let us summarize:

Theorem 4.1. Let x € D, be the exact solution of (3.1) and x € H,. Then
the following estimates hold for the error e = x —x defined in (4.1):

(i)  The error decomposes according to (4.1) and (4.2), i.e.,
e =ex + ex, +ea; € R(A;)Dy,KrDu,R(AS),
lelt, = lea,li, + lexs [z, + lea [,
(ii)  The projection ey, = Tp,e = X, — Tp, X € R(A;) satisfies

|eA1|H2 = min (CI|A91F(:_3|H1 + |C_35|H2)
:ED(A’I‘)

and the minimum is attained at

(=exn +x=mpe+x=—(1—7p)e+x= —Ty(an)e T X € D(A})

since AT = Alx = g.

(iii) The projection ex; = Taze = X — ma; X € R(AJ) satisfies

= min (el Axl —fly, + & —X,)
¢eD(Ay)

|€A;

and the minimum is attained at

Ei=epn+X=mpe+x= — (1 —mp;)e+x= —Tya,e+ X € D(Ay)
since AZE =Ax=f.

(iv) The projection ex, = mye = k — Myx € K, satisfies
|eK2|H2 = min min |k—X+ Ajp + Az(/’)|H2

pED(A]) ¢ED(A;)

and the minimum is attained at any ¢ € D(A,) and ¢ € D(A%) solving
A1p = max and A = ma:x since (ma, + 7a;)X = (1 — m2)x, especially at
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~ — ~ 9 *\ — 1 ~ *
¢ = A 'tax € D(A), ¢:= (A3)  max € D(A).
For conforming approximations we get:
Corollary 4.2. Let the assumptions of Theorem 4.1 be satisfied.
(i) If x € D(A]), then e € D(A]) and hence ey, = mse € D(A]) with
Ajes, = Aje and

lea]n, < ailATX —gly, = ailAjely,

by setting { :=x, which also follows directly by the Friedrichs/Poincaré
type estimate.

(ii) If x € D(Ay), then e € D(A;) and hence ey; = mpze € D(Ay)  with
Azep; = Age and

leas |, < 2l Aox — fly, = c2 Asely,

by setting & :=Xx, which also follows directly by the Friedrichs/Poincaré
type estimate.
(ili) Ifx € D,, then e € D, and
2 2 2 2 2 %12
|‘3|D2 = |€A1|H2 + |eKz|H2 + |€A§|H2 + |A2€|H3 + |Ale|Hl
2 2 12
< lex |, + (14 &) Aselyy, + (1+ c7) |Ael,
with
ex, =k—mx, Aye=f—Ax, Ale=g—AlX,

which again also follows immediately by the Friedrichs/Poincaré
type estimates.

Remark 4.3. Corollary 4.2 (iii) shows, that for very conforming x € D, the
weighted least squares functional

FR) = k= maxlpy, + (1+ ) |A% I, + (1+ ) A% —gly,
is equivalent to the conforming error, i.e.,

e, < 7)< (14 max(e,2)?) e,

Recalling the variational resp. saddle point formulations (3.8)-(3.10)
resp. (3.12)-(3.14) and that the partial solutions are given by
X = Ay € D(Ay), %, = Aizg € D(A]),

a possible numerical method, using these variational formulations in some
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finite dimensional subspaces to find y; € D(A}) and zg € D(A,), such as
the finite element method, will always ensure
X := A3y, € R(A3) = N(A)) ™™ C N(47),
X = A1Z, € R(A)) = N(AD) ™ C N(A,)
and thus
X=X % € R(A))BrR(A)) = K™,

but maybe not Xy € D(A;) or X, € D(A]). Therefore, a reasonable assump-
tion for our nonconforming approximations is

- - Ly
Xx=x,+k xL €K7,
with ex, = me = m(x—x) = —mx, = 0.

Corollary 4.4. Leth € D, be the exact solution of (3.1) and x :=k+x,
with some x| € K, . Then for the error e defined in (4.1) it holds:

(i) According to (4.1) and (4.2) the error decomposes, i.e.,

e=x—X=x+x,—X| =eax tea € R(Al)@HZR(A;) = KZLHZ, ex, = 0,

2 2 2 , .
and le|; = |ea,|s;, + lea;|s;,- Hence there is no error in the “kernel” part.

(ii) The projection ey, = T € = X, — Tp, X = X, — Ta, X € R(A;) satisfies
P ) 1 1 g 1 g 1

|6A1|H2 = min (CI|ATC_g|H1 + |C_"’Z’H2)
QGD(A’I‘)
= min (a1|ATl—gly, +1{—%1lg,)

CED(AT)
(exchanging { by { + k) and the minima are attained at
(i=en +X=mpet+X=—(1—my)et+x= —Ty(ap)e tx € D(A}),

Z:J_ = ey, +x, :nAle—Hﬁ = —(1—7IA1)€+x—k: —nN(AT)e—l—x—keD(A‘{)
since Aj{; = Aj{ =Alx=g.

(iii) The projection ex; = Tase = X — TasX = X7 — Mas X1 € R(AJ) satisfies

g, = min (czlAzf —flg, + ’é—%’m)

ceD(Az)

= min (Aol ~fly, +1¢—Ful,)

lea;



NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 75

(exchanging £ by £ + k) and the minima are attained at
&= ex; FX=mpe+X = —(1—mp)e+x= —Ty@, e +x € D(A,),

%L =ep +x =maetxy = —(l—ma)et+x—k= —myn,e+x—k € D(Ay)
since AZEL = Azé =Ax=f.

4.1.2. Lower bounds
In any Hilbert space H we have

VheH [hf = max 20k ), —|h) (4.9)
heH

and the maximum is attained at /. We recall (4.1) and (4.2), especially

2 2 2 2
‘e‘HZ = ‘eAlle + |eK2|H2 + ’eAZ Hy*

Using (4.9) for H = R(A;) and orthogonality we get

lea 3, = max (2(en,, A1)y, — [Arol},)

»€D(A1)

= max (2(6, A1Q)y, — ‘A1¢|i12>

pED(A7)

= max (2<g, @)y, — (2% + Al(PaAl(p>H2)

»eD(Ay)

and the maximum is attained at any ¢ € D(A;) with A;p =eya,.
Analogously for H = R(A})

?{z = m(ax) (2<f» ¢>H3 —(2x + A§¢,A§¢>H2)
¢eD A;

lea;

and the maximum is attained at any ¢ € D(A}) with Aj¢p = ea; . Finally
for H = K, and by orthogonality

x5, = max (2(ex, 0}y, — 1013, ) = max 20k — %) — 0,0),,

0eKy 0eKy
and the maximum is attained at § = ex,-
Theorem 4.5. Let x € D, be the exact solution of (3.1) and x € H,. Then
the following estimates hold for the error e = x —x defined in (4.1):

(i)  The error decomposes according to (4.1) and (4.2), i.e.,
e=ep teg, + ea; € R(AI)GBHZKz@HzR(A;),

2 2 2 2
|e|H2 = |eA1|H2 + |‘3I<2|H2 + |eA§|H2-
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(ii)  The projection ey, = Ta, e = X, — Ta. X € R(A;) satisfies
p ] 1 1 g 1

lea, 3, = max (2(g, )y, — (2% + A1g, A1) )

<D(Ay)

and the maximum is attained at any @ € D(A;) with A1 = ey, e.g., at
o = A; 'ea, € D(A)).

(iii) The projection ex; = Tase = X — Mas X € R(A]) satisfies

m = max (2(f, )y, — (2% + Ay, A30) )

(/>ED(A;)

and the maximum is attained at any ¢ € D(A3) with Al = eas €8, ¢
= (A;) " lea; € D(A;).

|eA;

(iv) The projection ex, = Mye = k — Tyx € K, satisfies

|eKZ|i[2 = max (2(k—X%) — 0, 0>H2
7]

€Ky

and the maximum is attained at 0 = ek, € K.
If x := k+x, with some x| € K ?, see Corollary 4.4, then ex, =0, and
in (ii) and (iii) x can be replaced by x| as k Ly, R(A;)®m,R(A3).

4.1.3. Two-sided bounds
We summarize our results from the latter sections.

Corollary 4.6. Let x € D, be the exact solution of (3.1) and x € H,. Then
the following estimates hold for the error e = x —x defined in (4.1):
(i)  The error decomposes according to (4.1) and (4.2), i.e.,
e =ex + ek, +ea; € R(A)Dy, KDy, R(AS),
lelz, = lea Iz, + lexa i, + leaslzs,
(ii)  The projection ex, = Tp,e = X, — Ta, X € R(A;) satisfies

lea, [y, = min (ca| A7 — gy, + 10— %],
gep(;&f)
= max (2(g, @)y, — (2X + A1, A1),

9eD(AY)
and the minimum resp. maximum is attained at
{i=es +X€D(A]), ¢ :=A "es, € D(A)
wzthAC—Ax—g, and at any ¢ € D(A,) with A1 = ea,.
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(iii) The projection ex; = Taze = X — mas X € R(AJ) satisfies
2 . ~ 2
H, = min (CZ,AZé_f‘m + ¢ _x’Hz)
teD(4y)

= e (2l = 5+ 430, K
$eD A;

lea;

and the minimum resp. maximum is attained at
Ei=en +XE€D(A), ¢ = (A) ea; €D(A)
with Ay = Apx = f, and at any ¢ € D(A3) with Aj& = ex:.

(iv) The projection ex, = mye = k — myx € K, satisfies

|eK2|f{2 = min min |[k—Xx+ Ajp + A§¢|12LI2
pED(A1) ¢ED(A;)

= max (2(k —-%)—0, 9>H2

0cKy
and the minimum resp. maximum is attained at

(AP = Aflﬂ:Al}’ S D(Al), (Aﬁ = (A;) 717'CA;364 S D(.A;), é =ek, € K,

and at any ¢ € D(A,) and ¢ € D(A}) with A1p = ma,Xx and A’z‘(iﬁ = TasX.

If X :== k+x, with some X, € K, ™, see Corollary 4.4, then ex, =0, and
in (ii) and (iii)) X can be replaced by x, . In this case, for the attaining
minima it holds

EL ::eA1+%l€D(AT), EL ::eAz—i-fJZLED(Az).

4.2. Second order systems

Let x € IN)Z be the exact solution of (3.49). Recalling Remark 3.21 we intro-
duce the additional quantity y := A,x € D(A). Then (3.49) decomposes
into two first order systems of shape (1.5) resp. (3.1), i.e.,

Apx =y, Asy=0,

Alx=g, Ay=f,

mx =k my=0
for the pair (x,y) € D, x D;. Hence, we can immediately apply our results
for the first order systems. Let x € H, and y € H;, which may be consid-

ered as nonconforming approximations of x and y, respectively. Utilizing
the notations from Theorem 3.19 we define and decompose the errors
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HyDe:=x — X = ex, + e, + ea; € R(A)®u, KB, R(A3),
H32h:=y — y = ha, + hg, + ha: € R(Az)@ng@mR(A;‘),
ea, 1= T e =X, — A, X € R(A)), ha, :=ma,h =y—may € R(Ay),
eps i= Tpre = X, — Mp1X € R(A;), has = mph = —masy € R(A;‘),

€k, := e = k— 7'132361 € Ky, hK3

= T3 = — 7[37 € Kj
(4.10)

using the Helmholtz type decompositions of Lemma 2.7 and noting 7,y =
y as y € R(A;). By orthogonality it holds

(4.11)

2 2 2 2 2 2 2 2
|e|H2 = |6A1|H2 + ‘eK2|H2 + |eA§|H2a WH3 = |hAz|H3 + |hK3|H3 + |hA§ H

Therefore, the results of the latter section can be applied to
€, €K, €a;, Ma,; ik, ha;. Especially, by Corollary 4.6 we obtain
leali, = min (cr| AT —glyy, + 10— Fly,)" = max ( (& )y, — (2 + A1, A1)y, )

;ED(AI)
(4.12)

and the minimum resp. maximum is attained at { =es +% € D(A}) and
® = A 'ea, € D(A)) with ATl = Alx =g,
|6A3|?{2 = Vm(in) (CZ|A25 —y|H3 + |é 73E|H2)2 = m(ax) (2<)’7 ¢>H3 - <23C1 + A§¢7A;¢>H2)
ceD(Az eD(A]
(4.13)

and the m1n1mum resp. maximum is attained at &= ea; +x € D(A;) and
¢ = (A;) " 'eas € D(A;) with A = Ax =y,

]eKZ\H = min min [k—x+ A;¢p+ A} ¢|H —max( (k—})—O,G)HZ

peD(A]) (peD(A*) K,
(4.14)

and the minimum resp. maximum is attained at ¢ = A 77:A1x € D(A,),
b= (A*)_lnA x € D(A3), and 0= ex, € K, with Al(p +AS ¢ = (1A, +
Taz)x = (1 — nz)x If x =k+x, with some X, € K,"™, then eg, =0, and
x can be replaced by x . If the General Assumption 3.1 holds also for As,
i.e,, R(A3) is closed and (not neccessarily) K; is finite dimensional, we get
the corresponding results for ha,, hx,, ha; as well. Replacing A, by A, and
A, by A;, Corollary 4.6 yields

sl = min (el A0 fly, + 1= ly,)" = max (2(f, 0)y, — (27 + A2, A20)y,)

ieD(A;) 0ED(Ay)
(4.15)

and the minimum resp. maximum is attained at { = hs, + € D(A}) and
» = Ay 'ha, € D(A,) with A3l = Asy =f,
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|hA§|i{3 = Vm(in) (c3|Asly, + |f—7|H3)2 = m(ax) (— 2y + A3, A0)y,) (4.16)
£eD(A3 ¢eD( A¥
and the minimum resp. maximum is attained at ¢ = ha; +y € D(A3) and
¢ = (A;) " 'hay € D(A;) with Asé = A3y =0, ie, E € N(A,),

]hK3|H = min min |—y+A2(p+A*¢]H —max(—<2y+9,0>H3) (4.17)

pED(A,) ¢6D(A*)

and the minimum resp. maximum is attained at ¢ = A, nAzy € D(A,),
¢ = (A;) " 'ma;y € D(A; ), and 0 = hg, € K3 with Ayp + Alp = (ma, +
- S Ly,
ma)y = (1—m3)y. if y=y, €K; ", then hg, =0, and y can be replaced
by y, . The upper bound for |ha: |, in (4.16) equals
[has |, = min [¢—yly, = (€ =Fluys € =hay +7 € N(As),

CEN(A3)

and so the constant ¢; does not play a role. In (4.13) the unknown exact
solution y still appears in the upper and in the lower bound. The term
A& —y € R(A;,) of the upper bound in (4.13) can be handled as an error
he =y—y. with y. = AyC. As hy = mp,he = he s, We get by (4.15)

|A2¢ _)’|H3 = |hé|H3 = min (CZ|A;C_f|H2 + |Z-'/_A25|H3)'

v *
seD(AZ)

Another option to compute an upper bound in (4.13) is the following
one: As y € D(A;) we observe Ayl —y € D(A*) if £ € D(A3A;). The min-
imum in (4.13) is attained at f =ex; + X € D(A;) with AZE =Ax=y.
Since & € D(AA;) and A*Azé = AJy = f we obtain

lexilis, = min (alAs =yl + 16— Flp) = min (BJATAL —fly, + |6 =R, ).

geD(A;Az) :eD(A;Az)

where the latter equality follows by the Friedrichs/Poincaré inequality. To
get a lower bound for |ea; %12 in (4.13) we observe ex: € R(A]) = R(AjA;)

and derive
|eA; 5{2 = max <2<€A;>A§A2¢>H2 - |A§A2¢|?‘Iz>
d)ED(A;Az)
= max <2<e, ASAr )y, — |A;A2¢|§{2>
(bED(A;Az)
= max (2<f, ¢>H2 - <2% + A§A2¢7 A§A2¢>H2)'
¢eD(A;A2)

We summarize the two sided bounds:

Theorem 4.7. Additionally to the General Assumption 3.1, suppose that
R(A3) is closed. Let x € D, be the exact solution of (3.49), y := Ayx, and let



80 D. PAULY

(x,y) € Hy X Hs. Then the following estimates hold for the errors e = x — X
and h = y—y defined in (4.10):

(i)  The errors decompose, i.e.,
€ = e, + €K, + EA; € R(Al)@HzKZGBHZR(A;),
2 2 2 2
|‘3|H2 = |eA1|H2 + |‘3I<2|H2 + |eA§|H27
h= hAz + th + hA; S R(Az)@H3K3@H3R(A§),

2 2 2 2
’h‘H3 = ‘hA2’H3 + |hK3‘H3 + ‘hAz Hj*

(ii)  The projection ep, = Ta,e = X, — o, X € R(A;) satisfies
p ] 1 1 g 1

. . ~1 2
lealry, = min (a7~ gly, + 10Xy,

7, *
46D(A1>

= max (2<g, @)y, — (2% + A1€0:A1(P>H2)

#€D(A1)
and the minimum resp. maximum is attained at
(i=es +X€D(A]), ¢ :=A "es, € D(A)
with ATl = Afx = g.

(iii) The projection ex; = Tase = X, — Ta; X € R(AJ) satisfies

2
lensli, = min min (BJALC—fly, + ol — Acly, + 1€~y

£eD(Ay) ieD(A;)

2

= min (A4 — fliy, + |~ Xy, )
;“ED(A;AZ)

= rr(lax \ (2<f, (]5>H2 — (2x + AJA, 0, A§A2¢>H2)
¢eD(A%az

and the minima resp. maximum are attained at
E:=en +X€D(AJA), [ :=h:+ Al =yeD(A}),
¢ = A (A) " ens € D(ALA)
with Azé = Ayx =y and A;AZE =Aly =f as well as A;E =Aly=f.

(iv)  The projection ex, = mye = k — myx € K, satisfies

|eK2]22 = min min |k—X+ Ajp + AZ(f)ﬁj,2
@ED(A]) ¢€D(A;)

— max <2<k —X)—0, 8>H2

0eKy
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and the minimum resp. maximum is attained at

o =AMy e D(A), ¢:=(A) 'muxeD(A;), Oi=e ek
with A + A5 = (ma, + 1as)X = (1 — m)X.

(v) The projection hy, = ma,h =y — ma,y € R(A;) satisfies

s, = m(in) (2l A3 = fli, + 1E =g}
(eD A;

= max (2(f, @)y, — (2V + A20,A20) )

PED(Ay)
and the minimum resp. maximum is attained at

{i=ha, +7 €D(A), & :=A; 'hs, € D(A)
with Al = ALy = f.

(vi) The projection hy: = ma:h = —ma:y € R(A3) satisfies
2 . ~ 2 . ~12
|ha; |5, = min (cs|Asély, + <= 7]y,)" = min [E=Y]p,
ceD(Az) CEN(A3)
= max (—(2y+A30,A50)p,)
¢6D(A;‘)

and the minimum resp. maximum is attained at

E = hA; +y € N(A3), (;5 = (A;() _lhA§ < D(A;)
with Asé = Asy = 0.

(vii) The projection hx, = nse = — M3y € K; satisfies

b [}, = min min |5+ Ay + AJol3,
PED(A7) ¢GD(A§)

= max (— (2y + 0, 0>H3)

0eK3

and the minimum resp. maximum is attained at
A — ~ 1 * 71 ~ * A
b :=A 'nay € D(A,), ¢:= (A7) Tay € D(A;), 0:=hg, €K;

with Ay + Aj = (ma, + mas)y = (1 m3)y
If x =k +x, with some x| € K, ™, then ex, = 0, and in (ii) and (iii) X can

be replaced by x . If y =y, € K;H% then hx, =0, and in (v) and (vi) y
can be replaced by y | .
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Remark 4.8. A reasonable assumption provided by standard numerical
methods is y € R(A;). Hence it often holds hy: = hy, = 0.

4.3. Computing the error functionals

We propose suitable ways to compute the most important error functionals
in Theorem 4.1, Corollary 4.4, and Corollary 4.6. For example, let us focus
on Corollary 4.6 (ii), i.e., for x € H, on the error estimates

max (2(g, @)y, — (2% + A1, A19) ) = lea, |7, = min (c1|Aj0—glyy, + (=%, )"

9ED(A]) ;ez)(AT)
(4.18)

Before proceeding, let us note that instead of computing the maximum
resp. minimum of the lower resp. upper bound we can simply und cheaply
choose any ¢ € D(A;) and any { € D(A]) given by any method or guess
and we obtain the guaranteed error bounds

208, @)y, — (2% + A9, A1)y, < leafpy, < (l AT —gly, + 10—, )

4.3.1. Lower bounds

Considering the maximum on the left hand side of (4.18) we differentiate
the lower bound ®(¢) := 2(g, @)y — (2x + A1, A1)y, with respect to .
Hence a maximizer ¢ € D(A;) solves the variational formulation

1 . N ~

VoeDA) 0= = P(0)p = {Ad, M)y, + (X Aoy, — (& Pl
(4.19)

which implies A;p +x € D(A]) with

Al(A1§ +x) =g =Ax
and presents a weak formulation of AJA;p = g— Ajx = Aje = Ajes,. By

0=Aj(A1p +X—x) = Aj(A1D —€) = AJ(A1( —ey,)

we observe A;(p —ea, € N(AY) NR(A;) = N(A}) N N(A)™ = {0}, ie, ¢
solves A;(p = ey, , see Corollary 4.6 (ii). As A; is strictly positive over
D(A;) = D(A;) NR(A}) = D(A;) " N(A;)™, (4.19) admits a unique solu-
tion ¢ € D(A;). A particularly simple case is given if N(A,) is finite
dimensional or even trivial, which occurs in many applications. Otherwise
one has to work with the saddle point or double saddle point formulations

as we have discussed earlier. The previous considerations show that the
unique maximizer ¢ € D(A,;) is given by
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- —1
Q@ :Al €A,

which is already written down in Corollary 4.6 (ii). Moroever, we finally
note

b =A;"ea, = A 'mae = A i, (x—%) = A (% — A X) = Afl((AT) Tl nAli).

If xeD(A]) then myx€D(A]) with Ajmyx=Ajx and ¢=
A (A (g ATR).
Remark 4.9. The maximum in (4.18) is attained at any € D(A;) with
A1) = ep,, especially at & = A; 'en, € D(A)). @ € D(A,) can be found by
the variational formulation

v QDED(AI) <A1¢7A190>H2 = <g7 §0>Hl_<357A1q)>H27
which is coercive (positive) over D(A;).

4.3.2. Upper bounds
For the minimum on the right hand side of (4.18) we can roughly estimate
the upper bound by ¥({) := 2c7|A[( —g|i{l +2|¢ —%ﬁ{z. Differentiating ¥
shows that the minimizer { € D(A]) of mingepanP({) solves the vari-
ational formulation

VieD@4]) 0= i\}" (0t = Al - g At + (.0,
= (AT LA D, + (0 O, —ale Al — % O,
(4.20)

which implies A} { —g € D(A;) and cjA;(A]{ —g) = (x — {), and presents
a weak formulation of

AAA(+{=3Ag+X.

Unique solvability of (4.20) in D(A}) is trivial, as the variational formula-
tion reproduces a graph inner product of D(A]), and we have { =
(GA1AT +1) " '(3Ag 4+ %). Moreover, as g € R(A}) it even holds A*{ —
g € D(A;) and hence by the Friedrichs/Poincaré estimate, the equation for
{, and inserting { = { into Corollary 4.6 (ii)

leards, < alATC—gly, + 10 =%y, < lA(ATE —g)ly, +[{ =Xy,
1R,

HA(AT L = 8)ln,-

(4.21)
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This rough minimization process can be improved by using a bit more
careful estimate for the square term in (4.18). For this we observe for all
{ € D(A]) and all t>0

lea i, < (1171 & AL gl + U+ 0105, = P4, 1)

and obtain by choosing {={ =-es, +x € D(A]) from Theorem 4.1,
Corollary 4.4 or Corollary 4.6

2 < inf  inf W& GH) < inf W(x: 1) = inf (1+0)ex |k = lea %
|6A2|H2—t€1(ROO>C€1DrEAT) (x%: ¢, )—t;(‘o’,oo) (%:¢,1) ze‘(fio@( +t)lea, |r, = lea, |,

Thus

|eA1\f_IZ = min Y(&X;{¢f)= min ((1 Tl a |A1‘(;'—g|ih +(1+ t)|C—§|i,2),

{ED(A’I)rE[O'x]' ;ED(AI)tE[O.x].

(4.22)
and the minimum is attained at (¢,{) = (0,(). For fixed { € D(A}) the
minimal #; € [0, o] is given by

Al gl ~
———" y if C X,

te = : [ x|H2 #
00 , if {=Xx.

We note that the case t; = oo can only happen if x € D(A]). In any
case, inserting f; into (4.22) we get back the right hand side of (4.18), i.e.,

2 . ~ 2 2
|eA§ p, S min (C1|ATC_<‘>’|H1 + |C_x’H2) = ‘eAl‘Hz'

Id *
SeD(Al)

On the other hand, for fixed 0 <t < oo the minimization of W¥,({) :=
W(x;,t) over { € D(A]) is equivalent to find {, € D(A]), such that

VEED(A)  sarry MO = (AL g Al + 5 (G F O, =0
(4.23)

Especially Aj{; —g € D(A,) with
A(AL —g) = C—%(% 4 € R(AY) (4.24)

and hence (4.23) is a standard weak formulation of the coercive problem
(in formally strong form) (A;A] + %) = Aig + 5%, ie,
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¥ (e D(A]) <A’;ct,A’;c>Hl+C—}<ct,c>H2=<g,A1‘c> g<x On.  (425)

Moreover, as g € R(A]) we even have Aj{; —g € D(A;) and the strong
form holds rigorously if g € D(A;). Furthermore, inserting {, into (4.22)
and using the Friedrichs/Poincaré type estimate shows

lea, [y, < min((1+£71) o |ATG —gly, + (1+ D16 —X3,)

te[0,00]

<min((1+¢7") ¢ |A1(ATG = @)l + (1+ 0|8 —X3,)

te[0,00]
. 2 ~12
mlnte[o.ao] (1 + t) ’Ct - x’Hza

. —1\2 * 2
min, T+t ¢ ’Al(Alét_g)‘Hza

compare to (4.21). Hence the overestimation by the factor 2 is removed as
long as t is close to 0 or co. A suitable algorithm for computing a good
pair (¢, () for approximately minimizing (4.22) is the following:

Algorithm 4.10. Computing a minimizer (¢,{) in (4.22), ie., an upper

bound for |ea, |y :

e initialization: Set n := 0. Pick {; € D(A]) with {, # x.

PiEo1 8 and then €, € D(AY)

G x‘Hz

e loop: Set n:=n+ 1. Compute t, = ¢;
by solving

V{eD(A])  qlATL ATy, + talln, O, = {8, ATOm, + (%, O,
ComPUte \PAT(’Z; gn» tn) = (1 + tn_l) C% |ATCn _g‘i[l + (1 + tn)’Cn _fﬂilz'

o stop if War(xX;,, tn) — Par (x5, 1, tn—1) is small.
Remark 4.11. (4.25) shows for { = {,
AT, + G, = ci{e Ay, + F (o,
< (lgl, + ) (Glaial, +oct)
and thus
ALz, + G, < dlgly, + 113,

By (4.24) and since A7{; —g € D(A,) we get
. t
Al—g =S AT G- )

1
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and hence

70— gy, < € 2 (Igly, + 1R,

with ¢ > 0 independent of t and (. Let us assume t, — 0 in Algorithm 4.10.

Then by the latter considerations (A(,) and (t,i/zé_,’n) are bounded and

Aj(, — g with the minimal rate ts/2. Moreover, the projected sequence

(ma, () C D(A]) is bounded in D(A}) by Ajmal, = A, and the
Friedrichs/Poincaré estimate |ma,(uly, < ci|ATma, Coly, - If D(AY), — Hy s
compact, then we can extract a subsequence, again denoted by (t,), such
that ma,(, — { in Hy. Thus { € D(A]) and A} { = g as A] is closed, which
shows { = (A]) “lg= Xg = 7a, X, see Theorem 3.3. As the limit x, is unique,
even the whole sequence ma (, converges to x, For the other part
(1—ma, ), C N(A]) we apply the projector 1 —ma, to (4.24) and obtain
(1 —ma,)(x—=C(,) =0, ie, (1 —my,), = (1 —ma, )X is constant. Hence

(o= ma Lo+ (1= 7a) 0w — Ta X+ (1 —7a )% = ea, +X =,

where { € D(A}) is the unique minimizer from Corollary 4.6 (ii). Finally,

Algorithm 4.10 defines a sequence ({,) converging in D(A?) to { provided
that D(A]), — H, is compact and £, — 0.

5. Applications
5.1. Prototype first order system: Electro-magneto statics

As a prototypical example for a first order system we will discuss the sys-
tem of electro-magneto statics with mixed boundary conditions. Let Q C
R? be a bounded weak Lipschitz domain, see [13, Definition 2.3], and let
I' := 0Q denote its boundary (Lipschitz manifold), which is supposed to be
decomposed into two relatively open weak Lipschitz subdomains (Lipschitz
submanifolds) I'; and ', :=T"\ T, see [13, Definition 2.5]. Let us consider
the linear first order system (in classical strong formulation) for a vector
field E: Q — R

rotE=F inQ, nxE=0 atIy,
—diveE=g¢g inQ, n-eE=0 atI,, (5.1)
myE =K in Q.

Here, ¢: Q — R is a symmetric, uniformly positive definite L>
-matrix field and »n denotes the outer unit normal at I'. Let us put
p:=¢"'. The usual Lebesgue and Sobolev (Hilbert) spaces will be
denoted by L*(Q),H(Q),¢ € Ny, and (in the distributional sense) we
introduce
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R(Q):={Ec*Q) : rotEcI*(Q)},
D(Q) :={Ec}(Q) : divE e I*(Q)}.

Let us also define

13 (Q) := L*(Q) NRr@,  H (Q) := H(Q) NI (Q).

With the test functions or test vector fields

Cr(Q) = {q)|Q . @ e C*(R?), suppep compact in R3, dist(suppqo,l"t)>0},

t

Cr(Q) = c*(Q),

we define as closures of test functions resp. test fields

Hp (Q):=Cr(Q) , Rp(Q):=cCy(Q) , Dr(Q):=cCcr@Q)

generalizing homogeneous scalar, tangential, and normal traces on I'; and
I',,, respectively. Moreover, we introduce the closed subspaces

Ro(Q) :={E€R(Q) : rotE=0}, Do(Q):={EeD(Q) : divE=0},
Rr,o(Q) :=Rr,(Q) N Ry(Q), Dr, o(Q) := Dr,(Q) N Dy(Q),

and the Dirichlet-Neumann fields including the corresponding orthonor-
mal projector

Hine(Q) = Rr,o(Q) N Dr,o(Q), 7y 1 L2(Q) — Hino(Q).

Here, L?(Q) denotes L?*(Q) equipped with the inner product
(-, - >L2(Q) = (¢, " ) Let Hi:=L*(Q),Hy :=L*(Q) (both scalar
valued) and H, := L2(Q), H; := L*(Q) (both vector valued) as well as

A = gradp, : D(A,)):= Hr (Q) c L*(Q)— L2( ),
A, :=rotr, :D(A;) :=Rr,(Q) C L}(Q) — L*(Q),
Az :=divr, :D(A;) :=Dr,(Q) Cc L*(Q) — L*(Q).
In [13] it has been shown that the adjoints are
Al = grad*l-t = —divr,ée: D(Al) = u Dr,(Q) C L2(Q) — L*(Q),
Al = roty = urotr, : D(A;) = Rr,(Q) c L*(Q) — L2( ),
Ay =divi, = —grad :D(A}) = Hrn(Q) C L*(Q) — L*(Q).
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As Ay, Ay, A; define the well-known de Rham complex, see, e.g., [13
Lemma 2.2], so do their adjoints, i.e., for'” () # I, # T

Ao=t(0 A =grady. —rotr, —divr- =n
{0} 270, jt () DI R () AT p (o) AEIE 2 gy 2TTOL gy
Aj=m0) o Ay=—divr, € Aj=protr, Ay=—gradp, 1 Al=t(0}

{0} ——= 12(Q) «——— uDp () <— R (Q) Hr, (2) {0},

where we have introduced the additional canonical embedding and projec-
tion operators Ag, Ay, A4, Aj by

{1{0}:H0:{0} ,if Ty #0 ~ 1),
lR:H():R ,lfrt:(b
A4:{n{0} ,if T, #£T :LZ(Q)_){{O} ,if Ty #T
R ,ifl,=T
{l{o}:HSZ{O} ,lfrt#r
IRIH5:R ,lfrtzr
A*:{TC{O} 71frt¢® LZ(Q)%{{O} 71frt7£®
0 R ,if =0

*(Q),

For the kernels we have

N(Ao) = {0} { L A0,

0
,if Ty =0,
BT
N(A;) = Rr,0(Q), N(AZ) =R n,o(Q)
(

. 0} | if T, £T,
N(A3> = Dl‘,70(Q P A3) { { } 1f l—i i )

Z

_ LZ(Q) 9 if rt 7é r7
NMO_{ﬁm)mﬂzzn’(

{0}

and for the cohomology groups

For I'; = () we have

R Ag=tg HL(Q) Aq=grad R(Q) Ag=rot D(Q) Az=div L2(Q) Ay=m(0} {O},
Al =g Al =—di Al =prot Ar=—grad
R <OTTE o) SIS p() 2R R() BT ) SO Qizuo {0},

which also shows the case I'y = I' by interchanging I'; and I', and shifting €. More precisely, for I'; = T°
it holds

{0} Ag= (0} H%(Q) Aj=gradp RF(Q) Ag=rotp DF(Q) Ag=divp LQ(Q) Ay=mg R,
Ap A =—div Ab=pr AL=—grad A=y,
{0y S9N oy Mo S uD(Q) £2TM Ry S3TTERY i) J4TE R
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Ko = N(Ao) = {0},

Ky = N(A;) N N(A;) = {0},

K; = N(A2) N N(A}) = Rr,o(Q) Nyt Dr, o(Q) = H;(Q),
K3 = N(A3) N N(A}) = Dr,(Q) NRr, o(Q) =: H,,(Q),
Ky =N(A )

Using the latter operators A, = rotr, and A] = —divr,¢, the linear first
order system (5.1) (in weak formulation) has the form of (1.5) resp. (3.1),
i.e., find a vector field

E € D, = D(A;) N D(A}) = Rr,(Q) N Dr,(Q),

such that
rotr,E = F,
—divr ¢E =g, (5.2)
nE =K,

where Ky = H; (Q). In [13, Theorem 5.1] the embedding D,, — H>, i.e.,
Rr,(Q) N p Dr,(Q), — L(Q),
was shown to be compact. Hence also the embedding D; = D(A;) N
D(A%),— Hs, ie,
Dr,(Q) N R, (Q), — L*(Q),
is compact. Thus, by the results of the functional analysis toolbox Section
2, all occurring ranges are closed, certain Helmholtz type decompositions
hold, corresponding Friedrichs/Poincaré type estimates are valid, and the
respective inverse operators are continuous resp. compact. Especially, the
reduced operators are
Ay = grad, : D(A,) = HE (Q) N L12(Q) € I*(Q) — grad H (),

A, = rotr, : D(A;) = Rr,(Q) N urotRr, (Q) C urotRr, (Q) — rotRr, (Q),

A; = divr, : D(A;) = Dr,(Q) N gradH[ Q) c gradHf Q) — L*(Q),
where gradHy (Q) and urotRr, (Q) have to be understood as closed subspa-
ces of L>(Q), and L?(Q) has to be replaced by L? (Q) in Ay, if I'; = (), and
in A;, if I', = I', with adjoints

Al = é‘;l;t = —divre: D(A}) = u Dr,(Q) Nngrad Hy (Q) C grad Hf (Q) — L*(Q),
A = IT(\)Jt;[ = u rotr, : D(Az) = Rr,(Q) Nrot Rr,(Q) C rotRr,(Q) — urot Rr,(Q),

A; = divy, = —grad, : D(4}) = HE (Q) N *(Q) C I2(Q) — gradH}- (Q),

where L?(Q) has to be replaced by L% (Q) in Aj, if I, =0, and in A;, if
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I't =T'". Note that the reduced operators possess bounded resp. compact
inverse operators. For the ranges we have

R(A1) = R(A)) C N(Az) e, grad HE(Q) = grad (HE,(Q) N L2(Q)) C Rr,o(9),

R(A;) = R(A;) C N(A3),ie., rot Rr,(Q) = rot(Rr,(Q) N prot Rr,(Q)) C Dr,(Q),
R(A3) = R(As), ie., div Dr,(Q) = div(Dr[(Q) N grad H}H(Q)),

R(A]) = R(AY), i, div D (Q) = div(Drn (Q) N egrad H}[(Q)),

R(A}) = R(A;) C N(A}),i.e., purot Rr,(Q)= ,urot(an(Q) N rot th(Q)) C u Dr,o(Q),
R(A}) = R(A}) C N(A}),ie., grad HL (Q) = grad (len(g) n LZ(Q)) C Rr,o(Q),

where L?(Q) has to be replaced by L% (Q) for I, =0 resp. I, =I'. Note
that the assertions of R(A;),R(A}),R(A}) are already included in those of
R(A;),R(A;),R(A]) by interchanging I'; and I',, and setting ¢:=1id.
Furthermore, the following Friedrichs/Poincaré type estimates hold:

V ue D(A,) =H! (Q) ﬁLZ(Q) [ulp2(q) < ¢p |grad ”|Lg(g)

VEeD(A}) =u Dr ) Ngrad Hf. (Q), Elp2(q) < ¢ [diveE] )

V E € D(A,) = Rr,(Q) Nurot Rr, (Q), ’E’LE(Q < Cm |TOtE|2(q)

V E € D(A}) = Rr,(Q) Nrot R, (Q), [El () < m [rotElps,

V E € D(As) = Dr,(Q) Ngrad H} (Q), |El2(q) < ¢ |diVE|L2(Q),

V ue D(A}) = Ht (Q) N L*(Q) U2 q) < Cp lgrad ul (g,

where the Friedrichs/Poincaré and Maxwell constants cg, ¢y, Cfp» are given
by the respective Raleigh quotients, and L*(Q) has to be replaced by L? (Q)
for T; =0 resp. Iy =T . Again note that the latter two assertions are
already included in the first two inequalities by interchanging I'; and T,
and setting ¢ := id.

Remark 5.1. Let the Friedrichs and the Poincaré constants cg,c, as well as
upper and lower bounds for the matrix field ¢ be defined by

1 grad ol 1 . [Plpg
—:= inf ——=  —.= inf

& oreeH (@ 0|20 & oreer2@) [Pl o)’
1 rad 2 1

— = inf w —:= inf L(©) .
o 0teeHLQ) 9|0 e ozoerx@) [Pl

In [14], see also [15, 16], the following has been proved for bounded and
convex

(i) IfTy=0o0rIy=T, then ¢, <& ¢, < &diamQ/m.
(i) IfTy =0 we have c,/& < cp < ¢p and ¢ = ¢ < < Gp.
(iii) IfTy=T it holds ¢f/e < ¢ < ¢f and cf < c¢p = Cpp.
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Finally, the following Helmholtz decompositions hold:

Hy = 1X(Q) = {13_{@0} 20 {LZ(Q) AL AD g~ R(ag)@N(AY)

W T, =, Q) . if T, =0,
= {]g’} | . g o @y2(q)divDr, (), (Hy = N(A)®y,R(A7))
H, = I2(Q) = grad H} (Q)®2q)u © Dr, 0(Q) (H2 = R(A;)®u,N(A}))
= Rr,o(Q )EBLZ )i r0t Rr Q) (Hy = N(A2)®n,R(A))
= grad Hr( )@L% Y Hine(Q)Br2urot Rr,(Q), (Hy = R(A;)®u, KBy, R(A]))
H; = L*(Q) = grad H{ (Q)®12()Dr0(Q) (H; = R(A3)®n,N(A3))
= ero(Q)GBLz(g)rot er(Q) (H3 = N(A;)@HZR(AZ))

= grad Hll—ﬂ (Q)EB]}(Q)HM(Q)@Lz(g)rot R, (Q), (H; = R(A;)EBH3K3€BH3R(A2))

_ 2oy = J {0 i T #ET X(Q) , if T, #T, o
Hy = [2(Q) = {R T L @ {Li(ﬂ) CET T T (Hi= RAD®uN(AY)
if T r
- {]E)} i 1L BeadDr (). (Hy = N(A3)®n,R(As))

The latter two decompositions are already given by the first two ones by
interchanging I'; and I',, and setting ¢ := id. Especially, it holds

grad Hf, (Q) = Rr, o(Q)S () Hin:(Q), prot Rr,(Q) = p Dr, o(Q)S (g Hin:(Q),
grad H}n(Q) = erO(Q)eLz( yHo, H(Q), rot th(Q) = Drt,O(Q)ew yHout L(Q).

If I', =T and T is connected, then the Dirichlet fields are trivial, i.e.,
Ht,n,;—:(Q) = RF,O(Q) nu DO(Q) = {0}

If I''=0 and Q is simply connected, then the Neumann fields are
trivial, i.e.,

Ht,ﬂ,l)(Q) - RO(Q) nu DF,O(Q) = {0}

Now we can apply the general results of Section 3 and Section 4.
Theorem 5.2 (Theorem 3.3). (5.1) resp. (5.2) is uniquely solvable, if and
only if

F € rotRr, Q) = DF,,O(Q)@LZ(Q)HH,t(Q)u gc I*(Q), Ke Ht,n,s(Q)u
where L*(Q) has to be replaced by L% (Q) if I'y = 0. The unique solution
E € Rr,(Q) Nu Dr,(Q) is given by

E:=FEr+E+KE€ (Rr,(Q) N prot Rr,(Q ))EBLz (y Dr,(Q) Ngrad H}t(Q))@L%(mHM,S(Q)
= Rr,(Q) Ny Dr,(Q),
Ep = (rotr,) 'F € R,(Q) N urotRr, (Q) = Rr,(Q) N it Dr, 6(Q) N Hypo(Q) ),

-1
E = — (divr,e) g€ u Dr, (@) Ngrad HY(Q) = u Dr, (Q) N Rr, (@) NH,,, (@) 20

and depends continuously on the data, ie, |E|pq) < cm [Flppq)
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o 18lr2(q) + IKli2q) as
EFli2(0) < om [Fli), Bl < op 18l

2 2 2 2
Moreover, |E|1q) = |Er|r2q) + [Eelz () + K120
The partial solutions Er and E,, solving

rotr,Ep = F, rotr,E, = 0,
—divr,eEp =0, —divreE, =g,
TCHEF = 0, TCHEg = 0,

can be found and computed by the following four variational formulations:

Theorem 5.3 (Theorem 3.5). The partial solutions Ep and Eg in Theorem
5.2 can be found by the following four variational formulations:

(i)  There exists a unique Ep € Rr,(Q) N protRr (Q) such that
VvV ®c Rr,(Q) N prot Rr, Q) (rotEp,rot(D>L2(Q) = (F, rot(I)>L2(Q).
(5.3)

Equation (5.3) is even satisfied for all ® € Rr,(Q). Moreover, the equation
rotEp = F holds if and only if F € rotRr,(Q). In this case Ep = Ep.

(') There exists a unique potential Hr € Rr,(Q) Nrot Rr,(Q) such that
VY ¥ € Rr,(Q) Nrot Rr,(Q) (urot Hp,rot'¥) 2y = (F, ¥) 2 (q)-
(5.4)

Equation (5.4) even holds for all ¥ € Rr,(Q) if and only if F € rotRr,(Q).
In this case we have

urotHp € th(Q) N ,urothn(Q)
with roturotHg = F and hence urotHp = Eg

(i) Let I'y # (0. There is a unique Eg € u Dr,(Q) NgradH (Q) such that
V © € u Dr,(Q) N gradHy (Q) (diveE,, div £0)2(q) = — (8, dive®) 2 ).
(5.5)

Equation (5.5) is even satisfied for all ® € u Dr,(Q). Moreover, — div ¢E, =
g and Eg = Eq. In the case Ty = ) the condition g € L% (Q) has to be added,
i.e, —diveE, = g if and only if g € L (Q) and in this case E; = Ej.

(i') Let I'y # (). There exists a unique potential u, € H}t (Q) such that
V y € Hy (Q) (egrad ug, grad ¥/) ;o) = (& ¥) 12(q)- (5.6)
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It holds grad u, € 1 Dr,(Q) Ngrad H (Q)

with —divegradu, =g and thus gradu, =E;. In the case I'v =0 we
replace Hy (Q) by H| (Q). Then (5.6) even holds for all € H\(Q) if and
only if g € L (Q). In this case the other assertions hold as stated before.

Remark 5.4 (Remark 3.6). Let us note the following:

(i) It holds gradHp (Q) = Rr,o(Q) N Ht7n’8(Q)lL§<ﬂ> and
prot Rr,(Q) = p Dr, o(Q) N Hy s (Q) ),
rot Rr,(Q) = Dr,o(Q) NH,,(Q) 7@,

(ii) We have

Ep = (rotr,) 'F € D(rotr,) = Rr,(Q) N urot Rr, (Q),

Hp = (,u IT(\)Jtrn) 71EF = (,u IT(\)Jtrn) 71(;6}1"[) 71F S D(IT(\)Jtrt/Jt I%J'[rﬂ) C an(Q) N I'O'[R]"I(Q)7

E, = — (divrns) . 1g € D(a;/rns> =u Dl—n(Q) N glradHh(Q)7

Ug = (gr,;lr,) _lEg == (z‘%fr\a/dr,) _1(&ivvl'n3> _lg € D(Cﬁ;’l‘ng grf\‘ar,) C Hy,(9),

and these vector fields and functions solve

rotr,Ep = F, rotrurotr, Hr = F, —divr¢E, =g, —divr,éegradpug =g,
—divr,eEp =0, divr,Hr = 0, rotr, E, = 0, o} /rUg = 0,
nyEp = 0, T[?:HF = 0, TEHEg = 0,

where m~ : L*(Q) — H,,(Q) is the Neumann-Dirichlet orthonormal pro-

jector and myoyr denotes mygy or my if I't = (). Mooreover, (5.3)-(5.6) are
weak formulations of

,urotrnrotrtﬁp = protr, F, — divrnsEF =0, nnEp =0,

rotr, urotr, Hp = F, divr, Hr = 0, ﬂ%HF =0,
— gradrtdivrnsgg = gradr g, rotrtﬁg =0, nHEg =0,
— divr,egradp ug = g, Ty /rUg = 0,

i.e., in formal matrix notation

protr, rotr, | [ urotr, F rotr, i rotr, F
—divr,e |[Ep] = 0 , divr, [Hr] = |0,
Ty ] i 0 7'57"_2 0
— grad; divr, ¢ | [ grad
gradp divr,e] gradp g  divr.egrad; .
rotr, [E|=| o ) lwl =15
_—_— | o)k
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Remark 5.5 (Remark 3.7). Let us note the following, especially for possible
numerical purposes and applications.

(i) Using the variational formulation in Theorem 5.3 (i) corresponding to
Ep = Ep € Ry, (Q) for finding a numerical (discrete) approximation Eg,
of Er proposes a Rr,(Q)-conforming method in some finite dimensional
(discrete) subspace Rr,,(Q) of Rr,(Q) giving also a Rr,(Q)-conforming
discrete solution Epj, € Rr, 4,(Q) C Rr,(Q).

(") Utilizing the variational formulation in Theorem 5.3 (i’) for Er = protHp €

urotRr, (Q) to find a discrete approximation Epj = protHg, of Ep proposes
a Rr,(Q)-conforming method in some discrete subspace Rr, ,(Q) of Rr,(Q)
giving then a Rr,(Q) -conforming discrete potential Hpj € Rr, ,(Q) C
Rr,(Q), but yielding a p Dr,(Q)-conforming solution as

Egj, = urotHgy, € prot Rr, (Q) = 1 Dr, o(Q) N H,,,.(Q) @ € Dr, ().

(ii) Using the variational formulation in Theorem 5.3 (ii) corresponding to
E, = Eg € W Dr,(Q) for finding a discrete approximation Eg}, of E, pro-
poses a [ Dr, (Q) -conforming method in some discrete subspace
w Dr,4(Q) of u Dr,(Q) giving also a p Dr,(Q) -conforming discrete
solution Egj € 1 Dr, ,(Q) C p Dr, (Q).

(i’) Utilizing the variational formulation in Theorem 5.3 (ii’) for E, =
grad u, € gradHy, (Q) to find a discrete approximation Egj, = grad ug,
of Ey proposes a Hr (Q)-conforming method in some discrete subspace
Hr,,(Q) of Hy(Q) giving then a Hy (Q)-conforming discrete potential
ugn € Hr, ;,(Q) C Hy, (Q), but yielding a Rr,(Q)-conforming solution as

Egn = grad ug) € grad H}I(Q) = th7o(Q) N ’Htm,g(Q)L"f(Q) C Rr, Q).

4

(iii) A possible discrete solution Epj = protHgy, from (ii’) satisfies automat-
ically the side conditions

— dinn&‘ERh = 0, TCHEFﬁ = 0,
i.e., even on the discrete level there is no error in the side conditions. The

other option from (ii) yields a discrete solution Epj, which most probably
has got errors in the side conditions.

(iii") A possible discrete solution E,j = gradug) from (iii’) satisfies auto-
matically the side conditions
rotr,Eq, =0, 7myEgp =0,
i.e., even on the discrete level there is no error in the side conditions. The

other option from (iii) yields a discrete solution E,j, which most probably
has got errors in the side conditions.
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Theorem 5.6 (Theorem 3.12). The unique solution E = Ep+ E, +K €
Rr,(Q) Nu Dr,(Q) in Theorem 5.2 can be found by the following two vari-
ational double saddle point formulations:

(i) Let Ty # (). There exists a unique tripple (E,u, H) € Rr,(Q) x Hp (Q) x
Hine(Q) such that for all (®, @, 0) € Rr,(Q) x Hp (Q) X Hyy:(Q)

(rot E ,10t®) 1) + (egrad u, @) > () + (eH, @) 2 () = (F,rot @) >,
<8E7grad (p>L2(Q) = <ga (p>L2(Q)a (57)
(¢E, @) 2(q) = (6K, ©) 20

It holds u=0 and H=0. rotE =F if and only if F € rotRr,(Q).

Moreover, ¢E € Dr, (Q) and — diveE = g as well as mE = K. In thzs

case, i.e., F € rotRr,(Q), we have E = E from Theorem 5.2. If T, =

we have to replace Hy (Q) by H|(Q). Then (5.7) even holds for all

¢ € Hi(Q) if and only zfgeLz( ) if and only if ¢E € Dp(Q) and

—diveE = g. Furthermore, mE = K. In this case, i.e., F € rotR(Q)

and g € L% (Q), we have E = E from Theorem 5.2.

(i) Let T;#(. There exists a unique tripple (E,U,H) € pu Dr,(Q) x

(Rr, (@) NrotRr,(Q)) X Hyne(Q)  such that for all (¥,0,0) ¢
u Dr,(Q) x (Rr,(Q) NrotRr,(Q)) X Hypne(Q)

<d1V 8E7 div 8\P>L2(Q) + <I'0t U, T)Lz(g) + <8H, \P>Lz(Q) = - <g>le 8\P>L2(Q),
(E,rot @)p2(q) = (F, D) 12(q) (5.8)
(¢E, ®>L2(Q) = (¢K, ®>L2(Q)-

It holds U=0 and H=0 as well as —diveE = g. (5.8) holds for all ® €
Rr (Q) if and only if F € rotRr,(Q) if and only if E € Rr,(Q) with rotE = F.
Moreover, nnE = K. In this case, i.e., F € rotRr,(Q), we have E =E from
Theorem 5.2. If Ty =0, the condition g € L% (Q) has to be added, i.e.
—diveE = g if and only if g € L2 (Q). In this case, i.e., F € rotR(Q) and g €
1% (Q), we have E = E from Theorem 5.2.

Remark 5.7 (Remark 3.13). Let us note the following:

(i)  Using the saddle point formulation in Theorem 5.6 (i) for finding a
numerical approximation E, of E provides a Rr,(Q) -conforming
approximation E, € Rr,(Q) of (5.1) or (5.2), whereas using the saddle
point formulation in Theorem 5.6 (ii) for finding a numerical approxi-
mation Ej, of E provides a p Dr,(Q)-conforming approximation Ej, €
p Dr,(Q) of of (5.1) or (5.2).

(ii)  Related variational formulations to those presented in Theorem 5.6
have recently been announced and proposed in [1].
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(iii) (5.7) and (5.8) are weak formulations of
protr rotr E + gradr u + H = protr, F, —divr, ¢E =g, myE=K,
- gradrtdivrna‘fi + protr,U + H = gradr g, rotr,E = F, nnE =K,

i.e., in formal matrix notation

protr,rotr, gradp iy E [ urotr F
—divr, e 0 0 ul| = g ,
T 0o o]l|H K
—gradp divr,e  protr, 1y 1] [ gradr g
rotr, 0 0 Uu| = F
Ty 0 0 ||H | K

Theorem 5.8 (Theorem 3.14). The partial solution vector fields Ep = Ep €
Rr,(Q) N urotRr, (Q) and E, = E, € u Dr,(Q) N gradHp (Q) together with
their potentials Hp € Rr,(Q) NrotRr,(Q), u, € Hf (Q) resp. u, € HY (Q)
from Theorem 5.2 and Theorem 5.3 can be found by the following four vari-
ational double saddle point formulations:

(i) Let Ty #0 . There exists a unique tripple (Ep,u,H) € Rr,(Q)x
HE (Q) X Hine(Q) such that for all (®,¢,0) € Rr,(Q) x Hp (Q)x
Ht,n.s(Q)

(rotEp, rot®) > o) + (e grad u, @) ) + (eH, @) 2(q) = (F,rot @) 1>,
<8EFa grad(P>L2(Q) = Oa
<8EF, ®>L2(Q) =0.
(5.9)

It holds u=0 and H=0. rotEz =F if and only if F € rotRr,(Q).
Moreover, ¢Ep € Dr,o(Q) and nyEp = 0. Hence, if F € rotRr,(Q), we have
Ep = Er from Theorem 5.2, see Theorem 5.3 (i). If T, =10, we have to
replace Hr (Q) by H| (Q). Then (5.9) even holds for all ¢ € H,(Q) and thus
¢Ep € Dro(Q). Furthermore, nyEp = 0. Again, if F € rotR(Q), we have
Ep = Ep from Theorem 5.2.

(') Let T'y#1T . There exists a unique tripple (Hp,v,H) € Rr,(Q) X

Hp (Q) x H,((Q) such that for all (¥,\,0) € Rr,(Q) x Hp (Q)x
Hout(Q)
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(Hp,grad ¥)p2(q) =

(protHp, rot¥) 12 (q) — (gradv, ¥) 2(q) + (H, ¥) 2(q) = (F, ¥) 12()
0,
(HF, ©)2(q) = 0.

(5.10)

It holds v=0 if and only if FlgradHy (Q) if and only if F € Dr,o(Q).
H=0 if and only if FLH,(Q). Thus v=0 and H=0 if and only if F €
Dr,o(Q) N'H,,;(Q)"2@ = rotRr,(Q).  Moreover, urotHp € Rr,(Q)  and
roturotHr = F if and only if F € rotRr,(Q). Furthermore, Hr € Dr,((Q)
and m>Hp = 0. Hence, if F € rotRr,(Q). we have urotHp = Ep from
Theorem 5.2, see Theorem 5.3 (’). If Iy =T, we have to replace Hf (Q) by
H' (Q). Then (5.10) even holds for all \y € H,(Q) and thus Hr € Dro(Q).
Furthermore, n~Hp = 0. Again, if F € rotRr(Q), we have urotHp = Ep
from Theorem 5.2.

(i) Let T'y # 0. There exists a unique tripple (Eg, U,H) € p Dr,(Q) x
(Rr, (@) NrotRr,(Q)) X Hne(Q)  such that for all (¥, 0,0) €
u Dr,(Q) x (Rr,(Q) NrotRr,(Q)) X Hine(Q)

(div EEg, diveW) 2 q) + (rotU, W) 2 (q) + (eH, ')
<E rot(I))Lz
<8Eg7 ®>L2

<g, diveW)2(q),

(5.11)

It holds U=0 and H=0 as well as —le8E =g. (5.11) holds for all
® € Rr,(Q) and hence E € Rr,o(Q). Moreover, nHE = 0. Finally, we have
Eg = E; from Theorem 52 see Theorem 5.3 (ii). If T, =), the condition
geLZ( ) has to be added, i.e., leSEg =g if and only if g € L7 (Q).
Again, (5.11) holds for all ® € Rr(Q), E, € RO(Q), and nnE, = 0. Finally,
if g € L% (Q), we have E, = E, from Theorem 5.2.

(i") For I'y # () see Theorem 5.3 (ii’). Let I'y = (). There exists a unique pair
(ug,7) € Hi(Q) x R such that

V (Y,0) e Hi(Q) xR (egradug, grad ) o) + (7 V) i) = (€ W) 120
<”ga lRQ>L2(Q) =0.

It holds r=0 if and only if gL;2@irRR =R if and only if g € L7 (Q) =
divDr(Q) . Moreover, gradu, € u Dr(Q) with —divegradu, =g if and
only if g € L2 (Q). The second equation of (5.12) shows u, € L% (Q), i.e,
ug € H\ (Q). Finally, if g € L (Q), we have grad uy = E; from Theorem 5.2,
see Theorem 5.3 (ii’).
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Remark 5.9 (Remark 3.15). (5.9)-(5.12) are weak formulations of
,urotrnrotr,Ep + gradrru + H = urotr, F, — dinnEEF =0, nHEF =0,

rotr,urotr, Hp — gradrnv +H=F, divp, Hr = 0, n;HF =0,
- gradrtdivrnsﬁg + protr,U + H = gradr g, rotrtEg =0, nHEg =0,
— divregradyu, + rr = g, nrug = 0,

i.e., in formal matrix notation

protr,rotr, grady 1y | | Er 1 Tu rotr, F
— dinn & 0 0 u = 0 y
Ty 0 0 H | 0
rotr, urotr,  —gradr, | [He [ F
divr, 0 0 v | =101,
77.'7"_; 0 0 H ] i 0
—gradp divr,e  protr, 1| | E, [ gradp- g
rotr, 0 0 U| = 0 ,
Ty 0 0 H | 0
. _ &
[ —divIle grad‘DanRO = ol

Theorem 5.10 (Theorem 3.17). Let F € rotRr,(Q) and g € L*(Q). If T, =0
let g € L7 (Q). The unique solution E = Ep+ E; + K € Rr,(Q) Ny Dr,(Q)
in Theorem 5.2 can be found by the following three variational multiple sad-
dle point formulations:

(i) For I'; #0 see Theorem 5.6 (i). Let T'y = (). There is (E,u,r,H) €
R(Q) x H(Q) x R X Hye(Q), a unique quadruple, such that for all
((I), o, 6, @) € R(Q) X Hl (Q) x R x thg(Q)
(rotE,roﬂD)Lz(Q) + (egrad u, @) 2 (q) + (eH, @) 2(q) = (F, r0t®) (),
(¢, grad ¢) 2(q) + (=7, @) () = (& @) ()
<l/l, IRQ>L2 07
(¢E, 0O)2(q) = (K, 0) 2
( .13)
It holds u=0, H=0, and r=0. Moreover, ~rotE =F and ¢E € Dp(Q)
with —diveE = g as well as nyE = K. Finally, E = E from Theorem 5.2.

(i) Let I', # . There is (E,U,v,H,H) € u Dr,(Q) x Rr,(Q) x H- (Q) x
Hine(Q) x Hyt(Q) , a unique five tuple, such that for all
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(¥, ®,{,0,0) € u Dr,(Q) x R, (Q) x H- (Q) X Hepe(Q) X Hyr(Q)
(div ¢E, diveW) o (q) + (rotU, W) 2 (q) + (eH, ‘P>L2< = — (g, dive¥) > (q)
(E, rot®) 12 — (gradv, @) 12(q) + (H, ®) 2(q) = (F, D) 12(
<U grad w>Lz 0,
(¢, ©) () <81<,®>L2
o)

(U,

LZ

(5.14)

It holds U=0, H=0 and v=0, H = 0. Moreover, —div¢E =g and E €
Rr,(Q) with rotE = F as well as nyE = K. Finally, E = E from Theorem
52.If Ty =T, we have to replace H (Q) by H| (Q) and the assertions hold
as before.

(i) Let T, =T. There is (E,U,v,r,H,H) € p D(Q) x R(Q )le(Q)
R X Hine(Q) X Hyt(Q). a unique six tuple, such that for all (¥
V,0,0,0) € 1 D(Q) x R(Q) x Hi(Q) X R X Hype(Q) X Hu(Q)

(div ¢E, div eW) 2 (q) + (rotU, W) 2 (q) + <SI‘£, Vg = — (g dive?)pq)
(E, rot®) () — (gradv, ®) (o) + (H, ®) (g = (F, ®) 120,
— (U, grad lp>L2(Q) + (irr, ¢>L2(Q) =0,
V,AlRQ>L2(Q) =0,
(eE,®)p2iq) = (eK, @)

(5.14)

It holds U=0, H=0 and v=0, H=0 as well as r=0. Moreover,
—diveE = ¢ and E € Rp(Q) with rotE = F as well as myE = K. Finally,
E = E from Theorem 5.2.

Theorem 5.8 can be extended in the same way.

Remark 5.11 (Remark 3.18). (5.13)-(5.15) are weak formulations of

urotrrotE +gradu + H = urotrF, — divreE + IRT =g, nru = 0,
— gradp. divr, ¢E + protr, U+ H = gradr g, rotr, E — gradp v+ H =F, divr,U =0,
— grad diveE + protU 4+ H = grad,g, rotrE — gradv +H=F, diviU+gr=0, ngv=0,

andnHE K as well as nyE = K, > U =0, resp. wE =K, > U=0, ie,
in formal matrix notation
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protrrot grad 0 13 [E] [ protpF ]
— divre 0 IR u g
0 TR r B 0 ’
Ty 0 0 0]LH. K
[ —grad divr,e  protr, 0 w O ]TEY T grad- g |
rotr, 0 —gradp 0 = U F
0 divr, 0 o ollv|=] o |,
T 0 0 0 0||H K
I 0 s 0 0 O | | H | | 0 ]
[ —gradpdive purot 0 0 1w O07rgE" grad g
rotr 0 —grad 0 O =l U F
0 din 0 IR 0 0 v 0
0 0 w0 0 O||r| | O
oy 0 0 0 ol|lH K
i 0 n 0 0O 0 0 | LH ] L 0 |

We can apply the main functional a posteriori error estimate Corollary
4.6 to (5.1) resp. (5.2).

Theorem 5.12. Let E € Rr,(Q) Np Dr,(Q) be the exact solution of (5.1)
resp. (5.2) and E € L*(Q). Then the following estimates hold for the error
e = E— E defined in (4.1):

(i) The error decomposes, i.e., €= egaq + ey + eror € grad Hll—*t(Q)@Lg(Q)
Hine(Q)Dr2mrot Rr,(Q) and
2 2 2 2
leli2() = legraalr(q) + lenlz(q) + lerotl12()-

(ii)  The projection egraq = Tgrage = Eg — ngradE € gradHll—t(Q) satisfies

2 . . T 2
|egrad|12() = min (Cfp|d“’8 q’+g|L2(Q>+|‘D_E|L§(Q)>

CI’E;zDrn Q)

= max <2<g7 ?) () — (2E + grad ¢, egrad go)Lz(Q))
)

A/JEHII_t(Q
and the minimum resp. maximum is attained at

. _ _ —1
®:=eyuq+E€puDr,(Q), ¢:= (gradr) egrad € Hr, (Q)

with —dive ® = —dive E = g, where H{ (Q) has to be replaced by H' (Q)
, if Ty = 0. In the latter case { is unique only up to a constant.
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(ili) The projection eyor = Tyore = Ep — TolE € urotRr, (Q) satisfies

2 : T ’
|er0t|Lg(Q) = m1n> (cm|rot<D—F|Lz(Q) + |(D—E|L3(Q)>

cDeRl-t (Q

= max <2<F, W) o) — (2E + prot?, rot‘I’)Lz(Q)>

‘i’ean(Q)
and the minimum resp. maximum is attained at

O = erot Ec th(Q), ¥ o= (,u I?)/trn)_lerot € Rr, Q) n rotht(Q)
with rot® = rotE = F, and at any ¥ e Rr, (Q) with ,urot‘i’ = €0t

(iv)  The projection ey = e = H — nyE € Hine(Q) satisfies

|eH|i§( = min min |H-— E—i—grad(p-i-urot(l)|L2

vehL. (@) O<kr, (©)

= max <2(H - E) - lP, lP>L2(Q)
WeH, , +(Q) ¢

and the minimum resp. maximum is attained at

N -1 - . U -
¢ = (gradr[> TgradE € Hll-t(Q), O = (u rotl—n) lnmtE € Rr,(Q) ﬂrotht(Q)

resp. ‘ii =ey € Ht,n’EKQ) with gradgo + ,uroth (Tgrad + nrot)E =
(1 —ny)E, and at any ® € Rr,(Q) with urot® = m,oE, where H{ (Q) has
to be replaced by H' (Q), if 'y = 0. In the latter case { is unique only up to
a constant

If E:= -H + E, with some EL € Ht,“(Q)L , then ey = 0, and in (ii)
and (iii) E can be replaced by E 1. In this case, for the attaining minima it
holds

(i)L ‘= €grad + EL cu Dl",1 (Q), (i)L ‘= erot T EL S RF,(Q)-

Remark 5.13. For conforming approximations Corollary 4.2 and Remark
4.3 yield the following:

(i) IfE € p Dr(Q), then e € n Dr,(Q) and
legrad|r2(0) < cpldive E + 8lr2(q) = cpldive el (q)
(i) IfE € Rr,(Q), then e € Rr,(Q) and
lerotlr2(q) < Co|TOLE — Fl12(q) = cmlrote]2(q)

(iii) If E € Rr,(Q) Ny Dr,(Q), then e € Rr,(Q) Nw Dr, (Q) and this very
conforming error is equivalent to the weighted least squares functional
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F(E) = |H- ”Hﬁﬁg(g) +(1+ cfn)|rotﬁ —F|iz(g) + <1 + CJ%P) |dive E +g|iz<g)7

Le., eﬁzr,(g)mwrn(g) < 7@) <(1+ maX{CfpyCm}2)|e|12zrt(g)mﬂprn(9)'

5.2 Prototype second order systems: Laplacian and rotrot

As prototypical examples for second order systems we will discuss the
Laplacian and the rotrot -system, both with mixed boundary conditions.
Suppose the assumptions of Section 5.1 are valid and recall the notations.
For simplicity and to avoid case studies we assume () # I'; # T.

5.2.1. The Laplacian

Suppose g € L*(Q). Let us consider the linear second order equation (in
classical strong formulation) of the perturbed negative Laplacian with
mixed boundary conditions for a function u : Q — R

—divegradu=¢gin Q, u=0atI,, n-egradu=0atI,. (516)

The corresponding variational formulation, which is uniquely solvable by
Lax-Milgram’s lemma, is the following: Find u € Hy. (Q), such that

Ve H},(Q) (grad u, grad <P>Lg(9) = (& ?)12(0)-

Then, by definition and the results of [2], we get egrad u € Dr,(Q) with
—divegrad u = g. Hence, by setting

E:=grad u € u Dr,(Q) N grad H}t(Q) = u Dr,(Q) N Rr,(Q) N Ht,n’g(Q)LLg(“)

we see that the pair (u, E) solves the linear first order system (in classical
strong formulation) of electro-magneto statics type with mixed boundary
conditions
grad u=E 1ot E=0 inQ, u=0, nxE=0 atly
—diveE=g in Q, n-¢eE=0 atI,, (5.17)
nyE =0 in Q.

Similar to the latter subsection we define the operators A;, A, A; and
also Ag, A4 together with the respective adjoints and reduced operators by
the de Rham complexes

Ap=t Aj=grad 2=TO Agz=div, . Ay=m
{0} oo, Hf((SZ) S Rp, (2) Aazrotr, Dr (©) Aozdivr, L2(Q2) kL {0},
Al=m Y= divp, € s=pro Ay=—grad Al=tq0
{0} &I 2y AEmis g ) Lerin gy STEM ) ST gy

As before, all basic Hilbert spaces are L?(Q) except of H, = L*(Q). Then
(5.16) turns to
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ATAju =g,
Agu = myu =0,
U= 77.'{0}14 =0

and this system is (again) uniquely solvable by Theorem 3.19 as g€
L*(Q) = R(A}) with solution u depending continuously on the data. (5.17)
reads

Au= gradrtu =E, ALE = rotr,E = 0,
Agu = mypu = 0, AJE= —divr,e E=g,
MU = MU = 0, mE = nyE = 0.

We can apply the main functional a posteriori error estimates from
Theorem 4.7.

Theorem 5.14. Let u € Hp (Q) be the exact solution of (5.16), E := grad u,
and (u,E) € L*(Q) x L2(Q). Then the following estimates hold for the errors
e, :=u—uand eg := E—E:

(i) The error eg decomposes, i.e.,

er = epgrad + €xy + eerot € grad Hr, (Q)®p:(q)Hino(Q)Ppqyurot Rr,(Q)

and

2 2 2 2
leelr2q) = lergraliz(q) + leEmliaiq) + e rotli2(0)-

(ii) e, = mave, € divDr,(Q) = L*(Q) and

N 2
|eu|iz(9> = min min (c]%p\divs D + gl2(q) + | — grad @[ 2o + ¢ — u|L2(Q)>

4/;6H11,t (Q) deudr, (Q)

~ 2
= ,Hiin (C}P|div egrad ¢ + gl + |9 — u|Lz(Q)>
W&Hrt(ﬂ)\

grad eudr, (Q)

= max (2(g,P)pz(q) + (2u —divegrad ¢, dive grad )2 ()

r/)eHll_t (@),

grad peuDr,, (Q)

and the minima resp. maximum are attained at
¢ =e,+u€cH-.(Q), ®:=EeuDr(Q),
5 B VA -1
b= (grady,) (—divre) eml (@

with  grad {o,grad&) € u Dr,(Q) and gradp =gradu =E and
—divegradp = —dive E=gas well as —dive ® = —dive E=g.
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(iii) The projection eggrad = Tgrader = E — MgragE € gradHll-t(Q) satisfies

~ 2
ek gradl12(0) = min (Cfp|diV8 O+ gl + |‘1>—E|Lg(g>>

DepDr, (

= max (2<g, ¢)2(q) — (2E + grad ¢, grad <P>L5<Q>>

1
wEHrt Q)

and the minimum resp. maximum is attained at

~

~ — —1
D = €E,grad +E € u Dr, (9)7 QAD = (gradr) €Egrad € Hll“t <Q)

with —dive ® = —dive E=g.

(iv)  The projection eg ot = Tyotep = — TolE € urotRr, (Q) satisfies
~ 2
|eE,r0t|i§(Q) = min <Cm|r0t(D|L2(Q) + |(D—E|L3(Q)> = min |®— E|L2
g veRr, (@) ’ VeRr, o(@)
= max (— (2E + prot'¥, ,urot‘I’)Lz_(Q))

YeRrr, (@)

and the minimum resp. maximum is attained at

~

& = epro+ E€Rro(Q), Wi= (urotr,) epror € Rr,(Q) NrotRr (Q)
with rot® = rotE = 0.

(v) The projection egy = Tyeg = — TtHE € Hine(Q) satisfies

]eE,HEg( = min min |— E+ grad ¢ + ,urot(I)|L2

zpeHl (@) ®eRr, (Q)

= max (— <2E + Y, lP>L2(Q))
Q) ¢

WeH o
and the minimum resp. maximum is attained at

N -1 - . o ~
¢ = <gradr[> TgradE € Hll-t(Q), O = (u rotl—n) 17'cmtE € Rr,(Q) ﬂrothr(Q)

resp. Y= eeH € Hine(Q) with  grad + urot&ﬁ = (Tgrad + nmt)E =
(1—7n)E.

IfE = E | with some EL € Hine(Q )L , then egy = 0, and in (iii) and
(iv) E can be replaced by E . In this case, for the attaining minima it holds

D, = €E grad +E, €uDr,(Q), O := €Erot T E, € Rr,o(Q).

For conforming approximations E € gradH (Q) we have egrot = epy =
0 and ep = eggraa. Especially, if u € HF, (Q) and E:= gradu with a con-
forming approximation % € Hy (Q), the estimates of the latter theorem
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simplify. More precisely, (ii) turns to the following result: If u € Hf, (Q),
then e, € Hf, (Q) and we can choose, e.g., ¢ := u yielding, e.g,,

leulr20) < min <Cfp|diV8 D + glpa(q) + ¢pp|P — grad ﬁhg(g))»

€L Th
which might not be sharp anymore. Similarly, the results of (iii) read as
follows: If % belongs to Hp (Q), then E:=gradu € grad Hf (Q) and
grad(u —u) = eg = eggrq € grad H}t(Q) as well as
: : - 2
|eE’i§(Q) = min <cfp\dlvs @ + g|2(q) + |P — grad u|L§(Q))

<D€,14Dl—n (Q)

= max <2<g7 ?)12() — (grad(2u + @), grad QD>L3(Q)>

1
(oeHrt (@)

and the minimum resp. maximum is attained at

A

-1
O :=ep+ grad u= grad uecu Dl",, (Q)y Q) = <gradrt> e € HlLt(Q)

with —dive ® = —dive E = g. Note that (5.18) are the well known func-
tional a posteriori error estimates for the energy norm associated to the
Laplacian, see, e.g., [17].

5.2.2. The rot rot-operator

Suppose F € rotRr,(Q) = Dr, o(Q) N'H,,(Q) @ and g € L*(Q) as well as
H € H,:(Q). Let us consider the linear second order equation (in classical
strong formulation) of the perturbed rotrot-operator with mixed boundary
conditions for a vector field B: Q — R’

rot urotB=F in Q, nxB=0 at I,
diviB=g¢g inQ, n-vB=0, nxurotB=0 atI}, (5.19)
nﬁB =H in Q.

Here 7~ : L*(Q) — H,,(Q) and for simplicity we set v:=id for the
matrix field v. The partial solution B, can be computed by solving a
Laplace problem. The corresponding variational formulation, which is
uniquely solvable by Lax-Milgram’s lemma, to find the partial solution Bg

of

roturotBe =F in Q, nXBp=0 at T,
divBe =0 in Q, n-Bp=0, nxurotBg=0 at I},
TC;ZBF =0 in Q,

is the following: Find Br € Rr, (Q) N rotRr, (Q), such that'®

®Note that (5.20) holds for all ® € Rr,(Q) NrotRr,(Q) if and only if it holds for all ® € Rr,(Q) since F €
rotRr, (Q).
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V @ € Rr,(Q) (rotBF,rot(I)>Lﬁ(Q) = (F,®)p2(q)- (5.20)

Then, by definition and the results of [2], we get urotBr € Rr,(Q) with
roturotBr = F. Hence, by setting

E := prot Br € Rr,(Q) N prot Rr, (Q) = Rr,(Q) N u Drn,o(Q) N th_,g(Q)LLf:(“)

we see that the pair (B, E) solves the linear first order system (in classical
strong formulation) of electro-magneto statics type with mixed boundary
conditions

urot B=purot Be=E, rot E=F inQ, nxB=0, n-¢cE=0 atl,,
divB = g, diveE=0 inQ, #n-B=0, nxE=0 atly
nﬁB =H, mwE=0 in Q.

(5.21)

Let us define operators T;,T,, T5; using A;, Ay, A; together with the
respective adjoints and reduced operators by the complexes

Tii=iq0) Tji=r (o)

T5:=Ay=gradp, Thi=Ag=
Rl"
¢

rotp, Tii=Ag=divp, .
{0} HE, () (@) Dr, () L*(Q) {0},

Ti:= T4:=As=rotr, T} :=Ag=divr,

{0} T4:=Aj=grad
{0 = HE(Q) 5 Rp (Q) % Dp,(9)

Ti=r (0}

L2(Q) {0},

As before, all basic Hilbert spaces are L*(Q) except of H; = L2(Q), corre-
sponding to the domain of definition of T3. Then (5.19) turns to

T5T,B = rotr,urotr,B = F,
T:B = divr,B = g,
TCzB = nﬁB =H

and this system is uniquely solvable by Theorem 3.19 as F € R(T),g €
R(T]), and H € K, with solution B depending continuously on the data.
(5.21) reads

T,B = urotr, B=E, T;E = —divr,e E=0,
TiB=divr,B=g, T,E = rotr,E = F,
B = nﬁB =H, m3E = nyE = 0.

Again, we can apply the main functional a posteriori error estimates
from Theorem 4.7.

Theorem 5.15. Let B € Rr,(Q) N Dr,(Q) be the exact solution of (5.19), E :
= urotB € Rr(Q), and (B,E) € L*(Q) x L}(Q). Then the following esti-
mates hold for the errors eg := B— B and eg :== E—E:
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(i) The errors eg and er decompose, i.e.,
eg = €B,grad + ij“_l’ + eB,rot S grad Hll—n (Q)@Lz(Q)HM(Q)@Lz(g)rot th (Q),
€E = €Egrad + CEH + €E rot € grad Hll“r(Q)@Lg(Q)Ht,n,a<Q)@L§(Q)MrOt an (Q)

2 2 2 2
and lenl12(0) = lepgral2) + le, 7 li) + lesrotl)

2 2 2 2
leeli2q) = lergrdliz(q) + leemliaig) + leErotli2(0)-
(ii) The projection epgrad = Mgrades = By — Ttgradﬁ € gradH}n (Q) satisfies

~ 2
lep.grad|72) = min <Cfp|diV‘D—g|Lz(Q)+|(D—B|L2(g)>

®eDr, (Q)

= max) <2<g, (p>L2(Q) + <2§ — grado, grad<P>Lz(g))

1
HL (0
(5 l'n<

and the minimum resp. maximum is attained at

~

N SN |
o = €ggrad + B € Dr, (Q), Q= — (gradl—n) €B.grad € H}n (Q)
with div® = divB = g.

(lll) The prOjectiOH eB,l’Ot = Tot€B — BE - nrotE € rOthr(Q) Satisﬁes

~ 2
les rotlfz() = min min (Cfn\fot‘l’ = Flpq) + cm|®@ — prot¥| s q) + [V - B|L2(Q))

WeRr, (Q) ®eRr, (Q

- 2
= min ¢ |rot prot W —F| ;) + |‘P—B|LZ(Q))
prot¥eRy, (¥eRr, @),
= max 2(F,0)2(q) — (2E + rot prot ©, roty rot@)Lz(Q))
pwot@err, (@ °FTn @),

and the minima resp. maximum is attained at

A

Y .= €B rot + E S an(Q)a (i) =Ec th(Q)’

and A@ = (u f(?[rn)_l(rﬁ‘grt)_le&mt € Rr,(Q) NrotRr, (Q)  with prot'¥
prot®, € Rr,(Q) and prot¥ = protB = E and roturot¥ = rotE = F as well
as rot® = rotE = F.

(iv) The projection €7 = s = H- nﬁg € H,(Q) satisfies
~‘i2(9) = min min |[H—B—grade + rot(D|i2(Q)

e
B/H peHL (Q) ®eRr, (Q)
I'n 1

— max <2(H—§) —IP71P>L2(Q)

VeH, +(Q)



108 @ D. PAULY

and the minimum resp. maximum is attained at

. —1 - N — _ ~
= — (gradr”) TgradB € Hll-n(Q), ® := (rotr,) 17tmtB € Rr,(Q) N urotRr, (Q)
resp. ‘i’~:: e, € Hut(Q) with  —grad® + rot(} = (Tgrad + nrot)ﬁ =
(1-mn~)B.
H
(v)  The projection eggrad = MgradeE = — ngradE € gradHll-t(Q) satisfies

2 . . ~ 2 . =2
|k grad|12() = min (%|le8 CD\Lm)H(D—E\Lg(Q)) = min |®—E[}q

epDr, (Q) ®epDr,, o @

= max (— (2E + grad ¢, grad ‘P)Lg(Q))

1
r/JeHl.t Q)

and the minimum resp. maximum is attained at

A

~ —_— -1
O = €E,grad +E€ 2 DFn,O(Q)a (AP = (gradrt> €E grad € H]I"I(Q)

with —dive ® = —dive E = 0.

(vi) The projection eg ot = Myoreg = E — TolE € urotRr, (Q) satisfies

~ 2
‘eE,rotEg(Q) = min <cm\rot(l) — Flp) + @ _E’Lg(g))

(DEth (Q)

= max <2<F, W) 2q) — (2E + prot¥, urot‘P)Lz(Q))

Ll’eRl—n (Q)

and the minimum resp. maximum is attained at

A

O = €Erot T E S Rr[(Q), ‘i’ = (,u I%_:Crn) _13E,rot S an (Q) N rotht(Q)

with rot® = rotE = F.

(vii) The projection egy = Tyep = — nyE € Hine(Q) satisfies

2 . . ~ 5
legn|i2q) = min min |—E + grad ¢ + prot®|}:q)
¢ (/)GHll_,t(Q) ®eRr,, (Q) ]

— maXx <—<2E+T,1P>L?(Q)>

WeH; 5 o(Q)

and the minimum resp. maximum is attained at

.\ -1 ~ . o ~
o = (gradr!) TgradE € HIFI(Q), (O (,u rotrn) 1nmtE S an(Q) N rotht(Q)

resp. ‘ii:: ee € Hene(Q) with  grad® + protp = (Tgrad + nrot)E =
(1 - TCH)E.
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IfB H—l—BL with some BL € ’Hnt( )L , then e, 5= 0, and in (ii)
and (iii) B can be replaced by B,. IfE E, wzth some El € Hine(Q )LLFZ.(“’,
then egy = 0, and in (v) and (vi) E can be replaced by EL

A reasonable assumption is, that we have conforming approximations

B, € grad H: (Q) = Rr, (@) N'"H,,,(Q)", Br € Ry, (Q)

of By € Dr,(Q) NgradHp (Q) and Br € Rr,(Q) NrotRr,(Q) and hence a
conforming approximation

E := urot1~3p € urotRr, Q)

of E € Rr,(Q) N urotRr, (Q), which 1mphes ep = egrot € {rotRr, (Q) and
eEgrad = €p = 0 as well as B—H= Br+ B; € Rr,(Q) and e € Rr,(Q).
In this case the estimates of the latter theorem simplify. More precisely,
e.g., (iii) turns to the following result: If BF,B € Rr,(Q), then B,ep €
Rr,(Q) and we can choose, e.g., ¥ := B yielding, e.g.,

|eB.rot|12(q) < min ( 2 [rot® — F| () + cm|® — prot B|L2 )

®eRr, (Q)

which might not be sharp anymore. Similarly, the results of (vi) read as fol-
lows: If Br € Rr (Q), then E := purot By € urotRr (Q) and urot (B— Br) =
ep = eprot € HrOt R, (Q) as well as

- 2
’eE’ig(Q) =min,_, @ (cm]rotq) Flp2q) + \(I)—,urotBF\Lg(g)>
=max,_, (2 (F, ‘I’>L2(Q) — (urot (ZEF + ‘I’) , Lrot ‘I’)Lg(g))

and the minimum resp. maximum is attained at

~

O :=¢p —I—urotEF € th(Q), Y= (,u r’(?[rn)

eg € an (Q) M rot th<Q)

with rot® = rotE = F. Note that (5.22) are in principle the functional a
posteriori error estimates for the energy norm associated to the rotrot
-operator, which have been proved in [8].

5.3. More applications
There are plenty more applications fitting our general theory for the sys-
tems (1.5), (1.10), (1.11), i.e
Azx :f, AZAzx :f, AZAzx :f,
Alx=g, Alx =g, AAix =g,
THX = k, X = k, THX = k.
E.g., if we denote the exterior derivative and the co-derivative associated
with some Riemannian manifold having compact closure by d and ¢, we
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can discuss problems like

dE =F, —oudE = F, —oudE = F,
— 0¢E = G, — 0¢E = G, —doeE = G,
nE = H, nE =H, nE=H

for mixed tangential and normal boundary conditions for some differential
form E. Moreover, problems in linear elasticity, Stokes equations, bihar-
monic theory, general relativity, rot rot rot rot-operators, to mention just
a few examples, fit into our general framework. Note that all these prob-
lems feature the underlying complexes (1.3) and (1.4). More precisely, let
QCcR or Qc RN ,N>2, be a bounded weak Lipschitz domain with
weak Lipschitz interface, and, for simplicity, let us just present homoge-
neous material parameters with ¢ =id, u =id and skip the cohomology
projector 7. Then we have the following complexes and linear systems:

e clectro-magnetics (as already extensively discussed before)

Ag=¢... Aqi=grad As=rot As=di Ag—r. .
S B0TE HL(Q) ———% Ry (Q) T D (Q) T L) T L
n=m... A=—div Ab=ro A.*zfgrad =y
o Qo L2(q) Smmdvn Dr.(Q) JaTrotr, Rp, () <250 HL () P

E.g., we can handle the systems

rotr,E = F, rotr,rotr,E = F, — gradl—ndivr,E =F,
—divr E =g, —divr E=g, rotr E = G,
or
—divr,gradp u = f, rotr, rotr, E = F,

— gradp divr E = G.

e generalized electro-magnetics (differential forms)

L Ao=re ho (© Ar=dry - Agoa=dny pi-1 () Aq=dry DY, () Agr1=dr,  An=dn, L2V () AN41=T
e tt® Ty . Ty o
Ap=r 1200 Af=-on,  Agoa= A @) Ag=—19r, Al (@) Ap=—Om,  Ap=-on o} (@) N+1
E.g., we can handle the systems
dr,E=F, —6rdrE=F, drE=F, —0ordrE=F,
—or,E =G, —-or,E=G, —drr,E=G, —drdrE=G.

e biharmonic problems, Stokes problems, and general relativity

Aq=Grad gradp, Ag=Rotg 1, Ag=Divy 20 Ag=r...

Ag=t... X
Rp, (48) ———— D (% T)

H2, ()
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Ag=m... 2@ Al =div Divg 1, 0Dy, (0:5) Aj=sym Roty Ropm () AL =— dev Gradr, WL (@) Af=c.
E.g., we can handle the systems
ROtSItS =F, DiV?l‘ItT =F,

div DiVS,l"nS =4,

symRoty - T = G,

or
symRotr -, Rots S = F, — devGradr, Divyr, T = F,
divDivs r,S = g, symRotrr, T = G,
or
ROtg’rtS =F, DiVT’rtT =F,
Grad gradr[div Divsr,S = G, Rots r,sym Rotrr, T = G,
or

div Divs r, Gradgrad u = f, — Divy r,devGradr E = F.

e linear elasticity

Ag=RotRot. Ag=Dive
Ap=t... . 2 S, Tt - 3=Divg 1y
RRP, (©;8) ————— Dp, (%)

1 Aj=sym Gradp,
c——— Hp () ———————
t

- Ay=
L2() —4=7

* *

.
Al=m =-Divg
0 L2(Q) L 5,Tn

AL =RotRotd Y .
D, (2;8) ¢+——————=" RR[ (;5)

*

*
3=— sym Gradp, 1 A=
HFn Q) +—— -+

E.g., we can handle the systems

RotRoti S = F,  RotRotg - RotRotg S = F, RotRotg - S = F,
—Divsr,S = G, —Divsr,S = G, — symGradrtDivSInS =G,

or

RotRot{ - RotRotg - S = F,
—sym Gradr,Divsr,S = G.

— Divs r,sym Gradr,E = G,
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