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ABSTRACT

We study eigenvalue problems for the de Rham complex on varying three-dimensional domains. Our analysis includes
the Helmholtz equation as well as the Maxwell system with mixed boundary conditions and non-constant coefficients.
We provide Hadamard-type formulas for the shape derivatives under weak regularity assumptions on the domain and
its perturbations. Our proofs are based on abstract results adapted to varying Hilbert complexes. As a byproduct of our
analysis, we give a proof of the celebrated Hellmann-Feynman theorem both for simple and multiple eigenvalues
of suitable families of self-adjoint operators in Hilbert space depending on possibly infinite dimensional parameters.
This series of papers consists of Parts I and II.

1 | Introduction

The analysis of the dependence of the eigenvalues and eigenfunctions of elliptic operators upon variation of the under-
lying domain is a classical problem considered in many papers in the literature with applications in approximation,
optimization, homogenization, control theory, and mathematical physics. It is impossible to give an account of all contri-
butions in the literature and we refer to the monograph [1] for an introduction to this topic in particular to the method
of transplantation used in this paper. Needless to say that the Laplace operator and other second-order partial differen-
tial equations have received much more attention than higher order operators and systems, the analysis of which often
leads to various technical and theoretical obstructions as well as paradoxes, see for instance [2-6] for polyharmonic
operators and to [7, 8] for elliptic systems. From this point of view, the case of the Maxwell system has been investi-
gated even less, cf. [9-14]. In particular, we note that differentiability results and Hadamard-type formulas for shape
derivatives are proved in [10, 12, 14, 15] under suitable regularity assumptions on the domains and the corresponding
perturbations.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited.
© 2026 The Author(s). Mathematical Methods in the Applied Sciences published by John Wiley & Sons Ltd.

Mathematical Methods in the Applied Sciences, 2026; 0:1-31 1
https://doi.org/10.1002/mma.70458


https://doi.org/10.1002/mma.70458
https://orcid.org/0000-0003-2502-5661
https://orcid.org/0000-0003-4155-7297
https://orcid.org/0000-0002-1198-4338
mailto:dirk.pauly@tu-dresden.de
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/mma.70458
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fmma.70458&domain=pdf&date_stamp=2026-02-09

The main aim of the present series of papers is to relax those regularity assumptions gaining one degree of smoothness and
to provide a unified approach including both the Helmholz equation and the Maxwell system. This is done by analyzing
the corresponding de Rham complex and its domain perturbations. A further contribution of our papers consists in the
fact that we consider nonconstant physical parameters such as the electric permittivity € and the magnetic permeabil-
ity u. In particular, we give a rigorous proof of a formula found by Hiromasa Hirakawa in [16], pp. 91-93 which is a
Hadamard-type formula for the Maxwell system. Moreover, we consider the general case of mixed Dirichlet-Neumann
boundary conditions.

We note that the proof of the Hadamard formulas can be obtained at a formal level by applying the Hellmann-Feynman
theorem, a classical result is quantum mechanics that reduces here to a straightforward differentiation of the Rayleigh
quotients depending on a parameter (see [17] for a recent discussion on this theorem and references). However, to dis-
cuss the dependence of the eigenvalues on infinite dimensional parameters and to consider multiple eigenvalues, we
follow the approach developed in [18] and in particular we consider the elementary symmetric functions of the eigen-
values since these functions depend smoothly on the parameters as simple eigenvalues do. The results in [18] concern
general families of compact selfadjoint operators in Hilbert space with variable scalar product and are applied in [12] to
the Maxwell problem. To do so, the authors of [12] have to consider a penalized problem which requires C!! regular-
ity assumptions on the domain perturbations. Here, to consider domain perturbations of class C*!, we do not penalize
the problem but this prevents us from using the results of [18] in a direct way because the operators under considera-
tion are selfadjoint but not compact.! Thus, we are forced to give new proofs of abstract theorems concerning families
of selfadjoint operators in Hilbert space. As a byproduct of our analysis, we provide a proof of a general version of the
Hellmann-Feynman theorem for families of operators suitable for de Rham complexes in Hilbert spaces, see Part II of
this paper at hand.

This Part I of the paper series is organized as follows. Section 2 is devoted to notations and preliminaries on the
Functional Analysis Toolbox. Section 3 is devoted to the analysis of the eigenvalue problem for the de Rham com-
plex on transplanted domains. In Section 4, we conclude this first part with some formal computations to derive
the shape derivatives of the eigenvalues assuming that those are simple and the corresponding eigenvectors are
differentiable.

In Part IT of this series of papers, we present Hadamard type formulas and related findings obtained by a direct application
of the Hellmann-Feynman theorem together with sound proofs of all results.

We conclude this introduction with two subsections where we highlight the main problems under consideration and
briefly discuss the approach of domain transplantation used in this paper.

Until stated otherwise, let Q be a bounded open set in R with boundary I" and let 4,, 4, > 0. Moreover, let v € L*(Q, R)
be positive with respect to the L2(Q)-inner product, and let € and y be admissible symmetric matrix fields, that is, € and

u belong to L®(Q, IRS;‘;I) and are positive with respect to the L>(Q)-inner product, cf. [19-22]. The required regularity of
I', v, g, u will be specified along the paper.

1.1 | Eigenvalues of the De Rham Complex

We shall consider the Dirichlet Maxwell eigenvalue problem

elrotuy'rot E= ,E inQ,

(1
nxE=0 onT.
The corresponding Neumann Maxwell eigenvalue problem reads
elrotu'rot E= ,E inQ,
(2

nxu'rot E=0 onT.

Note that any solution of (1) or (2) automatically satisfies dive E = 0 in Q, and that in (1) and (2) we have additional
n-rot E=0andn-eE = 0onT,respectively.
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We investigate also mixed boundary conditions, that is, the Maxwell eigenvalue problem with mixed Dirichlet/Neumann
boundary conditions

elroty ' rot E= 1, E inQ,
nxE=0 onTl, 3)

nxu 'rotE=0 onTl,,

where I is decomposed into two relatively open subsets@ c I', cT"and T, :=T"\ l?, Note that again we have dive E = 0
andn- rot E|, =0andn-eE| =0.

Moreover, we shall discuss the full spectrum of the de Rham complex. Hence, we also investigate the scalar Laplacian and
its dual, that is,

—vldiveVu=Agu inQ,
u=0 onT, 4)

n-evVu=0 onl,,
and
-VvldiveH = A)H inQ,
vildiveH =0 onT,, (5)
n-eH =0 onl’,.
Asin (3)itholds rot H =0andn x H|. =0butonly [.v'diveH =0if[, =T.

In view of (3) and (5), we shall also discuss the generalized vector Laplacian

(e'roty ' rot = Vvl dive)E = 4, E  inQ, Ao1 € {Ags AL )
nxE=0, vidiveE=0 onT,, (6)

nXxulrotE=0, n-¢E=0 onT,.
Note that for €, u, and v being the identity mappings we have

e lrot y'rot — Vv !dive = rotrot — V div = —A.

1.2 | Shape Derivatives of Eigenvalues

We intend to study variations of the domain and the boundary conditions by replacing Q and the boundary parts I',,
I, with
Qp 1= DO(Q), Iy :=®(D), [ei=@), e :=oT,),

respectively, where
D:Q—-Qy

is a bi-Lipschitz transformation. In particular, for Z € {0, 1}, we are interested in the variations of the eigenvalues
0 <A1 (P) S App(@) <+ < App (P S App(P) < -+ = 00
in the domain Qg and their elementary symmetric functions with respect to changing transformations @.

For simplicity, assume here that €, y are the identity matrices and that v = 1. Let 4, ,(®) and 4, ,(®) be eigenvalues with
eigenvectors u and E of (4) and (3), respectively. As is well-known these eigenvalues can be written by means of Rayleigh
quotients as

|Vu|?, |rot E|?
LX(Q LX(Q
Ao i (®) = %, A (@) = Z—(Q) (7
|l |EI,
L2(Qq) L*(Qg)
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In particular, assuming that the eigenvectors are normalized in L?(Qg,) we have

— 2 _ 2
Aor@) = 1Vullyy o (@) = [rot B, .
Then also the dual eigenvectors
H:= A;}/z@wu, B:= A;}ﬂcb) rot E

are L%(Qg)-normalized eigenvectors of (5) and the respective dual of (3). Moreover, we have the dualities

u= Ay (@)div H, E= A, (@rot B,
Ao = |div H|ﬁz(%), Ao = |rOt B|f2(%).
Note that the dual of (3) reads
ulrote'rotB=A4B inQ,
nxelrotB=0 onT,, (8)

nxB=0 onl’,,
which incorporates also the conditions div uB = 0and n - MB|r, =0andn - rot B|r,, =0.

In this paper, among other results, we prove Hadamard type formulas for the directional derivatives of the maps ®
A (@) for I € {0,1}. This means that, given a fixed direction ¥ in the space of Lipschitz transformations ®, we compute
the limit

A (@ + B — A, (D)

Oy 4,,(®) = lim -

)
Recall 95 4, (@) = /1; k((I))‘I’. As customary, it is convenient to consider ¥ as the pull-back of a transformation ¥ defined on

Qg4 thatis ¥ =W¥od, and to express the formulas for the derivatives as volume or boundary integrals on Q. At a formal
level, assuming the differentiability of the eigenvalues and eigenvectors with respect to ® (which might fail for multiple
eigenvalues, cf. Part II), the Hellmann-Feynman theorem allows to obtain the formulas for dg 4, ,(®) by differentiating
the Rayleigh quotients (7) with respect to @ (in direction ¥ and keeping fixed the eigenvectors involved). By doing so, we
obtain

05 A9 1 (D)

= ((symtr V¥)H, H)Lz(gm) +{((divWu, u) 2, (10a)
Ao k(D)
O Ay (D@
%kq())) = ((symtr V¥)B, B) g, + ((symtr V®)E, E) > q ), (10b)
Lk

cf. (31) and Part II, where
symtr V¥ :=2sym V¥ — tr V¥ = V¥ + (V¥)" — div P.

Then, under more regularity assumptions on eigenvectors, it is possible to integrate by parts and write these formulas by
means of surface integrals as follows:

dg Ay 1 (D

Tt )=/ (|H|2—|u|2)‘1’-"df’—/ (IHP* = ul*)¥ - n do, (11a)
Ao 1 (@) Lo lo

Og A (D

= Lk():/ (|B|2—|E|2)‘P-"d"‘/ (IBI* ~|E*)¥ - n do, (11b)
A1 4 (@) Lo To

see Part II. These computations are quite involved.

Note that formula (11a) is well known at least for non-mixed boundary conditions, cf. for example [18, 23], and for-
mula (11b) has been recently proved in [12, 15] for sufficiently regular perturbations. Formula (11b) was found in a
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heuristic way in [16] with T", = @ for arbitrary € and x and another interesting equivalent formula was proved in [10], see
also [14].

It is important to observe that the left and right derivatives in (9), that is, A — 0¥, coincide if the eigenvalue under consid-
eration is simple, while they might be different if the eigenvalue is multiple (the difference corresponds to the choice of
different eigenvectors in the formulas). This phenomenon is well-known for many eigenvalue problems associated with
families of self-adjoint operators depending on some parameters. It is also well-known that for perturbations depending
on one scalar parameter, it is possible to apply the Rellich theorem and relabel the eigenvalues to guarantee their differ-
entiability. On the other hand, it was proved in [18] that the elementary symmetric functions of the eigenvalues which
bifurcate at a multiple eigenvalue are differentiable no matter whether the parameter involved is one dimensional or not.

2 | Preliminaries
2.1 | Sobolev Spaces and Boundary Conditions

Let k € Ny U {0 }. We define (for scalar, vector, or tensor fields)

CIF,(Q) :={wly : v € CKR®), suppy compact, dist(suppy,I’,) > 0},
CYlQ) :={ylg : v € C™ (R, suppy compact, dist(suppy,T}) > 0}.

Recall that I', is a relatively open subset of I'. Note that Cg(ﬂ) and Cg’l(ﬂ) are often denoted by ck (ﬁ) and Co*l(ﬁ), respec-
tively. With the Lebesgue space L?(Q) we have the standard Sobolev spaces in the weak sense

H'Q) :={y e ’(Q) : 0"y €LX(Q) V |a] <k}

={wel’(Q : V]a| <k I¥, €LX(Q) VO ECT(Q) (w,0°0)0) = (-1)"(w,.0)2q)}
RQ) :={¥Yel*(Q) : rot¥el*Q)}

={Yel’(Q) : ¥, €LX(Q) YO ECT(Q) (¥, 10t0) 2 = (Y01 O) 120y }»
DQ) :={Yel*(Q : div¥el*(Q)}

={YelX(Q) : Fyy €L(Q) YVOECT(Q) (¥.V0) 20 = —(Waiv- 120 }-

Note that R(Q2) and D(Q2) are the well-known spaces H(rot , Q) and H(div, ), respectively. We introduce boundary condi-
tions in the strong sense by

. — HY(Q) . —=——RO oo, D)
er Q) .= CF, (Q) s RF,(Q) = CF, Q) s Dl", Q) .= CF, Q) .

By standard Friedrichs’ mollification, we observe

H'(Q) R()

1 0.1 0,1 0Ty
HL@=CPl@ Rr(Q)=Cl(Q . Dr, (€) = Cr ()

Also boundary conditions in the weak sense are introduced by
HI’EY(Q) = {q/ eHQ) : Vi]e|<k Vo€ CP Q@ (v, 0"0)q = (—1)|a|<a“,9>L2(9)},
R;,(Q) = {¥ERQ) : VOECT(@ (¥, 10tO)q = (ot O ),
D (@) = {‘P €DQ) 1 VOECT(Q) (¥.VO):q = —(div lP,@)LZ(Q)}.

Note that for I', =  we have

Hi(Q) = H'(Q), R;(Q) = R(Q), Dy(Q) = D(Q).
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2.2 | Weak and Strong Boundary Conditions Coincide

For full boundary conditions there is a simple result that “weak equals strong” holds without any additional assumptions
in a certain sense (the test fields can be chosen from a possibly larger space). Unfortunately, the proof does not allow for
mixed boundary conditions.

Lemma 2.1 (Weak equals strong for full boundary conditions). It holds
HMQ) = {w eH'(Q) : VO EDQ) (y,divO) g =—(Vy,0):q ]
Rr(Q) ={¥YERQ) : VOERQ) (¥, rot®); g = (rot¥,0) 4}
Dr(Q) ={¥YeDQ) : VOEH Q) (¥,VO):q =—(div¥,0):q}

See the appendix for a proof. For a definition of the segment property used in the following lemma we refer to [24].

Lemma 2.2 (weak equals strong for no boundary conditions/density of smooth fields). Let Q have additionally
the segment property. Then
Hg(sz) = H"(Q), Ry(Q) = R(Q), Dy(Q) = D(Q).

In other words, C;"(Q) = C°°(§) is dense in H*(Q), R(Q), and D(Q), respectively.

Proof. The proof for H'(Q) can be found, for example, in Agmon [25] or in Wloka [26], Theorem 3.6, and it liter-
ally carries over to R(Q) and D(Q) as the mollifiers work similarly for rot and div. The result for H*(Q) follows by
induction. m]

In case of Lemma 2.2, we set

H Q) := Hy(Q) = HY(Q), R(Q) 1= Ry(Q) = R(Q), D(Q) := Dy(Q) = D(Q).

Lemma 2.3 (weak equals strong for full boundary conditions).  Let Q have additionally the segment property.

Then . .
H(€2) = HL(LY), Rr(©2) = Rp(€2), Dr(€2) = Dr(£).

Proof. This follows by the same technique used in the proof of Lemma 2.1 in combination with the density results from
—R@
Lemma 2.2, for example, R(Q) = R(Q) = Ry(Q) = C;"(Q) ( ). O

For mixed boundary conditions, that is, @ # I', # T, the question “weak equals strong” is more delicate. The equality can
be proved under the assumption that Q has a Lipschitz boundary in the weak sense and I', has a relative boundary in
" which is also Lipschitz in the weak sense. In particular, I is a Lipschitz manifold of codimension one in R* and the
relative boundary of I'; in I is a Lipschitz submanifold of codimension one in I'. In this case, we say that (2, I',) is a weak
Lipschitz pair. Recall that usually “Lipschitz in the weak sense” means that the open set can be locally flattened near the
boundary by means of a Lipschitz diffeomorphism. This condition is weaker than “Lipschitz in the strong sense” in which
case the open set can be locally represented near boundary as a subgraph of a Lipschitz function.

A proof of the following lemma and the precise definition of a weak Lipschitz pair can be found in [19] or [22].
Lemma 2.4 (Weak equals strong for mixed boundary consitions). Let (Q,T’,) be additionally a weak Lipschitz

pair. Then
H. (Q) = Hf (), Rr(Q) = Ry, (), Dr (Q) = D (Q).

2.3 | The Transformation Theorem

Let ® € C*(R3, R?) be such that
D: Q- Q) =Q
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is bi-Lipschitz, and regular, that is, ® € C*}(Q, Q,) and @' € C*/(Q,,, Q) with?
Jp=@ =(VD)T, essinf det Jg > 0.
Such regular bi-Lipschitz transformations will be called admissible and we write
O e L(Q).
For ® € L(L2) the inverse and adjunct matrix of J4 shall be denoted by
It adj Jo 1= (det Jp)J 5",

respectively. We denote the composition with ® by tilde, that is, for any tensor field y we define
Y i=yoed.

Moreover, let
Ip:=0), T[,4:=0T,), I[,g:=0T,.

A proof of the following theorem for differential forms can be found in the appendix of [28]. Here we focus on the special
case used in this paper.

Theorem 2.1 (Transformation theorem). Letu € HJ. ,(Qq), E €Rp (Qq), and H € Dy, (Q). Then

Tg)u =ue HII. (Q) and Vfgu = TéVu,
toE 1= J;E €Rp(Q) and rot 7y E = 75 rot E,
12H := (adj J,)H € D (Q) and divel H = 7} div H.

with 7, f 1= (det J)z3 f = (det Jo)f € LAQ) for f € LX(Qg). Moreover,

% H,(Q0) > HE @, R, () = B (@),

1
To
7o 1 LA(Qg) » LX(Q), 73 : Dr, (Qg) = D, (Q)

are topological isomorphisms with norms depending on Q and Jg. The inverse operators and the L*-adjoints, that is, the
Hilbert space adjoints of 7§ : L*(Qq) — L*(Q), are given by

1

-1 2 3 0
AR @y =1l @)=

@—17 (Tg)* = TS

o1’ (Té)* =12

(D_l ’

respectively.

Proof. 1fue COF’;(Q(D) we have by Rademacher’s theorem u € C%l(Q) and the standard chain rule (u)’ = 4@ holds,
that is, ’

Vil = V&Vu = J] Vu. (12)

Then we use an approximation argument. For u € H}W(Q@) we pick a sequence (u”) C COF;;(Qq)) such that ¥/ — E in

Hll, @(Qd,). Then u — E and Vu? — Vuin L2(Q) by the standard transformation theorem. By (12) we have W e C?’I(Q) C
HL (©) with

W, Vel =JIVe > IV in AQ).
Since Vi : HL (@) C L*(Q) — L*(Q) is closed, we conclude & € H. (Q) and

Vi = J g Vu. (13)
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For the classical chain rule in Sobolev spaces see, for example, [18].

Assume E € C! Q). Then E € CY' (@) and

J4E =VOE = [V®, V®, VO,]E = ) E,VO,.

J
J
AsVO; € VHY(Q) c R(Q) we conclude J;E € R(Q) and

J

rot(Jg E) = YVE; x VO, = Y (J;VE) x VO,
J
= Y (1ve, vo, Vo] VE, ) x Vo,
J
= 30, E;V0, xV®; = Y (3, E; - 0,E,)VP, X VO,
Jsm Jj<m
= [VO,x VO, V®,x V®, V® xV®,] ot E = (adj J,) Tot E. (14)

Moreover, by a mollification argument it follows that J Ee Rr (€). Again, the general case E € Ry (€,,) can be treated
by an approximation argument. For this, we consider a sequence (E* )ien C C?’lq) (Qg) such that EY — E in R(Qg,). Then

E? = E and rot E/ — 1ot E in L2(2). Hence by the previous argument it follows that J. ; E° €Rr, (Q) with
JIE? - JTE, rot(JJE?) = (adj Jp) rot E* — (adjJp) Tt E  in LX(Q).
Since roty, : Ry () C L*(Q) — L*(Q) is a closed operator, we conclude J Ec Rr () and
rot (Jg E) = (adj Jy) Tot E, (15)
which completes the proof of the transformation rule for ré).

We now consider the case of ré. Assume H € Cl(l‘ld) (Q4p)- Then He CIO,'I(Q) and
(@dj Jo)H = [V, X VO, VO, X VO, V&, XVD,JH = ) HVD,xV,
G.m,l)
cf. (14), where the summation is over the three even permutations (j, m, l) of (1, 2, 3). Since V®,, X V®, = rot (®,V®,) €
rot R(©2) C D(L2) we conclude that (adj J4)H € D(L2) and
div((adj J®)ﬁ> = Y VH, (VO,x Vo) = Y (JIVH) (VD, x VO)
Gm.D) ,m,l)

= Y (Iv0, Vo, Vo, VI ) - (VD, x Vo))

(.m0
= ) O H, VP - (VO, X VD)
(j.m,lk)
"2/ (det Vo) div H = (det J,) div H. (16)

Moreover, by a mollification argument we deduce that (adj J(D)I? € Dr, (). The general case H € Dy (€4) can be dis-
cussed by an approximation argument as above. Consider a sequence (H” )ien C Cg’l (Qq) such that H 5 Hin D(Qg).
1@

Then H? — H and div H? — div H in L%(Q). Hence by the previous argument we know that (adj JCD)IF-I\:’ € D, (©)
with (adj Jq,)lp-lvf — (adj J¢)Ij~l and div ((adj Jq>)17f> = (det Jg)div H? — (det Jg)div H in L*(Q). Since divrl :Dr (@) C
L2(Q) — L%(Q) is a closed operator, we conclude that (adj J,)H € Dr (©) and

div((adj Jq))ﬁ> — (det J)div H,

8 Mathematical Methods in the Applied Sciences, 2026

85UBJ| T SUOWILIOD AR 3|ged | jdde 8y Ag pautenob ae SSo1e YO ‘9N JO Sa|nJ 4oy Akl auluo /8|1 UO (SUOIIPUCD-PUR-SWLLB)I0D B 1M AReiq 1jou 1 uo//:SdNy) SUOIPUCD pue Sid | aU1 39S *[9Z02/20/TT] uo ArlqiTauluQ AS[IM ‘850, BWW/Z00T OT/I0p/Wod A8 | 1M Aselq 1 puljuo//:sdny woly pepeojumod ‘0 ‘9.7 T660T



which completes the proof of the transformation rule for ré.

Concerning the inverse operators and L?-adjoints we consider, for example, the case g = 1 since the other cases can be
discussed in a similar way. As

thathE = JaE = (B0 ) = (JTUE) o0 = E

we have (7)™ = 13)71. Moreover, observing that Jo-1 = Jg '« @' we get

(T E, W) 20y = (Jg E. W) 12 = ( E. (det Jy1)(JP) o 7! )iy

- ( E. (det Jy-1)J ) <‘P°‘D‘1)>Lz(g )
‘D

= <E T2 1lP>LZ(Q¢)’

= (E,(adj Jo-) (¥ @), STy

Qg)

and hence (73)* = Té,l. o

Remark 2.1 (Transformation theorem). For the divergence there is also a duality argument leading to the result
of Theorem 2.1. For this, let H € D(Q,) and pick some y € C?’I(Q). Then ¢ =y ®d ! e C?”;(Qq,) and ¢ = y. By the
chain rule we compute

(H,Vo)q, = —(diVH. )12, = —<(det Jo)div H, W>L2(Q)

= (@etip)i1. 93) | = (@l f.1;7V8), = (6T vv), .

Hence, (adj Jq,)FNI € D(Q) and div((adj Jd,)fl ) = (det Jg)div H. Note that this duality argument does not apply for the
rot operator.

Corollary 2.1 (Transformation theorem). Let E € Ry, (Qg) Ne™'Dr  (Qg). Then
75 E € Rp (Q) N eg'Dr (Q)

and it holds

1p_ .2 . 10 _ 3 g 1_ 2
rot 7y E = 75 rot E, leEq)Tq)E =15 diveE, E@Tqy =T,

o€

with g, = réerérl = (det Jy)J '€/, T = (adj Jo)EJ . Moreover,
7y Rr,, (@) Ne™'Dr,  (Qg) = R, () Neg!'Dr (Q)

is a topological isomorphism with norm depending on Q, e, and J4,. The inverse is given by T&rl.

Proof. Using Theorem 2.1 we compute for e E € Dr, ,(Qg)

3 g A2 T — o2 el 1 g 1
7y diveE = divrge E = div TotTgyr1ToE = divegyty E,

with g = TéETérl = (adj J(D)gfr;r1 = (adj Jp)EJ T = (det Jo)J €T |

Remark 2.2 (Transformation theorem). More explicitly, in Theorem 2.1 and Corollary 2.1 it holds

VueH. Q) Vi = JJVu,
VE€Rp,(Qp) rot (J§ E) = (adj Jo) TOt E,
VY H €Dy (Q) div<(adj Jo) ﬁ) = (det J,) div H,
VE€e'Dp  (Q) div(eqJg E) = (det Jo) diveE.
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Remark 2.3 (Transformation theorem). The transformations z; are just the well-known pullback maps for differ-
ential g-forms applied to the corresponding vector proxies, that is, zj = ®* on differentials forms F of degree g. Using the
exterior derivative d the latter formulas reduce to

drd F = d®*F = ®*dF = t4"'dF.

2.4 | Functional Analysis Toolbox

We collect and cite some parts from [20-22, 29-31], cf. [31-35], of the so-called functional analysis toolbox (FA-ToolBox).

24.1 | Single Operators and Hilbert Space Adjoints

LetA : D(A) C H, — H; be adensely defined and closed (unbounded?) linear operator with domain of definition D(A) on
two Hilbert spaces H, and H;. Then the Hilbert space adjoint A* : D(A*) C H; — H, is well defined and characterized by

VXxEDA) VyeDAY)  (Axy)y = (A"

The operators A and A* are both densely defined, closed, and typically unbounded. We call (A, A*) a dual pair as (A*)* =
A = A. The projection theorem shows

Hy = N(A) @y, R(AY), H, = N(A") @, R(A), (17)

often called Helmholtz/Hodge/Weyl decompositions, where we introduce the notation N for the kernel (or null space)
and R for the range of a linear operator. These orthogonal decompositions reduce the operators A and A*, leading to the

injective operators A := Alm and A* := A" Iz that is
A : D(A) C R(A¥) —» R(A), D(A) = D(A) N R(A"),
A* 1 D(A") C R(A) - R(A"), D(A*) = D(A™) N R(A),

which are again densely defined and closed (unbounded) linear operators. Note that
R(A*) = N(A)'*, R(A)=N(A""™,
and that A4 and A" are indeed adjoint to each other, that is, (A, .A*) is a dual pair as well. Then the inverse operators

A7l RAA) - D(A), (AH)7!: RAY) - D(A"),

are well defined and bijective, but possibly unbounded. Furthermore, by (17) we have the refined Helmholtz type decom-
positions

D(A) = N(A) @y, D(A), D(A*) = N(A*) @y, D(A"), (18)

and thus we obtain for the ranges
R(A) = R(A), R(A") = R(A").

Note that D(A), D(A) and D(A*), D(A*) equipped with the respective graph norms are Hilbert spaces.
The following result is a well-known and direct consequence of the closed graph theorem and the closed range theorem.
Lemma 2.5 (fa-toolbox lemma 1).  The following assertions are equivalent:

i. 3c, €(0,00)V x € D(A) |x|HO < cA|Ax|H1
P 3 cpe €(0,000V y € DIAY) Iyly, < curlA™ ¥y,
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~

ii. R(A) = R(A) isclosed in H,.

~

ii*. R(A™) = R(A")is closed in H,,.

iii. A7': R(A) — D(A) is bounded.
iii*. (A*)™1 : R(A*) - D(A*) is bounded.

iv. A: D(A)— R(A)is a topological isomorphism.
iv¥. A* : D(A*) - R(A")is a topological isomorphism.

The latter inequalities will be called Friedrichs-Poincaré type estimates.
Lemma 2.6 (fa-toolbox lemma 2).  The following assertions are equivalent:
i. D(A) < H, is compact.
i*. D(A*) < H, is compact.

ii. A7': R(A) = R(A¥)is compact.
ii*. (A")7' : R(A*) — R(A) is compact.

Remark 2.4 (Sufficient assumptions for the first fa-toolbox lemmas).

i. If R(A) is closed, then the assertions of Lemma 2.5 hold.

ii. If D(A) < H, is compact, then the assertions of Lemma 2.5 (and Lemma 2.6) hold. In particular, the
Friedrichs-Poincaré type estimates hold, all ranges are closed and the inverse operators are compact.

2.4.2 | Spectra and Point Spectra
‘We emphasize that

A*A >0, AA* >0 19)

are self-adjoint with essentially (except of 0) the same non-negative spectrum. The same holds true for the reduced oper-
ators A* A, A A* > 0. We shall give more details for the point spectrum in the next lemma.

Lemma 2.7 (fa-toolbox lemma 3/eigenvalues). Let D(A) < H, be compact. Then the operators in (19) are
self-adjoint, non-negative, and have pure and discrete point spectra with no accumulation point in R. Moreover,

o(A*A) = 6(A*A)\ {0} = 6(AA") \ {0} = 6(AA*) = {4, },en C (0,00)

with eigenvalues 0 < A < A, < ... < 41 <4 <--- = oo. Only finitely many eigenvalues coincide, they are repeated
according their multiplicity, and it holds

NA*A—-1)=NA*A—-1), NAA* —1)=NAA* - 1.

Remark 2.5 (variational formulations).  For any eigenvector x of A* A associated with an eigenvalue 4, we have
(A*A-1)x =0, x € D(A*A)N R(A*) = D(A*A) C D(A),

and the variational formulation
VoeDA) (A AN = A (x. Dy,

holds. The corresponding results hold for any eigenvector y of A A* to 4,. Note that, for example, y = Ax.
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Forxe N(A*A-4)andy := /1]:1/2Ax we observe that
x= A Ax = A PAYy, AATy = AAx = A,

and
VI, = A IAXIE = A7HAT Ax, x)y, =[x

which shows the following:

Lemma 2.8 (Eigenvectors). The following statements hold:

i. If x is an eigenvector of A* A for the eigenvalue A, then y := Ax is an eigenvector of A A* for the same eigenvalue A,.
i*. If y is an eigenvector of A A* for the eigenvalue A, then x := A*y is an eigenvector of A* A for the same eigenvalue A,.
Lemma 2.9 (Eigenvalues, Friedrichs-Poincaré type constants, and Rayleigh quotients).  The best constants in

Lemma 2.5 (i) and (i*) are given by the Rayleigh quotients and equal each other and the inverse of the square root the first
positive eigenvalue of A* A and A A, that is,

1 . |Ax||-|l _ . |A*y|H0 1

A== = in = in :
Cp  ORXEDW) |x|y  0AEDUAY) |yly Car

Note that similar formulas hold for all eigenvalues, that is,
*
1/2 _i fle|H1 . |A ylHo

Lo =1in =in
x |x|H0 y |y|H1

s

where the infima are taken over all 0# x &€ D(A) and 0#y€ D(A*) with xJ_HO@I;;llN(A*A—AZ) and

yJ_Hl@I;;N (AA* = ;). All infima are minima and are attained at the corresponding eigenvectors, that is, for all k
and all eigenvectors x, € N(A*A — A,) and y, € N(AA* — 1) we have

(A" Axp, Xy, |Axk||%|1 1 |A*yk|a0 (AA Y Yin,
= 3 = A = 3 = 3 .
|xk||_|0 |xk|H0 |yk H1 |yk H1

2.4.3 | Hilbert Complexes

Now, let
Ayt D(Ag) CHy = Hy, A; @ DA CH; —H,

be two densely defined and closed linear operators on three Hilbert spaces H,, H,, and H, with adjoints
Aj i D(A)) CH; = Hy,, Al : D(A]) CH, — Hy,

as well as reduced operators A,, AS, and A,, Aj. Furthermore, we assume the complex property of A, and A, that is
A A, =0, that s,

R(Ap) € N(Ay), (20)
being equivalent to R(A]) C N(A). Recall that
R(Ag) = R(Ayp), R(A) =R(A), R(A)=R(A), R(A])=RA).
From the Helmholtz type decompositions (17) for A = A, and A = A, we get in particular

Hy = R(Ap) @, N(A). H, = R(A) @y N(A)). (21)
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Introducing the cohomology group
Nop :=N(A)NNAY),

we obtain the refined Helmholtz type decompositions

N(A) = m ®u, Noss N(Ag = TA;) ®n, Noa» (22)
D(A) = R(Ay) ®y, (D(A)NN(AY), DAY = RAH @, (DAHNNA,)),
and therefore the Helmholtz type decomposition
H, = er) ®n, Noi Oy, TAD’ (23)
follows. Let us remark that the first line of (22) can also be written as
R(A,) = N(A)N Ny, RA]) = NA) NN,
Note that (23) can be further refined and specialized, for example, to
D(A)) = R(A) @, Ny, By, D(A,),
D(A}) = D(AY) @y, Noy ®, RAD), (24)

D(A;)) N D(A)) = D(A(’;) @y, Noy By, D(A,).
‘We observe

D(A,) = D(A;) N R(A]) € D(A}) N N(Ag) € D(A;) n D(A),
D(A?) = D(AY) N R(Ay) C D(AY) N N(A,) C D(AY) N D(A,),

and using the refined Helmholtz type decompositions (23) and (24) as well as the results of Lemma 2.6 we immediately see:
Lemma 2.10 (fa-toolbox lemma 4/compact embeddings). The following assertions are equivalent:
i. D(Ay) < Hy, D(A,) < Hy, and N,,; < H, are compact.
ii. D(A,) N D(Ay) < H, is compact.
In this case, the cohomology group N, has finite dimension.
‘We summarize:

Lemma 2.11 (fa-toolbox lemma 5).  Let the ranges R(A,) and R(A,) be closed. Then R(A}) and R(A}) are also closed,
and the corresponding Friedrichs-Poincaré type estimates hold, that is, there exists a positive constant c such that

V z € D(A,) = D(Ay) N R(AY) |z|H0 < clelel,
¥ x € D(A]) = D(A}) N R(Ag) = DA) N N(A) N N, Ixly, < clALx],y..
¥ x € D(A;) = D(A) N RAY) = D(A) N N(A) N N, Ixly, < elAxly,
¥y € D(AD) = DAY N R(A,) 17l < clALY]

and
* J‘ 1 *
V x € D(A;) N D(Ag) N Ny} IXln, < c(1Axly, + 1A Xy, )-

Moreover, all Helmholtz type decompositions (21-24) hold with closed ranges, in particular

Hy = R(Ag) @, No, ©y, RAD).
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In other words, the primal and dual complex

Ao Ay
Ho — H, — H,
A Aj (25)

is a Hilbert complex of closed and densely defined linear operators. We call the complex closed if the ranges R(A,) and
R(A,) are closed. The complex is exact if Ny, = {0}. The complex is called compact, if the embedding

D(A)) n D(A)) < Hy, (26)

is compact.

2.4.4 | Generalized Laplacian

Finally, we present some results for the densely defined and closed generalized Laplacian
PAGAY +ATA; @ D(tAGA; +ATA)) CH) — H, p>0,

with D(pAg A} + AT A)) 1= D(ATA)) N D(AyA}) C D(A;) N D(AY).

Lemma 2.12 (fa-toolbox lemma 6/eigenvalues).  Let D(A,) N D(A}) < H, be compact. Then pAyA; + AT A, is
self-adjoint, non-negative, and has pure and discrete point spectrum with no accumulation point, that is,

o(pAg Al + AT AN\ {0} = (po(As A \ {0}) U (a(ATAD\ {0}) = p{ Aot ren Y {Ari tkens

with eigenvalues 0 < A,y < App <+ < Apy S Apy <o - > o0 of AL A, for £ € {0,1}. Only finitely many eigenvalues
coincide and they are repeated according to their multiplicity. Moreover,

* * . * * Ln Ly
PA A, + AT A, 1 D(pAGA; +ATA)N N — Ny,

is a topological isomorphism.

Remark 2.6 (Helmholtz decomposition).  Let p = 1. Then AjA; + A} A; provides the Helmholtz decomposition
from Lemma 2.11. To see this, let us denote the orthonormal projector onto the cohomology group Ny, by 7y @ H; —

1
Ny,- Then, for x € H, we have (1 - zy )x € N,;" and
X = ”NO,lx + (1 - er()‘l)x

=7y, X+ (A Ag + ATA (A A + A] A1 - Ty, )X € Noy @y, R(Ag) ®yy R(AD).

2.5 | De Rham Complex

In this subsection, let additionally (€2,I",) be a weak Lipschitz pair. Let us consider the densely defined and closed
(unbounded) linear operators

Ay 1= Vp  HL(Q) c LX(Q) - LAQ),
Ay i=pl oty 1 Rp(Q) € LX(Q) - L (Q),
A, i= 7t dive p s D Q) € LAQ) > L(Q),
together with their densely defined and closed (unbounded) adjoints
Az; = —V_1 diVl—nf . E_IDFH(Q) c LE(Q) - Li(Q)’
A} =¢""roty R (Q) CLA(Q) — LAQ),

A3 ==Vp, D HL (@) CLAQ) — LX(Q),

14 Mathematical Methods in the Applied Sciences, 2026

95UB0 17 SUOLLIOD dAITERID) 3|t [dde au) Ag pauseA0B afe S3(o1Le YO ‘9SN JO S3|NJ 104 ARIg 1T BUIUQ AS]IA UO (SUORIPUOI-PUR-SWR WO AS 1M ARe1q U1 |UO//SANY) SUOIPUOD PUe SWIS 13U} 89S *[9202/20/TT] Uo AlqiT auluo AS|IM ‘850, BWIW/ZO0T OT/I0p/W0d A3 1M AReq 1 BUIjUO//SANY WOy papeoumod ‘0 ‘9/yT660T



where we introduce the weighted Lebesgue space Lf(Q) as L2(Q) equipped with the weighted and equivalent inner product

(-, - >|_§(Q) =(e -, )iy

(same for u , v, and k). For the adjoints we refer to [19] and [22] (weak and strong boundary conditions coincide). Recall
that A7* = A, = A, and that (A,, A7) are dual pairs.

Remark 2.7. The latter operators satisfy the complex properties R(A,) C N(A,,;) and build the well-known de Rham
Hilbert complex

A—IZZLN(ADg Ao=Vr, Ay=p~! robr Ap=r"1divp, A:‘::T"MA;)
N(Ao) L,Q,(Q) Lz(Q) L%(Q) Li(Q) N(A3).
 Ca— — — 1 p p

AL1=TN(Ag) Aj=—v~tdivp, £ Af=e"lrotr, Al=-Vr, AZ=IN(AR)

Here, 1 and 7 denote the canonical embedding and the orthogonal projector, respectively.
Theorem 2.2 (Weck’s selection theorem).  The embedding
D(A,) N D(Ay) =Rp ()N g—lorn(g) S L2(Q) =H,
is compact.
A proof can be found in [19] and [22].
Remark 2.8 (Weck’s selection theorem).  Note that by Theorem 2.2 also
D(A,) N D(A)) = y_lDrl @) NRr (Q) < Li(Q) =
is compact. Moreover, D(A,) = Hy. OR L2(Q) = Hyand D(A}) = H[. (Q) < L2(Q) = H; are trivially compact by Rellich’s
selection theorem. The first compact embedding result for non- smooth domalns that is, for piecewise smooth and glob-
ally strong Lipschitz boundaries and full boundary conditions, was given by Weck [36]. First results for strong Lipschitz

boundaries and full boundary conditions had been proved in [37, 38]. First results for strong Lipschitz boundaries and
mixed boundary conditions can be found in [39, 40].

Theorem 2.2 together with Lemma 2.10 shows that D(A;) < H; and D(A,), D(A,) < H; are compact. Hence by
Lemma 2.7 we see that

AgAg=—vdivp eVp, AJA; =& " roty u7" roty, o7
AgAy=—Vpvidivee, AJA] = pu "' roty e roty:
are self-adjoint, non-negative, and have pure and discrete point spectrum with no accumulation point. Moreover, as
o(AL A\ {0} = 0(AL A,) = 6(A, AD) = 0(A, A\ {0} C (0,0), £ € (0,1},
we get:

Theorem 2.3 (eigenvalues of the de Rham complex). It holds

o(u™! rotrre‘1 roty )\ {0} = o(e " roty u! rotr ) \ {0} = {414 }xen C (0, ),
o(=Vr v divp &) \ {0} = o(=v7'divp eV )\ {0} = {Ag }xen C (0, 0),

with eigenvalues0 < A, ; < Ap5 < ... S App g S Apy < -+ = oo for £ € {0,1}. Only finitely many eigenvalues coincide and
they are repeated according to their multiplicity.

For the generalized Laplacian
PAGAG + AT A, = —pVr v divp e + &7 roty u7! roty,

we have the following result:
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Theorem 2.4 (eigenvalues of the generalised Laplacian). e ' roty y~' roty — pVpv="divy. € is self-adjoint,
non-negative, and has pure and discrete point spectrum with no accumulation point, that is,

o(=pVr v divp e + 7! roty u™ roty ) \ {0}

= (p(y(—Vr’v_1 dinnf) \ {O}) U 6(6_1 rotrn/f1 rotr. ) \ {0}) = p{Agsteen Y {A1s )t ken-

Only finitely many eigenvalues coincide and they are repeated according to their multiplicity.

3 | Eigenvalues

Let

D: Q- Qf=>0Q)
be a bi-Lipschitz transformation. We are interested in the eigenvalue problems (1-6), in particular, in the dependence of
the eigenvalues and related symmetric functions on the domain Q, more precisely on the domain Q,, when @ is vary-
ing. For this, we consider unbounded linear operators of the de Rham complex in L?(Qg) together with their Lipschitz

transformed relatives in L2(Q).

From now on, let additionally (2, T",) be a weak Lipschitz pair.

3.1 | Operators of the De Rham Complex

Let us define the densely defined and closed (unbounded) linear operators

Avo 1= Vr,,  Hp Q) CLY(Qe) > Qo).

A 1= protr 1 Rr (Qg) C LAQg) = L (Q0),
together with their densely defined and closed (unbounded) adjoints

Ay =—v divy e e‘lDrw(Qq,) C LA(Qg) — LA(Qy),
Alp=€""10tr  Rp (Q) CL2Qg) — L2AQy).

Recall that (A, ¢, A ) are dual pairs. Moreover, let

Ay :=Vp 1 HL(Q)C Lﬁm(g) - Lim(Q), £ = rg)er;),l = (det Jp)J 5 €T,
Ay =) roty @ Ry (Q) C LfQ(Q) N Li¢(9), He 1= Tg,m;)_l = (det Jp)J 5 TS,
Ay = —vg'divp g : e;lorn(g) c Lip(Q) N L§¢(Q), Vo i= Tg,wg_l = (det Jg)V,

A} =eg ot R (@ C L2 (Q) — L (@),

which are also densely defined and closed (unbounded) linear operators. Again, (A,, A}) are dual pairs. Note that the
inner products in the weighted Lebesgue spaces Lgm(Q), Lio(g), and Lim(Q) read explicitly

(s >LZ®(Q) = (e > Nz = (([det JQE ST - I - >L2(Q)7
(-, - >L§®(9) = (g * » * Nagy = (et Jp)atg" - . Jg" - >Lz(9),
(s >L§®(Q) =(vp "> - >L2(Q) = ((det Jq>)v‘ s >|_2(Q)7

and that €4, 14, and v, are admissible transformations. Note that, here, the operators A, o and A, are not needed due to
their equivalence to Aj ;, and A.
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3.2 | Unitary Equivalence and Spectrum

Using the pullbacks rg) of @ : Q - O(Q) = Qg from Theorem 2.1 and Corollary 2.1 and the corresponding inverse pull-

backs (74)™! = r;’fl we compute

1 _ 1 _ 0, _ 0
oMol = Tq)Vrmu = Vi 7gU = AgTel,

1 _ 1,1 _ 1,12 2 _ -1 1y _ 1

ToAroE =T 1oty E=1ou 7, 74 rOtl",@E = Hq YOt 7o E = A T E,

0 A% _ 0,13 34 — - lgiv 2 — 14 Ly _ A% 1
TeBAooH = —ToV Tyatedivy eH = —vg divp tge H = —v divp 47, H = Ajr, H,

o770, P [

and obtain by symmetry the following result.

Lemma 3.1. It holds

— .1 0 _ 1 1
Ao = T¢71AOT®, A= 'rq)flAqu),
*  _ 0 w1 * . | x 1
A0,<I> = Tq)flAOTq), A1,<I> = Tq)_lAqu,.

Remark 3.1. 'We emphasize that the adjoints of the pullbacks in Lemma 3.1 are given by

0 0 0y—1 1 1 1\-1
@ =12, =G @) =Tl =@

apparently in contradiction to the adjoints from Theorem 2.1. This is due to the formulations in weighted L2-spaces. Note
that, for example, we have to consider 7j : L2(Qg) — Lgm(Q), which leads with ré_l Ep =€1! | tO

!
1 1 2 1
(1o E, W)qu)(g) = (1o E. e0¥)2q) = (E. 7560 V) 12q,) = (E. 751 V)12(q,)-

that is, (73)* = Tirl‘ Analogously, we treat 7 : L2(Qg) — Lip(Q).

Theorem 3.1. A} A, and A, oA}, are unitarily equivalent to A} A, and A, A}, respectively. More precisely,

* _ .0 * 0 * 1 * 1
AjpBoo = T 1Ay AoTe: Al pAre = Ty Al ATy,
E R | % 1 I | % 1
Apohy gy = To 1 AGATTS, Ay oAl g =Th  AJATTS.

Moreover, pA, oA o + Al A1 0 and pAg Ay + AT A, are unitarily equivalent, that is,

PALAG o + AT pALe = T;,l (PAGA; + AT ATy

Proof. Apply Lemma 3.1. m|

Corollary 3.1.  The positive parts of the spectra of A} (A, ¢, Ay oA} 4. and A% A,, A, A coincide. More precisely,

o(A% 5A,0) \ {0} = 6(A, pA% ;) \ {0} = 6(A, AY) \ {0} = 6(ALA,)\ {0}
Moreover, the positive parts of the spectra of pAy oA, ¢ + A oA1.e, and pAy Aj + AT A, coincide, that is,

o(pAgphge + Al pALe) \ {0} = 0(pPAgAf + AT A \ {0}

Proof.  Recall (19) and apply Theorem 3.1. O

Remark 3.2 (Eigenvectors). It holds:

« uis an eigenvector of Aj ; A, o, if and only if tgu is an eigenvector of A7 A,.
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*

. . .
« E is an eigenvector of A] ;A ¢ and A gA 4

respectively.

respectively, if and only if r(})E is an eigenvector of A7 A; and Ay Ay,

ES

* H is an eigenvector of A; 3A] 4,

if and only if zj H is an eigenvector of A, A7.

Note that by Lemma 3.1 and Remark 3.1 we have, for example, for F,G € Lf(Qq))
(7o F.700)i (@) = (Fr T Ta Oz, = (F G)ina,)»
and for F,G € D(A, ¢)
<A17$F’A17$G>Lf@(g) = <Tc})Al,<DF’ Té)Al,ch)Liq)(g) = <A1,<1>F’ A1,®G>Li(9¢)’
(TéF’TéGb(Al) =(F, G>D(A1_¢)'
For a definition of the inner products ( -, - )p ) and (-, - )pa,, ) see the next remark.
Hence we get:

Remark 3.3 (Isometries and orthonormal bases).  The transformations zg, are isometries. In particular, orthonormal
bases are mapped to orthonormal bases. More precisely:

e 701 L2(Qg) - L§¢(Q) and 79 : D(Ay4) = D(A), the latter
D(Age) =HL (Qy),  D(Ag) =HL (@)
equipped with the inner products

(s >D(A0'®) =(-, - >L§(g®) +(Apo Ao - >L§(Qm) =(-, - >|_§(Qq,) +(V-.,V. >L§(Q¢)’

(s dpag = (s >L§®(g) +(Ag -, A - >L§¢(Q) =(-,- >L3¢(Q) +(V-,V- >L§®(Q)’

are isometries. Hence rg maps a Lf(Qq,)—orthonormal basis or a D(Ag)-orthonormal basis {u,} to the

Lfm (Q)-orthonormal basis or the D(A,)-orthonormal basis {Tgum}, respectively, and vice versa.
o 73 L2(Qg) - Lfd’(Q), Ty Li(QQ) - Lf%(g) and

7y 1 D(Ajp) = D(A)), 75 1 D(A],) = D(A)), 14 D(A;,) = DA ),

0
the latter
D(A, o) = R, (Q0), D(A,)) = Rr (),
D(AT4) =Rr, (L) D(A}) = Ry (Q),
D(A ) =€ 'Dr, , (Qo), D(A}) = e5'Dy ()

equipped with the inner products
(-, - >D(AM,) =(-, - )Lf(Qq,) + (Ao AL )Lf‘(Qq,) =(-, - >Lf(Q¢) + (rot -, rot - >Li71(gd,),
(s Iy =(-s- )LEQ(Q) +(A; LA - >Li®(9) =(-, - >L§®(Q) + (rot -, rot - >Li€>l(9)’
(- >D(A;®) =(-, - >Li(Q¢) +(Alg Alg gy =( - >Li(Q®) + (rot -, rot - >L§_1(Q¢)’
Codoap = Co g @+ AL AT e @ = (o g @+ (0L 10t )iz @),
(o Ipazy) = (s D@y T Aoe > A0 “ 2@, = (75 " dg,) +(dive - dive - >L3_1(Q¢)’

(- )D(Ag) =(,- )Lgd)(gz) +(Ay LAY - )Lfm(ﬂ) =(-,- >L§®(Q) +(diveg - ,diveg - >L3,1(Q)’
(o
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are isometries. Hence rc}) maps a Li(Qq))-orthonormal basis or a D(A, 4)-orthonormal basis or a D(Ag’q))-orthonormal
basis { E,,} to the Lim(Q)-orthonormal basis or the D(A,)-orthonormal basis or the D(Aj)-orthonormal basis {ré,Em},
respectively, and vice versa. Analogously, ré, maps a Li (Qg)-orthonormal basis or a D(Aiq))—orthonormal basis {H,,}
to the Lid) (Q)-orthonormal basis or the D(A])-orthonormal basis {r(}) H,}, respectively, and vice versa.

3.3 | Point Spectrum
Now and more precisely (3-5) read for the domain Q,,

Aj pAoou =—v divy, eV u= Agu in L2(Qg),
Al GALoE = et rotr, u! rotr, \[E = LE in L2(Qg), (28)
AvolAgoH ==V viidive eH =2 H  inlL}(Qg)

with some eigenvectors
u € D(AL4Age) = DO divy, eVy ) = {y/ EHL (@) : eVy e DFHVQ(QQ)},
E € D(A] A ) = D(e™ 1oty u~ 1oty ) = {lp ER: (Qp) @ ulrot¥ e erd)(szq))},
H € D(AyoA;y) = D(Vr. v divy, ) = {111 €D Q) ¢ vdive¥ € H}w(gzq,)}.

Remark 3.4. Note that for the eigenfields E and H a normal and tangential boundary condition is induced by the
complex property since

E € R(A%,) C N(A},) = N(v'divy, &) = {‘P €LQq) 1 dive¥ =0, n-e¥y,, = o},
H € R(Agg) C N(A;g) = N(u 1oty ) = {l}' €L2Qq) 1 Tot¥ =0, nx ¥, = 0},
respectively.
We want to discuss (28) equivalently in Q using the pullbacks rg) and Theorems 2.3, 3.1, and Corollary 3.1.
Theorem 3.2 (eigenvalues of the de Rham complex). A} A, and A} A, areunitarily equivalent. The same holds
for A, oAy 4 and A, Aj. All these operators are self-adjoint and non-negative and have pure and discrete point spectrum with

no accumulation point. Moreover, the positive parts of the spectra coincide, that is,

o(u™! rotrwe‘1 rotr )\ {0} = o(e” ot u~' rot )\ {0}
= 0(ug 1ot £5' 1ot ) \ {0} = o(eg 1oty pg' roty) \ {0} = {4y ¢4 }xen C (0, 0)
and
O'(_VF,@ vt divrwe) \ {0} =o(=v! diVl—nmgVFw) \ {0}
= 6(=Vr, vz div: £6) \ {0} = o(=v'divy £6Vr) \ (0} = {Ag.0s Jien € (0. 0)

with eigenvalues 0 < Ay g1 < Appr < oo S Appp1 S Aoy <+ — oo. Only finitely many eigenvalues coincide and they
are repeated according to their multiplicity.

Proof. Theorems 2.3, 3.1, and Corollary 3.1 yield

0(A% oA r o) \ {0} = 0(A, AL )\ {0} = 6(Ay oA ) = 6(AL Ay o)
= 6(A A\ {0} = 6(A, A%\ {0) = 6(A, A%) = 0(AE Ap) = {Arostren

forz € {0,1}. O
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Remark 3.5. Note that by the definition of weak Lipschitz pair it follows directly that ® maps a weak Lipschitz pair
(Q,T,) to a weak Lipschitz pair (Qq, T, ¢)-

Theorems 3.1, 3.2 and Remark 3.2, show that eigenvectors u, E, and H in (28) for the domain Q, and for the eigenvalues
A and A, are mapped to eigenvectors Tgu, 7Ll E,and réH for the domain Q for the same eigenvalues and vice versa. More
precisely, u, E, and H are eigenvectors in (28), if and only if

Aj Aorg)u = —v;divrne(pvrlrgu = Aorg)u in L‘Z/(D(Q),
ATAT,E = el toty ug! toty 7, E = Lo, B in L (Q), (29)
Ao AjToH = =V vgldivy g H = Aote H - in L} (Q)
with eigenvectors
Su € DA Ay) = D(vdivy. £4 V) = {w EHLQ) : eV e Drn(Q)},
1o E € DA} A)) = D(eg oty ug' roty) = {¥ € R (Q) : ugp' rot¥ € R (Q)},
L H € D(AgA]) = D(Vpvg'divr. eq) = {111 €eg'Dr(Q) 1 vgldivey¥ € H;I(Q)}.
Remark 3.6. We have
u € D(A; 4Ag0) C D(Agp) = D(Vy,,) = H}@(Qq,),
E € D(A] A1) N N(A; ;) C D(A; ) N N(A; ) = D(roty, )N N(div, e)

- {‘I’e Rr.,(Qe) Ne™'Dr_(Qp) dive‘P:O}

- {‘I‘ ERQy) Ne'DQy) : dive¥ =0, nx ¥l =0, n-e¥| = o},
H € D(AgpA;4) N N(Ag) C D(Ay ) N N(A, ) = Ddivy, &) N N(rotr, )
- {'{' ER: (Qp)Ne Dy (Qp) © TotW = 0}
- {‘{‘ ERQy) Ne'DQy) © 1LY =0, nx ¥l =0, n-e¥ = o},
and for the transformed fields
74u € D(Aj Ag) C D(Ag) = D(Vr) = HY. (),
o E € D(A}A) N N(A;) C D(A)) N N(A}) = D(roty.) N N(divy. &)
={¥e Rr(Q)Ney'Dp (Q) : dive,V = 0}
={¥YeR@Q) Ne'DQ) : diveg¥ =0, nX¥|r, =0, n-g,¥|r =0},
7o H € D(AgA;) N N(A;)) C D(Ay) N N(A,) = D(divy £4) N N(10t;-)
={¥Y€eR:(Qney'Dp (Q) : rot¥ =0}
={¥YeRQ) Ne,'DQ) : rot¥ =0, nX¥|. =0, n-g¥| =0}.

For corresponding variational formulations, see the appendix.

Theorem 3.3 (eigenvalues of the generalised Laplacian).  Theoperators pA, oA; ¢ + A} oA o and pAgAf + AT A
are unitarily equivalent. Moreover, both are self-adjoint and non-negative and have pure and discrete point spectrum with no
accumulation point. Moreover, the positive parts of the spectra coincide, that is,

U(—erm)v_1 divy, €+ et rotrwu_l rotr )\ {0}
= 0(—pVr vy divy €4 + €5 10t pg' TOtr-) \ {0}
= (pa(—Vrr v;ldivrnsq,) U 6(5&,1 rotrny(;l rotr’)) \ {0} = p{Ap0s tken Y { Aok tken-

Only finitely many eigenvalues coincide and they are repeated according to their multiplicity.
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4 | Conclusion and Outlook
4.1 | Eigenvalues and Rayleigh Quotients

We recall our results on the de Rham eigenvalues which are important for the study of their shape derivatives (variations
of the domain and the boundary conditions via the Lipschitz maps ® : Q — ®(Q) = Q) in the second part of this paper.
So far we have shown that for bounded weak Lipschitz pairs (Q, I',) the de Rahm complex has countably many eigenvalues

0<p1 S A0S " Shpop1 SApop <0 = 0, ¢ € {0,1}.

For a fixed index k we set

oo 1= Aowks Mo = Aok

Moreover, by Lemma 2.9 and (28), (29) the eigenvalues are given by the Rayleigh quotients of the eigenfields, this is

|A("I’ule(Q ) <5Vr,,<1>”’ Vi ot 2@,)
Al i)
e V),
A T u
3 1A ||_2 () (eq,Vrr u, Vi, ToU) 20
- 0,12
ol ) (V(D‘rq)u,r Uy 2@
~ 1400 ILZ(Q ) (i geH divr, e H) g,
B eH,H
|H||_2(Q ) < >L2(Q¢) 0
30
AstgH 14 1 : 1
3 | |L2 @ (vq) lel—néq;.T(DH,lern£¢Tq)H)L2(Q)
- 172 1 1 >
|z H @ (eoToH, 75 H) 2
Ay ‘I’EILZ(Q ) (lfl 1oty o E, 10ty ¢ )2,
ho = s - (¢E. E)
| Lz(Q ) > H1AQy)
A T -
_ | L2 @ (,uq)1 roty 7o E, oty 74 E) 2
- 152 - 1 1 ’
17 El7, @ (oToE, T4 E) 2
23

with eigenfields u, E, H, and
0, _ 1y _ TR 2 _ : 7
ToU = U, o E=JyE, toH = (adj Jo)H,
respectively. Note that the eigenvalues 4, 4, , are depending not only on @ (shape of the domain) but also on the mixed
boundary conditions imposed on I', and I', and on the coefficients ¢, u, and v, which we do not indicate explicitly in our
notations, that is,
Aoor = Aooi( 1€, V), Mok = Ao 1€ 1)

4.2 | Heuristic Shape Derivatives of Eigenvalues

In this final subsection, we want to conclude with formal computations to derive shape derivatives of the eigenvalues
assuming® that the corresponding (pull-backs of the) eigenvectors are differentiable with respect to ®. This means we
investigate the behavior of the eigenvalues under variations of the domain and the boundary conditions. More precisely,
we investigate the differentiable dependence of the eigenvalues of the de Rahm complex if the domain, that is, the mapping
®, is changing in certain subsets of bi-Lipschitz transformations. Here the space C* 1(Q, R3) of Lipschitz maps from Q to
R3 is endowed with its standard norm.

Theorem 4.1. Let ¢, u, and v be of class C'. Let u, E, H be normalized eigenfields such that

|T “||_2 @ = |14||_2(Q y = |T E||_z @ = |E||_2(Q y = |T H||_2 @ = |H||_Z(Q )y — =1,
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and

0,2 0,2 0 0
Ao = |A07¢”|L3¢(Q) = |VF,T¢”|,_3¢(Q) = <£<DVF,T<DM’ VF,T¢U>L2(Q),

— 112 — 1,1 152 — (-1 1 1
Mo = |A11(I,E|Lf @ = |y rOtF:T<I>E|Li @ = (Mg roty 7, E, rotrl'rq)E),_z(g),
D 33
— 1A% T2 — -1 1772 — /-1 1 ; 1
Ao = AT HI @ IV dive €07, HI @ = (Vo divp 474 H, divy €47, H )12(q)s
Vo Vo

¢f. Remark 3.3 and (30). Assume that tyu, 7o E, 75 H are differentiable with respect to ® € C*1(Q, R3). Then the directional
derivatives of the eigenvalues with respect to a direction ¥ € C*(Q, R*) are given by

0,2 0,2
Ao = |Aorq)u|l_2 )~ AOQIfq)ule

g @ @
= |V t2ul? — Ayoltul?
r, 2 0,0 P

ot @ P @

= < (a@ed,) Vrlfg)u, Vr,’g”>|_z(g) - /lqu,< (()q;v@)rgu, Tg)u>|_z(g),

1 2 1 2
a\?il,tb = |A17¢E|Lz - /11,<I>|T<[)E|Lz
*(3.;,144) (ﬁq,&m)

1 2
— holth P,
(();';sm)

(@ @
1 2
= | roty 7, E|,

(G )(Q) ©

= ((9gug") oty A E, rOtr,TéE>Lz(Q) - M.o{(05€0) 7o E. réE)Lz(Q),

0500 = |A31$H|ﬁ2

— Aolti H|?
0,0 2
_wq’vw)(g) [ L

)

— 1di 1 2 1 2
- |d1VF,,5(1>Tq>H|Lz @ + /10,<1)|Tq>H|L2
Ogvgh Ogew)

= ((0gvg')divr ep7o H, divrngéré)H)Lz(Q) + Ao (0560 ) e H. 74 H>L2(Q)'

((®)

Here, we have formally used the norm notation although the tensor fields +dg(- - - )3 do not necessarily generate proper
L2(Q)-inner products. Note that

OgEp = —€0(0gEg o Ot = —Ho(OgHg e OV = —VaogVy s
¢f. Remark A.2. Furthermore, we understand terms like dge in the sense of

Oge 1= [aq,ej’m].

Proof. 'We elaborate the computations only for 4, 4 and postpone the calculations of the remaining cases to Appendix
A. By (30) and the quotient rule we compute

(O3 41,0)(E0To E, 7o )L @ = (e0To B, Ty E) 200 (g 1Ot o E, Tty 70 E )20
- (/4;)1 rotrrréE, I'Otl—‘!T(})E>L2(Q)a§,<E¢Té)E, T(})E)Lz(g)
= (eq,réE, Té)E)Lz(Q) << (6@/4;) rotrlré)E, rOtl",TéE>|_2(g)
+2R(ug' 1oty 74 E, 10ty 0574 E) 12 )
~ (kg roty, Ty E. 10ty 7 E) iy ({ (00) T EL THE ) g

+ 2R (e T4 E. 03T E) 2 ) -
Note that we assume that 7y E is differentiable and hence dg 74 E exists. Thus using

-1 1 1 1p 1
(Mg 1Ot TR E, 1oty 74 E) 2(0) = 4y 0(€0 T E. T E) 20
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We see

(O .0)EaTE 7o E) i) = <(6q,;4;)1) rOtF,TéE’ rOtF,%E)LZ(Q)

+ 2R (ug! 1oty 74 E, 10t 0574 E) 20

— o ({0560 THE-H E ) gy + 2R (E0 b B O57h B )

= ( (Ogug") rotrrré)E, rOtr,T$E>Lz(Q)

+2R(A T, E, Ala.;,TéE)LiQ(Q)

~ o (((0580) HE ThE) gy + 2R(THE. 0575 BN (@)

= ((9gug') roty, 74 E, 1oty 7, E >L2(Q)

- ’11,<I>< (9g€0) 7o E, Té)E>LZ(Q)

+ 22R<(A1‘ A — A o) E, aq,T;,E>

=0 L2, @

1 1 1p 1
= 1oty 7, E, rotl-’rq)E),_fa L@~ MaolteE, 76 E)2
T

Note that dgeq = —sd,(a@e;)sq,. For a normalized eigenfield E, we obtain the assertions.
By Lemma A.1, we have

Ot = (det Jy)J 3! (a@’g +([diVP)E -2 sym(Ea)Jq;T,

Ogeg) = (det Jg)'JT (a@El — ([divP)e! + 2 sym(et J~T)>Jq,,

Ogve, = (det Jo) (057 + @VEIY ),

g0 @

dgvg! = —(det J¢)—1v—2(a@3+ (div lp)v) = (det J‘D)_1<d@\;?1 — (div ‘P)Fl),

where the same formulas hold for € replaced by p. Recall that by definition 2sym M = M + M for any square matrix

M. Note that, for example, for £, we have

0\;5]’”, =J.

and hence
OgE; ) e @7 = J, W 1=yt

Theorem 4.2. Let the assumptions of Theorem 4.1 be satisfied. Then

a\?AO,Q = <(6\P£ + (diV lP)g - 2 sym(J‘Pg)) Vrz_d)u’ Vrl‘®u>|_2(g®)

_ Ao,q,( (&yv + (div ‘I‘)v)u, u>|_2(9¢),

Ogh o = <(a\pﬂ_1 — (div¥)u! +2sym(u~" Jy)) roty, | E, roty, E >

— A0 (Oye + (divP)e — 2sym(Jye)) E E) 2 g, .

Ol = <(aw—1 — (divey)divy, e H, divy, eH >L2(Qm)

+ 290 (Ope + (divP)e — 2sym(Jye) ) H. H ) 5 g .

L*(Qq)
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Recalling Lemma 2.8 and with the dual eigenvectors

H* 1= 25 P Agou= 2"V u, w= g PAL JHY = =25 v divy eH”,
w o= Aoy PAL G H =g P dive e H, H =45 PAg ou* = Ay PV o,
E* = A A o E =2 Py oty E E = 0 A B = 2 P roty. E,
we get the formulas
05 4o . £ e
~— = ((0ye + (@v¥)e — 2sym(Jye)) H', H" ) g
0,0
= ((9gv + @iVEWV)u,u) 2 g, .
alfl/ll,d) . .
——— = ~((Opp + AV O = 25ym(Jyp)) E", E*)
1,0
— ((0ge + (divW)e — 2sym(Jye)) E, E)Lz(%),
05400 .
j = —< (()q,v + (dIVT)v)vu*, u*)Lz(Qd))
0,

+ ((Oge + (divW)e = 25ym(Jye)) H, H) g

Proof.  Again we focus on 4, 4 and refer for 4, 4 to Appendix A. By Theorem 2.1, Corollary 2.1, and Remark 2.2 we see

I o = { (Oguz") Tot 7L E, rotrtréE>Lz(Q) ~ h10((95€0) 7o E. 7o E) 2 g

- <(det Tyt (a@F — @) +2 sym(FTq,))Jq, roty. 7L E, J, roty T;,E> 2
' ' 2©Q)

~ iy 0{(det Jo) (0% + @V - 2sym(TyD) ) g TR E G T E) |
’ L@

= <(det Jq,)(aq,;rl —(div®)u—1 +2 sym(y—lJ\P)> rotrm)E, rotrm)E>Lz(g)
- /1m<(c1et Jo) (a@z +{divP)E -2 sym(TwE))E, E>

Y

={(dpu~! = @iv¥)ut +2sym(u~tJy)) rot. E, rot E>
<( pp! = (div¥)u ym(u~'Jy)) oty | o E )

— 410 { (Ope + (divW)e — 2 sym(Jye)) E, E ) , @0

= ((=0yu — [@iv¥)u + 25ym(Jy 1)) Ay o E Ay o E ) o

= A1.0{ (0 + (div¥)e — 2s5ym(Jye)) E, E) .

Qg)"
O
In the particular case, where ¢, u, and v are the identity mappings, Theorem 4.2 yields
400 _ (i — 2 sym Jy) H', H* divy
Toe = ((div¥ — 2sym Jy)H", )LZ(QQ)— ((div ¥)u, M>L2(Q®)
= —((symtr Jy)H", H") > ) — {((div¥)u, u) 2 q, )
Bhe o sym gy — div)E", E* 2sym Jy — divW)E, E
e =(@2sym Jy —div¥)E", E*) 2o ) + (2sym Jy — div)E, E) 2 ) 1)
= ((symtr Jy)E*, E*)Lz(gw) + ((symtr Jy)E, E>L2(g®),
Gitoo _ v, u div¥ — 2sym Jy)H, H
Too = —((div¥)u*,u )Lz(9®)+(( ivW —2sym Jy)H, )Lz(%)
= —((div P)u", ”*>L2(9¢) — ((symtr Jy)H, H)Lz(%),
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with symtr M :=2sym M — (tr M) - id, that is,
symtr Jy = 2sym Jy — (tr Jy) - id = Jy + Jg — (div¥) - id.

Equation (31) are the formulas (10) from the introduction with H = H* and B = E*.
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Endnotes

!The so-called reduced operators are compact but this does not help too much because their domain depends too heavily on the
perturbations.

2Note that the Jacobian determinant of a bi-Lipschitz diffeomorphism has a constant sign on the connected components of the domain,
see [27], Lemma 6.7, hence it is not restrictive to assume that it is positive almost everywhere.

3The related bounded linear operator, where the domain D(A) is endowed with the graph norm, shall be denoted by A : D(A) — H,.

“Note that this assumption is quite strong and, unless one restricts the analysis to suitable families of perturbations @, it requires that
the eigenvalue under consideration is simple. See Part II of this series of papers for more details concerning multiple eigenvalues.
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Appendix A

Computations of Shape Derivatives

Recall from Section 3.1 the transformed matrices

£g = rée'ré,l = (det Jo)J'ET,T, Vo = T;wg_l = (det Jo,)V,
eg = Téé_lféil = (det Jq))_lJ;e‘lJLD.

Note that generally
0,f(x) = f'(x)v

and that 9, f(x) = f'(x)v = fv holds for bounded linear f.
LemmaA.l. Let k € R. It holds

0o = Jg = Jyto, Oyt = —JI5 Igdgt = =I5 Uy,
Oglg = I3 =33, 0g s = —JgTILIST = ~I0 1T,
and
dg(det Jo) = (det Jo)div ¥, 05 ((det Jo)¥) = k(det Jo) div ¥.

Moreover, if € and v are of class C', it holds
Ogeq = (et Jp)J 3! (a\;E + [@divP)E -2 sym(Eé)Jq;T,
Ogeg) = (et Jp) 1T (ogf—l — (VP +2 sym(.?—li;))Jq,,
- —_— 0\;7 —_—
Ogve = (det Jq,)(a@v +(div ‘l‘)v) _— <T +(divy) ),
\%

_ 0 —
Oy = k(det Jo) 71 (07 + @V = kv (%V + @div ‘I’)).
\%

Remark A.1. In particular, we have for ¢ = id
0 idg = (det Jg)J 5" (div Y2 sym.Ty)JgT = —(det Jg,)J 5 (symtr Jy)J T,
Oy idg! = (det Jo)MJ] (—div ¥ +2sym f;)Jq) = (det Jg) ™ J ] (symtr Jy)Jop

with symtr from (31), that is, symtr Jy = 2 sym Jy — div V.
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Remark A.2. Note that
6@6;)1 = —e;l(aq,eq,)sg)l, (3@\/;1 = —v;zd.f,vq,,
Ogeq = _£<I>(aq153>1)5<1>7 OgVe = —vfbdq,v;l.
Similar formulas hold for €4 and v, replaced by € and V, respectively.

Proof of Lemma A.1. By the chain rule we have (‘T’)’ = @(I)’, thatis, Jg = .EJQ) and J.;,J‘;l = :IT,, Since det(id + sT) = 1 + str T + O(s?)
we get with tr Jy = div¥

det J,, 5 = det(Jq + sJg) = (det Jp) det(id + sJgJ5") = (det J,) det(id + sJy)

D5

= (det Jq,)<1 +str Ty + 0(s2)> = (det Jq,)(l +sdivy + O(s2)>.

Moreover, for topological isomorphisms it holds 0, T~ = (T~YYH = -T'HT ! as

T+H)'=7'Gd+HTH = T—IZ(—HT—l)" =T —T'HT' +O(|H[?).

n>0
Then the first six and the last two derivatives in the lemma are easily computed. Furthermore, using the latter results we get
Ogeq = O ((det Jo)J 3 €T T) = (dg(det Jo)) J5 €05 T + (det J) (05 g NET ST
+ (det Jo)J 5 (0g8) Ty " + (det J)J 5 €05 T4 )
= ((@etJg)div¥ ) J5 75T - (detJa) g TydlyT

+ (et Jp) T3 (0g8)T 5T — (et Jo) 5 E1TI5T

= (det J)J 3! (diV®)E - (3;3+ Elg ) +05E U5
— ——
=2 sym(Jy8)

and, using this, by the chain rule
0@5;1 = —6(;1(0@64,)6;
= —(det Jo) g e JpJg! (([@VIE - 25ym(Ty?) + 0qF ) 5 UG e Mg

SN—— SN——
=id =id

= —(det Jo) ' J]| (AivW)e — 2671 sym(JyE)e ! + e 1(0gD)e |,

=sym(e~17y) =—dpe
finishing the proof. O

Variational Formulations

For A, and A, 4, ¢ € {0, 1}, from Section 3.3 we note the following variational formulations: For all

Wo € D(Age) = H}w(QCD), Yo € D(A1 ) = Rp, (), Op € D(A;,) =€ 'Dr (Qqp),

it holds
Aol v, WcI))LZ(Qq,) = Ao{u, ch)Lf(Qq,) = (A;pAo,rbus ch)Lg(Qq,)
= (Ag ot Ao,db‘l’dﬁ)l_f(g,,,) = <5Vr,_,b”7 Vr,@lI/cD)LZ(Qd,),
/11<5E’\P¢>L2(Q¢) = A(E, lP(D)Lf(Qq,) = <A;¢,AL<DE’\P®>Lf(Q¢)
= (Ao B Ao¥oli, = (u7trotr, E, rotr, Wo)ixq,)
Ao(eH, Bg)2q,) = Ao(H, @<1>>|_§(Qd,) = <A0,@AS,¢Ha ®<1>>Lf(9q,)
= (Ap o H. AL O0) 2, = (v divy, eH.divr, Og)2q,)-
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For all
w € D(A) =HL(Q), Y€ DA) =R (Q). 0©€ DA =¢,Dp (Q),

it holds

Ao("ng)M’V/)LZ(Q) = '10<Tg”, W)Lf@(g) =(A; Ang)“a W)qu)(g)

(AoT u, A0W>L2 @ = (€aVr,7, q>” Ve v,
/11<9d>7 E. W) = 11(“' E, lP)LZ L@ = <A*A1T E, lP)LZ L@

(Alr E,A lI—‘)Lz L@ = </4q) rotrr E, rotp ¥) 2q),
AO<£¢T$H’®>LZ(Q) = /10<T$Ha@>|_§®(g) (Ao A*TIH ®>L2 ©

= (A;QLH,A;@)L%(Q) = (Vg)ldivl"ngcp‘[é)H,diVF"8®®>L2(Q).
Hence, more explicitly,

/10<(deth,)vr u, W>L2(g) <(detJ¢)£J TVF ol Jg VF W>|_2(Q)’

M ((detJo)ed g TTo E, Jg W) b ) = ((det Jg) ™ i g 0ty 74 E, Jo TOt W)

Q) L)’

Ao((det Jp)edy Tt H, J5TO) = ((det Jo) 7'V divy £q7q H, divy: £40)

((®)] L2(Q)"

Note that t9u =, J7

o ToE = E,and gg = t2etl | = (detJy)J '€y = (adj Ju)E . Thus

Ao{(det Jo) Vi, w) 2 = ((det Jo)Ed 5T Vi i, Jg TVr yr) @

A <(det Jo)eE, J;T‘I‘>L2(g) = <(det Jo) i g oty JTE, U rotFI‘P>L2(Q),

/10<(det To)eH, J;T@>LZ(Q) - <(det Jo) V1 divy. (adj Jg)e H, divy. (adj Jq,)EJq;Tca)Lz(g).

Some Additional Proofs

Proof of Lemma 2.1. Consider the densely defined and closed linear operators

Ay 1=Vt H(Q) C LX(Q) - LX(Q),
A, = 1oty : R(Q) C L2(Q) - LA(Q),
A, :=divp : DH(Q) C LX(Q) » L2(Q)

together with their densely defined and closed adjoints

Al =—div : D(Q) C L*(Q) - L*(Q),
Al = rot : R(Q) C LX(Q) - LX(Q),
A ==V : H(Q) c L}(Q) - LX(Q),

and recall that generally A}" = A, = A,. Then, for example, for the rotor

Rr(Q) = D(A)) = D(AT")
= {ql EL(Q) : IY¥,- €LXQ) VOEDA) (¥.A[0):q = (¥4r, @)Lz(g)}

rot

={Yel’Q) : ¥, €l’(Q) VOERWQ) (¥ 10tO); g = (¥.0):q}
={YEREQ) : VOERQ) (¥, rot®) g = (rot¥,0):q}

finishing the proof.
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Longer Proof of Theorem 4.1. By (30) and the quotient rule we compute

0, 0,2 0, 0 0 0
(05 40.0) (VoTou, T®“>Lz(9) = (Vo Tl T2 05 (€0 VT, Tols Vi Tol)2g)

- (sq,Vr,rgu, Vrtrg)u)l_z(g)dq,(vq,rgu, Tol) 120
= (VoTglt: ToU)i2q) (( (0g€0) Vr, 7gt: Vr, Tg“)Lz(Q)
+ 29{(£¢Vr’rg>u, Vr,d\;rgu),_z(g))
- <5<I>VF,T<(I)>”’ Vl"tfg”hz(ﬂ) << (a‘?vd))fc(l))”’ T%”)LZ(Q)
+ 2R (Voo U, ()(i,Tgu)LZ(Q)),
(0@10@) <6q>7,'éH, Té)H)iz(Q) = (sq)‘r;)H, TéH)Lz(g)d.;(vgjldivrnsq)réH, diVFn£¢TéH>Lz(Q)

—14; 1 : 1 1 1
— (v divy ¢ 7o H, diVy £¢74 H ) 2(0)05{E0To H , T, H ) 120

1y 1 1\ 1y a; 1
= (epToH, T®H>L2(Q)<< (0gvg')divr et H, ler"5¢T¢H>|_z(m

+ 2m<vgldivrne¢TéH, divr, 6\;,(£¢TéH)>L2(Q))

— (vp'divp 7o H, dinn%TéH)LZ(Q)(“aﬁg‘?’l)%%H’ oroll o
1 1
+2R (7, H, a@(%%m)u(m)’
and thus using

0 0 _ 0, 0
(€0 Vr, Tl VI To) 2@ = Ao (Vo Tel Tol) 2 @)

=1 73; 1 : 1 _ 1 1
(Vg divp €7, H, diVr 47 H ) 20) = A o(EaTeoH, T H )2
we see

0 0 0 0
(05400) Vo Toth Tothi) = { (05€0 ) Vi, 7ot Vr, 7o) 2 )

0 0
+2R(e¢ Vr, 7o lt, VI, 05T 120

— /10@(( (6@v¢)rgu, Tgu>L2(Q) + 227{(V<Drgu, aq,rgu),_z(g)>

0 0 0 0
= ((0g€q) Vr 7u, Vr, Td)u)Lz(Q) + 2R(A,Tgu, Aoaq,rd)u),_fm(g)

- 10@(( (dq,vq,)fgu, T%u)l_z(m + ZER(Tgu, aq,‘rg)u),_gm(g)>

= < (d‘f‘glb) Vr, Tgu’ Vr,Tt(l))u>|_2(Q) - '10,11)( (a‘i‘v'b)rgu’ Tgu>L2(Q)

+2R( (A5 Ay — Ao o)Tglt, OgTgu
—— e

=0 2
L2, @

_ 0 0 0, -0
= (Vr, 7gu, Vr,%”)l_fd @ ~ Aoa(Tolt Tq>”>|_qu‘v (©>

q,éq;) )

(05400 )0t H. 1o H) ) = ( (055" )divr, €0 7g H. divy o 7o H ) .

+ 2R (v divy eq 7y H, divy 0g(eqTg H)>L2(Q)
- oo (291(1'&) H, 0.;,(6(1)7&) H)>|_2(Q)
+ (05" cohHo€0thH ) )

((ogvg! )din,, eoToH, divp epTeH )

L)

+ 2R (At H, Aje ' 03 (eqT H) ) 2 @
Vo
— 10,@(( (0\;6;1)6¢7$H, E(I)Té)H)LZ(Q)

+2R (7 H, 65! 05(eq7e, H) ) 5 (9))
D
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= ((0gvg')divy eo7e H, divy 7o H ) c@

- ’10,<1>< (a\?gr})l)%%H’ S‘DTC})H>L2(Q)

+ 2§R< (AgA; — AO,Q)T;H,g;a@(%T;H)>
—_——

=0 2, @

; 1 : 1 1 1
= (divp €47, H, dlvrngq)r(bH)L(sz L@ + ApolteH. T H) 2
)

NS

Note that dgeq, = —£4(05€5" )eq by Remark A.2. Therefore, for normalised eigenfields u, E, and H we obtain the assertions. m]

Longer Proof of Theorem 4.2. By Theorem 2.1, Corollary 2.1, Remark 2.2 and Lemma A.1 we see

Ao = <(al¥'5<I>)VF,T<(I)>“’ VF,T%”)Q(Q) - )”0,<I>< (a‘i"’@)fgu’ TC%“)LZ(Q)

- <(det J@)<a@’5+ vz -2 sym(fPE))J;TVrtrgu, I3V Tg)u>Lz(Q)
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- <(det Jo) (a;ﬂs +divP)E-2 sym(JF;E)) Vi V%u)u(m

~ oo <(det o) (aspv + (div ‘I‘)V)E, ﬁ>L2(Q)

= ((aq,e + (div¥)e — 2 sym(Jye)) Vr._u, Vy u>
1D 1D LZ(Q@)

- /10,q>< (&l,v + (diV‘I’)v)u, u>L2(Q¢),

oy = ((dguz") Toty, 7 E, roty. T;,E)Lz( o~ Mol (05€0)To E. T4 E) 2 @

- <(det Jo) ! (a@F — @V +2 sym(Ff;)) Jo TOt 7L E, J, Ot T;,E> .
1 1 L ( )

-1 ,D<(det J,D)(aq,z +[@divP)E -2 sym(TWE))J;Tr;)E, J;TT;)E> ,
’ L*(Q)

= <(det Jq))(a@fﬁ — (div T)F +2 sym(FE)) rotr E, oty E> @
1.0 1. L2

_ ,1M,<(det Jq,)(a@e + ([dVP)E -2 sym(Jq,z‘)) E, E>Lz(g),

=((Opu™ = ([div¥)ut + 2sym(u~'Jy)) roty E, rot E>
<( pH ( \4 )M Y’ (M "I’)) o To LZ(QO)

= A o{(Oye + (div'¥)e — 2sym(Jye)) E. E) 2, .

9500 = ( (0gvg')divy £¢Ty H, divrnemr(})H)Lz @t hool(05e0)ToH. T H ) 2 @

- <(det Jd))_l(aq,\:jl —(@div \p)v““—l)clivr £orL H, divy g,DT;H> z
" " L@

+ doo{ (det o) (0 + @VIE - 25ym(TyD) ) I3 oh H. I3 o H ) o
, B

= <(det Jq,)(aq,v"‘—l —(@div \I’)Fl)divrmeH,divaeH>L2(Q)

+ /10,(D<(det Jm)(a@a dvP)E -2 sym(fga)ﬁ, I-I>L2(Q)

= (0! — @iv v divy, e H, divy, e H )
<( v = (div¥)vl)div, eH, divy, e o

+ 40,0 (e + (div¥)e — 2sym(Jye) ) H. H ) 2, .

finishing the proof. m]
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