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ABSTRACT
We study eigenvalue problems for the de Rham complex on varying three-dimensional domains. Our analysis includes
the Helmholtz equation as well as the Maxwell system with mixed boundary conditions and non-constant coefficients.
We provide Hadamard-type formulas for the shape derivatives under weak regularity assumptions on the domain and
its perturbations. Our proofs are based on abstract results adapted to varying Hilbert complexes. As a byproduct of our
analysis, we give a proof of the celebrated Hellmann–Feynman theorem both for simple and multiple eigenvalues
of suitable families of self-adjoint operators in Hilbert space depending on possibly infinite dimensional parameters.
This series of papers consists of Parts I and II.

1 | Introduction

The analysis of the dependence of the eigenvalues and eigenfunctions of elliptic operators upon variation of the under-
lying domain is a classical problem considered in many papers in the literature with applications in approximation,
optimization, homogenization, control theory, and mathematical physics. It is impossible to give an account of all contri-
butions in the literature and we refer to the monograph [1] for an introduction to this topic in particular to the method
of transplantation used in this paper. Needless to say that the Laplace operator and other second-order partial differen-
tial equations have received much more attention than higher order operators and systems, the analysis of which often
leads to various technical and theoretical obstructions as well as paradoxes, see for instance [2–6] for polyharmonic
operators and to [7, 8] for elliptic systems. From this point of view, the case of the Maxwell system has been investi-
gated even less, cf. [9–14]. In particular, we note that differentiability results and Hadamard-type formulas for shape
derivatives are proved in [10, 12, 14, 15] under suitable regularity assumptions on the domains and the corresponding
perturbations.
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The main aim of the present series of papers is to relax those regularity assumptions gaining one degree of smoothness and
to provide a unified approach including both the Helmholz equation and the Maxwell system. This is done by analyzing
the corresponding de Rham complex and its domain perturbations. A further contribution of our papers consists in the
fact that we consider nonconstant physical parameters such as the electric permittivity 𝜀 and the magnetic permeabil-
ity 𝜇. In particular, we give a rigorous proof of a formula found by Hiromasa Hirakawa in [16], pp. 91–93 which is a
Hadamard-type formula for the Maxwell system. Moreover, we consider the general case of mixed Dirichlet–Neumann
boundary conditions.

We note that the proof of the Hadamard formulas can be obtained at a formal level by applying the Hellmann–Feynman
theorem, a classical result is quantum mechanics that reduces here to a straightforward differentiation of the Rayleigh
quotients depending on a parameter (see [17] for a recent discussion on this theorem and references). However, to dis-
cuss the dependence of the eigenvalues on infinite dimensional parameters and to consider multiple eigenvalues, we
follow the approach developed in [18] and in particular we consider the elementary symmetric functions of the eigen-
values since these functions depend smoothly on the parameters as simple eigenvalues do. The results in [18] concern
general families of compact selfadjoint operators in Hilbert space with variable scalar product and are applied in [12] to
the Maxwell problem. To do so, the authors of [12] have to consider a penalized problem which requires C1,1 regular-
ity assumptions on the domain perturbations. Here, to consider domain perturbations of class C0,1, we do not penalize
the problem but this prevents us from using the results of [18] in a direct way because the operators under considera-
tion are selfadjoint but not compact.1 Thus, we are forced to give new proofs of abstract theorems concerning families
of selfadjoint operators in Hilbert space. As a byproduct of our analysis, we provide a proof of a general version of the
Hellmann–Feynman theorem for families of operators suitable for de Rham complexes in Hilbert spaces, see Part II of
this paper at hand.

This Part I of the paper series is organized as follows. Section 2 is devoted to notations and preliminaries on the
Functional Analysis Toolbox. Section 3 is devoted to the analysis of the eigenvalue problem for the de Rham com-
plex on transplanted domains. In Section 4, we conclude this first part with some formal computations to derive
the shape derivatives of the eigenvalues assuming that those are simple and the corresponding eigenvectors are
differentiable.

In Part II of this series of papers, we present Hadamard type formulas and related findings obtained by a direct application
of the Hellmann–Feynman theorem together with sound proofs of all results.

We conclude this introduction with two subsections where we highlight the main problems under consideration and
briefly discuss the approach of domain transplantation used in this paper.

Until stated otherwise, let Ω be a bounded open set in ℝ3 with boundary Γ and let 𝜆0, 𝜆1 > 0. Moreover, let 𝜈 ∈ L∞(Ω,ℝ)
be positive with respect to the L2(Ω)-inner product, and let 𝜀 and 𝜇 be admissible symmetric matrix fields, that is, 𝜀 and
𝜇 belong to L∞(Ω,ℝ3×3

sym) and are positive with respect to the L2(Ω)-inner product, cf. [19–22]. The required regularity of
Γ, 𝜈, 𝜀, 𝜇 will be specified along the paper.

1.1 | Eigenvalues of the De Rham Complex

We shall consider the Dirichlet Maxwell eigenvalue problem

𝜀−1 rot 𝜇−1 rot𝐸 = 𝜆1𝐸 in Ω,

n × 𝐸 = 0 on Γ.
(1)

The corresponding Neumann Maxwell eigenvalue problem reads

𝜀−1 rot 𝜇−1 rot𝐸 = 𝜆1𝐸 in Ω,

n × 𝜇−1 rot𝐸 = 0 on Γ.
(2)

Note that any solution of (1) or (2) automatically satisfies div 𝜀𝐸 = 0 in Ω, and that in (1) and (2) we have additional
n ⋅ rot𝐸 = 0 and n ⋅ 𝜀𝐸 = 0 on Γ, respectively.
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We investigate also mixed boundary conditions, that is, the Maxwell eigenvalue problem with mixed Dirichlet/Neumann
boundary conditions

𝜀−1 rot 𝜇−1 rot𝐸 = 𝜆1𝐸 in Ω,

n × 𝐸 = 0 on Γ𝑡,

n × 𝜇−1 rot𝐸 = 0 on Γ𝑛,

(3)

where Γ is decomposed into two relatively open subsets ∅ ⊂ Γ𝑡 ⊂ Γ and Γ𝑛 ∶= Γ ⧵ Γ𝑡. Note that again we have div 𝜀𝐸 = 0
and n ⋅ rot𝐸|Γ𝑡 = 0 and n ⋅ 𝜀𝐸|Γ𝑛 = 0.

Moreover, we shall discuss the full spectrum of the de Rham complex. Hence, we also investigate the scalar Laplacian and
its dual, that is,

− 𝜈−1 div 𝜀∇𝑢 = 𝜆0𝑢 in Ω,

𝑢 = 0 on Γ𝑡,

n ⋅ 𝜀∇𝑢 = 0 on Γ𝑛,

(4)

and

−∇𝜈−1 div 𝜀𝐻 = 𝜆0𝐻 in Ω,

𝜈−1 div 𝜀𝐻 = 0 on Γ𝑡,

n ⋅ 𝜀𝐻 = 0 on Γ𝑛.

(5)

As in (3) it holds rot𝐻 = 0 and n ×𝐻|Γ𝑡 = 0 but only ∫Γ 𝜈−1 div 𝜀𝐻 = 0 if Γ𝑛 = Γ.

In view of (3) and (5), we shall also discuss the generalized vector Laplacian

(𝜀−1 rot 𝜇−1 rot − ∇𝜈−1 div 𝜀)𝐸 = 𝜆0,1𝐸 in Ω, 𝜆0,1 ∈ {𝜆0, 𝜆1},

n × 𝐸 = 0, 𝜈−1 div 𝜀𝐸 = 0 on Γ𝑡,

n × 𝜇−1 rot𝐸 = 0, n ⋅ 𝜀𝐸 = 0 on Γ𝑛.

(6)

Note that for 𝜀, 𝜇, and 𝜈 being the identity mappings we have

𝜀−1 rot 𝜇−1 rot − ∇𝜈−1 div 𝜀 = rot rot − ∇ div = −Δ⃗.

1.2 | Shape Derivatives of Eigenvalues

We intend to study variations of the domain and the boundary conditions by replacing Ω and the boundary parts Γ𝑡,
Γ𝑛 with

ΩΦ ∶= Φ(Ω), ΓΦ ∶= Φ(Γ), Γ𝑡,Φ ∶= Φ(Γ𝑡), Γ𝑛,Φ ∶= Φ(Γ𝑛),

respectively, where
Φ ∶ Ω → ΩΦ

is a bi-Lipschitz transformation. In particular, for 𝓁 ∈ {0, 1}, we are interested in the variations of the eigenvalues

0 < 𝜆𝓁,1(Φ) ≤ 𝜆𝓁,2(Φ) ≤ · · · < 𝜆𝓁,𝑘−1(Φ) ≤ 𝜆𝓁,𝑘(Φ) ≤ · · · → ∞

in the domain ΩΦ and their elementary symmetric functions with respect to changing transformations Φ.

For simplicity, assume here that 𝜀, 𝜇 are the identity matrices and that 𝜈 = 1. Let 𝜆0,𝑘(Φ) and 𝜆1,𝑘(Φ) be eigenvalues with
eigenvectors 𝑢 and 𝐸 of (4) and (3), respectively. As is well-known these eigenvalues can be written by means of Rayleigh
quotients as

𝜆0,𝑘(Φ) =
|∇𝑢|2

L2(ΩΦ)|𝑢|2
L2(ΩΦ)

, 𝜆1,𝑘(Φ) =
|rot𝐸|2

L2(ΩΦ)|𝐸|2
L2(ΩΦ)

. (7)
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In particular, assuming that the eigenvectors are normalized in L2(ΩΦ) we have

𝜆0,𝑘(Φ) = |∇𝑢|2
L2(ΩΦ)

, 𝜆1,𝑘(Φ) = |rot𝐸|2
L2(ΩΦ)

.

Then also the dual eigenvectors

𝐻 ∶= 𝜆−1∕2
0,𝑘 (Φ)∇𝑢, 𝐵 ∶= 𝜆−1∕2

1,𝑘 (Φ) rot𝐸

are L2(ΩΦ)-normalized eigenvectors of (5) and the respective dual of (3). Moreover, we have the dualities

𝑢 = −𝜆−1∕2
0,𝑘 (Φ)div𝐻, 𝐸 = 𝜆−1∕2

1,𝑘 (Φ) rot𝐵,

𝜆0,Φ = |div𝐻|2
L2(ΩΦ)

, 𝜆1,Φ = |rot𝐵|2
L2(ΩΦ)

.

Note that the dual of (3) reads

𝜇−1 rot 𝜀−1 rot𝐵 = 𝜆1𝐵 in Ω,

n × 𝜀−1 rot𝐵 = 0 on Γ𝑡,

n × 𝐵 = 0 on Γ𝑛,

(8)

which incorporates also the conditions div 𝜇𝐵 = 0 and n ⋅ 𝜇𝐵|Γ𝑡 = 0 and n ⋅ rot𝐵|Γ𝑛 = 0.

In this paper, among other results, we prove Hadamard type formulas for the directional derivatives of the maps Φ ↦
𝜆𝑙,𝑘(Φ) for 𝑙 ∈ {0, 1}. This means that, given a fixed direction Ψ̃ in the space of Lipschitz transformations Φ, we compute
the limit

𝜕Ψ̃𝜆𝑙,𝑘(Φ) = lim
ℎ→0

𝜆𝑙,𝑘(Φ + ℎΨ̃) − 𝜆𝑙,𝑘(Φ)
ℎ

. (9)

Recall 𝜕Ψ̃𝜆𝑙,𝑘(Φ) = 𝜆′
𝑙,𝑘
(Φ)Ψ̃. As customary, it is convenient to consider Ψ̃ as the pull-back of a transformationΨ defined on

ΩΦ, that is Ψ̃ = Ψ ∘ Φ, and to express the formulas for the derivatives as volume or boundary integrals on ΩΦ. At a formal
level, assuming the differentiability of the eigenvalues and eigenvectors with respect to Φ (which might fail for multiple
eigenvalues, cf. Part II), the Hellmann–Feynman theorem allows to obtain the formulas for 𝜕Ψ̃𝜆𝑙,𝑘(Φ) by differentiating
the Rayleigh quotients (7) with respect to Φ (in direction Ψ̃ and keeping fixed the eigenvectors involved). By doing so, we
obtain

−
𝜕Ψ̃𝜆0,𝑘(Φ)
𝜆0,𝑘(Φ)

= ⟨(symtr ∇Ψ)𝐻,𝐻⟩L2(ΩΦ) + ⟨(div Ψ)𝑢, 𝑢⟩L2(ΩΦ), (10a)

𝜕Ψ̃𝜆1,𝑘(Φ)
𝜆1,𝑘(Φ)

= ⟨(symtr ∇Ψ)𝐵,𝐵⟩L2(ΩΦ) + ⟨(symtr ∇Ψ)𝐸,𝐸⟩L2(ΩΦ), (10b)

cf. (31) and Part II, where
symtr ∇Ψ ∶= 2 sym ∇Ψ − tr ∇Ψ = ∇Ψ + (∇Ψ)⊤ − div Ψ.

Then, under more regularity assumptions on eigenvectors, it is possible to integrate by parts and write these formulas by
means of surface integrals as follows:

𝜕Ψ̃𝜆0,𝑘(Φ)
𝜆0,𝑘(Φ)

= ∫Γ𝑛,Φ

(|𝐻|2 − |𝑢|2)Ψ ⋅ 𝑛 𝑑𝜎 − ∫Γ𝑡,Φ

(|𝐻|2 − |𝑢|2)Ψ ⋅ 𝑛 𝑑𝜎, (11a)

𝜕Ψ̃𝜆1,𝑘(Φ)
𝜆1,𝑘(Φ)

= ∫Γ𝑛,Φ

(|𝐵|2 − |𝐸|2)Ψ ⋅ 𝑛 𝑑𝜎 − ∫Γ𝑡,Φ

(|𝐵|2 − |𝐸|2)Ψ ⋅ 𝑛 𝑑𝜎, (11b)

see Part II. These computations are quite involved.

Note that formula (11a) is well known at least for non-mixed boundary conditions, cf. for example [18, 23], and for-
mula (11b) has been recently proved in [12, 15] for sufficiently regular perturbations. Formula (11b) was found in a
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heuristic way in [16] with Γ𝑛 = ∅ for arbitrary 𝜀 and 𝜇 and another interesting equivalent formula was proved in [10], see
also [14].

It is important to observe that the left and right derivatives in (9), that is, ℎ → 0∓, coincide if the eigenvalue under consid-
eration is simple, while they might be different if the eigenvalue is multiple (the difference corresponds to the choice of
different eigenvectors in the formulas). This phenomenon is well-known for many eigenvalue problems associated with
families of self-adjoint operators depending on some parameters. It is also well-known that for perturbations depending
on one scalar parameter, it is possible to apply the Rellich theorem and relabel the eigenvalues to guarantee their differ-
entiability. On the other hand, it was proved in [18] that the elementary symmetric functions of the eigenvalues which
bifurcate at a multiple eigenvalue are differentiable no matter whether the parameter involved is one dimensional or not.

2 | Preliminaries

2.1 | Sobolev Spaces and Boundary Conditions

Let 𝑘 ∈ ℕ0 ∪ {∞}. We define (for scalar, vector, or tensor fields)

C𝑘Γ𝑡
(Ω) ∶=

{
𝜓|Ω ∶ 𝜓 ∈ C𝑘(ℝ3), supp 𝜓 compact, dist(supp 𝜓,Γ𝑡) > 0

}
,

C0,1
Γ𝑡
(Ω) ∶=

{
𝜓|Ω ∶ 𝜓 ∈ C0,1(ℝ3), supp 𝜓 compact, dist(supp 𝜓,Γ𝑡) > 0

}
.

Recall that Γ𝑡 is a relatively open subset of Γ. Note that C𝑘∅(Ω) and C0,1
∅ (Ω) are often denoted by C𝑘(Ω) and C0,1(Ω), respec-

tively. With the Lebesgue space L2(Ω) we have the standard Sobolev spaces in the weak sense

H𝑘(Ω) ∶=
{
𝜓 ∈ L2(Ω) ∶ 𝜕𝛼𝜓 ∈ L2(Ω) ∀ |𝛼| ≤ 𝑘}

=
{
𝜓 ∈ L2(Ω) ∶ ∀ |𝛼| ≤ 𝑘 ∃Ψ𝛼 ∈ L2(Ω) ∀ 𝜃 ∈ C∞

Γ (Ω) ⟨𝜓, 𝜕𝛼𝜃⟩L2(Ω) = (−1)|𝛼|⟨𝜓𝛼, 𝜃⟩L2(Ω)
}
,

R(Ω) ∶=
{
Ψ ∈ L2(Ω) ∶ rot Ψ ∈ L2(Ω)

}
=
{
Ψ ∈ L2(Ω) ∶ ∃Ψrot ∈ L2(Ω) ∀ Θ ∈ C∞

Γ (Ω) ⟨Ψ, rot Θ⟩L2(Ω) = ⟨Ψrot,Θ⟩L2(Ω)
}
,

D(Ω) ∶=
{
Ψ ∈ L2(Ω) ∶ div Ψ ∈ L2(Ω)

}
=
{
Ψ ∈ L2(Ω) ∶ ∃𝜓div ∈ L2(Ω) ∀ 𝜃 ∈ C∞

Γ (Ω) ⟨Ψ,∇𝜃⟩L2(Ω) = −⟨𝜓div, 𝜃⟩L2(Ω)
}
.

Note that R(Ω) and D(Ω) are the well-known spaces H(rot ,Ω) and H(div,Ω), respectively. We introduce boundary condi-
tions in the strong sense by

H𝑘Γ𝑡
(Ω) ∶= C∞

Γ𝑡
(Ω)

H𝑘(Ω)
, RΓ𝑡 (Ω) ∶= C∞

Γ𝑡
(Ω)

R(Ω)
, DΓ𝑡 (Ω) ∶= C∞

Γ𝑡
(Ω)

D(Ω)
.

By standard Friedrichs’ mollification, we observe

H1
Γ𝑡
(Ω) = C0,1

Γ𝑡
(Ω)

H1(Ω)
, RΓ𝑡 (Ω) = C0,1

Γ𝑡
(Ω)

R(Ω)
, DΓ𝑡 (Ω) = C0,1

Γ𝑡
(Ω)

D(Ω)
.

Also boundary conditions in the weak sense are introduced by

H𝑘Γ𝑡(Ω) ∶=
{
𝜓 ∈ H𝑘(Ω) ∶ ∀ |𝛼| ≤ 𝑘 ∀ 𝜃 ∈ C∞

Γ𝑛
(Ω) ⟨𝜓, 𝜕𝛼𝜃⟩L2(Ω) = (−1)|𝛼|⟨𝜕𝛼, 𝜃⟩L2(Ω)

}
,

RΓ𝑡(Ω) ∶=
{
Ψ ∈ R(Ω) ∶ ∀ Θ ∈ C∞

Γ𝑛
(Ω) ⟨Ψ, rot Θ⟩L2(Ω) = ⟨rot Ψ,Θ⟩L2(Ω)

}
,

DΓ𝑡(Ω) ∶=
{
Ψ ∈ D(Ω) ∶ ∀ 𝜃 ∈ C∞

Γ𝑛
(Ω) ⟨Ψ,∇𝜃⟩L2(Ω) = −⟨div Ψ, 𝜃⟩L2(Ω)

}
.

Note that for Γ𝑡 = ∅ we have

H𝑘∅(Ω) = H𝑘(Ω), R∅(Ω) = R(Ω), D∅(Ω) = D(Ω).

Mathematical Methods in the Applied Sciences, 2026 5
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2.2 | Weak and Strong Boundary Conditions Coincide

For full boundary conditions there is a simple result that “weak equals strong” holds without any additional assumptions
in a certain sense (the test fields can be chosen from a possibly larger space). Unfortunately, the proof does not allow for
mixed boundary conditions.

Lemma 2.1 (Weak equals strong for full boundary conditions). It holds

H1
Γ(Ω) =

{
𝜓 ∈ H1(Ω) ∶ ∀ Θ ∈ D(Ω) ⟨𝜓, div Θ⟩L2(Ω) = −⟨∇𝜓, 𝜃⟩L2(Ω)

}
,

RΓ(Ω) =
{
Ψ ∈ R(Ω) ∶ ∀ Θ ∈ R(Ω) ⟨Ψ, rot Θ⟩L2(Ω) = ⟨rot Ψ,Θ⟩L2(Ω)

}
,

DΓ(Ω) =
{
Ψ ∈ D(Ω) ∶ ∀ 𝜃 ∈ H1(Ω) ⟨Ψ,∇𝜃⟩L2(Ω) = −⟨div Ψ, 𝜃⟩L2(Ω)

}
.

See the appendix for a proof. For a definition of the segment property used in the following lemma we refer to [24].

Lemma 2.2 (weak equals strong for no boundary conditions/density of smooth fields). Let Ω have additionally
the segment property. Then

H𝑘∅(Ω) = H𝑘(Ω), R∅(Ω) = R(Ω), D∅(Ω) = D(Ω).

In other words, C∞
∅ (Ω) = C∞(Ω) is dense in H𝑘(Ω), R(Ω), and D(Ω), respectively.

Proof. The proof for H1(Ω) can be found, for example, in Agmon [25] or in Wloka [26], Theorem 3.6, and it liter-
ally carries over to R(Ω) and D(Ω) as the mollifiers work similarly for rot and div. The result for H𝑘(Ω) follows by
induction. ◽

In case of Lemma 2.2, we set

H𝑘(Ω) ∶= H𝑘∅(Ω) = H𝑘(Ω), R(Ω) ∶= R∅(Ω) = R(Ω), D(Ω) ∶= D∅(Ω) = D(Ω).

Lemma 2.3 (weak equals strong for full boundary conditions). Let Ω have additionally the segment property.
Then

H𝑘Γ(Ω) = H𝑘Γ(Ω), RΓ(Ω) = RΓ(Ω), DΓ(Ω) = DΓ(Ω).

Proof. This follows by the same technique used in the proof of Lemma 2.1 in combination with the density results from
Lemma 2.2, for example, R(Ω) = R(Ω) = R∅(Ω) = C∞

∅ (Ω)
R(Ω)

. ◽

For mixed boundary conditions, that is, ∅ ≠ Γ𝑡 ≠ Γ, the question “weak equals strong” is more delicate. The equality can
be proved under the assumption that Ω has a Lipschitz boundary in the weak sense and Γ𝑡 has a relative boundary in
Γ which is also Lipschitz in the weak sense. In particular, Γ is a Lipschitz manifold of codimension one in ℝ3 and the
relative boundary of Γ𝑡 in Γ is a Lipschitz submanifold of codimension one in Γ. In this case, we say that (Ω,Γ𝑡) is a weak
Lipschitz pair. Recall that usually “Lipschitz in the weak sense" means that the open set can be locally flattened near the
boundary by means of a Lipschitz diffeomorphism. This condition is weaker than “Lipschitz in the strong sense” in which
case the open set can be locally represented near boundary as a subgraph of a Lipschitz function.

A proof of the following lemma and the precise definition of a weak Lipschitz pair can be found in [19] or [22].

Lemma 2.4 (Weak equals strong for mixed boundary consitions). Let (Ω,Γ𝑡) be additionally a weak Lipschitz
pair. Then

H𝑘Γ𝑡 (Ω) = H𝑘Γ𝑡 (Ω), RΓ𝑡 (Ω) = RΓ𝑡 (Ω), DΓ𝑡 (Ω) = DΓ𝑡 (Ω).

2.3 | The Transformation Theorem

Let Φ ∈ C0,1(ℝ3,ℝ3) be such that
Φ ∶ Ω → Φ(Ω) = ΩΦ

6 Mathematical Methods in the Applied Sciences, 2026
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is bi-Lipschitz, and regular, that is, Φ ∈ C0,1(Ω,ΩΦ) and Φ−1 ∈ C0,1(ΩΦ,Ω) with2

𝐽Φ = Φ′ = (∇Φ)⊤, ess inf det 𝐽Φ > 0.

Such regular bi-Lipschitz transformations will be called admissible and we write

Φ ∈ (Ω).
For Φ ∈ (Ω) the inverse and adjunct matrix of 𝐽Φ shall be denoted by

𝐽−1
Φ , adj 𝐽Φ ∶= (det 𝐽Φ)𝐽−1

Φ ,

respectively. We denote the composition with Φ by tilde, that is, for any tensor field 𝜓 we define

𝜓̃ ∶= 𝜓 ∘ Φ.

Moreover, let
ΓΦ ∶= Φ(Γ), Γ𝑡,Φ ∶= Φ(Γ𝑡), Γ𝑛,Φ ∶= Φ(Γ𝑛).

A proof of the following theorem for differential forms can be found in the appendix of [28]. Here we focus on the special
case used in this paper.

Theorem 2.1 (Transformation theorem). Let 𝑢 ∈ H1
Γ𝑡,Φ

(ΩΦ), 𝐸 ∈ RΓ𝑡,Φ(ΩΦ), and 𝐻 ∈ DΓ𝑡,Φ(ΩΦ). Then

𝜏0
Φ𝑢 ∶= 𝑢̃ ∈ H1

Γ𝑡
(Ω) and ∇𝜏0

Φ𝑢 = 𝜏
1
Φ∇𝑢,

𝜏1
Φ𝐸 ∶= 𝐽⊤Φ𝐸 ∈ RΓ𝑡 (Ω) and rot 𝜏1

Φ𝐸 = 𝜏2
Φ rot𝐸,

𝜏2
Φ𝐻 ∶= (adj 𝐽Φ)𝐻̃ ∈ DΓ𝑡 (Ω) and div 𝜏2

Φ𝐻 = 𝜏3
Φ div𝐻.

with 𝜏3
Φ𝑓 ∶= (det 𝐽Φ)𝜏0

Φ𝑓 = (det 𝐽Φ)𝑓 ∈ L2(Ω) for 𝑓 ∈ L2(ΩΦ). Moreover,

𝜏0
Φ ∶ H1

Γ𝑡,Φ
(ΩΦ) → H1

Γ𝑡
(Ω), 𝜏1

Φ ∶ RΓ𝑡,Φ(ΩΦ) → RΓ𝑡 (Ω),

𝜏3
Φ ∶ L2(ΩΦ) → L2(Ω), 𝜏2

Φ ∶ DΓ𝑡,Φ(ΩΦ) → DΓ𝑡 (Ω)

are topological isomorphisms with norms depending on Ω and 𝐽Φ. The inverse operators and the L2-adjoints, that is, the
Hilbert space adjoints of 𝜏𝑞Φ ∶ L2(ΩΦ) → L2(Ω), are given by

(𝜏𝑞Φ)
−1 = 𝜏𝑞

Φ−1 , (𝜏0
Φ)

∗ = 𝜏3
Φ−1 , (𝜏1

Φ)
∗ = 𝜏2

Φ−1 , (𝜏2
Φ)

∗ = 𝜏1
Φ−1 , (𝜏3

Φ)
∗ = 𝜏0

Φ−1 ,

respectively.

Proof. If 𝑢 ∈ C0,1
Γ𝑡,Φ

(ΩΦ) we have by Rademacher’s theorem 𝑢̃ ∈ C0,1
Γ𝑡
(Ω) and the standard chain rule (𝑢̃)′ = 𝑢′Φ′ holds,

that is,

∇𝑢̃ = ∇Φ∇̃𝑢 = 𝐽⊤Φ∇̃𝑢. (12)

Then we use an approximation argument. For 𝑢 ∈ H1
Γ𝑡,Φ

(ΩΦ) we pick a sequence (𝑢𝓁) ⊂ C0,1
Γ𝑡,Φ

(ΩΦ) such that 𝑢𝓁 → 𝐸 in

H1
Γ𝑡,Φ

(ΩΦ). Then 𝑢𝓁 → 𝐸 and ∇̃𝑢𝓁 → ∇̃𝑢 in L2(Ω) by the standard transformation theorem. By (12) we have 𝑢𝓁 ∈ C0,1
Γ𝑡
(Ω) ⊂

H1
Γ𝑡
(Ω) with

𝑢𝓁 → 𝑢̃, ∇𝑢𝓁 = 𝐽⊤Φ∇̃𝑢𝓁 → 𝐽⊤Φ∇̃𝑢 in L2(Ω).

Since ∇Γ𝑡 ∶ H1
Γ𝑡
(Ω) ⊂ L2(Ω) → L2(Ω) is closed, we conclude 𝑢̃ ∈ H1

Γ𝑡
(Ω) and

∇𝑢̃ = 𝐽⊤Φ∇̃𝑢. (13)

Mathematical Methods in the Applied Sciences, 2026 7
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For the classical chain rule in Sobolev spaces see, for example, [18].

Assume 𝐸 ∈ C0,1
Γ𝑡,Φ

(ΩΦ). Then 𝐸 ∈ C0,1
Γ𝑡
(Ω) and

𝐽⊤Φ𝐸 = ∇Φ𝐸 = [∇Φ1 ∇Φ2 ∇Φ3]𝐸 =
∑
𝑗

𝐸𝑗∇Φ𝑗 .

As ∇Φ𝑗 ∈ ∇H1(Ω) ⊂ R(Ω) we conclude 𝐽⊤Φ𝐸 ∈ R(Ω) and

rot(𝐽⊤Φ𝐸) =
∑
𝑗

∇𝐸𝑗 × ∇Φ𝑗 =
∑
𝑗

(𝐽⊤Φ∇̃𝐸𝑗) × ∇Φ𝑗

=
∑
𝑗

(
[∇Φ1 ∇Φ2 ∇Φ3] ∇̃𝐸𝑗

)
× ∇Φ𝑗

=
∑
𝑗,𝑚

𝜕𝑚𝐸𝑗∇Φ𝑚 × ∇Φ𝑗 =
∑
𝑗<𝑚

(𝜕𝑚𝐸𝑗 − 𝜕𝑗𝐸𝑚)∇Φ𝑚 × ∇Φ𝑗

= [∇Φ2 × ∇Φ3 ∇Φ3 × ∇Φ1 ∇Φ1 × ∇Φ2] r̃ot𝐸 = (adj 𝐽Φ) r̃ot𝐸. (14)

Moreover, by a mollification argument it follows that 𝐽⊤Φ𝐸 ∈ RΓ𝑡(Ω). Again, the general case𝐸 ∈ RΓ𝑡,Φ(ΩΦ) can be treated
by an approximation argument. For this, we consider a sequence (𝐸𝓁)𝑙∈ℕ ⊂ C0,1

Γ𝑡,Φ
(ΩΦ) such that 𝐸𝓁 → 𝐸 in R(ΩΦ). Then

𝐸𝓁 → 𝐸 and r̃ot𝐸𝓁 → r̃ot𝐸 in L2(Ω). Hence by the previous argument it follows that 𝐽⊤Φ𝐸𝓁 ∈ RΓ𝑡(Ω) with

𝐽⊤Φ𝐸
𝓁 → 𝐽⊤Φ𝐸, rot (𝐽⊤Φ𝐸𝓁) = (adj 𝐽Φ) r̃ot𝐸𝓁 → (adj 𝐽Φ) r̃ot𝐸 in L2(Ω).

Since rotΓ𝑡 ∶ RΓ𝑡 (Ω) ⊂ L2(Ω) → L2(Ω) is a closed operator, we conclude 𝐽⊤Φ𝐸 ∈ RΓ𝑡 (Ω) and

rot (𝐽⊤Φ𝐸) = (adj 𝐽Φ) r̃ot𝐸, (15)

which completes the proof of the transformation rule for 𝜏1
Φ.

We now consider the case of 𝜏2
Φ. Assume𝐻 ∈ C0,1

Γ𝑡,Φ
(ΩΦ). Then 𝐻̃ ∈ C0,1

Γ𝑡
(Ω) and

(adj 𝐽Φ)𝐻̃ = [∇Φ2 × ∇Φ3 ∇Φ3 × ∇Φ1 ∇Φ1 × ∇Φ2]𝐻̃ =
∑
(𝑗,𝑚,𝑙)

𝐻̃𝑗∇Φ𝑚 × ∇Φ𝑙,

cf. (14), where the summation is over the three even permutations (𝑗, 𝑚, 𝑙) of (1, 2, 3). Since ∇Φ𝑚 × ∇Φ𝑙 = rot (Φ𝑚∇Φ𝑙) ∈
rot R(Ω) ⊂ D(Ω) we conclude that (adj 𝐽Φ)𝐻̃ ∈ D(Ω) and

div
(
(adj 𝐽Φ)𝐻̃

)
=

∑
(𝑗,𝑚,𝑙)

∇𝐻̃𝑛 ⋅ (∇Φ𝑚 × ∇Φ𝑙) =
∑
(𝑗,𝑚,𝑙)

(𝐽⊤Φ∇̃𝐻𝑗) ⋅ (∇Φ𝑚 × ∇Φ𝑙)

=
∑
(𝑗,𝑚,𝑙)

(
[∇Φ1 ∇Φ2 ∇Φ3] ∇̃𝐻𝑗

)
⋅ (∇Φ𝑚 × ∇Φ𝑙)

=
∑

(𝑗,𝑚,𝑙,𝑘)
𝜕𝑘𝐻𝑗∇Φ𝑘 ⋅ (∇Φ𝑚 × ∇Φ𝑙)

𝑘=𝑗
= (det∇Φ) d̃iv𝐻 = (det 𝐽Φ) d̃iv𝐻. (16)

Moreover, by a mollification argument we deduce that (adj 𝐽Φ)𝐻̃ ∈ DΓ𝑡 (Ω). The general case 𝐻 ∈ DΓ𝑡,Φ(ΩΦ) can be dis-
cussed by an approximation argument as above. Consider a sequence (𝐻𝓁)𝑙∈ℕ ⊂ C0,1

Γ𝑡,Φ
(ΩΦ) such that 𝐻𝓁 → 𝐻 in D(ΩΦ).

Then 𝐻𝓁 → 𝐻̃ and d̃iv𝐻𝓁 → d̃iv𝐻 in L2(Ω). Hence by the previous argument we know that (adj 𝐽Φ)𝐻𝓁 ∈ DΓ𝑡 (Ω)
with (adj 𝐽Φ)𝐻𝓁 → (adj 𝐽Φ)𝐻̃ and div

(
(adj 𝐽Φ)𝐻𝓁

)
= (det 𝐽Φ)d̃iv𝐻𝓁 → (det 𝐽Φ)d̃iv𝐻 in L2(Ω). Since divΓ𝑡 ∶ DΓ𝑡 (Ω) ⊂

L2(Ω) → L2(Ω) is a closed operator, we conclude that (adj 𝐽Φ)𝐻̃ ∈ DΓ𝑡(Ω) and

div
(
(adj 𝐽Φ)𝐻̃

)
= (det 𝐽Φ)d̃iv𝐻,

8 Mathematical Methods in the Applied Sciences, 2026
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which completes the proof of the transformation rule for 𝜏2
Φ.

Concerning the inverse operators and L2-adjoints we consider, for example, the case 𝑞 = 1 since the other cases can be
discussed in a similar way. As

𝜏1
Φ−1𝜏

1
Φ𝐸 = 𝜏1

Φ−1𝐽
⊤
Φ𝐸 = 𝐽⊤Φ−1

(
(𝐽⊤Φ𝐸) ∘ Φ

−1
)
=
(
𝐽−⊤
Φ 𝐽⊤Φ𝐸

)
∘ Φ−1 = 𝐸

we have (𝜏1
Φ)

−1 = 𝜏1
Φ−1 . Moreover, observing that 𝐽Φ−1 = 𝐽−1

Φ ∘ Φ−1 we get

⟨𝜏1
Φ𝐸,Ψ⟩L2(Ω) = ⟨𝐽⊤Φ𝐸,Ψ⟩L2(Ω) =

⟨
𝐸, (det 𝐽Φ−1)(𝐽ΦΨ) ∘ Φ−1⟩

L2(ΩΦ)

=
⟨
𝐸, (det 𝐽Φ−1)𝐽−1

Φ−1(Ψ ∘ Φ−1)
⟩

L2(ΩΦ)

=
⟨
𝐸, (adj 𝐽Φ−1)(Ψ ∘ Φ−1)

⟩
L2(ΩΦ)

= ⟨𝐸, 𝜏2
Φ−1Ψ⟩L2(ΩΦ),

and hence (𝜏1
Φ)

∗ = 𝜏2
Φ−1 . ◽

Remark 2.1 (Transformation theorem). For the divergence there is also a duality argument leading to the result
of Theorem 2.1. For this, let 𝐻 ∈ D(ΩΦ) and pick some 𝜓 ∈ C0,1

Γ (Ω). Then 𝜙 ∶= 𝜓 ∘ Φ−1 ∈ C0,1
Γ,Φ(ΩΦ) and 𝜙 = 𝜓 . By the

chain rule we compute

⟨𝐻,∇𝜙⟩L2(ΩΦ) = −⟨div𝐻,𝜙⟩L2(ΩΦ) = −
⟨
(det 𝐽Φ)d̃iv𝐻,𝜓

⟩
L2(Ω)

=
⟨
(det 𝐽Φ)𝐻̃, ∇̃𝜙

⟩
L2(Ω)

=
⟨
(det 𝐽Φ)𝐻̃, 𝐽−⊤

Φ ∇𝜙
⟩

L2(Ω)
=
⟨
(adj 𝐽Φ)𝐻̃,∇𝜓

⟩
L2(Ω)

.

Hence, (adj 𝐽Φ)𝐻̃ ∈ D(Ω) and div
(
(adj 𝐽Φ)𝐻̃

)
= (det 𝐽Φ)d̃iv𝐻 . Note that this duality argument does not apply for the

rot operator.

Corollary 2.1 (Transformation theorem). Let 𝐸 ∈ RΓ𝑡,Φ(ΩΦ) ∩ 𝜀−1DΓ𝑛,Φ(ΩΦ). Then

𝜏1
Φ𝐸 ∈ RΓ𝑡 (Ω) ∩ 𝜀

−1
Φ DΓ𝑛(Ω)

and it holds
rot 𝜏1

Φ𝐸 = 𝜏2
Φ rot𝐸, div 𝜀Φ𝜏1

Φ𝐸 = 𝜏3
Φ div 𝜀𝐸, 𝜀Φ𝜏

1
Φ = 𝜏2

Φ𝜀

with 𝜀Φ ∶= 𝜏2
Φ𝜀𝜏

1
Φ−1 = (det 𝐽Φ)𝐽−1

Φ 𝜀𝐽−⊤
Φ = (adj 𝐽Φ)𝜀𝐽−⊤

Φ . Moreover,

𝜏1
Φ ∶ RΓ𝑡,Φ(ΩΦ) ∩ 𝜀−1DΓ𝑛,Φ(ΩΦ) → RΓ𝑡 (Ω) ∩ 𝜀

−1
Φ DΓ𝑛(Ω)

is a topological isomorphism with norm depending on Ω, 𝜀, and 𝐽Φ. The inverse is given by 𝜏1
Φ−1 .

Proof. Using Theorem 2.1 we compute for 𝜀𝐸 ∈ DΓ𝑛,Φ(ΩΦ)

𝜏3
Φ div 𝜀𝐸 = div 𝜏2

Φ𝜀𝐸 = div 𝜏2
Φ𝜀𝜏

1
Φ−1𝜏

1
Φ𝐸 = div 𝜀Φ𝜏1

Φ𝐸,

with 𝜀Φ = 𝜏2
Φ𝜀𝜏

1
Φ−1 = (adj 𝐽Φ)𝜀𝜏1

Φ−1 = (adj 𝐽Φ)𝜀𝐽−⊤
Φ = (det 𝐽Φ)𝐽−1

Φ 𝜀𝐽−⊤
Φ . ◽

Remark 2.2 (Transformation theorem). More explicitly, in Theorem 2.1 and Corollary 2.1 it holds

∀ 𝑢 ∈ H1
Γ𝑡,Φ

(ΩΦ) ∇𝑢̃ = 𝐽⊤Φ∇̃𝑢,

∀ 𝐸 ∈ RΓ𝑡,Φ(ΩΦ) rot (𝐽⊤Φ𝐸) = (adj 𝐽Φ) r̃ot𝐸,

∀ 𝐻 ∈ DΓ𝑡,Φ(ΩΦ) div
(
(adj 𝐽Φ) 𝐻̃

)
= (det 𝐽Φ) d̃iv𝐻,

∀ 𝐸 ∈ 𝜀−1DΓ𝑛,Φ(ΩΦ) div(𝜀Φ𝐽⊤Φ𝐸) = (det 𝐽Φ) d̃iv 𝜀𝐸.

Mathematical Methods in the Applied Sciences, 2026 9
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Remark 2.3 (Transformation theorem). The transformations 𝜏𝑞Φ are just the well-known pullback maps for differ-
ential 𝑞-forms applied to the corresponding vector proxies, that is, 𝜏𝑞Φ = Φ∗ on differentials forms 𝐹 of degree 𝑞. Using the
exterior derivative d the latter formulas reduce to

d𝜏𝑞Φ𝐹 = dΦ∗𝐹 = Φ∗d𝐹 = 𝜏𝑞+1
Φ d𝐹 .

2.4 | Functional Analysis Toolbox

We collect and cite some parts from [20–22, 29–31], cf. [31–35], of the so-called functional analysis toolbox (FA-ToolBox).

2.4.1 | Single Operators and Hilbert Space Adjoints

Let A ∶ 𝐷(A) ⊂ H0 → H1 be a densely defined and closed (unbounded3) linear operator with domain of definition𝐷(A) on
two Hilbert spaces H0 and H1. Then the Hilbert space adjoint A∗ ∶ 𝐷(A∗) ⊂ H1 → H0 is well defined and characterized by

∀ 𝑥 ∈ 𝐷(A) ∀ 𝑦 ∈ 𝐷(A∗) ⟨A𝑥, 𝑦⟩H1
= ⟨𝑥,A∗𝑦⟩H0

.

The operators A and A∗ are both densely defined, closed, and typically unbounded. We call (A,A∗) a dual pair as (A∗)∗ =
A = A. The projection theorem shows

H0 = 𝑁(A)⊕H0
𝑅(A∗), H1 = 𝑁(A∗)⊕H1

𝑅(A), (17)

often called Helmholtz/Hodge/Weyl decompositions, where we introduce the notation 𝑁 for the kernel (or null space)
and 𝑅 for the range of a linear operator. These orthogonal decompositions reduce the operators A and A∗, leading to the
injective operators  ∶= A|

𝑅(A∗) and ∗ ∶= A∗|𝑅(A), that is

 ∶ 𝐷() ⊂ 𝑅(A∗) → 𝑅(A), 𝐷() = 𝐷() ∩ 𝑅(A∗),

∗ ∶ 𝐷(∗) ⊂ 𝑅(A) → 𝑅(A∗), 𝐷(∗) = 𝐷(∗) ∩ 𝑅(A),

which are again densely defined and closed (unbounded) linear operators. Note that

𝑅(A∗) = 𝑁(A)⊥H0 , 𝑅(A) = 𝑁(A∗)⊥H1 ,

and that  and ∗ are indeed adjoint to each other, that is, (,∗) is a dual pair as well. Then the inverse operators

−1 ∶ 𝑅(A) → 𝐷(), (∗)−1 ∶ 𝑅(A∗) → 𝐷(∗),

are well defined and bijective, but possibly unbounded. Furthermore, by (17) we have the refined Helmholtz type decom-
positions

𝐷(A) = 𝑁(A)⊕H0
𝐷(), 𝐷(A∗) = 𝑁(A∗)⊕H1

𝐷(∗), (18)

and thus we obtain for the ranges
𝑅(A) = 𝑅(), 𝑅(A∗) = 𝑅(∗).

Note that𝐷(A), 𝐷() and𝐷(A∗), 𝐷(∗) equipped with the respective graph norms are Hilbert spaces.

The following result is a well-known and direct consequence of the closed graph theorem and the closed range theorem.

Lemma 2.5 (fa-toolbox lemma 1). The following assertions are equivalent:

i. ∃ 𝑐A ∈ (0,∞) ∀ 𝑥 ∈ 𝐷() |𝑥|H0
≤ 𝑐A|A𝑥|H1

i*. ∃ 𝑐A∗ ∈ (0,∞) ∀ 𝑦 ∈ 𝐷(∗) |𝑦|H1
≤ 𝑐A∗ |A∗𝑦|H0

10 Mathematical Methods in the Applied Sciences, 2026
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ii. 𝑅(A) = 𝑅() is closed in H1.

ii*. 𝑅(A∗) = 𝑅(∗) is closed in H0.

iii. −1 ∶ 𝑅(A) → 𝐷() is bounded.

iii*. (∗)−1 ∶ 𝑅(A∗) → 𝐷(∗) is bounded.

iv.  ∶ 𝐷() → 𝑅(A) is a topological isomorphism.

iv*. ∗ ∶ 𝐷(∗) → 𝑅(A∗) is a topological isomorphism.

The latter inequalities will be called Friedrichs-Poincaré type estimates.

Lemma 2.6 (fa-toolbox lemma 2). The following assertions are equivalent:

i. 𝐷() → H0 is compact.

i*. 𝐷(∗) → H1 is compact.

ii. −1 ∶ 𝑅(A) → 𝑅(A∗) is compact.

ii*. (∗)−1 ∶ 𝑅(A∗) → 𝑅(A) is compact.

Remark 2.4 (Sufficient assumptions for the first fa-toolbox lemmas).

i. If 𝑅(A) is closed, then the assertions of Lemma 2.5 hold.

ii. If 𝐷() → H0 is compact, then the assertions of Lemma 2.5 (and Lemma 2.6) hold. In particular, the
Friedrichs-Poincaré type estimates hold, all ranges are closed and the inverse operators are compact.

2.4.2 | Spectra and Point Spectra

We emphasize that

A∗ A ≥ 0, A A∗ ≥ 0 (19)

are self-adjoint with essentially (except of 0) the same non-negative spectrum. The same holds true for the reduced oper-
ators ∗,∗ > 0. We shall give more details for the point spectrum in the next lemma.

Lemma 2.7 (fa-toolbox lemma 3/eigenvalues). Let 𝐷() → H0 be compact. Then the operators in (19) are
self-adjoint, non-negative, and have pure and discrete point spectra with no accumulation point in ℝ. Moreover,

𝜎(∗) = 𝜎(A∗ A) ⧵ {0} = 𝜎(A A∗) ⧵ {0} = 𝜎(∗) = {𝜆𝑘}𝑘∈ℕ ⊂ (0,∞)

with eigenvalues 0 < 𝜆1 ≤ 𝜆2 ≤ … ≤ 𝜆𝑘−1 ≤ 𝜆𝑘 ≤ · · · → ∞. Only finitely many eigenvalues coincide, they are repeated
according their multiplicity, and it holds

𝑁(A∗ A − 𝜆𝑘) = 𝑁(∗ − 𝜆𝑘), 𝑁(A A∗ − 𝜆𝑘) = 𝑁(∗ − 𝜆𝑘).

Remark 2.5 (variational formulations). For any eigenvector 𝑥 of A∗ A associated with an eigenvalue 𝜆𝑘 we have

(A∗ A − 𝜆𝑘)𝑥 = 0, 𝑥 ∈ 𝐷(A∗ A) ∩𝑅(A∗) = 𝐷(∗) ⊂ 𝐷(),

and the variational formulation
∀ 𝜙 ∈ 𝐷(A) ⟨A𝑥,A𝜙⟩H1

= 𝜆𝑘⟨𝑥, 𝜙⟩H0
,

holds. The corresponding results hold for any eigenvector 𝑦 of A A∗ to 𝜆𝑘. Note that, for example, 𝑦 = A𝑥.

Mathematical Methods in the Applied Sciences, 2026 11
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For 𝑥 ∈ 𝑁(A∗ A − 𝜆𝑘) and 𝑦 ∶= 𝜆−1∕2
𝑘

A𝑥 we observe that

𝑥 = 𝜆−1
𝑘 A∗ A𝑥 = 𝜆−1∕2

𝑘
A∗𝑦, A A∗𝑦 = 𝜆1∕2

𝑘
A𝑥 = 𝜆𝑘𝑦,

and |𝑦|2H1
= 𝜆−1

𝑘 |A𝑥|2H1
= 𝜆−1

𝑘 ⟨A∗ A𝑥, 𝑥⟩H0
= |𝑥|2H0

,

which shows the following:

Lemma 2.8 (Eigenvectors). The following statements hold:

i. If 𝑥 is an eigenvector of A∗ A for the eigenvalue 𝜆𝑘, then 𝑦 ∶= A𝑥 is an eigenvector of A A∗ for the same eigenvalue 𝜆𝑘.

i*. If 𝑦 is an eigenvector of A A∗ for the eigenvalue 𝜆𝑘, then 𝑥 ∶= A∗𝑦 is an eigenvector of A∗ A for the same eigenvalue 𝜆𝑘.

Lemma 2.9 (Eigenvalues, Friedrichs-Poincaré type constants, and Rayleigh quotients). The best constants in
Lemma 2.5 (i) and (i∗) are given by the Rayleigh quotients and equal each other and the inverse of the square root the first
positive eigenvalue of A∗ A and A A∗, that is,

𝜆1∕2
1 = 1

𝑐A
= inf

0≠𝑥∈𝐷()

|A𝑥|H1|𝑥|H0

= inf
0≠𝑦∈𝐷(∗)

|A∗𝑦|H0|𝑦|H1

= 1
𝑐A∗
.

Note that similar formulas hold for all eigenvalues, that is,

𝜆1∕2
𝑘

= inf
𝑥

|A𝑥|H1|𝑥|H0

= inf
𝑦

|A∗𝑦|H0|𝑦|H1

,

where the infima are taken over all 0 ≠ 𝑥 ∈ 𝐷() and 0 ≠ 𝑦 ∈ 𝐷(∗) with 𝑥⊥H0

⨁𝑘−1
𝓁=1𝑁(A∗ A − 𝜆𝓁) and

𝑦⊥H1

⨁𝑘−1
𝓁=1𝑁(A A∗ − 𝜆𝓁). All infima are minima and are attained at the corresponding eigenvectors, that is, for all 𝑘

and all eigenvectors 𝑥𝑘 ∈ 𝑁(A∗ A − 𝜆𝑘) and 𝑦𝑘 ∈ 𝑁(A A∗ − 𝜆𝑘) we have

⟨A∗ A𝑥𝑘, 𝑥𝑘⟩H0|𝑥𝑘|2H0

=
|A𝑥𝑘|2H1|𝑥𝑘|2H0

= 𝜆𝑘 =
|A∗𝑦𝑘|2H0|𝑦𝑘|2H1

=
⟨A A∗𝑦𝑘, 𝑦𝑘⟩H1|𝑦𝑘|2H1

.

2.4.3 | Hilbert Complexes

Now, let
A0 ∶ 𝐷(A0) ⊂ H0 → H1, A1 ∶ 𝐷(A1) ⊂ H1 → H2

be two densely defined and closed linear operators on three Hilbert spaces H0, H1, and H2 with adjoints

A∗
0 ∶ 𝐷(A∗

0) ⊂ H1 → H0, A∗
1 ∶ 𝐷(A∗

1) ⊂ H2 → H1,

as well as reduced operators 0, ∗
0, and 1, ∗

1. Furthermore, we assume the complex property of A0 and A1, that is
A1A0 = 0, that is,

𝑅(A0) ⊂ 𝑁(A1), (20)

being equivalent to 𝑅(A∗
1) ⊂ 𝑁(A∗

0). Recall that

𝑅(A0) = 𝑅(0), 𝑅(A∗
0) = 𝑅(∗

0), 𝑅(A1) = 𝑅(1), 𝑅(A∗
1) = 𝑅(∗

1).

From the Helmholtz type decompositions (17) for A = A0 and A = A1 we get in particular

H1 = 𝑅(A0)⊕H1
𝑁(A∗

0), H1 = 𝑅(A∗
1)⊕H1

𝑁(A1). (21)

12 Mathematical Methods in the Applied Sciences, 2026
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Introducing the cohomology group
𝑁0,1 ∶= 𝑁(A1) ∩𝑁(A∗

0),

we obtain the refined Helmholtz type decompositions

𝑁(A1) = 𝑅(A0)⊕H1
𝑁0,1, 𝑁(A∗

0) = 𝑅(A
∗
1)⊕H1

𝑁0,1,

𝐷(A1) = 𝑅(A0)⊕H1

(
𝐷(A1) ∩𝑁(A∗

0)
)
, 𝐷(A∗

0) = 𝑅(A
∗
1)⊕H1

(
𝐷(A∗

0) ∩𝑁(A1)
)
,

(22)

and therefore the Helmholtz type decomposition

H1 = 𝑅(A0)⊕H1
𝑁0,1 ⊕H1

𝑅(A∗
1), (23)

follows. Let us remark that the first line of (22) can also be written as

𝑅(A0) = 𝑁(A1) ∩𝑁
⊥H1
0,1 , 𝑅(A∗

1) = 𝑁(A∗
0) ∩𝑁

⊥H1
0,1 .

Note that (23) can be further refined and specialized, for example, to

𝐷(A1) = 𝑅(A0)⊕H1
𝑁0,1 ⊕H1

𝐷(1),

𝐷(A∗
0) = 𝐷(∗

0)⊕H1
𝑁0,1 ⊕H1

𝑅(A∗
1),

𝐷(A1) ∩𝐷(A∗
0) = 𝐷(∗

0)⊕H1
𝑁0,1 ⊕H1

𝐷(1).

(24)

We observe

𝐷(1) = 𝐷(A1) ∩ 𝑅(A∗
1) ⊂ 𝐷(A1) ∩𝑁(A∗

0) ⊂ 𝐷(A1) ∩𝐷(A∗
0),

𝐷(∗
0) = 𝐷(A∗

0) ∩ 𝑅(A0) ⊂ 𝐷(A∗
0) ∩𝑁(A1) ⊂ 𝐷(A∗

0) ∩𝐷(A1),

and using the refined Helmholtz type decompositions (23) and (24) as well as the results of Lemma 2.6 we immediately see:

Lemma 2.10 (fa-toolbox lemma 4/compact embeddings). The following assertions are equivalent:

i. 𝐷(0) → H0,𝐷(1) → H1, and 𝑁0,1 → H1 are compact.

ii. 𝐷(A1) ∩𝐷(A∗
0) → H1 is compact.

In this case, the cohomology group 𝑁0,1 has finite dimension.

We summarize:

Lemma 2.11 (fa-toolbox lemma 5). Let the ranges𝑅(A0) and𝑅(A1) be closed. Then𝑅(A∗
0) and𝑅(A∗

1) are also closed,
and the corresponding Friedrichs-Poincaré type estimates hold, that is, there exists a positive constant 𝑐 such that

∀ 𝑧 ∈ 𝐷(0) = 𝐷(A0) ∩ 𝑅(A∗
0) |𝑧|H0

≤ 𝑐|A0𝑧|H1
,

∀ 𝑥 ∈ 𝐷(∗
0) = 𝐷(A∗

0) ∩ 𝑅(A0) = 𝐷(A∗
0) ∩𝑁(A1) ∩𝑁

⊥H1
0,1 |𝑥|H1

≤ 𝑐|A∗
0𝑥|H0

,

∀ 𝑥 ∈ 𝐷(1) = 𝐷(A1) ∩ 𝑅(A∗
1) = 𝐷(A1) ∩𝑁(A∗

0) ∩𝑁
⊥H1
0,1 |𝑥|H1

≤ 𝑐|A1𝑥|H2
,

∀ 𝑦 ∈ 𝐷(∗
1) = 𝐷(A∗

1) ∩ 𝑅(A1) |𝑦|H2
≤ 𝑐|A∗

1𝑦|H1
,

and
∀ 𝑥 ∈ 𝐷(A1) ∩𝐷(A∗

0) ∩𝑁
⊥H1
0,1 |𝑥|H1

≤ 𝑐(|A1𝑥|H2
+ |A∗

0𝑥|H0

)
.

Moreover, all Helmholtz type decompositions (21–24) hold with closed ranges, in particular

H1 = 𝑅(A0)⊕H1
𝑁0,1 ⊕H1

𝑅(A∗
1).

Mathematical Methods in the Applied Sciences, 2026 13
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In other words, the primal and dual complex

(25)

is a Hilbert complex of closed and densely defined linear operators. We call the complex closed if the ranges 𝑅(A0) and
𝑅(A1) are closed. The complex is exact if𝑁0,1 = {0}. The complex is called compact, if the embedding

𝐷(A1) ∩𝐷(A∗
0) → H1, (26)

is compact.

2.4.4 | Generalized Laplacian

Finally, we present some results for the densely defined and closed generalized Laplacian

𝜌A0 A∗
0 + A∗

1 A1 ∶ 𝐷(𝜏A0 A∗
0 + A∗

1 A1) ⊂ H1 → H1, 𝜌 > 0,

with𝐷(𝜌A0 A∗
0 + A∗

1 A1) ∶= 𝐷(A∗
1 A1) ∩𝐷(A0 A∗

0) ⊂ 𝐷(A1) ∩𝐷(A∗
0).

Lemma 2.12 (fa-toolbox lemma 6/eigenvalues). Let 𝐷(A1) ∩𝐷(A∗
0) → H1 be compact. Then 𝜌A0 A∗

0 + A∗
1 A1 is

self-adjoint, non-negative, and has pure and discrete point spectrum with no accumulation point, that is,

𝜎(𝜌A0 A∗
0 + A∗

1 A1) ⧵ {0} =
(
𝜌𝜎(A∗

0 A0) ⧵ {0}
)
∪
(
𝜎(A∗

1 A1) ⧵ {0}
)
= 𝜌{𝜆0,𝑘}𝑘∈ℕ ∪ {𝜆1,𝑘}𝑘∈ℕ,

with eigenvalues 0 < 𝜆𝓁,1 ≤ 𝜆𝓁,2 ≤ · · · ≤ 𝜆𝓁,𝑘−1 ≤ 𝜆𝓁,𝑘 ≤ · · · → ∞ of ∗
𝓁 𝓁 for 𝓁 ∈ {0, 1}. Only finitely many eigenvalues

coincide and they are repeated according to their multiplicity. Moreover,

𝜌A0 A∗
0 + A∗

1 A1 ∶ 𝐷(𝜌A0 A∗
0 + A∗

1 A1) ∩𝑁
⊥H1
0,1 → 𝑁

⊥H1
0,1 ,

is a topological isomorphism.

Remark 2.6 (Helmholtz decomposition). Let 𝜌 = 1. Then A0 A∗
0 + A∗

1 A1 provides the Helmholtz decomposition
from Lemma 2.11. To see this, let us denote the orthonormal projector onto the cohomology group 𝑁0,1 by 𝜋𝑁0,1

∶ H1 →

𝑁0,1. Then, for 𝑥 ∈ H1 we have (1 − 𝜋𝑁0,1
)𝑥 ∈ 𝑁⊥H1

0,1 and

𝑥 = 𝜋𝑁0,1
𝑥 + (1 − 𝜋𝑁0,1

)𝑥

= 𝜋𝑁0,1
𝑥 + (A0 A∗

0 + A∗
1 A1)(A0 A∗

0 + A∗
1 A1)−1(1 − 𝜋𝑁0,1

)𝑥 ∈ 𝑁0,1 ⊕H1
𝑅(A0)⊕H1

𝑅(A∗
1).

2.5 | De Rham Complex

In this subsection, let additionally (Ω,Γ𝑡) be a weak Lipschitz pair. Let us consider the densely defined and closed
(unbounded) linear operators

A0 ∶= ∇Γ𝑡 ∶ H1
Γ𝑡
(Ω) ⊂ L2

𝜈(Ω) → L2
𝜀(Ω),

A1 ∶= 𝜇−1 rotΓ𝑡 ∶ RΓ𝑡(Ω) ⊂ L2
𝜀(Ω) → L2

𝜇(Ω),

A2 ∶= 𝜅−1 divΓ𝑡𝜇 ∶ 𝜇−1DΓ𝑡(Ω) ⊂ L2
𝜇(Ω) → L2

𝜅(Ω),

together with their densely defined and closed (unbounded) adjoints

A∗
0 = −𝜈−1 divΓ𝑛𝜀 ∶ 𝜀

−1DΓ𝑛(Ω) ⊂ L2
𝜀(Ω) → L2

𝜈(Ω),

A∗
1 = 𝜀−1 rotΓ𝑛 ∶ RΓ𝑛(Ω) ⊂ L2

𝜇(Ω) → L2
𝜀(Ω),

A∗
2 = −∇Γ𝑛 ∶ H1

Γ𝑛
(Ω) ⊂ L2

𝜅(Ω) → L2
𝜇(Ω),

14 Mathematical Methods in the Applied Sciences, 2026
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where we introduce the weighted Lebesgue space L2
𝜀(Ω) as L2(Ω) equipped with the weighted and equivalent inner product

⟨ ⋅ , ⋅ ⟩L2
𝜀(Ω)

∶= ⟨𝜀 ⋅ , ⋅ ⟩L2(Ω),

(same for 𝜇, 𝜈, and 𝜅). For the adjoints we refer to [19] and [22] (weak and strong boundary conditions coincide). Recall
that A∗∗

𝓁 = A𝓁 = A𝓁 and that (A𝓁 ,A∗
𝓁) are dual pairs.

Remark 2.7. The latter operators satisfy the complex properties 𝑅(A𝓁) ⊂ 𝑁(A𝓁+1) and build the well-known de Rham
Hilbert complex

Here, 𝜄 and 𝜋 denote the canonical embedding and the orthogonal projector, respectively.

Theorem 2.2 (Weck’s selection theorem). The embedding

𝐷(A1) ∩𝐷(A∗
0) = RΓ𝑡 (Ω) ∩ 𝜀

−1DΓ𝑛(Ω) → L2
𝜀(Ω) = H1,

is compact.

A proof can be found in [19] and [22].

Remark 2.8 (Weck’s selection theorem). Note that by Theorem 2.2 also

𝐷(A2) ∩𝐷(A∗
1) = 𝜇

−1DΓ𝑡 (Ω) ∩ RΓ𝑛(Ω) → L2
𝜇(Ω) = H2,

is compact. Moreover,𝐷(A0) = H1
Γ𝑡
(Ω) → L2

𝜈(Ω) = H0 and𝐷(A∗
2) = H1

Γ𝑛
(Ω) → L2

𝜅(Ω) = H3 are trivially compact by Rellich’s
selection theorem. The first compact embedding result for non-smooth domains, that is, for piecewise smooth and glob-
ally strong Lipschitz boundaries and full boundary conditions, was given by Weck [36]. First results for strong Lipschitz
boundaries and full boundary conditions had been proved in [37, 38]. First results for strong Lipschitz boundaries and
mixed boundary conditions can be found in [39, 40].

Theorem 2.2 together with Lemma 2.10 shows that 𝐷(1) → H1 and 𝐷(0), 𝐷(A0) → H1 are compact. Hence by
Lemma 2.7 we see that

A∗
0 A0 = −𝜈−1 divΓ𝑛𝜀∇Γ𝑡 , A∗

1 A1 = 𝜀−1 rotΓ𝑛𝜇
−1 rotΓ𝑡 ,

A0 A∗
0 = −∇Γ𝑡 𝜈

−1 divΓ𝑛𝜀, A1A∗
1 = 𝜇−1 rotΓ𝑡 𝜀

−1 rotΓ𝑛
(27)

are self-adjoint, non-negative, and have pure and discrete point spectrum with no accumulation point. Moreover, as

𝜎(A∗
𝓁 A𝓁) ⧵ {0} = 𝜎(∗

𝓁 𝓁) = 𝜎(𝓁 ∗
𝓁) = 𝜎(A𝓁 A∗

𝓁) ⧵ {0} ⊂ (0,∞), 𝓁 ∈ {0, 1},

we get:

Theorem 2.3 (eigenvalues of the de Rham complex). It holds

𝜎(𝜇−1 rotΓ𝑡 𝜀
−1 rotΓ𝑛) ⧵ {0} = 𝜎(𝜀−1 rotΓ𝑛𝜇

−1 rotΓ𝑡 ) ⧵ {0} = {𝜆1,𝑘}𝑘∈ℕ ⊂ (0,∞),

𝜎(−∇Γ𝑡 𝜈
−1 divΓ𝑛𝜀) ⧵ {0} = 𝜎(−𝜈−1 divΓ𝑛𝜀∇Γ𝑡 ) ⧵ {0} = {𝜆0,𝑘}𝑘∈ℕ ⊂ (0,∞),

with eigenvalues 0 < 𝜆𝓁,1 ≤ 𝜆𝓁,2 ≤ … ≤ 𝜆𝓁,𝑘−1 ≤ 𝜆𝓁,𝑘 ≤ · · · → ∞ for 𝓁 ∈ {0, 1}. Only finitely many eigenvalues coincide and
they are repeated according to their multiplicity.

For the generalized Laplacian

𝜌A0 A∗
0 + A∗

1 A1 = −𝜌∇Γ𝑡 𝜈
−1 divΓ𝑛𝜀 + 𝜀

−1 rotΓ𝑛𝜇
−1 rotΓ𝑡

we have the following result:

Mathematical Methods in the Applied Sciences, 2026 15
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Theorem 2.4 (eigenvalues of the generalised Laplacian). 𝜀−1 rotΓ𝑛𝜇
−1 rotΓ𝑡 − 𝜌∇Γ𝑡 𝜈

−1 divΓ𝑛𝜀 is self-adjoint,
non-negative, and has pure and discrete point spectrum with no accumulation point, that is,

𝜎(−𝜌∇Γ𝑡 𝜈
−1 divΓ𝑛𝜀 + 𝜀

−1 rotΓ𝑛𝜇
−1 rotΓ𝑡) ⧵ {0}

=
(
𝜌𝜎(−∇Γ𝑡 𝜈

−1 divΓ𝑛𝜀) ⧵ {0}
)
∪ 𝜎

(
𝜀−1 rotΓ𝑛𝜇

−1 rotΓ𝑡) ⧵ {0}
)
= 𝜌{𝜆0,𝑘}𝑘∈ℕ ∪ {𝜆1,𝑘}𝑘∈ℕ.

Only finitely many eigenvalues coincide and they are repeated according to their multiplicity.

3 | Eigenvalues

Let
Φ ∶ Ω → ΩΦ = Φ(Ω)

be a bi-Lipschitz transformation. We are interested in the eigenvalue problems (1–6), in particular, in the dependence of
the eigenvalues and related symmetric functions on the domain Ω, more precisely on the domain ΩΦ, when Φ is vary-
ing. For this, we consider unbounded linear operators of the de Rham complex in L2(ΩΦ) together with their Lipschitz
transformed relatives in L2(Ω).

From now on, let additionally (Ω,Γ𝑡) be a weak Lipschitz pair.

3.1 | Operators of the De Rham Complex

Let us define the densely defined and closed (unbounded) linear operators

A0,Φ ∶= ∇Γ𝑡,Φ ∶ H1
Γ𝑡,Φ

(ΩΦ) ⊂ L2
𝜈(ΩΦ) → L2

𝜀(ΩΦ),

A1,Φ ∶= 𝜇−1 rotΓ𝑡,Φ ∶ RΓ𝑡,Φ(ΩΦ) ⊂ L2
𝜀(ΩΦ) → L2

𝜇(ΩΦ),

together with their densely defined and closed (unbounded) adjoints

A∗
0,Φ = −𝜈−1 divΓ𝑛,Φ𝜀 ∶ 𝜀

−1DΓ𝑛,Φ(ΩΦ) ⊂ L2
𝜀(ΩΦ) → L2

𝜈(ΩΦ),

A∗
1,Φ = 𝜀−1 rotΓ𝑛,Φ ∶ RΓ𝑛,Φ(ΩΦ) ⊂ L2

𝜇(ΩΦ) → L2
𝜀(ΩΦ).

Recall that (A𝓁,Φ,A∗
𝓁,Φ) are dual pairs. Moreover, let

A0 ∶= ∇Γ𝑡 ∶ H1
Γ𝑡
(Ω) ⊂ L2

𝜈Φ
(Ω) → L2

𝜀Φ
(Ω), 𝜀Φ ∶= 𝜏2

Φ𝜀𝜏
1
Φ−1 = (det 𝐽Φ)𝐽−1

Φ 𝜀𝐽−⊤
Φ ,

A1 ∶= 𝜇−1
Φ rotΓ𝑡 ∶ RΓ𝑡(Ω) ⊂ L2

𝜀Φ
(Ω) → L2

𝜇Φ
(Ω), 𝜇Φ ∶= 𝜏2

Φ𝜇𝜏
1
Φ−1 = (det 𝐽Φ)𝐽−1

Φ 𝜇𝐽−⊤
Φ ,

A∗
0 = −𝜈−1

Φ divΓ𝑛𝜀Φ ∶ 𝜀−1
Φ DΓ𝑛(Ω) ⊂ L2

𝜀Φ
(Ω) → L2

𝜈Φ
(Ω), 𝜈Φ ∶= 𝜏3

Φ𝜈𝜏
0
Φ−1 = (det 𝐽Φ)𝜈,

A∗
1 = 𝜀−1

Φ rotΓ𝑛 ∶ RΓ𝑛(Ω) ⊂ L2
𝜇Φ
(Ω) → L2

𝜀Φ
(Ω),

which are also densely defined and closed (unbounded) linear operators. Again, (A𝓁 ,A∗
𝓁) are dual pairs. Note that the

inner products in the weighted Lebesgue spaces L2
𝜀Φ
(Ω), L2

𝜇Φ
(Ω), and L2

𝜈Φ
(Ω) read explicitly

⟨ ⋅ , ⋅ ⟩L2
𝜀Φ

(Ω) = ⟨𝜀Φ ⋅ , ⋅ ⟩L2(Ω) =
⟨
(det 𝐽Φ)𝜀𝐽−⊤

Φ ⋅ , 𝐽−⊤
Φ ⋅

⟩
L2(Ω),⟨ ⋅ , ⋅ ⟩L2

𝜇Φ
(Ω) = ⟨𝜇Φ ⋅ , ⋅ ⟩L2(Ω) =

⟨
(det 𝐽Φ)𝜇𝐽−⊤

Φ ⋅ , 𝐽−⊤
Φ ⋅

⟩
L2(Ω),⟨ ⋅ , ⋅ ⟩L2

𝜈Φ
(Ω) = ⟨𝜈Φ ⋅ , ⋅ ⟩L2(Ω) = ⟨(det 𝐽Φ)𝜈 ⋅ , ⋅ ⟩L2(Ω),

and that 𝜀Φ, 𝜇Φ, and 𝜈Φ are admissible transformations. Note that, here, the operators A2,Φ and A2 are not needed due to
their equivalence to A∗

0,Φ and A∗
0.

16 Mathematical Methods in the Applied Sciences, 2026
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3.2 | Unitary Equivalence and Spectrum

Using the pullbacks 𝜏𝑞Φ of Φ ∶ Ω → Φ(Ω) = ΩΦ from Theorem 2.1 and Corollary 2.1 and the corresponding inverse pull-
backs (𝜏𝑞Φ)

−1 = 𝜏𝑞
Φ−1 we compute

𝜏1
ΦA0,Φ𝑢 = 𝜏1

Φ∇Γ𝑡,Φ𝑢 = ∇Γ𝑡 𝜏
0
Φ𝑢 = A0𝜏

0
Φ𝑢,

𝜏1
ΦA1,Φ𝐸 = 𝜏1

Φ𝜇
−1 rotΓ𝑡,Φ𝐸 = 𝜏1

Φ𝜇
−1𝜏2

Φ−1𝜏
2
Φ rotΓ𝑡,Φ𝐸 = 𝜇−1

Φ rotΓ𝑡 𝜏
1
Φ𝐸 = A1𝜏

1
Φ𝐸,

𝜏0
ΦA∗

0,Φ𝐻 = −𝜏0
Φ𝜈

−1𝜏3
Φ−1𝜏

3
ΦdivΓ𝑛,Φ𝜀𝐻 = −𝜈−1

Φ divΓ𝑛𝜏
2
Φ𝜀𝐻 = −𝜈−1

Φ divΓ𝑛𝜀Φ𝜏
1
Φ𝐻 = A∗

0𝜏
1
Φ𝐻,

and obtain by symmetry the following result.

Lemma 3.1. It holds

A0,Φ = 𝜏1
Φ−1 A0𝜏

0
Φ, A1,Φ = 𝜏1

Φ−1 A1𝜏
1
Φ,

A∗
0,Φ = 𝜏0

Φ−1 A∗
0𝜏

1
Φ, A∗

1,Φ = 𝜏1
Φ−1 A∗

1𝜏
1
Φ.

Remark 3.1. We emphasize that the adjoints of the pullbacks in Lemma 3.1 are given by

(𝜏0
Φ)

∗ = 𝜏0
Φ−1 = (𝜏0

Φ)
−1, (𝜏1

Φ)
∗ = 𝜏1

Φ−1 = (𝜏1
Φ)

−1,

apparently in contradiction to the adjoints from Theorem 2.1. This is due to the formulations in weighted L2-spaces. Note
that, for example, we have to consider 𝜏1

Φ ∶ L2
𝜀(ΩΦ) → L2

𝜀Φ
(Ω), which leads with 𝜏2

Φ−1𝜀Φ = 𝜀𝜏1
Φ−1 to

⟨𝜏1
Φ𝐸,Ψ⟩L2

𝜀Φ
(Ω) = ⟨𝜏1

Φ𝐸, 𝜀ΦΨ⟩L2(Ω) = ⟨𝐸, 𝜏2
Φ−1𝜀ΦΨ⟩L2(ΩΦ) = ⟨𝐸, 𝜏1

Φ−1Ψ⟩L2
𝜀(ΩΦ),

that is, (𝜏1
Φ)

∗ = 𝜏1
Φ−1 . Analogously, we treat 𝜏0

Φ ∶ L2
𝜈(ΩΦ) → L2

𝜈Φ
(Ω).

Theorem 3.1. A∗
𝓁,ΦA𝓁,Φ and A𝓁,ΦA∗

𝓁,Φ are unitarily equivalent to A∗
𝓁 A𝓁 and A𝓁 A∗

𝓁 , respectively. More precisely,

A∗
0,ΦA0,Φ = 𝜏0

Φ−1 A∗
0 A0𝜏

0
Φ, A∗

1,ΦA1,Φ = 𝜏1
Φ−1 A∗

1 A1𝜏
1
Φ,

A0,ΦA∗
0,Φ = 𝜏1

Φ−1 A0 A∗
0𝜏

1
Φ, A1,ΦA∗

1,Φ = 𝜏1
Φ−1 A1A∗

1𝜏
1
Φ.

Moreover, 𝜌A0,ΦA∗
0,Φ + A∗

1,ΦA1,Φ and 𝜌A0 A∗
0 + A∗

1 A1 are unitarily equivalent, that is,

𝜌A0,ΦA∗
0,Φ + A∗

1,ΦA1,Φ = 𝜏1
Φ−1(𝜌A0 A∗

0 + A∗
1 A1)𝜏1

Φ.

Proof. Apply Lemma 3.1. ◽

Corollary 3.1. The positive parts of the spectra of A∗
𝓁,ΦA𝓁,Φ, A𝓁,ΦA∗

𝓁,Φ, and A∗
𝓁 A𝓁 , A𝓁 A∗

𝓁 coincide. More precisely,

𝜎(A∗
𝓁,ΦA𝓁,Φ) ⧵ {0} = 𝜎(A𝓁,ΦA∗

𝓁,Φ) ⧵ {0} = 𝜎(A𝓁 A∗
𝓁) ⧵ {0} = 𝜎(A∗

𝓁 A𝓁) ⧵ {0}.

Moreover, the positive parts of the spectra of 𝜌A0,ΦA∗
0,Φ + A∗

1,ΦA1,Φ, and 𝜌A0 A∗
0 + A∗

1 A1 coincide, that is,

𝜎(𝜌A0,ΦA∗
0,Φ + A∗

1,ΦA1,Φ) ⧵ {0} = 𝜎(𝜌A0 A∗
0 + A∗

1 A1) ⧵ {0}.

Proof. Recall (19) and apply Theorem 3.1. ◽

Remark 3.2 (Eigenvectors). It holds:

• 𝑢 is an eigenvector of A∗
0,ΦA0,Φ, if and only if 𝜏0

Φ𝑢 is an eigenvector of A∗
0 A0.

Mathematical Methods in the Applied Sciences, 2026 17
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• 𝐸 is an eigenvector of A∗
1,ΦA1,Φ and A0,ΦA∗

0,Φ, respectively, if and only if 𝜏1
Φ𝐸 is an eigenvector of A∗

1 A1 and A0 A∗
0,

respectively.

• 𝐻 is an eigenvector of A1,ΦA∗
1,Φ, if and only if 𝜏1

Φ𝐻 is an eigenvector of A1A∗
1.

Note that by Lemma 3.1 and Remark 3.1 we have, for example, for 𝐹 ,𝐺 ∈ L2
𝜀(ΩΦ)

⟨𝜏1
Φ𝐹 , 𝜏

1
Φ𝐺⟩L2

𝜀Φ
(Ω) = ⟨𝐹 , 𝜏1

Φ−1𝜏
1
Φ𝐺⟩L2

𝜀(ΩΦ) = ⟨𝐹 ,𝐺⟩L2
𝜀(ΩΦ),

and for 𝐹 ,𝐺 ∈ 𝐷(A1,Φ)

⟨A1𝜏
1
Φ𝐹 ,A1𝜏

1
Φ𝐺⟩L2

𝜇Φ
(Ω) = ⟨𝜏1

ΦA1,Φ𝐹 , 𝜏
1
ΦA1,Φ𝐺⟩L2

𝜇Φ
(Ω) = ⟨A1,Φ𝐹 ,A1,Φ𝐺⟩L2

𝜇(ΩΦ),⟨𝜏1
Φ𝐹 , 𝜏

1
Φ𝐺⟩𝐷(A1) = ⟨𝐹 ,𝐺⟩𝐷(A1,Φ).

For a definition of the inner products ⟨ ⋅ , ⋅ ⟩𝐷(A1) and ⟨ ⋅ , ⋅ ⟩𝐷(A1,Φ) see the next remark.

Hence we get:

Remark 3.3 (Isometries and orthonormal bases). The transformations 𝜏𝑞Φ are isometries. In particular, orthonormal
bases are mapped to orthonormal bases. More precisely:

• 𝜏0
Φ ∶ L2

𝜈(ΩΦ) → L2
𝜈Φ
(Ω) and 𝜏0

Φ ∶ 𝐷(A0,Φ) → 𝐷(A0), the latter

𝐷(A0,Φ) = H1
Γ𝑡,Φ

(ΩΦ), 𝐷(A0) = H1
Γ𝑡
(Ω)

equipped with the inner products

⟨ ⋅ , ⋅ ⟩𝐷(A0,Φ) = ⟨ ⋅ , ⋅ ⟩L2
𝜈 (ΩΦ) + ⟨A0,Φ ⋅ ,A0,Φ ⋅ ⟩L2

𝜀(ΩΦ) = ⟨ ⋅ , ⋅ ⟩L2
𝜈 (ΩΦ) + ⟨∇ ⋅ ,∇ ⋅ ⟩L2

𝜀(ΩΦ),⟨ ⋅ , ⋅ ⟩𝐷(A0) = ⟨ ⋅ , ⋅ ⟩L2
𝜈Φ

(Ω) + ⟨A0 ⋅ ,A0 ⋅ ⟩L2
𝜀Φ

(Ω) = ⟨ ⋅ , ⋅ ⟩L2
𝜈Φ

(Ω) + ⟨∇ ⋅ ,∇ ⋅ ⟩L2
𝜀Φ

(Ω),

are isometries. Hence 𝜏0
Φ maps a L2

𝜈(ΩΦ)-orthonormal basis or a 𝐷(A0,Φ)-orthonormal basis {𝑢𝑚} to the
L2
𝜈Φ
(Ω)-orthonormal basis or the𝐷(A0)-orthonormal basis {𝜏0

Φ𝑢𝑚}, respectively, and vice versa.

• 𝜏1
Φ ∶ L2

𝜀(ΩΦ) → L2
𝜀Φ
(Ω), 𝜏1

Φ ∶ L2
𝜇(ΩΦ) → L2

𝜇Φ
(Ω) and

𝜏1
Φ ∶ 𝐷(A1,Φ) → 𝐷(A1), 𝜏1

Φ ∶ 𝐷(A∗
1,Φ) → 𝐷(A∗

1), 𝜏1
Φ ∶ 𝐷(A∗

0,Φ) → 𝐷(A∗
0,Φ),

the latter

𝐷(A1,Φ) = RΓ𝑡,Φ(ΩΦ), 𝐷(A1) = RΓ𝑡 (Ω),

𝐷(A∗
1,Φ) = RΓ𝑛,Φ(ΩΦ), 𝐷(A∗

1) = RΓ𝑛(Ω),

𝐷(A∗
0,Φ) = 𝜀

−1DΓ𝑛,Φ(ΩΦ), 𝐷(A∗
0) = 𝜀

−1
Φ DΓ𝑛(Ω)

equipped with the inner products

⟨ ⋅ , ⋅ ⟩𝐷(A1,Φ) = ⟨ ⋅ , ⋅ ⟩L2
𝜀(ΩΦ) + ⟨A1,Φ ⋅ ,A1,Φ ⋅ ⟩L2

𝜇(ΩΦ) = ⟨ ⋅ , ⋅ ⟩L2
𝜀(ΩΦ) + ⟨rot ⋅ , rot ⋅ ⟩L2

𝜇−1 (ΩΦ),⟨ ⋅ , ⋅ ⟩𝐷(A1) = ⟨ ⋅ , ⋅ ⟩L2
𝜀Φ

(Ω) + ⟨A1 ⋅ ,A1 ⋅ ⟩L2
𝜇Φ

(Ω) = ⟨ ⋅ , ⋅ ⟩L2
𝜀Φ

(Ω) + ⟨rot ⋅ , rot ⋅ ⟩L2
𝜇−1
Φ

(Ω),

⟨ ⋅ , ⋅ ⟩𝐷(A∗
1,Φ)

= ⟨ ⋅ , ⋅ ⟩L2
𝜇(ΩΦ) + ⟨A∗

1,Φ ⋅ ,A∗
1,Φ ⋅ ⟩L2

𝜀(ΩΦ) = ⟨ ⋅ , ⋅ ⟩L2
𝜇(ΩΦ) + ⟨rot ⋅ , rot ⋅ ⟩L2

𝜀−1 (ΩΦ),⟨ ⋅ , ⋅ ⟩𝐷(A∗
1)
= ⟨ ⋅ , ⋅ ⟩L2

𝜇Φ
(Ω) + ⟨A∗

1 ⋅ ,A∗
1 ⋅ ⟩L2

𝜀Φ
(Ω) = ⟨ ⋅ , ⋅ ⟩L2

𝜇Φ
(Ω) + ⟨rot ⋅ , rot ⋅ ⟩L2

𝜀−1
Φ
(Ω),

⟨ ⋅ , ⋅ ⟩𝐷(A∗
0,Φ)

= ⟨ ⋅ , ⋅ ⟩L2
𝜀(ΩΦ) + ⟨A∗

0,Φ ⋅ ,A∗
0,Φ ⋅ ⟩L2

𝜈 (ΩΦ) = ⟨ ⋅ , ⋅ ⟩L2
𝜀(ΩΦ) + ⟨div 𝜀 ⋅ , div 𝜀 ⋅ ⟩L2

𝜈−1 (ΩΦ),⟨ ⋅ , ⋅ ⟩𝐷(A∗
0)
= ⟨ ⋅ , ⋅ ⟩L2

𝜀Φ
(Ω) + ⟨A∗

0 ⋅ ,A∗
0 ⋅ ⟩L2

𝜈Φ
(Ω) = ⟨ ⋅ , ⋅ ⟩L2

𝜀Φ
(Ω) + ⟨div 𝜀Φ ⋅ , div 𝜀Φ ⋅ ⟩L2

𝜈−1
Φ

(Ω),

18 Mathematical Methods in the Applied Sciences, 2026
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are isometries. Hence 𝜏1
Φ maps a L2

𝜀(ΩΦ)-orthonormal basis or a𝐷(A1,Φ)-orthonormal basis or a𝐷(A∗
0,Φ)-orthonormal

basis {𝐸𝑚} to the L2
𝜀Φ
(Ω)-orthonormal basis or the𝐷(A1)-orthonormal basis or the𝐷(A∗

0)-orthonormal basis {𝜏1
Φ𝐸𝑚},

respectively, and vice versa. Analogously, 𝜏1
Φ maps a L2

𝜇(ΩΦ)-orthonormal basis or a𝐷(A∗
1,Φ)-orthonormal basis {𝐻𝑚}

to the L2
𝜇Φ
(Ω)-orthonormal basis or the𝐷(A∗

1)-orthonormal basis {𝜏1
Φ𝐻𝑚}, respectively, and vice versa.

3.3 | Point Spectrum

Now and more precisely (3–5) read for the domain ΩΦ

A∗
0,ΦA0,Φ𝑢 = −𝜈−1 divΓ𝑛,Φ𝜀∇Γ𝑡,Φ𝑢 = 𝜆0𝑢 in L2

𝜈(ΩΦ),

A∗
1,ΦA1,Φ𝐸 = 𝜀−1 rotΓ𝑛,Φ𝜇

−1 rotΓ𝑡,Φ𝐸 = 𝜆1𝐸 in L2
𝜀(ΩΦ),

A0,ΦA∗
0,Φ𝐻 = −∇Γ𝑡,Φ𝜈

−1 divΓ𝑛,Φ𝜀𝐻 = 𝜆0𝐻 in L2
𝜀(ΩΦ)

(28)

with some eigenvectors

𝑢 ∈ 𝐷(A∗
0,ΦA0,Φ) = 𝐷(𝜈−1 divΓ𝑛,Φ𝜀∇Γ𝑡,Φ) =

{
𝜓 ∈ H1

Γ𝑡,Φ
(ΩΦ) ∶ 𝜀∇𝜓 ∈ DΓ𝑛,Φ(ΩΦ)

}
,

𝐸 ∈ 𝐷(A∗
1,ΦA1,Φ) = 𝐷(𝜀−1 rotΓ𝑛,Φ𝜇

−1 rotΓ𝑡,Φ) =
{
Ψ ∈ RΓ𝑡,Φ(ΩΦ) ∶ 𝜇−1 rot Ψ ∈ RΓ𝑛,Φ(ΩΦ)

}
,

𝐻 ∈ 𝐷(A0,ΦA∗
0,Φ) = 𝐷(∇Γ𝑡,Φ𝜈

−1 divΓ𝑛,Φ𝜀) =
{
Ψ ∈ 𝜀−1DΓ𝑛,Φ(ΩΦ) ∶ 𝜈−1div 𝜀Ψ ∈ H1

Γ𝑡,Φ
(ΩΦ)

}
.

Remark 3.4. Note that for the eigenfields 𝐸 and 𝐻 a normal and tangential boundary condition is induced by the
complex property since

𝐸 ∈ 𝑅(A∗
1,Φ) ⊂ 𝑁(A∗

0,Φ) = 𝑁(𝜈−1 divΓ𝑛,Φ𝜀) =
{
Ψ ∈ L2(ΩΦ) ∶ div 𝜀Ψ = 0, n ⋅ 𝜀Ψ|Γ𝑛,Φ = 0

}
,

𝐻 ∈ 𝑅(A0,Φ) ⊂ 𝑁(A1,Φ) = 𝑁(𝜇−1 rotΓ𝑡,Φ) =
{
Ψ ∈ L2(ΩΦ) ∶ rot Ψ = 0, n × Ψ|Γ𝑡,Φ = 0

}
,

respectively.

We want to discuss (28) equivalently in Ω using the pullbacks 𝜏𝑞Φ and Theorems 2.3, 3.1, and Corollary 3.1.

Theorem 3.2 (eigenvalues of the de Rham complex). A∗
𝓁,ΦA𝓁,Φ and A∗

𝓁 A𝓁 are unitarily equivalent. The same holds
for A𝓁,ΦA∗

𝓁,Φ and A𝓁 A∗
𝓁 . All these operators are self-adjoint and non-negative and have pure and discrete point spectrum with

no accumulation point. Moreover, the positive parts of the spectra coincide, that is,

𝜎(𝜇−1 rotΓ𝑡,Φ𝜀
−1 rotΓ𝑛,Φ) ⧵ {0} = 𝜎(𝜀−1 rotΓ𝑛,Φ𝜇

−1 rotΓ𝑡,Φ) ⧵ {0}

= 𝜎(𝜇−1
Φ rotΓ𝑡 𝜀

−1
Φ rotΓ𝑛) ⧵ {0} = 𝜎(𝜀−1

Φ rotΓ𝑛𝜇
−1
Φ rotΓ𝑡 ) ⧵ {0} = {𝜆1,Φ,𝑘}𝑘∈ℕ ⊂ (0,∞)

and

𝜎(−∇Γ𝑡,Φ𝜈
−1 divΓ𝑛,Φ𝜀) ⧵ {0} = 𝜎(−𝜈−1 divΓ𝑛,Φ𝜀∇Γ𝑡,Φ) ⧵ {0}

= 𝜎(−∇Γ𝑡 𝜈
−1
Φ divΓ𝑛𝜀Φ) ⧵ {0} = 𝜎(−𝜈−1

Φ divΓ𝑛𝜀Φ∇Γ𝑡) ⧵ {0} = {𝜆0,Φ,𝑘}𝑘∈ℕ ⊂ (0,∞)

with eigenvalues 0 < 𝜆𝓁,Φ,1 ≤ 𝜆𝓁,Φ,2 ≤ … ≤ 𝜆𝓁,Φ,𝑘−1 ≤ 𝜆𝓁,Φ,𝑘 ≤ · · · → ∞. Only finitely many eigenvalues coincide and they
are repeated according to their multiplicity.

Proof. Theorems 2.3, 3.1, and Corollary 3.1 yield

𝜎(A∗
𝓁,ΦA𝓁,Φ) ⧵ {0} = 𝜎(A𝓁,ΦA∗

𝓁,Φ) ⧵ {0} = 𝜎(𝓁,Φ∗
𝓁,Φ) = 𝜎(∗

𝓁,Φ𝓁,Φ)

= 𝜎(A∗
𝓁 A𝓁) ⧵ {0} = 𝜎(A𝓁 A∗

𝓁) ⧵ {0} = 𝜎(𝓁 ∗
𝓁) = 𝜎(∗

𝓁 𝓁) =∶ {𝜆𝓁,Φ,𝑘}𝑘∈ℕ

for 𝓁 ∈ {0, 1}. ◽

Mathematical Methods in the Applied Sciences, 2026 19

 10991476, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.70458, W

iley O
nline L

ibrary on [11/02/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Remark 3.5. Note that by the definition of weak Lipschitz pair it follows directly that Φ maps a weak Lipschitz pair
(Ω,Γ𝑡) to a weak Lipschitz pair (ΩΦ,Γ𝑡,Φ).

Theorems 3.1, 3.2 and Remark 3.2, show that eigenvectors 𝑢, 𝐸, and𝐻 in (28) for the domain ΩΦ and for the eigenvalues
𝜆0 and 𝜆1 are mapped to eigenvectors 𝜏0

Φ𝑢, 𝜏1
Φ𝐸, and 𝜏1

Φ𝐻 for the domain Ω for the same eigenvalues and vice versa. More
precisely, 𝑢, 𝐸, and𝐻 are eigenvectors in (28), if and only if

A∗
0 A0𝜏

0
Φ𝑢 = −𝜈−1

Φ divΓ𝑛𝜀Φ∇Γ𝑡 𝜏
0
Φ𝑢 = 𝜆0𝜏

0
Φ𝑢 in L2

𝜈Φ
(Ω),

A∗
1 A1𝜏

1
Φ𝐸 = 𝜀−1

Φ rotΓ𝑛𝜇
−1
Φ rotΓ𝑡 𝜏

1
Φ𝐸 = 𝜆1𝜏

1
Φ𝐸 in L2

𝜀Φ
(Ω),

A0 A∗
0𝜏

1
Φ𝐻 = −∇Γ𝑡 𝜈

−1
Φ divΓ𝑛𝜀Φ𝜏

1
Φ𝐻 = 𝜆0𝜏

1
Φ𝐻 in L2

𝜀Φ
(Ω)

(29)

with eigenvectors

𝜏0
Φ𝑢 ∈ 𝐷(A∗

0 A0) = 𝐷(𝜈−1
Φ divΓ𝑛𝜀Φ∇Γ𝑡 ) =

{
𝜓 ∈ H1

Γ𝑡
(Ω) ∶ 𝜀Φ∇𝜓 ∈ DΓ𝑛(Ω)

}
,

𝜏1
Φ𝐸 ∈ 𝐷(A∗

1 A1) = 𝐷(𝜀−1
Φ rotΓ𝑛𝜇

−1
Φ rotΓ𝑡 ) =

{
Ψ ∈ RΓ𝑡 (Ω) ∶ 𝜇−1

Φ rot Ψ ∈ RΓ𝑛(Ω)
}
,

𝜏1
Φ𝐻 ∈ 𝐷(A0 A∗

0) = 𝐷(∇Γ𝑡 𝜈
−1
Φ divΓ𝑛𝜀Φ) =

{
Ψ ∈ 𝜀−1

Φ DΓ𝑛(Ω) ∶ 𝜈−1
Φ div 𝜀ΦΨ ∈ H1

Γ𝑡
(Ω)

}
.

Remark 3.6. We have

𝑢 ∈ 𝐷(A∗
0,ΦA0,Φ) ⊂ 𝐷(A0,Φ) = 𝐷(∇Γ𝑡,Φ) = H1

Γ𝑡,Φ
(ΩΦ),

𝐸 ∈ 𝐷(A∗
1,ΦA1,Φ) ∩𝑁(A∗

0,Φ) ⊂ 𝐷(A1,Φ) ∩𝑁(A∗
0,Φ) = 𝐷( rotΓ𝑡,Φ) ∩𝑁(divΓ𝑛,Φ𝜀)

=
{
Ψ ∈ RΓ𝑡,Φ(ΩΦ) ∩ 𝜀−1DΓ𝑛,Φ(ΩΦ) ∶ div 𝜀Ψ = 0

}
=
{
Ψ ∈ R(ΩΦ) ∩ 𝜀−1D(ΩΦ) ∶ div 𝜀Ψ = 0, n × Ψ|Γ𝑡,Φ = 0, n ⋅ 𝜀Ψ|Γ𝑛,Φ = 0

}
,

𝐻 ∈ 𝐷(A0,ΦA∗
0,Φ) ∩𝑁(A1,Φ) ⊂ 𝐷(A∗

0,Φ) ∩𝑁(A1,Φ) = 𝐷(divΓ𝑛,Φ𝜀) ∩𝑁( rotΓ𝑡,Φ)

=
{
Ψ ∈ RΓ𝑡,Φ(ΩΦ) ∩ 𝜀−1DΓ𝑛,Φ(ΩΦ) ∶ rot Ψ = 0

}
=
{
Ψ ∈ R(ΩΦ) ∩ 𝜀−1D(ΩΦ) ∶ rot Ψ = 0, n × Ψ|Γ𝑡,Φ = 0, n ⋅ 𝜀Ψ|Γ𝑛,Φ = 0

}
,

and for the transformed fields

𝜏0
Φ𝑢 ∈ 𝐷(A∗

0 A0) ⊂ 𝐷(A0) = 𝐷(∇Γ𝑡) = H1
Γ𝑡
(Ω),

𝜏1
Φ𝐸 ∈ 𝐷(A∗

1 A1) ∩𝑁(A∗
0) ⊂ 𝐷(A1) ∩𝑁(A∗

0) = 𝐷( rotΓ𝑡 ) ∩𝑁(divΓ𝑛𝜀Φ)

=
{
Ψ ∈ RΓ𝑡(Ω) ∩ 𝜀

−1
Φ DΓ𝑛(Ω) ∶ div 𝜀ΦΨ = 0

}
=
{
Ψ ∈ R(Ω) ∩ 𝜀−1

Φ D(Ω) ∶ div 𝜀ΦΨ = 0, n × Ψ|Γ𝑡 = 0, n ⋅ 𝜀ΦΨ|Γ𝑛 = 0
}
,

𝜏1
Φ𝐻 ∈ 𝐷(A0 A∗

0) ∩𝑁(A1) ⊂ 𝐷(A∗
0) ∩𝑁(A1) = 𝐷(divΓ𝑛𝜀Φ) ∩𝑁( rotΓ𝑡 )

=
{
Ψ ∈ RΓ𝑡(Ω) ∩ 𝜀

−1
Φ DΓ𝑛(Ω) ∶ rot Ψ = 0

}
=
{
Ψ ∈ R(Ω) ∩ 𝜀−1

Φ D(Ω) ∶ rot Ψ = 0, n × Ψ|Γ𝑡 = 0, n ⋅ 𝜀ΦΨ|Γ𝑛 = 0
}
.

For corresponding variational formulations, see the appendix.

Theorem 3.3 (eigenvalues of the generalised Laplacian). The operators 𝜌A0,ΦA∗
0,Φ + A∗

1,ΦA1,Φ and 𝜌A0 A∗
0 + A∗

1 A1
are unitarily equivalent. Moreover, both are self-adjoint and non-negative and have pure and discrete point spectrum with no
accumulation point. Moreover, the positive parts of the spectra coincide, that is,

𝜎(−𝜌∇Γ𝑡,Φ𝜈
−1 divΓ𝑛,Φ𝜀 + 𝜀

−1 rotΓ𝑛,Φ𝜇
−1 rotΓ𝑡,Φ) ⧵ {0}

= 𝜎(−𝜌∇Γ𝑡 𝜈
−1
Φ divΓ𝑛𝜀Φ + 𝜀−1

Φ rotΓ𝑛𝜇
−1
Φ rotΓ𝑡 ) ⧵ {0}

=
(
𝜌𝜎(−∇Γ𝑡 𝜈

−1
Φ divΓ𝑛𝜀Φ) ∪ 𝜎(𝜀

−1
Φ rotΓ𝑛𝜇

−1
Φ rotΓ𝑡 )

)
⧵ {0} = 𝜌{𝜆0,Φ,𝑘}𝑘∈ℕ ∪ {𝜆1,Φ,𝑘}𝑘∈ℕ.

Only finitely many eigenvalues coincide and they are repeated according to their multiplicity.
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4 | Conclusion and Outlook

4.1 | Eigenvalues and Rayleigh Quotients

We recall our results on the de Rham eigenvalues which are important for the study of their shape derivatives (variations
of the domain and the boundary conditions via the Lipschitz maps Φ ∶ Ω → Φ(Ω) = ΩΦ) in the second part of this paper.
So far we have shown that for bounded weak Lipschitz pairs (Ω,Γ𝑡) the de Rahm complex has countably many eigenvalues

0 < 𝜆𝓁,Φ,1 ≤ 𝜆𝓁,Φ,2 ≤ · · · ≤ 𝜆𝓁,Φ,𝑘−1 ≤ 𝜆𝓁,Φ,𝑘 ≤ · · · → ∞, 𝓁 ∈ {0, 1}.

For a fixed index 𝑘 we set
𝜆0,Φ ∶= 𝜆0,Φ,𝑘, 𝜆1,Φ ∶= 𝜆1,Φ,𝑘.

Moreover, by Lemma 2.9 and (28), (29) the eigenvalues are given by the Rayleigh quotients of the eigenfields, this is

𝜆0,Φ =
|A0,Φ𝑢|2L2

𝜀(ΩΦ)|𝑢|2
L2
𝜈 (ΩΦ)

=
⟨𝜀∇Γ𝑡,Φ𝑢,∇Γ𝑡,Φ𝑢⟩L2(ΩΦ)⟨𝜈𝑢, 𝑢⟩L2(ΩΦ)

=
|A0𝜏

0
Φ𝑢|2L2

𝜀Φ
(Ω)|𝜏0

Φ𝑢|2L2
𝜈Φ

(Ω)

=
⟨𝜀Φ∇Γ𝑡 𝜏

0
Φ𝑢,∇Γ𝑡 𝜏

0
Φ𝑢⟩L2(Ω)⟨𝜈Φ𝜏0

Φ𝑢, 𝜏
0
Φ𝑢⟩L2(Ω)

=
|A∗

0,Φ𝐻|2
L2
𝜈 (ΩΦ)|𝐻|2

L2
𝜀(ΩΦ)

=
⟨𝜈−1 divΓ𝑛,Φ𝜀𝐻, divΓ𝑛,Φ𝜀𝐻⟩L2(ΩΦ)⟨𝜀𝐻,𝐻⟩L2(ΩΦ)

=
|A∗

0𝜏
1
Φ𝐻|2

L2
𝜈Φ

(Ω)|𝜏1
Φ𝐻|2

L2
𝜀Φ

(Ω)

=
⟨𝜈−1

Φ divΓ𝑛𝜀Φ𝜏
1
Φ𝐻, divΓ𝑛𝜀Φ𝜏

1
Φ𝐻⟩L2(Ω)⟨𝜀Φ𝜏1

Φ𝐻, 𝜏
1
Φ𝐻⟩L2(Ω)

,

𝜆1,Φ =
|A1,Φ𝐸|2L2

𝜇(ΩΦ)|𝐸|2
L2
𝜀(ΩΦ)

=
⟨𝜇−1 rotΓ𝑡,Φ𝐸, rotΓ𝑡 ,Φ𝐸⟩L2(ΩΦ)⟨𝜀𝐸,𝐸⟩L2(ΩΦ)

=
|A1𝜏

1
Φ𝐸|2L2

𝜇Φ
(Ω)|𝜏1

Φ𝐸|2L2
𝜀Φ

(Ω)

=
⟨𝜇−1

Φ rotΓ𝑡 𝜏
1
Φ𝐸, rotΓ𝑡 𝜏

1
Φ𝐸⟩L2(Ω)⟨𝜀Φ𝜏1

Φ𝐸, 𝜏
1
Φ𝐸⟩L2(Ω)

,

(30)

with eigenfields 𝑢, 𝐸,𝐻 , and
𝜏0
Φ𝑢 = 𝑢̃, 𝜏1

Φ𝐸 = 𝐽⊤Φ𝐸, 𝜏2
Φ𝐻 = (adj 𝐽Φ)𝐻̃,

respectively. Note that the eigenvalues 𝜆𝓁,Φ,𝑘 are depending not only on Φ (shape of the domain) but also on the mixed
boundary conditions imposed on Γ𝑡 and Γ𝑛 and on the coefficients 𝜀, 𝜇, and 𝜈, which we do not indicate explicitly in our
notations, that is,

𝜆0,Φ,𝑘 = 𝜆0,Φ,𝑘(Ω,Γ𝑡, 𝜀, 𝜈), 𝜆1,Φ,𝑘 = 𝜆1,Φ,𝑘(Ω,Γ𝑡, 𝜀, 𝜇).

4.2 | Heuristic Shape Derivatives of Eigenvalues

In this final subsection, we want to conclude with formal computations to derive shape derivatives of the eigenvalues
assuming4 that the corresponding (pull-backs of the) eigenvectors are differentiable with respect to Φ. This means we
investigate the behavior of the eigenvalues under variations of the domain and the boundary conditions. More precisely,
we investigate the differentiable dependence of the eigenvalues of the de Rahm complex if the domain, that is, the mapping
Φ, is changing in certain subsets of bi-Lipschitz transformations. Here the space C0,1(Ω,ℝ3) of Lipschitz maps from Ω to
ℝ3 is endowed with its standard norm.

Theorem 4.1. Let 𝜀, 𝜇, and 𝜈 be of class 𝐶1. Let 𝑢, 𝐸,𝐻 be normalized eigenfields such that

|𝜏0
Φ𝑢|L2

𝜈Φ
(Ω) = |𝑢|L2

𝜈 (ΩΦ) = |𝜏1
Φ𝐸|L2

𝜀Φ
(Ω) = |𝐸|L2

𝜀(ΩΦ) = |𝜏1
Φ𝐻|L2

𝜀Φ
(Ω) = |𝐻|L2

𝜀(ΩΦ) = 1,
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and

𝜆0,Φ = |A0𝜏
0
Φ𝑢|2L2

𝜀Φ
(Ω) = |∇Γ𝑡 𝜏

0
Φ𝑢|2L2

𝜀Φ
(Ω) = ⟨𝜀Φ∇Γ𝑡 𝜏

0
Φ𝑢,∇Γ𝑡 𝜏

0
Φ𝑢⟩L2(Ω),

𝜆1,Φ = |A1𝜏
1
Φ𝐸|2L2

𝜇Φ
(Ω) = |𝜇−1

Φ rotΓ𝑡 𝜏
1
Φ𝐸|2L2

𝜇Φ
(Ω) = ⟨𝜇−1

Φ rotΓ𝑡 𝜏
1
Φ𝐸, rotΓ𝑡 𝜏

1
Φ𝐸⟩L2(Ω),

𝜆0,Φ = |A∗
0𝜏

1
Φ𝐻|2

L2
𝜈Φ

(Ω) = |𝜈−1
Φ divΓ𝑛𝜀Φ𝜏

1
Φ𝐻|2

L2
𝜈Φ

(Ω) = ⟨𝜈−1
Φ divΓ𝑛𝜀Φ𝜏

1
Φ𝐻, divΓ𝑛𝜀Φ𝜏

1
Φ𝐻⟩L2(Ω),

cf. Remark 3.3 and (30). Assume that 𝜏0
Φ𝑢, 𝜏1

Φ𝐸, 𝜏1
Φ𝐻 are differentiable with respect to Φ ∈ C0,1(Ω,ℝ3). Then the directional

derivatives of the eigenvalues with respect to a direction Ψ̃ ∈ C0,1(Ω,ℝ3) are given by

𝜕Ψ̃𝜆0,Φ = |A0𝜏
0
Φ𝑢|2L2

(𝜕Ψ̃𝜀Φ)(Ω)
− 𝜆0,Φ|𝜏0

Φ𝑢|2L2
(𝜕Ψ̃𝜈Φ)(Ω)

= |∇Γ𝑡 𝜏
0
Φ𝑢|2L2

(𝜕Ψ̃𝜀Φ)(Ω)
− 𝜆0,Φ|𝜏0

Φ𝑢|2L2
(𝜕Ψ̃𝜈Φ)(Ω)

=
⟨(
𝜕Ψ̃𝜀Φ

)
∇Γ𝑡 𝜏

0
Φ𝑢,∇Γ𝑡 𝜏

0
Φ𝑢

⟩
L2(Ω) − 𝜆0,Φ

⟨(
𝜕Ψ̃𝜈Φ

)
𝜏0
Φ𝑢, 𝜏

0
Φ𝑢

⟩
L2(Ω),

𝜕Ψ̃𝜆1,Φ = |A1𝜏
1
Φ𝐸|2L2

−(𝜕Ψ̃𝜇Φ)(Ω)
− 𝜆1,Φ|𝜏1

Φ𝐸|2L2
(𝜕Ψ̃𝜀Φ)(Ω)

= | rotΓ𝑡 𝜏
1
Φ𝐸|2L2

(𝜕Ψ̃𝜇
−1
Φ )

(Ω) − 𝜆1,Φ|𝜏1
Φ𝐸|2L2

(𝜕Ψ̃𝜀Φ)(Ω)

=
⟨(
𝜕Ψ̃𝜇

−1
Φ
)

rotΓ𝑡 𝜏
1
Φ𝐸, rotΓ𝑡 𝜏

1
Φ𝐸

⟩
L2(Ω) − 𝜆1,Φ

⟨(
𝜕Ψ̃𝜀Φ

)
𝜏1
Φ𝐸, 𝜏

1
Φ𝐸

⟩
L2(Ω),

𝜕Ψ̃𝜆0,Φ = |A∗
0𝜏

1
Φ𝐻|2

L2
−(𝜕Ψ̃𝜈Φ)(Ω)

− 𝜆0,Φ|𝜏1
Φ𝐻|2

L2
−(𝜕Ψ̃𝜀Φ)(Ω)

= |divΓ𝑛𝜀Φ𝜏
1
Φ𝐻|2

L2
(𝜕Ψ̃𝜈

−1
Φ )

(Ω) + 𝜆0,Φ|𝜏1
Φ𝐻|2

L2
(𝜕Ψ̃𝜀Φ)(Ω)

=
⟨(
𝜕Ψ̃𝜈

−1
Φ
)
divΓ𝑛𝜀Φ𝜏

1
Φ𝐻, divΓ𝑛𝜀Φ𝜏

1
Φ𝐻

⟩
L2(Ω) + 𝜆0,Φ

⟨(
𝜕Ψ̃𝜀Φ

)
𝜏1
Φ𝐻, 𝜏

1
Φ𝐻

⟩
L2(Ω).

Here, we have formally used the norm notation although the tensor fields ±𝜕Ψ̃(· · · )
±
Φ do not necessarily generate proper

L2(Ω)-inner products. Note that

𝜕Ψ̃𝜀Φ = −𝜀Φ(𝜕Ψ̃𝜀
−1
Φ )𝜀Φ, 𝜕Ψ̃𝜇Φ = −𝜇Φ(𝜕Ψ̃𝜇

−1
Φ )𝜇Φ, 𝜕Ψ̃𝜈Φ = −𝜈2

Φ𝜕Ψ̃𝜈
−1
Φ ,

cf. Remark A.2. Furthermore, we understand terms like 𝜕Ψ̃𝜀 in the sense of

𝜕Ψ̃𝜀 ∶= [𝜕Ψ̃𝜀𝑗,𝑚].

Proof. We elaborate the computations only for 𝜆1,Φ and postpone the calculations of the remaining cases to Appendix
A. By (30) and the quotient rule we compute

(𝜕Ψ̃𝜆1,Φ)⟨𝜀Φ𝜏1
Φ𝐸, 𝜏

1
Φ𝐸⟩2

L2(Ω) = ⟨𝜀Φ𝜏1
Φ𝐸, 𝜏

1
Φ𝐸⟩L2(Ω)𝜕Ψ̃⟨𝜇−1

Φ rotΓ𝑡 𝜏
1
Φ𝐸, rotΓ𝑡 𝜏

1
Φ𝐸⟩L2(Ω)

− ⟨𝜇−1
Φ rotΓ𝑡 𝜏

1
Φ𝐸, rotΓ𝑡 𝜏

1
Φ𝐸⟩L2(Ω)𝜕Ψ̃⟨𝜀Φ𝜏1

Φ𝐸, 𝜏
1
Φ𝐸⟩L2(Ω)

= ⟨𝜀Φ𝜏1
Φ𝐸, 𝜏

1
Φ𝐸⟩L2(Ω)

(⟨(
𝜕Ψ̃𝜇

−1
Φ
)

rotΓ𝑡 𝜏
1
Φ𝐸, rotΓ𝑡 𝜏

1
Φ𝐸

⟩
L2(Ω)

+ 2ℜ⟨𝜇−1
Φ rotΓ𝑡 𝜏

1
Φ𝐸, rotΓ𝑡 𝜕Ψ̃𝜏

1
Φ𝐸⟩L2(Ω)

)
− ⟨𝜇−1

Φ rotΓ𝑡 𝜏
1
Φ𝐸, rotΓ𝑡 𝜏

1
Φ𝐸⟩L2(Ω)

(⟨(
𝜕Ψ̃𝜀Φ

)
𝜏1
Φ𝐸, 𝜏

1
Φ𝐸

⟩
L2(Ω)

+ 2ℜ⟨𝜀Φ𝜏1
Φ𝐸, 𝜕Ψ̃𝜏

1
Φ𝐸⟩L2(Ω)

)
.

Note that we assume that 𝜏1
Φ𝐸 is differentiable and hence 𝜕Ψ̃𝜏

1
Φ𝐸 exists. Thus using

⟨𝜇−1
Φ rotΓ𝑡 𝜏

1
Φ𝐸, rotΓ𝑡 𝜏

1
Φ𝐸⟩L2(Ω) = 𝜆1,Φ⟨𝜀Φ𝜏1

Φ𝐸, 𝜏
1
Φ𝐸⟩L2(Ω),

22 Mathematical Methods in the Applied Sciences, 2026

 10991476, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.70458, W

iley O
nline L

ibrary on [11/02/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



we see

(𝜕Ψ̃𝜆1,Φ)⟨𝜀Φ𝜏1
Φ𝐸, 𝜏

1
Φ𝐸⟩L2(Ω) =

⟨(
𝜕Ψ̃𝜇

−1
Φ
)

rotΓ𝑡 𝜏
1
Φ𝐸, rotΓ𝑡 𝜏

1
Φ𝐸

⟩
L2(Ω)

+ 2ℜ⟨𝜇−1
Φ rotΓ𝑡 𝜏

1
Φ𝐸, rotΓ𝑡 𝜕Ψ̃𝜏

1
Φ𝐸⟩L2(Ω)

− 𝜆1,Φ

(⟨(
𝜕Ψ̃𝜀Φ

)
𝜏1
Φ𝐸, 𝜏

1
Φ𝐸

⟩
L2(Ω) + 2ℜ⟨𝜀Φ𝜏1

Φ𝐸, 𝜕Ψ̃𝜏
1
Φ𝐸⟩L2(Ω)

)
=
⟨(
𝜕Ψ̃𝜇

−1
Φ
)

rotΓ𝑡 𝜏
1
Φ𝐸, rotΓ𝑡 𝜏

1
Φ𝐸

⟩
L2(Ω)

+ 2ℜ⟨A1𝜏
1
Φ𝐸,A1𝜕Ψ̃𝜏

1
Φ𝐸⟩L2

𝜇Φ
(Ω)

− 𝜆1,Φ

(⟨(
𝜕Ψ̃𝜀Φ

)
𝜏1
Φ𝐸, 𝜏

1
Φ𝐸

⟩
L2(Ω) + 2ℜ⟨𝜏1

Φ𝐸, 𝜕Ψ̃𝜏
1
Φ𝐸⟩L2

𝜀Φ
(Ω)

)
=
⟨(
𝜕Ψ̃𝜇

−1
Φ
)

rotΓ𝑡 𝜏
1
Φ𝐸, rotΓ𝑡 𝜏

1
Φ𝐸

⟩
L2(Ω)

− 𝜆1,Φ
⟨(
𝜕Ψ̃𝜀Φ

)
𝜏1
Φ𝐸, 𝜏

1
Φ𝐸

⟩
L2(Ω)

+ 2ℜ

⟨
(A∗

1 A1 − 𝜆1,Φ)𝜏1
Φ𝐸

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=0

, 𝜕Ψ̃𝜏
1
Φ𝐸

⟩
L2
𝜀Φ

(Ω)

= ⟨ rotΓ𝑡 𝜏
1
Φ𝐸, rotΓ𝑡 𝜏

1
Φ𝐸⟩L2

(𝜕Ψ̃𝜇
−1
Φ )

(Ω) − 𝜆1,Φ⟨𝜏1
Φ𝐸, 𝜏

1
Φ𝐸⟩L2

(𝜕Ψ̃𝜀Φ)(Ω)
.

Note that 𝜕Ψ̃𝜀Φ = −𝜀Φ(𝜕Ψ̃𝜀
−1
Φ )𝜀Φ. For a normalized eigenfield 𝐸, we obtain the assertions. ◽

By Lemma A.1, we have

𝜕Ψ̃𝜀Φ = (det 𝐽Φ)𝐽−1
Φ

(
𝜕Ψ̃𝜀 + (d̃iv Ψ)𝜀 − 2 sym(𝐽Ψ𝜀)

)
𝐽−⊤
Φ ,

𝜕Ψ̃𝜀
−1
Φ = (det 𝐽Φ)−1𝐽⊤Φ

(
𝜕Ψ̃𝜀

−1 − (d̃iv Ψ)𝜀−1 + 2 sym(𝜀−1𝐽Ψ)
)
𝐽Φ,

𝜕Ψ̃𝜈Φ = (det 𝐽Φ)
(
𝜕Ψ̃𝜈 + (d̃iv Ψ)𝜈

)
,

𝜕Ψ̃𝜈
−1
Φ = −(det 𝐽Φ)−1𝜈−2

(
𝜕Ψ̃𝜈 + (d̃iv Ψ)𝜈

)
= (det 𝐽Φ)−1

(
𝜕Ψ̃𝜈

−1 − (d̃iv Ψ)𝜈−1
)
,

where the same formulas hold for 𝜀 replaced by 𝜇. Recall that by definition 2 sym𝑀 =𝑀 +𝑀⊤ for any square matrix
𝑀 . Note that, for example, for 𝜀, we have

𝜕Ψ̃𝜀𝑗,𝑚 = 𝐽𝜀𝑗,𝑚Ψ̃,

and hence
(𝜕Ψ̃𝜀𝑗,𝑚) ∘ Φ

−1 = 𝐽𝜀𝑗,𝑚Ψ ∶= 𝜕Ψ𝜀𝑗,𝑚.

Theorem 4.2. Let the assumptions of Theorem 4.1 be satisfied. Then

𝜕Ψ̃𝜆0,Φ =
⟨(
𝜕Ψ𝜀 + (div Ψ)𝜀 − 2 sym(𝐽Ψ𝜀)

)
∇Γ𝑡,Φ𝑢,∇Γ𝑡,Φ𝑢

⟩
L2(ΩΦ)

− 𝜆0,Φ
⟨(
𝜕Ψ𝜈 + (div Ψ)𝜈

)
𝑢, 𝑢

⟩
L2(ΩΦ)

,

𝜕Ψ̃𝜆1,Φ =
⟨(
𝜕Ψ𝜇

−1 − (div Ψ)𝜇−1 + 2 sym(𝜇−1𝐽Ψ)
)

rotΓ𝑡,Φ𝐸, rotΓ𝑡,Φ𝐸
⟩

L2(ΩΦ)

− 𝜆1,Φ
⟨(
𝜕Ψ𝜀 + (div Ψ)𝜀 − 2 sym(𝐽Ψ𝜀)

)
𝐸,𝐸

⟩
L2(ΩΦ)

,

𝜕Ψ̃𝜆0,Φ =
⟨(
𝜕Ψ𝜈

−1 − (div Ψ)𝜈−1)divΓ𝑛,Φ𝜀𝐻, divΓ𝑛,Φ𝜀𝐻
⟩

L2(ΩΦ)

+ 𝜆0,Φ
⟨(
𝜕Ψ𝜀 + (div Ψ)𝜀 − 2 sym(𝐽Ψ𝜀)

)
𝐻,𝐻

⟩
L2(ΩΦ)

.
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Recalling Lemma 2.8 and with the dual eigenvectors

𝐻∗ ∶= 𝜆−1∕2
0,Φ A0,Φ𝑢 = 𝜆

−1∕2
0,Φ ∇Γ𝑡,Φ𝑢, 𝑢 = 𝜆−1∕2

0,Φ A∗
0,Φ𝐻

∗ = −𝜆−1∕2
0,Φ 𝜈−1 divΓ𝑛,Φ𝜀𝐻

∗,

𝑢∗ ∶= 𝜆−1∕2
0,Φ A∗

0,Φ𝐻 = −𝜆−1∕2
0,Φ 𝜈−1 divΓ𝑛,Φ𝜀𝐻, 𝐻 = 𝜆−1∕2

0,Φ A0,Φ𝑢
∗ = 𝜆−1∕2

0,Φ ∇Γ𝑡,Φ𝑢
∗,

𝐸∗ ∶= 𝜆−1∕2
1,Φ A1,Φ𝐸 = 𝜆−1∕2

1,Φ 𝜇−1 rotΓ𝑡,Φ𝐸 𝐸 ∶= 𝜆−1∕2
1,Φ A∗

1,Φ𝐸
∗ = 𝜆−1∕2

1,Φ 𝜀−1 rotΓ𝑛,Φ𝐸
∗,

we get the formulas

𝜕Ψ̃𝜆0,Φ

𝜆0,Φ
=
⟨(
𝜕Ψ𝜀 + (div Ψ)𝜀 − 2 sym(𝐽Ψ𝜀)

)
𝐻∗,𝐻∗⟩

L2(ΩΦ)

−
⟨(
𝜕Ψ𝜈 + (div Ψ)𝜈

)
𝑢, 𝑢

⟩
L2(ΩΦ)

,

𝜕Ψ̃𝜆1,Φ

𝜆1,Φ
= −

⟨(
𝜕Ψ𝜇 + (div Ψ)𝜇 − 2 sym(𝐽Ψ𝜇)

)
𝐸∗, 𝐸∗⟩

L2(ΩΦ)

−
⟨(
𝜕Ψ𝜀 + (div Ψ)𝜀 − 2 sym(𝐽Ψ𝜀)

)
𝐸,𝐸

⟩
L2(ΩΦ)

,

𝜕Ψ̃𝜆0,Φ

𝜆0,Φ
= −

⟨(
𝜕Ψ𝜈 + (div Ψ)𝜈

)
𝜈𝑢∗, 𝑢∗

⟩
L2(ΩΦ)

+
⟨(
𝜕Ψ𝜀 + (div Ψ)𝜀 − 2 sym(𝐽Ψ𝜀)

)
𝐻,𝐻

⟩
L2(ΩΦ)

.

Proof. Again we focus on 𝜆1,Φ and refer for 𝜆0,Φ to Appendix A. By Theorem 2.1, Corollary 2.1, and Remark 2.2 we see

𝜕Ψ̃𝜆1,Φ =
⟨(
𝜕Ψ̃𝜇

−1
Φ
)

rotΓ𝑡 𝜏
1
Φ𝐸, rotΓ𝑡 𝜏

1
Φ𝐸

⟩
L2(Ω) − 𝜆1,Φ

⟨(
𝜕Ψ̃𝜀Φ

)
𝜏1
Φ𝐸, 𝜏

1
Φ𝐸

⟩
L2(Ω),

=
⟨
(det 𝐽Φ)−1

(
𝜕Ψ̃𝜇

−1 − (d̃iv Ψ)𝜇−1 + 2 sym(𝜇−1𝐽Ψ)
)
𝐽Φ rotΓ𝑡 𝜏

1
Φ𝐸, 𝐽Φ rotΓ𝑡 𝜏

1
Φ𝐸

⟩
L2(Ω)

− 𝜆1,Φ

⟨
(det 𝐽Φ)

(
𝜕Ψ̃𝜀 + (d̃iv Ψ)𝜀 − 2 sym(𝐽Ψ𝜀)

)
𝐽−⊤
Φ 𝜏1

Φ𝐸, 𝐽
−⊤
Φ 𝜏1

Φ𝐸
⟩

L2(Ω)
,

=
⟨
(det 𝐽Φ)

(
𝜕Ψ̃𝜇

−1 − (d̃iv Ψ)𝜇−1 + 2 sym(𝜇−1𝐽Ψ)
)

r̃otΓ𝑡,Φ𝐸, r̃otΓ𝑡,Φ𝐸
⟩

L2(Ω)

− 𝜆1,Φ

⟨
(det 𝐽Φ)

(
𝜕Ψ̃𝜀 + (d̃iv Ψ)𝜀 − 2 sym(𝐽Ψ𝜀)

)
𝐸,𝐸

⟩
L2(Ω)

,

=
⟨(
𝜕Ψ𝜇

−1 − (div Ψ)𝜇−1 + 2 sym(𝜇−1𝐽Ψ)
)

rotΓ𝑡,Φ𝐸, rotΓ𝑡,Φ𝐸
⟩

L2(ΩΦ)

− 𝜆1,Φ
⟨(
𝜕Ψ𝜀 + (div Ψ)𝜀 − 2 sym(𝐽Ψ𝜀)

)
𝐸,𝐸

⟩
L2(ΩΦ)

,

=
⟨(

−𝜕Ψ𝜇 − (div Ψ)𝜇 + 2sym(𝐽Ψ𝜇)
)
A1,Φ𝐸,A1,Φ𝐸

⟩
L2(ΩΦ)

− 𝜆1,Φ
⟨(
𝜕Ψ𝜀 + (div Ψ)𝜀 − 2 sym(𝐽Ψ𝜀)

)
𝐸,𝐸

⟩
L2(ΩΦ)

.
◽

In the particular case, where 𝜀, 𝜇, and 𝜈 are the identity mappings, Theorem 4.2 yields

𝜕Ψ̃𝜆0,Φ

𝜆0,Φ
= ⟨(div Ψ − 2 sym 𝐽Ψ)𝐻∗,𝐻∗⟩L2(ΩΦ) − ⟨(div Ψ)𝑢, 𝑢⟩L2(ΩΦ)

= −⟨(symtr 𝐽Ψ)𝐻∗,𝐻∗⟩L2(ΩΦ) − ⟨(div Ψ)𝑢, 𝑢⟩L2(ΩΦ),

𝜕Ψ̃𝜆1,Φ

𝜆1,Φ
= ⟨(2 sym 𝐽Ψ − div Ψ)𝐸∗, 𝐸∗⟩L2(ΩΦ) + ⟨(2 sym 𝐽Ψ − div Ψ)𝐸,𝐸⟩L2(ΩΦ)

= ⟨(symtr 𝐽Ψ)𝐸∗, 𝐸∗⟩L2(ΩΦ) + ⟨(symtr 𝐽Ψ)𝐸,𝐸⟩L2(ΩΦ),

𝜕Ψ̃𝜆0,Φ

𝜆0,Φ
= −⟨(div Ψ)𝑢∗, 𝑢∗⟩L2(ΩΦ) + ⟨(div Ψ − 2 sym 𝐽Ψ)𝐻,𝐻⟩L2(ΩΦ)

= −⟨(div Ψ)𝑢∗, 𝑢∗⟩L2(ΩΦ) − ⟨(symtr 𝐽Ψ)𝐻,𝐻⟩L2(ΩΦ),

(31)
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with symtr𝑀 ∶= 2 sym𝑀 − (tr𝑀) ⋅ id, that is,

symtr 𝐽Ψ = 2 sym 𝐽Ψ − (tr 𝐽Ψ) ⋅ id = 𝐽Ψ + 𝐽⊤Ψ − (div Ψ) ⋅ id.

Equation (31) are the formulas (10) from the introduction with𝐻 = 𝐻∗ and 𝐵 = 𝐸∗.
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Endnotes
1The so-called reduced operators are compact but this does not help too much because their domain depends too heavily on the
perturbations.

2Note that the Jacobian determinant of a bi-Lipschitz diffeomorphism has a constant sign on the connected components of the domain,
see [27], Lemma 6.7, hence it is not restrictive to assume that it is positive almost everywhere.

3The related bounded linear operator, where the domain𝐷(A) is endowed with the graph norm, shall be denoted by A ∶ 𝐷(A) → H1.
4Note that this assumption is quite strong and, unless one restricts the analysis to suitable families of perturbations Φ, it requires that
the eigenvalue under consideration is simple. See Part II of this series of papers for more details concerning multiple eigenvalues.
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Appendix A

Computations of Shape Derivatives

Recall from Section 3.1 the transformed matrices

𝜀Φ = 𝜏2
Φ𝜀𝜏

1
Φ−1 = (det 𝐽Φ)𝐽−1

Φ 𝜀𝐽−⊤
Φ , 𝜈Φ = 𝜏3

Φ𝜈𝜏
0
Φ−1 = (det 𝐽Φ)𝜈,

𝜀−1
Φ = 𝜏1

Φ𝜀
−1𝜏2

Φ−1 = (det 𝐽Φ)−1𝐽⊤Φ𝜀
−1𝐽Φ.

Note that generally
𝜕𝑣𝑓 (𝑥) = 𝑓 ′(𝑥)𝑣

and that 𝜕𝑣𝑓 (𝑥) = 𝑓 ′(𝑥)𝑣 = 𝑓𝑣 holds for bounded linear 𝑓 .

Lemma A.1. Let 𝑘 ∈ ℝ. It holds

𝜕Ψ̃𝐽Φ = 𝐽Ψ̃ = 𝐽Ψ𝐽Φ, 𝜕Ψ̃𝐽
−1
Φ = −𝐽−1

Φ 𝐽Ψ̃𝐽
−1
Φ = −𝐽−1

Φ 𝐽Ψ,

𝜕Ψ̃𝐽
⊤
Φ = 𝐽⊤

Ψ̃
= 𝐽⊤Φ𝐽

⊤
Ψ , 𝜕Ψ̃𝐽

−⊤
Φ = −𝐽−⊤

Φ 𝐽⊤
Ψ̃
𝐽−⊤
Φ = −𝐽⊤Ψ𝐽

−⊤
Φ ,

and

𝜕Ψ̃(det 𝐽Φ) = (det 𝐽Φ)d̃iv Ψ, 𝜕Ψ̃
(
(det 𝐽Φ)𝑘

)
= 𝑘(det 𝐽Φ)𝑘d̃iv Ψ.

Moreover, if 𝜀 and 𝜈 are of class 𝐶1, it holds

𝜕Ψ̃𝜀Φ = (det 𝐽Φ)𝐽−1
Φ

(
𝜕Ψ̃𝜀 + (d̃iv Ψ)𝜀 − 2 sym(𝐽Ψ𝜀)

)
𝐽−⊤
Φ ,

𝜕Ψ̃𝜀
−1
Φ = (det 𝐽Φ)−1𝐽⊤Φ

(
𝜕Ψ̃𝜀

−1 − (d̃iv Ψ)𝜀−1 + 2 sym(𝜀−1𝐽Ψ)
)
𝐽Φ,

𝜕Ψ̃𝜈Φ = (det 𝐽Φ)
(
𝜕Ψ̃𝜈 + (d̃iv Ψ)𝜈

)
= 𝜈Φ

(
𝜕Ψ̃𝜈

𝜈
+ (d̃iv Ψ)

)
,

𝜕Ψ̃𝜈
𝑘
Φ = 𝑘(det 𝐽Φ)𝑘𝜈𝑘−1

(
𝜕Ψ̃𝜈 + (d̃iv Ψ)𝜈

)
= 𝑘𝜈𝑘Φ

(
𝜕Ψ̃𝜈

𝜈
+ (d̃iv Ψ)

)
.

Remark A.1. In particular, we have for 𝜀 = id

𝜕Ψ̃ idΦ = (det 𝐽Φ)𝐽−1
Φ

(
d̃iv Ψ − 2 sym𝐽Ψ

)
𝐽−⊤
Φ = −(det 𝐽Φ)𝐽−1

Φ ( ̃symtr 𝐽Ψ)𝐽−⊤
Φ ,

𝜕Ψ̃ id−1
Φ = (det 𝐽Φ)−1𝐽⊤Φ

(
−d̃iv Ψ + 2 sym 𝐽Ψ

)
𝐽Φ = (det 𝐽Φ)−1𝐽⊤Φ( ̃symtr 𝐽Ψ)𝐽Φ

with symtr from (31), that is, symtr 𝐽Ψ = 2 sym 𝐽Ψ − div Ψ.

Mathematical Methods in the Applied Sciences, 2026 27

 10991476, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.70458, W

iley O
nline L

ibrary on [11/02/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Remark A.2. Note that

𝜕Ψ̃𝜀
−1
Φ = −𝜀−1

Φ (𝜕Ψ̃𝜀Φ)𝜀
−1
Φ , 𝜕Ψ̃𝜈

−1
Φ = −𝜈−2

Φ 𝜕Ψ̃𝜈Φ,

𝜕Ψ̃𝜀Φ = −𝜀Φ(𝜕Ψ̃𝜀
−1
Φ )𝜀Φ, 𝜕Ψ̃𝜈Φ = −𝜈2

Φ𝜕Ψ̃𝜈
−1
Φ .

Similar formulas hold for 𝜀Φ and 𝜈Φ replaced by 𝜀 and 𝜈, respectively.

Proof of Lemma A.1. By the chain rule we have (Ψ̃)′ = Ψ̃′Φ′, that is, 𝐽Ψ̃ = 𝐽Ψ𝐽Φ and 𝐽Ψ̃𝐽
−1
Φ = 𝐽Ψ. Since det(id + 𝑠𝑇 ) = 1 + 𝑠tr 𝑇 + 𝑂(𝑠2)

we get with tr 𝐽Ψ = div Ψ

det 𝐽Φ+𝑠Ψ̃ = det(𝐽Φ + 𝑠𝐽Ψ̃) = (det 𝐽Φ) det(id + 𝑠𝐽Ψ̃𝐽
−1
Φ ) = (det 𝐽Φ) det(id + 𝑠𝐽Ψ)

= (det 𝐽Φ)
(

1 + 𝑠 tr 𝐽Ψ + 𝑂(𝑠2)
)
= (det 𝐽Φ)

(
1 + 𝑠 d̃iv Ψ + 𝑂(𝑠2)

)
.

Moreover, for topological isomorphisms it holds 𝜕𝐻𝑇 −1 = (𝑇 −1)′𝐻 = −𝑇 −1𝐻𝑇 −1 as

(𝑇 +𝐻)−1 = 𝑇 −1(id +𝐻𝑇 −1)−1 = 𝑇 −1
∑
𝑛≥0

(−𝐻𝑇 −1)𝑛 = 𝑇 −1 − 𝑇 −1𝐻𝑇 −1 + 𝑂
(|𝐻|2).

Then the first six and the last two derivatives in the lemma are easily computed. Furthermore, using the latter results we get

𝜕Ψ̃𝜀Φ = 𝜕Ψ̃
(
(det 𝐽Φ)𝐽−1

Φ 𝜀𝐽−⊤
Φ

)
=
(
𝜕Ψ̃(det 𝐽Φ)

)
𝐽−1
Φ 𝜀𝐽−⊤

Φ + (det 𝐽Φ)(𝜕Ψ̃𝐽
−1
Φ )𝜀𝐽−⊤

Φ

+ (det 𝐽Φ)𝐽−1
Φ (𝜕Ψ̃𝜀)𝐽

−⊤
Φ + (det 𝐽Φ)𝐽−1

Φ 𝜀(𝜕Ψ̃𝐽
−⊤
Φ )

=
(
(det 𝐽Φ)d̃iv Ψ

)
𝐽−1
Φ 𝜀𝐽−⊤

Φ − (det 𝐽Φ)𝐽−1
Φ 𝐽Ψ𝜀𝐽

−⊤
Φ

+ (det 𝐽Φ)𝐽−1
Φ (𝜕Ψ̃𝜀)𝐽

−⊤
Φ − (det 𝐽Φ)𝐽−1

Φ 𝜀𝐽⊤Ψ𝐽
−⊤
Φ

= (det 𝐽Φ)𝐽−1
Φ

⎛⎜⎜⎜⎜⎜⎝
(d̃iv Ψ)𝜀 −

(
𝐽Ψ𝜀 + 𝜀𝐽⊤Ψ

)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

=2 sym(𝐽Ψ𝜀)

+ 𝜕Ψ̃𝜀

⎞⎟⎟⎟⎟⎟⎠
𝐽−⊤
Φ ,

and, using this, by the chain rule

𝜕Ψ̃𝜀
−1
Φ = −𝜀−1

Φ (𝜕Ψ̃𝜀Φ)𝜀
−1
Φ

= −(det 𝐽Φ)−1𝐽⊤Φ𝜀
−1 𝐽Φ𝐽

−1
Φ

⏟⏟⏟
=id

(
(d̃iv Ψ)𝜀 − 2 sym(𝐽Ψ𝜀) + 𝜕Ψ̃𝜀

)
𝐽−⊤
Φ 𝐽⊤Φ
⏟⏟⏟

=id

𝜀−1𝐽Φ

= −(det 𝐽Φ)−1𝐽⊤Φ

⎛⎜⎜⎜⎜⎝
(d̃iv Ψ)𝜀−1 − 2𝜀−1 sym(𝐽Ψ𝜀)𝜀−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
=sym(𝜀−1𝐽Ψ)

+ 𝜀−1(𝜕Ψ̃𝜀)𝜀−1

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
=−𝜕Ψ̃𝜀−1

⎞⎟⎟⎟⎟⎠
𝐽Φ,

finishing the proof. ◽

Variational Formulations

For A𝓁 and A𝓁,Φ, 𝓁 ∈ {0, 1}, from Section 3.3 we note the following variational formulations: For all

𝜓Φ ∈ 𝐷(A0,Φ) = H1
Γ𝑡,Φ

(ΩΦ), ΨΦ ∈ 𝐷(A1,Φ) = RΓ𝑡,Φ (ΩΦ), ΘΦ ∈ 𝐷(A∗
0,Φ) = 𝜀

−1DΓ𝑛,Φ (ΩΦ),

it holds

𝜆0⟨𝜈𝑢, 𝜓Φ⟩L2(ΩΦ) = 𝜆0⟨𝑢, 𝜓Φ⟩L2
𝜈 (ΩΦ) = ⟨A∗

0,ΦA0,Φ𝑢, 𝜓Φ⟩L2
𝜈 (ΩΦ)

= ⟨A0,Φ𝑢,A0,Φ𝜓Φ⟩L2
𝜀(ΩΦ) = ⟨𝜀∇Γ𝑡,Φ𝑢,∇Γ𝑡,Φ𝜓Φ⟩L2(ΩΦ),

𝜆1⟨𝜀𝐸,ΨΦ⟩L2(ΩΦ) = 𝜆1⟨𝐸,ΨΦ⟩L2
𝜀(ΩΦ) = ⟨A∗

1,ΦA1,Φ𝐸,ΨΦ⟩L2
𝜀(ΩΦ)

= ⟨A1,Φ𝐸,A1,ΦΨΦ⟩L2
𝜇 (ΩΦ) = ⟨𝜇−1 rotΓ𝑡,Φ𝐸, rotΓ𝑡,ΦΨΦ⟩L2(ΩΦ),

𝜆0⟨𝜀𝐻,ΘΦ⟩L2(ΩΦ) = 𝜆0⟨𝐻,ΘΦ⟩L2
𝜀(ΩΦ) = ⟨A0,ΦA∗

0,Φ𝐻,ΘΦ⟩L2
𝜀(ΩΦ)

= ⟨A∗
0,Φ𝐻,A

∗
0,ΦΘΦ⟩L2

𝜈 (ΩΦ) = ⟨𝜈−1 divΓ𝑛,Φ𝜀𝐻, divΓ𝑛,Φ𝜀ΘΦ⟩L2(ΩΦ).
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For all
𝜓 ∈ 𝐷(A0) = H1

Γ𝑡
(Ω), Ψ ∈ 𝐷(A1) = RΓ𝑡 (Ω), Θ ∈ 𝐷(A∗

0) = 𝜀
−1
Φ DΓ𝑛 (Ω),

it holds

𝜆0⟨𝜈Φ𝜏0
Φ𝑢, 𝜓⟩L2(Ω) = 𝜆0⟨𝜏0

Φ𝑢, 𝜓⟩L2
𝜈Φ

(Ω) = ⟨A∗
0 A0𝜏

0
Φ𝑢, 𝜓⟩L2

𝜈Φ
(Ω)

= ⟨A0𝜏
0
Φ𝑢,A0𝜓⟩L2

𝜀Φ
(Ω) = ⟨𝜀Φ∇Γ𝑡 𝜏

0
Φ𝑢,∇Γ𝑡𝜓⟩L2(Ω),

𝜆1⟨𝜀Φ𝜏1
Φ𝐸,Ψ⟩L2(Ω) = 𝜆1⟨𝜏1

Φ𝐸,Ψ⟩L2
𝜀Φ

(Ω) = ⟨A∗
1 A1𝜏

1
Φ𝐸,Ψ⟩L2

𝜀Φ
(Ω)

= ⟨A1𝜏
1
Φ𝐸,A1Ψ⟩L2

𝜇Φ
(Ω) = ⟨𝜇−1

Φ rotΓ𝑡 𝜏
1
Φ𝐸, rotΓ𝑡Ψ⟩L2(Ω),

𝜆0⟨𝜀Φ𝜏1
Φ𝐻,Θ⟩L2(Ω) = 𝜆0⟨𝜏1

Φ𝐻,Θ⟩L2
𝜀Φ

(Ω) = ⟨A0 A∗
0𝜏

1
Φ𝐻,Θ⟩L2

𝜀Φ
(Ω)

= ⟨A∗
0𝜏

1
Φ𝐻,A

∗
0Θ⟩L2

𝜈Φ
(Ω) = ⟨𝜈−1

Φ divΓ𝑛 𝜀Φ𝜏
1
Φ𝐻, divΓ𝑛 𝜀ΦΘ⟩L2(Ω).

Hence, more explicitly,

𝜆0
⟨
(det 𝐽Φ)𝜈𝜏0

Φ𝑢, 𝜓
⟩

L2(Ω) =
⟨
(det 𝐽Φ)𝜀𝐽−⊤

Φ ∇Γ𝑡 𝜏
0
Φ𝑢, 𝐽

−⊤
Φ ∇Γ𝑡𝜓

⟩
L2(Ω),

𝜆1
⟨
(det 𝐽Φ)𝜀𝐽−⊤

Φ 𝜏1
Φ𝐸, 𝐽

−⊤
Φ Ψ

⟩
L2(Ω) =

⟨
(det 𝐽Φ)−1𝜇−1𝐽Φ rotΓ𝑡 𝜏

1
Φ𝐸, 𝐽Φ rotΓ𝑡Ψ

⟩
L2(Ω),

𝜆0
⟨
(det 𝐽Φ)𝜀𝐽−⊤

Φ 𝜏1
Φ𝐻, 𝐽

−⊤
Φ Θ

⟩
L2(Ω) =

⟨
(det 𝐽Φ)−1𝜈−1 divΓ𝑛 𝜀Φ𝜏

1
Φ𝐻, divΓ𝑛 𝜀ΦΘ

⟩
L2(Ω).

Note that 𝜏0
Φ𝑢 = 𝑢̃, 𝐽−⊤

Φ 𝜏1
Φ𝐸 = 𝐸, and 𝜀Φ = 𝜏2

Φ𝜀𝜏
1
Φ−1 = (det 𝐽Φ)𝐽−1

Φ 𝜀𝐽−⊤
Φ = (adj 𝐽Φ)𝜀𝐽−⊤

Φ . Thus

𝜆0⟨(det 𝐽Φ)𝜈𝑢, 𝜓⟩L2(Ω) =
⟨
(det 𝐽Φ)𝜀𝐽−⊤

Φ ∇Γ𝑡 𝑢̃, 𝐽
−⊤
Φ ∇Γ𝑡𝜓

⟩
L2(Ω),

𝜆1

⟨
(det 𝐽Φ)𝜀𝐸, 𝐽−⊤

Φ Ψ
⟩

L2(Ω)
=
⟨
(det 𝐽Φ)−1𝜇−1𝐽Φ rotΓ𝑡 𝐽

⊤
Φ𝐸, 𝐽Φ rotΓ𝑡Ψ

⟩
L2(Ω)

,

𝜆0

⟨
(det 𝐽Φ)𝜀𝐻, 𝐽−⊤

Φ Θ
⟩

L2(Ω)
=
⟨
(det 𝐽Φ)−1𝜈−1 divΓ𝑛 (adj 𝐽Φ)𝜀𝐻, divΓ𝑛 (adj 𝐽Φ)𝜀𝐽−⊤

Φ Θ
⟩

L2(Ω)
.

Some Additional Proofs

Proof of Lemma 2.1. Consider the densely defined and closed linear operators

A0 ∶= ∇Γ ∶ H1
Γ(Ω) ⊂ L2(Ω) → L2(Ω),

A1 ∶= rotΓ ∶ RΓ(Ω) ⊂ L2(Ω) → L2(Ω),

A2 ∶= divΓ ∶ DΓ(Ω) ⊂ L2(Ω) → L2(Ω)

together with their densely defined and closed adjoints

A∗
0 = −div ∶ D(Ω) ⊂ L2(Ω) → L2(Ω),

A∗
1 = rot ∶ R(Ω) ⊂ L2(Ω) → L2(Ω),

A∗
2 = −∇ ∶ H1(Ω) ⊂ L2(Ω) → L2(Ω),

and recall that generally A∗∗
𝓁 = A𝓁 = A𝓁 . Then, for example, for the rotor

RΓ(Ω) = 𝐷(A1) = 𝐷(A∗∗
1 )

=
{
Ψ ∈ L2(Ω) ∶ ∃ ΨA∗∗

1
∈ L2(Ω) ∀ Θ ∈ 𝐷(A∗

1) ⟨Ψ,A∗
1Θ⟩L2(Ω) = ⟨ΨA∗∗

1
,Θ⟩L2(Ω)

}
=
{
Ψ ∈ L2(Ω) ∶ ∃ Ψrot ∈ L2(Ω) ∀ Θ ∈ R(Ω) ⟨Ψ, rot Θ⟩L2(Ω) = ⟨Ψrot,Θ⟩L2(Ω)

}
=
{
Ψ ∈ R(Ω) ∶ ∀ Θ ∈ R(Ω) ⟨Ψ, rot Θ⟩L2(Ω) = ⟨rot Ψ,Θ⟩L2(Ω)

}
,

finishing the proof. ◽
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Longer Proof of Theorem 4.1. By (30) and the quotient rule we compute(
𝜕Ψ̃𝜆0,Φ

)⟨𝜈Φ𝜏0
Φ𝑢, 𝜏

0
Φ𝑢⟩2

L2(Ω) = ⟨𝜈Φ𝜏0
Φ𝑢, 𝜏

0
Φ𝑢⟩L2(Ω)𝜕Ψ̃⟨𝜀Φ∇Γ𝑡 𝜏

0
Φ𝑢,∇Γ𝑡 𝜏

0
Φ𝑢⟩L2(Ω)

− ⟨𝜀Φ∇Γ𝑡 𝜏
0
Φ𝑢,∇Γ𝑡 𝜏

0
Φ𝑢⟩L2(Ω)𝜕Ψ̃⟨𝜈Φ𝜏0

Φ𝑢, 𝜏
0
Φ𝑢⟩L2(Ω)

= ⟨𝜈Φ𝜏0
Φ𝑢, 𝜏

0
Φ𝑢⟩L2(Ω)

(⟨(
𝜕Ψ̃𝜀Φ

)
∇Γ𝑡 𝜏

0
Φ𝑢,∇Γ𝑡 𝜏

0
Φ𝑢

⟩
L2(Ω)

+ 2ℜ⟨𝜀Φ∇Γ𝑡 𝜏
0
Φ𝑢,∇Γ𝑡 𝜕Ψ̃𝜏

0
Φ𝑢⟩L2(Ω)

)
− ⟨𝜀Φ∇Γ𝑡 𝜏

0
Φ𝑢,∇Γ𝑡 𝜏

0
Φ𝑢⟩L2(Ω)

(⟨(
𝜕Ψ̃𝜈Φ

)
𝜏0
Φ𝑢, 𝜏

0
Φ𝑢

⟩
L2(Ω)

+ 2ℜ⟨𝜈Φ𝜏0
Φ𝑢, 𝜕Ψ̃𝜏

0
Φ𝑢⟩L2(Ω)

)
,(

𝜕Ψ̃𝜆0,Φ
)⟨𝜀Φ𝜏1

Φ𝐻, 𝜏
1
Φ𝐻⟩2

L2(Ω) = ⟨𝜀Φ𝜏1
Φ𝐻, 𝜏

1
Φ𝐻⟩L2(Ω)𝜕Ψ̃⟨𝜈−1

Φ divΓ𝑛 𝜀Φ𝜏
1
Φ𝐻, divΓ𝑛 𝜀Φ𝜏

1
Φ𝐻⟩L2(Ω)

− ⟨𝜈−1
Φ divΓ𝑛 𝜀Φ𝜏

1
Φ𝐻, divΓ𝑛 𝜀Φ𝜏

1
Φ𝐻⟩L2(Ω)𝜕Ψ̃⟨𝜀Φ𝜏1

Φ𝐻, 𝜏
1
Φ𝐻⟩L2(Ω)

= ⟨𝜀Φ𝜏1
Φ𝐻, 𝜏

1
Φ𝐻⟩L2(Ω)

(⟨(
𝜕Ψ̃𝜈

−1
Φ
)
divΓ𝑛 𝜀Φ𝜏

1
Φ𝐻, divΓ𝑛 𝜀Φ𝜏

1
Φ𝐻

⟩
L2(Ω)

+ 2ℜ
⟨
𝜈−1
Φ divΓ𝑛 𝜀Φ𝜏

1
Φ𝐻, divΓ𝑛 𝜕Ψ̃(𝜀Φ𝜏

1
Φ𝐻)

⟩
L2(Ω)

)
− ⟨𝜈−1

Φ divΓ𝑛 𝜀Φ𝜏
1
Φ𝐻, divΓ𝑛 𝜀Φ𝜏

1
Φ𝐻⟩L2(Ω)

(⟨(
𝜕Ψ̃𝜀

−1
Φ
)
𝜀Φ𝜏

1
Φ𝐻, 𝜀Φ𝜏

1
Φ𝐻

⟩
L2(Ω)

+ 2ℜ
⟨
𝜏1
Φ𝐻, 𝜕Ψ̃(𝜀Φ𝜏

1
Φ𝐻)

⟩
L2(Ω)

)
,

and thus using

⟨𝜀Φ∇Γ𝑡 𝜏
0
Φ𝑢,∇Γ𝑡 𝜏

0
Φ𝑢⟩L2(Ω) = 𝜆0,Φ⟨𝜈Φ𝜏0

Φ𝑢, 𝜏
0
Φ𝑢⟩L2(Ω),⟨𝜈−1

Φ divΓ𝑛 𝜀Φ𝜏
1
Φ𝐻, divΓ𝑛 𝜀Φ𝜏

1
Φ𝐻⟩L2(Ω) = 𝜆0,Φ⟨𝜀Φ𝜏1

Φ𝐻, 𝜏
1
Φ𝐻⟩L2(Ω)

we see

(𝜕Ψ̃𝜆0,Φ)⟨𝜈Φ𝜏0
Φ𝑢, 𝜏

0
Φ𝑢⟩L2(Ω) =

⟨(
𝜕Ψ̃𝜀Φ

)
∇Γ𝑡 𝜏

0
Φ𝑢,∇Γ𝑡 𝜏

0
Φ𝑢

⟩
L2(Ω)

+ 2ℜ⟨𝜀Φ∇Γ𝑡 𝜏
0
Φ𝑢,∇Γ𝑡 𝜕Ψ̃𝜏

0
Φ𝑢⟩L2(Ω)

− 𝜆0,Φ

(⟨(
𝜕Ψ̃𝜈Φ

)
𝜏0
Φ𝑢, 𝜏

0
Φ𝑢

⟩
L2(Ω) + 2ℜ⟨𝜈Φ𝜏0

Φ𝑢, 𝜕Ψ̃𝜏
0
Φ𝑢⟩L2(Ω)

)
=
⟨(
𝜕Ψ̃𝜀Φ

)
∇Γ𝑡 𝜏

0
Φ𝑢,∇Γ𝑡 𝜏

0
Φ𝑢

⟩
L2(Ω) + 2ℜ⟨A0𝜏

0
Φ𝑢,A0𝜕Ψ̃𝜏

0
Φ𝑢⟩L2

𝜀Φ
(Ω)

− 𝜆0,Φ

(⟨(
𝜕Ψ̃𝜈Φ

)
𝜏0
Φ𝑢, 𝜏

0
Φ𝑢

⟩
L2(Ω) + 2ℜ⟨𝜏0

Φ𝑢, 𝜕Ψ̃𝜏
0
Φ𝑢⟩L2

𝜈Φ
(Ω)

)
=
⟨(
𝜕Ψ̃𝜀Φ

)
∇Γ𝑡 𝜏

0
Φ𝑢,∇Γ𝑡 𝜏

0
Φ𝑢

⟩
L2(Ω) − 𝜆0,Φ

⟨(
𝜕Ψ̃𝜈Φ

)
𝜏0
Φ𝑢, 𝜏

0
Φ𝑢

⟩
L2(Ω)

+ 2ℜ

⟨
(A∗

0 A0 − 𝜆0,Φ)𝜏0
Φ𝑢

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=0

, 𝜕Ψ̃𝜏
0
Φ𝑢

⟩
L2
𝜈Φ

(Ω)

= ⟨∇Γ𝑡 𝜏
0
Φ𝑢,∇Γ𝑡 𝜏

0
Φ𝑢⟩L2

(𝜕Ψ̃𝜀Φ)(Ω)
− 𝜆0,Φ⟨𝜏0

Φ𝑢, 𝜏
0
Φ𝑢⟩L2

(𝜕Ψ̃𝜈Φ)(Ω)
,(

𝜕Ψ̃𝜆0,Φ
)⟨𝜀Φ𝜏1

Φ𝐻, 𝜏
1
Φ𝐻⟩L2(Ω) =

⟨(
𝜕Ψ̃𝜈

−1
Φ
)
divΓ𝑛 𝜀Φ𝜏

1
Φ𝐻, divΓ𝑛 𝜀Φ𝜏

1
Φ𝐻

⟩
L2(Ω)

+ 2ℜ
⟨
𝜈−1
Φ divΓ𝑛 𝜀Φ𝜏

1
Φ𝐻, divΓ𝑛 𝜕Ψ̃(𝜀Φ𝜏

1
Φ𝐻)

⟩
L2(Ω)

− 𝜆0,Φ

(
2ℜ

⟨
𝜏1
Φ𝐻, 𝜕Ψ̃(𝜀Φ𝜏

1
Φ𝐻)

⟩
L2(Ω)

+
⟨(
𝜕Ψ̃𝜀

−1
Φ
)
𝜀Φ𝜏

1
Φ𝐻, 𝜀Φ𝜏

1
Φ𝐻

⟩
L2(Ω)

)
=
⟨(
𝜕Ψ̃𝜈

−1
Φ
)
divΓ𝑛 𝜀Φ𝜏

1
Φ𝐻, divΓ𝑛 𝜀Φ𝜏

1
Φ𝐻

⟩
L2(Ω)

+ 2ℜ
⟨

A∗
0𝜏

1
Φ𝐻,A

∗
0𝜀

−1
Φ 𝜕Ψ̃(𝜀Φ𝜏

1
Φ𝐻)

⟩
L2
𝜈Φ

(Ω)

− 𝜆0,Φ

(⟨(
𝜕Ψ̃𝜀

−1
Φ
)
𝜀Φ𝜏

1
Φ𝐻, 𝜀Φ𝜏

1
Φ𝐻

⟩
L2(Ω)

+ 2ℜ
⟨
𝜏1
Φ𝐻, 𝜀

−1
Φ 𝜕Ψ̃(𝜀Φ𝜏

1
Φ𝐻)

⟩
L2
𝜀Φ

(Ω)

)
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=
⟨(
𝜕Ψ̃𝜈

−1
Φ
)
divΓ𝑛 𝜀Φ𝜏

1
Φ𝐻, divΓ𝑛 𝜀Φ𝜏

1
Φ𝐻

⟩
L2(Ω)

− 𝜆0,Φ
⟨(
𝜕Ψ̃𝜀

−1
Φ
)
𝜀Φ𝜏

1
Φ𝐻, 𝜀Φ𝜏

1
Φ𝐻

⟩
L2(Ω)

+ 2ℜ

⟨(
A0 A∗

0 − 𝜆0,Φ
)
𝜏1
Φ𝐻

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=0

, 𝜀−1
Φ 𝜕Ψ̃(𝜀Φ𝜏

1
Φ𝐻)

⟩
L2
𝜀Φ

(Ω)

= ⟨divΓ𝑛 𝜀Φ𝜏
1
Φ𝐻, divΓ𝑛 𝜀Φ𝜏

1
Φ𝐻⟩L2

(𝜕Ψ̃𝜈
−1
Φ )

(Ω) + 𝜆0,Φ⟨𝜏1
Φ𝐻, 𝜏

1
Φ𝐻⟩L2

(𝜕Ψ̃𝜀Φ)(Ω)
.

Note that 𝜕Ψ̃𝜀Φ = −𝜀Φ(𝜕Ψ̃𝜀
−1
Φ )𝜀Φ by Remark A.2. Therefore, for normalised eigenfields 𝑢, 𝐸, and𝐻 we obtain the assertions. ◽

Longer Proof of Theorem 4.2. By Theorem 2.1, Corollary 2.1, Remark 2.2 and Lemma A.1 we see

𝜕Ψ̃𝜆0,Φ =
⟨(
𝜕Ψ̃𝜀Φ

)
∇Γ𝑡 𝜏

0
Φ𝑢,∇Γ𝑡 𝜏

0
Φ𝑢

⟩
L2(Ω) − 𝜆0,Φ

⟨(
𝜕Ψ̃𝜈Φ

)
𝜏0
Φ𝑢, 𝜏

0
Φ𝑢

⟩
L2(Ω)

=
⟨
(det 𝐽Φ)

(
𝜕Ψ̃𝜀 + (d̃iv Ψ)𝜀 − 2 sym(𝐽Ψ𝜀)

)
𝐽−⊤
Φ ∇Γ𝑡 𝜏

0
Φ𝑢, 𝐽

−⊤
Φ ∇Γ𝑡 𝜏

0
Φ𝑢

⟩
L2(Ω)

− 𝜆0,Φ

⟨
(det 𝐽Φ)

(
𝜕Ψ̃𝜈 + (d̃iv Ψ)𝜈

)
𝜏0
Φ𝑢, 𝜏

0
Φ𝑢

⟩
L2(Ω)

=
⟨
(det 𝐽Φ)

(
𝜕Ψ̃𝜀 + (d̃iv Ψ)𝜀 − 2 sym(𝐽Ψ𝜀)

)
∇̃Γ𝑡,Φ𝑢, ∇̃Γ𝑡,Φ𝑢

⟩
L2(Ω)

− 𝜆0,Φ

⟨
(det 𝐽Φ)

(
𝜕Ψ̃𝜈 + (d̃iv Ψ)𝜈

)
𝑢̃, 𝑢̃

⟩
L2(Ω)

=
⟨(
𝜕Ψ𝜀 + (div Ψ)𝜀 − 2 sym(𝐽Ψ𝜀)

)
∇Γ𝑡,Φ𝑢,∇Γ𝑡,Φ𝑢

⟩
L2(ΩΦ)

− 𝜆0,Φ
⟨(
𝜕Ψ𝜈 + (div Ψ)𝜈

)
𝑢, 𝑢

⟩
L2(ΩΦ)

,

𝜕Ψ̃𝜆1,Φ =
⟨(
𝜕Ψ̃𝜇

−1
Φ
)

rotΓ𝑡 𝜏
1
Φ𝐸, rotΓ𝑡 𝜏

1
Φ𝐸

⟩
L2(Ω) − 𝜆1,Φ

⟨(
𝜕Ψ̃𝜀Φ

)
𝜏1
Φ𝐸, 𝜏

1
Φ𝐸

⟩
L2(Ω),

=
⟨
(det 𝐽Φ)−1

(
𝜕Ψ̃𝜇

−1 − (d̃iv Ψ)𝜇−1 + 2 sym(𝜇−1𝐽Ψ)
)
𝐽Φ rotΓ𝑡 𝜏

1
Φ𝐸, 𝐽Φ rotΓ𝑡 𝜏

1
Φ𝐸

⟩
L2(Ω)

− 𝜆1,Φ

⟨
(det 𝐽Φ)

(
𝜕Ψ̃𝜀 + (d̃iv Ψ)𝜀 − 2 sym(𝐽Ψ𝜀)

)
𝐽−⊤
Φ 𝜏1

Φ𝐸, 𝐽
−⊤
Φ 𝜏1

Φ𝐸
⟩

L2(Ω)
,

=
⟨
(det 𝐽Φ)

(
𝜕Ψ̃𝜇

−1 − (d̃iv Ψ)𝜇−1 + 2 sym(𝜇−1𝐽Ψ)
)

r̃otΓ𝑡,Φ𝐸, r̃otΓ𝑡,Φ𝐸
⟩

L2(Ω)

− 𝜆1,Φ

⟨
(det 𝐽Φ)

(
𝜕Ψ̃𝜀 + (d̃iv Ψ)𝜀 − 2 sym(𝐽Ψ𝜀)

)
𝐸,𝐸

⟩
L2(Ω)

,

=
⟨(
𝜕Ψ𝜇

−1 − (div Ψ)𝜇−1 + 2 sym(𝜇−1𝐽Ψ)
)

rotΓ𝑡,Φ𝐸, rotΓ𝑡,Φ𝐸
⟩

L2(ΩΦ)

− 𝜆1,Φ
⟨(
𝜕Ψ𝜀 + (div Ψ)𝜀 − 2 sym(𝐽Ψ𝜀)

)
𝐸,𝐸

⟩
L2(ΩΦ)

,

𝜕Ψ̃𝜆0,Φ =
⟨(
𝜕Ψ̃𝜈

−1
Φ
)
divΓ𝑛 𝜀Φ𝜏

1
Φ𝐻, divΓ𝑛 𝜀Φ𝜏

1
Φ𝐻

⟩
L2(Ω) + 𝜆0,Φ

⟨(
𝜕Ψ̃𝜀Φ

)
𝜏1
Φ𝐻, 𝜏

1
Φ𝐻

⟩
L2(Ω)

=
⟨
(det 𝐽Φ)−1

(
𝜕Ψ̃𝜈

−1 − (d̃iv Ψ)𝜈−1
)

divΓ𝑛 𝜀Φ𝜏
1
Φ𝐻, divΓ𝑛 𝜀Φ𝜏

1
Φ𝐻

⟩
L2(Ω)

+ 𝜆0,Φ

⟨
(det 𝐽Φ)

(
𝜕Ψ̃𝜀 + (d̃iv Ψ)𝜀 − 2 sym(𝐽Ψ𝜀)

)
𝐽−⊤
Φ 𝜏1

Φ𝐻, 𝐽
−⊤
Φ 𝜏1

Φ𝐻
⟩

L2(Ω)

=
⟨
(det 𝐽Φ)

(
𝜕Ψ̃𝜈

−1 − (d̃iv Ψ)𝜈−1
)

̃divΓ𝑛,Φ𝜀𝐻, ̃divΓ𝑛,Φ𝜀𝐻
⟩

L2(Ω)

+ 𝜆0,Φ

⟨
(det 𝐽Φ)

(
𝜕Ψ̃𝜀 + (d̃iv Ψ)𝜀 − 2 sym(𝐽Ψ𝜀)

)
𝐻̃, 𝐻̃

⟩
L2(Ω)

=
⟨(
𝜕Ψ𝜈

−1 − (div Ψ)𝜈−1)divΓ𝑛,Φ𝜀𝐻, divΓ𝑛,Φ𝜀𝐻
⟩

L2(ΩΦ)

+ 𝜆0,Φ
⟨(
𝜕Ψ𝜀 + (div Ψ)𝜀 − 2 sym(𝐽Ψ𝜀)

)
𝐻,𝐻

⟩
L2(ΩΦ)

,

finishing the proof. ◽
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