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1 INTRODUCTION

In [1], we investigated the de Rham Hilbert complex with mixed boundary conditions on bounded strong Lipschitz
domains

whose 3D version for vector proxies reads

In [2], we extended our studies and results to the elasticity complex

In this contribution, the third part of the series, we shall investigate the two biharmonic Hilbert complexes with mixed
boundary conditions on a bounded strong Lipschitz domain Ω ⊂ R

3

Note that these two complexes are formally dual (adjoint) to each other.
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PAULY and SCHOMBURG

As explained in detail in [1, 2], all these Hilbert complexes share the same geometric structure

where A0 and A1 are densely defined and closed (unbounded) linear operators between Hilbert spaces H𝓁 . The corre-
sponding domain Hilbert complex is denoted by

The goal of this article is to show that the previous biharmonic Hilbert complexes are compact, which is proved by
using regular decompositions of the domains of definition of the respective operators as a crucial tool. We shall follow
in close lines the rationale from [1, 2]. Along the way, we show the existence of regular potentials and decompositions,
compact embeddings, Helmholtz decompositions, closed ranges, Friedrichs/Poincaré type estimates, and bases of the
corresponding cohomology groups (generalised Dirichlet/Neumann tensors). Due to the similarity of results, we shall
only state those which are most important. In the appendix, we will present some of the crucial proofs, which differ from
the proofs of the previously investigated complexes.

2 BIHARMONIC COMPLEXES I

Throughout this paper, let Ω ⊂ R
3 be a bounded strong Lipschitz domain with boundary Γ, decomposed into two parts Γ t

and Γn ∶= Γ∖Γ t with some relatively open and strong Lipschitz boundary part Γ t ⊂ Γ. More precisely, we assume generally
that (Ω,Γ t) is a bounded strong Lipschitz pair. We shall consequently use the notations, methods, and results from our
corresponding papers for the de Rham complex [1], for the elasticity complex [2, 3], and for the biharmonic complexes
[4]. In particular, we recall [1, Section 2, Section 3] including the notion of extendable domains. The standard Lebesgue
and Sobolev spaces (scalar or tensor valued) are denoted by L2(Ω) and Hk(Ω) with k ∈ N0.

We recall that weak and strong boundary conditions coincide for the standard Sobolev spaces with mixed boundary
conditions, that is,

Hk
Γt
(Ω) = Hk

Γt
(Ω); (1)

and compare [1, Lemma 3.2, Theorem 4.6]. Below, we shall show that “strong = weak” holds generally also for the
biharmonic complex. Note that Hk

∅(Ω) = Hk(Ω) and H0
Γ t
(Ω) = L2(Ω).

We introduce as usual Grad, Rot, and Div as “row-wise” incarnations of the classical operators grad, rot, and div from
the de Rham complex.

2.1 Operators
Let Gradgrad, Rot, Div, devGrad, symRot, and divDiv be realised as densely defined (unbounded) linear operators

S
̊GradgradΓt

∶ D(S ̊GradgradΓt
) ⊂ L2(Ω) → L2

S
(Ω); u → Gradgrad u,

T
̊RotS,Γt ∶ D(T ̊RotS,Γt ) ⊂ L2

S
(Ω) → L2

T
(Ω); S → Rot S,

̊DivT,Γt ∶ D( ̊DivT,Γt ) ⊂ L2
T
(Ω) → L2(Ω); T → Div T,

T
̊GradΓt ∶ D(T ̊GradΓt ) ⊂ L2(Ω) → L2

T
(Ω); v → devGrad v,

S
̊RotT,Γt ∶ D(S ̊RotT,Γt ) ⊂ L2

T
(Ω) → L2

S
(Ω); T → symRot T,

̊divDivS,Γt ∶ D( ̊divDivS,Γt ) ⊂ L2
S
(Ω) → L2(Ω); S → divDiv S,

where symS ∶= 1
2
(S + S⊤) and dev T ∶= T − 1

3
(trT)id, with domains of definition

D(S ̊GradgradΓt
) ∶= C∞

Γt
(Ω), D(T ̊RotS,Γt ) ∶= C∞

S,Γt
(Ω), D( ̊DivT,Γt ) ∶= C∞

T,Γt
(Ω),

D(T ̊GradΓt ) ∶= C∞
Γt
(Ω), D(S ̊RotT,Γt ) ∶= C∞

T,Γt
(Ω), D( ̊divDivS,Γt ) ∶= C∞

S,Γt
(Ω),
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PAULY and SCHOMBURG

satisfying the complex properties

T
̊RotS,Γt S

̊GradgradΓt
⊂ 0, ̊DivT,Γt T

̊RotS,Γt ⊂ 0,

S
̊RotT,Γt T

̊GradΓt ⊂ 0, ̊divDivS,Γt S
̊RotT,Γt ⊂ 0.

For elementary properties of these operators, see, for example, [3]; in particular, we have a collection of formulas pre-
sented in Lemma A.1 (Appendix A). Here, we introduce the Lebesgue Hilbert spaces and the test spaces of symmetric
and deviatoric tensor fields

L2
S
(Ω) ∶=

{
S ∈ L2(Ω) ∶ skwS = 0

}
, C∞

S,Γt
(Ω) ∶= C∞

Γt
(Ω) ∩ L2

S
(Ω),

L2
T
(Ω) ∶=

{
S ∈ L2(Ω) ∶ trT = 0

}
, C∞

T,Γt
(Ω) ∶= C∞

Γt
(Ω) ∩ L2

T
(Ω),

respectively. We get the first and second biharmonic complexes on smooth tensor fields

For a more algebraically structured introduction of the latter operators suggested by Rainer Picard, see Appendix B.
The closures

SGradgradΓt ∶= S
̊GradgradΓt

, TRotS,Γt ∶= T
̊RotS,Γt , DivT,Γt ∶= ̊DivT,Γt ,

TGradΓt ∶= T
̊GradΓt , SRotT,Γt ∶= S

̊RotT,Γt , divDivS,Γt ∶= ̊divDivS,Γt ,

and Hilbert space adjoints are given by the densely defined and closed linear operators

SGradgradΓt ∶D(SGradgradΓt ) ⊂ L2(Ω) → L2
S
(Ω); u → Gradgrad u,

SGradgrad∗
Γt
= divDivS,Γn ∶D(divDivS,Γn) ⊂ L2

S
(Ω) → L2(Ω); S → divDiv S,

TRotS,Γt ∶D(TRotS,Γt ) ⊂ L2
S
(Ω) → L2

T
(Ω); S → Rot S,

TRot∗
S,Γt

=SRotT,Γn ∶D(SRotT,Γn ) ⊂ L2
T
(Ω) → L2

S
(Ω); T → symRot T,

DivT,Γt ∶D(DivT,Γt ) ⊂ L2
T
(Ω) → L2(Ω); T → Div T,

Div∗
T,Γt

= −TGradΓn ∶D(TGradΓn) ⊂ L2(Ω) → L2
T
(Ω); v → −devGrad v,

TGradΓt ∶D(TGradΓt ) ⊂ L2(Ω) → L2
T
(Ω); v → devGrad v,

TGrad∗
Γt
= −DivT,Γn ∶D(DivT,Γn) ⊂ L2

T
(Ω) → L2(Ω); T → −Div T,

SRotT,Γt ∶D
(
SRotT,Γt

)
⊂ L2

T
(Ω) → L2

S
(Ω); T → symRot T,

SRot ∗
T,Γt

=TRotS,Γn ∶D(TRotS,Γn ) ⊂ L2
S
(Ω) → L2

T
(Ω); S → Rot S,

divDivS,Γt ∶D
(
divDivS,Γt

)
⊂ L2

S
(Ω) → L2(Ω); S → divDiv S,

divDiv∗
S,Γt

=SGradgradΓn
∶D(SGradgradΓn

) ⊂ L2(Ω) → L2
S
(Ω); u → Gradgrad u,

with domains of definition

D
(
SGradgradΓt

)
= HΓt

(Gradgrad,Ω), D(divDivS,Γn) = H
S,Γn

(divDiv,Ω),

D(TRotS,Γt ) = H
S,Γt

(Rot,Ω), D(SRotT,Γn) = H
T,Γn

(symRot,Ω),

D(DivT,Γt ) = H
T,Γt

(Div,Ω), D(TGradΓn) = HΓn
(devGrad,Ω),

D(TGradΓt ) = HΓt
(devGrad,Ω), D(DivT,Γn) = H

T,Γn
(Div,Ω),

D
(
SRotT,Γt

)
= H

T,Γt
(symRot,Ω), D(TRotS,Γn) = H

S,Γn
(Rot,Ω),

D
(
divDivS,Γt

)
= H

S,Γt
(divDiv,Ω), D(SGradgradΓn

) = HΓn
(Gradgrad,Ω).
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PAULY and SCHOMBURG

We shall introduce the latter Sobolev spaces in the next section.

2.2 Sobolev spaces
Let

H(Gradgrad,Ω) ∶=
{

u ∈ L2(Ω) ∶ Gradgrad u ∈ L2(Ω)
}
,

H
S
(Rot,Ω) ∶=

{
S ∈ L2

S
(Ω) ∶ Rot S ∈ L2(Ω)

}
,

H
T
(Div,Ω) ∶=

{
T ∈ L2

T
(Ω) ∶ Div T ∈ L2(Ω)

}
,

H(devGrad,Ω) ∶=
{

v ∈ L2(Ω) ∶ devGrad v ∈ L2(Ω)
}
,

H
T
(symRot,Ω) ∶=

{
T ∈ L2

T
(Ω) ∶ symRot T ∈ L2(Ω)

}
,

H
S
(divDiv,Ω) ∶=

{
S ∈ L2

S
(Ω) ∶ divDiv S ∈ L2(Ω)

}
.

Note that S ∈ H
S
(Rot,Ω) implies RotS ∈ L2

T
(Ω) (cf. Lemma A.1 (Appendix A)) and that we have by Nečas' inequality and

a Korn type inequality for dev the regularities

H(Gradgrad,Ω) = H2(Ω), H(devGrad,Ω) = H1(Ω) (2)

with equivalent norms; see, for example, [5, Lemma 8.2] and [4, Lemma 3.2]. Moreover, we define boundary conditions
in the strong sense as closures of respective test fields, that is,

HΓt
(Gradgrad,Ω) ∶= C∞

Γt
(Ω)

H2(Ω)
= H2

Γt
(Ω),

H
S,Γt

(Rot,Ω) ∶= C∞
S,Γt

(Ω)
H

S
(Rot,Ω)

,

H
T,Γt

(Div,Ω) ∶= C∞
T,Γt

(Ω)
H

T
(Div,Ω)

,

HΓt
(devGrad,Ω) ∶= C∞

Γt
(Ω)

H1(Ω)
= H1

Γt
(Ω),

H
T,Γt

(symRot,Ω) ∶= C∞
T,Γt

(Ω)
H

T
(symRot,Ω)

,

H
S,Γt

(divDiv,Ω) ∶= C∞
S,Γt

(Ω)
H

S
(divDiv,Ω)

.

For Γ t = ∅, we may skip the index ∅, which is justified by density. Spaces with vanishing differential operator coincide
with kernels and are denoted by an additional index 0 at the lower right corner, for example,

H
S,Γt ,0

(Rot,Ω) = N(TRotS,Γt ), H
T,Γt ,0

(Div,Ω) = N(DivT,Γt ).

We need also the Sobolev spaces with boundary conditions defined in the weak sense, that is,

HΓt
(Gradgrad,Ω) ∶=

{
u ∈ H2(Ω) ∶ ⟨Gradgrad u,Φ⟩L2

S
(Ω) = ⟨u, divDiv Φ⟩L2(Ω) ∀Φ ∈ C∞

S,Γn
(Ω)
}
,

H
S,Γt

(Rot,Ω) ∶=
{

S ∈ H
S
(Rot,Ω) ∶ ⟨Rot S,Ψ⟩L2

T
(Ω) = ⟨S, symRot Ψ⟩L2

S
(Ω) ∀Ψ ∈ C∞

T,Γn
(Ω)
}
,

H
T,Γt

(Div,Ω) ∶=
{

T ∈ H
T
(Div,Ω) ∶ ⟨Div T, 𝜙⟩L2(Ω) = −⟨T, devGrad 𝜙⟩L2

T
(Ω) ∀𝜙 ∈ C∞

Γn
(Ω)
}
,

HΓt
(devGrad,Ω) ∶=

{
v ∈ H1(Ω) ∶ ⟨devGrad v,Ψ⟩L2

T
(Ω) = −⟨v,Div Ψ⟩L2(Ω) ∀Ψ ∈ C∞

T,Γn
(Ω)
}
,

H
T,Γt

(symRot,Ω) ∶=
{

T ∈ H
T
(symRot,Ω) ∶ ⟨symRot T,Φ⟩L2

S
(Ω) = ⟨T,Rot Φ⟩L2

T
(Ω) ∀Φ ∈ C∞

S,Γn
(Ω)
}
,

H
S,Γt

(divDiv,Ω) ∶=
{

S ∈ H
S
(divDiv,Ω) ∶ ⟨divDiv S, 𝜙⟩L2(Ω) = ⟨S,Gradgrad 𝜙⟩L2

S
(Ω) ∀𝜙 ∈ C∞

Γn
(Ω)
}
.
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PAULY and SCHOMBURG

Note that “strong ⊂ weak” holds, that is, H···(· · · ,Ω) ⊂ H···(· · · ,Ω), for example,

H
S,Γt

(Rot,Ω) ⊂ H
S,Γt

(Rot,Ω), H
T,Γt

(Div,Ω) ⊂ H
T,Γt

(Div,Ω),

and that the complex properties hold in both the strong and the weak case, for example,

devGrad HΓt
(Ω) ⊂ H

T,Γt ,0
(symRot,Ω), Rot H

S,Γt
(Rot,Ω) ⊂ H

T,Γt ,0
(Div,Ω),

which follows immediately by the definitions. In Remark 2.3 below, we comment on the question whether “strong =
weak” holds in general.

2.3 Higher order Sobolev spaces
For k ∈ N0, we define higher order Sobolev spaces by

Hk
S
(Ω) ∶= Hk(Ω) ∩ L2

S
(Ω),

Hk
T
(Ω) ∶= Hk(Ω) ∩ L2

T
(Ω),

Hk
S,Γt

(Ω) ∶= C∞
S,Γt

(Ω)
Hk(Ω)

= Hk
Γt
(Ω) ∩ L2

S
(Ω),

Hk
T,Γt

(Ω) ∶= C∞
T,Γt

(Ω)
Hk(Ω)

= Hk
Γt
(Ω) ∩ L2

T
(Ω),

Hk(Gradgrad,Ω) ∶=
{

u ∈ Hk(Ω) ∶ Gradgrad u ∈ Hk(Ω)
}
,

Hk
Γt
(Gradgrad,Ω) ∶=

{
u ∈ Hk

Γt
(Ω) ∩ HΓt

(Gradgrad,Ω) ∶ Gradgrad u ∈ Hk
Γt
(Ω)
}
,

Hk
S
(Rot,Ω) ∶=

{
S ∈ Hk

S
(Ω) ∶ Rot S ∈ Hk(Ω)

}
,

Hk
S,Γt

(Rot,Ω) ∶=
{

S ∈ Hk
Γt
(Ω) ∩ H

S,Γt
(Rot,Ω) ∶ Rot S ∈ Hk

Γt
(Ω)
}
,

Hk
T
(Div,Ω) ∶=

{
T ∈ Hk

T
(Ω) ∶ Div T ∈ Hk(Ω)

}
,

Hk
T,Γt

(Div,Ω) ∶=
{

T ∈ Hk
Γt
(Ω) ∩ H

T,Γt
(Div,Ω) ∶ Div T ∈ Hk

Γt
(Ω)
}
,

Hk(devGrad,Ω) ∶=
{

v ∈ Hk(Ω) ∶ devGrad v ∈ Hk(Ω)
}
,

Hk
Γt
(devGrad,Ω) ∶=

{
v ∈ Hk

Γt
(Ω) ∩ HΓt

(devGrad,Ω) ∶ devGrad v ∈ Hk
Γt
(Ω)
}
,

Hk
T
(symRot,Ω) ∶=

{
T ∈ Hk

T
(Ω) ∶ symRot T ∈ Hk(Ω)

}
,

Hk
T,Γt

(symRot,Ω) ∶=
{

T ∈ Hk
Γt
(Ω) ∩ H

T,Γt
(symRot,Ω) ∶ symRot T ∈ Hk

Γt
(Ω)
}
,

Hk
S
(divDiv,Ω) ∶=

{
S ∈ Hk

S
(Ω) ∶ divDiv S ∈ Hk(Ω)

}
,

Hk
S,Γt

(divDiv,Ω) ∶=
{

S ∈ Hk
Γt
(Ω) ∩ H

S,Γt
(divDiv,Ω) ∶ divDiv S ∈ Hk

Γt
(Ω)
}
.

For the first reading, we recommend to only regard the case k = 0 from Section 2.2.
Note that, for example, for the latter divDiv-Sobolev spaces, we have Hk

S,∅(divDiv,Ω) = Hk
S
(divDiv,Ω) and

H0
S,∅(divDiv,Ω) = H

S
(divDiv,Ω) as well as H0

S,Γ t
(divDiv,Ω) = H

S,Γ t
(divDiv,Ω). For Γ t ≠ ∅, it holds

Hk
S,Γt

(divDiv,Ω) =
{

S ∈ Hk
S,Γt

(Ω) ∶ divDiv S ∈ Hk
Γt
(Ω)
}
, k ≥ 2,
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PAULY and SCHOMBURG

but for Γ t ≠ ∅ and k = 0 and k = 1

H0
S,Γt

(divDiv,Ω) = H
S,Γt

(divDiv,Ω)

⊊

⎧⎪⎪⎨⎪⎪⎩
S ∈ H0

S,Γt
(Ω)

⏟⏞⏟⏞⏟
=L2

S
(Ω)

∶ divDiv S ∈ H0
Γt
(Ω)

⏟⏟⏟
=L2(Ω)

⎫⎪⎪⎬⎪⎪⎭
= H

S
(divDiv,Ω),

H1
S,Γt

(divDiv,Ω) ⊊
{

S ∈ H1
S,Γt

(Ω) ∶ divDiv S ∈ H1
Γt
(Ω)
}
,

respectively. As before, we introduce the kernels

Hk
S,Γt ,0

(divDiv,Ω) ∶= Hk
Γt
(Ω) ∩ H

S,Γt ,0
(divDiv,Ω) = Hk

S,Γt
(divDiv,Ω) ∩ H

S,0(divDiv,Ω)

=
{

S ∈ Hk
S,Γt

(divDiv,Ω) ∶ divDiv S = 0
}
.

The corresponding remarks and definitions extend also to the Hk
Γ t
(Gradgrad,Ω), Hk

S,Γ t
(Rot,Ω), Hk

T,Γ t
(Div,Ω),

Hk
Γ t
(devGrad,Ω), and Hk

T,Γ t
(symRot,Ω)-spaces. In particular, we have forΓ t ≠ ∅ and k ≥ 1 and, for example, Hk

S,Γ t
(Rot,Ω),

the observations

Hk
S,Γt

(Rot,Ω) =
{

S ∈ Hk
S,Γt

(Ω) ∶ Rot S ∈ Hk
Γt
(Ω)
}
,

H0
S,Γt

(Rot,Ω) = H
S,Γt

(Rot,Ω) ⊊

⎧⎪⎪⎨⎪⎪⎩
S ∈ H0

S,Γt
(Ω)

⏟⏞⏟⏞⏟
=L2

S
(Ω)

∶ Rot S ∈ H0
Γt
(Ω)

⏟⏟⏟
=L2(Ω)

⎫⎪⎪⎬⎪⎪⎭
= H

S
(Rot,Ω),

Hk
S,Γt ,0

(Rot,Ω) = Hk
Γt
(Ω) ∩ H

S,Γt ,0
(Rot,Ω) = Hk

S,Γt
(Rot,Ω) ∩ H

S,0(Rot,Ω)

=
{

S ∈ Hk
S,Γt

(Rot,Ω) ∶ Rot S = 0
}
.

Analogously, we define the Sobolev spaces Hk
Γ t
(Gradgrad,Ω), Hk

S,Γ t
(Rot,Ω), Hk

T,Γ t
(Div,Ω), Hk

Γ t
(devGrad,Ω), Hk

T,Γ t

(symRot,Ω), and Hk
S,Γ t

(divDiv,Ω) using the respective Sobolev spaces with weak boundary conditions H···
···(· · · ,Ω) in the

definitions, for example,

Hk
T,Γt

(symRot,Ω) ∶=
{

T ∈ Hk
Γt
(Ω) ∩ H

T,Γt
(symRot,Ω) ∶ symRot T ∈ Hk

Γt
(Ω)
}

=
{

T ∈ Hk
Γt
(Ω) ∩ H

T,Γt
(symRot,Ω) ∶ symRot T ∈ Hk

Γt
(Ω)
}
,

where we have used (1). Note that again “strong ⊂ weak” holds, that is, H···
···(· · · ,Ω) ⊂ H···

···(· · · ,Ω), for example,
Hk

S,Γ t
(Rot,Ω) ⊂ Hk

S,Γ t
(Rot,Ω), and that the complex properties hold in both the strong and the weak case, for example,

Gradgrad Hk+2
Γt

(Ω) ⊂ Hk
S,Γt ,0

(Rot,Ω), symRot Hk
T,Γt

(symRot,Ω) ⊂ Hk
S,Γt ,0

(divDiv,Ω).

In the forthcoming sections, we shall also investigate whether indeed “strong = weak” holds. We start with a simple
implication from (1).
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PAULY and SCHOMBURG

Corollary 2.1. Hk
S,Γ t

(Ω) = Hk
S,Γ t

(Ω) and Hk
T,Γ t

(Ω) = Hk
T,Γ t

(Ω), that is, weak and strong boundary conditions coincide
for the standard Sobolev spaces of symmetric and deviatoric tensor fields with mixed boundary conditions, respectively.

As in (2) and with Corollary 2.1, we get the following.

Lemma 2.2 (Higher order weak and strong partial boundary conditions coincide).

(i) For k ≥ 0, it holds
Hk

Γt
(devGrad,Ω) = Hk+1

Γt
(Ω) = Hk+1

Γt
(Ω),

Hk
Γt
(Gradgrad,Ω) = Hk+2

Γt
(Ω) = Hk+2

Γt
(Ω).

(ii) For k ≥ 1, it holds

Hk
Γt
(devGrad,Ω) =

{
v ∈ Hk

Γt
(Ω) ∶ devGrad v ∈ Hk

Γt
(Ω)
}
= Hk

Γt
(devGrad,Ω) = Hk+1

Γt
(Ω),

Hk
S,Γt

(Rot,Ω) =
{

S ∈ Hk
S,Γt

(Ω) ∶ Rot S ∈ Hk
Γt
(Ω)
}
= Hk

S,Γt
(Rot,Ω),

Hk
T,Γt

(symRot,Ω) =
{

T ∈ Hk
T,Γt

(Ω) ∶ symRot T ∈ Hk
Γt
(Ω)
}
= Hk

T,Γt
(symRot,Ω),

Hk
T,Γt

(Div,Ω) =
{

T ∈ Hk
T,Γt

(Ω) ∶ Div T ∈ Hk
Γt
(Ω)
}
= Hk

T,Γt
(Div,Ω).

(iii) For k ≥ 2, it holds

Hk
Γt
(Gradgrad,Ω) =

{
u ∈ Hk

Γt
(Ω) ∶ Gradgrad u ∈ Hk

Γt
(Ω)
}
= Hk

Γt
(Gradgrad,Ω),

Hk
S,Γt

(divDiv,Ω) =
{

S ∈ Hk
S,Γt

(Ω) ∶ divDiv S ∈ Hk
Γt
(Ω)
}
= Hk

S,Γt
(divDiv,Ω).

Remark 2.3 (Weak and strong partial boundary conditions coincide). In [4, 5], we could prove the corresponding
results “strong = weak” for the whole two biharmonic complexes but only with empty or full boundary conditions
(Γt = ∅ or Γt = Γ). Therefore, in these special cases, the adjoints are well defined on the spaces with strong boundary
conditions as well.

Lemma 2.2 shows that for higher values of k indeed “strong=weak” holds. Thus, to show “strong=weak” in general,
we only have to prove that equality holds in the remaining cases k = 0 and k = 1; that is, we only have to show

HΓt
(devGrad,Ω) ⊂ HΓt

(devGrad,Ω), HΓt
(Gradgrad,Ω) ⊂ HΓt

(Gradgrad,Ω),

H
T,Γt

(Div,Ω) ⊂ H
T,Γt

(Div,Ω), H1
Γt
(Gradgrad,Ω) ⊂ H1

Γt
(Gradgrad,Ω),

H
S,Γt

(Rot,Ω) ⊂ H
S,Γt

(Rot,Ω), H
S,Γt

(divDiv,Ω) ⊂ H
S,Γt

(divDiv,Ω),

H
T,Γt

(symRot,Ω) ⊂ H
T,Γt

(symRot,Ω), H1
S,Γt

(divDiv,Ω) ⊂ H1
S,Γt

(divDiv,Ω).

The most delicate situation appears due to the second-order nature of divDivS. In Corollary 3.11, we shall show
using regular decompositions that these results (weak and strong boundary conditions coincide for the biharmonic
complexes for all k ≥ 0) indeed hold true.

2.4 More Sobolev spaces
For k ∈ N, we introduce also slightly less regular higher order Sobolev spaces by

Hk,k−1
Γt

(Gradgrad,Ω) ∶=
{

u ∈ Hk
Γt
(Ω) ∩ HΓt

(Gradgrad,Ω) ∶ Gradgrad u ∈ Hk−1
Γt

(Ω)
}
,

Hk,k−1
Γt

(Gradgrad,Ω) ∶=
{

u ∈ Hk
Γt
(Ω) ∩ HΓt

(Gradgrad,Ω) ∶ Gradgrad u ∈ Hk−1
Γt

(Ω)
}
,

Hk,k−1
S,Γt

(divDiv,Ω) ∶=
{

S ∈ Hk
Γt
(Ω) ∩ H

S,Γt
(divDiv,Ω) ∶ divDiv S ∈ Hk−1

Γt
(Ω)
}
,

Hk,k−1
S,Γt

(divDiv,Ω) ∶=
{

S ∈ Hk
Γt
(Ω) ∩ H

S,Γt
(divDiv,Ω) ∶ divDiv S ∈ Hk−1

Γt
(Ω)
}
,

and we extend all conventions of our notations. These spaces can be ignored at the first reading.
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PAULY and SCHOMBURG

We have for the kernels of divDivS

Hk,k−1
S,Γt ,0

(divDiv,Ω) = Hk
S,Γt ,0

(divDiv,Ω), Hk,k−1
S,Γt ,0

(divDiv,Ω) = Hk
S,Γt ,0

(divDiv,Ω),

and by Nečas' inequality (cf. (2)),

Hk,k−1
Γt

(Gradgrad,Ω) = Hk+1
Γt

(Ω) = Hk+1
Γt

(Ω) ⊂ Hk,k−1
Γt

(Gradgrad,Ω).

The intersection with HΓ t
(Gradgrad,Ω), HΓ t

(Gradgrad,Ω), and H
S,Γ t

(divDiv,Ω), H
S,Γ t

(divDiv,Ω), respectively, is only
needed if k = 1. As before, we observe Hk,k−1

S,Γ t
(divDiv,Ω) ⊂ Hk,k−1

S,Γ t
(divDiv,Ω), that is, “strong ⊂ weak,” and in both cases

(weak and strong), the complex properties hold, for example, Gradgrad Hk,k−1
Γ t

(Gradgrad,Ω) ⊂ Hk−1
S,Γ t ,0

(Rot,Ω).
Similar to Lemma 2.2, we have the following.

Lemma 2.4. (Higher order weak and strong partial boundary conditions coincide). For k ≥ 2,

Hk,k−1
Γt

(Gradgrad,Ω) =
{

u ∈ Hk
Γt
(Ω) ∶ Gradgrad u ∈ Hk−1

Γt
(Ω)
}
= Hk,k−1

Γt
(Gradgrad,Ω) = Hk+1

Γt
(Ω),

Hk,k−1
S,Γt

(divDiv,Ω) =
{

S ∈ Hk
S,Γt

(Ω) ∶ divDiv S ∈ Hk−1
Γt

(Ω)
}
= Hk,k−1

S,Γt
(divDiv,Ω).

2.5 Some biharmonic complexes
By definition, we have densely defined and closed (unbounded) linear operators defining six dual pairs

(SGradgradΓt ,SGradgrad∗
Γt
) = (SGradgradΓt ,divDivS,Γn),

(TRotS,Γt ,TRot∗
S,Γt

) = (TRotS,Γt ,SRotT,Γn ),

(DivT,Γt ,Div∗
T,Γt

) = (DivT,Γt ,−TGradΓn),

(TGradΓt ,TGrad∗
Γt
) = (TGradΓt ,−DivT,Γn),

(SRotT,Γt ,SRot ∗
T,Γt

) = (SRotT,Γt ,TRotS,Γn ),

(divDivS,Γt , divDiv∗
S,Γt

) = (divDivS,Γt ,SGradgradΓn
).

Pauly and Schomburg [1, Remark 2.5, Remark 2.6] show the complex properties

TRotS,ΓtS
GradgradΓt ⊂ 0, DivT,ΓtT

RotS,Γt ⊂ 0,

SRotT,ΓtT
GradΓt ⊂ 0, divDivS,ΓtS

RotT,Γt ⊂ 0,

divDivS,ΓnS
RotT,Γn ⊂ 0, −SRotT,ΓnT

GradΓn ⊂ 0,

−DivT,ΓnT
RotS,Γn ⊂ 0, TRotS,ΓnS

GradgradΓn
⊂ 0.

Hence, we get the two primal and dual biharmonic Hilbert complexes

The long primal and dual biharmonic Hilbert complexes (cf. [1, (12)]) read
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PAULY and SCHOMBURG

with the additional complex properties

R(𝜄RTΓt
) = N

(
TGradΓt

)
= RTΓt , R(DivT,Γn) =RT

⟂L2(Ω)
Γt

,

R(𝜄P1
Γt
) = N

(
SGradgradΓt

)
= P

1
Γt
, R(divDivS,Γn) = (P1

Γt
)⟂L2(Ω) ,

where

RTΣ =
{

{0} if Σ ≠ ∅,
RT if Σ = ∅, with RT ∶=

{
R

33 ∋ x → ax + q ∶ a ∈ R
3, q ∈ R

3
}
,

P
1
Σ =

{
{0} if Σ ≠ ∅,
P

1 if Σ = ∅,
with P

1 ∶=
{
R

33 ∋ x → q · x + a ∶ a ∈ R
3, q ∈ R

3
}

denote the global Raviart–Thomas fields and the global polynomials of degree less or equal to 1 in Ω, respectively. We
have dimRT = dimP

1 = 4. Note that, for example, by Lemma 2.2 (i), it holds

N
(
SGradgradΓt

)
=
{

u ∈ H2
Γt
(Ω) ∶ Gradgrad u = 0

}
.

More generally, in addition to (5) and (6), we shall discuss for k ∈ N0 the higher Sobolev order (long primal and formally
dual) biharmonic Hilbert complexes (omitting Ω in the notation)

and

with associated domain complexes

and

Additionally, for k ≥ 1 we will also discuss the following variants of the biharmonic complexes
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PAULY and SCHOMBURG

and

with associated domain complexes

and

Here, we have introduced the densely defined and closed linear operators

SGradgradk
Γt
∶ D

(
SGradgradk

Γt

)
⊂ Hk

Γt
(Ω) → Hk

S,Γt
(Ω); u → Gradgrad u,

divDivk
S,Γn

∶ D
(

divDivk
S,Γn

)
⊂ Hk

S,Γn
(Ω) → Hk

Γn
(Ω); S → divDiv S,

TRotk
S,Γt

, ∶ D
(
TRotk

S,Γt

)
⊂ Hk

S,Γt
(Ω) → Hk

T,Γt
(Ω); S → Rot S,

SRotk
T,Γn

∶ D
(
SRotk

T,Γn

)
⊂ Hk

T,Γn
(Ω) → Hk

S,Γn
(Ω); T → symRot T,

Divk
T,Γt

∶ D
(

Divk
T,Γt

)
⊂ Hk

T,Γt
(Ω) → Hk

Γt
(Ω); T → Div T,

TGradk
Γn

∶ D
(
TGradk

Γn

)
⊂ Hk

Γn
(Ω) → Hk

T,Γn
(Ω); v → devGrad v,

TGradk
Γt
∶ D

(
TGradk

Γt

)
⊂ Hk

Γt
(Ω) → Hk

T,Γt
(Ω); v → devGrad v,

Divk
T,Γn

∶ D
(

Divk
T,Γn

)
⊂ Hk

T,Γn
(Ω) → Hk

Γn
(Ω); T → Div T,

SRotk
T,Γt

∶ D
(
SRotk

T,Γt

)
⊂ Hk

T,Γt
(Ω) → Hk

S,Γt
(Ω); T → symRot T,

TRotk
S,Γn

∶ D
(
TRotk

S,Γn

)
⊂ Hk

S,Γn
(Ω) → Hk

T,Γn
(Ω); S → Rot S,

divDivk
S,Γt

∶ D
(

divDivk
S,Γt

)
⊂ Hk

S,Γt
(Ω → Hk

Γt
(Ω); S → divDiv S,

SGradgradk
Γn

∶ D
(
SGradgradk

Γn

)
⊂ Hk

Γn
(Ω) → Hk

S,Γn
(Ω); u → Gradgrad u,

with domains of definition

D
(
SGradgradk

Γt

)
= Hk

Γt
(Gradgrad,Ω), D

(
divDivk

S,Γn

)
= Hk

S,Γn
(divDiv,Ω),

D
(
TRotk

S,Γt

)
= Hk

S,Γt
(Rot,Ω), D

(
SRotk

T,Γn

)
= Hk

T,Γn
(symRot,Ω),

D
(

Divk
T,Γt

)
= Hk

T,Γt
(Div,Ω), D

(
TGradk

Γn

)
= Hk

Γn
(devGrad,Ω),

D
(
TGradk

Γt

)
= Hk

Γt
(devGrad,Ω), D

(
Divk

T,Γn

)
= Hk

T,Γn
(Div,Ω),

D
(
SRotk

T,Γt

)
= Hk

T,Γt
(symRot,Ω), D

(
TRotk

S,Γn

)
= Hk

S,Γn
(Rot,Ω),

D
(

divDivk
S,Γt

)
= Hk

S,Γt
(divDiv,Ω), D

(
SGradgradk

Γn

)
= Hk

Γn
(Gradgrad,Ω).
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PAULY and SCHOMBURG

Moreover,

SGradgradk,k−1
Γt

∶ D
(
SGradgradk,k−1

Γt

)
⊂ Hk

Γt
(Ω) → Hk−1

S,Γt
(Ω); u → Gradgrad u,

SGradgradk,k−1
Γn

∶ D
(
SGradgradk,k−1

Γn

)
⊂ Hk

Γn
(Ω) → Hk−1

S,Γn
(Ω); u → Gradgrad u,

divDivk,k−1
S,Γt

∶ D
(

divDivk,k−1
S,Γt

)
⊂ Hk

S,Γt
(Ω) → Hk−1

Γt
(Ω); S → divDiv S,

divDivk,k−1
S,Γn

∶ D
(

divDivk,k−1
S,Γn

)
⊂ Hk

S,Γn
(Ω) → Hk−1

Γn
(Ω); S → divDiv S,

with domains of definition

D
(
SGradgradk,k−1

Γt

)
= Hk,k−1

Γt
(Gradgrad,Ω), D

(
divDivk,k−1

S,Γt

)
= Hk,k−1

S,Γt
(divDiv,Ω),

D
(
SGradgradk,k−1

Γn

)
= Hk,k−1

Γn
(Gradgrad,Ω), D

(
divDivk,k−1

S,Γn

)
= Hk,k−1

S,Γn
(divDiv,Ω).

2.6 Dirichlet/Neumann fields
We also introduce the cohomology spaces of biharmonic Dirichlet/Neumann tensor fields (generalised harmonic tensors)


S,Γt ,Γn,𝜀

(Ω) ∶= N(TRotS,Γt ) ∩ N
(
divDivS,Γn𝜀

)
= H

S,Γt ,0
(Rot,Ω) ∩ 𝜀−1H

S,Γn,0
(divDiv,Ω),


T,Γn,Γt ,𝜇

(Ω) ∶= N(SRotT,Γn) ∩ N(DivT,Γt𝜇) = H
T,Γn,0

(symRot,Ω) ∩ 𝜇−1H
T,Γt ,0

(Div,Ω).

Here, 𝜀 ∶ L2
S
(Ω) → L2

S
(Ω) is a symmetric and positive topological isomorphism (symmetric and positive bijective

bounded linear operator), which introduces a new inner product

⟨ · , ·⟩L2
S,𝜀(Ω)

∶= ⟨𝜀 · , ·⟩L2
S
(Ω),

where L2
S,𝜀(Ω) ∶= L2

S
(Ω) (as linear space) equipped with the inner product ⟨ · , · ⟩L2

S,𝜀(Ω)
. Such weights 𝜀 and also𝜇 ∶ L2

T
(Ω) →

L2
T
(Ω) are called admissible. Typical examples are given by symmetric, L∞-bounded, and uniformly positive definite tensor

fields 𝜀, 𝜇 ∶ Ω → R
(3×3)×(3×3) with appropriate algebraic properties.

3 BIHARMONIC COMPLEXES II

3.1 Regular potentials and decompositions I
3.1.1 Extendable domains
The next theorem is a crucial result. Its proof is based on [4, Theorem 3.10], where the stated results for Γ t = Γ and Γ t = ∅
have been shown, and the arguments used in, for example, [1, Lemma 4.4] for partial boundary conditions. See Appendix
C for a detailed proof.

Theorem 3.1 (Regular potential operators for extendable domains). Let (Ω,Γ t) be an extendable bounded strong
Lipschitz pair and let k ≥ 0. Then there exist bounded linear regular potential operators

k
SGradgrad,Γt

∶ Hk
S,Γt ,0

(Rot,Ω) → Hk+2
Γt

(Ω) ∩ Hk+2(R3),

k
TRotS,Γt

∶ Hk
T,Γt ,0

(Div,Ω) → Hk+1
S,Γt

(Ω) ∩ Hk+1(R3),

k
DivT,Γt

∶ Hk
Γt
(Ω) ∩ (RTΓn)

⟂L2(Ω) → Hk+1
T,Γt

(Ω) ∩ Hk+1(R3),

k
TGrad,Γt

∶ Hk
T,Γt ,0

(symRot,Ω) → Hk+1
Γt

(Ω) ∩ Hk+1(R3),

k
SRotT,Γt

∶ Hk
S,Γt ,0

(divDiv,Ω) → Hk+1
T,Γt

(Ω) ∩ Hk+1(R3),

k
divDivS,Γt

∶ Hk
Γt
(Ω) ∩

(
P

1
Γn

)⟂L2(Ω)
→ Hk+2

S,Γt
(Ω) ∩ Hk+2(R3).
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PAULY and SCHOMBURG

In particular,  ···
··· are right inverses for SGradgrad, TRotS, DivT, TGrad, SRotT, and divDivS, respectively, that is,

Gradgrad k
SGradgrad,Γt

= idHk
S,Γt ,0

(Rot,Ω), devGrad k
TGrad,Γt

= idHk
T,Γt ,0

(symRot,Ω),

Rot k
TRotS,Γt

= idHk
T,Γt ,0

(Div,Ω), symRot k
SRotT,Γt

= idHk
S,Γt ,0

(divDiv,Ω),

Div k
DivT,Γt

= id
Hk

Γt
(Ω)∩(RTΓn)

⟂
L2(Ω) , divDiv k

divDivS,Γt
= id

Hk
Γt
(Ω)∩

(
P

1
Γn

)⟂
L2 (Ω) .

Without loss of generality,  ···
··· map to tensor fields with a fixed compact support in R

3.

Remark 3.2. Note that AnAn = idR(An) is a general property of a (bounded regular) potential operator An ∶ R(An) →
H+

n with H+
n ⊂ D(An) (cf. [1, Section 2.3]).

As a simple consequence of the complex properties, the general results for regular potentials and decompositions from,
for example, [1, Section 2.3] and Theorem 3.1, we obtain a few corollaries.

Corollary 3.3 (Regular potentials for extendable domains). Let (Ω,Γ t) be an extendable bounded strong Lipschitz pair
and let k ≥ 0. Then the regular potentials representations

Hk
S,Γt ,0

(Rot,Ω) = Hk
S,Γt ,0

(Rot,Ω) = Gradgrad Hk
Γt
(Gradgrad,Ω) = Gradgrad Hk+2

Γt
(Ω)

= Gradgrad Hk+1,k
Γt

(Gradgrad,Ω)

= R
(
SGradgradk

Γt

)
= R

(
SGradgradk+1,k

Γt

)
,

Hk
T,Γt ,0

(Div,Ω) = Hk
T,Γt ,0

(Div,Ω) = Rot Hk
S,Γt

(Rot,Ω) = Rot Hk+1
S,Γt

(Ω)

= R
(
TRotk

S,Γt

)
,

Hk
Γt
(Ω) ∩

(
RTΓn

)⟂L2(Ω) = DivHk
T,Γt

(Div,Ω) = Div Hk+1
T,Γt

(Ω)

= R
(

Divk
T,Γt

)
,

Hk
T,Γt ,0

(symRot,Ω) = Hk
T,Γt ,0

(symRot,Ω) = devGrad Hk
Γt
(devGrad Ω) = devGrad Hk+1

Γt
(Ω)

= R
(
TGradk

Γt

)
,

Hk
S,Γt ,0

(divDiv,Ω) = Hk
S,Γt ,0

(divDiv,Ω) = symRot Hk
T,Γt

(symRot,Ω) = symRot Hk+1
T,Γt

(Ω)

= R
(
SRotk

T,Γt

)
,

Hk
Γt
(Ω) ∩

(
P

1
Γn

)⟂L2(Ω) = divDiv Hk
S,Γt

(divDiv,Ω) = divDiv Hk+2
S,Γt

(Ω)

= divDiv Hk+1,k
S,Γt

(divDiv,Ω)

= R
(

divDivk
S,Γt

)
= R

(
divDivk+1,k

S,Γt

)
hold, and the potentials can be chosen such that they depend continuously on the data. In particular, the latter spaces are
closed subspaces of Hk

S
(Ω), Hk

T
(Ω), and Hk(Ω), respectively.
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PAULY and SCHOMBURG

Corollary 3.4. (Regular decompositions for extendable domains). Let (Ω,Γ t) be an extendable bounded strong
Lipschitz pair and let k ≥ 0. Then the bounded regular decompositions

Hk
S,Γt

(Rot,Ω) = Hk+1
S,Γt

(Ω) + Gradgrad Hk+2
Γt

(Ω) = R
(
k

TRotS,Γt

)
∔ Hk

S,Γt ,0
(Rot,Ω)

= R
(
k

TRotS,Γt

)
∔ Gradgrad Hk+2

Γt
(Ω)

= R
(
k

TRotS,Γt

)
∔ Gradgrad R

(
k

SGradgrad,Γt

)
,

Hk
T,Γt

(Div,Ω) = Hk+1
T,Γt

(Ω) + Rot Hk+1
S,Γt

(Ω) = R
(
k

DivT,Γt

)
∔ Hk

T,Γt ,0
(Div,Ω)

= R
(
k

DivT,Γt

)
∔ Rot Hk+1

S,Γt
(Ω)

= R
(
k

DivT,Γt

)
∔ Rot R

(
k

TRotS,Γt

)
,

Hk
T,Γt

(symRot,Ω) = Hk+1
T,Γt

(Ω) + devGrad Hk+1
Γt

(Ω) = R
(
k

SRotT,Γt

)
∔ Hk

T,Γt ,0
(symRot,Ω)

= R
(
k

SRotT,Γt

)
∔ devGrad Hk+1

Γt
(Ω)

= R
(
k

SRotT,Γt

)
∔ devGrad R

(
k

TGrad,Γt

)
,

Hk
S,Γt

(divDiv,Ω) = Hk+2
S,Γt

(Ω) + symRot Hk+1
T,Γt

(Ω) = R
(
k

divDivS,Γt

)
∔ Hk

S,Γt ,0
(divDiv,Ω)

= R
(
k

divDivS,Γt

)
∔ symRot Hk+1

T,Γt
(Ω)

= R
(
k

divDivS,Γt

)
∔ symRot R

(
k

SRotT,Γt

)

hold with bounded linear regular decomposition operators

k,1
TRotS,Γt

∶= k
TRotS,Γt

Rot ∶ Hk
S,Γt

(Rot,Ω) → Hk+1
S,Γt

(Ω),

k,0
TRotS,Γt

∶= k
SGradgrad,Γt

(
1 −k,1

TRotSΓt

)
∶ Hk

S,Γt
(Rot,Ω) → Hk+2

Γt
(Ω),

k,1
DivT,Γt

∶= k
DivT,Γt

Div ∶ Hk
T,Γt

(Div,Ω) → Hk+1
T,Γt

(Ω),

k,0
DivT,Γt

∶= k
TRotS,Γt

(
1 −k,1

DivT,Γt

)
∶ Hk

T,Γt
(Div,Ω) → Hk+1

S,Γt
(Ω),

k,1
SRotT,Γt

∶= k
SRotT,Γt

symRot ∶ Hk
T,Γt

(symRot,Ω) → Hk+1
T,Γt

(Ω),

k,0
SRotT,Γt

∶= k
TGrad,Γt

(
1 −k,1

SRotT,Γt

)
∶ Hk

T,Γt
(symRot,Ω) → Hk+1

Γt
(Ω),

k,1
divDivS,Γt

∶= k
divDivS,Γt

divDiv ∶ Hk
S,Γt

(divDiv,Ω) → Hk+2
S,Γt

(Ω),

k,0
divDivS,Γt

∶= k
SRotT,Γt

(
1 −k,1

divDivS,Γt

)
∶ Hk

S,Γt
(divDiv,Ω) → Hk+1

T,Γt
(Ω),

satisfying

k,1
TRotS,Γt

+ Gradgrad k,0
TRotS,Γt

= idHk
S,Γt

(Rot,Ω),

k,1
DivT,Γt

+ Rot k,0
DivT,Γt

= idHk
T,Γt

(Div,Ω),

k,1
SRotT,Γt

+ devGrad k,0
SRotT,Γt

= idHk
T,Γt

(symRot,Ω),

k,1
divDivS,Γt

+ symRot k,0
divDivS,Γt

= idHk
S,Γt

(divDiv,Ω).
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PAULY and SCHOMBURG

Remark 3.5. Note that for (bounded linear) potential operators An−1 and An , the identity

1
An

+ An−1
0
An

= idD(An) with 1
An

∶= An An ∶ D(An) → H+
n ,

0
An

∶= An−1

(
1 −1

An

)
∶ D(An) → H+

n−1

is a general structure of a (bounded) regular decomposition. Moreover,

(i) R(1
An
) = R(An) and R(0

An
) = R(An−1).

(ii) N(An) is invariant under 1
An

, as An = An
1
An

holds by the complex property.
(iii) 1

An
and An−1

0
An

= 1 −1
An

are projections.
(iv) There exists c > 0 such that for all x ∈ D(An)

|||1
An

x|||H+
n

≤ c|Anx|Hn+1
.

(iv') In particular, 1
An
|N(An) = 0.

Corollary 3.6. (Weak and strong partial boundary conditions coincide for extendable domains). Let (Ω,Γ t) be an
extendable bounded strong Lipschitz pair and let k ≥ 0. Then weak and strong boundary conditions coincide, that is,

Hk
Γt
(Gradgrad,Ω) = Hk

Γt
(Gradgrad,Ω) = Hk+2

Γt
(Ω) = Hk+2

Γt
(Ω),

Hk
S,Γt

(Rot,Ω) = Hk
S,Γt

(Rot,Ω),

Hk
T,Γt

(Div,Ω) = Hk
T,Γt

(Div,Ω),

Hk
Γt
(devGrad,Ω) = Hk

Γt
(devGrad,Ω) = Hk+1

Γt
(Ω) = Hk+1

Γt
(Ω),

Hk
T,Γt

(symRot,Ω) = Hk
T,Γt

(symRot,Ω),

Hk
S,Γt

(divDiv,Ω) = Hk
S,Γt

(divDiv,Ω).

Similar versions of Corollary 3.4 and Corollary 3.6 are available for the nonstandard Sobolev spaces of the form
Hk,k−1

··· (· · · ,Ω) (cf. Section 2.4). Note that

Hk,k−1
Γt

(Gradgrad,Ω) = Hk+1
Γt

(Ω) (7)

as Hk,k−1
Γ t

(Gradgrad,Ω) ⊂ Hk−1
Γ t

(Gradgrad,Ω) = Hk+1
Γ t

(Ω) ⊂ Hk,k−1
Γ t

(Gradgrad,Ω).

Corollary 3.7. (Corollary 3.4 and Corollary 3.6 for nonstandard Sobolev spaces). Let (Ω,Γ t) be an extendable bounded
strong Lipschitz pair and let k ≥ 1. Then the bounded regular decompositions

Hk,k−1
S,Γt

(divDiv,Ω) = Hk+1
S,Γt

(Ω) + symRot Hk+1
T,Γt

(Ω) = R
(
k−1

divDivS,Γt

)
∔ Hk

S,Γt ,0
(divDiv,Ω)

= R
(
k−1

divDivS,Γt

)
∔ symRot Hk+1

T,Γt
(Ω)

= R
(
k−1

divDivS,Γt

)
∔ symRot R

(
k

SRotT,Γt

)
= Hk,k−1

S,Γt
(divDiv,Ω)

hold with bounded linear regular decomposition operators

k,k−1,1
divDivS,Γt

∶= k−1
divDivS,Γt

divDiv ∶ Hk,k−1
S,Γt

(divDiv,Ω) → Hk+1
S,Γt

(Ω),

k,k−1,0
divDivS,Γt

∶= k
SRotT,Γt

(
1 −k,k−1,1

divDivS,Γt

)
∶ Hk,k−1

S,Γt
(divDiv,Ω) → Hk+1

T,Γt
(Ω)
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PAULY and SCHOMBURG

satisfying k,k−1,1
divDivS,Γ t

+ symRot k,k−1,0
divDivS,Γ t

= idHk,k−1
S,Γ t

(divDiv,Ω). In particular, weak and strong boundary conditions coincide
also for the nonstandard Sobolev spaces.

Recall the Hilbert complexes and cohomology groups from Section 2.5 and Section 2.6.

Theorem 3.8. (Closed and exact Hilbert complexes for extendable domains). Let (Ω,Γ t) be an extendable bounded
strong Lipschitz pair and let k ≥ 0. Both biharmonic domain complexes

and, for k ≥ 1,

are exact and closed Hilbert complexes. In particular, all ranges are closed, all cohomology groups (Dirichlet/Neumann
fields) are trivial, and the operators from Theorem 3.1 are associated bounded regular potential operators.

3.1.2 General strong Lipschitz domains
From now on, we drop the additional condition “extendable domain,” thus (Ω,Γ t) is a bounded strong Lipschitz pair.

Lemma 3.9. (cutting lemma). Let 𝜑 ∈ C∞(R3) and let k ≥ 0.

(i) If S ∈ Hk
S,Γ t

(Rot,Ω), then 𝜑S ∈ Hk
S,Γ t

(Rot,Ω) and Rot(𝜑S) = 𝜑Rot S − S spn grad𝜑.
(ii) If T ∈ Hk

T,Γ t
(Div,Ω), then 𝜑T ∈ Hk

T,Γ t
(Div,Ω) and Div (𝜑T) = 𝜑Div T + T grad𝜑.

(iii) If T ∈ Hk
T,Γ t

(symRot,Ω), then 𝜑T ∈ Hk
T,Γ t

(symRot,Ω) and symRot(𝜑T) = 𝜑symRot T − sym (T spngrad𝜑).
(iv) If k ≥ 1 and S ∈ Hk,k−1

S,Γ t
(divDiv,Ω), then 𝜑S ∈ Hk,k−1

S,Γ t
(divDiv,Ω) and

divDiv(𝜑S) = 𝜑divDiv S + 2grad𝜑 · Div S + Gradgrad𝜑 ∶ S.

In particular, this holds for S ∈ Hk
S,Γ t

(divDiv,Ω). Note that · and : denote the point-wise scalar product for vectors
fields and tensor (matrix) fields, respectively.

We proceed by showing crucial regular decompositions for the biharmonic complexes extending the results of
Corollary 3.4 and Corollary 3.7 to our general setting. The proof is based on Corollary 3.4 together with a partition of unity.

Lemma 3.10. (Regular decompositions). Let k ≥ 0. Then the bounded regular decompositions

Hk
S,Γt

(Rot,Ω) = Hk+1
S,Γt

(Ω) + Gradgrad Hk+2
Γt

(Ω),

Hk
T,Γt

(Div,Ω) = Hk+1
T,Γt

(Ω) + Rot Hk+1
S,Γt

(Ω),

Hk
T,Γt

(symRot,Ω) = Hk+1
T,Γt

(Ω) + devGrad Hk+1
Γt

(Ω),

Hk
S,Γt

(divDiv,Ω) = Hk+2
S,Γt

(Ω) + symRot Hk+1
T,Γt

(Ω)
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PAULY and SCHOMBURG

and, for k ≥ 1, the nonstandard bounded regular decompositions

Hk
S,Γt

(divDiv,Ω) ⊂ Hk,k−1
S,Γt

(divDiv,Ω) = Hk+1
S,Γt

(Ω) + symRot Hk+1
T,Γt

(Ω)

hold with bounded linear regular decomposition operators

k,1
TRotS,Γt

∶ Hk
S,Γt

(Rot,Ω) → Hk+1
S,Γt

(Ω), k,0
TRotS,Γt

∶ Hk
S,Γt

(Rot,Ω) → Hk+2
Γt

(Ω),

k,1
DivT,Γt

∶ Hk
T,Γt

(Div,Ω) → Hk+1
T,Γt

(Ω), k,0
DivT,Γt

∶ Hk
T,Γt

(Div,Ω) → Hk+1
S,Γt

(Ω),

k,1
SRotT,Γt

∶ Hk
T,Γt

(symRot,Ω) → Hk+1
T,Γt

(Ω), k,0
SRotT,Γt

∶ Hk
T,Γt

(symRot,Ω) → Hk+1
Γt

(Ω),

k,1
divDivS,Γt

∶ Hk
S,Γt

(divDiv,Ω) → Hk+2
S,Γt

(Ω), k,0
divDivS,Γt

∶ Hk
S,Γt

(divDiv,Ω) → Hk+1
T,Γt

(Ω),

k,k−1,1
divDivS,Γt

∶ Hk,k−1
S,Γt

(divDiv,Ω) → Hk+1
S,Γt

(Ω), k,k−1,0
divDivS,Γt

∶ Hk,k−1
S,Γt

(divDiv,Ω) → Hk+1
T,Γt

(Ω)

satisfying

k,1
TRotS,Γt

+ Gradgrad k,0
TRotS,Γt

= idHk
S,Γt

(Rot,Ω),

k,1
DivT,Γt

+ Rot k,0
DivT,Γt

= idHk
T,Γt

(Div,Ω),

k,1
SRotT,Γt

+ devGrad k,0
SRotT,Γt

= idHk
T,Γt

(symRot,Ω),

k,1
divDivS,Γt

+ symRot k,0
divDivS,Γt

= idHk
S,Γt

(divDiv,Ω),

k,k−1,1
divDivS,Γt

+ symRot k,k−1,0
divDivS,Γt

= idHk,k−1
S,Γt

(divDiv,Ω), k ≥ 1.

It holds Rot k,1
TRotS,Γ t

=TRotk
S,Γt

, Divk,1
DivT,Γ t

= Divk
T,Γt

, and symRot k,1
SRotT,Γ t

=SRotk
T,Γt

and thus Hk
S,Γ t ,0

(Rot,Ω),
Hk

T,Γ t ,0
(Div,Ω), and Hk

T,Γ t ,0
(symRot,Ω) are invariant underk,1

TRotS,Γ t
,k,1

DivT,Γ t
, andk,1

SRotT,Γ t
, respectively. Analogously, we

have divDivk,1
divDivS,Γ t

= divDivk
S,Γt

and divDivk,k−1,1
divDivS,Γ t

= divDivk,k−1
S,Γt

and thus Hk
S,Γ t ,0

(divDiv,Ω) is invariant under
k,1

divDivS,Γ t
and k,k−1,1

divDivS,Γ t
, respectively.

Corollary 3.6 and (7) are generalised to the following important result.

Corollary 3.11. (Weak and strong partial boundary conditions coincide). Let k ≥ 0. Weak and strong boundary
conditions coincide, that is,

Hk
Γt
(Gradgrad,Ω) = Hk

Γt
(Gradgrad,Ω) = Hk+2

Γt
(Ω) = Hk+2

Γt
(Ω),

Hk,k−1
Γt

(Gradgrad,Ω) = Hk,k−1
Γt

(Gradgrad,Ω) = Hk+1
Γt

(Ω) = Hk+1
Γt

(Ω), k ≥ 1,

Hk
S,Γt

(Rot,Ω) = Hk
S,Γt

(Rot,Ω),

Hk
T,Γt

(Div,Ω) = Hk
T,Γt

(Div,Ω),

Hk
Γt
(devGrad,Ω) = Hk

Γt
(devGrad,Ω) = Hk+1

Γt
(Ω) = Hk+1

Γt
(Ω),

Hk
T,Γt

(symRot,Ω) = Hk
T,Γt

(symRot,Ω),

Hk
S,Γt

(divDiv,Ω) = Hk
S,Γt

(divDiv,Ω),

Hk,k−1
S,Γt

(divDiv,Ω) = Hk,k−1
S,Γt

(divDiv,Ω), k ≥ 1.

In particular, we have SGradgradk
Γt
=SGradgradk

Γt
, TRotk

S,Γt
=TRotk

S,Γt
, Divk

T,Γt
= Divk

T,Γt
, TGradk

Γt
=TGradk

Γt
, SRotk

T,Γt

=SRotk
T,Γt

, divDivk
S,Γt

= divDivk
S,Γt

, as well as, for k ≥ 1, SGradgradk,k−1
Γt

=SGradgradk,k−1
Γt

and divDivk,k−1
S,Γt

= divDivk,k−1
S,Γt

.

For a detailed proof of Lemma 3.10 and Corollary 3.11, see Appendix C.
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PAULY and SCHOMBURG

3.2 Mini FA-ToolBox
3.2.1 Zero order mini FA-ToolBox
Recall Section 2.6 and let 𝜀, 𝜇 be admissible. In Section 2.1 (for 𝜀 = 𝜇 = id), we have seen that the densely defined and
closed linear operators

A−1 = 𝜄P1
Γt
∶ P

1
Γt
→ L2(Ω); p → p,

A0 = SGradgradΓt ∶ H2
Γt
(Ω) ⊂ L2(Ω) → L2

S,𝜀(Ω); u → Gradgrad u,

A1 = 𝜇−1
TRotS,Γt ∶ H

S,Γt
(Rot,Ω) ⊂ L2

S,𝜀(Ω) → L2
T,𝜇(Ω); S → 𝜇−1Rot S,

A2 = DivT,Γt𝜇 ∶ 𝜇−1H
T,Γt

(Div,Ω) ⊂ L2
T,𝜇(Ω) → L2(Ω); T → Div 𝜇T,

A3 = 𝜄∗
RTΓn

∶ L2(Ω) → RTΓn ; q → 𝜋RTΓn
q,

A∗
−1 = 𝜄∗

P
1
Γt

∶ L2(Ω) → P
1
Γt
; p → 𝜋P1

Γt
p,

A∗
0 = divDivS,Γn𝜀 ∶ 𝜀−1H

S,Γn
(divDiv,Ω) ⊂ L2

S,𝜀(Ω) → L2(Ω); S → divDiv 𝜀S,

A∗
1 = 𝜀−1

SRotT,Γn ∶ H
T,Γn

(symRot,Ω) ⊂ L2
T,𝜇(Ω) → L2

S,𝜀(Ω); T → 𝜀−1symRot T,

A∗
2 = −TGradΓn ∶ H1

Γn
(Ω) ⊂ L2(Ω) → L2

T,𝜇(Ω); v → −devGrad v,

A∗
3 = 𝜄RTΓn

∶ RTΓn → L2(Ω); q → q,

where we have used Corollary 3.11, build the long primal and dual elasticity Hilbert complex

and compare (5). Note that

𝜄P1
Γt

A∗
−1 = 𝜄P1

Γt
𝜄∗
P

1
Γt

= 𝜋P1
Γt
∶ L2(Ω) → L2(Ω),

𝜄RTΓn
A3 = 𝜄RTΓn

𝜄∗
RTΓn

= 𝜋RTΓn
∶ L2(Ω) → L2(Ω)

are the actual projectors onto P
1
Γt

and RTΓ n , respectively.

Theorem 3.12. (Compact embeddings). The embeddings

D(A1) ∩ D(A∗
0) = H

S,Γt
(Rot,Ω) ∩ 𝜀−1H

S,Γn
(divDiv,Ω) → L2

S,𝜀(Ω),

D(A2) ∩ D(A∗
1) = 𝜇−1H

T,Γt
(Div,Ω) ∩ H

T,Γn
(symRot,Ω) → L2

T,𝜇(Ω)

are compact. Moreover, the compactness does not depend on 𝜀 or 𝜇.

See Appendix C for a proof.

Remark 3.13. (Compact embeddings). The embeddings

D(A0) ∩ D(A∗
−1) = D(A0) = H2

Γt
(Ω) → L2(Ω), D(A3) ∩ D(A∗

2) = D(A∗
2) = H1

Γn
(Ω) → L2(Ω)

are compact by Rellich's selection theorem.

Theorem 3.14. (Compact biharmonic complex). The long primal and dual biharmonic Hilbert complex (8) is compact.
In particular, the complex is closed.
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PAULY and SCHOMBURG

Let us recall for the densely defined and closed linear operators

An ∶ D(An) ⊂ Hn → Hn+1, A∗
n ∶ D(A∗

n) ⊂ Hn+1 → Hn

the corresponding reduced operators

(An)⟂ ∶= An
|||N(An)

⟂Hn ∶ D ((An)⟂) = D(An) ∩ N(An)⟂Hn ⊂ N(An)⟂Hn → R(An),

(A∗
n)⟂ ∶= A∗

n|N(A∗
n)

⟂Hn+1 ∶ D ((A∗
n)⟂) = D(A∗

n) ∩ N(A∗
n)⟂Hn+1 ⊂ N(A∗

n)⟂Hn+1 → R(A∗
n).

Note that R(An) = R ((An)⟂) = N(A∗
n)

⟂Hn+1 and R(A∗
n) = R

(
(A∗

n)⟂
)
= N(An)⟂Hn . Here, we consider

(A0)⟂ =
(
SGradgradΓt

)
⟂, (A1)⟂ =

(
𝜇−1

TRotS,Γt

)
⟂, (A2)⟂ = (DivT,Γt𝜇)⟂,

(A∗
0)⟂ =

(
divDivS,Γn𝜀

)
⟂, (A∗

1)⟂ =
(
𝜀−1

SRotT,Γn

)
⟂, (A∗

2)⟂ = −
(
TGradΓn

)
⟂,

and

(A−1)⟂ =
(
𝜄P1

Γt

)
⟂
= idP

1
Γt
∶ P

1
Γt
→ P

1
Γt
,

(A∗
−1)⟂ ≅

(
𝜋P1

Γt

)
⟂
= 𝜋P1

Γt

|||P1
Γt
= idP

1
Γt
∶ P

1
Γt

→ P
1
Γt
,

(A3)⟂ ≅
(
𝜋RTΓn

)
⟂
= 𝜋RTΓn

||||RTΓn

= idRTΓn
∶ RTΓn → RTΓn ,

(A∗
3)⟂ =

(
𝜄RTΓn

)
⟂
= idRTΓn

∶ RTΓn → RTΓn .

Lemma 2.9 of [1] shows:

Theorem 3.15. (Mini FA-ToolBox). For the zero order biharmonic complex, it holds

(i) The ranges R
(
SGradgradΓt

)
, R
(
𝜇−1

TRotS,Γt

)
, and R(DivT,Γt𝜇) are closed.

(i') The ranges R
(
divDivS,Γn𝜀

)
, R
(
𝜀−1

SRotT,Γn

)
, and R

(
TGradΓn

)
are closed.

(ii) The inverse operators
(
SGradgradΓt

)−1
⟂ ,

(
𝜇−1

TRotS,Γt

)−1
⟂ , and (DivT,Γt𝜇)

−1
⟂ are compact.

(ii) The inverse operators
(
divDivS,Γn𝜀

)−1
⟂ ,

(
𝜀−1

SRotT,Γn

)−1
⟂ , and

(
TGradΓn

)−1
⟂ are compact.

(iii) The cohomology groups of generalised Dirichlet/Neumann tensor fields S,Γ t ,Γ n,𝜀(Ω) and T,Γ n,Γ t ,𝜇(Ω) Are
finite-dimensional. Moreover, the dimensions do not depend on 𝜀 or 𝜇.

(iv) The orthonormal Helmholtz type decompositions

L2
S,𝜀(Ω) = R

(
SGradgradΓt

)
⊕L2

S,𝜀(Ω)
N
(
divDivS,Γn𝜀

)
= N

(
𝜇−1

TRotS,Γt

)
⊕L2

S,𝜀(Ω)
R
(
𝜀−1

SRotT,Γn

)
= R

(
SGradgradΓt

)
⊕L2

S,𝜀(Ω)


S,Γt ,Γn,𝜀
(Ω)⊕L2

S,𝜀(Ω)
R
(
𝜀−1

SRotT,Γn

)
,

L2
T,𝜇(Ω) = R

(
TGradΓn

)
⊕L2

T,𝜇(Ω)
N(DivT,Γt𝜇)

= N
(
𝜀−1

SRotT,Γn

)
⊕L2

T,𝜇(Ω)
R
(
𝜇−1

TRotS,Γt

)
= R

(
TGradΓn

)
⊕L2

T,𝜇(Ω)


T,Γn,Γt ,𝜇
(Ω)⊕L2

T,𝜇(Ω)
R
(
𝜇−1

TRotS,Γt

)
hold.
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PAULY and SCHOMBURG

(v) There exist (optimal) c0, c1, c2 > 0 such that the Friedrichs/Poincaré type estimates

∀u ∈ H2
Γt
(Ω) ∩

(
P

1
Γt

)⟂L2(Ω) |u|L2(Ω) ≤ c0 |Gradgrad u| L2
S,𝜀(Ω)

,

∀S ∈ 𝜀−1HS,Γn (divDiv,Ω) ∩ R
(
SGradgradΓt

) |S|L2
S,𝜀(Ω)

≤ c0 |divDiv 𝜀S| L2(Ω),

∀S ∈ HS,Γt (Rot,Ω) ∩ R
(
𝜀−1
S

RotT,Γn

) |S|L2
S,𝜀(Ω)

≤ c1 ||𝜇−1Rot S|| L2
T,𝜇(Ω)

,

∀T ∈ HT,Γn (symRot,Ω) ∩ R
(
𝜇−1

TRotS,Γt

) |T|L2
T,𝜇(Ω)

≤ c1 ||𝜀−1symRot T|| L2
S,𝜀(Ω)

,

∀T ∈ 𝜇−1HT,Γt (Div,Ω) ∩ R
(
TGradΓn

) |T|L2
T,𝜇(Ω)

≤ c2 |Div 𝜇T| L2(Ω),

∀v ∈ H1
Γn
(Ω) ∩

(
RTΓn

)⟂L2 (Ω) |v|L2(Ω) ≤ c2 |devGrad v| L2
T,𝜇(Ω)

hold.
(vi) For all S ∈ H

S,Γ t
(Rot,Ω) ∩ 𝜀−1H

S,Γ n
(divDiv,Ω) ∩

S,Γ t ,Γ n,𝜀
(Ω)

⟂L2
S,𝜀

(Ω) , it holds

|S|2
L2
S,𝜀(Ω)

≤ c2
1
||𝜇−1Rot S||2L2

T,𝜇(Ω)
+ c2

0 |divDiv 𝜀S|2
L2(Ω)

.

(vi') For all T ∈ H
T,Γ n

(symRot,Ω) ∩ 𝜇−1H
T,Γ t

(Div,Ω) ∩
T,Γ n,Γ t ,𝜇

(Ω)
⟂L2

T,𝜇
(Ω) , it holds

|T|2
L2
T,𝜇(Ω)

≤ c2
1
||𝜀−1symRot T||2L2

S,𝜀(Ω)
+ c2

2 |Div 𝜇T|2
L2(Ω)

.

(vii) 
S,Γ t ,Γ n,𝜀

(Ω) = {0} and 
T,Γ n,Γ t ,𝜇

(Ω) = {0}, if (Ω,Γ t) is extendable.

3.2.2 Higher order mini FA-ToolBox
For simplicity, let 𝜀 = 𝜇 = id. From Section 2.5, we recall the densely defined and closed higher Sobolev order operators

SGradgradk
Γt
∶ Hk+2

Γt
(Ω) ⊂ Hk

Γt
(Ω) → Hk

S,Γt
(Ω),

SGradgradk,k−1
Γt

∶ Hk+1
Γt

(Ω) ⊂ Hk
Γt
(Ω) → Hk−1

S,Γt
(Ω), k ≥ 1,

TRotk
S,Γt

, ∶ Hk
S,Γt

(Rot,Ω) ⊂ Hk
S,Γt

(Ω) → Hk
T,Γt

(Ω),

Divk
T,Γt

∶ Hk
T,Γt

(Div,Ω) ⊂ Hk
T,Γt

(Ω) → Hk
Γt
(Ω),

TGradk
Γn

∶ Hk+1
Γn

(Ω) ⊂ Hk
Γn
(Ω) → Hk

T,Γn
(Ω),

SRotk
T,Γn

∶ Hk
T,Γn

(symRot,Ω) ⊂ Hk
T,Γn

(Ω) → Hk
S,Γn

(Ω),

divDivk
S,Γn

∶ Hk
S,Γn

(divDiv,Ω) ⊂ Hk
S,Γn

(Ω) → Hk
Γn
(Ω),

divDivk,k−1
S,Γn

∶ Hk,k−1
S,Γn

(divDiv,Ω) ⊂ Hk
S,Γn

(Ω) → Hk−1
Γn

(Ω), k ≥ 1,

(9)

building the long biharmonic Hilbert complexes
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PAULY and SCHOMBURG

We start with regular representations implied by Lemma 3.10 and Corollary 3.11.

Theorem 3.16. (Regular representations and closed ranges). Let k ≥ 0. Then the regular potential representations

R
(
SGradgradk+1,k

Γt

)
= R

(
SGradgradk

Γt

)
= Gradgrad Hk

Γt
(Gradgrad,Ω) = Gradgrad Hk+2

Γt
(Ω)

= Gradgrad Hk+1,k
Γt

(Gradgrad,Ω)

= Hk
S,Γt

(Ω) ∩ R
(
SGradgradΓt

)
= Hk

S,Γt
(Ω) ∩ H

S,Γt ,0
(Rot,Ω) ∩

S,Γt ,Γn,𝜀
(Ω)

⟂L2
S,𝜀

(Ω)

= Hk
S,Γt ,0

(Rot,Ω) ∩
S,Γt ,Γn,𝜀

(Ω)
⟂L2

S,𝜀
(Ω) ,

R
(
TRotk

S,Γt

)
= Rot Hk

S,Γt
(Rot,Ω) = Rot Hk+1

S,Γt
(Ω)

= Hk
T,Γt

(Ω) ∩ R(TRotS,Γt )

= Hk
T,Γt

(Ω) ∩ H
T,Γt ,0

(Div,Ω) ∩
T,Γn,Γt ,𝜇

(Ω)⟂L2
T
(Ω)

= Hk
T,Γt ,0

(Div,Ω) ∩
T,Γn,Γt ,𝜇

(Ω)⟂L2
T
(Ω) ,

R
(

Divk
T,Γt

)
= DivHk

T,Γt
(Div,Ω) = Div Hk+1

T,Γt
(Ω)

= Hk
Γt
(Ω) ∩ R(DivT,Γt ) = Hk

Γt
(Ω) ∩

(
RTΓn

)⟂L2(Ω) ,

R
(
TGradk

Γt

)
= devGrad Hk

Γt
(devGrad,Ω) = devGrad Hk+1

Γt
(Ω)

= Hk
T,Γt

(Ω) ∩ R
(
TGradΓt

)
= Hk

T,Γt
(Ω) ∩ H

T,Γt ,0
(symRot,Ω) ∩

T,Γt ,Γn,𝜇
(Ω)

⟂L2
T,𝜇

(Ω)

= Hk
T,Γt ,0

(symRot,Ω) ∩
T,Γt ,Γn,𝜇

(Ω)
⟂L2

T,𝜇
(Ω) ,

R
(
SRotk

T,Γt

)
= symRot Hk

T,Γt
(symRot,Ω) = symRot Hk+1

T,Γt
(Ω)

= Hk
S,Γt

(Ω) ∩ R
(
SRotT,Γt

)
= Hk

S,Γt
(Ω) ∩ H

S,Γt ,0
(divDiv,Ω) ∩

S,Γn,Γt ,𝜀
(Ω)⟂L2

S
(Ω)

= Hk
S,Γt ,0

(divDiv,Ω) ∩
S,Γn,Γt ,𝜀

(Ω)⟂L2
S
(Ω) ,

R
(

divDivk+1,k
S,Γt

)
= R

(
divDivk

S,Γt

)
= divDiv Hk

S,Γt
(divDiv,Ω) = divDiv Hk+2

S,Γt
(Ω)

= divDiv Hk+1,k
S,Γt

(divDiv,Ω)

= Hk
Γt
(Ω) ∩ R

(
divDivS,Γt

)
= Hk

Γt
(Ω) ∩

(
P

1
Γn

)⟂L2(Ω)

hold. In particular, the latter spaces are closed subspaces of Hk
S
(Ω), Hk

T
(Ω), and Hk(Ω), respectively, and all ranges of the

higher Sobolev order operators in (9) are closed. Moreover, the long biharmonic Hilbert complexes (10)–(13) are closed.

A proof is given in Appendix C. Note that in Theorem 3.16 we claim nothing about bounded regular potential operators,
leaving the question of bounded potentials to the next sections (cf. Theorem 3.24).
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PAULY and SCHOMBURG

The reduced operators corresponding to (9) are

(
SGradgradk

Γt

)
⟂
∶ D

((
SGradgradk

Γt

)
⟂

)
⊂
(
P

1
Γt

)⟂
Hk
Γt

(Ω)
→ R

(
SGradgradk

Γt

)
,(

SGradgradk,k−1
Γt

)
⟂
∶ D

((
SGradgradk,k−1

Γt

)
⟂

)
⊂
(
P

1
Γt

)⟂
Hk
Γt

(Ω)
→ R

(
SGradgradk−1

Γt

)
, k ≥ 1,(

TRotk
S,Γt

)
⟂
∶ D

((
TRotk

S,Γt

)
⟂

)
⊂ N

(
TRotk

S,Γt

)⟂
Hk
S,Γt

(Ω)
→ R

(
TRotk

S,Γt

)
,(

Divk
T,Γt

)
⟂
∶ D

((
Divk

T,Γt

)
⟂

)
⊂ N

(
Divk

T,Γt

)⟂
Hk
T,Γt

(Ω)
→ R

(
Divk

T,Γt

)
,(

TGradk
Γn

)
⟂
∶ D

((
TGradk

Γn

)
⟂

)
⊂
(
RTΓn

)⟂Hk
Γn

(Ω) → R
(
TGradk

Γn

)
,(

SRotk
T,Γn

)
⟂
∶ D

((
SRotk

T,Γn

)
⟂

)
⊂ N

(
SRotk

T,Γn

)⟂
Hk
T,Γn

(Ω)
→ R

(
SRotk

T,Γn

)
,(

divDivk
S,Γn

)
⟂
∶ D

((
divDivk

S,Γn

)
⟂

)
⊂ N

(
divDivk

S,Γn

)⟂
Hk
S,Γn

(Ω)
→ R

(
divDivk

S,Γn

)
,(

divDivk,k−1
S,Γn

)
⟂
∶ D

((
divDivk,k−1

S,Γn

)
⟂

)
⊂ N

(
divDivk

S,Γn

)⟂
Hk
S,Γn

(Ω)
→ R(divDivk−1

S,Γn
), k ≥ 1.

Lemma 2.1 of [1] and Theorem 3.16 yield the following:

Theorem 3.17. (Closed ranges and bounded inverse operators). Let k ≥ 0. Then,

(i) R
((

SGradgradk
Γt

)
⟂

)
= R

(
SGradgradk

Γt

)
= R

(
SGradgradk+1,k

Γt

)
= R

((
SGradgradk+1,k

Γt

)
⟂

)
are closed, and

equivalently, the inverse operators

(
SGradgradk

Γt

)−1

⟂
∶ R

(
SGradgradk

Γt

)
→ D

((
SGradgradk

Γt

)
⟂

)
resp.

(
SGradgradk

Γt

)−1

⟂
∶ R

(
SGradgradk

Γt

)
→ D

(
SGradgradk

Γt

)
,(

SGradgradk+1,k
Γt

)−1

⟂
∶ R

(
SGradgradk

Γt

)
→ D

((
SGradgradk+1,k

Γt

)
⟂

)
resp.

(
SGradgradk+1,k

Γt

)−1

⟂
∶ R

(
SGradgradk

Γt

)
→ D

(
SGradgradk+1,k

Γt

)
are bounded. Equivalently, there is c > 0 such that for all u ∈ D

((
SGradgradk

Γt

)
⟂

)
resp. u ∈

D
((

SGradgradk+1,k
Γt

)
⟂

)
|u|Hk(Ω) ≤ c |Gradgrad u| Hk

S(Ω) resp. |u|Hk+1(Ω) ≤ c |Gradgrad u| Hk
S
(Ω).

(ii) R
(
TRotk

S,Γt

)
= R

((
TRotk

S,Γt

)
⟂

)
are closed, and equivalently, the inverse operator

(
TRotk

S,Γt

)−1

⟂
∶ R

(
TRotk

S,Γt

)
→ D

((
TRotk

S,Γt

)
⟂

)
resp.

(
TRotk

S,Γt

)−1

⟂
∶ R

(
TRotk

S,Γt

)
→ D

(
TRotk

S,Γt

)
is bounded. Equivalently, there is c > 0 such that for all S ∈ D

((
TRotk

S,Γt

)
⟂

)
|S|Hk

S
(Ω) ≤ c |Rot S| Hk

T
(Ω).
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PAULY and SCHOMBURG

(iii) R
(

Divk
T,Γt

)
= R

((
Divk

T,Γt

)
⟂

)
are closed, and equivalently, the inverse operator

(
Divk

T,Γt

)−1

⟂
∶ R

(
Divk

T,Γt

)
→ D

((
Divk

T,Γt

)
⟂

)
resp.

(
Divk

T,Γt

)−1

⟂
∶ R

(
Divk

T,Γt

)
→ D

(
Divk

T,Γt

)
is bounded. Equivalently, there is c > 0 such that for all T ∈ D

((
Divk

T,Γt

)
⟂

)
|T|Hk

T
(Ω) ≤ c |Div T| Hk(Ω).

(iv) R
(
TGradk

Γt

)
= R

((
TGradk

Γt

)
⟂

)
are closed, and equivalently, the inverse operator

(
TGradk

Γt

)−1

⟂
∶ R

(
TGradk

Γt

)
→ D

((
TGradk

Γt

)
⟂

)
resp.

(
TGradk

Γt

)−1

⟂
∶ R

(
TGradk

Γt

)
→ D

(
TGradk

Γt

)
is bounded. Equivalently, there is c > 0 such that for all v ∈ D

((
TGradk

Γt

)
⟂

)
|v|Hk(Ω) ≤ c |devGrad v| Hk

T
(Ω).

(v) R
(
SRotk

T,Γt

)
= R

((
SRotk

T,Γt

)
⟂

)
are closed, and equivalently, the inverse operator

(
SRotk

T,Γt

)−1

⟂
∶ R

(
SRotk

T,Γt

)
→ D

((
SRotk

T,Γt

)
⟂

)
resp.

(
SRotk

T,Γt

)−1

⟂
∶ R

(
SRotk

T,Γt

)
→ D

(
SRotk

T,Γt

)
is bounded. Equivalently, there is c > 0 such that for all T ∈ D

((
SRotk

T,Γt

)
⟂

)
|T|Hk

T
(Ω) ≤ c |symRot T| Hk

S
(Ω).

(vi) R
((

divDivk
S,Γt

)
⟂

)
= R

(
divDivk

S,Γt

)
= R

(
divDivk+1,k

S,Γt

)
= R

((
divDivk+1,k

S,Γt

)
⟂

)
are closed, and equivalently, the

inverse operators (
divDivk

S,Γt

)−1

⟂
∶ R

(
divDivk

S,Γt

)
→ D

((
divDivk

S,Γt

)
⟂

)
resp.

(
divDivk

S,Γt

)−1

⟂
∶ R

(
divDivk

S,Γt

)
→ D

(
divDivk

S,Γt

)
,(

divDivk+1,k
S,Γt

)−1

⟂
∶ R

(
divDivk

S,Γt

)
→ D

((
divDivk+1,k

S,Γt

)
⟂

)
resp.

(
divDivk+1,k

S,Γt

)−1

⟂
∶ R

(
divDivk

S,Γt

)
→ D

(
divDivk+1,k

S,Γt

)
are bounded. Equivalently, there is c > 0 such that for all S ∈ D

((
divDivk

S,Γt

)
⟂

)
resp. S ∈ D

((
divDivk+1,k

S,Γt

)
⟂

)
|S|Hk

S
(Ω) ≤ c |divDiv S| Hk(Ω) resp. |S|Hk+1

S
(Ω) ≤ c |divDiv S| Hk(Ω).
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PAULY and SCHOMBURG

Lemma 3.18. (Schwarz' lemma). Let 0 ≤ |𝛼| ≤ k.

(i) If S ∈ Hk
S,Γ t

(Rot,Ω) then 𝜕𝛼S ∈ H
S,Γ t

(Rot,Ω) and Rot𝜕𝛼S = 𝜕𝛼Rot S.
(ii) If T ∈ Hk

T,Γ t
(Div,Ω) then 𝜕𝛼T ∈ H

T,Γ t
(Div,Ω) and Div𝜕𝛼T = 𝜕𝛼Div T.

(iii) If T ∈ Hk
T,Γ t

(symRot,Ω) then 𝜕𝛼T ∈ H
T,Γ t

(symRot,Ω) and symRot𝜕𝛼T = 𝜕𝛼symRot T.
(iv) If S ∈ Hk

S,Γ t
(divDiv,Ω) resp. S ∈ Hk+1,k

S,Γ t
(divDiv,Ω) then 𝜕𝛼S ∈ H

S,Γ t
(divDiv,Ω) resp. 𝜕𝛼S ∈ H1,0

S,Γ t
(divDiv,Ω) and

divDiv𝜕𝛼S = 𝜕𝛼divDiv S.

Theorem 3.19. (Compact embedding). Let k ≥ 0. Then the embeddings

Hk
S,Γt

(Rot,Ω) ∩ Hk
S,Γn

(divDiv,Ω) → Hk
S
,Γ(Ω),

Hk
T,Γt

(Div,Ω) ∩ Hk
T,Γn

(symRot,Ω) → Hk
T
,Γ(Ω)

are compact.

A proof is given in Appendix C.

Remark 3.20. (Compact embedding). For k ≥ 1 (cf. [3, Remark 4.12]), there is another and slightly more general proof
of the first compact embedding using a variant of [1, Lemma 2.22] (cf. [2, Theorem 3.19, Remark 3.20]); see Appendix
C for a proof. It utilises the decomposition Hk,k−1

S,Γ n
(divDiv,Ω) = Hk+1

S,Γ n
(Ω) + symRot Hk+1

T,Γ n
(Ω) from Lemma 3.10 and

leads immediately to the next (stronger) result.

Theorem 3.21. (Compact embedding). Let k ≥ 1. Then the embedding

Hk
S,Γt

(Rot,Ω) ∩ Hk,k−1
S,Γn

(divDiv,Ω) → Hk
S,Γ(Ω)

is compact.

Theorem 3.22. (Friedrichs/Poincaré type estimate). Let k ≥ 0. Then there exists c > 0 such that for all

S ∈ Hk
S,Γt

(Rot,Ω) ∩ Hk
S,Γn

(divDiv,Ω) ∩
S,Γt ,Γn,id

(Ω)⟂L2
S
(Ω) ,

T ∈ Hk
T,Γt

(symRot,Ω) ∩ Hk
T,Γn

(Div,Ω) ∩
T,Γt ,Γn,id

(Ω)⟂L2
T
(Ω) ,

it holds

|S|Hk
S
(Ω) ≤ c

(|Rot S| Hk
T
(Ω) + |divDiv S| Hk(Ω)

)
,

|T|Hk
T
(Ω) ≤ c

(|symRot T| Hk
S
(Ω) + |Div T| Hk(Ω)

)
,

respectively. The orthogonality condition 
S,Γ t ,Γ n,id

(Ω)⟂L2
S
(Ω) and 

T,Γ t ,Γ n,id
(Ω)⟂L2

T
(Ω) can be replaced by the weaker condi-

tions k
S,Γ t ,Γ n,id

(Ω)⟂L2
S
(Ω) or k

S,Γ t ,Γ n,id
(Ω)

⟂
Hk
S
(Ω) and k

T,Γ t ,Γ n,id
(Ω)⟂L2

T
(Ω) or k

T,Γ t ,Γ n,id
(Ω)

⟂
Hk
T
(Ω) , respectively. In particular,

∀S ∈ Hk
S,Γt

(Rot,Ω) ∩ R
(
SRotk

T,Γn

) |S|Hk
S
(Ω) ≤ c |Rot S| Hk

T
(Ω),

∀S ∈ Hk
S,Γn

(divDiv,Ω) ∩ R
(
SGradgradk

Γt

) |S|Hk
S
(Ω) ≤ c |divDiv S| Hk(Ω),

∀T ∈ Hk
T,Γt

(symRot,Ω) ∩ R
(
TRotk

S,Γn

) |T|Hk
T
(Ω) ≤ c |symRot T| Hk

S
(Ω),

∀T ∈ Hk
T,Γn

(Div,Ω) ∩ R
(
TGradk

Γt

) |T|Hk
T
(Ω) ≤ c |Div T| Hk(Ω)
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PAULY and SCHOMBURG

with

R
(
SRotk

T,Γn

)
= Hk

S,Γn,0
(divDiv,Ω) ∩

S,Γt ,Γn,id
(Ω)⟂L2

S
(Ω) ,

R
(
SGradgradk+1,k

Γt

)
= R

(
SGradgradk

Γt

)
= Hk

S,Γt ,0
(Rot,Ω) ∩

S,Γt ,Γn,id
(Ω)⟂L2

S
(Ω) ,

R
(
TRotk

S,Γn

)
= Hk

T,Γn,0
(Div,Ω) ∩

T,Γt ,Γn,id
(Ω)⟂L2

T
(Ω) ,

R
(
TGradk

Γt

)
= Hk

T,Γt ,0
(symRot,Ω) ∩

T,Γt ,Γn,id
(Ω)⟂L2

T
(Ω) .

Analogously, for k ≥ 1, there exists c > 0 such that

|S|Hk
S
(Ω) ≤ c

(|Rot S| Hk
T
(Ω) + |divDiv S| Hk−1(Ω)

)

for all S in Hk
S,Γ t

(Rot,Ω) ∩ Hk,k−1
S,Γ n

(divDiv,Ω) ∩
S,Γ t ,Γ n,id

(Ω)⟂L2
S
(Ω) . Moreover,

∀S ∈ Hk,k−1
S,Γn

(divDiv,Ω) ∩ R
(
SGradgradk

Γt

) |S|Hk
S
(Ω) ≤ c |divDiv S| Hk−1(Ω).

The proof follows by a standard contradiction argument.

Remark 3.23. (Friedrichs/Poincaré/Korn type estimate). Let k ≥ 0. Similar to Theorem 3.22 and by Rellich's selection
theorem (cf. the estimates in Theorem 3.17), there exists c > 0 such that for all v ∈ Hk+1

Γ t
(Ω) ∩

(
RTΓ t

)⟂L2(Ω) and for all

u ∈ Hk+2
Γ t

(Ω) ∩
(
P

1
Γt

)⟂L2(Ω)

|v|Hk(Ω) ≤ c |devGrad v| Hk
T
(Ω), |u|Hk(Ω) ≤ |u|Hk+1(Ω) ≤ c |Gradgrad u| Hk

S
(Ω).

As in Theorem 3.17,
(
RTΓ t

)⟂L2(Ω) and
(
P

1
Γt

)⟂L2(Ω) can be replaced by
(
RTΓ t

)⟂Hk
Γ t

(Ω) and
(
P

1
Γt

)⟂
Hk
Γ t

(Ω) , respectively.

3.3 Regular potentials and decompositions II
Let k ≥ 0. According to Theorem 3.17, the inverses of the reduced operators

(
SGradgradk

Γt

)−1

⟂
∶ R

(
SGradgradk

Γt

)
→ D

(
SGradgradk

Γt

)
= Hk+2

Γt
(Ω),(

SGradgradk+1,k
Γt

)−1

⟂
∶ R

(
SGradgradk

Γt

)
→ D

(
SGradgradk+1,k

Γt

)
= Hk+2

Γt
(Ω),(

TRotk
S,Γt

)−1

⟂
∶ R

(
TRotk

S,Γt

)
→ D

(
TRotk

S,Γt

)
= Hk

S,Γt
(Rot,Ω),(

Divk
T,Γt

)−1

⟂
∶ R

(
Divk

T,Γt

)
→ D

(
Divk

T,Γt

)
= Hk

T,Γt
(Div,Ω),(

TGradk
Γt

)−1

⟂
∶ R

(
TGradk

Γt

)
→ D

(
TGradk

Γt

)
= Hk+1

Γt
(Ω),(

SRotk
T,Γt

)−1

⟂
∶ R

(
SRotk

T,Γt

)
→ D

(
SRotk

T,Γt

)
= Hk

T,Γt
(symRot,Ω),(

divDivk
S,Γt

)−1

⟂
∶ R

(
divDivk

S,Γt

)
→ D

(
divDivk

S,Γt

)
= Hk

S,Γt
(divDiv,Ω),(

divDivk+1,k
S,Γt

)−1

⟂
∶ R

(
divDivk

S,Γt

)
→ D

(
divDivk+1,k

S,Γt

)
= Hk+1,k

S,Γt
(divDiv,Ω)
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PAULY and SCHOMBURG

are bounded, and we recall the bounded linear regular decomposition operators

k,1
TRotS,Γt

∶ Hk
S,Γt

(Rot,Ω) → Hk+1
S,Γt

(Ω), k,0
TRotS,Γt

∶ Hk
S,Γt

(Rot,Ω) → Hk+2
Γt

(Ω),

k,1
DivT,Γt

∶ Hk
T,Γt

(Div,Ω) → Hk+1
T,Γt

(Ω), k,0
DivT,Γt

∶ Hk
T,Γt

(Div,Ω) → Hk+1
S,Γt

(Ω),

k,1
SRotT,Γt

∶ Hk
T,Γt

(symRot,Ω) → Hk+1
T,Γt

(Ω), k,0
SRotT,Γt

∶ Hk
T,Γt

(symRot,Ω) → Hk+1
Γt

(Ω),

k,1
divDivS,Γt

∶ Hk
S,Γt

(divDiv,Ω) → Hk+2
S,Γt

(Ω), k,0
divDivS,Γt

∶ Hk
S,Γt

(divDiv,Ω) → Hk+1
T,Γt

(Ω),

k+1,k,1
divDivS,Γt

∶ Hk+1,k
S,Γt

(divDiv,Ω) → Hk+2
S,Γt

(Ω), k+1,k,0
divDivS,Γt

∶ Hk+1,k
S,Γt

(divDiv,Ω) → Hk+2
T,Γt

(Ω)

from Lemma 3.10. Similar to [1, Theorem 4.18, Theorem 5.2] and [2, Theorem 3.24, Theorem 3.25] (cf. [1, Lemma 2.22,
Theorem 2.23]), we obtain the following sequence of results:

Theorem 3.24. (Bounded regular potentials from bounded regular decompositions). For k ≥ 0, there exist bounded
linear regular potential operators

k
SGradgrad,Γt

∶=
(
SGradgradk

Γt

)−1

⟂
∶ Hk

S,Γt ,0
(Rot,Ω) ∩

S,Γt ,Γn,𝜀
(Ω)

⟂L2
S,𝜀

(Ω) → Hk+2
Γt

(Ω),

k+1,k
SGradgrad,Γt

∶=
(
SGradgradk+1,k

Γt

)−1

⟂
∶ Hk

S,Γt ,0
(Rot,Ω) ∩

S,Γt ,Γn,𝜀
(Ω)

⟂L2
S,𝜀

(Ω) → Hk+2
Γt

(Ω),

k
T

RotS ,Γt
∶= k,1

T
RotS ,Γt

(
TRotk

S,Γt

)−1

⟂
∶ Hk

T,Γt ,0
(Div,Ω) ∩

T,Γn,Γt ,𝜇
(Ω)⟂L2

T
(Ω) → Hk+1

S,Γt
(Ω),

k
DivT,Γt

∶= k,1
DivT,Γt

(
Divk

T,Γt

)−1

⟂
∶ Hk

Γt
(Ω) ∩

(
RTΓn

)⟂L2(Ω) → Hk+1
T,Γt

(Ω),

k
TGrad,Γt

∶= (TGradk
Γt
)−1
⟂ ∶ Hk

T,Γt ,0
(symRot,Ω) ∩

T,Γt ,Γn,𝜇
(Ω)

⟂L2
T,𝜇

(Ω) → Hk+1
Γt

(Ω),

k
SRotT,Γt

∶= k,1
SRotT,Γt

(
SRotk

T,Γt

)−1

⟂
∶ Hk

S,Γt ,0
(divDiv,Ω) ∩

S,Γn,Γt ,𝜀
(Ω)⟂L2

S
(Ω) → Hk+1

T,Γt
(Ω),

k
divDivS,Γt

∶= k,1
divDivS,Γt

(
divDivk

S,Γt

)−1

⟂
∶ Hk

Γt
(Ω) ∩

(
P

1
Γn

)⟂L2(Ω) → Hk+2
S,Γt

(Ω),

k+1,k
divDivS,Γt

∶= k+1,k,1
divDivS,Γt

(
divDivk+1,k

S,Γt

)−1

⟂
∶ Hk

Γt
(Ω) ∩

(
P

1
Γn

)⟂L2(Ω) → Hk+2
S,Γt

(Ω),

such that

Gradgrad k+1,k
SGradgrad,Γt

= Gradgrad k
SGradgrad,Γt

= id|
Hk

S,Γt ,0
(Rot,Ω)∩

S,Γt ,Γn ,𝜀
(Ω)

⟂
L2
S,𝜀

(Ω) ,

Rot k
T

RotS ,Γt
= id|

Hk
T,Γt ,0

(Div,Ω)∩
T,Γn ,Γt ,𝜇

(Ω)
⟂

L2
T
(Ω) ,

Div k
DivT,Γt

= id|
Hk

Γt
(Ω)∩(RTΓn)

⟂
L2 (Ω) ,

devGrad k
TGrad,Γt

= id|
Hk

T,Γt ,0
(symRot,Ω)∩

T,Γt ,Γn ,𝜇
(Ω)

⟂
L2
T,𝜇

(Ω) ,

symRot k
SRotT,Γt

= id|
Hk

S,Γt ,0
(divDiv,Ω)∩

S,Γn ,Γt ,𝜀
(Ω)

⟂
L2
S
(Ω) ,

divDiv k+1,k
divDivS,Γt

= divDiv k
divDivS,Γt

= id|
Hk

Γt
(Ω)∩(P1

Γn)
⟂

L2(Ω) .

In particular, all potentials in Theorem 3.16 can be chosen such that they depend continuously on the
data. k+1,k

SGradgrad,Γ t
, k

SGradgrad,Γ t
, k

SRotT,Γ t
, k

DivT,Γ t
, k

TGrad,Γ t
, k

T
RotS ,Γ t

, k
divDivS,Γ t

, and k+1,k
divDivS,Γ t

are right inverses of
Gradgrad, Rot, Div, devGrad, symRot, and divDiv, respectively.
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PAULY and SCHOMBURG

Theorem 3.25. (Bounded regular decompositions from bounded regular potentials). For k ≥ 0, the bounded regular
decompositions

Hk
S,Γt

(Rot,Ω) = Hk+1
S,Γt

(Ω) + Hk
S,Γt ,0

(Rot,Ω) = Hk+1
S,Γt

(Ω) + Gradgrad Hk+2
Γt

(Ω)

= R
(
̃k,1

T
RotS ,Γt

)
∔ Hk

S,Γt ,0
(Rot,Ω)

= R
(
̃k,1

T
RotS ,Γt

)
∔ R

(
̃ k

T
RotS ,Γt

)
,

Hk
T,Γt

(Div,Ω) = Hk+1
T,Γt

(Ω) + Hk
T,Γt ,0

(Div,Ω) = Hk+1
T,Γt

(Ω) + Rot Hk+1
S,Γt

(Ω)

= R
(
̃k,1

DivT,Γt

)
∔ Hk

T,Γt ,0
(Div,Ω)

= R
(
̃k,1

DivT,Γt

)
∔ R

(
̃ k

DivT,Γt

)
,

Hk
T,Γt

(symRot,Ω) = Hk+1
T,Γt

(Ω) + Hk
T,Γt ,0

(symRot,Ω) = Hk+1
T,Γt

(Ω) + devGrad Hk+1
Γt

(Ω)

= R
(
̃k,1

SRotT,Γt

)
∔ Hk

T,Γt ,0
(symRot,Ω)

= R
(
̃k,1

SRotT,Γt

)
∔ R

(
̃ k

SRotT,Γt

)
,

Hk
S,Γt

(divDiv,Ω) = Hk+2
S,Γt

(Ω) + Hk
S,Γt ,0

(divDiv,Ω) = Hk+2
S,Γt

(Ω) + symRot Hk+1
T,Γt

(Ω)

= R
(
̃k,1

divDivS,Γt

)
∔ Hk

S,Γt ,0
(divDiv,Ω)

= R
(
̃k,1

divDivS,Γt

)
∔ R

(
̃ k

divDivS,Γt

)
,

Hk+1,k
S,Γt

(divDiv,Ω) = Hk+2
S,Γt

(Ω) + Hk+1
S,Γt ,0

(divDiv,Ω) = Hk+2
S,Γt

(Ω) + symRot Hk+2
T,Γt

(Ω)

= R
(
̃k+1,k,1

divDivS,Γt

)
∔ Hk+1

S,Γt ,0
(divDiv,Ω)

= R
(
̃k+1,k,1

divDivS,Γt

)
∔ R

(
̃ k+1,k

divDivS,Γt

)

hold with bounded linear regular decomposition operators

̃k,1
T

RotS ,Γt
∶= k

T
RotS ,Γt T

Rotk
S,Γt

, ∶ Hk
S,Γt

(Rot,Ω) → Hk+1
S,Γt

(Ω),

̃k,1
DivT,Γt

∶= k
DivT,Γt

Divk
T,Γt

∶ Hk
T,Γt

(Div,Ω) → Hk+1
T,Γt

(Ω),

̃k,1
SRotT,Γt

∶= k
SRotT,Γt

SRotk
T,Γt

∶ Hk
T,Γt

(symRot,Ω) → Hk+1
T,Γt

(Ω),

̃k,1
divDivS,Γt

∶= k
divDivS,Γt

divDivk
S,Γt

∶ Hk
S,Γt

(divDiv,Ω) → Hk+2
S,Γt

(Ω),

̃k+1,k,1
divDivS,Γt

∶= k+1,k
divDivS,Γt

divDivk+1,k
S,Γt

∶ Hk+1,k
S,Γt

(divDiv,Ω) → Hk+2
S,Γt

(Ω),

̃ k
T

RotS ,Γt
∶ Hk

S,Γt
(Rot,Ω) → Hk

S,Γt ,0
(Rot,Ω),

̃ k
DivT,Γt

∶ Hk
T,Γt

(Div,Ω) → Hk
T,Γt ,0

(Div,Ω),

̃ k
SRotT,Γt

∶ Hk
T,Γt

(symRot,Ω) → Hk
T,Γt ,0

(symRot,Ω),

̃ k
divDivS,Γt

∶ Hk
S,Γt

(divDiv,Ω) → Hk
S,Γt ,0

(divDiv,Ω),

̃ k+1,k
divDivS,Γt

∶ Hk+1,k
S,Γt

(divDiv,Ω) → Hk+1
S,Γt ,0

(divDiv,Ω)
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PAULY and SCHOMBURG

satisfying

idHk
S,Γt

(Rot,Ω) = ̃k,1
T

RotS ,Γt
+ ̃ k

T
RotS ,Γt

,

idHk
T,Γt

(Div,Ω) = ̃k,1
DivT,Γt

+ ̃ k
DivT,Γt

,

idHk
T,Γt

(symRot,Ω) = ̃k,1
SRotT,Γt

+ ̃ k
SRotT,Γt

,

idHk
S,Γt

(divDiv,Ω) = ̃k,1
divDivS,Γt

+ ̃ k
divDivS,Γt

,

idHk+1,k
S,Γt

(divDiv,Ω) = ̃k+1,k,1
divDivS,Γt

+ ̃ k+1,k
divDivS,Γt

.

Corollary 3.26. (Bounded regular kernel decompositions). For k ≥ 0, the bounded regular kernel decompositions

Hk
S,Γt ,0

(Rot,Ω) = Hk+1
S,Γt ,0

(Rot,Ω) + Gradgrad Hk+2
Γt

(Ω),

Hk
T,Γt ,0

(Div,Ω) = Hk+1
T,Γt ,0

(Div,Ω) + Rot Hk+1
S,Γt

(Ω),

Hk
T,Γt ,0

(symRotΩ) = Hk+1
T,Γt ,0

(symRot,Ω) + devGrad Hk+1
Γt

(Ω),

Hk
S,Γt ,0

(divDiv,Ω) = Hk+2
S,Γt ,0

(divDiv,Ω) + symRot Hk+1
T,Γt

(Ω)

hold.

As in [2, Remark 3.27, Theorem 3.28] and [1, Theorem 4.18, Remark 4.19, Theorem 5.2, Remark 5.3] (cf. [1, Sections 2.3
and 2.4]), there is a collection of results about the bounded regular decomposition operators; see Remark D.1 and Remark
D.2 of Appendix D.

Corollary 3.26 shows the following:

Corollary 3.27. (Bounded regular higher order kernel decompositions). For k,𝓁 ≥ 0, the bounded regular kernel
decompositions

N
(
TRotk

S,Γt

)
= Hk

S,Γt ,0
(Rot,Ω) = H𝓁

S,Γt ,0
(Rot,Ω) + Gradgrad Hk+2

Γt
(Ω),

N
(

Divk
T,Γt

)
= Hk

T,Γt ,0
(Div,Ω) = H𝓁

T,Γt ,0
(Div,Ω) + Rot Hk+1

S,Γt
(Ω),

N
(
SRotk

T,Γt

)
= Hk

T,Γt ,0
(symRot,Ω) = H𝓁

T,Γt ,0
(symRot,Ω) + devGrad Hk+1

Γt
(Ω),

N
(

divDivk
S,Γt

)
= Hk

S,Γt ,0
(divDiv,Ω) = H𝓁

S,Γt ,0
(divDiv,Ω) + symRot Hk+1

T,Γt
(Ω)

hold. In particular, for k = 0 and all 𝓁 ≥ 0

N
(
TRotS,Γt

)
= H

S,Γt ,0
(Rot,Ω) = H𝓁

S,Γt ,0
(Rot,Ω) + Gradgrad H2

Γt
(Ω),

N(DivT,Γt ) = H
T,Γt ,0

(Div,Ω) = H𝓁
T,Γt ,0

(Div,Ω) + Rot H1
S,Γt

(Ω),

N
(
SRotT,Γt

)
= H

T,Γt ,0
(symRot,Ω) = H𝓁

T,Γt ,0
(symRot,Ω) + devGrad H1

Γt
(Ω),

N
(
divDivS,Γt

)
= H

S,Γt ,0
(divDiv,Ω) = H𝓁

S,Γt ,0
(divDiv,Ω) + symRot H1

T,Γt
(Ω).
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PAULY and SCHOMBURG

3.4 Dirichlet/Neumann fields
From Theorem 3.15 (iv), we recall the slightly modified orthonormal Helmholtz type decompositions

L2
S,𝜀(Ω) = R

(
SGradgradΓt

)
⊕L2

S,𝜀(Ω)
N
(
divDivS,Γn𝜀

)
= N

(
TRotS,Γt

)
⊕L2

S,𝜀(Ω)
R
(
𝜀−1

SRotT,Γn

)
= R

(
SGradgradΓt

)
⊕L2

S,𝜀(Ω)


S,Γt ,Γn,𝜀
(Ω)⊕L2

S,𝜀(Ω)
R
(
𝜀−1

SRotT,Γn

)
,

N
(
TRotS,Γt

)
= R

(
SGradgradΓt

)
⊕L2

S,𝜀(Ω)


S,Γt ,Γn,𝜀
(Ω),

N
(
divDivS,Γn𝜀

)
=

S,Γt ,Γn,𝜀
(Ω)⊕L2

S,𝜀(Ω)
R
(
𝜀−1

SRotT,Γn

)
,

L2
T,𝜇(Ω) = R

(
TGradΓt

)
⊕L2

T,𝜇(Ω)
N
(
DivT,Γn𝜇

)
= N

(
SRotT,Γt

)
⊕L2

T,𝜇(Ω)
R
(
𝜇−1

TRotS,Γn

)
= R

(
TGradΓt

)
⊕L2

T,𝜇(Ω)


T,Γt ,Γn,𝜇
(Ω)⊕L2

T,𝜇(Ω)
R
(
𝜇−1

TRotS,Γn

)
,

N
(
SRotT,Γt

)
= R

(
TGradΓt

)
⊕L2

T,𝜇(Ω)


T,Γt ,Γn,𝜇
(Ω),

N
(
DivT,Γn𝜇

)
=

T,Γt ,Γn,𝜇
(Ω)⊕L2

T,𝜇(Ω)
R
(
𝜇−1

TRotS,Γn

)
.

(14)

Let us denote the L2
S,𝜀(Ω)- and L2

T,𝜇(Ω)-orthonormal projectors onto N
(
divDivS,Γn𝜀

)
, N(TRotS,Γt ) and

N
(
DivT,Γn𝜇

)
, N
(
SRotT,Γt

)
by

𝜋N(divDivS,Γn𝜀) ∶ L2
S,𝜀(Ω) → N

(
divDivS,Γn𝜀

)
, 𝜋N(DivT,Γn𝜇) ∶ L2

T,𝜇(Ω) → N
(
DivT,Γn𝜇

)
,

𝜋N(TRotS,Γt ) ∶ L2
S,𝜀(Ω) → N

(
TRotS,Γt

)
, 𝜋N(SRotT,Γt ) ∶ L2

T,𝜇(Ω) → N
(
SRotT,Γt

)
,

respectively. Then
𝜋N(divDivS,Γn𝜀)|N(TRotS,Γt ) ∶ N

(
TRotS,Γt

)
→ 

S,Γt ,Γn,𝜀
(Ω),

𝜋N(TRotS,Γt )|N(divDivS,Γn𝜀) ∶ N
(
divDivS,Γn𝜀

)
→ 

S,Γt ,Γn,𝜀
(Ω),

𝜋N(DivT,Γn𝜇)|N(SRotT,Γt ) ∶ N
(
SRotT,Γt

)
→ 

T,Γt ,Γn,𝜇
(Ω),

𝜋N(SRotT,Γt )|N(DivT,Γn𝜇) ∶ N
(
DivT,Γn𝜇

)
→ 

T,Γt ,Γn,𝜇
(Ω)

are onto. Moreover,

𝜋N(divDivS,Γn𝜀)|R(SGradgradΓt ) = 0, 𝜋N(DivT,Γn𝜇)|R(TGradΓt ) = 0,

𝜋N(TRotS,Γt )|R(𝜀−1
SRotT,Γn) = 0, 𝜋N(SRotT,Γt )|R(𝜇−1

TRotS,Γn) = 0,

𝜋N(divDivS,Γn𝜀)|S,Γt ,Γn ,𝜀
(Ω) = id

S,Γt ,Γn ,𝜀
(Ω), 𝜋N(DivT,Γn𝜇)|T,Γt ,Γn ,𝜇

(Ω) = id
T,Γt ,Γn ,𝜇

(Ω),

𝜋N(TRotS,Γt )|S,Γt ,Γn ,𝜀
(Ω) = id

S,Γt ,Γn ,𝜀
(Ω), 𝜋N(SRotT,Γt )|T,Γt ,Γn ,𝜇

(Ω) = id
T,Γt ,Γn ,𝜇

(Ω).

Therefore, by Corollary 3.27 and for all 𝓁 ≥ 0,


S,Γt ,Γn,𝜀

(Ω) = 𝜋N(divDivS,Γn𝜀)N
(
TRotS,Γt

)
= 𝜋N(divDivS,Γn𝜀)H

𝓁
S,Γt ,0

(Rot,Ω),


S,Γt ,Γn,𝜀

(Ω) = 𝜋N(TRotS,Γt )N
(
divDivS,Γn𝜀

)
= 𝜋N(TRotS,Γt )𝜀

−1H𝓁
S,Γn,0

(divDiv,Ω),


T,Γt ,Γn,𝜇

(Ω) = 𝜋N(DivT,Γn𝜇)N
(
SRotT,Γt

)
= 𝜋N(DivT,Γn𝜇)H

𝓁
T,Γt ,0

(symRot,Ω),


T,Γt ,Γn,𝜇

(Ω) = 𝜋N(SRotT,Γt )N
(
DivT,Γn𝜇

)
= 𝜋N(SRotT,Γt )𝜇

−1H𝓁
T,Γn,0

(Div,Ω),

where we have used

N
(
divDivS,Γn𝜀

)
= 𝜀−1H

S,Γn,0
(divDiv,Ω), N

(
DivT,Γn𝜇

)
= 𝜇−1H

T,Γn,0
(Div,Ω).
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PAULY and SCHOMBURG

Hence with

H∞
S,Γt ,0

(Rot,Ω) ∶ =
⋂
k≥0

Hk
S,Γt ,0

(Rot,Ω), H∞
S,Γn,0

(divDiv,Ω) ∶ =
⋂
k≥0

Hk
S,Γn,0

(divDiv,Ω),

H∞
T,Γt ,0

(symRot,Ω) ∶ =
⋂
k≥0

Hk
T,Γt ,0

(symRot,Ω), H∞
T,Γn,0

(Div,Ω) ∶ =
⋂
k≥0

Hk
T,Γn,0

(Div,Ω),

and with the finite numbers

dΩ,S,Γt ∶= dim
S,Γt ,Γn,𝜀

(Ω), dΩ,T,Γt ∶= dim
T,Γt ,Γn,𝜇

(Ω),

we get the following result:

Theorem 3.28. (Smooth pre-bases of Dirichlet/Neumann fields). It holds

𝜋N(divDivS,Γn𝜀)H
∞
S,Γt ,0

(Rot,Ω) =
S,Γt ,Γn,𝜀

(Ω) = 𝜋N(TRotS,Γt )𝜀
−1H∞

S,Γn,0
(divDiv,Ω),

𝜋N(DivT,Γn𝜇)H
∞
T,Γt ,0

(symRot,Ω) =
T,Γt ,Γn,𝜇

(Ω) = 𝜋N(SRotT,Γt )𝜇
−1H∞

T,Γn,0
(Div,Ω).

Moreover, there exist smooth TRotS,Γt and divDivS,Γn pre-bases of 
S,Γ t ,Γ n,𝜀

(Ω) and smooth SRotT,Γt and DivT,Γn

pre-bases of 
T,Γ t ,Γ n,𝜇

(Ω); that is, there are linear independent smooth fields

TRotS,Γt (Ω) ∶=
{

BTRotS,Γt
𝓁

}dΩ,S,Γt

𝓁=1
⊂ H∞

S,Γt ,0
(Rot,Ω),

divDivS,Γn (Ω) ∶=
{

BdivDivS,Γn
𝓁

}dΩ,S,Γt

𝓁=1
⊂ H∞

S,Γn,0
(divDiv,Ω),

SRotT,Γt (Ω) ∶=
{

BSRotT,Γt
𝓁

}dΩ,T,Γt

𝓁=1
⊂ H∞

T,Γt ,0
(symRot,Ω),

DivT,Γn (Ω) ∶=
{

BDivT,Γn
𝓁

}dΩ,T,Γt

𝓁=1
⊂ H∞

T,Γn,0
(Div,Ω),

such that 𝜋N(divDivS,Γn𝜀)
TRotS,Γt (Ω) and 𝜋N(TRotS,Γt )𝜀

−1divDivS,Γn (Ω) are both bases of 
S,Γ t ,Γ n,𝜀

(Ω), and
𝜋N(DivT,Γn𝜇)

SRotT,Γt (Ω) and 𝜋N(SRotT,Γt )𝜇
−1DivT,Γn (Ω) are both bases of 

T,Γ t ,Γ n,𝜇
(Ω). In particular,

Lin𝜋N(divDivS,Γn𝜀)
TRotS,Γt (Ω) =

S,Γt ,Γn,𝜀
(Ω) = Lin𝜋N(TRotS,Γt )𝜀

−1divDivS,Γn (Ω),

Lin𝜋N(DivT,Γn𝜇)
SRotT,Γt (Ω) =

T,Γt ,Γn,𝜇
(Ω) = Lin𝜋N(SRotT,Γt )𝜇

−1DivT,Γn (Ω).

Note that, for example,
(

1 − 𝜋N(divDivS,Γn𝜀)
)

is the L2
S,𝜀(Ω)-orthonormal projector onto R

(
SGradgradΓt

)
. By (14), Theorem

3.16, and Theorem 3.28, we compute

H
S,Γt ,0

(Rot,Ω) = R
(
SGradgradΓt

)
⊕L2

S,𝜀(Ω)


S,Γt ,Γn,𝜀
(Ω)

= R
(
SGradgradΓt

)
⊕L2

S,𝜀(Ω)
Lin𝜋N(divDivS,Γn𝜀)

TRotS,Γt (Ω)

= R
(
SGradgradΓt

)
+ (𝜋N(divDivS,Γn𝜀) − 1)LinTRotS,Γt (Ω) + LinTRotS,Γt (Ω)

= R
(
SGradgradΓt

)
+ LinTRotS,Γt (Ω),

Hk
S,Γt ,0

(Rot,Ω) = R
(
SGradgradΓt

)
∩ Hk

S,Γt ,0
(Rot,Ω) + LinTRotS,Γt (Ω)

= R
(
SGradgradk

Γt

)
+ LinTRotS,Γt (Ω).

(15)

Similarly, we obtain decompositions of Hk
S,Γ n,0

(divDiv,Ω), H
T,Γ t ,0

(symRot,Ω), and Hk
T,Γ n,0

(Div,Ω) using
divDivS,Γn (Ω), SRotT,Γt (Ω), and DivT,Γn (Ω), respectively. We conclude:
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PAULY and SCHOMBURG

Theorem 3.29. (Bounded regular direct decompositions). Let k ≥ 0. Then the bounded regular direct decompositions

Hk
S,Γt

(Rot,Ω) = R
(
̃k,1

TRotS,Γt

)
∔ Hk

S,Γt ,0
(Rot,Ω),

Hk
S,Γt ,0

(Rot,Ω) = Gradgrad Hk+2
Γt

(Ω) ∔ LinTRotS,Γt (Ω),

Hk
T,Γn

(Div,Ω) = R
(
̃k,1

DivT,Γn

)
∔ Hk

T,Γn,0
(Div,Ω),

Hk
T,Γn,0

(Div,Ω) = Rot Hk+1
S,Γn

(Ω) ∔ LinDivT,Γn (Ω),

Hk
T,Γt

(symRot,Ω) = R
(
̃k,1

SRotT,Γt

)
∔ Hk

T,Γt ,0
(symRot,Ω),

Hk
T,Γt ,0

(symRot,Ω) = devGrad Hk+1
Γt

(Ω) ∔ LinSRotT,Γt (Ω),

Hk
S,Γn

(divDiv,Ω) = R
(
̃k,1

divDivS,Γn

)
∔ Hk

S,Γn,0
(divDiv,Ω),

Hk+1,k
S,Γn

(divDiv,Ω) = R
(
̃k+1,k,1

divDivS,Γn

)
∔ Hk+1

S,Γn,0
(divDiv,Ω),

Hk
S,Γn,0

(divDiv,Ω) = symRot Hk+1
T,Γn

(Ω) ∔ LindivDivS,Γn (Ω)

hold. Note that R
(
̃k,1

T
RotS ,Γ t

)
⊂ Hk+1

S,Γ t
(Ω), R

(
̃k,1

DivT,Γ n

)
⊂ Hk+1

T,Γ n
(Ω), R

(
̃k,1

SRotT,Γ t

)
⊂ Hk+1

T,Γ t
(Ω), and R

(
̃k,1

divDivS,Γ n

)
,

R
(
̃k+1,k,1

divDivS,Γ n

)
⊂ Hk+2

S,Γ n
(Ω).

See Appendix C for a proof.

Remark 3.30. (Bounded regular direct decompositions). In particular, for k = 0,

H
S,Γt

(Rot,Ω) = R
(
̃0,1

TRotS,Γt

)
∔ H

S,Γt ,0
(Rot,Ω),

H
S,Γt ,0

(Rot,Ω) = Gradgrad H2
Γt
(Ω) ∔ LinTRotS,Γt (Ω)

= Gradgrad H2
Γt
(Ω)⊕L2

S,𝜀(Ω)


S,Γt ,Γn,𝜀
(Ω),

H
T,Γn

(Div,Ω) = R
(
̃0,1

DivT,Γn

)
∔ H

T,Γn,0
(Div,Ω),

𝜇−1H0
T,Γn,0

(Div,Ω) = 𝜇−1Rot H1
S,Γn

(Ω) ∔ 𝜇−1LinDivT,Γn (Ω)

= 𝜇−1Rot H1
S,Γn

(Ω)⊕L2
T,𝜇(Ω)


T,Γt ,Γn,𝜇

(Ω),

H
T,Γt

(symRot,Ω) = R
(
̃0,1

SRotT,Γt

)
∔ H

T,Γt ,0
(symRot,Ω),

H
T,Γt ,0

(symRot,Ω) = devGrad H1
Γt
(Ω) ∔ LinSRotT,Γt (Ω)

= devGrad H1
Γt
(Ω)⊕L2

T,𝜇(Ω)


T,Γt ,Γn,𝜇
(Ω),

H
S,Γn

(divDiv,Ω) = R
(
̃0,1

divDivS,Γn

)
∔ H

S,Γn,0
(divDiv,Ω),

𝜀−1H
S,Γn,0

(divDiv,Ω) = 𝜀−1symRot H1
T,Γn

(Ω) ∔ 𝜀−1LindivDivS,Γn (Ω)

= 𝜀−1symRot H1
T,Γn

(Ω)⊕L2
S,𝜀(Ω)


S,Γt ,Γn,𝜀

(Ω),

and

L2
S,𝜀(Ω) = H

S,Γt ,0
(Rot,Ω)⊕L2

S,𝜀(Ω)
𝜀−1symRot H1

T,Γn
(Ω)

= Gradgrad H2
Γt
(Ω)⊕L2

S,𝜀(Ω)
𝜀−1H

S,Γn,0
(divDiv,Ω),

L2
T,𝜇(Ω) = H

T,Γt ,0
(symRot,Ω)⊕L2

T,𝜇(Ω)
𝜇−1Rot H1

S,Γn
(Ω)

= devGrad H1
Γt
(Ω)⊕L2

T,𝜇(Ω)
𝜇−1H

T,Γn,0
(Div,Ω).
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PAULY and SCHOMBURG

By the latter theorem, we have bounded linear regular (direct) decompositions

Hk
S,Γt

(Rot,Ω) = R
(
̃k,1

TRotS,Γt

)
∔ LinTRotS,Γt (Ω) ∔ Gradgrad Hk+2

Γt
(Ω)

= Hk+1
S,Γt

(Ω) + Gradgrad Hk+2
Γt

(Ω),

Hk
T,Γn

(Div,Ω) = R
(
̃k,1

DivT,Γn

)
∔ LinDivT,Γn (Ω) ∔ Rot Hk+1

S,Γn
(Ω)

= Hk+1
T,Γn

(Ω) + Rot Hk+1
S,Γn

(Ω),

Hk
T,Γt

(symRot,Ω) = R
(
̃k,1

SRotT,Γt

)
∔ LinSRotT,Γt (Ω) ∔ devGrad Hk+1

Γt
(Ω)

= Hk+1
T,Γt

(Ω) + devGrad Hk+1
Γt

(Ω),

Hk
S,Γn

(divDiv,Ω) = R
(
̃k,1

divDivS,Γn

)
∔ LindivDivS,Γn (Ω) ∔ symRot Hk+1

T,Γn
(Ω)

= Hk+2
S,Γn

(Ω) + symRot Hk+1
T,Γn

(Ω),

Hk+1,k
S,Γn

(divDiv,Ω) = R
(
̃k+1,k,1

divDivS,Γn

)
∔ LindivDivS,Γn (Ω) ∔ symRot Hk+2

T,Γn
(Ω)

= Hk+2
S,Γn

(Ω) + symRot Hk+2
T,Γn

(Ω).

(16)

See Remark D.3 for more details on these decompositions and the corresponding bounded linear regular direct decom-
position operators. Noting

R
(
𝜀−1

SRotT,Γn

)
⟂L2

S,𝜀(Ω)
TRotS,Γt (Ω), R

(
SGradgradΓt

)
⟂L2

S
(Ω)

divDivS,Γn (Ω),

R
(
𝜇−1

TRotS,Γn

)
⟂L2

T,𝜇(Ω)
SRotT,Γt (Ω), R

(
TGradΓt

)
⟂L2

T
(Ω)

DivT,Γn (Ω),
(17)

we see the following:

Theorem 3.31. (Alternative Dirichlet/Neumann projections). It holds


S,Γt ,Γn,𝜀

(Ω) ∩ TRotS,Γt (Ω)
⟂L2

S,𝜀
(Ω) = {0},

N
(
divDivS,Γn𝜀

)
∩ TRotS,Γt (Ω)

⟂L2
S,𝜀

(Ω) = R
(
𝜀−1

SRotT,Γn

)
,


S,Γt ,Γn,𝜀

(Ω) ∩ divDivS,Γn (Ω)⟂L2
S
(Ω) = {0},

N
(
TRotS,Γt

)
∩ divDivS,Γn (Ω)⟂L2

S
(Ω) = R

(
SGradgradΓt

)
,


T,Γt ,Γn,𝜇

(Ω) ∩ SRotT,Γt (Ω)
⟂L2

T,𝜇
(Ω) = {0},

N(DivT,Γn𝜀) ∩ SRotT,Γt (Ω)
⟂L2

T,𝜇
(Ω) = R

(
𝜇−1

TRotS,Γn

)
,


T,Γt ,Γn,𝜇

(Ω) ∩ DivT,Γn (Ω)⟂L2
T
(Ω) = {0},

N
(
SRotT,Γt

)
∩ DivT,Γn (Ω)⟂L2

T
(Ω) = R

(
TGradΓt

)
.

Moreover, for all k ≥ 0,

N
(

divDivk
S,Γn

𝜀
)
∩ TRotS,Γt (Ω)

⟂L2
S,𝜀

(Ω) = R
(
𝜀−1

SRotk
T,Γn

)
= 𝜀−1symRot Hk+1

T,Γn
(Ω),

N
(
TRotk

S,Γt

)
∩ divDivS,Γn (Ω)⟂L2

S
(Ω) = R

(
SGradgradk

Γt

)
= Gradgrad Hk+2

Γt
(Ω),

N
(

Divk
T,Γn

𝜀
)
∩ SRotT,Γt (Ω)

⟂L2
T,𝜇

(Ω) = R
(
𝜇−1

TRotk
S,Γn

)
= 𝜇−1Rot Hk+1

S,Γn
(Ω),

N
(
SRotk

T,Γt

)
∩ DivT,Γn (Ω)⟂L2

T
(Ω) = R

(
TGradk

Γt

)
= devGrad Hk+1

Γt
(Ω).

See Appendix C for a proof. Theorem 3.29 implies the following:
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PAULY and SCHOMBURG

Theorem 3.32. (Cohomology groups). It holds

N
(
TRotk

S,Γt

)
R
(
SGradgradk

Γt

) ≅ LinTRotS,Γt (Ω) ≅ 
S,Γt ,Γn,𝜀

(Ω) ≅ LindivDivS,Γn (Ω) ≅
N
(

divDivk
S,Γn

)
R
(
SRotk

T,Γn

) ,

N
(
SRotk

T,Γt

)
R
(
TGradk

Γt

) ≅ LinSRotT,Γt (Ω) ≅ 
T,Γt ,Γn,𝜇

(Ω) ≅ LinDivT,Γn (Ω) ≅
N
(

Divk
T,Γn

)
R
(
TRotk

S,Γn

) .
In particular, the dimensions of the cohomology groups (Dirichlet/Neumann fields) are independent of k and 𝜀, 𝜇 and

it holds
dΩ,S,Γt = dim

(
N
(
TRotk

S,Γt

)
∕R
(
SGradgradk

Γt

))
= dim

(
N
(

divDivk
S,Γn

)
∕R
(
SRotk

T,Γn

))
,

dΩ,T,Γt = dim
(

N
(
SRotk

T,Γt

)
∕R
(
TGradk

Γt

))
= dim

(
N
(

Divk
T,Γn

)
∕R
(
TRotk

S,Γn

))
.
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APPENDIX A: ELEMENTARY FORMULAS

From [3, 4] and [5], we have the following collection of formulas related to the elasticity and the biharmonic complex.

Lemma A.1 ([5, Lemma 12.10]). Let u, v, w, and S belong to C∞(R33).
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PAULY and SCHOMBURG

• (spnv)w = v × w = −(spnw)v and (spnv)(spn−1S) = −Sv, if symS = 0
• symspnv = 0 and dev(u id) = 0
• trGradv = div v and 2skwGradv = spnrotv
• Div(u id) = gradu and Rot(u id) = −spngradu, in particular, rotDiv (u id ) = 0 and rotspn−1Rot (u id) = 0 and

symRot(u id) = 0
• Div spnv = −rotv and Div skwS = −rotspn−1skw S, in particular div DivskwS = 0
• Rot spnv = (div v)id(Gradv)⊤ and Rotskw S = (divspn−1skw S) id − (Gradspn−1skw S)⊤
• devRotspnv = −(devGrad v)⊤
• −2Rot symGradv = 2RotskwGradv = −(Gradrotv)⊤
• 2spn−1skwRotS = Div S⊤ − gradtrS = Div (S − (trS)id)⊤, in particular rotDiv S⊤ = 2rotspn−1 skwRotS

and 2skwRotS = spnDiv S⊤, if trS = 0
• trRotS = 2divspn−1skw S, in particular, trRotS = 0, if skw S = 0, and trRotsymS = 0 and trRotskwS = trRotS
• 2 (Gradspn−1skw S)⊤ = (trRotskwS)id − 2RotskwS
• 3Div(dev Gradv)⊤ = 2 grad div v
• 2Rot symGradv = −2Rot skwGradv = −Rot spnrotv = (Gradrotv)⊤
• 2Div symRotS = −2Div skwRotS = rotDiv S⊤

• Rot(Rot symS)⊤ = symRot(RotS)⊤
• Rot(RotskwS)⊤ = skwRot(RotS)⊤

All formulas extend also to distributions.

APPENDIX B: BIHARMONIC COMPLEX OPERATORS REVISITED

Let ⊤ denote the formal operator of matrix transposition, that is,

⊤S ∶= S⊤,

and define

spn ∶ R
3 → R

3×3
skw;

[ a1
a2
a3

]
→

[ 0 −a3 a2
a3 0 −a1
−a2 a1 0

]
.

We recall the operators forming the de Rham complex (classical vector analysis) grad, rot, and div acting on functions
and vector fields, respectively, as formal matrix operators

grad ∶=

[
𝜕1
𝜕2
𝜕3

]
, rot ∶= spngrad =

[ 0 −𝜕3 𝜕2
𝜕3 0 −𝜕1
−𝜕2 𝜕1 0

]
, div ∶= ⊤grad =

[
𝜕1 𝜕2 𝜕3

]
.

Moreover, we introduce their relatives from the vector de Rham complex acting on vector and tensor fields, respectively,
as formal matrix operators

Grad ∶= ⊤grad⊤,Rot ∶= ⊤rot⊤,Div ∶= ⊤div⊤.

In words, Grad, Rot, and Div act row-wise as the operators grad, rot, and div from the classical de Rham complex. Note
that Grad v is just the Jacobian for a vector field v.

Let

𝜄S ∶ R
3×3
s𝑦m → R

3×3, 𝜄T ∶ R
33×3

dev → R
3×3

denote the canonical embedding of symmetric and deviatoric (trace free) (3×3)-matrices into the arbitrary (3×3)-matrices,
respectively. Then the adjoints

𝜄∗
S
∶ R

3×3 → R
3×3
s𝑦m, 𝜄∗

T
∶ R

3×3 → R
3×3
dev
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PAULY and SCHOMBURG

are almost the projectors onto symmetric and deviatoric (3 × 3)-matrices, respectively; that is, the actual projectors are
given by

sym ∶= 𝜄S𝜄
∗
S
∶ R

3×3 → R
3×3; S →

1
2
(S + S⊤), dev ∶= 𝜄T𝜄

∗
T
∶ R

3×3 → R
3×3; T → T − 1

3
(trT) id.

We extend all the latter formal operators to L2(Ω)-tensor fields.
In the light of this, in the biharmonic complexes, we are dealing with the operators

SGradgrad ∶= 𝜄∗
S
Gradgrad, TRotS ∶= 𝜄∗

T
Rot𝜄S, DivT ∶= Div 𝜄T,

divDivS ∶= divDiv 𝜄S, SRotT ∶= 𝜄∗
S
Rot𝜄T, TGrad ∶= 𝜄∗

T
Grad.

Note that

𝜄S SGradgrad = symGradgrad = Gradgrad = ⊤grad⊤grad,

𝜄T TRotS = devRotS = Rot𝜄S = ⊤rot⊤𝜄S =∶ RotS,

DivT =⊤div⊤𝜄T,

𝜄T T Grad = devGrad = dev⊤grad⊤,

SRotT = symRot
T
= sym⊤rot⊤𝜄T,

divDivS = div⊤div⊤𝜄S;

in particular, on symmetric tensor fields, we have TRotS = devRot = Rot (cf. [3, Lemma A.1]). Using these formal
operators, we introduce their maximal L2(Ω)-realisations, that is,

SGradgrad ∶ D(SGradgrad) ⊂ L2(Ω) → L2
S
(Ω), u → Gradgrad u,

TRotS ∶ D(TRotS) ⊂ L2
S
(Ω) → L2

T
(Ω), S → Rot S,

DivT ∶ D(DivT) ⊂ L2
T
(Ω) → L2(Ω), T → Div T,

TGrad ∶ D(TGrad) ⊂ L2(Ω) → L2
T
(Ω), v → devGrad v,

SRotT ∶ D(SRotT) ⊂ L2
T
(Ω) → L2

S
(Ω), T → symRot T,

divDivS ∶ D(divDivS) ⊂ L2
S
(Ω) → L2

S
(Ω), S → divDiv S,

which are densely defined and closed (unbounded) linear operators and form the two (formally primal and dual)
biharmonic complexes

and compare [4] for the complex properties.
Finally, the operators

SGradgradΓt , TRotS,Γt, DivT,Γt , TGradΓt , SRotT,Γt , divDivS,Γt

from Section 2.1 are the restrictions of

SGradgrad, TRotS, DivT, TGrad, SRotT, divDivS

to their domains of definition

D
(
SGradgradΓt

)
, D

(
TRotS,Γt

)
, D(DivT,Γt ), D

(
TGradΓt

)
, D

(
SRotT,Γt

)
, D

(
divDivS,Γt

)
,

which are the closures of C∞
Γ t
(Ω), C∞

S,Γ t
(Ω), and C∞

T,Γ t
(Ω) in the corresponding graph norms, respectively.
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PAULY and SCHOMBURG

APPENDIX C: SOME PROOFS

Proof of Theorem 3.1. In [4, Theorem 3.10], we have shown the stated results for Γ t = Γ and Γ t = ∅, which is also
a crucial ingredient of this proof. Note that in these two special cases always “strong = weak” holds as A∗∗

n = An =
An and that this argument fails in the remaining cases of mixed boundary conditions. Therefore, let ∅ ⊊ Γ t ⊊ Γ.
Moreover, recall the notion of an extendable domain from [1, Section 3]. In particular, Ω̂ and the extended domain Ω̃
are topologically trivial.

• Let S ∈ Hk
S,Γ t ,0

(Rot,Ω). By definition, S can be extended through Γ t by zero to the larger domain Ω̃ yielding

S̃ ∈ Hk
S,∅,0(Rot, Ω̃) = Hk

S,0(Rot, Ω̃) = Hk
S,0(Rot, Ω̃).

By [4, Theorem 3.10, Remark 3.11] and Stein's or Calderon's extension theorem—see also [1, Lemma 4.3, Lemma
4.4] for the fact that the respective potentials are already defined on the whole of R3—there exists ũ ∈ Hk+2(R3)
such that Gradgrad ũ = S̃ in Ω̃. Since S̃ = 0 in Ω̂, ũ must be a polynomial p ∈ P

1 in Ω̂. Far outside of Ω̃, we
modify p by a cut-off function such that the resulting function p̃ is compactly supported and p̃|Ω̃ = p. Note that p̃
depends continuously on S by Poincaré's estimate. Then u ∶= ũ− p̃ ∈ Hk+2(R3) with u|Ω̂ = 0. Hence, u belongs to
Hk+2

Γ t
(Ω) and depends continuously on S. Moreover, u satisfies Gradgrad u = Gradgrad ũ = S̃ in Ω̃, in particular

Gradgrad u = S in Ω. We put k
SGradgrad,Γ t

S ∶= u ∈ Hk+2
Γ t

(Ω).
• Let T ∈ Hk

T,Γ t ,0
(Div,Ω). By definition, T can be extended through Γ t by zero to Ω̃ giving

T̃ ∈ Hk
T,∅,0(Div, Ω̃) = Hk

T,0(Div, Ω̃) = Hk
T,0(Div, Ω̃).

By [4, Theorem 3.10], there exists S̃ ∈ Hk+1
S

(R3) such that RotS̃ = T̃ in Ω̃. Since T̃ = 0 in Ω̂, that is, S̃|Ω̂ ∈
Hk+1

S,0 (Rot, Ω̂), we get again by [4, Theorem 3.10] (or the first part of this proof) ũ ∈ Hk+3(R3) such that Gradgrad ũ =
S̃ in Ω̂. Then S ∶= S̃ − Gradgrad ũ belongs to Hk+1

S
(R3) and satisfies S|Ω̂ = 0. Thus, S ∈ Hk+1

S,Γ t
(Ω) and depends

continuously on T. Furthermore, Rot S = Rot S̃ = T̃ in Ω̃, in particular Rot S = T in Ω. We set k
TRotS,Γ t

T ∶= S ∈
Hk+1

S,Γ t
(Ω).

• Let v ∈ Hk
Γ t
(Ω). By definition, v can be extended through Γ t by zero to Ω̃ defining ṽ ∈ Hk(Ω̃). Theorem 3.10 of

[4] yields T̃ ∈ Hk+1
T

(R3) such that Div T̃ = ṽ in Ω̃. As ṽ = 0 in Ω̂, that is, T̃|Ω̂ ∈ Hk+1
T,0 (Div, Ω̂), we get again by [4,

Theorem 3.10] (or the second part of this proof) S̃ ∈ Hk+2
S

(R3) such that Rot S̃ = T̃ holds in Ω̂. Then T ∶= T̃−Rot S̃
belongs to Hk+1

T
(R3) with T|Ω̂ = 0. Hence, T belongs to Hk+1

T,Γ t
(Ω) and depends continuously on v. Furthermore,

Div T = Div T̃ = ṽ in Ω̃, in particular Div T = v in Ω. Finally, we define k
DivT,Γ t

v ∶= T ∈ Hk+1
T,Γ t

(Ω).
• Let T ∈ Hk

T,Γ t ,0
(symRot,Ω). By definition, T can be extended through Γ t by zero to Ω̃ yielding

T̃ ∈ Hk
T,∅,0(symRot, Ω̃) = Hk

T,0(symRot, Ω̃) = Hk
T,0(symRot, Ω̃).

By [4, Theorem 3.10], there exists ṽ ∈ Hk+1(R3) such that devGrad ṽ = T̃ in Ω̃. Since T̃ = 0 in Ω̂, ṽ must be a
Raviart–Thomas field r ∈ RT in Ω̂. Far outside of Ω̃, we modify r by a cut-off function such that the resulting
vector field r̃ is compactly supported and r̃|Ω̃ = r. Then v ∶= ṽ − r̃ ∈ Hk+1(R3) with v|Ω̂ = 0. Hence, v belongs
to Hk+1

Γ t
(Ω) and depends continuously on T. Moreover, v satisfies devGrad v = devGrad ṽ = T̃ in Ω̃, in particular

devGrad v = T in Ω. We put k
TGrad,Γ t

T ∶= v ∈ Hk+1
Γ t

(Ω).
• Let S ∈ Hk

S,Γ t ,0
(divDiv,Ω). By definition, S can be extended through Γ t by zero to Ω̃ giving

S̃ ∈ Hk
S,∅,0(divDiv, Ω̃) = Hk

S,0(divDiv, Ω̃) = Hk
S,0(divDiv, Ω̃).

By [4, Theorem 3.10], there exists T̃ ∈ Hk+1
T

(R3) such that symRot T̃ = S̃ in Ω̃. Since S̃ = 0 in Ω̂, that is, T̃|Ω̂ ∈
Hk+1

T,0 (symRot, Ω̂), we get again by [4, Theorem 3.10] (or the fourth part of this proof) ṽ ∈ Hk+2(R3) such that
devGrad ṽ = T̃ in Ω̂. Then T ∶= T̃ −devGrad ṽ belongs to Hk+1

T
(R3) and satisfies T|Ω̂ = 0. Thus, T ∈ Hk+1

T,Γ t
(Ω) and
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PAULY and SCHOMBURG

depends continuously on S. Furthermore, symRot T = symRot T̃ = S̃ in Ω̃, in particular symRot T = S in Ω. We
set k

SRotT,Γ t
S ∶= T ∈ Hk+1

T,Γ t
(Ω).

• Let u ∈ Hk
Γ t
(Ω). By definition, u can be extended through Γ t by zero to Ω̃ defining ũ ∈ Hk(Ω̃). Theorem 3.10

of [4] yields S̃ ∈ Hk+2
S

(R3) such that divDiv S̃ = ũ in Ω̃. As ũ = 0 in Ω̂, that is, S̃|Ω̂ ∈ Hk+2
S,0 (divDiv, Ω̂), we

get again by [4, Theorem 3.10] (or the fifth part of this proof) T̃ ∈ Hk+3
T

(R3) such that symRot T̃ = S̃ holds
in Ω̂. Then S ∶= S̃ − symRot T̃ belongs to Hk+2

S
(R3) with S|Ω̂ = 0. Hence, S belongs to Hk+2

S,Γ t
(Ω) and depends

continuously on u. Furthermore, divDiv S = divDiv S̃ = ũ in Ω̃, in particular divDiv S = u in Ω. Finally, we
define k

divDivS,Γ t
u ∶= S ∈ Hk+2

S,Γ t
(Ω).

The assertion about the compact supports is trivial.

Proof of Lemma 3.10 and Corollary 3.11. According to [6, Section 4.2] (cf. [7, Section 4.2], [1, Lemma 3.1], [2], or [3]),
let (U𝓁 , 𝜑𝓁) be a partition of unity for Ω, such that

Ω =
L⋃

𝓁=−L
Ω𝓁 , Ω𝓁 ∶= Ω ∩ U𝓁 , 𝜑𝓁 ∈ C∞

𝜕U𝓁
(U𝓁),

and such that (Ω𝓁 , Γ̂t,𝓁) are extendable bounded strong Lipschitz pairs. Recall

Σ𝓁 ∶= 𝜕Ω𝓁∖Γ, Γt,𝓁 ∶= Γt ∩ U𝓁 , Γ̂t,𝓁 ∶= int(Γt,𝓁 ∪ Σ𝓁).

• Let k ≥ 0 and let S ∈ Hk
S,Γ t

(Rot,Ω). Then by definition, S|Ω𝓁
∈ Hk

S,Γt,𝓁
(Rot,Ω𝓁) and we decompose by Corollary 3.4

S|Ω𝓁
= S𝓁,1 + Gradgrad u𝓁,0

with S𝓁,1 ∶= k,1
TRotS,Γt,𝓁

S|Ω𝓁
∈ Hk+1

S,Γt,𝓁
(Ω𝓁) and u𝓁,0 ∶= k,0

TRotS,Γt,𝓁
S|Ω𝓁

∈ Hk+2
Γt,𝓁

(Ω𝓁). Lemma 3.9 yields

𝜑𝓁S|Ω𝓁
= 𝜑𝓁S𝓁,1 + 𝜑𝓁Gradgradu𝓁,0

=

=∶S𝓁
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝜑𝓁S𝓁,1 − 2sym
(
(grad𝜑𝓁)(gradu𝓁,0)⊤

)
− u𝓁,0 Gradgrad 𝜑𝓁

+ Gradgrad (𝜑𝓁u𝓁,0)
⏟⏟⏟

=∶u𝓁

with S𝓁 ∈ Hk+1
S,Γ̂t,𝓁

(Ω𝓁) and u𝓁 ∈ Hk+2
Γ̂t,𝓁

(Ω𝓁). Extending S𝓁 and u𝓁 by zero to Ω gives tensor fields S̃𝓁 ∈ Hk+1
S,Γ t

(Ω) and

ũ𝓁 ∈ Hk+2
Γ t

(Ω) as well as

S =
L∑

𝓁=−L
𝜑𝓁S|Ω𝓁

=
L∑

𝓁=−L
S̃𝓁 + Gradgrad

L∑
𝓁=−L

ũ𝓁

∈ Hk+1
S,Γt

(Ω) + Gradgrad Hk+2
Γt

(Ω) ⊂ Hk
S,Γt

(Rot,Ω).

As all operations have been linear and continuous, we set

k,1
TRotS,Γt

S ∶=
L∑

𝓁=−L
S̃𝓁 ∈ Hk+1

S,Γt
(Ω), k,0

TRotS,Γt
S ∶=

L∑
𝓁=−L

ũ𝓁 ∈ Hk+2
Γt

(Ω).

• Let k ≥ 0 and let T ∈ Hk
T,Γ t

(Div,Ω). Then by definition, T|Ω𝓁
∈ Hk

T,Γt,𝓁
(Div,Ω𝓁) and we decompose by Corollary 3.4

T|Ω𝓁
= T𝓁,1 + Rot S𝓁,0
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PAULY and SCHOMBURG

with T𝓁,1 ∶= k,1
DivT,Γt,𝓁

T|Ω𝓁
∈ Hk+1

T,Γt,𝓁
(Ω𝓁) and S𝓁,0 ∶= k,0

DivT,Γt,𝓁
T|Ω𝓁

∈ Hk+1
S,Γt,𝓁

(Ω𝓁). Lemma 3.9 yields

𝜑𝓁T|Ω𝓁
= 𝜑𝓁T𝓁,1 + 𝜑𝓁Rot S𝓁,0 = 𝜑𝓁T𝓁,1 + S𝓁,0spngrad𝜑𝓁

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶T𝓁

+ Rot(𝜑𝓁S𝓁,0)
⏟⏟⏟

=∶S𝓁

with T𝓁 ∈ Hk+1
T,Γ̂t,𝓁

(Ω𝓁) and S𝓁 ∈ Hk+1
S,Γ̂t,𝓁

(Ω𝓁). Extending T𝓁 and S𝓁 by zero to Ω gives tensor fields T̃𝓁 ∈ Hk+1
T,Γ t

(Ω) and

S̃𝓁 ∈ Hk+1
S,Γ t

(Ω) as well as

T =
L∑

𝓁=−L
𝜑𝓁T|Ω𝓁

=
L∑

𝓁=−L
T̃𝓁 + Rot

L∑
𝓁=−L

S̃𝓁

∈ Hk+1
T,Γt

(Ω) + Rot Hk+1
S,Γt

(Ω) ⊂ Hk
T,Γt

(Div,Ω).

As all operations have been linear and continuous, we set

k,1
DivT,Γt

T ∶=
L∑

𝓁=−L
T̃𝓁 ∈ Hk+1

T,Γt
(Ω), k,0

DivT,Γt
T ∶=

L∑
𝓁=−L

S̃𝓁 ∈ Hk+1
S,Γt

(Ω).

• Let k ≥ 0 and let T ∈ Hk
T,Γ t

(symRot,Ω). Then by definition, T|Ω𝓁
∈ Hk

T,Γt,𝓁
(symRot,Ω𝓁) and we decompose by

Corollary 3.4
T|Ω𝓁

= T𝓁,1 + devGrad v𝓁,0
with T𝓁,1 ∶= k,1

SRotT,Γt,𝓁
T|Ω𝓁

∈ Hk+1
T,Γt,𝓁

(Ω𝓁) and v𝓁,0 ∶= k,0
SRotT,Γt,𝓁

T|Ω𝓁
∈ Hk+1

Γt,𝓁
(Ω𝓁). Lemma 3.9 yields

𝜑𝓁T|Ω𝓁
= 𝜑𝓁T𝓁,1 + 𝜑𝓁devGrad v𝓁,0
= 𝜑𝓁T𝓁,1 + dev

(
v𝓁,0(grad𝜑𝓁)⊤

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶T𝓁

+ devGrad(𝜑𝓁v𝓁,0)
⏟⏟⏟

=∶v𝓁

with T𝓁 ∈ Hk+1
T,Γ̂t,𝓁

(Ω𝓁) and v𝓁 ∈ Hk+1
Γ̂t,𝓁

(Ω𝓁). Extending T𝓁 and v𝓁 by zero to Ω gives tensor fields T̃𝓁 ∈ Hk+1
T,Γ t

(Ω) and

ṽ𝓁 ∈ Hk+1
Γ t

(Ω) as well as

T =
L∑

𝓁=−L
𝜑𝓁T|Ω𝓁

=
L∑

𝓁=−L
T̃𝓁 + devGrad

L∑
𝓁=−L

ṽ𝓁

∈ Hk+1
T,Γt

(Ω) + devGrad Hk+1
Γt

(Ω) ⊂ Hk
T,Γt

(symRot,Ω).

As all operations have been linear and continuous, we set

k,1
SRotT,Γt

T ∶=
L∑

𝓁=−L
T̃𝓁 ∈ Hk+1

T,Γt
(Ω), k,0

SRotT,Γt
T ∶=

L∑
𝓁=−L

ṽ𝓁 ∈ Hk+1
Γt

(Ω).

• Let k ≥ 1 and let S ∈ Hk,k−1
S,Γ t

(divDiv,Ω). Then by definition, S|Ω𝓁
∈ Hk,k−1

S,Γt,𝓁
(divDiv,Ω𝓁) and we decompose by

Corollary 3.7
S|Ω𝓁

= S𝓁,1 + symRot T𝓁,0

with S𝓁,1 ∶= k,k−1,1
divDivS,Γt,𝓁

S|Ω𝓁
∈ Hk+1

S,Γt,𝓁
(Ω𝓁) and T𝓁,0 ∶= k,k−1,0

divDivS,Γt,𝓁
S|Ω𝓁

∈ Hk+1
T,Γt,𝓁

(Ω𝓁). Thus,

𝜑𝓁S|Ω𝓁
=𝜑𝓁S𝓁,1 + 𝜑𝓁symRot T𝓁,0

=𝜑𝓁S𝓁,1 + sym(T𝓁,0spngrad𝜑𝓁)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶S𝓁

+ symRot(𝜑𝓁T𝓁,0)
⏟⏟⏟

=∶T𝓁

(C1)

3883

 10991476, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.9437 by Saechsische L

andesbibliothek, W
iley O

nline L
ibrary on [28/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



PAULY and SCHOMBURG

with S𝓁 ∈ Hk+1
S,Γ̂t,𝓁

(Ω𝓁) and T𝓁 ∈ Hk+1
T,Γ̂t,𝓁

(Ω𝓁). Extending S𝓁 and T𝓁 by zero to Ω gives fields S̃𝓁 ∈ Hk+1
S,Γ t

(Ω) and

T̃𝓁 ∈ Hk+1
T,Γ t

(Ω) as well as

S =
L∑

𝓁=−L
𝜑𝓁S|Ω𝓁

=
L∑

𝓁=−L
S̃𝓁 + symRot

L∑
𝓁=−L

T̃𝓁

∈ Hk+1
S,Γt

(Ω) + symRot Hk+1
T,Γt

(Ω) ⊂ Hk,k−1
S,Γt

(divDiv,Ω).

As all operations have been linear and continuous, we set

k,k−1,1
divDivS,Γt

S ∶=
L∑

𝓁=−L
S̃𝓁 ∈ Hk+1

S,Γt
(Ω), k,k−1,0

divDivS,Γt
S ∶=

L∑
𝓁=−L

T̃𝓁 ∈ Hk+1
T,Γt

(Ω).

• Let k ≥ 0 and let S ∈ Hk
S,Γ t

(divDiv,Ω). Then by definition, S|Ω𝓁
∈ Hk

S,Γt,𝓁
(divDiv,Ω𝓁) and we decompose by

Corollary 3.4

S|Ω𝓁
= S𝓁,1 + symRot T𝓁,0

with S𝓁,1 ∶= k,k−1,1
divDivS,Γt,𝓁

S|Ω𝓁
∈ Hk+2

S,Γt,𝓁
(Ω𝓁) and T𝓁,0 ∶= k,k−1,0

divDivS,Γt,𝓁
S|Ω𝓁

∈ Hk+1
T,Γt,𝓁

(Ω𝓁). Now we follow the argu-

ments from (C1). Note that still only S𝓁 ∈ Hk+1
S,Γ̂t,𝓁

(Ω𝓁) holds, that is, we have lost one order of regularity for S𝓁 .
Nevertheless, we get

S ∈ Hk+1
S,Γt

(Ω) + symRot Hk+1
T,Γt

(Ω),

and all operations have been linear and continuous. But this implies by the previous step

S ∈ Hk+1,k
S,Γt

(divDiv,Ω) + symRot Hk+1
T,Γt

(Ω).

Again, by the previous step, we obtain

S ∈ Hk+2
S,Γt

(Ω) + symRot Hk+2
T,Γt

(Ω) + symRot Hk+1
T,Γt

(Ω)

= Hk+2
S,Γt

(Ω) + symRot Hk+1
T,Γt

(Ω) ⊂ Hk
S,Γt

(divDiv,Ω),

and all operations have been linear and continuous.

It remains to prove the assertions on the operators devGrad and Gradgrad.

• Let v ∈ Hk
Γ t
(devGrad,Ω). Then by Corollary 3.6,

𝜑𝓁v ∈ Hk
Γ̂t,𝓁

(devGrad,Ω𝓁) = Hk
Γ̂t,𝓁

(devGrad,Ω𝓁) = Hk+1
Γ̂t,𝓁

(Ω𝓁).

Extending 𝜑𝓁v by zero to Ω yields v𝓁 ∈ Hk+1
Γ t

(Ω) and v =
∑
𝓁
𝜑𝓁v =

∑
𝓁

v𝓁 ∈ Hk+1
Γ t

(Ω).

• Let u ∈ Hk
Γ t
(Gradgrad,Ω). Then by Corollary 3.6,

𝜑𝓁u ∈ Hk
Γ̂t,𝓁

(Gradgrad,Ω𝓁) = Hk
Γ̂t,𝓁

(Gradgrad,Ω𝓁) = Hk+2
Γ̂t,𝓁

(Ω𝓁).

Extending 𝜑𝓁u by zero to Ω yields u𝓁 ∈ Hk+2
Γ t

(Ω) and u =
∑
𝓁
𝜑𝓁u =

∑
𝓁

u𝓁 ∈ Hk+2
Γ t

(Ω).

• Let u ∈ Hk,k−1
Γ t

(Gradgrad,Ω). Then 𝜑𝓁u ∈ Hk,k−1
Γ̂t,𝓁

(Gradgrad,Ω𝓁) = Hk+1
Γ̂t,𝓁

(Ω𝓁) by (7). Extending 𝜑𝓁u by zero to Ω

yields u𝓁 ∈ Hk+1
Γ t

(Ω) and u =
∑
𝓁
𝜑𝓁u =

∑
𝓁

u𝓁 ∈ Hk+1
Γ t

(Ω).

The proof is finished.
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PAULY and SCHOMBURG

Proof of Theorem 3.12. Note that these types of compact embeddings are independent of 𝜀 and 𝜇 (cf. [5, Lemma 5.1]).
So, let 𝜀 = 𝜇 = id. Lemma 3.10 (for k = 0) yields, for example, the bounded regular decomposition

D(A1) = H
S,Γt

(Rot,Ω) = H1
S,Γt

(Ω) + Gradgrad H2
Γt
(Ω)

with H+
1 = H1

S,Γ t
(Ω) and H+

0 = H2
Γ t
(Ω) and H1 = L2

S
(Ω), H0 = L2(Ω). Rellich's selection theorem and [3, Corollary 2.12]

(cf. [1, Lemma 2.22]) yield that D(A1) ∩ D(A∗
0) → H1 is compact. Analogously, we show the compactness of D(A2) ∩

D(A∗
1) → H2 using, for example, the bounded regular decomposition D(A2) = H

T,Γ t
(Div,Ω) = H1

T,Γ t
(Ω)+Rot H1

S,Γ t
(Ω).

Proof of Theorem 3.16. We only show the representations for R
(
TRotk

S,Γt

)
and R

(
divDivk

S,Γt

)
. The others follow

analogously.

• By Lemma 3.10 and Corollary 3.11, we have

R
(
TRotk

S,Γt

)
= Rot Hk

S,Γt
(Rot,Ω) = Rot Hk+1

S,Γt
(Ω). (C2)

Moreover,

R
(
TRotk

S,Γt

)
⊂ Hk

T,Γt ,0
(Div,Ω) ∩

T,Γn,Γt ,𝜇
(Ω)⟂L2

T
(Ω)

= Hk
T,Γt

(Ω) ∩ H
T,Γt ,0

(Div,Ω) ∩
T,Γn,Γt ,𝜇

(Ω)⟂L2
T
(Ω) = Hk

T,Γt
(Ω) ∩ R

(
TRotS,Γt

)
,

since by Theorem 3.15 (iv)

R
(
TRotS,Γt

)
= H

T,Γt ,0
(Div,Ω) ∩

T,Γn,Γt ,𝜇
(Ω)⟂L2

T
(Ω) . (C3)

Thus, it remains to show

Hk
T,Γt ,0

(Div,Ω) ∩
T,Γn,Γt ,𝜇

(Ω)⟂L2
T
(Ω) ⊂ Rot Hk

S,Γt
(Rot,Ω), k ≥ 1.

For this, let k ≥ 1 and T ∈ Hk
T,Γ t ,0

(Div,Ω) ∩
T,Γ n,Γ t ,𝜇

(Ω)⟂L2
T
(Ω) . By (C3) and (C2), we have

T ∈ R
(
TRotS,Γt

)
= Rot H1

S,Γt
(Ω),

and hence there is S1 ∈ H1
S,Γ t

(Ω) such that Rot S1 = T. We see S1 ∈ H1
S,Γ t

(Rot,Ω). Hence, we are done for k = 1.
For k ≥ 2, we have T ∈ Rot H1

S,Γ t
(Rot,Ω) = Rot H2

S,Γ t
(Ω) by (C2). Thus there is S2 ∈ H2

S,Γ t
(Ω) such that RotS2 = T.

Then S2 ∈ H2
S,Γ t

(Rot,Ω), and we are done for k = 2. After finitely many steps, we observe that T belongs to
Rot Hk

S,Γ t
(Rot,Ω).

• By Lemma 3.10 and Corollary 3.11, we have

divDivHk+2
S,Γt

(Ω) ⊂ divDiv Hk+1,k
S,Γt

(divDiv,Ω) = R
(

divDivk+1,k
S,Γt

)
⊂ divDiv Hk

S,Γt
(divDiv,Ω) = R

(
divDivk

S,Γt

)
= divDiv Hk+2

S,Γt
(Ω).

In particular,

R
(

divDivk
S,Γt

)
= divDiv Hk

S,Γt
(divDiv,Ω) = divDiv Hk+2

S,Γt
(Ω). (C4)

Moreover,

R
(

divDivk
S,Γt

)
⊂ Hk

Γt
(Ω) ∩

(
P

1
Γn

)⟂L2(Ω) = Hk
Γt
(Ω) ∩ R

(
divDivS,Γt

)
,

3885

 10991476, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.9437 by Saechsische L

andesbibliothek, W
iley O

nline L
ibrary on [28/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



PAULY and SCHOMBURG

since

R
(
divDivS,Γt

)
= L2(Ω) ∩

(
P

1
Γn

)⟂L2 (Ω) . (C5)

Thus, it remains to show

Hk
Γt
(Ω) ∩

(
P

1
Γn

)⟂L2(Ω)
⊂ divDiv Hk

S,Γt
(divDiv,Ω), k ≥ 1.

For this, let k ≥ 1 and u ∈ Hk
Γ t
(Ω) ∩

(
P

1
Γ n

)⟂L2(Ω) . By (C5) and (C4), we have

u ∈ R
(
divDivS,Γt

)
= divDiv H2

S,Γt
(Ω),

and hence there is S1 ∈ H2
S,Γ t

(Ω) such that divDiv S1 = u. We see S1 ∈ H2
S,Γ t

(divDiv,Ω) resp. S1 ∈ H1
S,Γ t

(divDiv,Ω)
if k = 1. Hence, we are done for k = 1 and k = 2. For k ≥ 2, we have u ∈ divDiv H2

S,Γ t
(divDiv,Ω) = divDiv H4

S,Γ t
(Ω)

by (C4). Thus, there is S2 ∈ H4
S,Γ t

(Ω) such that divDivS2 = u. Then S2 ∈ H4
S,Γ t

(divDiv,Ω) resp. S2 ∈ H3
S,Γ t

(divDiv,Ω)
if k = 3, and we are done for k = 3 and k = 4. After finitely many steps, we observe that u belongs to
divDiv Hk

S,Γ t
(divDiv,Ω), finishing the proof.

Proof of Theorem 3.19. We follow in close lines the proof of [3, Theorem 4.11] (cf. [1, Theorem 4.16] and [2, Theorem
3.19]), using induction. The case k = 0 is given by Theorem 3.12. Let k ≥ 1 and let (S𝓁) be a bounded sequence in
Hk

S,Γ t
(Rot,Ω) ∩ Hk

S,Γ n
(divDiv,Ω). Note that

Hk
S,Γt

(Rot,Ω) ∩ Hk
S,Γn

(divDiv,Ω) ⊂ Hk
S,Γt

(Ω) ∩ Hk
S,Γn

(Ω) = Hk
S,Γ(Ω).

By assumption and w.l.o.g., we have that (S𝓁) is a Cauchy sequence in Hk−1
S,Γ (Ω). Moreover, for all |𝛼| = k, we have

𝜕𝛼S𝓁 ∈ H
S,Γ t

(Rot,Ω) ∩ H
S,Γ n

(divDiv,Ω) with Rot 𝜕𝛼S𝓁 = 𝜕𝛼Rot S𝓁 and divDiv 𝜕𝛼S𝓁 = 𝜕𝛼divDiv S𝓁 by Lemma 3.18.
Hence, (𝜕𝛼S𝓁) is a bounded sequence in the zero order space H

S,Γ t
(Rot,Ω) ∩ H

S,Γ n
(divDiv,Ω). Thus, w.l.o.g. (𝜕𝛼S𝓁) is

a Cauchy sequence in L2
S
(Ω) by Theorem 3.12. Finally, (S𝓁) is a Cauchy sequence in Hk

S,Γ(Ω). Analogously, we show
the assertion for the second compact embedding.

Proof of Remark 3.20. Let (S𝓁) be a bounded sequence in Hk
S,Γ t

(Rot,Ω)∩Hk
S,Γ n

(divDiv,Ω). In particular, (S𝓁) is bounded
in Hk

S,Γ t
(Rot,Ω) ∩ Hk,k−1

S,Γ n
(divDiv,Ω). According to Lemma 3.10, that is,

Hk,k−1
S,Γt

(divDiv,Ω) = Hk+1
S,Γt

(Ω) + symRot Hk+1
T,Γt

(Ω),

we decompose S𝓁 = S̃𝓁 + symRot T𝓁 with S̃𝓁 ∈ Hk+1
S,Γ t

(Ω) and T𝓁 ∈ Hk+1
T,Γ t

(Ω). By the boundedness of the regu-
lar decomposition operators, (S̃𝓁) and (T𝓁) are bounded in Hk+1

S,Γ t
(Ω) and Hk+1

T,Γ t
(Ω), respectively. W.l.o.g. (S̃𝓁) and (T𝓁)

converge in Hk
S,Γ t

(Ω) and Hk
T,Γ t

(Ω), respectively. For all 0 ≤ |𝛼| ≤ k, Lemma 3.18 yields (𝜕𝛼S𝓁) ⊂ H
S,Γ t

(Rot,Ω) and
Rot 𝜕𝛼S𝓁 = 𝜕𝛼Rot S𝓁 . With the notations S𝓁,l ∶= S𝓁 − Sl, S̃𝓁,l ∶= S̃𝓁 − S̃l, and T𝓁,l ∶= T𝓁 − Tl, we get

||S𝓁,l||2Hk
S
(Ω) = ⟨S𝓁,l, S̃𝓁,l⟩Hk

S
(Ω) + ⟨S𝓁,l, symRot T𝓁,l⟩Hk

S
(Ω)

= ⟨S𝓁,l, S̃𝓁,l⟩Hk
S
(Ω) + ⟨Rot S𝓁,l,T𝓁,l⟩Hk

T
(Ω) ≤ c

(||S̃𝓁,l||Hk
S
(Ω) + ||T𝓁,l||Hk

T
(Ω)

)
→ 0,

completing the proof.
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PAULY and SCHOMBURG

Proof of Theorem 3.29. Theorem 3.25 and (15) show

Hk
S,Γt

(Rot,Ω) = R
(
̃k,1

TRotS,Γt

)
∔ Hk

S,Γt ,0
(Rot,Ω),

Hk
S,Γt ,0

(Rot,Ω) = Gradgrad Hk+2
Γt

(Ω) + LinTRotS,Γt (Ω).

To prove the directness of the second sum, let

dΩ,S,Γt∑
𝓁=1

𝜆𝓁BTRotS,Γt
𝓁 ∈ Gradgrad Hk+2

Γt
(Ω) ∩ LinTRotS,Γt (Ω).

Then 0 =
∑

𝓁𝜆𝓁𝜋N(divDivS,Γn𝜀)B
TRotS,Γt
𝓁 ∈ Lin𝜋N(divDivS,Γn𝜀)

TRotS,Γt and therefore 𝜆𝓁 = 0 for all 𝓁 as 𝜋N(divDivS,Γn𝜀)
TRotS,Γt is

a basis of S,Γ t ,Γ n ,𝜀(Ω) by Theorem 3.28. Concerning the boundedness of the decompositions, let

Hk
S,Γt ,0

(Rot,Ω) ∋ S = Gradgrad u + B, u ∈ Hk+2
Γt

(Ω), B ∈ LinTRotS,Γt (Ω).

By Theorem 3.24 Gradgrad u ∈ R(SGradgradk
Γt
) and ũ ∶= k

SGradgrad,Γ t
Gradgrad u ∈ Hk+2

Γ t
(Ω) solves Gradgrad ũ =

Gradgrad u with |ũ|Hk+2(Ω) ≤ c |Gradgrad u| Hk
S
(Ω). Therefore,

|ũ|Hk+2(Ω) + |B|Hk
S
(Ω) ≤ c

(|Gradgradu| Hk
S
(Ω) + |B|Hk

S
(Ω)

)
≤ c

(|S| Hk
S
(Ω) + |B|Hk

S
(Ω)

)
.

Note that the mapping

I𝜋N(divDivS,Γn 𝜀) ∶ LinTRotS,Γt (Ω) → Lin𝜋N(divDivS,Γn𝜀)
TRotS,Γt (Ω) = 

S,Γt ,Γn,𝜀
(Ω)

BTRotS,Γt
𝓁 → 𝜋N(divDivS,Γn𝜀)B

TRotS,Γt 𝓁

is a topological isomorphism (between finite dimensional spaces and with arbitrary norms). Thus,

|B|Hk
S
(Ω) ≤ c|B|L2

S
(Ω) ≤ c |||𝜋N(divDivS,Γn𝜀)B

||| L2
S
(Ω) = c |||𝜋N(divDivS,Γn𝜀)S

||| L2
S
(Ω) ≤ c|S|L2

S
(Ω) ≤ c|S|Hk

S
(Ω).

Finally, we see S = Gradgrad ũ + B ∈ Gradgrad Hk+2
Γ t

(Ω) ∔ LinTRotS,Γt (Ω) and

|ũ|Hk+2(Ω) + |B|Hk
S
(Ω) ≤ c|S|Hk

S
(Ω).

The other assertions for Hk
T,Γ n

(Div,Ω), Hk
T,Γ t

(symRot,Ω), Hk
S,Γ n

(divDiv,Ω), and Hk+1,k
S,Γ n

(divDiv,Ω) follow
analogously.

Proof of Theorem 3.31. For k = 0 and S ∈ 
S,Γ t ,Γ n,𝜀

(Ω) ∩ TRotS,Γt (Ω)
⟂L2

S,𝜀
(Ω) we have

0 =
⟨

S,BTRotS,Γt
𝓁

⟩
L2
S,𝜀(Ω)

=
⟨
𝜋N(divDivS,Γn𝜀)S,BTRotS,Γt

𝓁

⟩
L2
S,𝜀(Ω)

=
⟨

S, 𝜋N(divDivS,Γn𝜀)B
TRotS,Γt
𝓁

⟩
L2
S,𝜀(Ω)

and hence S = 0 by Theorem 3.28. Analogously, we see for S ∈ 
S,Γ t ,Γ n,𝜀

(Ω) ∩ divDivS,Γn (Ω)⟂L2
S
(Ω)

0 =
⟨

S,BdivDivS,Γn
𝓁

⟩
L2
S
(Ω) =

⟨
𝜋N(TRotS,Γt )S, 𝜀

−1BdivDivS,Γn
𝓁

⟩
L2
S,𝜀(Ω)

=
⟨

S, 𝜋N(TRotS,Γt )𝜀
−1BdivDivS,Γn

𝓁

⟩
L2
S,𝜀(Ω)
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PAULY and SCHOMBURG

and thus S = 0 again by Theorem 3.28. According to (14), we can decompose

N
(
divDivS,Γn𝜀

)
= R(𝜀−1

SRotT,Γn )⊕L2
S,𝜀(Ω)


S,Γt ,Γn,𝜀

(Ω),

N
(
TRotS,Γt

)
= R

(
SGradgradΓt

)
⊕L2

S,𝜀(Ω)


S,Γt ,Γn,𝜀
(Ω),

which shows by (17) the other two assertions. Let k ≥ 0. The case k = 0 and Theorem 3.16 show

N
(

divDivk
S,Γn

𝜀
)
∩ TRotS,Γt (Ω)

⟂L2
S,𝜀

(Ω) = 𝜀−1Hk
S,Γn

(Ω) ∩ N
(
divDivS,Γn𝜀

)
∩ TRotS,Γt (Ω)

⟂L2
S,𝜀

(Ω)

= 𝜀−1Hk
S,Γn

(Ω) ∩ R
(
𝜀−1

SRotT,Γn

)
= R

(
𝜀−1

SRotk
T,Γn

)
= 𝜀−1symRot Hk+1

T,Γn
(Ω),

N
(
TRotk

S,Γt

)
∩ divDivS,Γn (Ω)⟂L2

S
(Ω) = Hk

S,Γt
(Ω) ∩ N

(
TRotS,Γt

)
∩ divDivS,Γn (Ω)⟂L2

S
(Ω)

= Hk
S,Γt

(Ω) ∩ R
(
SGradgradΓt

)
= R

(
SGradgradk

Γt

)
= Gradgrad Hk+2

Γt
(Ω).

Analogously, we prove the assertions for the remaining L2
T,𝜇(Ω)-related spaces.

APPENDIX D: SOME TECHNICAL REMARKS

Remark D.1 (Bounded regular decompositions from bounded regular potentials). It holds

Rot ̃k,1
TRotS,Γt

= Rot k,1
TRotS,Γt

= TRotk
S,Γt

,

Div ̃k,1
DivT,Γt

= Div k,1
DivT,Γt

= Divk
T,Γt

,

symRot ̃k,1
SRotT,Γt

= symRot k,1
SRotT,Γt

= SRotk
T,Γt

,

divDiv ̃k,1
divDivS,Γt

= divDiv k,1
divDivS,Γt

= divDivk
S,Γt

,

divDiv ̃k+1,k,1
divDivS,Γt

= divDiv k+1,k,1
divDivS,Γt

= divDivk+1,k
S,Γt

.

Therefore, the kernels Hk
S,Γ t ,0

(Rot,Ω), Hk
T,Γ t ,0

(Div,Ω), Hk
T,Γ t ,0

(symRot,Ω), and Hk
S,Γ t ,0

(divDiv,Ω), Hk+1
S,Γ t ,0

(divDiv,Ω)
are invariant under k,1

T
RotS ,Γ t

, ̃k,1
T

RotS ,Γ t
, k,1

DivT,Γ t
, ̃k,1

DivT,Γ t
, k,1

SRotT,Γ t
, ̃k,1

SRotT,Γ t
, k,1

divDivS,Γ t
, ̃k,1

divDivS,Γ t
, and

k+1,k,1
divDivS,Γ t

, ̃k+1,k,1
divDivS,Γ t

, respectively. Moreover,

R
(
̃k,1

TRotS,Γt

)
= R

(
k

T
RotS ,Γt

)
, ̃k,1

T
RotS ,Γt

=k,1
T

RotS ,Γt

(
TRotk

S,Γt

)−1

⟂
TRotk

S,Γt
,

R
(
̃k,1

DivT,Γt

)
= R

(
k

DivT,Γt

)
, ̃k,1

DivT,Γt
=k,1

DivT,Γt

(
Divk

T,Γt

)−1

⟂
Divk

T,Γt
,

R
(
̃k,1

SRotT,Γt

)
= R(k

SRotT,Γt
), ̃k,1

SRotT,Γt
=k,1

SRotT,Γt

(
SRotT,Γt

k)−1
⟂ SRotT,Γt

k,

R
(
̃k,1

divDivS,Γt

)
= R

(
k

divDivS,Γt

)
, ̃k,1

divDivS,Γt
=k,1

divDivS,Γt

(
divDivk

S,Γt

)−1

⟂
divDivk

S,Γt
,

R
(
̃k+1,k,1

divDivS,Γt

)
= R

(
k+1,k

divDivS,Γt

)
, ̃k+1,k,1

divDivS,Γt
=k+1,k,1

divDivS,Γt

(
divDivk+1,k

S,Γt

)−1

⟂
divDivk+1,k

S,Γt
.

Hence, ̃k,1
T

RotS ,Γ t
, ̃k,1

DivT,Γ t
, ̃k,1

SRotT,Γ t
, ̃k,1

divDivS,Γ t
, and ̃k+1,k,1

divDivS,Γ t
coincide with k,1

T
RotS ,Γ t

, k,1
DivT,Γ t

, k,1
SRotT,Γ t

, k,1
divDivS,Γ t

, and
k+1,k,1

divDivS,Γ t
on the reduced domains of definition

D
((

TRotk
S,Γt

)
⟂

)
, D

((
Divk

T,Γt

)
⟂

)
, D

((
SRotk

T,Γt

)
⟂

)
, D

((
divDivk

S,Γt

)
⟂

)
, D

((
divDivk+1,k

S,Γt

)
⟂

)
,
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PAULY and SCHOMBURG

respectively. Thus, ̃k,1
T

RotS ,Γ t
, ̃k,1

DivT,Γ t
, ̃k,1

SRotT,Γ t
, ̃k,1

divDivS,Γ t
, and ̃k+1,k,1

divDivS,Γ t
may differ from k,1

T
RotS ,Γ t

, k,1
DivT,Γ t

,
k,1

SRotT,Γ t
, k,1

divDivS,Γ t
, and k+1,k,1

divDivS,Γ t
only on the kernels

N
(
TRotk

S,Γt

)
= Hk

S,Γt ,0
(Rot,Ω), N

(
Divk

T,Γt

)
= Hk

T,Γt ,0
(Div,Ω), N

(
SRotk

T,Γt

)
= Hk

T,Γt ,0
(symRot,Ω),

and N
(

divDivk
S,Γt

)
= Hk

S,Γ t ,0
(divDiv,Ω), N

(
divDivk+1,k

S,Γt

)
= Hk+1

S,Γ t ,0
(divDiv,Ω), respectively.

Remark D.2 (Projections). Recall Theorem 3.25, for example, for divDivk
S,Γt

Hk
S,Γt

(divDiv,Ω) = R
(
̃k,1

divDivS,Γt

)
∔ R

(
̃ k

divDivS,Γt

)
.

(i) ̃k,1
divDivS,Γ t

and ̃ k
divDivS,Γ t

= 1 − ̃k,1
divDivS,Γ t

are projections.

(i') ̃k,1
divDivS,Γ t

̃ k
divDivS,Γ t

= ̃ k
divDivS,Γ t

̃k,1
divDivS,Γ t

= 0.

(ii) For I± ∶= ̃k,1
divDivS,Γ t

±̃ k
divDivS,Γ t

, it holds I+ = I2
− = idHk

S,Γ t
(divDiv,Ω). Therefore, I+, I2

−, as well as I− = 2̃k,1
divDivS,Γ t

−

idHk
S,Γ t

(divDiv,Ω) are topological isomorphisms on Hk
S,Γ t

(divDiv,Ω).

(iii) There exists c > 0 such that for all S ∈ Hk
S,Γ t

(divDiv,Ω)

c |||̃k,1
divDivS,Γt

S||| Hk+2
S

(Ω) ≤ |divDiv S| Hk(Ω) ≤ |S|Hk
S
(divDiv,Ω),|||̃ k

divDivS,Γt
S||| Hk

S
(Ω) ≤ |S|Hk

S
(Ω) +

|||̃k,1
divDivS,Γt

S||| Hk
S
(Ω).

(iii') For S ∈ Hk
S,Γ t ,0

(divDiv,Ω), we have ̃k,1
divDivS,Γ t

S = 0 and ̃ k
divDivS,Γ t

S = S. In particular, ̃ k
divDivS,Γ t

is onto.

Similar results to (i)–(iii′) hold also for TRotk
S,Γt

, Divk
T,Γt

, SRotk
T,Γt

, and divDivk+1,k
S,Γt

. In particular, ̃k,1
T

RotS ,Γ t
, ̃k,1

DivT,Γ t
,

̃k,1
SRotT,Γ t

, ̃k+1,k,1
divDivS,Γ t

, and ̃ k,1
T

RotS ,Γ t
, ̃ k,1

DivT,Γ t
, ̃ k,1

SRotT,Γ t
, and ̃ k+1,k,1

divDivS,Γ t
are projections and there exists c > 0 such that for

all S ∈ Hk
S,Γ t

(Rot,Ω), T ∈ Hk
T,Γ t

(Div,Ω), T̂ ∈ Hk
T,Γ t

(symRot,Ω), and Ŝ ∈ Hk+1,k
S,Γ t

(divDiv,Ω)

|||̃k,1
T

RotS ,Γt
S||| Hk+1

S
(Ω) ≤ c |Rot S| Hk

T
(Ω),

|||̃k,1
SRotT,Γt

T̂||| Hk+1
T

(Ω) ≤ c |||symRot T̂||| Hk
S
(Ω),|||̃k,1

DivT,Γt
T||| Hk+1

T
(Ω) ≤ c |Div T| Hk(Ω),

|||̃k+1,k,1
divDivS,Γt

Ŝ||| Hk+2
S

(Ω) ≤ c |||divDiv Ŝ||| Hk(Ω).

Remark D.3 (Bounded regular direct decompositions). By Theorem 3.29, we have, for example,

Hk
S,Γt

(Rot,Ω) = R
(
̃k,1

T
RotS ,Γt

)
∔ LinTRotS,Γt (Ω) ∔ Gradgrad Hk+2

Γt
(Ω)

= Hk+1
S,Γt

(Ω) + Gradgrad Hk+2
Γt

(Ω)

with bounded linear regular direct decomposition operators

̂k,1
T

RotS ,Γt
∶ Hk

S,Γt
(Rot,Ω) → R

(
̃k,1

T
RotS ,Γt

)
⊂ Hk+1

S,Γt
(Ω),

̂k,∞
T

RotS ,Γt
∶ Hk

S,Γt
(Rot,Ω) → LinTRotS,Γt (Ω) ⊂ H∞

S,Γt ,0
(Rot,Ω) ⊂ Hk+1

S,Γt
(Ω),

̂k,0
T

RotS ,Γt
∶ Hk

S,Γt
(Rot,Ω) → Hk+2

Γt
(Ω)

satisfying ̂k,1
T

RotS ,Γ t
+ ̂k,∞

T
RotS ,Γ t

+ Gradgrad ̂k,0
T

RotS ,Γ t
= idHk

S,Γ t
(Rot,Ω).
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PAULY and SCHOMBURG

A closer inspection of the proof allows for a more precise description of these bounded decomposition operators.
For this, let S ∈ Hk

S,Γ t
(Rot,Ω). According to Theorem 3.25 and Remark D.2, we decompose

S = SR + SN ∶= ̃k,1
T

RotS ,Γt
S + ̃ k

T
RotS ,Γt

S ∈ R
(
̃k,1

T
RotS ,Γt

)
∔ R

(
̃ k

T
RotS ,Γt

)

with R
(
̃ k

T
RotS ,Γ t

)
= Hk

S,Γ t ,0
(Rot,Ω) = N

(
TRotk

S,Γt

)
. By Theorem 3.29 we further decompose

Hk
S,Γt ,0

(Rot,Ω) ∋ SN = Gradgrad ũ + BinGradgrad Hk+2
Γt

(Ω) ∔ LinTRotS,Γt (Ω).

Then 𝜋N(divDivS,Γn𝜀)SN = 𝜋N(divDivS,Γn𝜀)B ∈ 
S,Γ t ,Γ n,𝜀

(Ω) and thus

B = I−1
𝜋N(divDivS,Γn 𝜀)𝜋N(divDivS,Γn𝜀)SN ∈ LinTRotS,Γt (Ω).

Therefore,

ũ = k
SGradgrad,Γt

Gradgradũ =k
SGradgrad,Γt

(SN − B)

=k
S

Gradgrad,Γt

(
1 − I−1

𝜋N(divDivS,Γn 𝜀)𝜋N(divDivS,Γn𝜀)

)
SN .

Finally, we see

̂k,1
TRotS,Γt

= ̃k,1
TRotS,Γt

= k
TRotS,Γt

TRotk
S,Γt

,= k,1
TRotS,Γt

(
TRotk

S,Γt

)−1

⟂
TRotk

S,Γt
,

̂k,∞
TRotS,Γt

= I−1
𝜋N(divDivS,Γn 𝜀)𝜋N(divDivS,Γn𝜀)̃

k
TRotS,Γt

,

̂k,0
TRotS,Γt

=k
SGradgrad,Γt

(
1 − I−1

𝜋N(divDivS,Γn 𝜀)𝜋N(divDivS,Γn𝜀)

)
̃ k

TRotS,Γt

with ̃ k
T

RotS ,Γ t
= 1 − ̃k,1

T
RotS ,Γ t

. Analogously, we have for the other spaces

Hk
T,Γn

(Div,Ω) = R
(
̃k,1

DivT,Γn

)
∔ LinDivT,Γn (Ω) ∔ Rot Hk+1

S,Γn
(Ω)

= Hk+1
T,Γn

(Ω) + Rot Hk+1
S,Γn

(Ω),

Hk
T,Γt

(symRot,Ω) = R
(
̃k,1

SRotT,Γt

)
∔ LinSRotT,Γt (Ω) ∔ devGrad Hk+1

Γt
(Ω)

= Hk+1
T,Γt

(Ω) + devGrad Hk+1
Γt

(Ω),

Hk
S,Γn

(divDiv,Ω) = R
(
̃k,1

divDivS,Γn

)
∔ LindivDivS,Γn (Ω) ∔ symRot Hk+1

T,Γn
(Ω)

= Hk+2
S,Γn

(Ω) + symRot Hk+1
T,Γn

(Ω),

Hk+1,k
S,Γn

(divDiv,Ω) = R
(
̃k+1,k,1

divDivS,Γn

)
∔ LindivDivS,Γn (Ω) ∔ symRot Hk+2

T,Γn
(Ω)

= Hk+2
S,Γn

(Ω) + symRot Hk+2
T,Γn

(Ω)
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PAULY and SCHOMBURG

with bounded linear regular direct decomposition operators

̂k,1
DivT,Γn

∶ Hk
T,Γn

(Div,Ω) → R
(
̃k,1

DivT,Γn

)
⊂ Hk+1

T,Γn
(Ω),

̂k,∞
DivT,Γn

∶ Hk
T,Γn

(Div,Ω) → LinDivT,Γn (Ω) ⊂ H∞
T,Γn,0

(Div,Ω) ⊂ Hk+1
T,Γn

(Ω),

̂k,0
DivT,Γn

∶ Hk
T,Γn

(Div,Ω) → Hk+1
S,Γn

(Ω),

̂k,1
SRotT,Γt

∶ Hk
T,Γt

(symRot,Ω) → R
(
̃k,1

SRotT,Γt

)
⊂ Hk+1

T,Γt
(Ω),

̂k,∞
SRotT,Γt

∶ Hk
T,Γt

(symRot,Ω) → LinSRotT,Γt (Ω) ⊂ H∞
T,Γt ,0

(symRot,Ω) ⊂ Hk+1
T,Γt

(Ω),

̂k,0
SRotT,Γt

∶ Hk
T,Γt

(symRot,Ω) → Hk+1
Γt

(Ω),

̂k,1
divDivS,Γn

∶ Hk
S,Γn

(divDiv,Ω) → R
(
̃k,1

divDivS,Γn

)
⊂ Hk+2

S,Γn
(Ω),

̂k,∞
divDivS,Γn

∶ Hk
S,Γn

(divDiv,Ω) → LindivDivS,Γn (Ω) ⊂ H∞
S,Γn,0

(divDiv,Ω) ⊂ Hk+2
S,Γn

(Ω),

̂k,0
divDivS,Γn

∶ Hk
S,Γn

(divDiv,Ω) → Hk+1
T,Γn

(Ω),

̂k+1,k,1
divDivS,Γn

∶ Hk+1,k
S,Γn

(divDiv,Ω) → R
(
̃k+1,k,1

divDivS,Γn

)
⊂ Hk+2

S,Γn
(Ω),

̂k+1,k,∞
divDivS,Γn

∶ Hk+1,k
S,Γn

(divDiv,Ω) → LindivDivS,Γn (Ω) ⊂ H∞
S,Γn,0

(divDiv,Ω) ⊂ Hk+2
S,Γn

(Ω),

̂k+1,k,0
divDivS,Γn

∶ Hk+1,k
S,Γn

(divDiv,Ω) → Hk+2
T,Γn

(Ω)

satisfying

̂k,1
DivT,Γn

+ ̂k,∞
DivT,Γn

+ Rot ̂k,0
DivT,Γn

= idHk
T,Γn

(Div,Ω),

̂k,1
SRotT,Γt

+ ̂k,∞
SRotT,Γt

+ devGrad ̂k,0
SRotT,Γt

= idHk
T,Γt

(symRot,Ω),

̂k,1
divDivS,Γn

+ ̂k,∞
divDivS,Γn

+ symRot ̂k,0
divDivS,Γn

= idHk
S,Γn

(divDiv,Ω),

̂k+1,k,1
divDivS,Γn

+ ̂k+1,k,∞
divDivS,Γn

+ symRot ̂k+1,k,0
divDivS,Γn

= idHk+1,k
S,Γn

(divDiv,Ω)

and

̂k,1
DivT,Γn

= ̃k,1
DivT,Γn

= k
DivT,Γn

Divk
T,Γn

= k,1
DivT,Γn

(
Divk

T,Γn

)−1

⟂
Divk

T,Γn
,

̂k,∞
DivT,Γn

= I−1
𝜋

N
(
S

RotT,Γt
)𝜋N(SRotT,Γt)̃

k
DivT,Γn

,

̂k,0
DivT,Γn

= ̃k,1
SRotT,Γt

= k
SRotT,Γt

SRotk
T,Γt

= k,1
SRotT,Γt

(
SRotk

T,Γt

)−1

⟂
SRotk

T,Γt
,

̂k,∞
SRotT,Γt

= I−1
𝜋N(DivT,Γn 𝜇)𝜋N(DivT,Γn𝜇)̃

k
SRotT,Γt

,

̂k,0
SRotT,Γt

= k
TGrad,Γt

(
1 − I−1

𝜋N(DivT,Γn 𝜇)𝜋N(DivT,Γn𝜇)

)
̃ k

SRotT,Γt
,

̂k,1
divDivS,Γn

= ̃k,1
divDivS,Γn

= k
divDivS,Γn

divDivk
S,Γn

= k,1
divDivS,Γn

(
divDivk

S,Γn

)−1

⟂
divDivk

S,Γn
,

̂k,∞
divDivS,Γn

= I−1
𝜋N(TRotS,Γt )

𝜋N(TRotS,Γt )̃
k
divDivS,Γn

,

̂k,0
divDivS,Γn

= k
SRotT,Γn

(
1 − I−1

𝜋N(TRotS,Γt )
𝜋N(TRotS,Γt )

)
̃ k

divDivS,Γn
,

̂k+1,k,1
divDivS,Γn

= ̃k+1,k,1
divDivS,Γn

= k+1,k
divDivS,Γn

divDivk+1,k
S,Γn

= k+1,k,1
divDivS,Γn

(
divDivk+1,k

S,Γn

)−1

⟂
divDivk+1,k

S,Γn
,

̂k+1,k,∞
divDivS,Γn

= I−1
𝜋N(TRotS,Γt )

𝜋N(TRotS,Γt )̃
k+1,k
divDivS,Γn

,

̂k+1,k,0
divDivS,Γn

= k+1
SRotT,Γn

(
1 − I−1

𝜋N(TRotS,Γt )
𝜋N(TRotS,Γt )

)
̃ k+1,k

divDivS,Γn
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PAULY and SCHOMBURG

with
̃ k

DivT,Γn
= 1 − ̃k,1

DivT,Γn
, ̃ k

divDivS,Γn
= 1 − ̃k,1

divDivS,Γn
,

̃ k
SRotT,Γt

= 1 − ̃k,1
SRotT,Γt

, ̃ k+1,k
divDivS,Γn

= 1 − ̃k+1,k,1
divDivS,Γn

,

and
I𝜋N(divDivS,Γn 𝜀) ∶ LinTRotS,Γt (Ω) → Lin𝜋N(divDivS,Γn𝜀)

TRotS,Γt (Ω) = S,Γt ,Γn,𝜀(Ω)

BTRotS,Γt
𝓁 → 𝜋N(divDivS,Γn𝜀)B

TRotS,Γt
𝓁 ,

I𝜋N(TRotS,Γt )
∶ LindivDivS,Γn (Ω) → Lin𝜋N(TRotS,Γt )𝜀

−1divDivS,Γn (Ω) = S,Γt ,Γn,𝜀(Ω)

BdivDivS,Γn
𝓁 → 𝜋N(TRotS,Γt )𝜀

−1BdivDivS,Γn
𝓁 ,

I𝜋N(DivT,Γn 𝜇) ∶ LinSRotT,Γt (Ω) → Lin𝜋N(DivT,Γn𝜇)
SRotT,Γt (Ω) = T,Γ⊔,Γ∖,𝜇(Ω)

BSRotT,Γt
𝓁 → 𝜋N(DivT,Γn𝜇)B

SRotT,Γt
𝓁 ,

I𝜋
N
(
S

RotT,Γt
) ∶ LinDivT,Γn (Ω) → Lin𝜋N(SRotT,Γt)𝜇

−1DivT,Γn (Ω) = T,Γt ,Γn,𝜇(Ω)

BDivT,Γn
𝓁 → 𝜋N(SRotT,Γt)𝜇

−1BDivT,Γn
𝓁 .
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