Hilbert complexes with mixed boundary conditions part 3: Biharmonic complexes

Dirk Pauly | Michael Schomburg

Institut für Analysis, Technische Universität Dresden, Germany

Correspondence

Dirk Pauly, Institut für Analysis, Technische Universität Dresden, Germany.
Email: dirk.pauly@tu-dresden.de

Communicated by: M. Waurick

Funding information

There are no funders to report for this submission.

Abstract

We show that the biharmonic Hilbert complex with mixed boundary conditions on bounded strong Lipschitz domains is closed and compact. The crucial results are compact embeddings that follow by abstract arguments using functional analysis together with particular regular decompositions. Higher Sobolev order results are also proved.

KEYWORDS

biharmonic complex, compact embeddings, Hilbert complexes, mixed boundary conditions, regular decompositions, regular potentials

MSC CLASSIFICATION

35A23, 35Q61, 58Axx, 58Jxx

1 | INTRODUCTION

In [1], we investigated the de Rham Hilbert complex with mixed boundary conditions on bounded strong Lipschitz domains

$$
\cdots \xrightarrow{\cdots} \mathrm{L}^{q-1,2}(\Omega) \xrightarrow{\mathrm{d}^{q-1}} \mathrm{~L}^{q, 2}(\Omega) \xrightarrow{\mathrm{d}^{q}} \mathrm{~L}^{q+1,2}(\Omega) \xrightarrow{\cdots} \cdots,
$$

whose 3D version for vector proxies reads

$$
\cdots \xrightarrow{\cdots} \mathrm{L}^{2}(\Omega) \xrightarrow{\mathrm{d}^{0} \equiv \operatorname{grad}} \mathrm{~L}^{2}(\Omega) \xrightarrow{\mathrm{d}^{1} \triangleq \mathrm{rot}} \mathrm{~L}^{2}(\Omega) \xrightarrow{\mathrm{d}^{2} \triangleq \operatorname{div}} \mathrm{~L}^{2}(\Omega) \xrightarrow{\cdots} \cdots .
$$

In [2], we extended our studies and results to the elasticity complex

$$
\cdots \xrightarrow{\cdots} \mathrm{L}^{2}(\Omega) \xrightarrow{\text { symGrad }} \mathrm{L}_{S}^{2}(\Omega) \xrightarrow{\text { RotRot }_{S}^{\top}} \mathrm{L}_{S}^{2}(\Omega) \xrightarrow{\text { Divs }} \mathrm{L}^{2}(\Omega) \xrightarrow{\cdots} \cdots .
$$

In this contribution, the third part of the series, we shall investigate the two biharmonic Hilbert complexes with mixed boundary conditions on a bounded strong Lipschitz domain $\Omega \subset \mathbb{R}^{3}$

$$
\begin{aligned}
& \cdots \xrightarrow{\cdots} \mathrm{L}^{2}(\Omega) \xrightarrow{\text { Gradgrad }} \mathrm{L}_{\mathbb{S}}^{2}(\Omega) \xrightarrow{\text { Rots }} \mathrm{L}_{\mathbb{T}}^{2}(\Omega) \xrightarrow{\text { Div }_{T}} \mathrm{~L}^{2}(\Omega) \xrightarrow{\cdots} \cdots, \\
& \cdots \xrightarrow{\cdots} L^{2}(\Omega) \xrightarrow{\text { devGrad }} L_{\mathbb{T}}^{2}(\Omega) \xrightarrow{\text { symRot }_{T}} L_{\mathbb{S}}^{2}(\Omega) \xrightarrow{\text { divDivs }^{2}} L^{2}(\Omega) \xrightarrow{\cdots} \cdots .
\end{aligned}
$$

Note that these two complexes are formally dual (adjoint) to each other.

As explained in detail in [1, 2], all these Hilbert complexes share the same geometric structure

$$
\cdots \xrightarrow{\cdots} \mathrm{H}_{0} \xrightarrow{\mathrm{~A}_{0}} \mathrm{H}_{1} \xrightarrow{\mathrm{~A}_{1}} \mathrm{H}_{2} \xrightarrow{\cdots} \cdots, \quad R\left(\mathrm{~A}_{0}\right) \subset N\left(\mathrm{~A}_{1}\right),
$$

where A_{0} and A_{1} are densely defined and closed (unbounded) linear operators between Hilbert spaces H_{ℓ}. The corresponding domain Hilbert complex is denoted by

$$
\cdots \xrightarrow{\cdots} D\left(\mathrm{~A}_{0}\right) \xrightarrow{\mathrm{A}_{0}} D\left(\mathrm{~A}_{1}\right) \xrightarrow{\mathrm{A}_{1}} \mathrm{H}_{2} \xrightarrow{\cdots} \cdots .
$$

The goal of this article is to show that the previous biharmonic Hilbert complexes are compact, which is proved by using regular decompositions of the domains of definition of the respective operators as a crucial tool. We shall follow in close lines the rationale from [1, 2]. Along the way, we show the existence of regular potentials and decompositions, compact embeddings, Helmholtz decompositions, closed ranges, Friedrichs/Poincaré type estimates, and bases of the corresponding cohomology groups (generalised Dirichlet/Neumann tensors). Due to the similarity of results, we shall only state those which are most important. In the appendix, we will present some of the crucial proofs, which differ from the proofs of the previously investigated complexes.

2 | BIHARMONIC COMPLEXES I

Throughout this paper, let $\Omega \subset \mathbb{R}^{3}$ be a bounded strong Lipschitz domain with boundary Γ, decomposed into two parts Γ_{t} and $\Gamma_{n}:=\Gamma \backslash \overline{\Gamma_{t}}$ with some relatively open and strong Lipschitz boundary part $\Gamma_{t} \subset \Gamma$. More precisely, we assume generally that $\left(\Omega, \Gamma_{t}\right)$ is a bounded strong Lipschitz pair. We shall consequently use the notations, methods, and results from our corresponding papers for the de Rham complex [1], for the elasticity complex [2, 3], and for the biharmonic complexes [4]. In particular, we recall [1, Section 2, Section 3] including the notion of extendable domains. The standard Lebesgue and Sobolev spaces (scalar or tensor valued) are denoted by $\mathrm{L}^{2}(\Omega)$ and $\mathrm{H}^{k}(\Omega)$ with $k \in \mathbb{N}_{0}$.
We recall that weak and strong boundary conditions coincide for the standard Sobolev spaces with mixed boundary conditions, that is,

$$
\begin{equation*}
\mathbf{H}_{\Gamma_{t}}^{k}(\Omega)=\mathrm{H}_{\Gamma_{t}}^{k}(\Omega) ; \tag{1}
\end{equation*}
$$

and compare [1, Lemma 3.2, Theorem 4.6]. Below, we shall show that "strong $=$ weak" holds generally also for the biharmonic complex. Note that $\mathrm{H}_{\varnothing}^{k}(\Omega)=\mathrm{H}^{k}(\Omega)$ and $\mathrm{H}_{\Gamma_{t}}^{0}(\Omega)=\mathrm{L}^{2}(\Omega)$.
We introduce as usual Grad, Rot, and Div as "row-wise" incarnations of the classical operators grad, rot, and div from the de Rham complex.

2.1 | Operators

Let Gradgrad, Rot, Div, devGrad, symRot, and divDiv be realised as densely defined (unbounded) linear operators

$$
\begin{array}{cll}
\mathbb{S G r a d g r a d}_{\Gamma_{t}}: D\left(\mathbb{S G a d}^{\left(\operatorname{Grad}_{\Gamma_{t}}\right)}\right. & \subset \mathrm{L}^{2}(\Omega) \rightarrow \mathrm{L}_{\mathbb{S}}^{2}(\Omega) ; & u \mapsto \operatorname{Gradgrad} u, \\
{ }_{\mathbb{T}}^{\circ} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}: D\left(\mathbb{T} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}\right) & \subset \mathrm{L}_{\mathbb{S}}^{2}(\Omega) \rightarrow \mathrm{L}_{\mathbb{T}}^{2}(\Omega) ; & S \mapsto \operatorname{Rot} S, \\
\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}: D\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}\right) & \subset \mathrm{L}_{\mathbb{T}}^{2}(\Omega) \rightarrow \mathrm{L}^{2}(\Omega) ; & T \mapsto \operatorname{Div} T, \\
{ }_{\mathbb{T}} \operatorname{Grad}_{\Gamma_{t}}: D\left({ }_{\mathbb{T}} \operatorname{Grad}_{\Gamma_{t}}\right) & \subset \mathrm{L}^{2}(\Omega) \rightarrow \mathrm{L}_{\mathbb{T}}^{2}(\Omega) ; & v \mapsto \operatorname{devGrad} v, \\
{ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}: D\left({ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}\right) & \subset \mathrm{L}_{\mathbb{T}}^{2}(\Omega) \rightarrow \mathrm{L}_{\mathbb{S}}^{2}(\Omega) ; & T \mapsto \operatorname{symRot} T, \\
\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}: D\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}\right) & \subset \mathrm{L}_{\mathbb{S}}^{2}(\Omega) \rightarrow \mathrm{L}^{2}(\Omega) ; & S \mapsto \operatorname{divDiv} S,
\end{array}
$$

where sym $S:=\frac{1}{2}\left(S+S^{\top}\right)$ and $\operatorname{dev} T:=T-\frac{1}{3}(\operatorname{tr} T)$ id, with domains of definition

$$
\begin{aligned}
D\left(\mathbb{S G r a d g r a d}_{\Gamma_{t}}\right): & =\mathrm{C}_{\Gamma_{t}}^{\infty}(\Omega), & D\left(\mathbb{T} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}^{\circ}\right):=\mathrm{C}_{\mathbb{S}, \Gamma_{t}}^{\infty}(\Omega), & D\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}\right):=\mathrm{C}_{\mathbb{T} \Gamma_{t}}^{\infty}(\Omega), \\
D\left(\mathbb{T} \operatorname{Grad}_{\Gamma_{t}}\right): & =\mathrm{C}_{\Gamma_{t}}^{\infty}(\Omega), & D\left({ }_{\mathrm{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}\right):=\mathrm{C}_{\mathbb{T}, \Gamma_{t}}^{\infty}(\Omega), & D\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}\right):=\mathrm{C}_{\mathbb{S}, \Gamma_{t}}^{\infty}(\Omega),
\end{aligned}
$$

satisfying the complex properties

$$
\begin{aligned}
& { }_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}} \mathbb{S} \text { Gradgrad }_{\Gamma_{t}} \subset 0, \quad \operatorname{Div}_{\mathbb{T}, \Gamma_{t}} \mathbb{T}^{\circ} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}} \subset 0, \\
& { }_{s} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}} \mathbb{T}^{G^{\circ}{ }^{\circ}{ }_{\Gamma_{t}} \subset 0, \quad \operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}} \mathbb{S}^{\circ} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}} \subset 0 .}
\end{aligned}
$$

For elementary properties of these operators, see, for example, [3]; in particular, we have a collection of formulas presented in Lemma A. 1 (Appendix A). Here, we introduce the Lebesgue Hilbert spaces and the test spaces of symmetric and deviatoric tensor fields

$$
\begin{aligned}
\mathrm{L}_{\mathbb{S}}^{2}(\Omega):=\left\{S \in \mathrm{~L}^{2}(\Omega): \operatorname{skw} S=0\right\}, & \mathrm{C}_{\mathbb{S}, \Gamma_{t}}^{\infty}(\Omega):=\mathrm{C}_{\Gamma_{t}}^{\infty}(\Omega) \cap \mathrm{L}_{\mathbb{S}}^{2}(\Omega), \\
\mathrm{L}_{\mathbb{T}}^{2}(\Omega):=\left\{S \in \mathrm{~L}^{2}(\Omega): \operatorname{tr} T=0\right\}, & \mathrm{C}_{\mathbb{T}, \Gamma_{t}}^{\infty}(\Omega):=\mathrm{C}_{\Gamma_{t}}^{\infty}(\Omega) \cap \mathrm{L}_{\mathbb{T}}^{2}(\Omega),
\end{aligned}
$$

respectively. We get the first and second biharmonic complexes on smooth tensor fields

$$
\begin{aligned}
& \cdots \xrightarrow{\cdots} L^{2}(\Omega) \xrightarrow{\text { sfradgrad }_{t}} L_{S}^{2}(\Omega) \xrightarrow{{ }_{T} \text { Rots }_{s, \Gamma_{t}}} L_{\mathbb{T}}^{2}(\Omega) \xrightarrow{\text { Diviv }_{T} \Gamma_{t}} L^{2}(\Omega) \xrightarrow{\cdots} \cdots, \\
& \cdots \xrightarrow{\cdots} L^{2}(\Omega) \xrightarrow{\text { Girad }_{\Gamma_{t}}} L_{\mathbb{T}}^{2}(\Omega) \xrightarrow{{ }_{s} \text { Rot }_{T, \Gamma_{t}}} L_{S}^{2}(\Omega) \xrightarrow{\text { divDivs, } \Gamma_{t}} L^{2}(\Omega) \xrightarrow{\cdots} \cdots .
\end{aligned}
$$

For a more algebraically structured introduction of the latter operators suggested by Rainer Picard, see Appendix B. The closures

$$
\begin{aligned}
{ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}:=\overline{{ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}}, & \mathbb{T}^{\operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}}:=\overline{{ }_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}}, \quad \operatorname{Div}_{\mathbb{T}, \Gamma_{t}}:=\overline{\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}}, \\
\operatorname{Grad}_{\Gamma_{t}}:=\overline{{ }_{\mathbb{T}} \operatorname{Grad}_{\Gamma_{t}}}, & { }_{\mathbb{S} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}}:=\overline{{ }_{\mathbb{S}}^{\circ} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}}, \quad \operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}:=\overline{\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}},
\end{aligned}
$$

and Hilbert space adjoints are given by the densely defined and closed linear operators

$$
\begin{aligned}
& { }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}: D\left(\mathrm{SGradgrad}_{\Gamma_{t}}\right) \quad \subset \mathrm{L}^{2}(\Omega) \rightarrow \mathrm{L}_{\mathbb{S}}^{2}(\Omega) ; \quad u \mapsto \operatorname{Gradgrad} u, \\
& \mathbb{S}^{\operatorname{Gradgrad}_{\Gamma_{t}}^{*}=\operatorname{divDiv}_{S, \Gamma_{n}}: D\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}}\right) \quad \subset \mathrm{L}_{\mathbb{S}}^{2}(\Omega) \rightarrow \mathrm{L}^{2}(\Omega) ; \quad S \mapsto \operatorname{divDiv} S, ~} \\
& { }_{T} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}: D\left(\mathbb{T} \operatorname{Rot}_{S, \Gamma_{t}}\right) \quad \subset \mathrm{L}_{\mathbb{S}}^{2}(\Omega) \rightarrow \mathrm{L}_{\mathbb{T}}^{2}(\Omega) ; \quad S \mapsto \operatorname{Rot} S, \\
& { }_{T} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}^{*}=\boldsymbol{R o t}_{\mathbb{T}, \Gamma_{n}}: D\left({ }_{(\mathbb{S o t}}^{\mathbb{T}, \Gamma_{n}}\right) \quad \subset \mathrm{L}_{\mathbb{T}}^{2}(\Omega) \rightarrow \mathrm{L}_{\mathbb{S}}^{2}(\Omega) ; \quad T \mapsto \operatorname{symRot} T, \\
& \operatorname{Div}_{\mathbb{T}, \Gamma_{t}}: D\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}\right) \quad \subset \mathrm{L}_{\mathbb{T}}^{2}(\Omega) \rightarrow \mathrm{L}^{2}(\Omega) ; \quad T \mapsto \operatorname{Div} T, \\
& \operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{*}=-\mathbb{T} \mathbf{G r a d}_{\Gamma_{n}}: D\left(\mathbb{T} \mathbf{G r a d}_{\Gamma_{n}}\right) \quad \subset \mathrm{L}^{2}(\Omega) \rightarrow \mathrm{L}_{\mathbb{T}}^{2}(\Omega) ; \quad \nu \mapsto-\operatorname{devGrad} v, \\
& \mathbb{T}_{\operatorname{Grad}_{\Gamma_{t}}}: D\left(\mathbb{T} \operatorname{Grad}_{\Gamma_{t}}\right) \quad \subset \mathrm{L}^{2}(\Omega) \rightarrow \mathrm{L}_{\mathbb{T}}^{2}(\Omega) ; \quad \nu \mapsto \operatorname{devGrad} v,
\end{aligned}
$$

$$
\begin{aligned}
& { }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}: D\left({ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}\right) \quad \subset \mathrm{L}_{\mathbb{T}}^{2}(\Omega) \rightarrow \mathrm{L}_{\mathbb{S}}^{2}(\Omega) ; \quad T \mapsto \operatorname{symRot} T, \\
& { }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}^{*}{ }_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{n}}: D\left(\mathbb{R}_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{n}}\right) \quad \subset \mathrm{L}_{\mathbb{S}}^{2}(\Omega) \rightarrow \mathrm{L}_{\mathbb{T}}^{2}(\Omega) ; \quad S \mapsto \operatorname{Rot} S, \\
& \operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}: D\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}\right) \quad \subset \mathrm{L}_{\mathbb{S}}^{2}(\Omega) \rightarrow \mathrm{L}^{2}(\Omega) ; \quad S \mapsto \operatorname{divDiv} S, \\
& \operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{*}={ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{n}}: D\left(\mathbb{G r a d g r a d}_{\Gamma_{n}}\right) \subset L^{2}(\Omega) \rightarrow \mathrm{L}_{\mathbb{S}}^{2}(\Omega) ; \quad u \mapsto \operatorname{Gradgrad} u,
\end{aligned}
$$

with domains of definition

$$
\begin{aligned}
& D\left(\operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}\right)=\mathrm{H}_{\mathbb{S}, \Gamma_{t}}(\operatorname{Rot}, \Omega), \quad D\left(\boldsymbol{R o t}_{\mathbb{T}, \Gamma_{n}}\right)=\mathbf{H}_{\mathbb{T}, \Gamma_{n}}(\operatorname{symRot}, \Omega), \\
& D\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}\right)=\mathrm{H}_{\mathbb{T}, \Gamma_{t}}(\operatorname{Div}, \Omega), \quad D\left(\mathbb{T r a d}_{\Gamma_{n}}\right)=\mathbf{H}_{\Gamma_{n}}(\operatorname{devGrad}, \Omega), \\
& D\left(\mathbb{T}^{(G a d} \Gamma_{\Gamma_{t}}\right)=\mathrm{H}_{\Gamma_{t}}(\operatorname{devGrad}, \Omega), \quad D\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{n}}\right)=\mathbf{H}_{\mathbb{T}, \Gamma_{n}}(\operatorname{Div}, \Omega), \\
& D\left({ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}\right)=\mathrm{H}_{\mathbb{T}, \Gamma_{t}}(\operatorname{symRot}, \Omega), \quad D\left(\mathbb{T}_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{n}}\right)=\mathbf{H}_{\mathbb{S}, \Gamma_{n}}(\operatorname{Rot}, \Omega), \\
& D\left(\operatorname{divDiv}_{S, \Gamma_{t}}\right)=\mathrm{H}_{\mathrm{S}, \Gamma_{t}}(\operatorname{divDiv}, \Omega), \quad D\left(\operatorname{Gradgrad}_{\Gamma_{n}}\right)=\mathbf{H}_{\Gamma_{n}}(\operatorname{Gradgrad}, \Omega) .
\end{aligned}
$$

We shall introduce the latter Sobolev spaces in the next section.

2.2 | Sobolev spaces

Let

$$
\begin{aligned}
\mathrm{H}(\operatorname{Gradgrad}, \Omega) & :=\left\{u \in \mathrm{~L}^{2}(\Omega): \text { Gradgrad } u \in \mathrm{~L}^{2}(\Omega)\right\}, \\
\mathrm{H}_{\mathbb{S}}(\operatorname{Rot}, \Omega) & :=\left\{S \in \mathrm{~L}_{\mathbb{S}}^{2}(\Omega): \operatorname{Rot} S \in \mathrm{~L}^{2}(\Omega)\right\}, \\
\mathrm{H}_{\mathbb{T}}(\operatorname{Div}, \Omega) & :=\left\{T \in \mathrm{~L}_{\mathbb{T}}^{2}(\Omega): \operatorname{Div} T \in \mathrm{~L}^{2}(\Omega)\right\}, \\
\mathrm{H}(\operatorname{devGrad}, \Omega) & :=\left\{v \in \mathrm{~L}^{2}(\Omega): \operatorname{devGrad} v \in \mathrm{~L}^{2}(\Omega)\right\}, \\
\mathrm{H}_{\mathbb{T}}(\operatorname{symRot}, \Omega) & :=\left\{T \in \mathrm{~L}_{\mathbb{T}}^{2}(\Omega): \operatorname{symRot} T \in \mathrm{~L}^{2}(\Omega)\right\}, \\
\mathrm{H}_{\mathbb{S}}(\operatorname{divDiv}, \Omega) & :=\left\{S \in \mathrm{~L}_{\mathbb{S}}^{2}(\Omega): \operatorname{divDiv} S \in \mathrm{~L}^{2}(\Omega)\right\} .
\end{aligned}
$$

Note that $S \in \mathrm{H}_{\mathbb{S}}(\operatorname{Rot}, \Omega)$ implies RotS $\in \mathrm{L}_{\mathbb{T}}^{2}(\Omega)$ (cf. Lemma A. 1 (Appendix A)) and that we have by Nečas' inequality and a Korn type inequality for dev the regularities

$$
\begin{equation*}
\mathrm{H}(\operatorname{Gradgrad}, \Omega)=\mathrm{H}^{2}(\Omega), \quad \mathrm{H}(\operatorname{devGrad}, \Omega)=\mathrm{H}^{1}(\Omega) \tag{2}
\end{equation*}
$$

with equivalent norms; see, for example, [5, Lemma 8.2] and [4, Lemma 3.2]. Moreover, we define boundary conditions in the strong sense as closures of respective test fields, that is,

$$
\begin{aligned}
& \mathrm{H}_{\Gamma_{t}}(\text { Gradgrad, } \Omega):={\overline{\mathrm{C}_{\Gamma_{t}}^{\infty}(\Omega)}}^{\mathrm{H}^{2}(\Omega)}=\mathrm{H}_{\Gamma_{t}}^{2}(\Omega), \\
& \mathrm{H}_{\mathbb{S}, \Gamma_{t}}(\operatorname{Rot}, \Omega):={\overline{\mathrm{C}_{\mathbb{S}, \Gamma_{t}}^{\infty}(\Omega)}{ }^{\mathrm{H}_{\mathrm{s}}(\mathrm{Rot}, \Omega)},}^{2}, \\
& \mathrm{H}_{\mathbb{T}, \Gamma_{t}}(\operatorname{Div}, \Omega):=\overline{\overline{\mathrm{C}}_{\mathbb{T}, \Gamma_{t}}^{\infty}(\Omega)} \mathrm{H}_{\mathbb{T}}(\mathrm{Div}, \Omega), \\
& \mathrm{H}_{\Gamma_{t}}(\operatorname{devGrad}, \Omega):={\overline{\mathrm{C}_{\Gamma_{t}}^{\infty}(\Omega)}}^{\mathrm{H}^{1}(\Omega)}=\mathrm{H}_{\Gamma_{t}}^{1}(\Omega), \\
& \mathrm{H}_{\mathbb{T}, \Gamma_{t}}(\text { symRot }, \Omega):={\overline{\mathrm{C}_{\mathbb{T}, \Gamma_{t}}^{\infty}(\Omega)}{ }^{\mathrm{H}_{\mathrm{T}}(\text { symRot }, \Omega)},} \text {, } \\
& \mathrm{H}_{\mathrm{S}, \Gamma_{t}}(\operatorname{divDiv}, \Omega):=\overline{\mathrm{C}_{\mathbb{S}, \Gamma_{t}}^{\infty}(\Omega)}{ }^{\mathrm{H}_{\mathrm{s}}(\operatorname{divDiv}, \Omega)} .
\end{aligned}
$$

For $\Gamma_{t}=\varnothing$, we may skip the index \varnothing, which is justified by density. Spaces with vanishing differential operator coincide with kernels and are denoted by an additional index 0 at the lower right corner, for example,

$$
\mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}(\operatorname{Rot}, \Omega)=N\left(\mathbb{R o t}_{\mathbb{S}, \Gamma_{t}}\right), \quad \mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}(\operatorname{Div}, \Omega)=N\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}\right) .
$$

We need also the Sobolev spaces with boundary conditions defined in the weak sense, that is,

$$
\begin{aligned}
\mathbf{H}_{\Gamma_{t}}(\operatorname{Gradgrad}, \Omega) & :=\left\{u \in \mathrm{H}^{2}(\Omega):\langle\operatorname{Gradgrad} u, \Phi\rangle_{\mathrm{L}_{\mathrm{s}}^{2}(\Omega)}=\langle u, \operatorname{divDiv} \Phi\rangle_{\mathrm{L}^{2}(\Omega)} \forall \Phi \in \mathrm{C}_{\mathbb{S}, \Gamma_{n}}^{\infty}(\Omega)\right\}, \\
\mathbf{H}_{\mathbb{S}, \Gamma_{t}}(\operatorname{Rot}, \Omega) & :=\left\{S \in \mathrm{H}_{\mathbb{S}}(\operatorname{Rot}, \Omega):\langle\operatorname{Rot} S, \Psi\rangle_{\mathrm{L}_{\mathbb{T}}^{2}(\Omega)}=\langle S, \operatorname{sym} \operatorname{Rot} \Psi\rangle_{\mathrm{L}_{\mathrm{s}}^{2}(\Omega)} \forall \Psi \in \mathrm{C}_{\mathbb{T}, \Gamma_{n}}^{\infty}(\Omega)\right\}, \\
\mathbf{H}_{\mathbb{T}, \Gamma_{t}}(\operatorname{Div}, \Omega): & =\left\{T \in \mathrm{H}_{\mathbb{T}}(\operatorname{Div}, \Omega):\langle\operatorname{Div} T, \phi\rangle_{\mathrm{L}^{2}(\Omega)}=-\langle T, \operatorname{devGrad} \phi\rangle_{\mathrm{L}_{(}^{2}(\Omega)} \forall \phi \in \mathrm{C}_{\Gamma_{n}}^{\infty}(\Omega)\right\}, \\
\mathbf{H}_{\Gamma_{t}}(\operatorname{devGrad}, \Omega): & :=\left\{v \in \mathrm{H}^{1}(\Omega):\langle\operatorname{devGrad} v, \Psi\rangle_{\mathrm{L}_{\mathbb{T}}^{2}(\Omega)}=-\langle v, \operatorname{Div} \Psi\rangle_{\mathrm{L}^{2}(\Omega)} \forall \Psi \in \mathrm{C}_{\mathbb{T}, \Gamma_{n}}^{\infty}(\Omega)\right\}, \\
\mathbf{H}_{\mathbb{T}, \Gamma_{t}}(\operatorname{symRot}, \Omega) & :=\left\{T \in \mathrm{H}_{\mathbb{T}}(\operatorname{symRot}, \Omega):\langle\operatorname{symRot} T, \Phi\rangle_{\mathrm{L}_{\mathbb{S}}^{2}(\Omega)}=\langle T, \operatorname{Rot} \Phi\rangle_{\mathrm{L}_{\mathbb{T}}^{2}(\Omega)} \forall \Phi \in \mathrm{C}_{\mathbb{S}, \Gamma_{n}}^{\infty}(\Omega)\right\}, \\
\mathbf{H}_{\mathbb{S}, \Gamma_{t}}(\operatorname{divDiv}, \Omega): & =\left\{S \in \mathrm{H}_{\mathbb{S}}(\operatorname{divDiv}, \Omega):\langle\operatorname{divDiv} S, \phi\rangle_{\mathrm{L}^{2}(\Omega)}=\langle S, \operatorname{Gradgrad} \phi\rangle_{\mathrm{L}_{\mathrm{s}}^{2}(\Omega)} \forall \phi \in \mathrm{C}_{\Gamma_{n}}^{\infty}(\Omega)\right\} .
\end{aligned}
$$

Note that "strong \subset weak" holds, that is, $\mathrm{H}_{\ldots}(\cdots, \Omega) \subset \mathbf{H}_{\ldots}(\cdots, \Omega)$, for example,

$$
\mathrm{H}_{\mathbb{S}, \Gamma_{t}}(\operatorname{Rot}, \Omega) \subset \mathbf{H}_{\mathbb{S}, \Gamma_{t}}(\operatorname{Rot}, \Omega), \quad \mathrm{H}_{\mathbb{T}, \Gamma_{t}}(\operatorname{Div}, \Omega) \subset \mathbf{H}_{\mathbb{T}, \Gamma_{t}}(\operatorname{Div}, \Omega)
$$

and that the complex properties hold in both the strong and the weak case, for example,

$$
\operatorname{devGrad} H_{\Gamma_{t}}(\Omega) \subset \mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}(\operatorname{symRot}, \Omega), \quad \operatorname{Rot} \mathbf{H}_{\mathbb{S}, \Gamma_{t}}(\operatorname{Rot}, \Omega) \subset \mathbf{H}_{\mathbb{T}, \Gamma_{t}, 0}(\operatorname{Div}, \Omega)
$$

which follows immediately by the definitions. In Remark 2.3 below, we comment on the question whether "strong = weak" holds in general.

2.3 | Higher order Sobolev spaces

For $k \in \mathbb{N}_{0}$, we define higher order Sobolev spaces by

$$
\begin{aligned}
& \mathrm{H}_{\mathbb{S}}^{k}(\Omega):=\mathrm{H}^{k}(\Omega) \cap \mathrm{L}_{\mathbb{S}}^{2}(\Omega), \\
& \mathrm{H}_{\mathbb{T}}^{k}(\Omega):=\mathrm{H}^{k}(\Omega) \cap \mathrm{L}_{\mathbb{T}}^{2}(\Omega), \\
& \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\Omega):={\overline{\mathrm{C}_{\mathbb{S}, \Gamma_{t}}^{\infty}(\Omega)}}^{\mathrm{H}^{k}(\Omega)}=\mathrm{H}_{\Gamma_{t}}^{k}(\Omega) \cap \mathrm{L}_{\mathbb{S}}^{2}(\Omega), \\
& \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\Omega):={\overline{\mathrm{C}_{\mathbb{T}, \Gamma_{t}}^{\infty}(\Omega)}}^{\mathrm{H}^{k}(\Omega)}=\mathrm{H}_{\Gamma_{t}}^{k}(\Omega) \cap \mathrm{L}_{\mathbb{T}}^{2}(\Omega), \\
& \mathrm{H}^{k}(\operatorname{Gradgrad}, \Omega):=\left\{u \in \mathrm{H}^{k}(\Omega): \text { Gradgrad } u \in \mathrm{H}^{k}(\Omega)\right\} \text {, } \\
& \mathrm{H}_{\Gamma_{t}}^{k}(\operatorname{Gradgrad}, \Omega):=\left\{u \in \mathrm{H}_{\Gamma_{t}}^{k}(\Omega) \cap \mathrm{H}_{\Gamma_{t}}(\operatorname{Gradgrad}, \Omega): \text { Gradgrad } u \in \mathrm{H}_{\Gamma_{t}}^{k}(\Omega)\right\} \text {, } \\
& \mathrm{H}_{\mathbb{S}}^{k}(\operatorname{Rot}, \Omega):=\left\{S \in \mathrm{H}_{\mathbb{S}}^{k}(\Omega): \operatorname{Rot} S \in \mathrm{H}^{k}(\Omega)\right\}, \\
& \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega):=\left\{S \in \mathrm{H}_{\Gamma_{t}}^{k}(\Omega) \cap \mathrm{H}_{\mathbb{S}, \Gamma_{t}}(\operatorname{Rot}, \Omega): \operatorname{Rot} S \in \mathrm{H}_{\Gamma_{t}}^{k}(\Omega)\right\}, \\
& \mathrm{H}_{\mathbb{T}}^{k}(\operatorname{Div}, \Omega):=\left\{T \in \mathrm{H}_{\mathbb{T}}^{k}(\Omega): \operatorname{Div} T \in \mathrm{H}^{k}(\Omega)\right\}, \\
& \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{Div}, \Omega):=\left\{T \in \mathrm{H}_{\Gamma_{t}}^{k}(\Omega) \cap \mathrm{H}_{\mathbb{T}, \Gamma_{t}}(\operatorname{Div}, \Omega): \operatorname{Div} T \in \mathrm{H}_{\Gamma_{t}}^{k}(\Omega)\right\}, \\
& \mathrm{H}^{k}(\operatorname{devGrad}, \Omega):=\left\{v \in \mathrm{H}^{k}(\Omega): \operatorname{devGrad} v \in \mathrm{H}^{k}(\Omega)\right\}, \\
& \mathrm{H}_{\Gamma_{t}}^{k}(\operatorname{devGrad}, \Omega):=\left\{v \in \mathrm{H}_{\Gamma_{t}}^{k}(\Omega) \cap \mathrm{H}_{\Gamma_{t}}(\operatorname{devGrad}, \Omega): \operatorname{devGrad} v \in \mathrm{H}_{\Gamma_{t}}^{k}(\Omega)\right\} \text {, } \\
& \mathrm{H}_{\mathbb{T}}^{k}(\operatorname{symRot}, \Omega):=\left\{T \in \mathrm{H}_{\mathbb{T}}^{k}(\Omega): \operatorname{symRot} T \in \mathrm{H}^{k}(\Omega)\right\}, \\
& \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{symRot}, \Omega):=\left\{T \in \mathrm{H}_{\Gamma_{t}}^{k}(\Omega) \cap \mathrm{H}_{\mathbb{T}, \Gamma_{t}}(\operatorname{symRot}, \Omega): \operatorname{symRot} T \in \mathrm{H}_{\Gamma_{t}}^{k}(\Omega)\right\} \text {, } \\
& \mathrm{H}_{\mathbb{S}}^{k}(\operatorname{divDiv}, \Omega):=\left\{S \in \mathrm{H}_{\mathbb{S}}^{k}(\Omega): \operatorname{divDiv} S \in \mathrm{H}^{k}(\Omega)\right\}, \\
& \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{divDiv}, \Omega):=\left\{S \in \mathrm{H}_{\Gamma_{t}}^{k}(\Omega) \cap \mathrm{H}_{\mathbb{S}, \Gamma_{t}}(\operatorname{divDiv}, \Omega): \operatorname{divDiv} S \in \mathrm{H}_{\Gamma_{t}}^{k}(\Omega)\right\} .
\end{aligned}
$$

For the first reading, we recommend to only regard the case $k=0$ from Section 2.2.
Note that, for example, for the latter divDiv-Sobolev spaces, we have $H_{\mathbb{S}, \varnothing}^{k}(\operatorname{divDiv}, \Omega)=H_{\mathbb{S}}^{k}(\operatorname{divDiv}, \Omega)$ and $\mathrm{H}_{\mathbb{S}, \varnothing}^{0}(\operatorname{divDiv}, \Omega)=\mathrm{H}_{\mathbb{S}}(\operatorname{divDiv}, \Omega)$ as well as $\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{0}(\operatorname{divDiv}, \Omega)=\mathrm{H}_{\mathbb{S}, \Gamma_{t}}(\operatorname{divDiv}, \Omega)$. For $\Gamma_{t} \neq \varnothing$, it holds

$$
\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{divDiv}, \Omega)=\left\{S \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\Omega): \operatorname{divDiv} S \in \mathrm{H}_{\Gamma_{t}}^{k}(\Omega)\right\}, \quad k \geq 2
$$

but for $\Gamma_{t} \neq \varnothing$ and $k=0$ and $k=1$

$$
\begin{aligned}
& \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{0}(\operatorname{divDiv}, \Omega)= \mathrm{H}_{\mathbb{S}, \Gamma_{t}}(\operatorname{divDiv}, \Omega) \\
& \subsetneq\{S \in \underbrace{\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{0}(\Omega)}_{=L_{\mathbb{S}}^{2}(\Omega)}: \operatorname{divDiv} S \in \underbrace{\mathrm{H}_{\Gamma_{t}}^{0}(\Omega)}_{=\mathrm{L}^{2}(\Omega)}\}=\mathrm{H}_{\mathbb{S}}(\operatorname{divDiv}, \Omega), \\
& \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{1}(\operatorname{divDiv}, \Omega) \subsetneq\left\{S \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{1}(\Omega): \operatorname{divDiv} S \in \mathrm{H}_{\Gamma_{t}}^{1}(\Omega)\right\},
\end{aligned}
$$

respectively. As before, we introduce the kernels

$$
\begin{aligned}
\mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{divDiv}, \Omega): & :=\mathrm{H}_{\Gamma_{t}}^{k}(\Omega) \cap \mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}(\operatorname{divDiv}, \Omega)=\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{divDiv}, \Omega) \cap \mathrm{H}_{\mathbb{S}, 0}(\operatorname{divDiv}, \Omega) \\
& =\left\{S \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{divDiv}, \Omega): \operatorname{divDiv} S=0\right\}
\end{aligned}
$$

The corresponding remarks and definitions extend also to the $H_{\Gamma_{t}}^{k}(\operatorname{Gradgrad}, \Omega), \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega), \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{Div}, \Omega)$, $H_{\Gamma_{t}}^{k}(\operatorname{devGrad}, \Omega)$, and $H_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{symRot}, \Omega)$ spaces. In particular, we have for $\Gamma_{t} \neq \varnothing$ and $k \geq 1$ and, for example, $\mathrm{H}_{S, \Gamma_{t}}^{k}$ (Rot, Ω), the observations

$$
\begin{aligned}
\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega) & =\left\{S \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\Omega): \operatorname{Rot} S \in \mathrm{H}_{\Gamma_{t}}^{k}(\Omega)\right\}, \\
\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{0}(\operatorname{Rot}, \Omega) & =\mathrm{H}_{\mathbb{S}, \Gamma_{t}}(\operatorname{Rot}, \Omega) \subsetneq\{S \in \underbrace{\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{0}(\Omega)}_{=L_{\mathbb{S}}^{2}(\Omega)}: \operatorname{Rot} S \in \underbrace{\mathrm{H}_{\Gamma_{t}}^{0}(\Omega)}_{=\mathrm{L}^{2}(\Omega)}\}=\mathrm{H}_{\mathbb{S}}(\operatorname{Rot}, \Omega), \\
\mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{Rot}, \Omega) & =\mathrm{H}_{\Gamma_{t}}^{k}(\Omega) \cap \mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}(\operatorname{Rot}, \Omega)=\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega) \cap \mathrm{H}_{\mathbb{S}, 0}(\operatorname{Rot}, \Omega) \\
& =\left\{S \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega): \operatorname{Rot} S=0\right\} .
\end{aligned}
$$

Analogously, we define the Sobolev spaces $\mathbf{H}_{\Gamma_{t}}^{k}(\operatorname{Gradgrad}, \Omega), \mathbf{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega), \mathbf{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{Div}, \Omega), \mathbf{H}_{\Gamma_{t}}^{k}(\operatorname{devGrad}, \Omega), \mathbf{H}_{\mathbb{T}, \Gamma_{t}}^{k}$ (symRot, Ω), and $\mathbf{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{divDiv}, \Omega)$ using the respective Sobolev spaces with weak boundary conditions $\mathbf{H}_{\ldots \ldots}(\cdots, \Omega)$ in the definitions, for example,

$$
\begin{aligned}
\mathbf{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{symRot}, \Omega): & =\left\{T \in \mathbf{H}_{\Gamma_{t}}^{k}(\Omega) \cap \mathbf{H}_{\mathbb{T}, \Gamma_{t}}(\operatorname{symRot}, \Omega): \operatorname{symRot} T \in \mathbf{H}_{\Gamma_{t}}^{k}(\Omega)\right\} \\
& =\left\{T \in \mathrm{H}_{\Gamma_{t}}^{k}(\Omega) \cap \mathbf{H}_{\mathbb{T}, \Gamma_{t}}(\operatorname{symRot}, \Omega): \operatorname{symRot} T \in \mathrm{H}_{\Gamma_{t}}^{k}(\Omega)\right\},
\end{aligned}
$$

where we have used (1). Note that again "strong \subset weak" holds, that is, $\mathrm{H}_{\cdots} \cdots(\cdots, \Omega) \subset \mathbf{H}_{\cdots} \cdots(\cdots, \Omega)$, for example, $H_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega) \subset \mathbf{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega)$, and that the complex properties hold in both the strong and the weak case, for example,

$$
\text { Gradgrad } H_{\Gamma_{t}}^{k+2}(\Omega) \subset H_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{Rot}, \Omega), \quad \operatorname{symRot} \mathbf{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{symRot}, \Omega) \subset \mathbf{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{divDiv}, \Omega)
$$

In the forthcoming sections, we shall also investigate whether indeed "strong $=$ weak" holds. We start with a simple implication from (1).

Corollary 2.1. $\mathbf{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\Omega)=H_{\mathbb{S}, \Gamma_{t}}^{k}(\Omega)$ and $\mathbf{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\Omega)=H_{\mathbb{T}, \Gamma_{t}}^{k}(\Omega)$, that is, weak and strong boundary conditions coincide for the standard Sobolev spaces of symmetric and deviatoric tensor fields with mixed boundary conditions, respectively. As in (2) and with Corollary 2.1, we get the following.

Lemma 2.2 (Higher order weak and strong partial boundary conditions coincide).
(i) For $k \geq 0$, it holds

$$
\begin{aligned}
\mathrm{H}_{\Gamma_{t}}^{k}(\operatorname{devGrad}, \Omega) & =\mathrm{H}_{\Gamma_{t}}^{k+1}(\Omega)=\mathbf{H}_{\Gamma_{t}}^{k+1}(\Omega), \\
\mathrm{H}_{\Gamma_{t}}^{k}(\text { Gradgrad }, \Omega) & =\mathrm{H}_{\Gamma_{t}}^{k+2}(\Omega)=\mathbf{H}_{\Gamma_{t}}^{k+2}(\Omega)
\end{aligned}
$$

(ii) For $k \geq 1$, it holds

$$
\begin{aligned}
\mathbf{H}_{\Gamma_{t}}^{k}(\operatorname{devGrad}, \Omega) & =\left\{v \in \mathrm{H}_{\Gamma_{t}}^{k}(\Omega): \operatorname{devGrad} v \in \mathrm{H}_{\Gamma_{t}}^{k}(\Omega)\right\}=\mathrm{H}_{\Gamma_{t}}^{k}(\operatorname{devGrad}, \Omega)=\mathrm{H}_{\Gamma_{t}}^{k+1}(\Omega), \\
\mathbf{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega) & =\left\{S \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\Omega): \operatorname{Rot} S \in \mathrm{H}_{\Gamma_{t}}^{k}(\Omega)\right\}=\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega), \\
\mathbf{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{symRot}, \Omega) & =\left\{T \in \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\Omega): \operatorname{symRot} T \in \mathrm{H}_{\Gamma_{t}}^{k}(\Omega)\right\}=\mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{symRot}, \Omega), \\
\mathbf{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{Div}, \Omega) & =\left\{T \in \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\Omega): \operatorname{Div} T \in \mathrm{H}_{\Gamma_{t}}^{k}(\Omega)\right\}=\mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{Div}, \Omega) .
\end{aligned}
$$

(iii) For $k \geq 2$, it holds

$$
\begin{aligned}
H_{\Gamma_{t}}^{k}(\operatorname{Gradgrad}, \Omega) & =\left\{u \in \mathrm{H}_{\Gamma_{t}}^{k}(\Omega): \text { Gradgrad } u \in \mathrm{H}_{\Gamma_{t}}^{k}(\Omega)\right\}=\mathrm{H}_{\Gamma_{t}}^{k}(\text { Gradgrad, } \Omega), \\
\mathbf{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{divDiv}, \Omega) & =\left\{S \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\Omega): \operatorname{divDiv} S \in \mathrm{H}_{\Gamma_{t}}^{k}(\Omega)\right\}=\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{divDiv}, \Omega)
\end{aligned}
$$

Remark 2.3 (Weak and strong partial boundary conditions coincide). In [4, 5], we could prove the corresponding results "strong $=$ weak" for the whole two biharmonic complexes but only with empty or full boundary conditions $\left(\Gamma_{t}=\varnothing\right.$ or $\left.\Gamma_{t}=\Gamma\right)$. Therefore, in these special cases, the adjoints are well defined on the spaces with strong boundary conditions as well.

Lemma 2.2 shows that for higher values of k indeed "strong = weak" holds. Thus, to show "strong = weak" in general, we only have to prove that equality holds in the remaining cases $k=0$ and $k=1$; that is, we only have to show

$$
\begin{array}{ccc}
\mathbf{H}_{\Gamma_{t}}(\operatorname{devGrad}, \Omega) \subset \mathrm{H}_{\Gamma_{t}}(\operatorname{devGrad}, \Omega), & \mathbf{H}_{\Gamma_{t}}(\text { Gradgrad, } \Omega) \subset \mathrm{H}_{\Gamma_{t}}(\text { Gradgrad, } \Omega), \\
\mathbf{H}_{\mathbb{T}, \Gamma_{t}}(\operatorname{Div}, \Omega) \subset \mathrm{H}_{\mathbb{T}, \Gamma_{t}}(\operatorname{Div}, \Omega), & \mathbf{H}_{\Gamma_{t}}^{1}(\operatorname{Gradgrad}, \Omega) \subset H_{\Gamma_{t}}^{1}(\operatorname{Gradgrad}, \Omega), \\
\mathbf{H}_{\mathbb{S}, \Gamma_{t}}(\operatorname{Rot}, \Omega) \subset \mathrm{H}_{\mathbb{S}, \Gamma_{t}}(\operatorname{Rot}, \Omega), & \mathbf{H}_{\mathbb{S}, \Gamma_{t}}(\operatorname{divDiv}, \Omega) \subset \mathrm{H}_{\mathbb{S}, \Gamma_{t}}(\operatorname{divDiv}, \Omega), \\
\mathbf{H}_{\mathbb{T}, \Gamma_{t}}(\operatorname{symRot}, \Omega) \subset \mathrm{H}_{\mathbb{T}, \Gamma_{t}}(\operatorname{symRot}, \Omega), & & \mathbf{H}_{\mathbb{S}, \Gamma_{t}}^{1}(\operatorname{divDiv}, \Omega) \subset \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{1}(\operatorname{divDiv}, \Omega)
\end{array}
$$

The most delicate situation appears due to the second-order nature of divDivs. In Corollary 3.11, we shall show using regular decompositions that these results (weak and strong boundary conditions coincide for the biharmonic complexes for all $k \geq 0$) indeed hold true.

2.4 | More Sobolev spaces

For $k \in \mathbb{N}$, we introduce also slightly less regular higher order Sobolev spaces by

$$
\begin{aligned}
\mathrm{H}_{\Gamma_{t}}^{k, k-1}(\operatorname{Gradgrad}, \Omega) & :=\left\{u \in \mathrm{H}_{\Gamma_{t}}^{k}(\Omega) \cap \mathrm{H}_{\Gamma_{t}}(\operatorname{Gradgrad}, \Omega): \text { Gradgrad } u \in \mathrm{H}_{\Gamma_{t}}^{k-1}(\Omega)\right\}, \\
\mathbf{H}_{\Gamma_{t}}^{k, k-1}(\operatorname{Gradgrad}, \Omega) & :=\left\{u \in \mathbf{H}_{\Gamma_{t}}^{k}(\Omega) \cap \mathbf{H}_{\Gamma_{t}}(\operatorname{Gradgrad}, \Omega): \text { Gradgrad } u \in \mathbf{H}_{\Gamma_{t}}^{k-1}(\Omega)\right\}, \\
\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k, k-1}(\operatorname{divDiv}, \Omega) & :=\left\{S \in \mathrm{H}_{\Gamma_{t}}^{k}(\Omega) \cap \mathrm{H}_{\mathbb{S}, \Gamma_{t}}(\operatorname{divDiv}, \Omega): \operatorname{divDiv} S \in \mathrm{H}_{\Gamma_{t}}^{k-1}(\Omega)\right\}, \\
\mathbf{H}_{\mathbb{S}, \Gamma_{t}}^{k, k-1}(\operatorname{divDiv}, \Omega) & :=\left\{S \in \mathbf{H}_{\Gamma_{t}}^{k}(\Omega) \cap \mathbf{H}_{\mathbb{S}, \Gamma_{t}}(\operatorname{divDiv}, \Omega): \operatorname{divDiv} S \in \mathbf{H}_{\Gamma_{t}}^{k-1}(\Omega)\right\},
\end{aligned}
$$

and we extend all conventions of our notations. These spaces can be ignored at the first reading.

We have for the kernels of divDivs

$$
H_{\mathbb{S}, \Gamma_{t}, 0}^{k, k-1}(\operatorname{divDiv}, \Omega)=H_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{divDiv}, \Omega), \quad \mathbf{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k, k-1}(\operatorname{divDiv}, \Omega)=\mathbf{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{divDiv}, \Omega),
$$

and by Nečas' inequality (cf. (2)),

$$
\mathrm{H}_{\Gamma_{t}}^{k, k-1}(\text { Gradgrad, } \Omega)=\mathrm{H}_{\Gamma_{t}}^{k+1}(\Omega)=\mathbf{H}_{\Gamma_{t}}^{k+1}(\Omega) \subset \mathbf{H}_{\Gamma_{t}}^{k, k-1}(\text { Gradgrad, } \Omega) .
$$

The intersection with $\mathrm{H}_{\Gamma_{t}}(\operatorname{Gradgrad}, \Omega), \mathbf{H}_{\Gamma_{t}}(\operatorname{Gradgrad}, \Omega)$, and $\mathrm{H}_{\mathrm{S}, \Gamma_{t}}$ (divDiv, Ω), $\mathbf{H}_{\mathbb{S}, \Gamma_{t}}$ (divDiv, Ω), respectively, is only needed if $k=1$. As before, we observe $H_{\mathrm{S}, \Gamma_{t}}^{k, k-1}$ (divDiv, $\left.\Omega\right) \subset \mathbf{H}_{\mathrm{S}, \Gamma_{t}}^{k, k-1}$ (divDiv, Ω), that is, "strong \subset weak," and in both cases (weak and strong), the complex properties hold, for example, Gradgrad $H_{\Gamma_{t}}^{k, k-1}(\operatorname{Gradgrad}, \Omega) \subset H_{\Omega, \Gamma_{t}, 0}^{k-1}(\operatorname{Rot}, \Omega)$.
Similar to Lemma 2.2, we have the following.
Lemma 2.4. (Higher order weak and strong partial boundary conditions coincide). For $k \geq 2$,

$$
\begin{aligned}
\mathbf{H}_{\Gamma_{t}}^{k, k-1}(\operatorname{Gradgrad}, \Omega) & =\left\{u \in \mathrm{H}_{\Gamma_{t}}^{k}(\Omega): \text { Gradgrad } u \in \mathrm{H}_{\Gamma_{t}}^{k-1}(\Omega)\right\}=\mathrm{H}_{\Gamma_{t}}^{k, k-1}(\text { Gradgrad, } \Omega)=\mathrm{H}_{\Gamma_{t}}^{k+1}(\Omega), \\
\mathbf{H}_{\mathrm{S}, \Gamma_{t}}^{k, k-1}(\operatorname{divDiv}, \Omega) & =\left\{S \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\Omega): \operatorname{divDiv} S \in \mathrm{H}_{\Gamma_{t}}^{k-1}(\Omega)\right\}=\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k, k-1}(\operatorname{divDiv}, \Omega) .
\end{aligned}
$$

2.5 | Some biharmonic complexes

By definition, we have densely defined and closed (unbounded) linear operators defining six dual pairs

$$
\begin{aligned}
& \left(\mathrm{s}_{\mathrm{S}} \operatorname{Gradgrad}_{\Gamma_{t}, \mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}^{*}\right)=\left(\mathrm{s}^{\operatorname{Gradgrad}}{ }_{\Gamma_{t}}, \operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}}\right), \\
& \left({ }_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}, \mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}^{*}\right)=\left({ }_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}, \mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{n}}\right), \\
& \left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}, \operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{*}\right)=\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}},-{ }_{\mathbb{T}} \operatorname{Grad}_{\Gamma_{n}}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \left({ }_{s} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}, \mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}^{*}\right)=\left({ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}, \mathbb{T}^{\prime}} \operatorname{Rot}_{s, \Gamma_{n}}\right) \text {, } \\
& \left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}, \operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{*}\right)=\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}, \mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{n}}\right) \text {. }
\end{aligned}
$$

Pauly and Schomburg [1, Remark 2.5, Remark 2.6] show the complex properties

$$
\begin{aligned}
& { }_{T} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t} \mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}} \subset 0, \quad \operatorname{Div}_{\mathbb{T}, \Gamma_{t} \mathbb{T}} \operatorname{Rot}_{S, \Gamma_{t}} \subset 0, \\
& { }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t} \mathbb{T}} \operatorname{Grad}_{\Gamma_{t}} \subset 0, \quad \operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}} \subset 0, \\
& \operatorname{divDiv}_{\mathbb{S}, \Gamma_{n} \mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{n}} \subset 0, \quad-{ }_{-\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{n} \mathbb{T}} \operatorname{Grad}_{\Gamma_{n}} \subset 0, \\
& -\operatorname{Div}_{\mathbb{T}, \Gamma_{n} \mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{n}} \subset 0, \quad{ }_{\mathbb{T}} \operatorname{Rot}_{S, \Gamma_{n} \mathbb{S}} \boldsymbol{G r a d g r a d}_{\Gamma_{n}} \subset 0 .
\end{aligned}
$$

Hence, we get the two primal and dual biharmonic Hilbert complexes

$$
\begin{align*}
& \cdots \underset{\cdots}{\stackrel{\cdots}{\rightleftarrows}} \mathrm{L}^{2}(\Omega) \underset{-\operatorname{Div}_{T, \Gamma_{n}}}{\stackrel{\operatorname{Grad}_{\Gamma_{t}}}{\rightleftarrows}} \mathrm{~L}_{\mathbb{T}}^{2}(\Omega) \underset{{ }_{\mathrm{T}} \boldsymbol{R o t}_{s, \Gamma_{n}}}{\stackrel{{ }_{\mathrm{Rot}}^{\pi, \Gamma_{t}}}{\rightleftarrows}} \mathrm{~L}_{S}^{2}(\Omega) \underset{\operatorname{Gradgrad}_{\Gamma_{n}}}{\stackrel{\operatorname{divDiv}_{s} \Gamma_{t}}{\leftrightarrows}} \mathrm{~L}^{2}(\Omega) \underset{\cdots}{\rightleftarrows} \cdots . \tag{3}
\end{align*}
$$

The long primal and dual biharmonic Hilbert complexes (cf. [1, (12)]) read
with the additional complex properties

$$
\begin{aligned}
R\left(l_{\mathbb{R} \mathbb{T}_{\Gamma_{t}}}\right) & =N\left({ }_{\mathbb{T}} \operatorname{Grad}_{\Gamma_{t}}\right)=\mathbb{R} \mathbb{T}_{\Gamma_{t}}, & \overline{R\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{n}}\right)}=\mathbb{R T}_{\Gamma_{t}}^{\mathrm{L}^{2}(\Omega)}, \\
R\left(l_{\mathbb{P}_{\Gamma_{t}}^{1}}\right) & =N\left(\mathbb{S}^{\operatorname{Gradgrad}} \Gamma_{\Gamma_{t}}\right)=\mathbb{P}_{\Gamma_{t}}^{1}, & \overline{R\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}}\right)}=\left(\mathbb{P}_{\Gamma_{t}}^{1}\right)^{\perp_{L^{2}(\Omega)}},
\end{aligned}
$$

where

$$
\begin{aligned}
\mathbb{R}_{\Sigma}=\left\{\begin{array}{l}
\{0\} \text { if } \Sigma \neq \varnothing, \\
\mathbb{R} \mathbb{T} \text { if } \Sigma=\varnothing,
\end{array} \quad \text { with } \quad \mathbb{R} \mathbb{T}:=\left\{\mathbb{R}^{3^{3}} \ni x \mapsto \mathrm{ax}+q: \mathrm{a} \in \mathbb{R}^{3}, q \in \mathbb{R}^{3}\right\},\right. \\
\mathbb{P}_{\Sigma}^{1}=\left\{\begin{array}{l}
\{0\} \text { if } \Sigma \neq \varnothing, \\
\mathbb{P}^{1} \text { if } \Sigma=\varnothing,
\end{array} \quad \text { with } \quad \mathbb{P}^{1}:=\left\{\mathbb{R}^{3^{3}} \ni x \mapsto q \cdot x+\mathrm{a}: \mathrm{a} \in \mathbb{R}^{3}, q \in \mathbb{R}^{3}\right\}\right.
\end{aligned}
$$

denote the global Raviart-Thomas fields and the global polynomials of degree less or equal to 1 in Ω, respectively. We have $\operatorname{dim} \mathbb{R} \mathbb{T}=\operatorname{dim} \mathbb{P}^{1}=4$. Note that, for example, by Lemma 2.2 (i), it holds

$$
N\left({ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}\right)=\left\{u \in \mathrm{H}_{\Gamma_{t}}^{2}(\Omega): \text { Gradgrad } u=0\right\}
$$

More generally, in addition to (5) and (6), we shall discuss for $k \in \mathbb{N}_{0}$ the higher Sobolev order (long primal and formally dual) biharmonic Hilbert complexes (omitting Ω in the notation)

$$
\begin{aligned}
& \mathbb{P}_{\Gamma_{t}}^{1} \xrightarrow{{ }^{{ }_{\mathbb{P}_{\Gamma_{t}}}^{1}}} \mathrm{H}_{\Gamma_{t}}^{k} \xrightarrow{\mathbb{S}^{\text {Gradgrad }_{\Gamma_{t}}^{k}}} \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k} \xrightarrow{\mathbb{T}^{\operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}^{k}}} \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k} \xrightarrow{\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{k}} \mathrm{H}_{\Gamma_{t}}^{k} \xrightarrow{\pi_{\mathbb{R}_{\Gamma_{n}}}} \mathbb{R} \mathbb{T}_{\Gamma_{n}}, \\
& \mathbb{P}_{\Gamma_{t}}^{1} \stackrel{\pi_{\mathbb{P}_{\Gamma_{t}}}}{\longleftarrow} \mathrm{H}_{\Gamma_{n}}^{k} \stackrel{\operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}}^{k}}{\leftarrow} \mathrm{H}_{\mathbb{S}, \Gamma_{n}}^{k} \longleftarrow \stackrel{\mathbb{S}^{\operatorname{Rot}_{\mathbb{T}, \Gamma_{n}}^{k}}}{\leftarrow} \mathrm{H}_{\mathbb{T}, \Gamma_{n}}^{k} \stackrel{-{ }_{\mathbb{T}} \operatorname{Grad}_{\Gamma_{n}}^{k}}{\leftarrow} \mathrm{H}_{\Gamma_{n}}^{k} \stackrel{\iota_{\mathbb{R}} \mathbb{T}_{\Gamma_{n}}}{\leftarrow} \mathbb{R}_{\Gamma_{n}}
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathbb{R} \mathbb{T}_{\Gamma_{t}} \xrightarrow{\iota_{\mathbb{R} \mathbb{T}_{\Gamma_{t}}}} \mathrm{H}_{\Gamma_{t}}^{k} \xrightarrow{\mathbb{T}^{\operatorname{Grad}_{\Gamma_{t}}^{k}}} \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k} \xrightarrow{{ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}^{k}} \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k} \xrightarrow{\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k}} \mathrm{H}_{\Gamma_{t}}^{k} \xrightarrow{\pi_{\mathbb{P}_{\Gamma_{n}}}^{1}} \mathbb{P}_{\Gamma_{n}}^{1},
\end{aligned}
$$

with associated domain complexes

$$
\begin{aligned}
& \mathbb{P}_{\Gamma_{t}}^{1} \xrightarrow{\iota_{\mathbb{P}_{\Gamma_{t}}^{1}}^{l}} \mathrm{H}_{\Gamma_{t}}^{k}(\text { Gradgrad }) \xrightarrow{\mathbb{S}^{\operatorname{Gradgrad}_{\Gamma_{t}}^{k}}} \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\text { Rot }) \xrightarrow{\mathbb{T}^{\operatorname{Rot}}{ }_{\mathbb{S}, \Gamma_{t}}^{k}} \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\text { Div }) \xrightarrow{\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{k}} \mathrm{H}_{\Gamma_{t}}^{k} \xrightarrow{\pi_{\mathbb{R T}_{\Gamma_{n}}}} \mathbb{R}_{\Gamma_{n}},
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathbb{R} \mathbb{T}_{\Gamma_{t}} \xrightarrow{\iota_{\mathbb{R} \mathbb{T}_{\Gamma_{t}}}} \mathrm{H}_{\Gamma_{t}}^{k}(\text { devGrad }) \xrightarrow{\mathbb{T}^{\operatorname{Grad}_{\Gamma_{t}}^{k}}} \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\text { symRot }) \xrightarrow{{ }_{\mathbb{S}}^{\operatorname{Rot}_{\mathbb{T}}, \Gamma_{t}}{ }^{k}} \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{divDiv}) \xrightarrow{\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k}} \mathrm{H}_{\Gamma_{t}}^{k} \xrightarrow{\pi_{\mathbb{P}_{\Gamma_{n}}}^{1}} \mathbb{P}_{\Gamma_{n}}^{1},
\end{aligned}
$$

Additionally, for $k \geq 1$ we will also discuss the following variants of the biharmonic complexes

$$
\begin{aligned}
& \mathbb{P}_{\Gamma_{t}}^{1} \xrightarrow{\iota_{\mathbb{P}_{\Gamma_{t}}}} \mathrm{H}_{\Gamma_{t}}^{k} \xrightarrow{\mathbb{S} \operatorname{Gradgrad}_{\Gamma_{t}}^{k, k-1}} \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k-1} \xrightarrow{\mathbb{T}^{\operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}^{k-1}}} \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k-1} \xrightarrow{\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{k-1}} \mathrm{H}_{\Gamma_{t}}^{k-1} \xrightarrow{\pi_{\mathbb{R} \mathbb{T}_{\Gamma_{n}}}} \mathbb{R}_{\Gamma_{n}}, \\
& \mathbb{P}_{\Gamma_{t}}^{1} \stackrel{\pi_{\mathbb{P}_{\Gamma_{t}}^{1}}}{\longleftarrow} \mathrm{H}_{\Gamma_{n}}^{k-1} \stackrel{\operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}}^{k, k-1}}{\longleftarrow} \mathrm{H}_{\mathbb{S}, \Gamma_{n}}^{k} \stackrel{{ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{n}}^{k}}{\longleftarrow} \mathrm{H}_{\mathbb{T}, \Gamma_{n}}^{k} \stackrel{{ }_{\mathbb{T}} \operatorname{Grad}_{\Gamma_{n}}^{k}}{\longleftarrow} \mathrm{H}_{\Gamma_{n}}^{k} \stackrel{{ }_{\mathbb{R}} \mathbb{T}_{\Gamma_{n}}}{\leftarrow} \mathbb{R} \mathbb{T}_{\Gamma_{n}}
\end{aligned}
$$

and
with associated domain complexes
and

Here, we have introduced the densely defined and closed linear operators

$$
\begin{aligned}
& { }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}^{k}: D\left({ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}^{k}\right) \subset H_{\Gamma_{t}}^{k}(\Omega) \rightarrow \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\Omega) ; \quad u \mapsto \operatorname{Gradgrad} u \text {, } \\
& \operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}}^{k}: D\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}}^{k}\right) \subset \mathrm{H}_{\mathrm{S}, \Gamma_{n}}^{k}(\Omega) \rightarrow \mathrm{H}_{\Gamma_{n}}^{k}(\Omega) ; \quad S \mapsto \operatorname{divDiv} S, \\
& { }_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}^{k},: D\left({ }_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}^{k}\right) \subset H_{\mathbb{S}, \Gamma_{t}}^{k}(\Omega) \rightarrow H_{\mathbb{T}, \Gamma_{t}}^{k}(\Omega) ; \quad S \mapsto \operatorname{Rot} S, \\
& { }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{n}}^{k}: D\left({ }_{\mathbb{S}} \boldsymbol{R o t}_{\mathbb{T}, \Gamma_{n}}^{k}\right) \subset \mathrm{H}_{\mathbb{T}, \Gamma_{n}}^{k}(\Omega) \rightarrow \mathrm{H}_{\mathbb{S}, \Gamma_{n}}^{k}(\Omega) ; \quad T \mapsto \operatorname{symRot} T, \\
& \operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{k}: D\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{k}\right) \subset \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\Omega) \rightarrow \mathrm{H}_{\Gamma_{t}}^{k}(\Omega) ; \quad T \mapsto \operatorname{Div} T, \\
& { }_{T} \operatorname{Grad}_{\Gamma_{n}}^{k}: D\left({ }_{\mathbb{T}} \operatorname{Grad}_{\Gamma_{n}}^{k}\right) \subset \mathrm{H}_{\Gamma_{n}}^{k}(\Omega) \rightarrow \mathrm{H}_{\mathbb{T}, \Gamma_{n}}^{k}(\Omega) ; \quad v \mapsto \operatorname{devGrad} v, \\
& \mathbb{T}^{\operatorname{Grad}} \Gamma_{\Gamma_{t}}^{k}: D\left(\mathbb{T}^{\operatorname{Grad}}{ }_{\Gamma_{t}}^{k}\right) \subset H_{\Gamma_{t}}^{k}(\Omega) \rightarrow H_{\mathbb{T}, \Gamma_{t}}^{k}(\Omega) ; \quad v \mapsto \operatorname{devGrad} v, \\
& \operatorname{Div}_{\mathbb{T}, \Gamma_{n}}^{k}: D\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{n}}^{k}\right) \subset H_{\mathbb{T}, \Gamma_{n}}^{k}(\Omega) \rightarrow \mathrm{H}_{\Gamma_{n}}^{k}(\Omega) ; \quad T \mapsto \operatorname{Div} T, \\
& { }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}^{k}: D\left({ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}^{k}\right) \subset \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\Omega) \rightarrow \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\Omega) ; \quad T \mapsto \operatorname{symRot} T, \\
& { }_{T} \boldsymbol{R o t}_{\mathbb{S}, \Gamma_{n}}^{k}: D\left({ }_{\mathbb{T}} \boldsymbol{R o t}_{\mathbb{S}, \Gamma_{n}}^{k}\right) \subset \mathcal{H}_{\mathbb{S}, \Gamma_{n}}^{k}(\Omega) \rightarrow \mathcal{H}_{\mathbb{T}, \Gamma_{n}}^{k}(\Omega) ; \quad S \mapsto \operatorname{Rot} S, \\
& \operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k}: D\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k}\right) \subset \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}\left(\Omega \rightarrow \mathrm{H}_{\Gamma_{t}}^{k}(\Omega) ; \quad S \mapsto \operatorname{divDiv} S,\right. \\
& { }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{n}}^{k}: D\left({ }_{\mathbb{S}} \boldsymbol{G r a d g r a d}_{\Gamma_{n}}^{k}\right) \subset H_{\Gamma_{n}}^{k}(\Omega) \rightarrow \mathrm{H}_{\mathbb{S}, \Gamma_{n}}^{k}(\Omega) ; \quad u \mapsto \operatorname{Gradgrad} u,
\end{aligned}
$$

with domains of definition

$$
\begin{aligned}
D\left({ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}^{k}\right) & =\mathrm{H}_{\Gamma_{t}}^{k}(\operatorname{Gradgrad}, \Omega), & D\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}}^{k}\right) & =\mathbf{H}_{\mathbb{S}, \Gamma_{n}}^{k}(\operatorname{divDiv}, \Omega), \\
D\left({ }_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}^{k}\right) & =\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega), & D\left({ }_{\mathrm{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{n}}^{k}\right) & =\mathbf{H}_{\mathbb{T}, \Gamma_{n}}^{k}(\operatorname{symRot}, \Omega), \\
D\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{k}\right) & =\mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{Div}, \Omega), & D\left({ }_{\mathbb{T}} \mathbf{G r a d}_{\Gamma_{n}}^{k}\right) & =\mathbf{H}_{\Gamma_{n}}^{k}(\operatorname{devGrad}, \Omega), \\
D\left({ }_{\mathbb{T}} \operatorname{Grad}_{\Gamma_{t}}^{k}\right) & =\mathrm{H}_{\Gamma_{t}}^{k}(\operatorname{devGrad}, \Omega), & D\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{n}}^{k}\right) & =\mathbf{H}_{\mathbb{T}, \Gamma_{n}}^{k}(\operatorname{Div}, \Omega), \\
D\left({ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}^{k}\right) & =\mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{symRot}, \Omega), & D\left({ }_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{n}}^{k}\right) & =\mathbf{H}_{\mathbb{S}, \Gamma_{n}}^{k}(\operatorname{Rot}, \Omega), \\
D\left(\operatorname{divDiv} v_{\mathbb{S}, \Gamma_{t}}^{k}\right) & =\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{divDiv}, \Omega), & D\left({ }_{\mathbb{S}} \mathbf{G r a d g r a d}_{\Gamma_{n}}^{k}\right) & =\mathbf{H}_{\Gamma_{n}}^{k}(\operatorname{Gradgrad}, \Omega) .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
{ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}^{k, k-1}: D\left({ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}^{k, k-1}\right) \subset \mathrm{H}_{\Gamma_{t}}^{k}(\Omega) \rightarrow \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k-1}(\Omega) ; & u \mapsto \operatorname{Gradgrad} u, \\
\mathbb{S}_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{n}}^{k, k-1}: D\left({ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{n}}^{k, k-1}\right) \subset \mathrm{H}_{\Gamma_{n}}^{k}(\Omega) \rightarrow \mathrm{H}_{\mathbb{S}, \Gamma_{n}}^{k-1}(\Omega) ; & u \mapsto \operatorname{Gradgrad} u, \\
\operatorname{divDiv} \mathbb{S}_{\mathbb{S}}^{k, k-1}: D\left(\operatorname{divDiv}_{\mathbb{S}}^{k, k-1}\right) \subset \mathrm{H}_{\mathbb{S}}^{k}(\Omega) \rightarrow \mathrm{H}_{\Gamma_{t}}^{k-1}(\Omega) ; & S \mapsto \operatorname{divDiv} S, \\
\operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}}^{k, k-1}: D\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}}^{k, k-1}\right) \subset \mathrm{H}_{\mathbb{S}, \Gamma_{n}}^{k}(\Omega) \rightarrow H_{\Gamma_{n}}^{k-1}(\Omega) ; & S \mapsto \operatorname{divDiv} S,
\end{aligned}
$$

with domains of definition

$$
\begin{aligned}
& D\left({ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}^{k, k-1}\right)=H_{\Gamma_{t}}^{k, k-1}(\operatorname{Gradgrad}, \Omega), \quad D\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k, k-1}\right)=H_{\mathbb{S}, \Gamma_{t}}^{k, k-1}(\operatorname{divDiv}, \Omega), \\
& D\left({ }_{\mathbb{S}} \mathbf{G r a d g r a d}_{\Gamma_{n}}^{k, k-1}\right)=\mathbf{H}_{\Gamma_{n}}^{k, k-1}(\operatorname{Gradgrad}, \Omega), \quad D\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}}^{k, k-1}\right)=\mathbf{H}_{\mathbb{S}, \Gamma_{n}}^{k, k-1}(\operatorname{divDiv}, \Omega) .
\end{aligned}
$$

2.6 | Dirichlet/Neumann fields

We also introduce the cohomology spaces of biharmonic Dirichlet/Neumann tensor fields (generalised harmonic tensors)

$$
\begin{aligned}
& \mathcal{H}_{\mathbb{S}, \Gamma_{t}, \Gamma_{n}, \varepsilon}(\Omega):=N\left(\mathbb{T o t}_{\mathbb{S}, \Gamma_{t}}\right) \cap N\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}} \varepsilon\right)=\mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}(\operatorname{Rot}, \Omega) \cap \varepsilon^{-1} \mathrm{H}_{\mathbb{S}, \Gamma_{n}, 0}(\operatorname{divDiv}, \Omega) \\
& \mathcal{H}_{\mathbb{T}, \Gamma_{n}, \Gamma_{t}, \mu}(\Omega):=N\left(\operatorname{Rot}_{\mathbb{T}, \Gamma_{n}}\right) \cap N\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}} \mu\right)=\mathrm{H}_{\mathbb{T}, \Gamma_{n}, 0}(\operatorname{symRot}, \Omega) \cap \mu^{-1} \mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}(\operatorname{Div}, \Omega)
\end{aligned}
$$

Here, $\varepsilon: \mathrm{L}_{\mathbb{S}}^{2}(\Omega) \rightarrow \mathrm{L}_{\mathbb{S}}^{2}(\Omega)$ is a symmetric and positive topological isomorphism (symmetric and positive bijective bounded linear operator), which introduces a new inner product

$$
\langle\cdot, \cdot\rangle_{\mathrm{L}_{\mathrm{S}, \varepsilon}^{2}(\Omega)}:=\langle\varepsilon \cdot, \cdot\rangle_{\mathrm{L}_{\mathrm{s}}^{2}(\Omega)}
$$

where $\mathrm{L}_{\mathbb{S}, \varepsilon}^{2}(\Omega):=\mathrm{L}_{\mathbb{S}}^{2}(\Omega)$ (as linear space) equipped with the inner product $\langle\cdot, \cdot\rangle_{\mathrm{L}_{\mathbb{S}, \varepsilon}^{2}(\Omega)}$. Such weights ε and also $\mu: \mathrm{L}_{\mathbb{T}}^{2}(\Omega) \rightarrow$ $\mathrm{L}_{\mathbb{T}}^{2}(\Omega)$ are called admissible. Typical examples are given by symmetric, L_{∞}-bounded, and uniformly positive definite tensor fields $\varepsilon, \mu: \Omega \rightarrow \mathbb{R}^{(3 \times 3) \times(3 \times 3)}$ with appropriate algebraic properties.

3 | BIHARMONIC COMPLEXES II

3.1 | Regular potentials and decompositions I

3.1.1 । Extendable domains

The next theorem is a crucial result. Its proof is based on [4, Theorem 3.10], where the stated results for $\Gamma_{t}=\Gamma$ and $\Gamma_{t}=\varnothing$ have been shown, and the arguments used in, for example, [1, Lemma 4.4] for partial boundary conditions. See Appendix C for a detailed proof.

Theorem 3.1 (Regular potential operators for extendable domains). Let $\left(\Omega, \Gamma_{t}\right)$ be an extendable bounded strong Lipschitz pair and let $k \geq 0$. Then there exist bounded linear regular potential operators

$$
\begin{aligned}
& \mathcal{P}_{\mathrm{S} \text { Gradgrad, } \Gamma_{t}}^{k}: \mathbf{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{Rot}, \Omega) \rightarrow \mathrm{H}_{\Gamma_{t}}^{k+2}(\Omega) \cap \mathrm{H}^{k+2}\left(\mathbb{R}^{3}\right), \\
& \mathcal{P}_{\mathbb{T}}^{k} \operatorname{Rot}_{\mathbb{S}}, \Gamma_{t}: H_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{Div}, \Omega) \rightarrow H_{\mathbb{S}, \Gamma_{t}}^{k+1}(\Omega) \cap H^{k+1}\left(\mathbb{R}^{3}\right), \\
& \mathcal{P}_{\operatorname{Div}_{\mathbb{T}}, \Gamma_{t}}^{k}: \mathrm{H}_{\Gamma_{t}}^{k}(\Omega) \cap\left(\mathbb{R}_{\Gamma_{n}}\right)^{\perp_{L^{2}(\Omega)}} \rightarrow \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega) \cap \mathrm{H}^{k+1}\left(\mathbb{R}^{3}\right), \\
& \mathcal{D}_{\mathbb{T} G r a d, \Gamma_{t}}^{k}: \mathbf{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{symRot}, \Omega) \rightarrow H_{\Gamma_{t}}^{k+1}(\Omega) \cap H^{k+1}\left(\mathbb{R}^{3}\right), \\
& \mathcal{P}_{\mathbb{S}}^{k} \operatorname{Rot}_{\mathbb{T}}, \Gamma_{t}: \mathbf{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{divDiv}, \Omega) \rightarrow H_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega) \cap H^{k+1}\left(\mathbb{R}^{3}\right), \\
& \mathcal{P}_{\operatorname{divDiv}_{\mathbb{S}}, \Gamma_{t}}^{k}: \mathrm{H}_{\Gamma_{t}}^{k}(\Omega) \cap\left(\mathbb{P}_{\Gamma_{n}}^{1}\right)^{\perp_{L^{2}(\Omega)}} \rightarrow \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+2}(\Omega) \cap \mathrm{H}^{k+2}\left(\mathbb{R}^{3}\right) \text {. }
\end{aligned}
$$

In particular, $\mathcal{P} \cdots$ are right inverses for ${ }_{\mathbb{S}} G r a d g r a d,{ }_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}}, \operatorname{Div}_{\mathbb{T}},{ }_{T} \operatorname{Grad},_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}}$, and divDiv${ }_{\mathbb{S}}$, respectively, that is,

$$
\begin{aligned}
& \text { Gradgrad } \mathcal{P}_{\mathrm{S}}^{k} \operatorname{Gradgrad}, \Gamma_{t}=\operatorname{id}_{\mathbf{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{Rot}, \Omega)}, \quad \operatorname{devGrad} \mathcal{P}_{\mathbb{T}}^{k} \operatorname{Grad}, \Gamma_{t}=\mathrm{id}_{\mathbf{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{symRot}, \Omega)}, \\
& \operatorname{Rot} \mathcal{P}_{\mathbb{T}}^{k} \operatorname{Rot}_{\mathbb{S}}, \Gamma_{t}=\operatorname{id}_{\mathbf{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{Div}, \Omega)}, \quad \operatorname{symRot} \mathcal{P}_{{ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}}, \Gamma_{t}}^{k}=\operatorname{id}_{\mathbf{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\mathrm{divDiv}, \Omega)}, \\
& \operatorname{Div} \mathcal{P}_{\operatorname{Div}_{\mathbb{T}}, \Gamma_{t}}^{k}=\operatorname{id}_{\mathrm{H}_{\Gamma_{t}}^{k}(\Omega) \cap\left(\mathbb{R}_{\Gamma_{n}}\right)^{\perp L^{2}(\Omega)}}, \quad \operatorname{divDiv} \mathcal{P}_{\operatorname{divDiv}_{S}, \Gamma_{t}}^{k}=\mathrm{id}_{\mathrm{H}_{\Gamma_{t}}^{k}(\Omega) \cap\left(\mathbb{P}_{\Gamma_{n}}^{1}\right)^{\perp \mathrm{L}^{2}(\Omega)}} .
\end{aligned}
$$

Without loss of generality, $\mathcal{P} \ldots$ map to tensor fields with a fixed compact support in \mathbb{R}^{3}.

Remark 3.2. Note that $\mathrm{A}_{n} \mathcal{P}_{\mathrm{A}_{n}}=\mathrm{id}_{R\left(\mathrm{~A}_{n}\right)}$ is a general property of a (bounded regular) potential operator $\mathcal{P}_{\mathrm{A}_{n}}: R\left(\mathrm{~A}_{n}\right) \rightarrow$ H_{n}^{+}with $\mathrm{H}_{n}^{+} \subset D\left(\mathrm{~A}_{n}\right)$ (cf. [1, Section 2.3]).

As a simple consequence of the complex properties, the general results for regular potentials and decompositions from, for example, [1, Section 2.3] and Theorem 3.1, we obtain a few corollaries.

Corollary 3.3 (Regular potentials for extendable domains). Let $\left(\Omega, \Gamma_{t}\right)$ be an extendable bounded strong Lipschitz pair and let $k \geq 0$. Then the regular potentials representations

$$
\begin{aligned}
& \mathbf{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{Rot}, \Omega)=H_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{Rot}, \Omega)=\operatorname{Gradgrad} H_{\Gamma_{t}}^{k}(\operatorname{Gradgrad}, \Omega)=\operatorname{Gradgrad} H_{\Gamma_{t}}^{k+2}(\Omega) \\
& =\text { Gradgrad } H_{\Gamma_{t}}^{k+1, k}(\text { Gradgrad, } \Omega) \\
& =R\left({ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}^{k}\right)=R\left({ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}^{k+1, k}\right), \\
& \mathbf{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{Div}, \Omega)=H_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{Div}, \Omega)=\operatorname{Rot} H_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega)=\operatorname{Rot} H_{\mathbb{S}, \Gamma_{t}}^{k+1}(\Omega) \\
& =R\left({ }_{T} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}^{k}\right), \\
& \mathrm{H}_{\Gamma_{t}}^{k}(\Omega) \cap\left(\mathbb{R} \mathbb{T}_{\Gamma_{n}}\right)^{\perp_{L^{2}(\Omega)}}=\operatorname{DivH} \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{Div}, \Omega)=\operatorname{Div} H_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega) \\
& =R\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{k}\right) \text {, } \\
& \mathbf{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{symRot}, \Omega)=H_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{symRot}, \Omega)=\operatorname{devGrad} H_{\Gamma_{t}}^{k}(\operatorname{devGrad} \Omega)=\operatorname{devGrad} H_{\Gamma_{t}}^{k+1}(\Omega) \\
& =R\left({ }_{T} \operatorname{Grad}_{\Gamma_{t}}^{k}\right), \\
& \mathbf{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{divDiv}, \Omega)=\mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{divDiv}, \Omega)=\operatorname{symRot} H_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{symRot}, \Omega)=\operatorname{symRot} H_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega) \\
& =R\left({ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}^{k}\right), \\
& \mathrm{H}_{\Gamma_{t}}^{k}(\Omega) \cap\left(\mathbb{P}_{\Gamma_{n}}^{1}\right)^{\perp_{\mathrm{L}^{2}(\Omega)}}=\operatorname{divDiv} \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{divDiv}, \Omega)=\operatorname{divDiv} \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+2}(\Omega) \\
& =\operatorname{divDiv} H_{\mathbb{S}, \Gamma_{t}}^{k+1, k}(\operatorname{divDiv}, \Omega) \\
& =R\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k}\right)=R\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k+1, k}\right)
\end{aligned}
$$

hold, and the potentials can be chosen such that they depend continuously on the data. In particular, the latter spaces are closed subspaces of $\mathrm{H}_{\mathbb{S}}^{k}(\Omega), \mathrm{H}_{\mathbb{T}}^{k}(\Omega)$, and $\mathrm{H}^{k}(\Omega)$, respectively.

Corollary 3.4. (Regular decompositions for extendable domains). Let $\left(\Omega, \Gamma_{t}\right)$ be an extendable bounded strong Lipschitz pair and let $k \geq 0$. Then the bounded regular decompositions

$$
\begin{aligned}
& \mathbf{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega)=H_{\mathbb{S}, \Gamma_{t}}^{k+1}(\Omega)+\operatorname{Gradgrad} H_{\Gamma_{t}}^{k+2}(\Omega)=R\left(\mathcal{P}_{\mathbb{T}}^{k} \operatorname{Rot}_{\mathbb{S}}, \Gamma_{t}\right) \dot{+} H_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{Rot}, \Omega) \\
& =R\left(\mathcal{P}_{\mathbb{T}^{\operatorname{Rot}}, \Gamma_{t}}^{k}\right) \dot{+} \operatorname{Gradgrad} \mathrm{H}_{\Gamma_{t}}^{k+2}(\Omega) \\
& =R\left(\mathcal{P}_{\mathbb{T}}^{k} \operatorname{Rot}_{\mathrm{S}}, \Gamma_{t}\right)+\operatorname{Gradgrad} R\left(\mathcal{P}_{\mathrm{S}}^{k}{\operatorname{Gradgrad}, \Gamma_{t}}^{k}\right), \\
& \mathbf{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{Div}, \Omega)=H_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega)+\operatorname{Rot} H_{\mathbb{S}, \Gamma_{t}}^{k+1}(\Omega)=R\left(\mathcal{P}_{\operatorname{Div}_{\mathbb{T}}, \Gamma_{t}}^{k}\right) \dot{+} \mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{Div}, \Omega) \\
& =R\left(\mathcal{P}_{\operatorname{Div}_{\mathbb{T}}, \Gamma_{t}}^{k}\right)+\operatorname{Rot} \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+1}(\Omega) \\
& =R\left(\mathcal{P}_{\operatorname{Div}_{\mathbb{T}}, \Gamma_{t}}^{k}\right) \dot{+} \operatorname{Rot} R\left(\mathcal{P}_{\mathbb{T}}^{k} \operatorname{Rot}_{\mathbb{S}}, \Gamma_{t}\right), \\
& \mathbf{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{symRot}, \Omega)=\mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega)+\operatorname{devGrad} H_{\Gamma_{t}}^{k+1}(\Omega)=R\left(\mathcal{P}_{{ }_{s} \text { Rot }_{\mathbb{T}}, \Gamma_{t}}^{k}\right) \dot{+} \mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{symRot}, \Omega) \\
& =R\left(\mathcal{P}_{{ }_{\mathrm{S}} \mathrm{Rot}_{\mathrm{T}}, \Gamma_{t}}^{k}\right) \dot{+} \operatorname{devGrad} \mathrm{H}_{\Gamma_{t}}^{k+1}(\Omega) \\
& =R\left(\mathcal{P}_{{ }_{\mathrm{S}} \operatorname{Rot}_{\mathbb{T}}, \Gamma_{t}}^{k}\right) \dot{\operatorname{devGrad} R}\left(\mathcal{P}_{\mathbb{T}}^{k}{\operatorname{Grad}, \Gamma_{t}}\right), \\
& \mathbf{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{divDiv}, \Omega)=\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+2}(\Omega)+\operatorname{symRot} \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega)=R\left(\mathcal{P}_{\operatorname{divDiv}_{\mathbb{S}}, \Gamma_{t}}^{k}\right) \dot{+} \mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{divDiv}, \Omega) \\
& =R\left(\mathcal{P}_{\text {divDiv }_{\mathbb{S}}, \Gamma_{t}}^{k}\right) \dot{\operatorname{symRot}} \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega) \\
& =R\left(\mathcal{P}_{\text {divDiv }_{s}, \Gamma_{t}}^{k}\right) \dot{+} \operatorname{symRot} R\left(\mathcal{P}_{{ }_{\mathrm{s}} \operatorname{Rot}_{\mathbb{T}}, \Gamma_{t}}^{k}\right)
\end{aligned}
$$

hold with bounded linear regular decomposition operators

$$
\begin{aligned}
& \mathcal{Q}_{\mathbb{T} \operatorname{Rot}_{\mathbb{S}}, \Gamma_{t}}^{k, 1}:=\mathcal{P}_{\mathbb{T} \operatorname{Rot}_{\mathbb{S}}, \Gamma_{t}}^{k} \operatorname{Rot}: \mathbf{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega) \rightarrow H_{\mathbb{S}, \Gamma_{t}}^{k+1}(\Omega), \\
& \mathcal{Q}_{\mathbb{T} \operatorname{Rot}_{\mathbb{S}}, \Gamma_{t}}^{k, 0}:=\mathcal{P}_{\mathbb{S G r a d g r a d}, \Gamma_{t}}^{k}\left(1-\mathcal{Q}_{\mathbb{T} \operatorname{Rot}_{\mathbb{S}} \Gamma_{t}}^{k, 1}\right): \mathbf{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega) \rightarrow \mathrm{H}_{\Gamma_{t}}^{k+2}(\Omega), \\
& \mathcal{Q}_{\operatorname{Div}_{\mathbb{T}}, \Gamma_{t}}^{k, 1}:=\mathcal{P}_{\operatorname{Div}_{\mathbb{T}}, \Gamma_{t}}^{k} \operatorname{Div}: \mathbf{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{Div}, \Omega) \rightarrow H_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega), \\
& \mathcal{Q}_{\operatorname{Div}_{\mathbb{T}}, \Gamma_{t}}^{k, 0}:=\mathcal{P}_{\mathbb{T}^{2 o t}}^{k}, \Gamma_{t}\left(1-\mathcal{Q}_{\operatorname{Div}_{\mathbb{T}}, \Gamma_{t}}^{k, 1}\right): \mathbf{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{Div}, \Omega) \rightarrow H_{\mathbb{S}, \Gamma_{t}}^{k+1}(\Omega), \\
& \mathcal{Q}_{\mathbb{S R o t}}^{\mathbb{T}}, \Gamma_{t},=\mathcal{P}_{\mathbb{S R o t}}^{\mathbb{T}}, \Gamma_{t}, \operatorname{symRot}^{k}: \mathbf{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{symRot}, \Omega) \rightarrow \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega), \\
& \left.\mathcal{Q}_{\mathbb{S}^{R o t} t_{\mathbb{T}}, \Gamma_{t}}^{k, 0}:=\mathcal{P}_{\mathbb{T}}^{k}{\operatorname{Grad}, \Gamma_{t}}^{\left(1-\mathcal{Q}_{\mathbb{S R o t}}^{\mathbb{T}}, \Gamma_{t}\right.} k\right): \mathbf{H}_{\mathbb{T}, \Gamma_{t}}^{k, 1}(\operatorname{symRot}, \Omega) \rightarrow \mathrm{H}_{\Gamma_{t}}^{k+1}(\Omega), \\
& \mathcal{Q}_{\operatorname{divDiv}_{\mathbb{S}}, \Gamma_{t}}^{k, 1}:=\mathcal{P}_{\operatorname{divDiv}_{\mathbb{S}}, \Gamma_{t}}^{k} \operatorname{divDiv}: \mathbf{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{divDiv}, \Omega) \rightarrow H_{\mathbb{S}, \Gamma_{t}}^{k+2}(\Omega), \\
& \mathcal{Q}_{\operatorname{divDiv}_{\mathbb{S}}, \Gamma_{t}}^{k, 0}:=\mathcal{P}_{{ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}}, \Gamma_{t}}^{k}\left(1-\mathcal{Q}_{\operatorname{divDiv}_{\mathbb{S}}, \Gamma_{t}}^{k, 1}\right): \mathbf{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{divDiv}, \Omega) \rightarrow H_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega),
\end{aligned}
$$

satisfying

$$
\begin{aligned}
& \mathcal{Q}_{\mathbb{T} \text { Rot }_{S}, \Gamma_{t}}^{k, 1}+\text { Gradgrad } \mathcal{Q}_{\mathbb{T} \operatorname{Rot}_{S}, \Gamma_{t}}^{k, 0}=\operatorname{id}_{\mathbf{H}_{\mathrm{S}, \Gamma_{t}}^{k}(\text { Rot }, \Omega),}, \\
& \mathcal{Q}_{\operatorname{Div}_{\mathbb{T}}, \Gamma_{t}}^{k, 1}+\operatorname{Rot} \mathcal{Q}_{\operatorname{Div}_{\mathbb{T}}, \Gamma_{t}}^{k, 0}=\operatorname{id}_{\mathbf{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{Div}, \Omega)}, \\
& \mathcal{Q}_{{ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}}, \Gamma_{t}}^{k, 1}+\operatorname{devGrad} \mathcal{Q}_{\mathrm{S}}^{k, 0} \operatorname{Rot}_{\mathbb{T}}, \Gamma_{t}=\operatorname{id}_{\mathbf{H}_{\mathbb{\pi}, \Gamma_{t}}^{k}(\operatorname{symRot}, \Omega)}, \\
& \mathcal{Q}_{\operatorname{divDiv}_{s}, \Gamma_{t}}^{k, 1}+\operatorname{symRot} \mathcal{Q}_{\operatorname{divDiv}_{s}, \Gamma_{t}}^{k, 0}=\operatorname{id}_{\mathbf{H}_{s, \Gamma_{t}}^{k}(\operatorname{divDiv}, \Omega)} .
\end{aligned}
$$

Remark 3.5. Note that for (bounded linear) potential operators $\mathcal{P}_{\mathrm{A}_{n-1}}$ and $\mathcal{P}_{\mathrm{A}_{n}}$, the identity

$$
\begin{array}{r}
\mathcal{Q}_{\mathrm{A}_{n}}^{1}+\mathrm{A}_{n-1} \mathcal{Q}_{\mathrm{A}_{n}}^{0}=\mathrm{id}_{D\left(\mathrm{~A}_{n}\right)} \quad \text { with } \quad \mathcal{Q}_{\mathrm{A}_{n}}^{1}:=\mathcal{P}_{\mathrm{A}_{n}} \mathrm{~A}_{n}: D\left(\mathrm{~A}_{n}\right) \rightarrow \mathrm{H}_{n}^{+}, \\
\mathcal{Q}_{\mathrm{A}_{n}}^{0}:=\mathcal{P}_{\mathrm{A}_{n-1}}\left(1-\mathcal{Q}_{\mathrm{A}_{n}}^{1}\right): D\left(\mathrm{~A}_{n}\right) \rightarrow \mathrm{H}_{n-1}^{+}
\end{array}
$$

is a general structure of a (bounded) regular decomposition. Moreover,
(i) $R\left(\mathcal{Q}_{\mathrm{A}_{n}}^{1}\right)=R\left(\mathcal{P}_{\mathrm{A}_{n}}\right)$ and $R\left(\mathcal{Q}_{\mathrm{A}_{n}}^{0}\right)=R\left(\mathcal{P}_{\mathrm{A}_{n-1}}\right)$.
(ii) $N\left(\mathrm{~A}_{n}\right)$ is invariant under $\mathcal{Q}_{\mathrm{A}_{n}}^{1}$, as $\mathrm{A}_{n}=\mathrm{A}_{n} \mathcal{Q}_{\mathrm{A}_{n}}^{1}$ holds by the complex property.
(iii) $\mathcal{Q}_{\mathrm{A}_{n}}^{1}$ and $\mathrm{A}_{n-1} \mathcal{Q}_{\mathrm{A}_{n}}^{0}=1-\mathcal{Q}_{\mathrm{A}_{n}}^{1}$ are projections.
(iv) There exists $c>0$ such that for all $x \in D\left(\mathrm{~A}_{n}\right)$

$$
\left|\mathcal{Q}_{\mathrm{A}_{n}}^{1} x\right|_{\mathrm{H}_{n}^{+}} \leq c\left|\mathrm{~A}_{n} x\right|_{\mathrm{H}_{n+1}} .
$$

(iv') In particular, $\mathcal{Q}_{\mathrm{A}_{n}}^{1} \ln _{N\left(\mathrm{~A}_{n}\right)}=0$.

Corollary 3.6. (Weak and strong partial boundary conditions coincide for extendable domains). Let (Ω, Γ_{t}) be an extendable bounded strong Lipschitz pair and let $k \geq 0$. Then weak and strong boundary conditions coincide, that is,

$$
\begin{aligned}
\mathbf{H}_{\Gamma_{t}}^{k}(\operatorname{Gradgrad}, \Omega) & =\mathrm{H}_{\Gamma_{t}}^{k}(\operatorname{Gradgrad}, \Omega)=\mathrm{H}_{\Gamma_{t}}^{k+2}(\Omega)=\mathbf{H}_{\Gamma_{t}}^{k+2}(\Omega), \\
\mathbf{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega) & =\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega), \\
\mathbf{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{Div}, \Omega) & =\mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{Div}, \Omega), \\
\mathbf{H}_{\Gamma_{t}}^{k}(\operatorname{devGrad}, \Omega) & =\mathrm{H}_{\Gamma_{t}}^{k}(\operatorname{devGrad}, \Omega)=\mathrm{H}_{\Gamma_{t}}^{k+1}(\Omega)=\mathbf{H}_{\Gamma_{t}}^{k+1}(\Omega), \\
\mathbf{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\text { symRot }, \Omega) & =\mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{symRot}, \Omega), \\
\mathbf{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{divDiv}, \Omega) & =\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{divDiv}, \Omega) .
\end{aligned}
$$

Similar versions of Corollary 3.4 and Corollary 3.6 are available for the nonstandard Sobolev spaces of the form $H^{k, ., k-1}(\cdots, \Omega)$ (cf. Section 2.4). Note that

$$
\begin{equation*}
\mathbf{H}_{\Gamma_{t}}^{k, k-1}(\text { Gradgrad, } \Omega)=H_{\Gamma_{t}}^{k+1}(\Omega) \tag{7}
\end{equation*}
$$

as $\mathbf{H}_{\Gamma_{t}}^{k, k-1}(\operatorname{Gradgrad}, \Omega) \subset \mathbf{H}_{\Gamma_{t}}^{k-1}(\operatorname{Gradgrad}, \Omega)=\mathrm{H}_{\Gamma_{t}}^{k+1}(\Omega) \subset \mathbf{H}_{\Gamma_{t}}^{k, k-1}($ Gradgrad, $\Omega)$.

Corollary 3.7. (Corollary 3.4 and Corollary 3.6 for nonstandard Sobolev spaces). Let $\left(\Omega, \Gamma_{t}\right)$ be an extendable bounded strong Lipschitz pair and let $k \geq 1$. Then the bounded regular decompositions

$$
\begin{aligned}
\mathbf{H}_{\mathrm{S}, \Gamma_{t}}^{k, k-1}(\operatorname{divDiv}, \Omega) & =\mathrm{H}_{\mathrm{S}, \Gamma_{t}}^{k+1}(\Omega)+\operatorname{symRot} \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega)=R\left(\mathcal{P}_{\text {divDiv }}^{k-\Gamma_{t}}\right)+\mathrm{H}_{\mathrm{S}, \Gamma_{t}, 0}^{k}(\operatorname{divDiv}, \Omega) \\
& =R\left(\mathcal{P}_{\text {divDiv }_{\mathrm{S}}, \Gamma_{t}}^{k-1}\right)+\operatorname{symRot} \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega) \\
& =R\left(\mathcal{P}_{\text {divDiv }_{\mathrm{s}}, \Gamma_{t}}^{k-1}\right)+\operatorname{symRot} R\left(\mathcal{P}_{\mathrm{s} \mathrm{Rot}_{T}, \Gamma_{t}}^{k}\right)=\mathrm{H}_{\mathrm{S}, \Gamma_{t}}^{k, k-1}(\operatorname{divDiv}, \Omega)
\end{aligned}
$$

hold with bounded linear regular decomposition operators

$$
\begin{array}{r}
\mathcal{Q}_{\operatorname{divDiv}_{\mathbb{S}}, \Gamma_{t}}^{k, k-1,1}:=\mathcal{P}_{\operatorname{divDiv}_{\mathbb{S}}, \Gamma_{t}}^{k-1} \operatorname{divDiv}: \mathbf{H}_{\mathbb{S}, \Gamma_{t}}^{k, k-1}(\operatorname{divDiv}, \Omega) \rightarrow H_{\mathbb{S}, \Gamma_{t}}^{k+1}(\Omega), \\
\mathcal{Q}_{\operatorname{divDiv}_{\mathbb{S}}, \Gamma_{t}}^{k, k-1,0}:=\mathcal{P}_{\mathbb{S}^{\operatorname{Rot}} \mathbb{R}_{\mathbb{T}}, \Gamma_{t}}^{k}\left(1-\mathcal{Q}_{\text {divDiv }_{\mathbb{S}}, \Gamma_{t}}^{k, k-1,1}\right): \mathbf{H}_{\mathbb{S}, \Gamma_{t}}^{k, k-1}(\operatorname{divDiv}, \Omega) \rightarrow \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega)
\end{array}
$$

satisfying $\mathcal{Q}_{\operatorname{divDiv}_{s}, \Gamma_{t}}^{k, k-1,1}+\operatorname{symRot} \mathcal{Q}_{\operatorname{divDiv}_{s}, \Gamma_{t}}^{k, k-1,0}=\operatorname{id}_{\mathbf{H}_{\mathrm{s}, \Gamma_{t}}^{k, k-1}(\mathrm{divDiv}, \Omega)}$. In particular, weak and strong boundary conditions coincide also for the nonstandard Sobolev spaces.
Recall the Hilbert complexes and cohomology groups from Section 2.5 and Section 2.6.

Theorem 3.8. (Closed and exact Hilbert complexes for extendable domains). Let $\left(\Omega, \Gamma_{t}\right)$ be an extendable bounded strong Lipschitz pair and let $k \geq 0$. Both biharmonic domain complexes

$$
\begin{aligned}
& \mathbb{P}_{\Gamma_{t}}^{1} \xrightarrow{\iota_{\mathbb{P}_{\Gamma_{t}}}} \mathrm{H}_{\Gamma_{t}}^{k+2} \xrightarrow{\mathbb{S}^{\text {Gradgrad }}{ }_{\Gamma_{t}}^{k}} \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}) \xrightarrow{\mathbb{T}^{\operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}^{k}}} \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{Div}) \xrightarrow{\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{k}} \mathrm{H}_{\Gamma_{t}}^{k} \xrightarrow{\pi_{\mathbb{R} \mathbb{T}_{\Gamma_{n}}}} \mathbb{R}^{\mathbb{T}_{\Gamma_{n}}}, \\
& \mathbb{P}_{\Gamma_{t}}^{1} \stackrel{\pi_{\mathbb{P}_{\Gamma_{t}}}}{\leftarrow} \mathrm{H}_{\Gamma_{n}}^{k} \stackrel{\operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}}^{k}}{\leftarrow} \mathrm{H}_{\mathbb{S}, \Gamma_{n}}^{k}(\text { divDiv }) \stackrel{\mathbb{S}^{\operatorname{Rot}}{ }_{\mathbb{T}, \Gamma_{n}}^{k}}{\longleftarrow} \mathrm{H}_{\mathbb{T}, \Gamma_{n}}^{k}(\operatorname{symRot}) \stackrel{-\mathbb{T}^{\operatorname{Grad}}{ }_{\Gamma_{n}}^{k}}{\leftarrow} \mathrm{H}_{\Gamma_{n}}^{k+1} \stackrel{{ }^{\iota} \mathbb{R}_{\Gamma_{n}}}{\longleftarrow} \mathbb{R}_{\Gamma_{n}}
\end{aligned}
$$

and, for $k \geq 1$,

$$
\begin{aligned}
& \mathbb{P}_{\Gamma_{t}}^{1} \xrightarrow{\iota_{\mathbb{P}_{\Gamma_{t}}}} \mathrm{H}_{\Gamma_{t}}^{k+1} \xrightarrow{\mathbb{S}} \xrightarrow{\operatorname{Gradgrad}_{\Gamma_{t}}^{k, k-1}} \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k-1}(\text { Rot }) \xrightarrow{\mathbb{T}^{\operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}^{k-1}}} \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k-1}(\text { Div }) \xrightarrow{\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{k-1}} \mathrm{H}_{\Gamma_{t}}^{k-1} \xrightarrow{\pi_{\mathbb{R} \mathbb{T}_{\Gamma_{n}}}} \mathbb{R}_{\Gamma_{n}}, \\
& \mathbb{P}_{\Gamma_{t}}^{1} \stackrel{\pi_{\mathbb{P}_{\Gamma_{t}}^{1}}}{\leftarrow} \mathrm{H}_{\Gamma_{n}}^{k-1} \stackrel{\operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}}^{k, k-1}}{\longleftarrow} \mathrm{H}_{\mathbb{S}, \Gamma_{n}}^{k, k-1}(\text { divDiv }) \stackrel{{ }^{\operatorname{Rot}}{ }_{\mathbb{T}, \Gamma_{n}}^{k}}{\longleftarrow} \mathrm{H}_{\mathbb{T}, \Gamma_{n}}^{k}(\operatorname{symRot}) \stackrel{-{ }_{\mathbb{T}} \operatorname{Grad}_{\Gamma_{n}}^{k}}{\longleftarrow} \mathrm{H}_{\Gamma_{n}}^{k+1} \stackrel{\iota_{\mathbb{R} \mathbb{T}_{\Gamma_{n}}}^{\longleftarrow}}{\leftarrow} \mathbb{R}_{\Gamma_{n}}
\end{aligned}
$$

are exact and closed Hilbert complexes. In particular, all ranges are closed, all cohomology groups (Dirichlet/Neumann fields) are trivial, and the operators from Theorem 3.1 are associated bounded regular potential operators.

3.1.2 । General strong Lipschitz domains

From now on, we drop the additional condition "extendable domain," thus $\left(\Omega, \Gamma_{t}\right)$ is a bounded strong Lipschitz pair.

Lemma 3.9. (cutting lemma). Let $\varphi \in C^{\infty}\left(\mathbb{R}^{3}\right)$ and let $k \geq 0$.
(i) If $S \in \mathbf{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega)$, then $\varphi S \in \mathbf{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega)$ and $\operatorname{Rot}(\varphi S)=\varphi \operatorname{Rot} S-S \operatorname{spn} \operatorname{grad} \varphi$.
(ii) If $T \in \mathbf{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{Div}, \Omega)$, then $\varphi T \in \mathbf{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{Div}, \Omega)$ and $\operatorname{Div}(\varphi T)=\varphi \operatorname{Div} T+T \operatorname{grad} \varphi$.
(iii) If $T \in \mathbf{H}_{\mathbb{T}, \Gamma_{t}}^{k}$ (symRot, Ω), then $\varphi T \in \mathbf{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{symRot}, \Omega)$ and $\operatorname{symRot}(\varphi T)=\varphi \operatorname{symRot} T-\operatorname{sym}(T \operatorname{spn} \operatorname{grad} \varphi)$.
(iv) If $k \geq 1$ and $S \in \mathbf{H}_{\mathbb{S}, \Gamma_{t}}^{k, k-1}(\operatorname{divDiv}, \Omega)$, then $\varphi S \in \mathbf{H}_{\mathbb{S}, \Gamma_{t}}^{k, k-1}(\operatorname{divDiv}, \Omega)$ and

$$
\operatorname{div} \operatorname{Div}(\varphi S)=\varphi \operatorname{divDiv} S+2 \operatorname{grad} \varphi \cdot \operatorname{Div} S+\operatorname{Grad} \operatorname{grad} \varphi: S
$$

In particular, this holds for $S \in \mathbf{H}_{\mathbb{S}, \Gamma_{t}}^{k}$ ($\operatorname{divDiv,~} \Omega$). Note that \cdot and : denote the point-wise scalar product for vectors fields and tensor (matrix) fields, respectively.
We proceed by showing crucial regular decompositions for the biharmonic complexes extending the results of Corollary 3.4 and Corollary 3.7 to our general setting. The proof is based on Corollary 3.4 together with a partition of unity.

Lemma 3.10. (Regular decompositions). Let $k \geq 0$. Then the bounded regular decompositions

$$
\begin{aligned}
\mathbf{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega) & =\mathrm{H}_{\mathbb{S} \Gamma_{t}}^{k+1}(\Omega)+\operatorname{Gradgrad} H_{\Gamma_{t}}^{k+2}(\Omega), \\
\mathbf{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{Div}, \Omega) & =\mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega)+\operatorname{Rot} \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+1}(\Omega), \\
\mathbf{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{symRot}, \Omega) & =\mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega)+\operatorname{devGrad} \mathrm{H}_{\Gamma_{t}}^{k+1}(\Omega), \\
\mathbf{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{divDiv}, \Omega) & =\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+2}(\Omega)+\operatorname{symRot} \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega)
\end{aligned}
$$

and, for $k \geq 1$, the nonstandard bounded regular decompositions

$$
\mathbf{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{divDiv}, \Omega) \subset \mathbf{H}_{\mathbb{S}, \Gamma_{t}}^{k, k-1}(\operatorname{divDiv}, \Omega)=\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+1}(\Omega)+\operatorname{symRot} \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega)
$$

hold with bounded linear regular decomposition operators

$$
\begin{array}{rc}
\mathcal{Q}_{\mathbb{T} \operatorname{Rot}_{\mathbb{S}}, \Gamma_{t}}^{k, 1}: \mathbf{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega) \rightarrow \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+1}(\Omega), & \mathcal{Q}_{\mathbb{T}}^{k, 0} \operatorname{Rot}_{\mathbb{S}}, \Gamma_{t}
\end{array}: \mathbf{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega) \rightarrow \mathrm{H}_{\Gamma_{t}}^{k+2}(\Omega),
$$

satisfying

$$
\begin{aligned}
& \mathcal{Q}_{\mathbb{T} \text { Rot }_{S}, \Gamma_{t}}^{k, 1}+\operatorname{Gradgrad} \mathcal{Q}_{\mathbb{T} \operatorname{Rot}_{s}, \Gamma_{t}}^{k, 0}=\operatorname{id}_{\mathbf{H}_{\mathrm{s}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega)}, \\
& \mathcal{Q}_{\operatorname{Div}_{\mathbb{T}}, \Gamma_{t}}^{k, 1}+\operatorname{Rot} \mathcal{Q}_{\operatorname{Div}_{\mathbb{T}}, \Gamma_{t}}^{k, 0}=\operatorname{id}_{\mathbf{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{Div}, \Omega)}, \\
& \mathcal{Q}_{\mathrm{s} \operatorname{Rot}_{\mathbb{T}}, \Gamma_{t}}^{k, 1}+\operatorname{devGrad} \mathcal{Q}_{\mathrm{s}}^{k, \operatorname{Rot}_{\mathbb{T}}, \Gamma_{t}}{ }^{k}=\mathrm{id}_{\mathbf{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{symRot}, \Omega)}, \\
& \mathcal{Q}_{\text {divDiv }_{s}, \Gamma_{t}}^{k, 1}+\operatorname{symRot} \mathcal{Q}_{\operatorname{divDiv}_{\S}, \Gamma_{t}}^{k, 0}=\mathrm{id}_{\mathbf{H}_{\mathrm{s}, \Gamma_{t}}^{k}(\operatorname{divDiv}, \Omega),}, \\
& \mathcal{Q}_{\text {divDiv }_{S}, \Gamma_{t}}^{k, k-1,1}+\operatorname{symRot} \mathcal{Q}_{\operatorname{divDiv}_{s}, \Gamma_{t}}^{k, k-1,0}=\operatorname{id}_{\mathbf{H}_{\mathrm{s}, \Gamma_{t}}^{k, k-1}(\operatorname{divDiv}, \Omega)}, \quad k \geq 1 \text {. }
\end{aligned}
$$

It holds Rot $\mathcal{Q}_{\mathbb{T}}^{k, 1} \operatorname{Rot}_{\mathbb{S}}, \Gamma_{t}={ }_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}^{k}, \operatorname{Div} \mathcal{Q}_{\operatorname{Div}_{\mathbb{T}}, \Gamma_{t}}^{k, 1}=\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{k}$, and symRot $\mathcal{Q}_{\mathbb{S} \operatorname{Rot}_{\mathbb{T}}, \Gamma_{t}}^{k, 1}=\operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}^{k}$ and thus $\mathbf{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{Rot}, \Omega)$, $\mathbf{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{Div}, \Omega)$, and $\mathbf{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{symRot}, \Omega)$ are invariant under $\mathcal{Q}_{\mathbb{T}}^{k, 1} \operatorname{Rot}_{\mathbb{S}}, \Gamma_{t}, \mathcal{Q}_{\operatorname{Div}_{\mathbb{T}}, \Gamma_{t}}^{k, 1}$, and $\mathcal{Q}_{\mathbb{S}}^{k, 1} \operatorname{Rot}_{\mathbb{T}}, \Gamma_{t}$, respectively. Analogously, we have $\operatorname{divDiv} \mathcal{Q}_{\operatorname{divDiv}_{\mathbb{S}}, \Gamma_{t}}^{k, 1}=\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k}$ and $\operatorname{divDiv} \mathcal{Q}_{\operatorname{divDiv}_{\mathbb{S}}, \Gamma_{t}}^{k, k-1,1}=\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k, k-1}$ and thus $\mathbf{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{divDiv}, \Omega)$ is invariant under $\mathcal{Q}_{\text {divDiv }_{s}, \Gamma_{t}}^{k, 1}$ and $\mathcal{Q}_{\text {divDiv }_{\S}, \Gamma_{t}}^{k, k-1,1}$, respectively.
Corollary 3.6 and (7) are generalised to the following important result.

Corollary 3.11. (Weak and strong partial boundary conditions coincide). Let $k \geq 0$. Weak and strong boundary conditions coincide, that is,

$$
\begin{aligned}
\mathbf{H}_{\Gamma_{t}}^{k}(\operatorname{Gradgrad}, \Omega) & =\mathrm{H}_{\Gamma_{t}}^{k}(\text { Gradgrad, } \Omega)=\mathrm{H}_{\Gamma_{t}}^{k+2}(\Omega)=\mathbf{H}_{\Gamma_{t}}^{k+2}(\Omega), \\
\mathbf{H}_{\Gamma_{t}}^{k, k-1}(\operatorname{Gradgrad}, \Omega) & =\mathrm{H}_{\Gamma_{t}}^{k, k-1}(\operatorname{Gradgrad}, \Omega)=\mathrm{H}_{\Gamma_{t}}^{k+1}(\Omega)=\mathbf{H}_{\Gamma_{t}}^{k+1}(\Omega), \quad k \geq 1, \\
\mathbf{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega) & =\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega), \\
\mathbf{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{Div}, \Omega) & =\mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{Div}, \Omega), \\
\mathbf{H}_{\Gamma_{t}}^{k}(\operatorname{devGrad}, \Omega) & =\mathrm{H}_{\Gamma_{t}}^{k}(\operatorname{devGrad}, \Omega)=\mathrm{H}_{\Gamma_{t}}^{k+1}(\Omega)=\mathbf{H}_{\Gamma_{t}}^{k+1}(\Omega), \\
\mathbf{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{symRot}, \Omega) & =\mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{symRot}, \Omega), \\
\mathbf{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{divDiv}, \Omega) & =\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{divDiv}, \Omega), \\
\mathbf{H}_{\mathbb{S}, \Gamma_{t}}^{k, k-1}(\operatorname{divDiv}, \Omega) & =\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k, k-1}(\operatorname{divDiv}, \Omega), \quad k \geq 1 .
\end{aligned}
$$

 $={ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}^{k}, \operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k}=\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k}$, as well as, for $k \geq 1$, $\boldsymbol{G r a d g r a d}_{\Gamma_{t}}^{k, k-1}={ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}^{k, k-1}$ and divDiv${ }_{\mathbb{S}, \Gamma_{t}}^{k, k-1}=\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k, k-1}$. For a detailed proof of Lemma 3.10 and Corollary 3.11, see Appendix C.

3.2 | Mini FA-ToolBox

3.2.1 | Zero order mini FA-ToolBox

Recall Section 2.6 and let ε, μ be admissible. In Section 2.1 (for $\varepsilon=\mu=\mathrm{id}$), we have seen that the densely defined and closed linear operators

$$
\begin{array}{rlrl}
\mathrm{A}_{-1}=l_{\mathbb{P}_{t}}^{1}: \mathbb{P}_{\Gamma_{t}}^{1} \rightarrow \mathrm{~L}^{2}(\Omega) ; & & p \mapsto p, \\
\mathrm{~A}_{0}={ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}: \mathrm{H}_{\Gamma_{t}}^{2}(\Omega) \subset \mathrm{L}^{2}(\Omega) \rightarrow \mathrm{L}_{\mathbb{S}, \varepsilon}^{2}(\Omega) ; & & u \mapsto \operatorname{Gradgrad} u, \\
\mathrm{~A}_{1}=\mu^{-1}{ }_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}: \mathrm{H}_{\mathbb{S}, \Gamma_{t}}(\operatorname{Rot}, \Omega) \subset \mathrm{L}_{\mathbb{S}, \varepsilon}^{2}(\Omega) \rightarrow \mathrm{L}_{\mathbb{T}, \mu}^{2}(\Omega) ; & S \mapsto \mu^{-1} \operatorname{Rot} S, \\
\mathrm{~A}_{2}=\operatorname{Div}_{\mathbb{T}, \Gamma_{t}} \mu: \mu^{-1} \mathrm{H}_{\mathbb{T}, \Gamma_{t}}(\operatorname{Div}, \Omega) \subset \mathrm{L}_{\mathbb{T}, \mu}^{2}(\Omega) \rightarrow \mathrm{L}^{2}(\Omega) ; & T \mapsto \operatorname{Div} \mu T, \\
\mathrm{~A}_{3}=l_{\mathbb{R} \mathbb{T}_{\Gamma_{n}}}^{*}: \mathrm{L}^{2}(\Omega) \rightarrow \mathbb{R}_{\Gamma_{n}} ; & q \mapsto \pi_{\mathbb{R} \mathbb{T}_{\Gamma_{n}}} q, \\
\mathrm{~A}_{-1}^{*}=l_{\mathbb{P}_{\Gamma_{t}}^{1}}^{*}: \mathrm{L}^{2}(\Omega) \rightarrow \mathbb{P}_{\Gamma_{t}}^{1} ; & p \mapsto \pi_{\mathbb{P}_{\Gamma_{t}}^{1}} p, \\
\mathrm{~A}_{0}^{*}=\operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}} \varepsilon: \varepsilon^{-1} \mathrm{H}_{\mathbb{S}, \Gamma_{n}}(\operatorname{divDiv}, \Omega) \subset \mathrm{L}_{\mathbb{S}, \varepsilon}^{2}(\Omega) \rightarrow \mathrm{L}^{2}(\Omega) ; & S \mapsto \operatorname{divDiv} \varepsilon S, \\
\mathrm{~A}_{1}^{*}=\varepsilon^{-1}{ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{n}}: \mathrm{H}_{\mathbb{T}, \Gamma_{n}}\left({ \operatorname { s y m R o t } , \Omega) \subset \mathrm { L } _ { \mathbb { T } , \mu } ^ { 2 } (\Omega) } ^ { 2 } \left(\mathrm{~L}_{\mathbb{S}, \varepsilon}^{2}(\Omega) ;\right.\right. & T \mapsto \varepsilon^{-1} \operatorname{symRot} T, \\
\mathrm{~A}_{2}^{*}=-\mathbb{T} \operatorname{Grad}_{\Gamma_{n}}: \mathrm{H}_{\Gamma_{n}}^{1}(\Omega) \subset \mathrm{L}^{2}(\Omega) \rightarrow \mathrm{L}_{\mathbb{T}, \mu}^{2}(\Omega) ; & v \mapsto-\operatorname{devGrad} v, \\
\mathrm{~A}_{3}^{*}=t_{\mathbb{R} \mathbb{T}_{\Gamma_{n}}}: \mathbb{R}_{\mathbb{\Gamma}_{n}} \rightarrow \mathrm{~L}^{2}(\Omega) ; & q \mapsto q,
\end{array}
$$

where we have used Corollary 3.11, build the long primal and dual elasticity Hilbert complex
and compare (5). Note that

$$
\begin{aligned}
& l_{\mathbb{P}_{\Gamma_{t}}^{1}} \mathrm{~A}_{-1}^{*}=\boldsymbol{l}_{\mathbb{P}_{\Gamma_{t}}^{1}} l_{\mathbb{P}_{\Gamma_{t}}^{1}}^{*}=\pi_{\mathbb{P}_{\Gamma_{t}}^{1}}: \mathrm{L}^{2}(\Omega) \rightarrow \mathrm{L}^{2}(\Omega), \\
& \imath_{\mathbb{R} \mathbb{T}_{\Gamma_{n}}} \mathrm{~A}_{3}=\boldsymbol{l}_{\mathbb{R} \mathbb{T}_{\Gamma_{n}}} \iota_{\mathbb{R} \mathbb{T}_{\Gamma_{n}}}^{*}=\pi_{\mathbb{R T}_{\Gamma_{n}}}: \mathrm{L}^{2}(\Omega) \rightarrow \mathrm{L}^{2}(\Omega)
\end{aligned}
$$

are the actual projectors onto $\mathbb{P}_{\Gamma_{t}}^{1}$ and $\mathbb{R} \mathbb{T}_{\Gamma_{n}}$, respectively.

Theorem 3.12. (Compact embeddings). The embeddings

$$
\begin{gathered}
D\left(\mathrm{~A}_{1}\right) \cap D\left(\mathrm{~A}_{0}^{*}\right)=\mathrm{H}_{\mathbb{S}, \Gamma_{t}}(\operatorname{Rot}, \Omega) \cap \varepsilon^{-1} \mathrm{H}_{\mathbb{S}, \Gamma_{n}}(\operatorname{divDiv}, \Omega) \hookrightarrow \mathrm{L}_{\mathbb{S}, \varepsilon}^{2}(\Omega), \\
D\left(\mathrm{~A}_{2}\right) \cap D\left(\mathrm{~A}_{1}^{*}\right)=\mu^{-1} \mathrm{H}_{\mathbb{T}, \Gamma_{t}}(\operatorname{Div}, \Omega) \cap \mathrm{H}_{\mathbb{T}, \Gamma_{n}}(\operatorname{symRot}, \Omega) \hookrightarrow \mathrm{L}_{\mathbb{T}, \mu}^{2}(\Omega)
\end{gathered}
$$

are compact. Moreover, the compactness does not depend on ε or μ.
See Appendix C for a proof.
Remark 3.13. (Compact embeddings). The embeddings

$$
D\left(\mathrm{~A}_{0}\right) \cap D\left(\mathrm{~A}_{-1}^{*}\right)=D\left(\mathrm{~A}_{0}\right)=\mathrm{H}_{\Gamma_{t}}^{2}(\Omega) \hookrightarrow \mathrm{L}^{2}(\Omega), \quad D\left(\mathrm{~A}_{3}\right) \cap D\left(\mathrm{~A}_{2}^{*}\right)=D\left(\mathrm{~A}_{2}^{*}\right)=\mathrm{H}_{\Gamma_{n}}^{1}(\Omega) \hookrightarrow \mathrm{L}^{2}(\Omega)
$$

are compact by Rellich's selection theorem.
Theorem 3.14. (Compact biharmonic complex). The long primal and dual biharmonic Hilbert complex (8) is compact. In particular, the complex is closed.

Let us recall for the densely defined and closed linear operators

$$
\mathrm{A}_{n}: D\left(\mathrm{~A}_{n}\right) \subset \mathrm{H}_{n} \rightarrow \mathrm{H}_{n+1}, \quad \mathrm{~A}_{n}^{*}: D\left(\mathrm{~A}_{n}^{*}\right) \subset \mathrm{H}_{n+1} \rightarrow \mathrm{H}_{n}
$$

the corresponding reduced operators

$$
\begin{gathered}
\left(\mathrm{A}_{n}\right)_{\perp}:=\left.\mathrm{A}_{n}\right|_{N\left(\mathrm{~A}_{n}\right)^{\perp \mathrm{H}_{n}}}: D\left(\left(\mathrm{~A}_{n}\right)_{\perp}\right)=D\left(\mathrm{~A}_{n}\right) \cap N\left(\mathrm{~A}_{n}\right)^{\perp_{n}} \subset N\left(\mathrm{~A}_{n}\right)^{\perp_{\mathrm{H}_{n}}} \rightarrow R\left(\mathrm{~A}_{n}\right), \\
\left(\mathrm{A}_{n}^{*}\right)_{\perp}:=\left.\mathrm{A}_{n}^{*}\right|_{N\left(\mathrm{~A}_{n}^{*}\right)} ^{\mathrm{L}_{n+1}}: D\left(\left(\mathrm{~A}_{n}^{*}\right)_{\perp}\right)=D\left(\mathrm{~A}_{n}^{*}\right) \cap N\left(\mathrm{~A}_{n}^{*}\right)^{\perp_{\mathrm{H}_{n+1}}} \subset N\left(\mathrm{~A}_{n}^{*}\right)^{\mathrm{H}_{n+1}} \rightarrow R\left(\mathrm{~A}_{n}^{*}\right) .
\end{gathered}
$$

Note that $R\left(\mathrm{~A}_{n}\right)=R\left(\left(\mathrm{~A}_{n}\right)_{\perp}\right)=N\left(\mathrm{~A}_{n}^{*}\right)^{\perp_{n+1}}$ and $R\left(\mathrm{~A}_{n}^{*}\right)=R\left(\left(\mathrm{~A}_{n}^{*}\right)_{\perp}\right)=N\left(\mathrm{~A}_{n}\right)^{\perp_{n_{n}}}$. Here, we consider

$$
\begin{array}{lll}
\left(\mathrm{A}_{0}\right)_{\perp}=\left(\operatorname{Gradgrad}_{\Gamma_{t}}\right)_{\perp}, & \left(\mathrm{A}_{1}\right)_{\perp}=\left(\mu^{-1} \mathbb{R o t}_{\mathbb{T}} \Gamma_{t}\right)_{\perp}, & \left(\mathrm{A}_{2}\right)_{\perp}=\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}} \mu\right)_{\perp}, \\
\left(\mathrm{A}_{0}^{*}\right)_{\perp}=\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}} \varepsilon\right)_{\perp}, & \left(\mathrm{A}_{1}^{*}\right)_{\perp}=\left(\varepsilon^{-1}{ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{n}}\right)_{\perp}, & \left(\mathrm{A}_{2}^{*}\right)_{\perp}=-\left(\operatorname{Trad}_{\Gamma_{n}}\right)_{\perp},
\end{array}
$$

and

$$
\begin{array}{r}
\left(\mathrm{A}_{-1}\right)_{\perp}=\left(l_{\mathbb{P}_{\Gamma_{t}}^{1}}\right)_{\perp}=\mathrm{id}_{\mathbb{P}_{\Gamma_{t}}^{1}}: \mathbb{P}_{\Gamma_{t}}^{1} \rightarrow \mathbb{P}_{\Gamma_{t}}^{1}, \\
\left(\mathrm{~A}_{-1}^{*}\right)_{\perp} \cong\left(\pi_{\mathbb{P}_{\Gamma_{t}}^{1}}\right)_{\perp}=\left.\pi_{\mathbb{P}_{\Gamma_{t}}^{1}}\right|_{\mathbb{P}_{\Gamma_{t}}^{1}}=\operatorname{id}_{\mathbb{P}_{\Gamma_{t}}^{1}}: \mathbb{P}_{\Gamma_{t}}^{1} \rightarrow \mathbb{P}_{\Gamma_{t}}^{1}, \\
\left(\mathrm{~A}_{3}\right)_{\perp} \cong\left(\pi_{\mathbb{R} \mathbb{T}_{\Gamma_{n}}}\right)_{\perp}=\left.\pi_{\mathbb{R} \mathbb{T}_{\Gamma_{n}}}\right|_{\mathbb{R} \mathbb{T}_{\Gamma_{n}}}=\mathrm{id}_{\mathbb{R T}_{\Gamma_{n}}}: \mathbb{R} \mathbb{T}_{\Gamma_{n}} \rightarrow \mathbb{R} \mathbb{T}_{\Gamma_{n}}, \\
\left(\mathrm{~A}_{3}^{*}\right)_{\perp}=\left(l_{\mathbb{R} \mathbb{T}_{\Gamma_{n}}}\right)_{\perp}=\operatorname{id}_{\mathbb{R} \mathbb{T}_{\Gamma_{n}}}: \mathbb{R} \mathbb{T}_{\Gamma_{n}} \rightarrow \mathbb{R} \mathbb{T}_{\Gamma_{n}} .
\end{array}
$$

Lemma 2.9 of [1] shows:
Theorem 3.15. (Mini FA-ToolBox). For the zero order biharmonic complex, it holds
(i) The ranges $R\left({ }_{s} \operatorname{Gradgrad}_{\Gamma_{t}}\right), R\left(\mu^{-1}{ }_{\mathbb{T}} \operatorname{Rot}_{S, \Gamma_{t}}\right)$, and $R\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}} \mu\right)$ are closed.
(i) The ranges $R\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}} \varepsilon\right), R\left(\varepsilon^{-1} \operatorname{Rot}_{\mathbb{T}, \Gamma_{n}}\right)$, and $R\left(\mathbb{T}^{-1 i a d} \Gamma_{\Gamma_{n}}\right)$ are closed.
(ii) The inverse operators $\left({ }_{S} \operatorname{Gradgrad}_{\Gamma_{t}}\right)_{1}^{-1},\left(\mu^{-1} \mathbb{T}^{\operatorname{Rot}}{ }_{\mathbb{S}, \Gamma_{t}}\right)_{\perp}^{-1}$, and $\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}} \mu\right)_{\perp}^{-1}$ are compact.
(ii) The inverse operators $\left(\operatorname{divDiv}_{S, \Gamma_{n}} \varepsilon\right)_{\perp}^{-1},\left(\varepsilon^{-1}{ }_{S} \operatorname{Rot}_{\mathbb{T}, \Gamma_{n}}\right)_{\perp}^{-1}$, and $\left({ }_{\mathbb{T}} \operatorname{Grad}_{\Gamma_{n}}\right)_{\perp}^{-1}$ are compact.
(iii) The cohomology groups of generalised Dirichlet/Neumann tensor fields $\mathcal{H}_{S, \Gamma_{t}, \Gamma_{n}, \varepsilon}(\Omega)$ and $\mathcal{H}_{\mathbb{T}, \Gamma_{n}, \Gamma}, \mu(\Omega)$ Are finite-dimensional. Moreover, the dimensions do not depend on ε or μ.
(iv) The orthonormal Helmholtz type decompositions

$$
\begin{aligned}
& \mathrm{L}_{\mathbb{S}, \varepsilon}^{2}(\Omega)=R\left({ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}\right) \oplus_{\mathrm{L}_{\mathbb{S}, \varepsilon}^{2}(\Omega)} N\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}} \varepsilon\right) \\
& =N\left(\mu^{-1} \mathbb{T o t}_{\mathbb{S}, \Gamma_{t}}\right) \oplus_{\mathrm{L}_{S, t}^{2}(\Omega)} R\left(\varepsilon^{-1}{ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{n}}\right) \\
& =R\left({ }_{s} \operatorname{Gradgrad}_{\Gamma_{t}}\right) \oplus_{\mathrm{L}_{\mathrm{S}_{\epsilon},}^{2}(\Omega)} \mathcal{H}_{\mathrm{S}, \Gamma_{t}, \Gamma_{n}, \varepsilon}(\Omega) \oplus_{\mathrm{L}_{\mathrm{S}, t}^{2}(\Omega)} R\left(\varepsilon^{-1}{ }_{\$} \operatorname{Rot}_{\mathbb{T}, \Gamma_{n}}\right) \text {, } \\
& \mathrm{L}_{\mathbb{T}, \mu}^{2}(\Omega)=R\left(\mathbb{T}_{\mathbb{T}} \operatorname{Grad}_{\Gamma_{n}}\right) \oplus_{\mathrm{L}_{\mathbb{T}, \mu}^{2}(\Omega)} N\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}} \mu\right) \\
& =N\left(\varepsilon^{-1}{ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{n}}\right) \oplus_{\left\llcorner_{\mathbb{T}, \mu},(\Omega)\right.} R\left(\mu^{-1} \mathbb{T}^{\operatorname{Rot}}{ }_{\mathbb{S}, \Gamma_{t}}\right) \\
& =R\left(\mathbb{T}_{\left.\operatorname{Grad}_{\Gamma_{n}}\right)} \oplus_{\mathrm{L}_{\mathbb{T}, \mu}^{2}(\Omega)} \mathcal{H}_{\mathbb{T}, \Gamma_{n}, \Gamma_{t}, \mu^{\prime}}(\Omega) \oplus_{\mathrm{L}_{\mathbb{T},(}^{2},(\Omega)} R\left(\mu^{-1} \mathbb{T}^{\operatorname{Rot}}{ }_{\mathrm{S}, \Gamma_{t}}\right)\right.
\end{aligned}
$$

hold.
(v) There exist (optimal) $c_{0}, c_{1}, c_{2}>0$ such that the Friedrichs/Poincaré type estimates

$$
\begin{aligned}
& \forall u \in H_{\Gamma_{t}}^{2}(\Omega) \cap\left(\mathbb{P}_{\Gamma_{t}}^{1}\right)^{\perp^{L_{2}(\Omega)}} \quad|u|_{\mathrm{L}^{2}(\Omega)} \leq c_{0} \mid \text { Gradgrad }\left.u\right|_{\mathrm{L}_{\mathrm{s}_{s},(\Omega)}^{2}}, \\
& \forall S \in \varepsilon^{-1} \mathrm{H}_{\mathbb{S}, \Gamma_{n}}(\operatorname{divDiv}, \Omega) \cap R\left(\mathbb{S G a d g r a d}_{\Gamma_{t}}\right) \quad|S|_{\mathrm{L}_{\mathrm{S}_{\varepsilon},(\Omega)}} \leq c_{0}|\operatorname{divDiv} \varepsilon S|_{\mathrm{L}^{2}(\Omega)}, \\
& \forall S \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}(\operatorname{Rot}, \Omega) \cap R\left(\varepsilon_{\mathbb{S}}^{-1} \operatorname{Rot}_{\mathbb{T}, \Gamma_{n}}\right) \quad|S|_{L_{\mathrm{S}_{4},(\Omega)}} \leq c_{1}\left|\mu^{-1} \operatorname{Rot} S\right|_{L_{T, \mu}^{2}(\Omega)}, \\
& \forall T \in \mathrm{H}_{\mathbb{T}, \Gamma_{n}}(\operatorname{symRot}, \Omega) \cap R\left(\mu^{-1} \mathbb{T}_{\mathbb{T}} \operatorname{Rot}_{\mathrm{S}, \Gamma_{t}}\right) \quad|T|_{L_{\mathbb{T}, \mu}^{2}(\Omega)} \leq c_{1}\left|\varepsilon^{-1} \operatorname{symRot} T\right|_{L_{\mathrm{s}, \epsilon}^{2}(\Omega)}, \\
& \forall T \in \mu^{-1} \mathrm{H}_{\mathbb{T}, \Gamma_{t}}(\operatorname{Div}, \Omega) \cap R\left(\mathbb{T}^{-1} \operatorname{Grad}_{\Gamma_{n}}\right) \quad|T|_{L_{T_{, ~}^{2}}^{2}(\Omega)} \leq c_{2}|\operatorname{Div} \mu T|_{\mathrm{L}^{2}(\Omega)}, \\
& \forall v \in H_{\Gamma_{n}}^{1}(\Omega) \cap\left(\mathbb{R}_{\Gamma_{n}}\right)^{\perp_{L^{2}(\Omega)}} \quad|v|_{L^{2}(\Omega)} \leq c_{2}|\operatorname{devGrad} v|_{L_{T, \mu}^{2}(\Omega)}
\end{aligned}
$$

hold.
(vi) For all $S \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}(\operatorname{Rot}, \Omega) \cap \varepsilon^{-1} \mathrm{H}_{\mathbb{S}, \Gamma_{n}}(\operatorname{divDiv}, \Omega) \cap \mathcal{H}_{\mathbb{S}, \Gamma_{l}, \Gamma_{n}, \varepsilon}(\Omega)^{\perp_{\mathrm{S}, \varepsilon^{2}}(\Omega)}$, it holds

$$
|S|_{L_{\Omega, \varepsilon}^{2},(\Omega)}^{2} \leq c_{1}^{2}\left|\mu^{-1} \operatorname{Rot} S\right|_{L_{T, \mu}^{2}(\Omega)}^{2}+c_{0}^{2}|\operatorname{divDiv} \varepsilon S|_{\mathrm{L}^{2}(\Omega)}^{2} .
$$

(vi) For all $T \in \mathrm{H}_{\mathbb{T}, \Gamma_{n}}(\operatorname{symRot}, \Omega) \cap \mu^{-1} \mathrm{H}_{\mathbb{T}, \Gamma_{t}}(\operatorname{Div}, \Omega) \cap \mathcal{H}_{\mathbb{T}, \Gamma_{n}, \Gamma_{t}, \mu^{\prime}}(\Omega)^{\perp_{L_{\mathbb{T}}^{2}, \mu^{(\Omega)}}^{(2)}}$, it holds

$$
|T|_{\mathrm{L}_{\mathrm{T}, \mu}^{2}(\Omega)}^{2} \leq c_{1}^{2}\left|\varepsilon^{-1} \operatorname{symRot} T\right|_{\mathrm{L}_{\mathrm{S}_{\epsilon},(\Omega)}^{2}}^{2}+c_{2}^{2}|\operatorname{Div} \mu T|_{\mathrm{L}^{2}(\Omega)}^{2} .
$$

(vii) $\mathcal{H}_{\mathbb{S}, \Gamma_{t}, \Gamma_{n}, \varepsilon}(\Omega)=\{0\}$ and $\mathcal{H}_{\mathbb{T}, \Gamma_{n}, \Gamma_{t}, \mu}(\Omega)=\{0\}$, if $\left(\Omega, \Gamma_{t}\right)$ is extendable.

3.2.2 | Higher order mini FA-ToolBox

For simplicity, let $\varepsilon=\mu=$ id. From Section 2.5 , we recall the densely defined and closed higher Sobolev order operators

$$
\begin{align*}
& { }_{S} \operatorname{Gradgrad}_{\Gamma_{t}}^{k}: \mathrm{H}_{\Gamma_{t}}^{k+2}(\Omega) \subset \mathrm{H}_{\Gamma_{t}}^{k}(\Omega) \rightarrow \mathrm{H}_{\mathrm{S}, \Gamma_{t}}^{k}(\Omega), \\
& { }_{s} \operatorname{Gradgrad}_{\Gamma_{t}}^{k, k-1}: \mathrm{H}_{\Gamma_{t}}^{k+1}(\Omega) \subset \mathrm{H}_{\Gamma_{t}}^{k}(\Omega) \rightarrow \mathrm{H}_{\mathrm{S}, \Gamma_{t}}^{k-1}(\Omega), \quad k \geq 1, \\
& { }_{T} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}^{k}: \quad: H_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega) \subset H_{\mathbb{S}, \Gamma_{t}}^{k}(\Omega) \rightarrow H_{\mathbb{T}, \Gamma_{t}}^{k}(\Omega), \\
& \operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{k}: H_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{Div}, \Omega) \subset H_{\mathbb{T}, \Gamma_{t}}^{k}(\Omega) \rightarrow H_{\Gamma_{t}}^{k}(\Omega), \\
& { }_{T} \operatorname{Grad}_{\Gamma_{n}}^{k}: \mathrm{H}_{\Gamma_{n}}^{k+1}(\Omega) \subset \mathrm{H}_{\Gamma_{n}}^{k}(\Omega) \rightarrow \mathrm{H}_{\mathbb{T}, \Gamma_{n}}^{k}(\Omega), \tag{9}\\
& { }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{n}}^{k}: \mathrm{H}_{\mathbb{T}, \Gamma_{n}}^{k}(\operatorname{symRot}, \Omega) \subset \mathrm{H}_{\mathbb{T}, \Gamma_{n}}^{k}(\Omega) \rightarrow \mathrm{H}_{\mathbb{S}, \Gamma_{n}}^{k}(\Omega), \\
& \operatorname{divDiv}_{S, \Gamma_{n}}^{k}: \mathrm{H}_{\mathrm{S}, \Gamma_{n}}^{k}(\operatorname{divDiv}, \Omega) \subset \mathrm{H}_{\mathrm{S}, \Gamma_{n}}^{k}(\Omega) \rightarrow \mathrm{H}_{\Gamma_{n}}^{k}(\Omega), \\
& \operatorname{divDiv} \mathrm{S}_{\mathrm{S}, \Gamma_{n}}^{k, k-1}: \mathrm{H}_{\mathrm{S}, \Gamma_{n}}^{k, k-1}(\operatorname{divDiv}, \Omega) \subset \mathrm{H}_{\mathbb{S}, \Gamma_{n}}^{k}(\Omega) \rightarrow \mathrm{H}_{\Gamma_{n}}^{k-1}(\Omega), \quad k \geq 1,
\end{align*}
$$

building the long biharmonic Hilbert complexes

$$
\begin{align*}
& \mathbb{P}_{\Gamma_{t}}^{1} \xrightarrow{\iota_{\mathbb{P}_{\Gamma_{t}}}} \mathrm{H}_{\Gamma_{t}}^{k}(\Omega) \xrightarrow{\mathbb{S}^{\text {Gradgrad }}{ }_{\Gamma_{t}}^{k, k-1}} \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k-1}(\Omega) \xrightarrow{\mathbb{T}^{\mathrm{Rot}_{\mathbb{S}, \Gamma_{t}}^{k-1}}} \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k-1}(\Omega) \xrightarrow{\mathrm{Div}_{\mathbb{T}, \Gamma_{t}}^{k-1}} \mathrm{H}_{\Gamma_{t}}^{k-1}(\Omega) \xrightarrow{\pi_{\mathbb{R} \mathbb{T}_{\Gamma_{n}}}} \mathbb{R}_{\mathbb{R}_{\Gamma_{n}}}, \quad k \geq 1, \tag{12}
\end{align*}
$$

We start with regular representations implied by Lemma 3.10 and Corollary 3.11.

Theorem 3.16. (Regular representations and closed ranges). Let $k \geq 0$. Then the regular potential representations

$$
\begin{aligned}
& R\left({ }_{S} \operatorname{Gradgrad}_{\Gamma_{t}}^{k+1, k}\right)=R\left({ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}^{k}\right)=\operatorname{Gradgrad} \mathrm{H}_{\Gamma_{t}}^{k}(\operatorname{Gradgrad}, \Omega)=\operatorname{Gradgrad} \mathrm{H}_{\Gamma_{t}}^{k+2}(\Omega) \\
& =\text { Gradgrad } H_{\Gamma_{t}}^{k+1, k}(\text { Gradgrad, } \Omega) \\
& =\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\Omega) \cap R\left({ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}\right) \\
& =\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\Omega) \cap \mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}(\operatorname{Rot}, \Omega) \cap \mathcal{H}_{\mathbb{S}, \Gamma_{t}, \Gamma_{n}, \varepsilon}(\Omega)^{\perp_{\mathrm{L}, \varepsilon^{2}}^{2}(\Omega)} \\
& =\mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{Rot}, \Omega) \cap \mathcal{H}_{\mathbb{S}, \Gamma_{t}, \Gamma_{n}, \varepsilon}(\Omega)^{\perp_{\mathrm{L}, \varepsilon^{2}}^{2}(\Omega)} \text {, } \\
& R\left({ }_{T} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}^{k}\right)=\operatorname{Rot} \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega)=\operatorname{Rot} \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+1}(\Omega) \\
& =\mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\Omega) \cap R\left(\mathbb{T}_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}\right) \\
& =\mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\Omega) \cap \mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}(\operatorname{Div}, \Omega) \cap \mathcal{H}_{\mathbb{T}, \Gamma_{n}, \Gamma_{t}, \mu}(\Omega)^{\perp_{\left\llcorner\frac{2}{\mathbb{T}}(\Omega)\right.}} \\
& =\mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{Div}, \Omega) \cap \mathcal{H}_{\mathbb{T}, \Gamma_{n}, \Gamma_{t}, \mu}(\Omega)^{\perp_{\mathrm{L}_{\mathbb{T}}(\Omega)}^{L_{2}}}, \\
& R\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{k}\right)=\operatorname{DivH}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{Div}, \Omega)=\operatorname{Div} H_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega) \\
& =\mathrm{H}_{\Gamma_{t}}^{k}(\Omega) \cap R\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}\right)=\mathrm{H}_{\Gamma_{t}}^{k}(\Omega) \cap\left(\mathbb{R} \mathbb{T}_{\Gamma_{n}}\right)^{\perp_{L^{2}(\Omega)}}, \\
& R\left({ }_{T} \operatorname{Grad}_{\Gamma_{t}}^{k}\right)=\operatorname{devGrad} H_{\Gamma_{t}}^{k}(\operatorname{devGrad}, \Omega)=\operatorname{devGrad} H_{\Gamma_{t}}^{k+1}(\Omega) \\
& =\mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\Omega) \cap R\left({ }_{\mathbb{T}} \operatorname{Grad}_{\Gamma_{t}}\right) \\
& =\mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\Omega) \cap \mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}(\operatorname{symRot}, \Omega) \cap \mathcal{H}_{\mathbb{T}, \Gamma_{t}, \Gamma_{n}, \mu}(\Omega)^{\perp_{\mathrm{L}_{\mathbb{T}, \mu}^{2}(\Omega)}} \\
& =\mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{symRot}, \Omega) \cap \mathcal{H}_{\mathbb{T}, \Gamma_{t}, \Gamma_{n}, \mu}(\Omega)^{\perp_{L_{\mathbb{T}, \mu}^{2}(\Omega)}} \text {, } \\
& R\left({ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}^{k}\right)=\operatorname{symRot} \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{symRot}, \Omega)=\operatorname{symRot} \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega) \\
& =\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\Omega) \cap R\left({ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}\right) \\
& =\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\Omega) \cap \mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}(\operatorname{divDiv}, \Omega) \cap \mathcal{H}_{\mathbb{S}, \Gamma_{n}, \Gamma_{t}, \varepsilon}(\Omega)^{\perp_{\mathrm{L}_{\mathbb{S}}^{2}(\Omega)}} \\
& =\mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{divDiv}, \Omega) \cap \mathcal{H}_{\mathbb{S}, \Gamma_{n}, \Gamma_{t}, \varepsilon}(\Omega)^{\perp_{\mathrm{L}_{\mathbb{S}}^{2}(\Omega)}} \text {, } \\
& R\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k+1, k}\right)=R\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k}\right)=\operatorname{divDiv} H_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{divDiv}, \Omega)=\operatorname{divDiv} H_{\mathbb{S}, \Gamma_{t}}^{k+2}(\Omega) \\
& =\operatorname{divDiv} \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+1, k}(\operatorname{divDiv}, \Omega) \\
& =\mathrm{H}_{\Gamma_{t}}^{k}(\Omega) \cap R\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}\right)=\mathrm{H}_{\Gamma_{t}}^{k}(\Omega) \cap\left(\mathbb{P}_{\Gamma_{n}}^{1}\right)^{\perp_{\mathrm{L}^{2}(\Omega)}}
\end{aligned}
$$

hold. In particular, the latter spaces are closed subspaces of $\mathrm{H}_{\mathbb{S}}^{k}(\Omega), \mathrm{H}_{\mathbb{T}}^{k}(\Omega)$, and $\mathrm{H}^{k}(\Omega)$, respectively, and all ranges of the higher Sobolev order operators in (9) are closed. Moreover, the long biharmonic Hilbert complexes (10)-(13) are closed.

A proof is given in Appendix C. Note that in Theorem 3.16 we claim nothing about bounded regular potential operators, leaving the question of bounded potentials to the next sections (cf. Theorem 3.24).

The reduced operators corresponding to (9) are

$$
\begin{aligned}
& \left({ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}^{k}\right)_{\perp}: D\left(\left({ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}^{k}\right)_{\perp}\right) \subset\left(\mathbb{P}_{\Gamma_{t}}^{1}\right)^{\perp_{\Gamma_{\Gamma_{t}}(\Omega)}^{(\Omega)}} \rightarrow R\left(\mathrm{~S}^{\operatorname{Gradgrad}} \mathrm{\Gamma}_{\Gamma_{t}}^{k}\right), \\
& \left(\operatorname{sGradgrad}_{\Gamma_{t}}^{k, k-1}\right)_{\perp}: D\left(\left(\operatorname{sGradgrad}_{\Gamma_{t}}^{k, k-1}\right)_{\perp}\right) \subset\left(\mathbb{P}_{\Gamma_{t}}^{1}\right)^{\perp_{\Gamma_{t}}^{k}(\Omega)} \rightarrow R\left(\mathbb{S}^{\left(\operatorname{Gradgrad}_{\Gamma_{t}}^{k-1}\right.}\right), k \geq 1 \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{k}\right)_{\perp}: D\left(\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{k}\right)_{\perp}\right) \subset N\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{k}\right)^{\perp_{\mu_{\mathbb{T}, \Gamma_{t}}(\Omega)}} \rightarrow R\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{k}\right) \text {, } \\
& \left(\operatorname{TGrad}_{\Gamma_{n}}^{k}\right)_{\perp}: D\left(\left(\mathbb{T}^{\operatorname{Grad}} \Gamma_{\Gamma_{n}}^{k}\right)_{\perp}\right) \subset\left(\mathbb{R} \mathbb{T}_{\Gamma_{n}}\right)^{\perp_{\Gamma_{\Gamma_{n}}(\Omega)}} \rightarrow R\left(\operatorname{Trad}_{\Gamma_{n}}^{k}\right), \\
& \left(\operatorname{sRot}_{\mathbb{T}, \Gamma_{n}}^{k}\right)_{\perp}: D\left(\left({ }_{s} \operatorname{Rot}_{\mathbb{T}, \Gamma_{n}}^{k}\right)_{\perp}\right) \subset N\left({ }_{s} \operatorname{Rot}_{\mathbb{T}, \Gamma_{n}}^{k}\right)^{\perp_{\mathbb{T}_{\mathbb{T}, \Gamma_{n}}(\Omega)} \rightarrow R\left({ }_{s} \operatorname{Rot}_{\mathbb{T}, \Gamma_{n}}^{k}\right), ~} \\
& \left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}}^{k}\right)_{\perp}: D\left(\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}}^{k}\right)_{\perp}\right) \subset N\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}}^{k}\right)^{\perp_{\mathbb{S}, \Gamma_{n}}(\Omega)} \rightarrow R\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}}^{k}\right), \\
& \left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}}^{k, k-1}\right)_{\perp}: D\left(\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}}^{k, k-1}\right)_{\perp}\right) \subset N\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}}^{k}\right)^{\perp_{\mathrm{S}}^{\mathrm{S}, \Gamma_{n}}}{ }^{(\Omega)} \rightarrow R\left(\operatorname{divDiv}_{\mathrm{S}, \Gamma_{n}}^{k-1}\right), k \geq 1 \text {. }
\end{aligned}
$$

Lemma 2.1 of [1] and Theorem 3.16 yield the following:

Theorem 3.17. (Closed ranges and bounded inverse operators). Let $k \geq 0$. Then,
(i) $R\left(\left(\mathbb{S}^{\operatorname{Gradgrad}} \Gamma_{\Gamma_{t}}^{k}\right)_{\perp}\right)=R\left(\mathbb{S}^{\operatorname{Gradgrad}} \Gamma_{\Gamma_{t}}^{k}\right)=R\left(\mathbb{S}_{\operatorname{Gradgrad}}^{\Gamma_{t}} k+1, k\right)=R\left(\left(\operatorname{Sradgrad}_{\Gamma_{t}}^{k+1, k}\right)_{\perp}\right)$ are closed, and equivalently, the inverse operators

$$
\begin{aligned}
& \left({ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}^{k}\right)_{\perp}^{-1}: R\left(\mathbb{S}^{\operatorname{Gradgrad}} \mathrm{\Gamma}_{\Gamma_{t}}^{k}\right) \rightarrow D\left(\left(\mathbb{S}^{\operatorname{Gradgrad}} \mathrm{\Gamma}_{\Gamma_{t}}^{k}\right)_{\perp}\right) \\
& \text { resp. } \quad\left({ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}^{k}\right)_{\perp}: R\left(\mathbb{S}^{-1} \operatorname{Gradgrad}_{\Gamma_{t}}^{k}\right) \rightarrow D\left(\mathbb{S}^{\operatorname{Gradgrad}}{ }_{\Gamma_{t}}^{k}\right) \text {, } \\
& \left(\operatorname{sGradgrad}_{\Gamma_{t}}^{k+1, k}\right)_{\perp}^{-1}: R\left(\operatorname{sGradgrad}_{\Gamma_{t}}^{k}\right) \rightarrow D\left(\left(\operatorname{sGradgrad}_{\Gamma_{t}}^{k+1, k}\right)_{\perp}\right) \\
& \text { resp. } \quad\left(\mathbb{S}^{\operatorname{Gradgrad}} \Gamma_{\Gamma_{t}}^{k+1, k}\right)_{\perp}^{-1}: R\left(\mathbb{S G r a d g r a d}_{\Gamma_{t}}^{k}\right) \rightarrow D\left(\operatorname{sGradgrad}_{\Gamma_{t}}^{k+1, k}\right)
\end{aligned}
$$

are bounded. Equivalently, there is $c>0$ such that for all $u \in D\left(\left(s_{\operatorname{Gradgrad}}^{\Gamma_{t}}\right)_{\perp}\right)$ resp. $u \in$ $D\left(\left(\operatorname{SGradgrad}_{\Gamma_{t}}^{k+1, k}\right)_{\perp}\right)$

$$
|u|_{\mathrm{H}^{k}(\Omega)} \leq c \mid \text { Gradgrad }\left.u\right|_{\mathrm{H}^{k} s(\Omega)} \quad \text { resp. } \quad|u|_{\mathrm{H}^{k+1}(\Omega)} \leq c \mid \text { Gradgrad }\left.u\right|_{\mathrm{H}_{S}^{k}(\Omega)} .
$$

(ii) $R\left({ }_{\mathbb{T}} \operatorname{Rot}_{S, \Gamma_{t}}^{k}\right)=R\left(\left(\mathbb{T}_{\mathbb{R}} \operatorname{Rot}_{\$, \Gamma_{t}}^{k}\right)_{\perp}\right)$ are closed, and equivalently, the inverse operator

$$
\begin{array}{ll}
& \left({ }_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}^{k}\right)_{\perp}^{-1}: R\left(\mathbb{T}^{\operatorname{Rot}}{ }_{\mathbb{S}, \Gamma_{t}}^{k}\right) \rightarrow D\left(\left(\mathbb{T}^{\left.\left.\operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}^{k}\right)_{\perp}\right)}\right.\right. \\
\text { resp. } & \left({ }_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}^{k}\right)_{\perp}^{-1}: R\left(\mathbb{T}_{\mathbb{S}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}^{k}\right) \rightarrow D\left({ }_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}^{k}\right)
\end{array}
$$

is bounded. Equivalently, there is $c>0$ such that for all $S \in D\left(\left(\mathbb{T}_{\mathbb{S o t}}^{\mathbb{S}, \Gamma_{t}}\right)_{\perp}\right)$

$$
|S|_{H_{S}^{k}(\Omega)} \leq c|\operatorname{Rot} S|_{\mathrm{H}_{\mathbb{T}}^{k}(\Omega)} .
$$

(iii) $R\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{k}\right)=R\left(\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{k}\right)_{\perp}\right)$ are closed, and equivalently, the inverse operator

$$
\begin{array}{ll}
& \left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{k}\right)_{\perp}^{-1}: R\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{k}\right) \rightarrow D\left(\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{k}\right)_{\perp}\right) \\
\text { resp. } & \left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{k}\right)_{\perp}^{-1}: R\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{k}\right) \rightarrow D\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{k}\right)
\end{array}
$$

is bounded. Equivalently, there is $c>0$ such that for all $T \in D\left(\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{k}\right)_{\perp}\right)$

$$
|T|_{\mathrm{H}_{\mathbb{T}}^{k}(\Omega)} \leq c|\operatorname{Div} T|_{\mathrm{H}^{k}(\Omega)} .
$$

(iv) $R\left(\mathbb{T} \operatorname{Grad}_{\Gamma_{t}}^{k}\right)=R\left(\left({ }_{\mathbb{T}} G r a d_{\Gamma_{t}}^{k}\right)_{\perp}\right)$ are closed, and equivalently, the inverse operator

$$
\begin{array}{ll}
& \left(\mathbb{T}^{\operatorname{Grad}}{ }_{\Gamma_{t}}^{k}\right)_{\perp}^{-1}: R\left(\mathbb{T}_{\mathbb{T}} \operatorname{Grad}_{\Gamma_{t}}^{k}\right) \rightarrow D\left(\left(\mathbb{T}_{\mathbb{T}} \operatorname{Grad}_{\Gamma_{t}}^{k}\right)_{\perp}\right) \\
\text { resp. } & \left(\operatorname{TGrad}_{\Gamma_{t}}^{k}\right)_{\perp}^{-1}: R\left(\mathbb{T}_{\mathbb{T}} \operatorname{Grd}_{\Gamma_{\Sigma_{t}}}^{k}\right) \rightarrow D\left(\mathbb{T}_{\mathbb{T r a d}_{\Gamma_{t}}^{k}}^{k}\right)
\end{array}
$$

is bounded. Equivalently, there is $c>0$ such that for all $v \in D\left(\left(\mathbb{T}^{\operatorname{Grad}} \Gamma_{\Gamma_{t}}^{k}\right)_{\perp}\right)$

$$
|v|_{\mathrm{H}^{k}(\Omega)} \leq c|\operatorname{devGrad} v|_{\mathrm{H}_{\mathbb{T}}^{k}(\Omega)} .
$$

(v) $R\left({ }_{s} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}^{k}\right)=R\left(\left({ }_{s} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}^{k}\right)_{\perp}\right)$ are closed, and equivalently, the inverse operator

$$
\begin{array}{ll}
& \left({ }_{s} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}^{k}\right)_{\perp}^{-1}: R\left({ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}^{k}\right) \rightarrow D\left(\left({ }_{s} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}^{k}\right)_{\perp}\right) \\
\text { resp. } & \left({ }_{\left.\mathbb{S} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}^{k}\right)_{\perp}}^{-1}: R\left({ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}^{k}\right) \rightarrow D\left({ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}^{k}\right)\right.
\end{array}
$$

is bounded. Equivalently, there is $c>0$ such that for all $T \in D\left(\left(\mathbb{S o t}_{\mathbb{T}, \Gamma_{t}}^{k}\right)_{\perp}\right)$

$$
|T|_{H_{\mathbb{T}}^{k}(\Omega)} \leq c|\operatorname{symRot} T|_{H_{s}^{k}(\Omega)} .
$$

(vi) $R\left(\left(\operatorname{divDiv}_{\mathrm{S}, \Gamma_{t}}^{k}\right)_{\perp}\right)=R\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k}\right)=R\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k+1, k}\right)=R\left(\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k+1, k}\right)_{\perp}\right)$ are closed, and equivalently, the inverse operators

$$
\begin{array}{ll}
& \left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k}\right)_{\perp}^{-1}: R\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k}\right) \rightarrow D\left(\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k}\right)_{\perp}\right) \\
\text { resp. } & \left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k}\right)_{\perp}^{-1}: R\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k}\right) \rightarrow D\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k}\right), \\
& \left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k+1, k}\right)_{\perp}^{-1}: R\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k}\right) \rightarrow D\left(\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k+1, k}\right)_{\perp}\right) \\
\text { resp. } & \left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}, k}^{k+1, k}\right)_{\perp}^{-1}: R\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k}\right) \rightarrow D\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k+1, k}\right)
\end{array}
$$

are bounded. Equivalently, there is $c>0$ such that for all $S \in D\left(\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k}\right)_{\perp}\right) \operatorname{resp.S} S \in D\left(\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k+1, k}\right)_{\perp}\right)$

$$
|S|_{\mathrm{H}_{\mathrm{s}}^{k}(\Omega)} \leq c|\operatorname{divDiv} S|_{\mathrm{H}^{k}(\Omega)} \quad \text { resp. } \quad|S|_{\mathrm{H}_{s}^{k+1}(\Omega)} \leq c|\operatorname{divDiv} S|_{\mathrm{H}^{k}(\Omega)} .
$$

Lemma 3.18. (Schwarz' lemma). Let $0 \leq|\alpha| \leq k$.
(i) If $S \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega)$ then $\partial^{\alpha} S \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}(\operatorname{Rot}, \Omega)$ and $\operatorname{Rot} \partial^{\alpha} S=\partial^{\alpha} \operatorname{Rot} S$.
(ii) If $T \in \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{Div}, \Omega)$ then $\partial^{\alpha} T \in \mathrm{H}_{\mathbb{T}, \Gamma_{t}}(\operatorname{Div}, \Omega)$ and $\operatorname{Div} \partial^{\alpha} T=\partial^{\alpha} \operatorname{Div} T$.
(iii) If $T \in \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{symRot}, \Omega)$ then $\partial^{\alpha} T \in \mathrm{H}_{\mathbb{T}, \Gamma_{t}}(\operatorname{symRot}, \Omega)$ and $\operatorname{symRot} \partial^{\alpha} T=\partial^{\alpha} \operatorname{symRot} T$.
(iv) If $S \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{divDiv}, \Omega)$ resp. $S \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+1, k}(\operatorname{divDiv}, \Omega)$ then $\partial^{\alpha} S \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}(\operatorname{divDiv}, \Omega)$ resp. $\partial^{\alpha} S \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{1,0}$ (divDiv, Ω) and $\operatorname{div} D i v \partial^{\alpha} S=\partial^{\alpha} \operatorname{divDiv} S$.

Theorem 3.19. (Compact embedding). Let $k \geq 0$. Then the embeddings

$$
\begin{aligned}
\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega) \cap \mathrm{H}_{\mathbb{S}, \Gamma_{n}}^{k}(\operatorname{divDiv}, \Omega) & \hookrightarrow \mathrm{H}_{\mathbb{S}}^{k}, \Gamma(\Omega), \\
\mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{Div}, \Omega) \cap \mathrm{H}_{\mathbb{T}, \Gamma_{n}}^{k}(\operatorname{symRot}, \Omega) & \hookrightarrow \mathrm{H}_{\mathbb{T}}^{k}, \Gamma(\Omega)
\end{aligned}
$$

are compact.
A proof is given in Appendix C.
Remark 3.20. (Compact embedding). For $k \geq 1$ (cf. [3, Remark 4.12]), there is another and slightly more general proof of the first compact embedding using a variant of [1, Lemma 2.22] (cf. [2, Theorem 3.19, Remark 3.20]); see Appendix C for a proof. It utilises the decomposition $H_{\mathbb{S}, \Gamma_{n}}^{k, k-1}(\operatorname{divDiv}, \Omega)=\mathrm{H}_{\mathbb{S}, \Gamma_{n}}^{k+1}(\Omega)+\operatorname{symRot} H_{\mathbb{T}, \Gamma_{n}}^{k+1}(\Omega)$ from Lemma 3.10 and leads immediately to the next (stronger) result.

Theorem 3.21. (Compact embedding). Let $k \geq 1$. Then the embedding

$$
\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega) \cap \mathrm{H}_{\mathbb{S}, \Gamma_{n}}^{k, k-1}(\operatorname{divDiv}, \Omega) \hookrightarrow \mathrm{H}_{\mathbb{S}, \Gamma}^{k}(\Omega)
$$

is compact.

Theorem 3.22. (Friedrichs/Poincaré type estimate). Let $k \geq 0$. Then there exists $c>0$ such that for all

$$
\begin{aligned}
& S \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega) \cap \mathrm{H}_{\mathbb{S}, \Gamma_{n}}^{k}(\operatorname{divDiv}, \Omega) \cap \mathcal{H}_{\mathbb{S}, \Gamma_{t}, \Gamma_{n}, \mathrm{id}}(\Omega)^{\perp_{L_{\mathbb{S}}^{2}(\Omega)}}, \\
& T \in \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{symRot}, \Omega) \cap \mathrm{H}_{\mathbb{T}, \Gamma_{n}}^{k}(\operatorname{Div}, \Omega) \cap \mathcal{H}_{\mathbb{T}, \Gamma_{t}, \Gamma_{n}, \mathrm{id}}(\Omega)^{\perp_{\mathrm{L}_{\mathbb{T}}(\Omega)}}
\end{aligned}
$$

it holds

$$
\begin{aligned}
|S|_{\mathrm{H}_{\mathbb{S}}^{k}(\Omega)} & \leq c\left(|\operatorname{Rot} S|_{\mathrm{H}_{\mathbb{T}}^{k}(\Omega)}+|\operatorname{divDiv} S|_{\mathrm{H}^{k}(\Omega)}\right) \\
|T|_{\mathrm{H}_{\mathbb{T}}^{k}(\Omega)} & \leq c\left(|\operatorname{symRot} T|_{\mathrm{H}_{\mathbb{S}}^{k}(\Omega)}+|\operatorname{Div} T|_{\mathrm{H}^{k}(\Omega)}\right),
\end{aligned}
$$

respectively. The orthogonality condition $\mathcal{H}_{\mathbb{S}, \Gamma_{t}, \Gamma_{n}, \mathrm{id}}(\Omega)^{\perp_{L_{\mathbb{S}}^{2}(\Omega)}}$ and $\mathcal{H}_{\mathbb{T}, \Gamma_{t}, \Gamma_{n}, \mathrm{id}}(\Omega)^{\perp_{L_{\mathbb{T}}^{2}(\Omega)}}$ can be replaced by the weaker conditions $\mathcal{H}_{\mathbb{S}, \Gamma_{t}, \Gamma_{n}, \mathrm{id}}^{k}(\Omega)^{\perp_{L_{\mathbb{S}}^{2}(\Omega)}}$ or $\mathcal{H}_{\mathbb{S}, \Gamma_{t}, \Gamma_{n}, \mathrm{id}}^{k}(\Omega)^{\perp_{H_{\mathbb{S}}^{k}(\Omega)}}$ and $\mathcal{H}_{\mathbb{T}, \Gamma_{t}, \Gamma_{n}, \mathrm{id}}^{k}(\Omega)^{\perp_{L_{\mathbb{T}}^{2}}(\Omega)}$ or $\mathcal{H}_{\mathbb{T}, \Gamma_{t}, \Gamma_{n}, \mathrm{id}}^{k}(\Omega)^{\perp_{H_{\mathbb{T}}^{k}(\Omega)}}$, respectively. In particular,

$$
\begin{array}{ll}
\forall S \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega) \cap R\left({ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{n}}^{k}\right) & |S|_{\mathrm{H}_{\mathbb{S}}^{k}(\Omega)} \leq c|\operatorname{Rot} S|_{\mathrm{H}_{\mathbb{T}}^{k}(\Omega)}, \\
\forall S \in \mathrm{H}_{\mathbb{S}, \Gamma_{n}}^{k}(\operatorname{divDiv}, \Omega) \cap R\left(\mathbb{S}^{\operatorname{Gradgrad}}{ }_{\Gamma_{t}}^{k}\right) & |S|_{\mathrm{H}_{\mathbb{S}}^{k}(\Omega)} \leq c|\operatorname{divDiv} S|_{\mathrm{H}^{k}(\Omega)} \\
\forall T \in \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{symRot}, \Omega) \cap R\left({ }_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{n}}^{k}\right) & |T|_{\mathrm{H}_{\mathbb{T}}^{k}(\Omega)} \leq c|\operatorname{symRot} T|_{\mathrm{H}_{\mathbb{S}}^{k}(\Omega)}, \\
\forall T \in \mathrm{H}_{\mathbb{T}, \Gamma_{n}}^{k}(\operatorname{Div}, \Omega) \cap R\left({ }_{\mathbb{T}} \operatorname{Grad}_{\Gamma_{t}}^{k}\right) & |T|_{\mathrm{H}_{\mathbb{T}}^{k}(\Omega)} \leq c|\operatorname{Div} T|_{\mathrm{H}^{k}(\Omega)}
\end{array}
$$

with

$$
\begin{aligned}
& R\left({ }_{\mathrm{S}} \operatorname{Rot}_{\pi, \Gamma_{n}}^{k}\right)=\mathrm{H}_{\mathbb{S}, \Gamma_{n}, 0}^{k}(\operatorname{divDiv}, \Omega) \cap \mathcal{H}_{\mathbb{S}, \Gamma_{t}, \Gamma_{n}, \mathrm{id}}(\Omega)^{\perp_{\mathrm{S}}(\Omega)}, \\
& R\left({ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}^{k+1, k}\right)=R\left(\operatorname{SGradgrad}_{\Gamma_{t}}^{k}\right)=\mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{Rot}, \Omega) \cap \mathcal{H}_{\mathbb{S}, \Gamma_{t}, \Gamma_{n}, \mathrm{id}}(\Omega)^{\perp_{\mathbb{S}} \mathrm{L}_{\mathrm{S}}(\Omega)}, \\
& R\left({ }_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{n}}^{k}\right)=H_{\mathbb{T}, \Gamma_{n}, 0}^{k}(\operatorname{Div}, \Omega) \cap \mathcal{H}_{\mathbb{T}, \Gamma_{t}, \Gamma_{n}, \mathrm{id}}(\Omega)^{\perp_{L_{\mathbb{T}}^{2}(\Omega)}}, \\
& R\left({ }_{T} \operatorname{Grad}_{\Gamma_{t}}^{k}\right)=\mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{symRot}, \Omega) \cap \mathcal{H}_{\mathbb{T}, \Gamma_{t}, \Gamma_{n}, \mathrm{id}}(\Omega)^{\perp_{\mathbb{T}}^{2}(\Omega)} .
\end{aligned}
$$

Analogously, for $k \geq 1$, there exists $c>0$ such that

$$
|S|_{\mathrm{H}_{\Omega}^{k}(\Omega)} \leq c\left(|\operatorname{Rot} S|_{\mathrm{H}_{\mathrm{T}}^{k}(\Omega)}+|\operatorname{divDiv} S|_{\mathrm{H}^{k-1}(\Omega)}\right)
$$

for all S in $\mathcal{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega) \cap \mathcal{H}_{\mathbb{S}, \Gamma_{n}}^{k, k-1}(\operatorname{divDiv}, \Omega) \cap \mathcal{H}_{\mathbb{S}, \Gamma_{t}, \Gamma_{n}, \mathrm{id}}(\Omega)^{\perp_{\mathrm{S}}(\Omega)}$. Moreover,

$$
\forall S \in \mathrm{H}_{\mathbb{S}, \Gamma_{n}}^{k, k-1}(\operatorname{divDiv}, \Omega) \cap R\left(\mathbb{S}^{\operatorname{Gradgrad}} \Gamma_{\Gamma_{t}}^{k}\right)|S|_{\mathrm{H}_{\mathbb{S}}^{k}(\Omega)} \leq c|\operatorname{divDiv} S|_{\mathrm{H}^{k-1}(\Omega)} .
$$

The proof follows by a standard contradiction argument.
Remark 3.23. (Friedrichs/Poincaré/Korn type estimate). Let $k \geq 0$. Similar to Theorem 3.22 and by Rellich's selection theorem (cf. the estimates in Theorem 3.17), there exists $c>0$ such that for all $v \in H_{\Gamma_{t}}^{k+1}(\Omega) \cap\left(\mathbb{R} \mathbb{T}_{\Gamma_{t}}\right)^{\perp_{L^{2}(\Omega)}}$ and for all $u \in H_{\Gamma_{t}}^{k+2}(\Omega) \cap\left(\mathbb{P}_{\Gamma_{t}}^{1}\right)^{\perp_{L_{2}(\Omega)}}$

$$
|v|_{\mathrm{H}^{k}(\Omega)} \leq c|\operatorname{devGrad} v|_{\mathrm{H}_{\mathbb{T}}^{k}(\Omega)}, \quad|u|_{\mathrm{H}^{k}(\Omega)} \leq|u|_{\mathrm{H}^{k+1}(\Omega)} \leq c \mid \text { Gradgrad }\left.u\right|_{\mathrm{H}_{\mathrm{s}}^{k}(\Omega)} .
$$

As in Theorem 3.17, $\left(\mathbb{R}_{\Gamma_{t_{t}}}\right)^{\perp_{L^{2}(\Omega)}}$ and $\left(\mathbb{P}_{\Gamma_{t}}^{1}\right)^{\perp_{L_{2}(\Omega)}}$ can be replaced by $\left(\mathbb{R} \mathbb{\Gamma}_{\Gamma_{t}}\right)^{\perp_{\Gamma_{\Gamma_{t}}(\Omega)}}$ and $\left(\mathbb{P}_{\Gamma_{t}}^{1}\right)^{\perp_{\Gamma_{t^{\prime}}}^{(\Omega)}}$, respectively.

3.3 | Regular potentials and decompositions II

Let $k \geq 0$. According to Theorem 3.17, the inverses of the reduced operators

$$
\begin{aligned}
& \left(\mathrm{S}_{\operatorname{Gradgrad}}^{\Gamma_{t}} k\right)_{\perp}^{-1}: R\left({ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}^{k}\right) \rightarrow D\left({ }_{\mathrm{S}} \operatorname{Gradgrad}_{\Gamma_{t}}^{k}\right)=\mathrm{H}_{\Gamma_{t}}^{k+2}(\Omega), \\
& \left({ }_{S} \operatorname{Gradgrad}_{\Gamma_{t}}^{k+1, k}\right)_{\perp}^{-1}: R\left({ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}^{k}\right) \rightarrow D\left({ }_{\mathrm{S}} \operatorname{Gradgrad}_{\Gamma_{t}}^{k+1, k}\right)=H_{\Gamma_{t}}^{k+2}(\Omega), \\
& \left({ }_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}^{k}\right)_{\perp}^{-1}: R\left({ }_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}^{k}\right) \rightarrow D\left({ }_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}^{k}\right)=\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega), \\
& \left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{k}\right)_{\perp}^{-1}: R\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{k}\right) \rightarrow D\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{k}\right)=H_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{Div}, \Omega), \\
& \left(\operatorname{TGrad}_{\Gamma_{t}}^{k}\right)_{\perp}^{-1}: R\left(\mathbb{T}^{\operatorname{Grad}} \mathrm{\Gamma}_{\Gamma_{t}}^{k}\right) \rightarrow D\left(\mathbb{T}^{\operatorname{Grad}}{ }_{\Gamma_{t}}^{k}\right)=H_{\Gamma_{t}}^{k+1}(\Omega), \\
& \left({ }_{s} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}^{k}\right)_{\perp}^{-1}: R\left({ }_{s} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}^{k}\right) \rightarrow D\left({ }_{s} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}^{k}\right)=H_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{symRot}, \Omega), \\
& \left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k}\right)_{\perp}^{-1}: R\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k}\right) \rightarrow D\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k}\right)=\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{divDiv}, \Omega), \\
& \left(\operatorname{divDiv}_{\mathrm{S}, \Gamma_{t}}^{k+1, k}\right)_{\perp}^{-1}: R\left(\operatorname{divDiv}_{\mathrm{S}, \Gamma_{t}}^{k}\right) \rightarrow D\left(\operatorname{divDiv}_{\mathrm{S}, \Gamma_{t}}^{k+1, k}\right)=\mathrm{H}_{\mathrm{S}, \Gamma_{t}}^{k+1, k}(\operatorname{divDiv}, \Omega)
\end{aligned}
$$

are bounded, and we recall the bounded linear regular decomposition operators

$$
\begin{array}{rc}
\mathcal{Q}_{\mathbb{T}}^{k, R o t_{s}, \Gamma_{t}}: \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega) \rightarrow \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+1}(\Omega), & \mathcal{Q}_{\mathbb{T}}^{k, 0} \operatorname{Rot}_{\mathbb{S}}, \Gamma_{t}
\end{array}: \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega) \rightarrow \mathrm{H}_{\Gamma_{t}}^{k+2}(\Omega),
$$

from Lemma 3.10. Similar to [1, Theorem 4.18, Theorem 5.2] and [2, Theorem 3.24, Theorem 3.25] (cf. [1, Lemma 2.22, Theorem 2.23]), we obtain the following sequence of results:

Theorem 3.24. (Bounded regular potentials from bounded regular decompositions). For $k \geq 0$, there exist bounded linear regular potential operators

$$
\begin{aligned}
& \mathcal{P}_{s}{\operatorname{Gradgrad}, \Gamma_{t}}_{k}^{k}=\left({ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}^{k}\right)_{\perp}^{-1}: \mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{Rot}, \Omega) \cap \mathcal{H}_{\mathbb{S}, \Gamma_{t}, \Gamma_{n}, \varepsilon}(\Omega)^{\perp_{\mathrm{L}_{S, k}^{2}(\Omega)}^{(\Omega)}} \rightarrow \mathrm{H}_{\Gamma_{t}}^{k+2}(\Omega), \\
& \mathcal{P}_{\mathrm{s} G \mathrm{Gradgrad}, \Gamma_{t}}^{k+1, k}:=\left({ }_{\mathrm{S}} \operatorname{Gradgrad}_{\Gamma_{t}}^{k+1, k}\right)_{\perp}^{-1}: \mathrm{H}_{\mathrm{S}, \Gamma_{t}, 0}^{k}(\operatorname{Rot}, \Omega) \cap \mathcal{H}_{\mathbb{S}, \Gamma_{t}, \Gamma_{n}, \varepsilon}(\Omega)^{\perp_{\mathrm{S}, \varepsilon^{2}}(\Omega)} \rightarrow \mathrm{H}_{\Gamma_{t}}^{k+2}(\Omega), \\
& \mathcal{P}_{\mathbb{T}^{\text {rots }}, \Gamma_{t}}^{k}:=\mathcal{Q}_{\mathbb{T}^{\operatorname{Rot}}, \Gamma_{t}}^{k, \Gamma_{\mathbb{T}}}\left({ }_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}^{k}\right)_{\perp}^{-1}: \mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{Div}, \Omega) \cap \mathcal{H}_{\mathbb{T}, \Gamma_{n}, \Gamma_{t}, \mu}(\Omega)^{\perp_{L_{\mathbb{R}}^{2}(\Omega)}} \rightarrow \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+1}(\Omega), \\
& \mathcal{P}_{\operatorname{Div}_{\mathbb{T}}, \Gamma_{t}}^{k}:=\mathcal{Q}_{\operatorname{Div}_{\mathbb{T}}, \Gamma_{t}}^{k, 1}\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{k}\right)_{\perp}^{-1}: H_{\Gamma_{t}}^{k}(\Omega) \cap\left(\mathbb{R}_{\Gamma_{n}}\right)^{\perp_{2}(\Omega)} \rightarrow H_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega), \\
& \mathcal{P}_{\mathbb{T}^{\prime}}^{k}{\operatorname{Grad}, \Gamma_{t}}:=\left({ }_{\mathbb{T}} \operatorname{Grad}_{\Gamma_{t}}^{k}\right)_{\perp}^{-1}: \mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{symRot}, \Omega) \cap \mathcal{H}_{\mathbb{T}, \Gamma_{t}, \Gamma_{n}, \mu}(\Omega)^{\perp_{L_{\mathbb{T}}, \mu^{2}}^{(\Omega)}} \rightarrow \mathrm{H}_{\Gamma_{t}}^{k+1}(\Omega),
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{P}_{\text {divDiv }, \Gamma_{t}}^{k}:=\mathcal{Q}_{\text {divDiv }}^{k, \Gamma_{t}},\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k}\right)_{\perp}^{-1}: H_{\Gamma_{t}}^{k}(\Omega) \cap\left(\mathbb{P}_{\Gamma_{n}}^{1}\right)^{\perp_{L^{2}(\Omega)}} \rightarrow H_{\mathrm{S}, \Gamma_{t}}^{k+2}(\Omega), \\
& \mathcal{P}_{\text {divDiv }}^{s}, \Gamma_{t}=\mathcal{Q}_{\text {divDiv }_{s}, \Gamma_{t}}^{k+1, k, k}\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k+1, k}\right)_{\perp}^{-1}: H_{\Gamma_{t}}^{k}(\Omega) \cap\left(\mathbb{P}_{\Gamma_{n}}^{1}\right)^{\perp_{L^{2}(\Omega)}} \rightarrow H_{S, \Gamma_{t}}^{k+2}(\Omega),
\end{aligned}
$$

such that

$$
\begin{aligned}
& \operatorname{Div} \mathcal{P}_{\text {Div }_{T}, \Gamma_{t}}^{k}=\left.\mathrm{id}\right|_{\mathrm{H}_{\Gamma_{t}}^{k}(\Omega) \cap\left(\mathbb{R T}_{\Gamma_{n}}\right)^{L^{2}(\Omega)}},
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{divDiv} \mathcal{P}_{\text {divDivs }, \Gamma_{t}}^{k+1, k}=\operatorname{divDiv} \mathcal{P}_{\text {divDiv }_{s}, \Gamma_{t}}^{k}=\left.\operatorname{id}\right|_{\mathrm{H}_{\Gamma_{t}}^{k}(\Omega) \cap\left(\mathbb{P}^{1} \Gamma_{\Gamma_{n}}\right)^{L_{2}(\Omega)}} .
\end{aligned}
$$

In particular, all potentials in Theorem 3.16 can be chosen such that they depend continuously on the
 Gradgrad, Rot, Div, devGrad, symRot, and divDiv, respectively.

Theorem 3.25. (Bounded regular decompositions from bounded regular potentials). For $k \geq 0$, the bounded regular decompositions

$$
\begin{aligned}
& \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega)=\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+1}(\Omega)+\mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{Rot}, \Omega)=\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+1}(\Omega)+\operatorname{Gradgrad} \mathrm{H}_{\Gamma_{t}}^{k+2}(\Omega) \\
& =R\left(\widetilde{\mathcal{Q}}_{\mathbb{T}^{R o t}, \Gamma_{t}}^{k, 1}\right)+H_{\mathrm{S}, \Gamma_{t}, 0}^{k}(\operatorname{Rot}, \Omega) \\
& =R\left(\widetilde{\mathcal{Q}}_{\mathbb{T}^{\text {Rot }}, \Gamma_{t}}^{k, 1}\right)+R\left(\widetilde{\mathcal{N}}_{\mathbb{N}^{\text {Rots }}, \Gamma_{t}}^{k}\right), \\
& \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{Div}, \Omega)=\mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega)+\mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{Div}, \Omega)=\mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega)+\operatorname{Rot} \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+1}(\Omega) \\
& =R\left(\widetilde{\mathcal{Q}}_{\mathrm{Div}_{T}, \Gamma_{t}}^{k, 1}\right)+\mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{Div}, \Omega) \\
& =R\left(\widetilde{\mathcal{Q}}_{\operatorname{Div}_{T}, \Gamma_{t}}^{k, 1}\right)+R\left(\widetilde{\mathcal{N}}_{\text {Div }_{T}, \Gamma_{t}}^{k}\right) \text {, } \\
& \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{symRot}, \Omega)=\mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega)+\mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{symRot}, \Omega)=\mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega)+\operatorname{devGrad} \mathrm{H}_{\Gamma_{t}}^{k+1}(\Omega) \\
& =R\left(\widetilde{\widetilde{Q}}_{\mathrm{s} \mathrm{Rot}_{T}, \Gamma_{t}}^{k, 1}\right)+\mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{symRot}, \Omega) \\
& =R\left(\widetilde{\mathcal{Q}}_{\mathrm{sRot}_{T}, \Gamma_{t}}^{k, 1}\right)+R\left(\widetilde{\mathcal{N}}_{\mathrm{s}^{\mathrm{RRot}}, \Gamma_{t}}^{k}\right), \\
& \mathrm{H}_{\mathrm{S}, \Gamma_{t}}^{k}(\operatorname{divDiv}, \Omega)=\mathrm{H}_{\mathrm{S}, \Gamma_{t}}^{k+2}(\Omega)+\mathrm{H}_{\mathrm{S}, \Gamma_{t}, 0}^{k}(\operatorname{divDiv}, \Omega)=\mathrm{H}_{\mathrm{S}, \Gamma_{t}}^{k+2}(\Omega)+\operatorname{symRot} \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega) \\
& =R\left(\widetilde{\mathcal{Q}}_{\text {divDivs }, \Gamma_{t}}^{k, 1}\right)+\mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{divDiv}, \Omega) \\
& =R\left(\widetilde{\widetilde{Q}}_{\text {divDiv }_{s}, \Gamma_{t}}^{k, 1}\right)+R\left(\widetilde{\mathcal{N}}_{\text {divDiv }_{s}, \Gamma_{t}}^{k}\right) \text {, } \\
& \mathrm{H}_{\mathrm{S}, \Gamma_{t}}^{k+1, k}(\operatorname{divDiv}, \Omega)=\mathrm{H}_{\mathrm{S}, \Gamma_{t}}^{k+2}(\Omega)+\mathrm{H}_{\mathrm{S}, \Gamma_{t}, 0}^{k+1}(\operatorname{divDiv}, \Omega)=\mathrm{H}_{\mathrm{S}, \Gamma_{t}}^{k+2}(\Omega)+\operatorname{symRot} \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+2}(\Omega) \\
& =R\left(\widetilde{\mathcal{Q}}_{\text {divDiv }}{ }^{k+\Gamma_{t}}\right)+\mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k+1}(\operatorname{divDiv}, \Omega) \\
& =R\left(\widetilde{\mathcal{Q}}_{\text {divDiv }_{s}, \Gamma_{t}}^{k+1, k, 1}\right)+R\left(\widetilde{\mathcal{N}}_{\text {divDiv }_{s}, \Gamma_{t}}^{k+1, k}\right)
\end{aligned}
$$

hold with bounded linear regular decomposition operators

$$
\begin{aligned}
& \widetilde{\mathcal{Q}}_{\mathrm{r}^{200}, \Gamma_{t}}^{k, 1}:=\mathcal{P}_{\mathrm{T}^{\mathrm{Rots}}, \mathrm{r}_{t} \mathbb{T}}^{k} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}^{k},: \mathrm{H}_{\mathrm{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega) \rightarrow \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+1}(\Omega), \\
& \widetilde{\mathcal{Q}}_{\operatorname{Div}_{\mathbb{T}}, \Gamma_{t}}^{k, 1}:=\mathcal{P}_{\operatorname{Div}_{\mathbb{T}}, \Gamma_{t}}^{k} \operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{k}: H_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{Div}, \Omega) \rightarrow H_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega), \\
& \widetilde{\mathcal{Q}}_{\mathrm{s} \mathrm{Rot}_{\mathbb{T}}, \Gamma_{t}}^{k, 1}:=\mathcal{P}_{{ }_{\mathrm{S}} \mathrm{Rot}_{T}, \Gamma_{t}}^{k}{ }_{\mathrm{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}^{k}: \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\text { symRot }, \Omega) \rightarrow \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega), \\
& \widetilde{\mathcal{Q}}_{\text {divDiv }}^{k, \Gamma_{t}} k=\mathcal{P}_{\text {divDiv }, \Gamma_{t}}^{k} \operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k}: \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{divDiv}, \Omega) \rightarrow \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+2}(\Omega), \\
& \widetilde{\mathcal{Q}}_{\text {divDiv }}^{s, \Gamma_{t}} k=\mathcal{P}_{\text {divDiv }, \Gamma_{t}}^{k+1, k, k} \operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k+1, k}: \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+1, k}(\operatorname{divDiv}, \Omega) \rightarrow \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+2}(\Omega), \\
& \widetilde{\mathcal{N}}_{\mathbb{T}^{\text {Rots }}, \Gamma_{t}}^{k}: \mathrm{H}_{\mathrm{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega) \rightarrow \mathrm{H}_{\mathrm{S}, \Gamma_{t}, 0}^{k}(\operatorname{Rot}, \Omega), \\
& \widetilde{\mathcal{N}}_{\operatorname{Div}_{T}, \Gamma_{t}}^{k}: \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{Div}, \Omega) \rightarrow \mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{Div}, \Omega), \\
& \widetilde{\mathcal{N}_{\mathrm{s} R \mathrm{Rot}_{T}, \Gamma_{t}}^{k}} \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\text { symRot, } \Omega) \rightarrow \mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{symRot}, \Omega), \\
& \widetilde{\mathcal{N}}_{\text {divDiv }, \Gamma_{t}}^{k}: H_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{divDiv}, \Omega) \rightarrow H_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{divDiv}, \Omega), \\
& \widetilde{\mathcal{N}}_{\text {divDiv }}^{k} \Gamma_{t}+1, \Gamma_{\mathbb{t}}: \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+1, k}(\operatorname{divDiv}, \Omega) \rightarrow \mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k+1}(\operatorname{divDiv}, \Omega)
\end{aligned}
$$

satisfying

$$
\begin{aligned}
& \operatorname{id}_{\mathrm{H}_{\mathrm{s}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega)}=\widetilde{\mathcal{Q}}_{\mathbb{T}^{\operatorname{Rot}}, \Gamma_{t}}^{k, 1}+\widetilde{\mathcal{N}_{\mathbb{N}^{R o t}, \Gamma_{t}}^{k}}, \\
& \operatorname{id}_{\mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{Div}, \Omega)}=\widetilde{\mathcal{Q}}_{\operatorname{Div}_{\mathbb{T}}, \Gamma_{t}}^{k, 1}+\widetilde{\mathcal{N}}_{\operatorname{Div}_{\mathbb{T}}, \Gamma_{t}}^{k},
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{id}_{\mathrm{H}_{\mathrm{s}, \Gamma_{t}}^{k}(\mathrm{divDiv}, \Omega)}=\widetilde{\mathcal{Q}}_{\mathrm{divDiv}_{\mathrm{s}}, \Gamma_{t}}^{k, 1}+\widetilde{\mathcal{N}}_{\mathrm{divDiv}_{\mathrm{s}}, \Gamma_{t}}^{k}, \\
& \left.\mathrm{id}_{\mathrm{H}_{\mathrm{S}, \Gamma_{t}}^{k+1, k}} \operatorname{divDiv}, \Omega\right)=\widetilde{\mathcal{Q}}_{\text {divDiv }_{\mathbb{S}}, \Gamma_{t}}^{k+1, k, 1}+\widetilde{\mathcal{N}}_{\text {divDiv }_{\mathrm{S}}, \Gamma_{t}}^{k+1, k} .
\end{aligned}
$$

Corollary 3.26. (Bounded regular kernel decompositions). For $k \geq 0$, the bounded regular kernel decompositions

$$
\begin{aligned}
\mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{Rot}, \Omega) & =\mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k+1}(\operatorname{Rot}, \Omega)+\operatorname{Gradgrad} \mathrm{H}_{\Gamma_{t}}^{k+2}(\Omega), \\
\mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{Div}, \Omega) & =\mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k+1}(\operatorname{Div}, \Omega)+\operatorname{Rot} \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+1}(\Omega), \\
\mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{symRot} \Omega) & =\mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k+1}(\operatorname{symRot}, \Omega)+\operatorname{devGrad} \mathrm{H}_{\Gamma_{t}}^{k+1}(\Omega), \\
\mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{divDiv}, \Omega) & =\mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k+2}(\operatorname{divDiv}, \Omega)+\operatorname{symRot} \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega)
\end{aligned}
$$

hold.
As in [2, Remark 3.27, Theorem 3.28] and [1, Theorem 4.18, Remark 4.19, Theorem 5.2, Remark 5.3] (cf. [1, Sections 2.3 and 2.4]), there is a collection of results about the bounded regular decomposition operators; see Remark D. 1 and Remark D. 2 of Appendix D.

Corollary 3.26 shows the following:
Corollary 3.27. (Bounded regular higher order kernel decompositions). For $k, \ell \geq 0$, the bounded regular kernel decompositions

$$
\begin{gathered}
N\left({ }_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}^{k}\right)=\mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{Rot}, \Omega)=\mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}^{\ell}(\operatorname{Rot}, \Omega)+\operatorname{Gradgrad} \mathrm{H}_{\Gamma_{t}}^{k+2}(\Omega), \\
N\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{k}\right)=\mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{Div}, \Omega)=\mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}^{\ell}(\operatorname{Div}, \Omega)+\operatorname{Rot} \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+1}(\Omega), \\
N\left({ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}^{k}\right)=\mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{symRot}, \Omega)=\mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}^{\ell}(\operatorname{symRot}, \Omega)+\operatorname{devGrad} \mathrm{H}_{\Gamma_{t}}^{k+1}(\Omega), \\
N\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k}\right)=\mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{divDiv}, \Omega)=\mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}^{\ell}(\operatorname{divDiv}, \Omega)+\operatorname{symRot} \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega)
\end{gathered}
$$

hold. In particular, for $k=0$ and all $\ell \geq 0$

$$
\begin{aligned}
& N\left({ }_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}\right)=\mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}(\operatorname{Rot}, \Omega)=\mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}^{\ell}(\operatorname{Rot}, \Omega)+\operatorname{Gradgrad} \mathrm{H}_{\Gamma_{t}}^{2}(\Omega), \\
& N\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}\right)=\mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}(\operatorname{Div}, \Omega)=\mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}^{\ell}(\operatorname{Div}, \Omega)+\operatorname{Rot} \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{1}(\Omega), \\
& N\left({ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}\right)=\mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}(\operatorname{symRot}, \Omega)=\mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}^{\ell}(\operatorname{symRot}, \Omega)+\operatorname{devGrad} \mathrm{H}_{\Gamma_{t}}^{1}(\Omega), \\
& N\left(\operatorname{divDiv}{ }_{\mathbb{S}, \Gamma_{t}}\right)=\mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}(\operatorname{divDiv}, \Omega)=\mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}^{\ell}(\operatorname{divDiv}, \Omega)+\operatorname{symRot} \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{1}(\Omega) .
\end{aligned}
$$

3.4 | Dirichlet/Neumann fields

From Theorem 3.15 (iv), we recall the slightly modified orthonormal Helmholtz type decompositions

$$
\begin{align*}
& \mathrm{L}_{\mathbb{S}, \varepsilon}^{2}(\Omega)=R\left({ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}\right) \oplus_{\mathrm{L}_{\mathbb{S}, \epsilon}^{2}(\Omega)} N\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}} \varepsilon\right) \\
& =N\left({ }_{T} \operatorname{Rot}_{S, \Gamma_{t}}\right) \oplus_{\mathrm{L}_{\mathrm{S},(}^{2}(\Omega)} R\left(\varepsilon^{-1}{ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{n}}\right) \\
& =R\left(\operatorname{Sradgrad}_{\Gamma_{t}}\right) \oplus_{\mathrm{L}_{\mathrm{S}, t}^{2}(\Omega)} \mathcal{H}_{\mathrm{S}, \Gamma_{t}, \Gamma_{n}, \varepsilon}(\Omega) \oplus_{\mathrm{L}_{\mathrm{S}, \epsilon}^{2}(\Omega)} R\left(\varepsilon^{-1}{ }_{\mathbb{S}} \operatorname{Rot}_{T, \Gamma_{n}}\right), \\
& N\left({ }_{T} \operatorname{Rot}_{S, \Gamma_{t}}\right)=R\left(\operatorname{Sradgrad}_{\Gamma_{t}}\right) \oplus_{\left\llcorner_{\mathrm{S}_{\varepsilon}, ~}^{2}(\Omega)\right.} \mathcal{H}_{\mathbb{S}, \Gamma_{t}, \Gamma_{n}, \varepsilon}(\Omega), \\
& N\left(\operatorname{divDiv}_{S, \Gamma_{n}} \varepsilon\right)=\mathcal{H}_{\mathbb{S}, \Gamma_{t}, \Gamma_{n}, \varepsilon}(\Omega) \oplus_{\mathrm{L}_{\mathrm{S}_{,}^{2},(\Omega)}} R\left(\varepsilon^{-1}{ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{n}}\right), \\
& \mathrm{L}_{\mathbb{T}, \mu}^{2}(\Omega)=R\left({ }_{\mathbb{T}} \operatorname{Grad}_{\Gamma_{t}}\right) \oplus_{\mathrm{L}_{\mathbb{T}, \mu}^{2}(\Omega)} N\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{n}} \mu\right) \tag{14}\\
& =N\left({ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}\right) \oplus_{\mathrm{L}_{\mathbb{T}, \mu}^{2}(\Omega)} R\left(\mu^{-1} \operatorname{Rot}_{S, \Gamma_{n}}\right) \\
& =R\left(\mathbb{T}^{\left.\operatorname{Grad}_{\Gamma_{t}}\right) \oplus_{\mathrm{L}_{\mathbb{T}, \mu}^{2}}(\Omega)} \mathcal{H}_{\mathbb{T}, \Gamma_{t}, \Gamma_{n}, \mu}(\Omega) \oplus_{\mathrm{L}_{\mathbb{T}, \mu}}(\Omega) R\left(\mu^{-1} \mathbb{T}^{\operatorname{Rot}}{ }_{\mathbb{S}, \Gamma_{n}}\right),\right. \\
& N\left(\operatorname{Sot}_{\mathbb{T}, \Gamma_{t}}\right)=R\left(\mathbb{T}^{\left.\operatorname{Grad}_{\Gamma_{t}}\right)} \oplus_{\mathrm{L}_{\mathrm{T}, \mu}^{2}(\Omega)} \mathcal{H}_{\mathbb{T}, \Gamma_{t}, \Gamma_{n}, \mu}(\Omega),\right. \\
& N\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{n}} \mu\right)=\mathcal{H}_{\mathbb{T}, \Gamma_{t}, \Gamma_{n} \mu}(\Omega) \oplus_{\mathrm{L}_{\mathbb{T}, \mu}^{2}(\Omega)} R\left(\mu^{-1} \mathbb{T}^{\operatorname{Rot}}{ }_{S, \Gamma_{n}}\right) .
\end{align*}
$$

Let us denote the $\mathrm{L}_{\mathbb{S}, \varepsilon}^{2}(\Omega)$ - and $\mathrm{L}_{\mathbb{T}, \mu}^{2}(\Omega)$-orthonormal projectors onto $N\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}} \varepsilon\right), N\left({ }_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}\right)$ and $N\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{n}} \mu\right), N\left({ }_{s} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}\right)$ by

$$
\begin{aligned}
& \pi_{N\left(\operatorname{divDiv}_{S, \Gamma_{n}} \varepsilon\right.}: \mathrm{L}_{\mathbb{S}, \varepsilon}^{2}(\Omega) \rightarrow N\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}} \varepsilon\right), \quad \pi_{N\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{n}} \mu\right)}: \mathrm{L}_{\mathbb{T}, \mu}^{2}(\Omega) \rightarrow N\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{n}} \mu\right), \\
& \pi_{N\left(\mathbb{T} \operatorname{Rot}_{S, \Gamma_{t}}\right)}: \mathrm{L}_{\mathbb{S}, \varepsilon}^{2}(\Omega) \rightarrow N\left({ }_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}\right), \quad \pi_{N\left({ }_{s} \operatorname{Rot}_{T, \Gamma_{t}}\right)}: \mathrm{L}_{\mathbb{T}, \mu}^{2}(\Omega) \rightarrow N\left({ }_{\mathbb{S}} \operatorname{Rot}_{T, \Gamma_{t}}\right),
\end{aligned}
$$

respectively. Then

$$
\begin{aligned}
& \left.\pi_{N\left(\operatorname{divDiv}_{S, \Gamma_{n}} \varepsilon\right.}\right|_{N\left(\mathbb{T}_{\mathrm{T}} \operatorname{Rot}_{\mathrm{S}, \Gamma_{t}}\right)}: N\left(\operatorname{TRot}_{S, \Gamma_{t}}\right) \rightarrow \mathcal{H}_{\mathrm{S}, \Gamma_{t}, \Gamma_{n}, \varepsilon}(\Omega), \\
& \left.\pi_{N\left(\mathbb{T} \mathrm{Rot}_{s, \Gamma_{t}}\right)}\right|_{N\left(\text { divDiv }_{\mathrm{S}, \Gamma_{n}} \varepsilon\right.}: N\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}} \varepsilon\right) \rightarrow \mathcal{H}_{\mathbb{S}, \Gamma_{t}, \Gamma_{n}, \varepsilon}(\Omega), \\
& \left.\pi_{N\left(\operatorname{Div}_{\Gamma, \Gamma_{n}} \mu\right)}\right|_{N\left({ }_{s} \operatorname{Rot}_{T, \Gamma_{t}}\right)}: N\left(\operatorname{sRot}_{\mathbb{T}, \Gamma_{t}}\right) \rightarrow \mathcal{H}_{\mathbb{T}, \Gamma_{t}, \Gamma_{n}, \mu}(\Omega), \\
& \left.\pi_{N\left(\operatorname{RRot}_{T, \Gamma_{t}}\right.}\right)_{N\left(\operatorname{Div}_{T, \Gamma_{n}} \mu\right)}: N\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{n}} \mu\right) \rightarrow \mathcal{H}_{\mathbb{T}, \Gamma_{t}, \Gamma_{n}, \mu}(\Omega)
\end{aligned}
$$

are onto. Moreover,

Therefore, by Corollary 3.27 and for all $\ell \geq 0$,

$$
\begin{aligned}
& \mathcal{H}_{S, \Gamma_{t}, \Gamma_{n}, \varepsilon}(\Omega)=\pi_{N\left(\operatorname{divDiv}_{\mathrm{S}_{\Gamma_{n}} \varepsilon}\right)} N\left({ }_{\mathbb{T}} \operatorname{Rot}_{S, \Gamma_{t}}\right)=\pi_{N\left(\operatorname{divDiv}_{s, \Gamma_{n} \varepsilon}\right)} \boldsymbol{H}_{S, \Gamma_{t}, 0}^{\ell}(\operatorname{Rot}, \Omega),
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{H}_{\mathbb{T}, \Gamma_{t}, \Gamma_{n}, \mu}(\Omega)=\pi_{N\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{n}} \mu\right)} N\left({ }_{\left.s \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}\right)=\pi_{N\left(\operatorname{Div}_{T, \Gamma_{n}} \mu\right)} H_{\mathbb{T}, \Gamma_{t}, 0}^{\ell}(\operatorname{symRot}, \Omega), ~}^{\text {, }}\right. \\
& \mathcal{H}_{\mathbb{T}, \Gamma_{t}, \Gamma_{n}, \mu}(\Omega)=\pi_{N\left(s \operatorname{Rot}_{T, \Gamma_{t}}\right)} N\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{n}} \mu\right)=\pi_{N\left(\mathrm{~s} \mathrm{Rot}_{T \Gamma_{t}}\right)} \mu^{-1} H_{\mathbb{T}, \Gamma_{n}, 0}^{\ell}(\operatorname{Div}, \Omega),
\end{aligned}
$$

where we have used

$$
N\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}} \varepsilon\right)=\varepsilon^{-1} \mathrm{H}_{\mathbb{S}, \Gamma_{n}, 0}(\operatorname{divDiv}, \Omega), \quad N\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{n}} \mu\right)=\mu^{-1} \mathrm{H}_{\mathbb{T}, \Gamma_{n}, 0}(\operatorname{Div}, \Omega) .
$$

Hence with

$$
\begin{array}{rlrl}
\mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}^{\infty}(\operatorname{Rot}, \Omega): & =\bigcap_{k \geq 0} \mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{Rot}, \Omega), \quad \mathrm{H}_{\mathbb{S}, \Gamma_{n}, 0}^{\infty}(\operatorname{divDiv}, \Omega):=\bigcap_{k \geq 0} \mathrm{H}_{\mathbb{S}, \Gamma_{n}, 0}^{k}(\operatorname{div} \operatorname{Div}, \Omega), \\
\mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}^{\infty}(\operatorname{sym} \operatorname{Rot}, \Omega): & =\bigcap_{k \geq 0} \mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{sym} \operatorname{Rot}, \Omega), & \mathrm{H}_{\mathbb{T}, \Gamma_{n}, 0}^{\infty}(\operatorname{Div}, \Omega):=\bigcap_{k \geq 0} \mathrm{H}_{\mathbb{T}, \Gamma_{n}, 0}^{k}(\operatorname{Div}, \Omega),
\end{array}
$$

and with the finite numbers

$$
d_{\Omega, \mathbb{S}, \Gamma_{t}}:=\operatorname{dim} \mathcal{H}_{\mathbb{S}, \Gamma_{t}, \Gamma_{n}, \varepsilon}(\Omega), \quad d_{\Omega, \mathbb{T}, \Gamma_{t}}:=\operatorname{dim} \mathcal{H}_{\mathbb{T}, \Gamma_{t}, \Gamma_{n}, \mu}(\Omega),
$$

we get the following result:
Theorem 3.28. (Smooth pre-bases of Dirichlet/Neumann fields). It holds

$$
\begin{aligned}
\pi_{N\left(\operatorname{divDiv}_{S, \Gamma_{n}} \varepsilon\right)} H_{\mathbb{S}, \Gamma_{t}, 0}^{\infty}(\operatorname{Rot}, \Omega) & =\mathcal{H}_{\mathbb{S}, \Gamma_{t}, \Gamma_{n}, \varepsilon}(\Omega)=\pi_{N(\mathbb{T}} \operatorname{Rot}_{\left.\mathbb{S}, \Gamma_{t}\right)} \varepsilon^{-1} H_{\mathbb{S}, \Gamma_{n}, 0}^{\infty}(\operatorname{divDiv}, \Omega), \\
\pi_{N\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{n}} \mu\right)} H_{\mathbb{T}, \Gamma_{t}, 0}^{\infty}(\operatorname{symRot}, \Omega) & =\mathcal{H}_{\mathbb{T}, \Gamma_{t}, \Gamma_{n}, \mu}(\Omega)=\pi_{N\left(\mathbb{S}^{\operatorname{Rot}} t_{\mathbb{T}, \Gamma_{t}}\right)} \mu^{-1} \mathrm{H}_{\mathbb{T}, \Gamma_{n}, 0}^{\infty}(\operatorname{Div}, \Omega)
\end{aligned}
$$

Moreover, there exist smooth ${ }_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}$ and divDiv ${ }_{\mathbb{S}, \Gamma_{n}}$ pre-bases of $\mathcal{H}_{\mathbb{S}, \Gamma_{t}, \Gamma_{n}, \varepsilon}(\Omega)$ and smooth ${ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}$ and $\operatorname{Div}_{\mathbb{T}, \Gamma_{n}}$ pre-bases of $\mathcal{H}_{\mathbb{T}, \Gamma_{t}, \Gamma_{n}, \mu}(\Omega)$; that is, there are linear independent smooth fields ${ }^{t}$

$$
\begin{aligned}
\mathcal{B}^{\mathbb{R} \operatorname{Rot}_{S, \Gamma_{t}}}(\Omega) & :=\left\{B_{\ell}^{\mathbb{T}^{\operatorname{Rot}_{S, \Gamma_{t}}}}\right\}_{\ell=1}^{d_{\Omega, S, \Gamma_{t}}} \subset \mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}^{\infty}(\operatorname{Rot}, \Omega), \\
\mathcal{B}^{\operatorname{divDiv}_{S, \Gamma_{n}}}(\Omega) & :=\left\{B_{\ell}^{\operatorname{divDiv}_{S, \Gamma_{n}}}\right\}_{\ell=1}^{d_{\Omega, S, \Gamma_{t}}} \subset \mathrm{H}_{\mathbb{S}, \Gamma_{n}, 0}^{\infty}(\operatorname{divDiv}, \Omega), \\
\mathcal{B}^{\operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}}(\Omega) & :=\left\{B_{\ell}^{\operatorname{Rit}_{\mathbb{T}, \Gamma_{t}}}\right\}_{\ell=1}^{d_{\Omega, \mathbb{T}, \Gamma_{t}}} \subset \mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}^{\infty}(\operatorname{symRot}, \Omega), \\
\mathcal{B}^{\operatorname{Div}_{\mathbb{T}, \Gamma_{n}}}(\Omega) & :=\left\{B_{\ell}^{\operatorname{Div}_{\mathbb{T}, \Gamma_{n}}}\right\}_{\ell=1}^{d_{\Omega, T, \Gamma_{t}}} \subset \mathrm{H}_{\mathbb{T}, \Gamma_{n}, 0}^{\infty}(\operatorname{Div}, \Omega),
\end{aligned}
$$

such that $\pi_{N\left(\operatorname{divDiv}_{S, \Gamma_{n}} \varepsilon\right)} \mathcal{B}^{\mathbb{R o t}_{S, \Gamma_{t}}(\Omega)}$ and $\left.\pi_{N\left(\mathbb{T}^{R} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}\right)}\right)^{-1} \mathcal{B}^{\operatorname{divDiv}_{S, \Gamma_{n}}(\Omega)}$ are both bases of $\mathcal{H}_{\mathbb{S}, \Gamma_{t}, \Gamma_{n}, \varepsilon}(\Omega)$, and $\pi_{N\left(\operatorname{Div}_{T, \Gamma_{n}} \mu\right)} \mathcal{B}^{\mathrm{R}^{\operatorname{Rot}} \mathrm{T}_{T, \Gamma_{t}}}(\Omega)$ and $\pi_{N\left({ }_{s} \operatorname{Rot}_{T, \Gamma_{t}}\right)} \mu^{-1} \mathcal{B}^{\operatorname{Div}_{T, \Gamma_{n}}}(\Omega)$ are both bases of $\mathcal{H}_{\mathbb{T}, \Gamma_{t}, \Gamma_{n}, \mu}(\Omega)$. In particular,

$$
\begin{aligned}
& \operatorname{Lin} \pi_{N\left(\operatorname{divDiv}_{S, \Gamma_{n}} \varepsilon\right.} \mathcal{B}^{\left.\mathbb{R}^{\operatorname{Rot}_{S, \Gamma_{t}}}(\Omega)=\mathcal{H}_{\mathbb{S}, \Gamma_{t}, \Gamma_{n}, \varepsilon}(\Omega)=\operatorname{Lin} \pi_{N(\mathbb{T}} \operatorname{Rot}_{S, \Gamma_{t}}\right)^{-1} \mathcal{B}^{\operatorname{divDiv}_{S, \Gamma_{n}}}(\Omega), ~} \\
& \operatorname{Lin} \pi_{N\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{n}} \mu\right)} \mathcal{B}^{\mathbb{R}^{R o t} t_{T, \Gamma_{t}}}(\Omega)=\mathcal{H}_{\mathbb{T}, \Gamma_{t}, \Gamma_{n}, \mu}(\Omega)=\operatorname{Lin} \pi_{N\left({ }_{s} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}\right)} \mu^{-1} \mathcal{B}^{\operatorname{Div}_{\mathbb{T}, \Gamma_{n}}}(\Omega) .
\end{aligned}
$$

Note that, for example, $\left(1-\pi_{N\left(\operatorname{divDiv}_{S, \Gamma_{n}} \varepsilon\right)}\right)$ is the $L_{\mathbb{S}, \varepsilon}^{2}(\Omega)$-orthonormal projector onto $R\left({ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}\right)$. By (14), Theorem 3.16 , and Theorem 3.28, we compute

$$
\begin{align*}
& \mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}(\operatorname{Rot}, \Omega)=R\left({ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}\right) \oplus_{\mathrm{L}_{\mathbb{S}, \varepsilon}^{2}(\Omega)} \mathcal{H}_{\mathbb{S}, \Gamma_{t}, \Gamma_{n}, \varepsilon}(\Omega) \\
& =R\left({ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}\right) \oplus_{\mathrm{L}_{\mathrm{S}, \varepsilon}^{2}(\Omega)} \operatorname{Lin} \pi_{N\left(\operatorname{divDiv}_{S, \Gamma_{n}} \varepsilon\right.} \mathcal{B}^{\mathrm{T}^{\mathrm{Rot}} \mathrm{t}_{\mathrm{S}, \Gamma_{t}}}(\Omega) \\
& =R\left({ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}\right)+\left(\pi_{N\left(\operatorname{divDiv}_{S, \Gamma_{n}} \varepsilon\right.}-1\right) \operatorname{Lin} \mathcal{B}^{\mathbb{R o t}_{s, \Gamma_{t}}}(\Omega)+\operatorname{Lin} \mathcal{B}^{\mathbb{R o t}_{S, \Gamma_{t}}}(\Omega) \\
& =R\left({ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}\right)+\operatorname{Lin} \mathcal{B}^{\mathbb{R o t}_{S, \Gamma_{t}}}(\Omega), \tag{15}\\
& \mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{Rot}, \Omega)=R\left({ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}\right) \cap \mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{Rot}, \Omega)+\operatorname{Lin} \mathcal{B}^{{ }^{\mathrm{R}}} \mathrm{Rot}_{\mathrm{S}, \Gamma_{t}}(\Omega) \\
& =R\left({ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}^{k}\right)+\operatorname{Lin} \mathcal{B}^{\mathrm{Rot}_{\mathrm{S}, \Gamma_{t}}}(\Omega) .
\end{align*}
$$

Similarly, we obtain decompositions of $H_{\mathbb{S}, \Gamma_{n}, 0}^{k}(\operatorname{divDiv}, \Omega), H_{\mathbb{T}, \Gamma_{t}, 0}(\operatorname{symRot}, \Omega)$, and $H_{\mathbb{T}, \Gamma_{n}, 0}^{k}(\operatorname{Div}, \Omega)$ using $\mathcal{B}^{\operatorname{divDiv}_{S, \Gamma_{n}}}(\Omega), \mathcal{B}^{\mathrm{Rot}_{T, \Gamma_{t}}}(\Omega)$, and $\mathcal{B}^{\operatorname{Div}_{T, \Gamma_{n}}}(\Omega)$, respectively. We conclude:

Theorem 3.29. (Bounded regular direct decompositions). Let $k \geq 0$. Then the bounded regular direct decompositions

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega)=R\left(\widetilde{\mathcal{Q}}_{\mathbb{T}}^{k, 1} \mathrm{Rot}_{3}, \Gamma_{t}\right)+\mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{Rot}, \Omega), \\
& H_{S, \Gamma_{t}, 0}^{k}(\operatorname{Rot}, \Omega)=\operatorname{Gradgrad} H_{\Gamma_{t}}^{k+2}(\Omega)+\operatorname{Lin} \mathcal{B}^{\mathrm{Rot}_{s, \Gamma_{t}}(\Omega),} \\
& H_{\mathbb{T}, \Gamma_{n}}^{k}(\operatorname{Div}, \Omega)=R\left(\widetilde{\mathcal{Q}}_{\operatorname{Div}_{\mathbb{T}}, \Gamma_{n}}^{k, 1}\right)+\mathrm{H}_{\mathbb{T}, \Gamma_{n}, 0}^{k}(\operatorname{Div}, \Omega), \\
& H_{\mathbb{T}, \Gamma_{n}, 0}^{k}(\operatorname{Div}, \Omega)=\operatorname{Rot} H_{\mathbb{S}, \Gamma_{n}}^{k+1}(\Omega)+\operatorname{Lin} \mathcal{B}^{\operatorname{Div}_{T \Gamma_{n}}(\Omega),} \\
& \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{symRot}, \Omega)=R\left(\widetilde{\mathcal{Q}}_{\mathrm{s}} \widetilde{R o t}_{T}, \Gamma_{t}\right)+\mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{symRot}, \Omega), \\
& H_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{symRot}, \Omega)=\operatorname{devGrad} H_{\Gamma_{t}}^{k+1}(\Omega)+\operatorname{Lin} \mathcal{B}^{\text {Rot }_{T, \Gamma_{t}}(\Omega),} \\
& H_{\mathbb{S}, \Gamma_{n}}^{k}(\operatorname{divDiv}, \Omega)=R\left(\widetilde{\widetilde{Q}}_{\text {divDiv }, \Gamma_{n}}^{k, 1}\right)+H_{\mathbb{S}, \Gamma_{n}, 0}^{k}(\operatorname{divDiv}, \Omega), \\
& H_{\mathbb{S}, \Gamma_{n}}^{k+1, k}(\operatorname{divDiv}, \Omega)=R\left(\widetilde{\mathcal{Q}}_{\text {divDiv }_{s}, \Gamma_{n}}^{k+1, k, \Gamma_{n}}\right)+H_{\mathbb{S}, \Gamma_{n}, 0}^{k+1}(\operatorname{divDiv}, \Omega), \\
& H_{\mathbb{S}, \Gamma_{n}, 0}^{k}(\operatorname{divDiv}, \Omega)=\operatorname{symRot} H_{\mathbb{T}, \Gamma_{n}}^{k+1}(\Omega) \dot{+} \operatorname{Lin} \mathcal{B}^{\operatorname{divDiv}_{s, \Gamma_{n}}(\Omega)}
\end{aligned}
$$

hold. Note that $R\left(\widetilde{\mathcal{Q}}_{\mathbb{T}^{\mathrm{Ros}_{5}, \Gamma_{t}}}^{k, 1}\right) \subset \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+1}(\Omega), R\left(\widetilde{\widetilde{Q}}_{\mathrm{Div}_{\mathbb{T}}, \Gamma_{n}}^{k, 1}\right) \subset \mathrm{H}_{\mathbb{T}, \Gamma_{n}}^{k+1}(\Omega), R\left(\widetilde{\mathcal{Q}}_{\mathrm{s}}^{k \mathrm{Rot}_{\mathbb{T}}, \Gamma_{t}} k\right) \subset \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega)$, and $R\left(\widetilde{\mathcal{Q}}_{\mathrm{divDiv}_{s}, \Gamma_{n}}^{k, 1}\right)$, $R\left(\widetilde{\mathcal{Q}}_{\text {divDivs }_{s}, \Gamma_{n}}^{k+1, k, 1}\right) \subset H_{\mathrm{S}, \Gamma_{n}}^{k+2}(\Omega)$.
See Appendix C for a proof.
Remark 3.30. (Bounded regular direct decompositions). In particular, for $k=0$,

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{S}, \Gamma_{t}}(\operatorname{Rot}, \Omega)=R\left(\widetilde{\mathcal{Q}}_{\mathbb{T}}^{0,1} \mathrm{Rot}_{5}, \Gamma_{t}\right)+\mathrm{H}_{\mathrm{S}, \Gamma_{t}, 0}(\operatorname{Rot}, \Omega), \\
& \mathrm{H}_{S, \Gamma_{t}, 0}(\operatorname{Rot}, \Omega)=\operatorname{Gradgrad} \mathrm{H}_{\Gamma_{t}}^{2}(\Omega)+\operatorname{Lin} \mathcal{B}^{7 \mathrm{Rot}_{5, \Gamma_{t}}(\Omega)} \\
& =\text { Gradgrad } \mathrm{H}_{\Gamma_{t}}^{2}(\Omega) \oplus_{\mathrm{L}_{\mathrm{S}, \epsilon}^{2}(\Omega)} \mathcal{H}_{\mathrm{S}, \Gamma_{t}, \Gamma_{n}, \varepsilon}(\Omega) \text {, } \\
& \mathrm{H}_{\mathbb{T}, \Gamma_{n}}(\operatorname{Div}, \Omega)=R\left(\widetilde{\mathcal{Q}}_{\mathrm{Div}_{\mathbb{T}}, \Gamma_{n}}^{0,1}\right)+\mathrm{H}_{\mathbb{T}, \Gamma_{n}, 0}(\operatorname{Div}, \Omega),
\end{aligned}
$$

$$
\begin{aligned}
& =\mu^{-1} \operatorname{Rot} \mathrm{H}_{\mathbb{S}, \Gamma_{n}}^{1}(\Omega) \oplus_{\mathrm{L}_{\mathrm{T}, \mu}^{2}(\Omega)} \mathcal{H}_{\mathbb{T}, \Gamma_{t}, \Gamma_{n}, \mu}(\Omega), \\
& \mathrm{H}_{\mathbb{T}, \Gamma_{t}}(\operatorname{symRot}, \Omega)=R\left(\widetilde{\mathcal{Q}}_{\mathrm{s} \mathrm{Rot}_{T}, \Gamma_{t}}^{0,1}\right)+\mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}(\operatorname{symRot}, \Omega), \\
& \mathrm{H}_{\mathbb{T}, \Gamma, 0}(\operatorname{symRot}, \Omega)=\operatorname{devGrad} \mathrm{H}_{\Gamma_{t}}^{1}(\Omega)+\operatorname{Lin} \mathcal{B}^{\operatorname{Rot}_{T, \Gamma_{t}}(\Omega)} \\
& =\operatorname{devGrad} \mathrm{H}_{\Gamma_{t}}^{1}(\Omega) \oplus_{\mathrm{L}_{\mathrm{T}, \mu}^{2}(\Omega)} \mathcal{H}_{\mathbb{T}, \Gamma_{t}, \Gamma_{n}, \mu}(\Omega) \text {, } \\
& \mathrm{H}_{\mathbb{S}, \Gamma_{n}}(\operatorname{divDiv}, \Omega)=R\left(\widetilde{\mathcal{Q}}_{\mathrm{divDiv}, \Gamma_{n}}^{0,1}\right)+\mathrm{H}_{\mathrm{S}, \Gamma_{n}, 0}(\operatorname{divDiv}, \Omega), \\
& \varepsilon^{-1} \mathrm{H}_{S, \Gamma_{n}, 0}(\operatorname{divDiv}, \Omega)=\varepsilon^{-1} \operatorname{symRot} H_{\mathbb{T}, \Gamma_{n}}^{1}(\Omega)+\varepsilon^{-1} \operatorname{Lin} \mathcal{B}^{\operatorname{divDiv}_{S, \Gamma_{n}}(\Omega)} \\
& =\varepsilon^{-1} \operatorname{symRot} \mathrm{H}_{\mathbb{T}, \Gamma_{n}}^{1}(\Omega) \oplus_{\mathrm{L}_{\mathrm{S}, \varepsilon}^{2}(\Omega)} \mathcal{H}_{\mathbb{S}, \Gamma_{t}, \Gamma_{n}, \varepsilon}(\Omega),
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{L}_{\mathbb{S}, \varepsilon}^{2}(\Omega) & =\mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}(\operatorname{Rot}, \Omega) \oplus_{\mathrm{L}_{\mathrm{S}, \varepsilon}^{2}(\Omega)} \varepsilon^{-1} \operatorname{symRot}^{\mathrm{H}_{\mathbb{T}, \Gamma_{n}}^{1}(\Omega)} \\
& =\operatorname{Gradgrad} \mathrm{H}_{\Gamma_{t}}^{2}(\Omega) \oplus_{\mathrm{L}_{\mathrm{S}, \epsilon}^{2}(\Omega)} \varepsilon^{-1} \mathrm{H}_{\mathbb{S}, \Gamma_{n}, 0}(\operatorname{divDiv}, \Omega), \\
\mathrm{L}_{\mathbb{T}, \mu}^{2}(\Omega) & =\mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}(\operatorname{symRot}, \Omega) \oplus_{\mathrm{L}_{\mathbb{T}, \mu}^{2}(\Omega)} \mu^{-1} \operatorname{Rot} \mathrm{H}_{\mathbb{S}, \Gamma_{n}}^{1}(\Omega) \\
& =\operatorname{devGrad} \mathrm{H}_{\Gamma_{t}}^{1}(\Omega) \oplus_{\mathrm{L}_{\mathbb{T}_{, \mu}}^{2}(\Omega)} \mu^{-1} \mathrm{H}_{\mathbb{T}, \Gamma_{n}, 0}(\operatorname{Div}, \Omega) .
\end{aligned}
$$

By the latter theorem, we have bounded linear regular (direct) decompositions

$$
\begin{align*}
& \mathcal{H}_{S, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega)=R\left(\widetilde{\mathcal{Q}}_{\mathrm{T}^{\mathrm{Rot}}, \Gamma_{t}}^{\Gamma_{t}}\right) \dot{\operatorname{Lin}} \mathcal{B}^{\mathrm{RRot}_{S, \Gamma_{t}}}(\Omega)+\operatorname{Gradgrad} H_{\Gamma_{t}}^{k+2}(\Omega) \\
& =\mathrm{H}_{\mathrm{S}, \Gamma_{t}}^{k+1}(\Omega)+\text { Gradgrad } \mathrm{H}_{\Gamma_{t}}^{k+2}(\Omega), \\
& H_{\mathbb{T}, \Gamma_{n}}^{k}(\operatorname{Div}, \Omega)=R\left(\widetilde{\mathcal{Q}}_{\mathrm{Div}_{\mathbb{T}}, \Gamma_{n}}^{k, 1}\right)+\operatorname{Lin} \mathcal{B}^{\operatorname{Div}_{\mathbb{T}, \Gamma_{n}}(\Omega)}+\operatorname{Rot} \mathrm{H}_{\mathrm{S}, \Gamma_{n}}^{k+1}(\Omega) \\
& =\mathrm{H}_{\mathbb{T}, \Gamma_{n}}^{k+1}(\Omega)+\operatorname{Rot} \mathrm{H}_{\mathrm{S}, \Gamma_{n}}^{k+1}(\Omega) \text {, } \\
& \mathbf{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{symRot}, \Omega)=R\left(\widetilde{\mathcal{Q}}_{\mathrm{s} \operatorname{Rot}_{T}, \Gamma_{t}}^{k, 1}\right)+\operatorname{Lin} \mathcal{B}^{\mathrm{Rot}_{T, \Gamma_{t}}(\Omega)} \dot{+} \operatorname{devGrad} H_{\Gamma_{t}}^{k+1}(\Omega) \tag{16}\\
& =\mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega)+\operatorname{devGrad} \mathrm{H}_{\Gamma_{t}}^{k+1}(\Omega), \\
& H_{\mathbb{S}, \Gamma_{n}}^{k}(\operatorname{divDiv}, \Omega)=R\left(\widetilde{\mathcal{Q}}_{\text {divDiv }_{S}, \Gamma_{n}}^{k, 1}\right) \dot{\operatorname{Lin}} \mathcal{B}^{\operatorname{divDiv}_{S, r_{n}}}(\Omega)+\operatorname{symRot} H_{\mathbb{T}, \Gamma_{n}}^{k+1}(\Omega) \\
& =\mathrm{H}_{\mathbb{S}, \Gamma_{n}}^{k+2}(\Omega)+\operatorname{symRot} \mathrm{H}_{\mathbb{T}, \Gamma_{n}}^{k+1}(\Omega), \\
& \mathrm{H}_{\mathbb{S}, \Gamma_{n}}^{k+1, k}(\operatorname{divDiv}, \Omega)=R\left(\widetilde{\mathcal{Q}}_{\operatorname{divDiv}_{s}, \Gamma_{n}}^{k+1, k, 1}\right) \dot{\operatorname{Lin}} \mathcal{B}^{\operatorname{divDiv}_{S, \Gamma_{n}}}(\Omega) \dot{+} \operatorname{symRot} \mathrm{H}_{\mathbb{T}, \Gamma_{n}}^{k+2}(\Omega) \\
& =\mathrm{H}_{\mathbb{S}, \Gamma_{n}}^{k+2}(\Omega)+\operatorname{symRot} \mathrm{H}_{\mathbb{T}, \Gamma_{n}}^{k+2}(\Omega) \text {. }
\end{align*}
$$

See Remark D. 3 for more details on these decompositions and the corresponding bounded linear regular direct decomposition operators. Noting

$$
\begin{align*}
& R\left(\varepsilon^{-1}{ }_{S} \operatorname{Rot}_{\mathbb{T}, \Gamma_{n}}\right) \perp_{L_{\mathbb{S}, t}^{2}(\Omega)} \mathcal{B}^{\operatorname{TRot}_{s, r_{t}}}(\Omega), \quad R\left({ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}\right) \perp_{\mathrm{L}_{s}^{2}(\Omega)} \mathcal{B}^{\operatorname{divDiv}_{s, \Gamma_{n}}}(\Omega), \tag{17}\\
& R\left(\mu^{-1} \mathbb{T} \operatorname{Rot}_{S, \Gamma_{n}}\right) \perp_{L_{\mathbb{T}, \mu}^{2}(\Omega)} \mathcal{B}^{\operatorname{Rot}_{T, \Gamma_{t}}(\Omega)}, \quad R\left(\mathbb{T}^{\left.\operatorname{Grad}_{\Gamma_{t}}\right)} \perp_{\mathrm{L}_{\mathbb{T}}^{2}(\Omega)} \mathcal{B}^{\operatorname{Div}_{\mathbb{T}, \Gamma_{n}}(\Omega),}\right.
\end{align*}
$$

we see the following:
Theorem 3.31. (Alternative Dirichlet/Neumann projections). It holds

$$
\begin{aligned}
& \mathcal{H}_{\mathbb{S}, \Gamma_{t}, \Gamma_{n}, \varepsilon}(\Omega) \cap \mathcal{B}^{\mathrm{TRO}_{S, \Gamma_{t}}(\Omega)}{ }^{\perp_{\mathrm{S}, \varepsilon^{2}}(\Omega)}=\{0\}, \\
& N\left(\operatorname{divDiv}_{S, \Gamma_{n}} \varepsilon\right) \cap \mathcal{B}^{\mathrm{Rot}_{S, \Gamma_{t}}(\Omega)^{\perp_{\mathrm{S}, \varepsilon_{i}^{2}}^{2}(\Omega)}}=R\left(\varepsilon^{-1}{ }_{\mathbb{S}} \operatorname{Rot}_{T, \Gamma_{n}}\right), \\
& \mathcal{H}_{\mathbb{S}, \Gamma_{t}, \Gamma_{n}, \varepsilon}(\Omega) \cap \mathcal{B}^{\operatorname{divDiv}_{\mathrm{S}_{5} \Gamma_{n}}(\Omega)^{\perp_{\mathrm{S}}^{2}(\Omega)}}=\{0\}, \\
& N\left(\mathbb{T}^{\operatorname{Rot}}{ }_{S, \Gamma_{t}}\right) \cap \mathcal{B}^{\operatorname{divDiv}_{S_{\Gamma_{n}}}(\Omega)^{\perp_{L_{S}^{2}}(\Omega)}=R\left(\operatorname{Sradgrad}_{\Gamma_{t}}\right), ~} \\
& \mathcal{H}_{\mathbb{T}, \Gamma_{t}, \Gamma_{n}, \mu}(\Omega) \cap \mathcal{B}^{\operatorname{Rot}_{T, \Gamma_{t}}}(\Omega)^{\perp_{L_{T, \mu}^{2}}^{2}(\Omega)}=\{0\}, \\
& N\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{n}} \varepsilon\right) \cap \mathcal{B}^{\operatorname{Rot}_{T, \Gamma_{t}}(\Omega)^{\perp_{T, \mu^{2}}^{(\Omega)}}=R\left(\mu^{-1} \operatorname{Rot}_{S, \Gamma_{n}}\right), ~} \\
& \mathcal{H}_{\mathbb{T}, \Gamma_{t}, \Gamma_{n}, \mu}(\Omega) \cap \mathcal{B}^{\operatorname{Div}_{T, \Gamma_{n}}}(\Omega)^{\perp_{L_{1}^{2}}(\Omega)}=\{0\}, \\
& N\left(\mathbb{S o t}_{\mathbb{T}, \Gamma_{t}}\right) \cap \mathcal{B}^{\operatorname{Div}_{\mathbb{T}, \Gamma_{n}}(\Omega)^{\perp_{\mathbb{T}_{\mathbb{R}}}(\Omega)}=R\left(\operatorname{Trad}_{\Gamma_{t}}\right) .}
\end{aligned}
$$

Moreover, for all $k \geq 0$,

$$
\begin{aligned}
& N\left({ }_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}^{k}\right) \cap \mathcal{B}^{\operatorname{divDiv}_{S} \Gamma_{n}}(\Omega)^{\perp_{\mathbb{S}}(\Omega)}=R\left({ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}^{k}\right)=\operatorname{Gradgrad} H_{\Gamma_{t}}^{k+2}(\Omega), \\
& N\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{n}}^{k} \varepsilon\right) \cap \mathcal{B}^{\mathbb{S R o t}_{T, \Gamma_{t}}(\Omega)^{L_{\left.\mathbb{T}_{, ~(~}^{(}\right)}}{ }^{(\Omega)}}=R\left(\mu^{-1} \mathbb{T}_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{n}}^{k}\right)=\mu^{-1} \operatorname{Rot} H_{\mathbb{S}, \Gamma_{n}}^{k+1}(\Omega), \\
& N\left(\operatorname{sio}_{\mathbb{T}, \Gamma_{t}}^{k}\right) \cap \mathcal{B}^{\operatorname{Div}_{T \Gamma_{n}}(\Omega)^{L_{\mathbb{R}}(\Omega)}}=R\left(\mathbb{T}_{\operatorname{Grad}}^{\Gamma_{t}} k\right)=\operatorname{devGrad} H_{\Gamma_{t}}^{k+1}(\Omega) .
\end{aligned}
$$

See Appendix C for a proof. Theorem 3.29 implies the following:

Theorem 3.32. (Cohomology groups). It holds

$$
\begin{aligned}
& \frac{N\left(\operatorname{SRot}_{\mathbb{T}, \Gamma_{t}}^{k}\right)}{R\left({ }_{\mathbb{T}} \operatorname{Grad}_{\Gamma_{t}}^{k}\right)} \cong \operatorname{Lin} \mathcal{B}^{\operatorname{Sot}_{T, \Gamma_{t}}(\Omega)} \cong \mathcal{H}_{\mathbb{T}, \Gamma_{t}, \Gamma_{n}, \mu}(\Omega) \cong \operatorname{Lin} \mathcal{B}^{\operatorname{Div}_{T, \Gamma_{n}}(\Omega) \cong} \xlongequal{R\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{n}}^{k}\right)} .
\end{aligned}
$$

In particular, the dimensions of the cohomology groups (Dirichlet/Neumann fields) are independent of k and ε, μ and it holds

$$
\begin{aligned}
& d_{\Omega, \mathbb{S}, \Gamma_{t}}=\operatorname{dim}\left(N\left(\mathbb{T}^{\operatorname{Rot}}{ }_{\mathbb{S}, \Gamma_{t}}^{k}\right) / R\left({ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}^{k}\right)\right)=\operatorname{dim}\left(N\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}}^{k}\right) / R\left({ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{n}}^{k}\right)\right), \\
& d_{\Omega, \mathbb{T}, \Gamma_{t}}^{k}=\operatorname{dim}\left(N\left({ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}^{k}\right) / R\left({ }_{\mathbb{T}} \operatorname{Grad}_{\Gamma_{t}}^{k}\right)\right)=\operatorname{dim}\left(N\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{n}}^{k}\right) / R\left({ }_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{n}}^{k}\right)\right) .
\end{aligned}
$$

ACKNOWLEDGEMENTS

We thank the anonymous referee for careful reading and helpful suggestions to improve the quality of the paper. Open Access funding enabled and organized by Projekt DEAL.

CONFLICT OF INTEREST STATEMENT

This work does not have any conflicts of interest.

ORCID

Dirk Pauly (i) https://orcid.org/0000-0003-4155-7297

REFERENCES

1. D. Pauly and M. Schomburg, Hilbert complexes with mixed boundary conditions—Part 1: de Rham complex, Math. Methods Appl. Sci. 45 (2022), no. 5, 2465-2507.
2. D. Pauly and M. Schomburg, Hilbert complexes with mixed boundary conditions—Part 2: Elasticity complex, Math. Methods Appl. Sci. 45 (2022), no. 16, 8971-9005.
3. D. Pauly and W. Zulehner, The elasticity complex: Compact embeddings and regular decompositions, Appl. Anal. 2022 (2022), 1-29.
4. D. Pauly and W. Zulehner, The divDiv-complex and applications to biharmonic equations, Appl. Anal. 99 (2020), no. 9, 1579-1630.
5. D. Pauly and M. Waurick, The index of some mixed order Dirac-type operators and generalised Dirichlet-Neumann tensor fields, Math. Z. 301 (2022), no. 2, 1739-1819.
6. S. Bauer, D. Pauly, and M. Schomburg, The Maxwell compactness property in bounded weak Lipschitz domains with mixed boundary conditions, SIAM J. Math. Anal. 48 (2016), no. 4, 2912-2943.
7. S. Bauer, D. Pauly, and M. Schomburg, Weck's selection theorem: The Maxwell compactness property for bounded weak Lipschitz domains with mixed boundary conditions in arbitrary dimensions, Maxwell's Equations: Analysis and Numerics, Radon Ser. Comput. Appl. Math., De Gruyter 24 (2019), 77-104.

How to cite this article: D. Pauly and M. Schomburg, Hilbert complexes with mixed boundary conditions part 3: Biharmonic complexes, Math. Meth. Appl. Sci. (2023), 1-46, DOI 10.1002/mma.9437.

APPENDIX A: ELEMENTARY FORMULAS

From [3, 4] and [5], we have the following collection of formulas related to the elasticity and the biharmonic complex.
Lemma A. 1 ([5, Lemma 12.10]). Let u, v, w, and S belong to $C^{\infty}\left(\mathbb{R}^{3^{3}}\right)$.

- $(\operatorname{spn} v) w=v \times w=-(\operatorname{spn} w) v$ and $(\operatorname{spn} v)\left(\operatorname{spn}^{-1} S\right)=-S v$, if $\operatorname{sym} S=0$
- $\operatorname{sym} \operatorname{spn} v=0$ and $\operatorname{dev}(u \mathrm{id})=0$
- $\operatorname{trGrad} v=\operatorname{div} v$ and $2 \operatorname{skw} \operatorname{Grad} v=\operatorname{spn} \operatorname{rot} v$
- $\operatorname{Div}(u \mathrm{id})=\operatorname{grad} u$ and $\operatorname{Rot}(u \mathrm{id})=-\operatorname{spngrad} u$, in particular, $\operatorname{rot} \operatorname{Div}(u \mathrm{id})=0$ and $\operatorname{rotspn}{ }^{-1} \operatorname{Rot}(u \mathrm{id})=0$ and $\operatorname{sym} \operatorname{Rot}(u \mathrm{id})=0$
- Div $\operatorname{spn} v=-\operatorname{rot} v$ and Div skw $S=-\operatorname{rotspn}^{-1}$ skw S, in particular div Divskw $S=0$
- Rot $\operatorname{spn} v=(\operatorname{div} v) \operatorname{id}(\operatorname{Grad} v)^{\top}$ and Rotskw $S=\left(\operatorname{divspn}{ }^{-1}\right.$ skw $\left.S\right)$ id $-\left(\operatorname{Gradspn}^{-1} \text { skw } S\right)^{\top}$
- $\operatorname{dev} \operatorname{Rotspn} v=-(\operatorname{devGrad} v)^{\top}$
- -2 Rot $\operatorname{symGrad} v=2$ Rotskw $\operatorname{Grad} v=-(\operatorname{Grad} \operatorname{rot} v)^{\top}$
- $2 \mathrm{spn}^{-1} \operatorname{skw}$ Rot $S=\operatorname{Div} S^{\top}-\operatorname{gradtr} S=\operatorname{Div}(S-(\operatorname{tr} S) \mathrm{id})^{\top}$, in particular rotDiv $S^{\top}=2 \operatorname{rot}^{\top} \operatorname{sn}^{-1} \operatorname{skw} \operatorname{Rot} S$ and 2 skwRot $S=\operatorname{spn}$ Div S^{\top}, if $\operatorname{tr} S=0$
- $\operatorname{tr} \operatorname{Rot} S=2$ divspn $^{-1}$ skw S, in particular, $\operatorname{trRot} S=0$, if skw $S=0$, and $\operatorname{trRotsym} S=0$ and $\operatorname{trRotskw} S=\operatorname{trRot} S$
- $2\left(\text { Gradspn }^{-1} \text { skw } S\right)^{\top}=($ trRotskw $S)$ id -2 Rotskw S
- $3 \operatorname{Div}(\operatorname{dev} \operatorname{Grad} v)^{\top}=2 \operatorname{grad} \operatorname{div} v$
- 2 Rot $\operatorname{symGrad} v=-2 \operatorname{Rot} \operatorname{skw} \operatorname{Grad} v=-\operatorname{Rot} \operatorname{spn} \operatorname{rot} v=(\operatorname{Grad} \operatorname{rot} v)^{\top}$
- 2 Div symRot $S=-2$ Div skwRot $S=\operatorname{rot} \operatorname{Div} S^{\top}$
- $\operatorname{Rot}(\operatorname{Rot} \operatorname{sym} S)^{\top}=\operatorname{sym} \operatorname{Rot}(\operatorname{Rot} S)^{\top}$
- $\operatorname{Rot}(\operatorname{Rotskw} S)^{\top}=\operatorname{skwRot}(\operatorname{Rot} S)^{\top}$

All formulas extend also to distributions.

APPENDIX B: BIHARMONIC COMPLEX OPERATORS REVISITED

Let T denote the formal operator of matrix transposition, that is,

$$
\mathrm{T} S:=S^{\top},
$$

and define

$$
\text { spn }: \mathbb{R}^{3} \rightarrow \mathbb{R}_{\mathrm{skw}}^{3 \times 3} ;\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right] \mapsto\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right] .
$$

We recall the operators forming the de Rham complex (classical vector analysis) grad, rot, and div acting on functions and vector fields, respectively, as formal matrix operators

$$
\operatorname{grad}:=\left[\begin{array}{l}
\partial_{1} \\
\partial_{2} \\
\partial_{3}
\end{array}\right], \text { rot }:=\text { spngrad }=\left[\begin{array}{ccc}
0 & -\partial_{3} & \partial_{2} \\
\partial_{3} & 0 & -\partial_{1} \\
-\partial_{2} & \partial_{1} & 0
\end{array}\right] \text {, div }:=\operatorname{Tgrad}=\left[\begin{array}{lll}
\partial_{1} & \partial_{2} & \partial_{3}
\end{array}\right] .
$$

Moreover, we introduce their relatives from the vector de Rham complex acting on vector and tensor fields, respectively, as formal matrix operators

$$
\operatorname{Grad}:=\mathrm{T} \operatorname{grad} \mathrm{~T}, \operatorname{Rot}:=\mathrm{Trot} \mathrm{~T}, \mathrm{Div}:=\mathrm{T} \operatorname{div} \mathrm{~T} .
$$

In words, Grad, Rot, and Div act row-wise as the operators grad, rot, and div from the classical de Rham complex. Note that Grad v is just the Jacobian for a vector field v.

Let

$$
\iota_{\mathbb{S}}: \mathbb{R}_{s y m}^{3 \times 3} \rightarrow \mathbb{R}^{3 \times 3}, \quad \iota_{\mathbb{T}}: \mathbb{R}_{d e v}^{3 \times 3} \rightarrow \mathbb{R}^{3 \times 3}
$$

denote the canonical embedding of symmetric and deviatoric (trace free) (3×3)-matrices into the arbitrary (3×3)-matrices, respectively. Then the adjoints

$$
l_{\mathbb{S}}^{*}: \mathbb{R}^{3 \times 3} \rightarrow \mathbb{R}_{\text {sym }}^{3 \times 3}, \quad l_{\mathbb{T}}^{*}: \mathbb{R}^{3 \times 3} \rightarrow \mathbb{R}_{d e v}^{3 \times 3}
$$

are almost the projectors onto symmetric and deviatoric (3×3)-matrices, respectively; that is, the actual projectors are given by

$$
\operatorname{sym}:=\imath_{\mathbb{S}}^{*} l_{\mathbb{S}}^{*}: \mathbb{R}^{3 \times 3} \rightarrow \mathbb{R}^{3 \times 3} ; S \mapsto \frac{1}{2}\left(S+S^{\top}\right), \operatorname{dev}:=\iota_{\mathbb{T}} l_{\mathbb{T}}^{*}: \mathbb{R}^{3 \times 3} \rightarrow \mathbb{R}^{3 \times 3} ; T \mapsto T-\frac{1}{3}(\operatorname{tr} T) \mathrm{id} .
$$

We extend all the latter formal operators to $L^{2}(\Omega)$-tensor fields.
In the light of this, in the biharmonic complexes, we are dealing with the operators

$$
\begin{aligned}
& { }_{\mathbb{S}} \text { Gradgrad }:=l_{\mathbb{S}}^{*} \text { Gradgrad, } \quad{ }_{T} \operatorname{Rot}_{\mathbb{S}}:=l_{\mathbb{T}}^{*} \operatorname{Rot}_{\mathbb{S}_{\mathbb{S}}}, \quad \operatorname{Div}_{\mathbb{T}}:=\operatorname{Div} \imath_{\mathbb{T}}, \\
& \operatorname{divDiv}_{\mathbb{S}}:=\operatorname{divDiv} \iota_{\mathbb{S}}, \quad{ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}}:={l_{\mathbb{S}}^{*} \operatorname{Rot}_{\imath_{\mathbb{T}}}, \quad{ }_{\mathbb{T}} \mathrm{Grad}:=l_{\mathbb{T}}^{*} \mathrm{Grad} .}
\end{aligned}
$$

Note that

$$
\begin{aligned}
& \boldsymbol{u}_{\mathbb{S} \mathbb{S}} \text { Gradgrad }=\text { sym Gradgrad }=\text { Gradgrad }=\text { Tgrad Tgrad }, \\
& \iota_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}}=\operatorname{dev} \operatorname{Rot}_{\mathbb{S}}=\operatorname{Rot}_{l_{\mathbb{S}}}=\operatorname{Trot} \mathrm{t}_{\mathbb{S}}=: \operatorname{Rot}_{\mathbb{S}}, \\
& \operatorname{Div}_{\mathbb{T}}=\operatorname{Tdiv}_{\mathrm{l}_{\mathbb{T}}}, \\
& \iota_{\mathbb{T} \mathbb{T}} \operatorname{Grad}=\operatorname{devGrad}=\operatorname{dev} \mathrm{T} \operatorname{grad} \mathrm{~T} \text {, } \\
& \mathbb{S R o t}_{\mathbb{T}}=\operatorname{symRot}_{\mathbb{T}}=\operatorname{sym} \operatorname{Trot}_{\boldsymbol{T}_{\mathbb{T}}}, \\
& \operatorname{div}^{D_{i v}}{ }_{\mathbb{S}}=\operatorname{div} \operatorname{Tiv}^{\operatorname{div}} \boldsymbol{l}_{\mathbb{S}} ;
\end{aligned}
$$

in particular, on symmetric tensor fields, we have $\mathbb{T R o t}_{\mathbb{S}}=\operatorname{dev} \operatorname{Rot}=\operatorname{Rot}(\mathrm{cf}$. [3, Lemma A.1]). Using these formal operators, we introduce their maximal $L_{2}(\Omega)$-realisations, that is,

$$
\begin{aligned}
& { }_{\mathbb{S}} \text { Gradgrad : } D\left({ }_{\mathbb{S}} \text { Gradgrad }\right) \subset \mathrm{L}^{2}(\Omega) \rightarrow \mathrm{L}_{\mathbb{S}}^{2}(\Omega), \quad u \mapsto \text { Gradgrad } u, \\
& { }_{T} \operatorname{Rot}_{\mathbb{S}}: D\left({ }_{T} \operatorname{Rot}_{\mathbb{S}}\right) \subset \mathrm{L}_{\mathbb{S}}^{2}(\Omega) \rightarrow \mathrm{L}_{\mathbb{T}}^{2}(\Omega), \quad S \mapsto \operatorname{Rot} S, \\
& \operatorname{Div}_{\mathbb{T}}: D\left(\operatorname{Div}_{\mathbb{T}}\right) \subset \mathrm{L}_{\mathbb{T}}^{2}(\Omega) \rightarrow \mathrm{L}^{2}(\Omega), \quad T \mapsto \operatorname{Div} T, \\
& { }_{\mathbb{T}} \operatorname{Grad}: D\left({ }_{T} \operatorname{Grad}\right) \subset \mathrm{L}^{2}(\Omega) \rightarrow \mathrm{L}_{\mathbb{T}}^{2}(\Omega), \quad v \mapsto \operatorname{devGrad} v, \\
& { }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}}: D\left({ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}}\right) \subset \mathrm{L}_{\mathbb{T}}^{2}(\Omega) \rightarrow \mathrm{L}_{\mathbb{S}}^{2}(\Omega), \quad T \mapsto \operatorname{symRot} T, \\
& \operatorname{divDiv}_{\mathbb{S}}: D\left(\operatorname{divDiv}_{\mathbb{S}}\right) \subset{L_{\mathbb{S}}^{2}(\Omega) \rightarrow \mathrm{L}_{\mathbb{S}}^{2}(\Omega), \quad S \mapsto \operatorname{divDiv} S, ~}_{S}(\Omega)
\end{aligned}
$$

which are densely defined and closed (unbounded) linear operators and form the two (formally primal and dual) biharmonic complexes

$$
\begin{aligned}
& \cdots \xrightarrow{\cdots} L^{2}(\Omega) \xrightarrow{\text { Sradgrad }} L_{\mathbb{S}}^{2}(\Omega) \xrightarrow{{ }_{\mathbb{R}} \text { Rots }_{s}} L_{\mathbb{T}}^{2}(\Omega) \xrightarrow{\text { Dive }_{\mathbb{T}}} L^{2}(\Omega) \xrightarrow{\cdots} \cdots, \\
& \stackrel{\cdots}{\longleftarrow} \mathrm{L}^{2}(\Omega) \stackrel{\text { divDivs }}{\longleftarrow} \mathrm{L}_{\mathbb{S}}^{2}(\Omega) \stackrel{{ }_{\mathrm{S}} \operatorname{Rot}_{\mathbb{T}}}{\longleftarrow} \mathrm{L}_{\mathbb{T}}^{2}(\Omega) \stackrel{\mathbb{T}^{\mathrm{Grad}}}{\longleftarrow} \mathrm{~L}^{2}(\Omega) \stackrel{\cdots}{\longleftarrow} \cdots,
\end{aligned}
$$

and compare [4] for the complex properties.
Finally, the operators
from Section 2.1 are the restrictions of
${ }_{\mathbb{S}}$ Gradgrad, $_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}}, \operatorname{Div}_{\mathbb{T}},{ }_{\mathbb{T}}$ Grad, $_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}}, \operatorname{divDiv}_{\mathbb{S}}$
to their domains of definition

$$
D\left(\mathbb{S}^{\operatorname{Gradgrad}} \Gamma_{\Gamma_{t}}\right), D\left(\mathbb{T}^{\operatorname{Rot}}{\mathbb{S}, \Gamma_{t}}\right), D\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}\right), D\left({ }_{\mathbb{T}} \operatorname{Grad}_{\Gamma_{t}}\right), D\left({ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}\right), D\left(\operatorname{divDiv} \mathbb{S}_{\mathbb{S}}\right),
$$

which are the closures of $\mathrm{C}_{\Gamma_{t}}^{\infty}(\Omega), \mathrm{C}_{\mathbb{S}, \Gamma_{t}}^{\infty}(\Omega)$, and $\mathrm{C}_{\mathbb{T}, \Gamma_{t}}^{\infty}(\Omega)$ in the corresponding graph norms, respectively.

APPENDIX C: SOME PROOFS

Proof of Theorem 3.1. In [4, Theorem 3.10], we have shown the stated results for $\Gamma_{t}=\Gamma$ and $\Gamma_{t}=\varnothing$, which is also a crucial ingredient of this proof. Note that in these two special cases always "strong = weak" holds as $A_{n}^{* *}=\overline{A_{n}}=$ A_{n} and that this argument fails in the remaining cases of mixed boundary conditions. Therefore, let $\varnothing \subsetneq \Gamma_{t} \subsetneq \Gamma$. Moreover, recall the notion of an extendable domain from [1, Section 3]. In particular, $\hat{\Omega}$ and the extended domain $\tilde{\Omega}$ are topologically trivial.

- Let $S \in \mathbf{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{Rot}, \Omega)$. By definition, S can be extended through Γ_{t} by zero to the larger domain $\tilde{\Omega}$ yielding

$$
\tilde{S} \in \mathbf{H}_{\mathbb{S}, \varnothing, 0}^{k}(\operatorname{Rot}, \tilde{\Omega})=\mathbf{H}_{\mathbb{S}, 0}^{k}(\operatorname{Rot}, \tilde{\Omega})=H_{\mathbb{S}, 0}^{k}(\operatorname{Rot}, \tilde{\Omega})
$$

By [4, Theorem 3.10, Remark 3.11] and Stein's or Calderon's extension theorem—see also [1, Lemma 4.3, Lemma 4.4] for the fact that the respective potentials are already defined on the whole of \mathbb{R}^{3} —there exists $\tilde{u} \in H^{k+2}\left(\mathbb{R}^{3}\right)$ such that Gradgrad $\tilde{u}=\tilde{S}$ in $\tilde{\Omega}$. Since $\tilde{S}=0$ in $\hat{\Omega}, \tilde{u}$ must be a polynomial $p \in \mathbb{P}^{1}$ in $\hat{\Omega}$. Far outside of $\tilde{\Omega}$, we modify p by a cut-off function such that the resulting function \tilde{p} is compactly supported and $\left.\tilde{p}\right|_{\tilde{\Omega}}=p$. Note that \tilde{p} depends continuously on S by Poincaré's estimate. Then $u:=\tilde{u}-\tilde{p} \in \mathrm{H}^{k+2}\left(\mathbb{R}^{3}\right)$ with $\left.u\right|_{\hat{\Omega}}=0$. Hence, u belongs to $H_{\Gamma_{t}}^{k+2}(\Omega)$ and depends continuously on S. Moreover, u satisfies Gradgrad $u=\operatorname{Gradgrad} \tilde{u}=\tilde{S}$ in $\tilde{\Omega}$, in particular Gradgrad $u=S$ in Ω. We put $\mathcal{P}_{\mathbb{S}}^{k}$ Gradgrad, $\Gamma_{t} S:=u \in \mathrm{H}_{\Gamma_{t}}^{k+2}(\Omega)$.

- Let $T \in \mathbf{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{Div}, \Omega)$. By definition, T can be extended through Γ_{t} by zero to $\tilde{\Omega}$ giving

$$
\tilde{T} \in \mathbf{H}_{\mathbb{T}, \varnothing, 0}^{k}(\operatorname{Div}, \tilde{\Omega})=\mathbf{H}_{\mathbb{T}, 0}^{k}(\operatorname{Div}, \tilde{\Omega})=H_{\mathbb{T}, 0}^{k}(\operatorname{Div}, \tilde{\Omega})
$$

By [4, Theorem 3.10], there exists $\tilde{S} \in \mathrm{H}_{\mathbb{S}}^{k+1}\left(\mathbb{R}^{3}\right)$ such that $\operatorname{Rot} \tilde{S}=\tilde{T}$ in $\tilde{\Omega}$. Since $\tilde{T}=0$ in $\hat{\Omega}$, that is, $\left.\tilde{S}\right|_{\hat{\Omega}} \in$ $H_{\mathbb{S}, 0}^{k+1}(\operatorname{Rot}, \hat{\Omega})$, we get again by [4, Theorem 3.10] (or the first part of this proof) $\tilde{u} \in H^{k+3}\left(\mathbb{R}^{3}\right)$ such that Gradgrad $\tilde{u}=$ \tilde{S} in $\hat{\Omega}$. Then $S:=\tilde{S}$ - Gradgrad \tilde{u} belongs to $H_{\mathbb{S}}^{k+1}\left(\mathbb{R}^{3}\right)$ and satisfies $\left.S\right|_{\hat{\Omega}}=0$. Thus, $S \in H_{\mathbb{S}, \Gamma_{t}}^{k+1}(\Omega)$ and depends continuously on T. Furthermore, Rot $S=\operatorname{Rot} \tilde{S}=\tilde{T}$ in $\tilde{\Omega}$, in particular Rot $S=T$ in Ω. We $\operatorname{set}^{\mathcal{P}_{\mathbb{T}} \mathrm{Rot}_{\S}, \Gamma_{t}} T:=S \in$ $H_{\mathbb{S}, \Gamma_{t}}^{k+1}(\Omega)$.

- Let $v \in \mathrm{H}_{\Gamma_{t}}^{k}(\Omega)$. By definition, v can be extended through Γ_{t} by zero to $\tilde{\Omega}$ defining $\tilde{v} \in \mathrm{H}^{k}(\tilde{\Omega})$. Theorem 3.10 of [4] yields $\tilde{T} \in \mathrm{H}_{\mathbb{T}}^{k+1}\left(\mathbb{R}^{3}\right)$ such that $\operatorname{Div} \tilde{T}=\tilde{v}$ in $\tilde{\Omega}$. As $\tilde{v}=0$ in $\hat{\Omega}$, that is, $\left.\tilde{T}\right|_{\hat{\Omega}} \in \mathrm{H}_{\mathbb{T}, 0}^{k+1}(\operatorname{Div}, \hat{\Omega})$, we get again by [4, Theorem 3.10] (or the second part of this proof) $\tilde{S} \in \mathrm{H}_{\mathbb{S}}^{k+2}\left(\mathbb{R}^{3}\right)$ such that Rot $\tilde{S}=\tilde{T}$ holds in $\hat{\Omega}$. Then $T:=\tilde{T}-\operatorname{Rot} \tilde{S}$ belongs to $\mathrm{H}_{\mathbb{T}}^{k+1}\left(\mathbb{R}^{3}\right)$ with $\left.T\right|_{\hat{\Omega}}=0$. Hence, T belongs to $\mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega)$ and depends continuously on v. Furthermore, $\operatorname{Div} T=\operatorname{Div} \tilde{T}=\tilde{v}$ in $\tilde{\Omega}$, in particular Div $T=v$ in Ω. Finally, we define $\mathcal{P}_{\operatorname{Div}_{\mathbb{T}}, \Gamma_{t}}^{k} v:=T \in \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega)$.
- Let $T \in \mathbf{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{symRot}, \Omega)$. By definition, T can be extended through Γ_{t} by zero to $\tilde{\Omega}$ yielding

$$
\tilde{T} \in \mathbf{H}_{\mathbb{T}, \varnothing, 0}^{k}(\operatorname{symRot}, \tilde{\Omega})=\mathbf{H}_{\mathbb{T}, 0}^{k}(\operatorname{symRot}, \tilde{\Omega})=\mathrm{H}_{\mathbb{T}, 0}^{k}(\operatorname{symRot}, \tilde{\Omega})
$$

By [4, Theorem 3.10], there exists $\tilde{v} \in \mathrm{H}^{k+1}\left(\mathbb{R}^{3}\right)$ such that devGrad $\tilde{v}=\tilde{T}$ in $\tilde{\Omega}$. Since $\tilde{T}=0$ in $\hat{\Omega}, \tilde{v}$ must be a Raviart-Thomas field $r \in \mathbb{R} \mathbb{T}$ in $\hat{\Omega}$. Far outside of $\tilde{\Omega}$, we modify r by a cut-off function such that the resulting vector field \tilde{r} is compactly supported and $\left.\tilde{r}\right|_{\tilde{\Omega}}=r$. Then $v:=\tilde{v}-\tilde{r} \in \mathrm{H}^{k+1}\left(\mathbb{R}^{3}\right)$ with $\left.v\right|_{\hat{\Omega}}=0$. Hence, v belongs to $H_{\Gamma_{t}}^{k+1}(\Omega)$ and depends continuously on T. Moreover, v satisfies devGrad $v=\operatorname{devGrad} \tilde{v}=\tilde{T}$ in $\tilde{\Omega}$, in particular $\operatorname{devGrad} v=T$ in Ω. We put $\mathcal{P}_{\mathbb{T}}^{k}{\operatorname{Grad}, \Gamma_{t}} T:=v \in \mathrm{H}_{\Gamma_{t}}^{k+1}(\Omega)$.

- Let $S \in \mathbf{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{divDiv}, \Omega)$. By definition, S can be extended through Γ_{t} by zero to $\tilde{\Omega}$ giving

$$
\tilde{S} \in \mathbf{H}_{\mathbb{S}, \varnothing, 0}^{k}(\operatorname{divDiv}, \tilde{\Omega})=\mathbf{H}_{\mathbb{S}, 0}^{k}(\operatorname{divDiv}, \tilde{\Omega})=H_{\mathbb{S}, 0}^{k}(\operatorname{divDiv}, \tilde{\Omega})
$$

By [4, Theorem 3.10], there exists $\tilde{T} \in \mathrm{H}_{\mathbb{T}}^{k+1}\left(\mathbb{R}^{3}\right)$ such that symRot $\tilde{T}=\tilde{S}$ in $\tilde{\Omega}$. Since $\tilde{S}=0$ in $\hat{\Omega}$, that is, $\left.\tilde{T}\right|_{\hat{\Omega}} \in$ $H_{\mathbb{T}, 0}^{k+1}(\operatorname{symRot}, \hat{\Omega})$, we get again by [4, Theorem 3.10] (or the fourth part of this proof) $\tilde{v} \in H^{k+2}\left(\mathbb{R}^{3}\right)$ such that $\operatorname{devGrad} \tilde{v}=\tilde{T}$ in $\hat{\Omega}$. Then $T:=\tilde{T}-\operatorname{devGrad} \tilde{v}$ belongs to $H_{\mathbb{T}}^{k+1}\left(\mathbb{R}^{3}\right)$ and satisfies $\left.T\right|_{\hat{\Omega}}=0$. Thus, $T \in H_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega)$ and
depends continuously on S. Furthermore, symRot $T=\operatorname{symRot} \tilde{T}=\tilde{S}$ in $\tilde{\Omega}$, in particular symRot $T=S$ in Ω. We set $\mathcal{P}_{{ }_{\mathbf{s}} \text { Rot }_{\mathbb{T}}, \Gamma_{t}}^{k} S:=T \in \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega)$.

- Let $u \in H_{\Gamma_{t}}^{k}(\Omega)$. By definition, u can be extended through Γ_{t} by zero to $\tilde{\Omega}$ defining $\tilde{u} \in H^{k}(\tilde{\Omega})$. Theorem 3.10 of [4] yields $\tilde{S} \in \mathrm{H}_{\mathbb{S}}^{k+2}\left(\mathbb{R}^{3}\right)$ such that $\operatorname{divDiv} \tilde{S}=\tilde{u}$ in $\tilde{\Omega}$. As $\tilde{u}=0$ in $\hat{\Omega}$, that is, $\left.\tilde{S}\right|_{\hat{\Omega}} \in H_{\mathbb{S}, 0}^{k+2}(\operatorname{divDiv}, \hat{\Omega})$, we get again by [4, Theorem 3.10] (or the fifth part of this proof) $\tilde{T} \in \mathrm{H}_{\mathbb{T}}^{k+3}\left(\mathbb{R}^{3}\right)$ such that symRot $\tilde{T}=\tilde{S}$ holds in $\hat{\Omega}$. Then $S:=\tilde{S}-\operatorname{symRot} \tilde{T}$ belongs to $H_{\mathbb{S}}^{k+2}\left(\mathbb{R}^{3}\right)$ with $\left.S\right|_{\hat{\Omega}}=0$. Hence, S belongs to $H_{\mathbb{S}, \Gamma_{t}}^{k+2}(\Omega)$ and depends continuously on u. Furthermore, $\operatorname{divDiv} S=\operatorname{divDiv} \tilde{S}=\tilde{u}$ in $\tilde{\Omega}$, in particular $\operatorname{divDiv} S=u$ in Ω. Finally, we define $\mathcal{P}_{\text {divDiv }_{\mathbb{S}}, \Gamma_{t}}^{k} u:=S \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+2}(\Omega)$.
The assertion about the compact supports is trivial.

Proof of Lemma 3.10 and Corollary 3.11. According to [6, Section 4.2] (cf. [7, Section 4.2], [1, Lemma 3.1], [2], or [3]), let $\left(U_{\ell}, \varphi_{\ell}\right)$ be a partition of unity for Ω, such that

$$
\Omega=\bigcup_{\ell=-L}^{L} \Omega_{\ell}, \quad \Omega_{\ell}:=\Omega \cap U_{\ell}, \quad \varphi_{\ell} \in \mathrm{C}_{\partial U_{\ell}}^{\infty}\left(U_{\ell}\right)
$$

and such that ($\Omega_{\ell}, \widehat{\Gamma}_{t, \ell}$) are extendable bounded strong Lipschitz pairs. Recall

$$
\Sigma_{\ell}:=\partial \Omega_{\ell} \backslash \Gamma, \quad \Gamma_{t, \ell}:=\Gamma_{t} \cap U_{\ell}, \quad \widehat{\Gamma}_{t, \ell}:=\operatorname{int}\left(\Gamma_{t, \ell} \cup \bar{\Sigma}_{\ell}\right)
$$

- Let $k \geq 0$ and let $S \in \mathbf{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega)$. Then by definition, $\left.S\right|_{\Omega_{\ell}} \in \mathbf{H}_{\mathbb{S}, \Gamma_{t, \ell}}^{k}$ (Rot, $\left.\Omega_{\ell}\right)$ and we decompose by Corollary 3.4

$$
\left.S\right|_{\Omega_{\ell}}=S_{\ell, 1}+\text { Gradgrad } u_{\ell, 0}
$$

with $S_{\ell, 1}:=\left.\mathcal{Q}_{\mathbb{T} \operatorname{Rot}_{s}, \Gamma_{t, \ell}}^{k, 1} S\right|_{\Omega_{\ell}} \in \mathrm{H}_{\mathbb{S}, \Gamma_{t, \ell}}^{k+1}\left(\Omega_{\ell}\right)$ and $u_{\ell, 0}:=\left.\mathcal{Q}_{\mathbb{T} \operatorname{Rot}_{s}, \Gamma_{t, \ell}}^{k, 0} S\right|_{\Omega_{\ell}} \in \mathrm{H}_{\Gamma_{t, \ell}}^{k+2}\left(\Omega_{\ell}\right)$. Lemma 3.9 yields

$$
\begin{aligned}
\left.\varphi_{\ell} S\right|_{\Omega_{\ell}}= & \varphi_{\ell} S_{\ell, 1}+\varphi_{\ell} \operatorname{Gradgrad} u_{\ell, 0} \\
= & \overbrace{\varphi_{\ell} S_{\ell, 1}-2 \operatorname{sym}\left(\left(\operatorname{grad} \varphi_{\ell}\right)\left(\operatorname{grad} u_{\ell, 0}\right)^{\top}\right)-u_{\ell, 0} \operatorname{Gradgrad} \varphi_{\ell}}^{=: s_{\ell}} \\
& +\operatorname{Gradgrad} \underbrace{\varphi_{\ell} u_{\ell, 0}}_{=: u_{\ell}})
\end{aligned}
$$

with $S_{\ell} \in \mathrm{H}_{\mathbb{S}, \hat{\Gamma}_{t, \ell}}^{k+1}\left(\Omega_{\ell}\right)$ and $u_{\ell} \in \mathrm{H}_{\hat{\Gamma}_{t, \ell}}^{k+2}\left(\Omega_{\ell}\right)$. Extending S_{ℓ} and u_{ℓ} by zero to Ω gives tensor fields $\tilde{S}_{\ell} \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+1}(\Omega)$ and $\tilde{u}_{\ell} \in H_{\Gamma_{t}}^{k+2}(\Omega)$ as well as

$$
\begin{aligned}
S=\left.\sum_{\ell=-L}^{L} \varphi_{\ell} S\right|_{\Omega_{\ell}}= & \sum_{\ell=-L}^{L} \tilde{S}_{\ell}+\operatorname{Gradgrad} \sum_{\ell=-L}^{L} \tilde{u}_{\ell} \\
& \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+1}(\Omega)+\operatorname{Gradgrad} \mathrm{H}_{\Gamma_{t}}^{k+2}(\Omega) \subset \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega)
\end{aligned}
$$

As all operations have been linear and continuous, we set

$$
\mathcal{Q}_{\mathbb{T} \operatorname{Rot}_{\mathbb{S}}, \Gamma_{t}}^{k, 1} S:=\sum_{\ell=-L}^{L} \tilde{S}_{\ell} \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+1}(\Omega), \quad \mathcal{Q}_{\mathbb{T} \operatorname{Rot}_{\mathbb{S}}, \Gamma_{t}}^{k, 0} S:=\sum_{\ell=-L}^{L} \tilde{u}_{\ell} \in \mathrm{H}_{\Gamma_{t}}^{k+2}(\Omega) .
$$

- Let $k \geq 0$ and let $T \in \mathbf{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{Div}, \Omega)$. Then by definition, $\left.T\right|_{\Omega_{\ell}} \in \mathbf{H}_{\mathbb{T}, \Gamma_{t, \ell}}^{k}\left(\operatorname{Div}, \Omega_{\ell}\right)$ and we decompose by Corollary 3.4

$$
\left.T\right|_{\Omega_{\ell}}=T_{\ell, 1}+\operatorname{Rot} S_{\ell, 0}
$$

with $T_{\ell, 1}:=\left.\mathcal{Q}_{\mathrm{Div}_{\mathbb{T}}, \Gamma_{t, \ell}}^{k, 1} T\right|_{\Omega_{\ell}} \in \mathrm{H}_{\mathbb{T}, \Gamma_{t, \ell}}^{k+1}\left(\Omega_{\ell}\right)$ and $S_{\ell, 0}:=\left.\mathcal{Q}_{\mathrm{Div}_{\mathbb{T}}, \Gamma_{t, \ell}}^{k, 0} T\right|_{\Omega_{\ell}} \in \mathrm{H}_{\mathrm{s}, \Gamma_{t, \ell}}^{k+1}\left(\Omega_{\ell}\right)$. Lemma 3.9 yields

$$
\left.\varphi_{\ell} T\right|_{\Omega_{\ell}}=\varphi_{\ell} T_{\ell, 1}+\varphi_{\ell} \operatorname{Rot} S_{\ell, 0}=\underbrace{\varphi_{\ell} T_{\ell, 1}+S_{\ell, 0} \operatorname{spngrad} \varphi_{\ell}}_{=: T_{\ell}}+\operatorname{Rot}(\underbrace{\left(\varphi_{\ell} S_{\ell, 0}\right)}_{=: S_{\ell}}
$$

with $T_{\ell} \in \mathrm{H}_{\mathbb{T}, \hat{\Gamma}_{t, \ell}}^{k+1}\left(\Omega_{\ell}\right)$ and $S_{\ell} \in \mathrm{H}_{\mathbb{S}, \hat{\Gamma}_{t, \ell}}^{k+1}\left(\Omega_{\ell}\right)$. Extending T_{ℓ} and S_{ℓ} by zero to Ω gives tensor fields $\tilde{T}_{\ell} \in \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega)$ and $\tilde{S}_{\ell} \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+1}(\Omega)$ as well as

$$
\begin{aligned}
T=\left.\sum_{\ell=-L}^{L} \varphi_{\ell} T\right|_{\Omega_{\ell}}= & \sum_{\ell=-L}^{L} \tilde{T}_{\ell}+\operatorname{Rot} \sum_{\ell=-L}^{L} \tilde{S}_{\ell} \\
& \in \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega)+\operatorname{Rot} \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+1}(\Omega) \subset \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{Div}, \Omega) .
\end{aligned}
$$

As all operations have been linear and continuous, we set

$$
\mathcal{Q}_{\mathrm{Div}_{\mathbb{T}}, \Gamma_{t}}^{k, 1} T:=\sum_{\ell=-L}^{L} \tilde{T}_{\ell} \in \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega), \quad \mathcal{Q}_{\mathrm{Div}_{\mathbb{T}}, \Gamma_{t}}^{k, 0} T:=\sum_{\ell=-L}^{L} \tilde{S}_{\ell} \in \mathrm{H}_{\mathrm{S}, \Gamma_{t}}^{k+1}(\Omega) .
$$

- Let $k \geq 0$ and let $T \in \mathbf{H}_{\mathbb{T}, \Gamma_{t}}^{k}$ (symRot, Ω). Then by definition, $\left.T\right|_{\Omega_{\ell}} \in \mathbf{H}_{\mathbb{T}, \Gamma_{t, t}}^{k}$ (symRot, Ω_{ℓ}) and we decompose by Corollary 3.4

$$
\left.T\right|_{\Omega_{\ell}}=T_{\ell, 1}+\operatorname{devGrad} v_{\ell, 0}
$$

with $T_{\ell, 1}:=\left.\mathcal{Q}_{\mathrm{sRot}_{\mathbb{T}}, \Gamma_{t, \ell}}^{k, 1} T\right|_{\Omega_{\ell}} \in \mathrm{H}_{\mathbb{T}, \Gamma_{t, \ell}}^{k+1}\left(\Omega_{\ell}\right)$ and $v_{\ell, 0}:=\left.\mathcal{Q}_{\mathrm{s} \mathrm{Rot}_{\mathrm{T}}, \Gamma_{t, \ell}}^{k, 0} T\right|_{\Omega_{\ell}} \in \mathrm{H}_{\Gamma_{t, \ell}}^{k+1}\left(\Omega_{\ell}\right)$. Lemma 3.9 yields

$$
\begin{aligned}
\left.\varphi_{\ell} T\right|_{\Omega_{\ell}} & =\varphi_{\ell} T_{\ell, 1}+\varphi_{\ell} \operatorname{devGrad} v_{\ell, 0} \\
& =\underbrace{\varphi_{\ell} T_{\ell, 1}+\operatorname{dev}\left(v_{\ell, 0}\left(\operatorname{grad} \varphi_{\ell}\right)^{\top}\right)}_{=: T_{\ell}}+\operatorname{devGrad}(\underbrace{\left.\varphi_{\ell} v_{\ell, 0}\right)}_{=: v_{\ell}}
\end{aligned}
$$

with $T_{\ell} \in \mathrm{H}_{\mathbb{T}, \hat{\Gamma}_{t, \ell}}^{k+1}\left(\Omega_{\ell}\right)$ and $v_{\ell} \in \mathrm{H}_{\hat{\Gamma}_{t, \ell}}^{k+1}\left(\Omega_{\ell}\right)$. Extending T_{ℓ} and v_{ℓ} by zero to Ω gives tensor fields $\tilde{T}_{\ell} \in \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega)$ and $\tilde{v}_{t} \in \mathrm{H}_{\Gamma_{t}}^{k+1}(\Omega)$ as well as

$$
\begin{aligned}
T=\left.\sum_{\ell=-L}^{L} \varphi_{\ell} T\right|_{\Omega_{\ell}}= & \sum_{\ell=-L}^{L} \tilde{T}_{\ell}+\operatorname{devGrad} \sum_{\ell=-L}^{L} \tilde{v}_{\ell} \\
& \in \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega)+\operatorname{devGrad} \mathrm{H}_{\Gamma_{t}}^{k+1}(\Omega) \subset \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{symRot}, \Omega) .
\end{aligned}
$$

As all operations have been linear and continuous, we set

$$
\mathcal{Q}_{\mathrm{sRot}}^{\mathbb{T}}, \Gamma_{t}^{k, 1} T:=\sum_{\ell=-L}^{L} \tilde{T}_{\ell} \in \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega), \quad \mathcal{Q}_{\mathrm{SRot}_{\mathbb{T}}, \Gamma_{t}}^{k, 0} T:=\sum_{\ell=-L}^{L} \tilde{\mathrm{v}}_{\ell} \in \mathrm{H}_{\Gamma_{t}}^{k+1}(\Omega) .
$$

- Let $k \geq 1$ and let $S \in \mathbf{H}_{\mathrm{S}, \Gamma_{t}}^{k, k-1}(\operatorname{divDiv}, \Omega)$. Then by definition, $\left.S\right|_{\Omega_{\ell}} \in \mathbf{H}_{\mathrm{S}, \Gamma_{t, \ell}}^{k, k-1}\left(\operatorname{divDiv}, \Omega_{\ell}\right)$ and we decompose by Corollary 3.7

$$
\left.S\right|_{\Omega_{\ell}}=S_{\ell, 1}+\operatorname{symRot} T_{\ell, 0}
$$

with $S_{\ell, 1}:=\left.\mathcal{Q}_{\text {divDiv }_{s}, \Gamma_{t, \ell}}^{k, k-1,1} S\right|_{\Omega_{\ell}} \in \mathrm{H}_{\mathbb{S}, \Gamma_{t, \ell}}^{k+1}\left(\Omega_{\ell}\right)$ and $T_{\ell, 0}:=\left.\mathcal{Q}_{\mathrm{divDivi}_{\mathrm{S}}, \Gamma_{t, \ell}}^{k, k-1,0} S\right|_{\Omega_{\ell}} \in \mathrm{H}_{\mathbb{T}, \Gamma_{t, \ell}}^{k+1}\left(\Omega_{\ell}\right)$. Thus,

$$
\begin{align*}
\left.\varphi_{\ell} S\right|_{\Omega_{\ell}} & =\varphi_{\ell} S_{\ell, 1}+\varphi_{\ell} \operatorname{symRot} T_{\ell, 0} \\
& =\underbrace{\varphi_{\ell} S_{\ell, 1}+\operatorname{sym}\left(T_{\ell, 0} \operatorname{spngrad} \varphi_{\ell}\right)}_{=: S_{\ell}}+\operatorname{symRot}(\underbrace{\left.\varphi_{\ell} T_{\ell, 0}\right)}_{=: T_{\ell}} \tag{C1}
\end{align*}
$$

with $S_{\ell} \in \mathrm{H}_{\mathbb{S}, \Gamma_{t, \ell}}^{k+1}\left(\Omega_{\ell}\right)$ and $T_{\ell} \in \mathrm{H}_{\mathbb{T}, \hat{\Gamma}_{t, \ell}}^{k+1}\left(\Omega_{\ell}\right)$. Extending S_{ℓ} and T_{ℓ} by zero to Ω gives fields $\tilde{S}_{\ell} \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+1}(\Omega)$ and $\tilde{T}_{\ell} \in \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega)$ as well as

$$
\begin{aligned}
S=\left.\sum_{\ell=-L}^{L} \varphi_{\ell} S\right|_{\Omega_{\ell}}= & \sum_{\ell=-L}^{L} \tilde{S}_{\ell}+\operatorname{symRot} \sum_{\ell=-L}^{L} \tilde{T}_{\ell} \\
& \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+1}(\Omega)+\operatorname{symRot} \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega) \subset \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k, k-1}(\operatorname{divDiv}, \Omega) .
\end{aligned}
$$

As all operations have been linear and continuous, we set

$$
\mathcal{Q}_{\mathrm{divDiv}_{s}, \Gamma_{t}}^{k, k-1,1} S:=\sum_{\ell=-L}^{L} \tilde{S}_{\ell} \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+1}(\Omega), \quad \mathcal{Q}_{\mathrm{divDiv}_{\mathbb{S}}, \Gamma_{t}}^{k, k-1,0} S:=\sum_{\ell=-L}^{L} \tilde{T}_{\ell} \in \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega) .
$$

- Let $k \geq 0$ and let $S \in \mathbf{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{divDiv}, \Omega)$. Then by definition, $\left.S\right|_{\Omega_{\ell}} \in \mathbf{H}_{\mathbb{S}, \Gamma_{t, t}}^{k}$ (divDiv, $\left.\Omega_{\ell}\right)$ and we decompose by Corollary 3.4

$$
\left.S\right|_{\Omega_{\ell}}=S_{\ell, 1}+\operatorname{symRot} T_{\ell, 0}
$$

with $S_{\ell, 1}:=\left.\mathcal{Q}_{\text {divDiv }_{s}, \Gamma_{t, \ell}}^{k, k-1,1} S\right|_{\Omega_{\ell}} \in \mathrm{H}_{\mathbb{S}, \Gamma_{t, \ell}}^{k+2}\left(\Omega_{\ell}\right)$ and $T_{\ell, 0}:=\left.\mathcal{Q}_{\text {divDivs }_{s}, \Gamma_{t, \ell}}^{k, k-1,0} S\right|_{\Omega_{\ell}} \in \mathrm{H}_{\mathbb{T}, \Gamma_{t, \ell}}^{k+1}\left(\Omega_{\ell}\right)$. Now we follow the arguments from (C1). Note that still only $S_{\ell} \in \mathrm{H}_{\mathbb{S}, \hat{\Gamma}_{t, \ell}}^{k+1}\left(\Omega_{\ell}\right)$ holds, that is, we have lost one order of regularity for S_{ℓ}. Nevertheless, we get

$$
S \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+1}(\Omega)+\operatorname{symRot} \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega),
$$

and all operations have been linear and continuous. But this implies by the previous step

$$
S \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}, k}^{k+1, k}(\operatorname{divDiv}, \Omega)+\operatorname{symRot} \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega) .
$$

Again, by the previous step, we obtain

$$
\begin{aligned}
& S \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+2}(\Omega)+\operatorname{symRot} \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+2}(\Omega)+\operatorname{symRot} \mathrm{H}_{\mathbb{T}, \Gamma_{\Lambda}}^{k+1}(\Omega) \\
& =\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+}(\Omega)+\operatorname{symRot} \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+}(\Omega) \subset \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{divDiv}, \Omega),
\end{aligned}
$$

and all operations have been linear and continuous.
It remains to prove the assertions on the operators devGrad and Gradgrad.

- Let $v \in \mathbf{H}_{\Gamma_{t}}^{k}$ (devGrad, Ω). Then by Corollary 3.6,

$$
\varphi_{\ell} v \in \mathbf{H}_{\hat{\Gamma}_{t, t}}^{k}\left(\operatorname{devGrad}, \Omega_{\ell}\right)=H_{\hat{\Gamma}_{t, t}}^{k}\left(\operatorname{devGrad}, \Omega_{\ell}\right)=H_{\hat{\Gamma}_{t, \ell}}^{k+1}\left(\Omega_{\ell}\right) .
$$

Extending $\varphi_{\ell} \nu$ by zero to Ω yields $v_{\ell} \in \mathrm{H}_{\Gamma_{t}}^{k+1}(\Omega)$ and $v=\sum_{\ell} \varphi_{\ell} \nu=\sum_{\ell} \nu_{\ell} \in \mathrm{H}_{\Gamma_{t}}^{k+1}(\Omega)$.

- Let $u \in \mathbf{H}_{\Gamma_{t}}^{k}$ (Gradgrad, Ω). Then by Corollary 3.6,

$$
\varphi_{\ell} u \in \mathbf{H}_{\hat{\Gamma}_{t, \ell}}^{k}\left(\text { Gradgrad, } \Omega_{\ell}\right)=\mathrm{H}_{\hat{\Gamma}_{t, \ell}}^{k}\left(\text { Gradgrad, } \Omega_{\ell}\right)=\mathrm{H}_{\hat{\Gamma}_{t, \ell}}^{k+2}\left(\Omega_{\ell}\right) .
$$

Extending $\varphi_{\ell} u$ by zero to Ω yields $u_{\ell} \in \mathrm{H}_{\Gamma_{t}}^{k+2}(\Omega)$ and $u=\sum_{\ell} \varphi_{\ell} u=\sum_{\ell} u_{\ell} \in \mathrm{H}_{\Gamma_{t}}^{k+2}(\Omega)$.

- Let $u \in \mathbf{H}_{\Gamma_{t}}^{k, k-1}$ (Gradgrad, Ω). Then $\varphi_{\ell} u \in \mathbf{H}_{\hat{\Gamma}_{t, \ell}}^{k, k-1}\left(\operatorname{Gradgrad}, \Omega_{\ell}\right)=H_{\hat{\Gamma}_{t, \ell}}^{k+1}\left(\Omega_{\ell}\right)$ by (7). Extending $\varphi_{\ell} u$ by zero to Ω yields $u_{\ell} \in \mathrm{H}_{\Gamma_{t}}^{k+1}(\Omega)$ and $u=\sum_{\ell} \varphi_{\ell} u=\sum_{\ell} u_{\ell} \in \mathrm{H}_{\Gamma_{t}}^{k+1}(\Omega)$.
The proof is finished.

Proof of Theorem 3.12. Note that these types of compact embeddings are independent of ε and μ (cf. [5, Lemma 5.1]). So, let $\varepsilon=\mu=$ id. Lemma 3.10 (for $k=0$) yields, for example, the bounded regular decomposition

$$
D\left(A_{1}\right)=\mathrm{H}_{\mathrm{S}, \Gamma_{t}}(\operatorname{Rot}, \Omega)=\mathrm{H}_{\mathrm{S}, \Gamma_{t}}^{1}(\Omega)+\operatorname{Gradgrad} \mathrm{H}_{\Gamma_{t}}^{2}(\Omega)
$$

with $\mathrm{H}_{1}^{+}=\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{1}(\Omega)$ and $\mathrm{H}_{0}^{+}=\mathrm{H}_{\Gamma_{t}}^{2}(\Omega)$ and $\mathrm{H}_{1}=\mathrm{L}_{\mathbb{S}}^{2}(\Omega), \mathrm{H}_{0}=\mathrm{L}^{2}(\Omega)$. Rellich's selection theorem and [3, Corollary 2.12] (cf. [1, Lemma 2.22]) yield that $D\left(A_{1}\right) \cap D\left(A_{0}^{*}\right) \hookrightarrow \mathrm{H}_{1}$ is compact. Analogously, we show the compactness of $D\left(A_{2}\right) \cap$ $D\left(A_{1}^{*}\right) \hookrightarrow \mathrm{H}_{2}$ using, for example, the bounded regular decomposition $D\left(A_{2}\right)=\mathrm{H}_{\mathbb{T}, \Gamma_{t}}(\operatorname{Div}, \Omega)=\mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{1}(\Omega)+\operatorname{Rot} \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{1}(\Omega)$.

Proof of Theorem 3.16. We only show the representations for $R\left({ }_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}^{k}\right)$ and $R\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k}\right)$. The others follow analogously.

- By Lemma 3.10 and Corollary 3.11, we have

$$
\begin{equation*}
R\left(\mathbb{T}^{\operatorname{Rot}}{ }_{\mathbb{S}, \Gamma_{t}}^{k}\right)=\operatorname{Rot} H_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega)=\operatorname{Rot} H_{\mathbb{S}, \Gamma_{t}}^{k+1}(\Omega) \tag{C2}
\end{equation*}
$$

Moreover,

$$
\begin{aligned}
R\left(\mathbb{T}^{\operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}^{k}}\right) & \subset \mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{Div}, \Omega) \cap \mathcal{H}_{\mathbb{T}, \Gamma_{n}, \Gamma_{t}, \mu}(\Omega)^{\perp_{\mathrm{L}}^{2}(\Omega)} \\
& =\mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\Omega) \cap \mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}(\operatorname{Div}, \Omega) \cap \mathcal{H}_{\mathbb{T}, \Gamma_{n}, \Gamma_{t}, \mu}(\Omega)^{\perp_{\mathbb{T}}(\Omega)}=\mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\Omega) \cap R\left({ }_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}\right)
\end{aligned}
$$

since by Theorem 3.15 (iv)

$$
\begin{equation*}
R\left(\mathbb{R o t}_{S, \Gamma_{t}}\right)=\mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}(\operatorname{Div}, \Omega) \cap \mathcal{H}_{\mathbb{T}, \Gamma_{n}, \Gamma_{t}, \mu}(\Omega)^{\perp_{L_{\mathbb{T}}(\Omega)}} \tag{C3}
\end{equation*}
$$

Thus, it remains to show

$$
\mathcal{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{Div}, \Omega) \cap \mathcal{H}_{\mathbb{T}, \Gamma_{n}, \Gamma_{t}, \mu}(\Omega)^{\perp_{\mathrm{L}, ~}^{(\Omega)}(\Omega)} \subset \operatorname{Rot} H_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega), \quad k \geq 1
$$

For this, let $k \geq 1$ and $T \in \mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{Div}, \Omega) \cap \mathcal{H}_{\mathbb{T}, \Gamma_{n}, \Gamma_{t}, \mu}(\Omega)^{\perp_{L_{\mathbb{T}}(\Omega)}}$. By (C3) and (C2), we have

$$
T \in R\left({ }_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}\right)=\operatorname{Rot} \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{1}(\Omega),
$$

and hence there is $S_{1} \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{1}(\Omega)$ such that Rot $S_{1}=T$. We see $S_{1} \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{1}$ (Rot, $\left.\Omega\right)$. Hence, we are done for $k=1$. For $k \geq 2$, we have $T \in \operatorname{Rot} \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{1}(\operatorname{Rot}, \Omega)=\operatorname{Rot} \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{2}(\Omega)$ by $(\mathrm{C} 2)$. Thus there is $S_{2} \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{2}(\Omega)$ such that $\operatorname{Rot} S_{2}=T$. Then $S_{2} \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{2}(\operatorname{Rot}, \Omega)$, and we are done for $k=2$. After finitely many steps, we observe that T belongs to $\operatorname{Rot} H_{S, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega)$.

- By Lemma 3.10 and Corollary 3.11, we have

$$
\begin{aligned}
\operatorname{divDiv} \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+2}(\Omega) & \subset \operatorname{divDiv} H_{\mathbb{S}, \Gamma_{t}, k}^{k+1}(\operatorname{divDiv}, \Omega)=R\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}, t_{t}}^{k+1}\right) \\
& \subset \operatorname{divDiv} \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{divDiv}, \Omega)=R\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k}\right)=\operatorname{divDiv} H_{\mathbb{S}, \Gamma_{t}}^{k+2}(\Omega)
\end{aligned}
$$

In particular,

$$
\begin{equation*}
R\left(\operatorname{divDiv}_{\mathrm{S}, \Gamma_{t}}^{k}\right)=\operatorname{divDiv} \mathrm{H}_{\mathrm{S}, \Gamma_{t}}^{k}(\operatorname{divDiv}, \Omega)=\operatorname{divDiv} \mathrm{H}_{\mathrm{S}, \Gamma_{t}}^{k+2}(\Omega) . \tag{C4}
\end{equation*}
$$

Moreover,

$$
R\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k}\right) \subset \mathrm{H}_{\Gamma_{t}}^{k}(\Omega) \cap\left(\mathbb{P}_{\Gamma_{n}}^{1}\right)^{\perp^{2}(\Omega)}=\mathrm{H}_{\Gamma_{t}}^{k}(\Omega) \cap R\left(\operatorname{divDiv}_{\Omega, \Gamma_{t}}\right),
$$

since

$$
\begin{equation*}
R\left(\operatorname{divDiv}{ }_{S, \Gamma_{t}}\right)=\mathrm{L}^{2}(\Omega) \cap\left(\mathbb{P}_{\Gamma_{n}}^{1}\right)^{\perp^{2}(\Omega)} . \tag{C5}
\end{equation*}
$$

Thus, it remains to show

$$
H_{\Gamma_{t}}^{k}(\Omega) \cap\left(\mathbb{P}_{\Gamma_{n}}^{1}\right)^{\perp_{L^{2}(\Omega)}} \subset \operatorname{divDiv} H_{S, \Gamma_{t}}^{k}(\operatorname{divDiv}, \Omega), \quad k \geq 1 .
$$

For this, let $k \geq 1$ and $u \in \mathrm{H}_{\Gamma_{t}}^{k}(\Omega) \cap\left(\mathbb{P}_{\Gamma_{n}}^{1}\right)^{\perp_{L^{2}(\Omega)}}$. By (C5) and (C4), we have

$$
u \in R\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}\right)=\operatorname{divDiv} H_{S, \Gamma_{t}}^{2}(\Omega),
$$

and hence there is $S_{1} \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{2}(\Omega)$ such that divDiv $S_{1}=u$. We see $S_{1} \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{2}(\operatorname{divDiv}, \Omega)$ resp. $S_{1} \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{1}(\operatorname{divDiv}, \Omega)$ if $k=1$. Hence, we are done for $k=1$ and $k=2$. For $k \geq 2$, we have $u \in \operatorname{divDiv} H_{S, \Gamma_{t}}^{2}(\operatorname{divDiv}, \Omega)=\operatorname{divDiv} H_{S, \Gamma_{t}}^{4}(\Omega)$ by (C4). Thus, there is $S_{2} \in H_{\mathbb{S}, \Gamma_{t}}^{4}(\Omega)$ such that divDiv $S_{2}=u$. Then $S_{2} \in H_{\mathbb{S}, \Gamma_{t}}^{4}(\operatorname{divDiv}, \Omega)$ resp. $S_{2} \in H_{\mathbb{S}, \Gamma_{t}}^{3}(\operatorname{divDiv}, \Omega)$ if $k=3$, and we are done for $k=3$ and $k=4$. After finitely many steps, we observe that u belongs to divDiv $H_{S, \Gamma_{t}}^{k}(\operatorname{divDiv}, \Omega)$, finishing the proof.

Proof of Theorem 3.19. We follow in close lines the proof of [3, Theorem 4.11] (cf. [1, Theorem 4.16] and [2, Theorem 3.19]), using induction. The case $k=0$ is given by Theorem 3.12. Let $k \geq 1$ and let (S_{ℓ}) be a bounded sequence in $H_{S, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega) \cap H_{S, \Gamma_{n}}^{k}(\operatorname{divDiv}, \Omega)$. Note that

$$
\mathrm{H}_{\mathrm{s}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega) \cap \mathrm{H}_{\mathrm{s}, \Gamma_{n}}^{k}(\operatorname{divDiv}, \Omega) \subset \mathrm{H}_{\mathrm{s}, \Gamma_{t}}^{k}(\Omega) \cap \mathrm{H}_{\mathrm{s}, \Gamma_{n}}^{k}(\Omega)=\mathrm{H}_{\mathrm{s}, \Gamma}^{k}(\Omega) .
$$

By assumption and w.l.o.g., we have that $\left(S_{\ell}\right)$ is a Cauchy sequence in $H_{\mathbb{S}, \Gamma}^{k-1}(\Omega)$. Moreover, for all $|\alpha|=k$, we have $\partial^{\alpha} S_{\ell} \in \mathrm{H}_{\mathrm{S}, \Gamma_{t}}(\operatorname{Rot}, \Omega) \cap \mathrm{H}_{\mathrm{S}, \Gamma_{n}}(\operatorname{divDiv}, \Omega)$ with Rot $\partial^{\alpha} S_{\ell}=\partial^{\alpha} \operatorname{Rot} S_{\ell}$ and divDiv $\partial^{\alpha} S_{\ell}=\partial^{\alpha} \operatorname{divDiv} S_{\ell}$ by Lemma 3.18. Hence, $\left(\partial^{\alpha} S_{t}\right)$ is a bounded sequence in the zero order space $\mathrm{H}_{\mathrm{S}, \Gamma_{t}}(\operatorname{Rot}, \Omega) \cap \mathrm{H}_{\mathrm{S}, \Gamma_{n}}($ divDiv, $\Omega)$. Thus, w.l.o.g. $\left(\partial^{\alpha} S_{t}\right)$ is a Cauchy sequence in $L_{\mathbb{S}}^{2}(\Omega)$ by Theorem 3.12. Finally, $\left(S_{\ell}\right)$ is a Cauchy sequence in $H^{k} \mathbb{S}, \Gamma(\Omega)$. Analogously, we show the assertion for the second compact embedding.

Proof of Remark 3.20. Let $\left(S_{\ell}\right)$ be a bounded sequence in $H_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega) \cap H_{\mathbb{S}, \Gamma_{n}}^{k}$ (divDiv, Ω). In particular, $\left(S_{\ell}\right)$ is bounded in $H_{S, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega) \cap \mathrm{H}_{\mathrm{S}, \Gamma_{n}}^{k, k-1}(\operatorname{divDiv}, \Omega)$. According to Lemma 3.10, that is,

$$
\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k, k-1}(\operatorname{divDiv}, \Omega)=\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+1}(\Omega)+\operatorname{symRot} \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega),
$$

we decompose $S_{\ell}=\tilde{S}_{\ell}+\operatorname{symRot} T_{\ell}$ with $\tilde{S}_{\ell} \in \mathrm{H}_{\mathrm{S}, \Gamma_{t}}^{k+1}(\Omega)$ and $T_{\ell} \in \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega)$. By the boundedness of the regular decomposition operators, ($\tilde{\mathrm{S}}_{\ell}$) and (T_{ℓ}) are bounded in $\mathrm{H}_{\mathrm{S}, \Gamma_{t}}^{k+1}(\Omega)$ and $\mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega)$, respectively. W.l.o.g. ($\left.\tilde{\mathrm{S}}_{\ell}\right)$ and $\left(T_{\ell}\right)$ converge in $H_{\mathbb{S}, \Gamma_{t}}^{k}(\Omega)$ and $H_{\mathbb{T}, \Gamma_{t}}^{k}(\Omega)$, respectively. For all $0 \leq|\alpha| \leq k$, Lemma 3.18 yields $\left(\partial^{\alpha} S_{\ell}\right) \subset H_{\mathbb{S}, \Gamma_{t}}$ (Rot, Ω) and Rot $\partial^{\alpha} S_{\ell}=\partial^{\alpha} \operatorname{Rot} S_{\ell}$. With the notations $S_{\ell, l}:=S_{\ell}-S_{l}, \tilde{S}_{\ell, l}:=\tilde{S}_{\ell}-\tilde{S}_{l}$, and $T_{\ell, l}:=T_{\ell}-T_{l}$, we get

$$
\begin{aligned}
\left|S_{\ell, l}\right|_{H_{s}^{k}(\Omega)}^{2} & =\left\langle S_{\ell, l}, \tilde{S}_{\ell, l}\right\rangle_{\mathrm{H}_{s}^{k}(\Omega)}+\left\langle S_{\ell, l}, \operatorname{symRot} T_{\ell, l}\right\rangle_{\mathrm{H}_{\mathrm{s}}^{k}(\Omega)} \\
& =\left\langle S_{\ell, l}, \tilde{S}_{\ell, l}\right\rangle_{\mathrm{H}_{\mathrm{s}}^{k}(\Omega)}+\left\langle\operatorname{Rot} S_{\ell, l}, T_{\ell, l}\right\rangle_{\mathrm{H}_{\mathrm{T}}^{k}(\Omega)} \leq c\left(\left|\tilde{S}_{\ell, l}\right|_{\mathrm{H}_{\mathrm{s}}^{k}(\Omega)}+\left|T_{\ell, l}\right|_{\mathrm{H}_{\mathrm{T}}^{k}(\Omega)}\right) \rightarrow 0,
\end{aligned}
$$

completing the proof.

Proof of Theorem 3.29. Theorem 3.25 and (15) show

$$
\begin{aligned}
H_{S, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega) & =R\left(\widetilde{\mathcal{Q}}_{T_{\mathrm{Tot}}^{s, \Gamma_{t}}}^{k, 1}\right)+\mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{Rot}, \Omega), \\
\mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{Rot}, \Omega) & =\operatorname{Gradgrad} H_{\Gamma_{t}}^{k+2}(\Omega)+\operatorname{Lin} \mathcal{B}^{\operatorname{Rot}_{s, \Gamma_{t}}(\Omega) .}
\end{aligned}
$$

To prove the directness of the second sum, let

$$
\sum_{\ell=1}^{d_{\Omega, . \Gamma_{t}}} \lambda_{\ell} B_{\ell}^{\mathrm{Rot}_{\substack{\Gamma_{t}}}} \in \operatorname{Gradgrad} H_{\Gamma_{t}}^{k+2}(\Omega) \cap \operatorname{Lin} \mathcal{B}^{\mathbb{T}^{\mathrm{Rot}_{s, \Gamma_{t}}}(\Omega) .}
$$

 a basis of $\mathcal{H}^{s, \Gamma_{t}, \Gamma_{n, t}(\Omega)}$ by Theorem 3.28. Concerning the boundedness of the decompositions, let

$$
H_{s, \Gamma_{t}, 0}^{k}(\operatorname{Rot}, \Omega) \ni S=\operatorname{Gradgrad} u+B, \quad u \in H_{\Gamma_{t}}^{k+2}(\Omega), B \in \operatorname{Lin} \mathcal{B}^{\mathbb{R o t}_{s, \Gamma_{t}}(\Omega)} .
$$

By Theorem 3.24 Gradgrad $u \in R\left(\operatorname{SGradgrad}_{\Gamma_{t}}^{k}\right)$ and $\tilde{u}:=\mathcal{P}_{\text {SGradgrad, } \Gamma_{t}}^{k}$ Gradgrad $u \in \mathrm{H}_{\Gamma_{t}}^{k+2}(\Omega)$ solves Gradgrad $\tilde{u}=$ Gradgrad u with $|\tilde{u}|_{H^{k+2}(\Omega)} \leq c \mid$ Gradgrad $\left.u\right|_{H_{s}^{k}(\Omega)}$. Therefore,

$$
|\tilde{u}|_{H^{k+2}(\Omega)}+|B|_{H_{s}^{k}(\Omega)} \leq c\left(|\operatorname{Gradgrad} u|_{H_{s}^{k}(\Omega)}+|B|_{H_{s}^{k}(\Omega)}\right) \leq c\left(|S|_{H_{s}^{k}(\Omega)}+|B|_{H_{s}^{k}(\Omega)}\right) .
$$

Note that the mapping

$$
\begin{aligned}
& I_{\left.\pi_{N\left(\text { divivis }_{S} \Gamma_{n} \varepsilon\right.}\right)}: \operatorname{Lin} \mathcal{B}^{\mathbb{R o t}_{S, \Gamma_{t}}}(\boldsymbol{\Omega}) \rightarrow \operatorname{Lin} \pi_{N\left(\text { divDiv }_{S, \Gamma_{n}} \varepsilon\right)} \mathcal{B}^{\mathbb{R o t}_{\mathbb{S}, \Gamma_{t}}}(\boldsymbol{\Omega})=\mathcal{H}_{\mathbb{S}, \Gamma_{t}, \Gamma_{n}, \varepsilon}(\Omega)
\end{aligned}
$$

is a topological isomorphism (between finite dimensional spaces and with arbitrary norms). Thus,

$$
|B|_{\mathrm{H}_{\mathrm{s}}^{k}(\Omega)} \leq c|B|_{\mathrm{L}_{\mathrm{s}}^{2}(\Omega)} \leq c\left|\pi_{N\left(\operatorname{divDiv}_{\mathrm{s} \Gamma_{n} \varepsilon} \varepsilon\right.} B\right|_{\mathrm{L}_{\mathrm{s}}^{2}(\Omega)}=c\left|\pi_{N\left(\operatorname{divDiv}_{\mathrm{S}_{\mathrm{n}} \varepsilon} \varepsilon\right.} S\right|_{\mathrm{L}_{\mathrm{s}}^{2}(\Omega)} \leq c|S|_{\mathrm{L}_{\mathrm{s}}^{2}(\Omega)} \leq c|S|_{\mathrm{H}_{\mathrm{s}}^{k}(\Omega)} .
$$

Finally, we see $S=\operatorname{Gradgrad} \tilde{u}+B \in \operatorname{Gradgrad} H_{\Gamma_{t}}^{k+2}(\Omega) \dot{+} \operatorname{Lin} \mathcal{B}^{{ }^{\operatorname{Rot}_{5 \Gamma_{t}}}(\Omega)}$ and

$$
|\tilde{u}|_{\mathrm{H}^{k+2}(\Omega)}+|B|_{H_{S}^{k}(\Omega)} \leq c|S|_{\mathrm{H}_{S}^{k}(\Omega)} .
$$

The other assertions for $H_{\mathbb{T}, \Gamma_{n}}^{k}(\operatorname{Div}, \Omega), H_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{symRot}, \Omega), \mathrm{H}_{\mathbb{S}, \Gamma_{n}}^{k}(\operatorname{divDiv}, \Omega)$, and $H_{\mathbb{S}, \Gamma_{n}}^{k+1, k}(\operatorname{divDiv}, \Omega)$ follow analogously.

Proof of Theorem 3.31. For $k=0$ and $S \in \mathcal{H}_{\mathbb{S}, \Gamma_{t}, \Gamma_{n}, \varepsilon}(\Omega) \cap \mathcal{B}^{\mathbb{R o t}_{S . \Gamma_{t}}}(\Omega)^{L_{L_{S .}}^{L_{s}}(\Omega)}$ we have

$$
\begin{aligned}
& \left.=\left\langle S, \pi_{N\left(\operatorname{divDiv}_{S, \Gamma_{n}} \varepsilon\right.}\right)_{\ell}^{\operatorname{TRot}_{\mathrm{R}_{\Gamma_{t}}}}\right\rangle \mathrm{L}_{\mathrm{S}_{\varepsilon},(\Omega)}
\end{aligned}
$$

and hence $S=0$ by Theorem 3.28. Analogously, we see for $S \in \mathcal{H}_{\mathbb{S}, \Gamma_{t}, \Gamma_{n}, \varepsilon}(\Omega) \cap \mathcal{B}^{\operatorname{divDiv}_{S, \Gamma_{n}}}(\Omega)^{\perp_{\mathrm{S}}(\Omega)}$

$$
\begin{aligned}
& =\left\langle S, \pi_{N\left(\mathbb{T} \operatorname{Rot}_{S, r_{t}}\right)} \varepsilon^{-1} B_{\ell}^{\operatorname{divDiv}_{\mathrm{S}_{\Gamma_{n}}}}\right\rangle_{\mathrm{L}_{\mathrm{s}, \ell}^{2}(\Omega)}
\end{aligned}
$$

and thus $S=0$ again by Theorem 3.28. According to (14), we can decompose

$$
\begin{aligned}
N\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}} \varepsilon\right) & =R\left(\varepsilon^{-1} \mathbb{S R o t}_{\mathbb{T}, \Gamma_{n}}\right) \oplus_{\mathrm{L}_{\mathrm{S}, \varepsilon}^{2}(\Omega)} \mathcal{H}_{\mathbb{S}, \Gamma_{t}, \Gamma_{n}, \varepsilon}(\Omega), \\
N\left({ }_{\mathbb{T}} \operatorname{Rot}_{\mathrm{S}, \Gamma_{t}}\right) & =R\left({ }_{\mathrm{S}} \operatorname{Gradgrad}_{\Gamma_{t}}\right) \oplus_{\mathrm{L}_{\mathrm{S}, \ell}^{2}(\Omega)}^{2} \mathcal{H}_{\mathrm{S}, \Gamma_{t}, \Gamma_{n}, \varepsilon}(\Omega),
\end{aligned}
$$

which shows by (17) the other two assertions. Let $k \geq 0$. The case $k=0$ and Theorem 3.16 show

$$
\begin{aligned}
& =\varepsilon^{-1} H_{\mathbb{S}, \Gamma_{n}}^{k}(\Omega) \cap R\left(\varepsilon^{-1} \operatorname{Rot}_{\mathbb{S}, \Gamma_{n}}\right) \\
& =R\left(\varepsilon^{-1}{ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{n}}^{k}\right)=\varepsilon^{-1} \operatorname{symRot} H_{\mathbb{T}, \Gamma_{n}}^{k+1}(\Omega), \\
& N\left({ }_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}^{k}\right) \cap \mathcal{B}^{\operatorname{divDiv}_{S, \Gamma_{n}}}(\Omega)^{\perp_{\mathrm{S}}^{2}(\Omega)}=\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\Omega) \cap N\left(\mathbb{T}^{\operatorname{Rot}}{ }_{S, \Gamma_{t}}\right) \cap \mathcal{B}^{\operatorname{divDiv}_{S, \Gamma_{n}}(\Omega)^{\perp_{\mathrm{L}}^{2}(\Omega)}} \\
& =\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\Omega) \cap R\left({ }_{\mathbb{S}} \operatorname{Gradgrad}_{\Gamma_{t}}\right) \\
& =R\left(\mathrm{sGradgrad}_{\Gamma_{t}}^{k}\right)=\operatorname{Gradgrad} \mathrm{H}_{\Gamma_{t}}^{k+2}(\Omega) \text {. }
\end{aligned}
$$

Analogously, we prove the assertions for the remaining $\mathrm{L}_{\mathbb{T}, \mu}^{2}(\Omega)$-related spaces.

APPENDIX D: SOME TECHNICAL REMARKS

Remark D. 1 (Bounded regular decompositions from bounded regular potentials). It holds

$$
\begin{aligned}
& \operatorname{Rot} \widetilde{\mathcal{Q}}_{\mathbb{R}^{k} \mathrm{t}_{5}, \Gamma_{t}}^{k}=\operatorname{Rot} \mathcal{Q}_{\mathbb{T R o t s}_{5}, \Gamma_{t}}^{k, 1}={ }_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}^{k}, \\
& \operatorname{Div} \widetilde{\mathcal{Q}}_{\mathrm{Div}_{\mathbb{T}}, \Gamma_{t}}^{k,}=\operatorname{Div} \mathcal{Q}_{\mathrm{Div}_{\mathbb{T}}, \Gamma_{t}}^{k, 1}=\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{k},
\end{aligned}
$$

$\operatorname{divDiv} \widetilde{\mathcal{Q}}_{\text {divDiv }_{s}, \Gamma_{t}}^{k, 1}=\operatorname{divDiv} \mathcal{Q}_{\text {divDiv }_{s}, \Gamma_{t}}^{k, 1}=\operatorname{divDiv}_{S, \Gamma_{t}}^{k}$, $\operatorname{divDiv} \widetilde{\mathcal{Q}}_{\text {divDiv }_{S}, \Gamma_{t}}^{k+1, k, 1}=\operatorname{divDiv} \mathcal{Q}_{\text {divDiv }_{s}, \Gamma_{t}}^{k+1, k, 1}=\operatorname{divDiv}_{S, \Gamma_{t}}^{k+1, k}$.

Therefore, the kernels $H_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{Rot}, \Omega), \mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{Div}, \Omega), \mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k}($ symRot, $\Omega)$, and $H_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{divDiv}, \Omega), \mathrm{H}_{\mathbb{S}, \Gamma}^{k+1}(\operatorname{divDiv}, \Omega)$
 $\mathcal{Q}_{\text {divDiv }_{s}, \Gamma_{t}}^{k+1, k, 1}, \widetilde{\mathcal{Q}}_{\text {divDiv }_{s}, \Gamma_{t}}^{k+1, k, 1}$, respectively. Moreover,

$$
\begin{aligned}
& R\left(\widetilde{\mathcal{Q}}_{\operatorname{Div}_{\mathbb{T}}, \Gamma_{t}}^{k, 1}\right)=R\left(\mathcal{P}_{\operatorname{Div}_{\mathbb{T}}, \Gamma_{t}}^{k}\right), \quad \widetilde{\mathcal{Q}}_{\operatorname{Div}_{T}, \Gamma_{t}}^{k, 1}=\mathcal{Q}_{\operatorname{Div}_{\mathbb{T}}, \Gamma_{t}}^{k, 1}\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{k}\right)_{\perp}^{-1} \operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{k},
\end{aligned}
$$

$$
\begin{aligned}
& R\left(\widetilde{\mathcal{Q}}_{\text {divDiv }_{\mathrm{S}}, \Gamma_{t}}^{k, 1}\right)=R\left(\mathcal{P}_{\text {divDiv }_{\mathrm{s}}, \Gamma_{t}}^{k}\right), \quad \widetilde{\mathcal{Q}}_{\text {divDiv }_{\mathrm{S}}, \Gamma_{t}}^{k, 1}=\mathcal{Q}_{\text {divDiv }_{\mathrm{S}}, \Gamma_{t}}^{k, 1}\left(\operatorname{divDiv}_{\mathrm{S}, \Gamma_{t}}^{k}\right)_{\perp}^{-1} \operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k}, \\
& R\left(\widetilde{\mathcal{Q}}_{\text {divDiv }_{S}, \Gamma_{t}}^{k+1, k, 1}\right)=R\left(\mathcal{P}_{\text {divDiv }_{S}, \Gamma_{t}}^{k+1, k}\right), \quad \widetilde{\mathcal{Q}}_{\text {divDiv }_{S}, \Gamma_{t}}^{k+1, k, 1}=\mathcal{Q}_{\text {divDiv }_{\mathrm{S}}, \Gamma_{t}}^{k+1, k, 1}\left(\operatorname{divDiv}_{\mathrm{S}, \Gamma_{t}}^{k+1, k}\right)_{\perp}^{-1} \operatorname{divDiv}_{\mathrm{S}, \Gamma_{t}}^{k+1, k} .
\end{aligned}
$$

 $\mathcal{Q}_{\text {divDiv }}{ }_{s} \Gamma_{t}+1, k, 1, \quad$ on the reduced domains of definition

$$
D\left(\left(\mathbb{T}_{\operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}^{k}}^{k}\right)_{\perp}\right), D\left(\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{k}\right)_{\perp}\right), D\left(\left(\operatorname{Sot}_{\mathbb{T}, \Gamma_{t}}^{k}\right)_{\perp}\right), D\left(\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k}\right)_{\perp}\right), D\left(\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k+1, k}\right)_{\perp}\right),
$$

 $\mathcal{Q}_{\mathrm{s} \mathrm{Rot}_{\Gamma}, \Gamma_{t}}^{k, 1}, \mathcal{Q}_{\text {divDiv }_{s}, \Gamma_{t}}^{k, 1}$, and $\mathcal{Q}_{\text {divDiv }_{s}, \Gamma_{t}}^{k+1, \Gamma_{1}, 1}$ only on the kernels

$$
N\left({ }_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}^{k}\right)=H_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{Rot}, \Omega), N\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{t}}^{k}\right)=\mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{Div}, \Omega), N\left({ }_{\mathbb{S}} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}^{k}\right)=\mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}^{k}(\operatorname{symRot}, \Omega)
$$

and $N\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k}\right)=H_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{divDiv}, \Omega), N\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{t}}^{k+1, k}\right)=H_{\mathbb{S}, \Gamma_{t}, 0}^{k+1}(\operatorname{divDiv}, \Omega)$, respectively.
Remark D. 2 (Projections). Recall Theorem 3.25, for example, for divDiv ${ }_{\mathbb{S}, \Gamma_{t}}^{k}$

$$
\mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{divDiv}, \Omega)=R\left(\widetilde{\mathcal{Q}}_{\operatorname{divDiv}_{\mathbb{S}}, \Gamma_{t}}^{k, 1}\right) \dot{+}\left(\widetilde{\mathcal{N}}_{\operatorname{divDiv}_{\mathbb{S}}, \Gamma_{t}}^{k}\right)
$$

(i) $\widetilde{\mathcal{Q}}_{\text {divDiv }_{s}, \Gamma_{t}}^{k, 1}$ and $\widetilde{\mathcal{N}}_{\text {divDiv }_{s}, \Gamma_{t}}^{k}=1-\widetilde{\mathcal{Q}}_{\text {divDivs }_{s}, \Gamma_{t}}^{k, 1}$ are projections.
(i') $\widetilde{\mathcal{Q}}_{\text {divDiv }}^{s, \Gamma} \Gamma_{t}^{k, 1} \widetilde{\mathcal{N}}_{\text {divDiv }, \Gamma_{t}}^{k}=\mathcal{\mathcal { N }}_{\text {divDivs }, \Gamma_{t}}^{k} \widetilde{\mathcal{Q}}_{\text {divDiv }}^{k, \Gamma_{t}}=0$.
(ii) For $I_{ \pm}:=\widetilde{\mathcal{Q}}_{\text {divDivs }_{s}, \Gamma_{t}}^{k, 1} \pm \widetilde{\mathcal{N}}_{\text {divDivs }_{s}, \Gamma_{t}}^{k}$, it holds $I_{+}=I_{-}^{2}=\operatorname{id}_{H_{s, \Gamma_{t}}^{k}}$ (divDiv,, . Therefore, I_{+}, I_{-}^{2}, as well as $I_{-}=2 \widetilde{\mathcal{Q}}_{\text {divDiv }_{s}, \Gamma_{t}}^{k, 1}-$ $\operatorname{id}_{\mu_{S, \Gamma_{t}}^{k}(\text { divDiv, } \Omega)}$ are topological isomorphisms on $H_{S, \Gamma_{t}}^{k}(\operatorname{divDiv}, \Omega)$.
(iii) There exists $c>0$ such that for all $S \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{divDiv}, \Omega)$

$$
\begin{gathered}
c\left|\widetilde{\mathcal{Q}}_{\operatorname{divDiv}_{\mathbb{S}}, \Gamma_{t}}^{k, 1} S\right|_{\mathrm{H}_{\mathrm{S}}^{k+2}(\Omega)} \leq|\operatorname{divDiv} S|_{\mathrm{H}^{k}(\Omega)} \leq|S|_{\mathrm{H}_{\mathrm{S}}^{k}(\operatorname{divDiv}, \Omega)}, \\
\quad\left|\widetilde{\mathcal{N}}_{\operatorname{divDiv}_{\mathrm{S}}, \Gamma_{t}}^{k} S\right|_{\mathrm{H}_{\mathrm{S}}^{k}(\Omega)} \leq|S|_{\mathrm{H}_{\mathrm{S}}^{k}(\Omega)}+\left|\widetilde{\mathcal{Q}}_{\operatorname{divDiv}_{S}, \Gamma_{t}}^{k, 1} S\right|_{\mathrm{H}_{\mathrm{S}}^{k}(\Omega)}
\end{gathered}
$$

(iii') For $S \in \mathcal{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{divDiv}, \Omega)$, we have $\widetilde{\mathcal{Q}}_{\text {divDiv }_{s}, \Gamma_{t}}^{k, 1} S=0$ and $\widetilde{\mathcal{N}}_{\text {divDiv }_{s}, \Gamma_{t}}^{k} S=S$. In particular, $\widetilde{\mathcal{N}}_{\text {divDivs }, \Gamma_{t}}^{k}$ is onto.
 $\widetilde{\mathcal{Q}}_{\mathrm{s} \mathrm{Rot}_{T}, \Gamma_{t}}^{k, 1}, \widetilde{\mathcal{Q}}_{\text {divDiv }_{S}, \Gamma_{t}}^{k+1, k, 1}$, and $\widetilde{\mathcal{N}}_{\mathrm{T}^{\mathrm{Ros}}, \Gamma_{\mathrm{S}}, \Gamma_{t}}^{k, 1}, \widetilde{\mathcal{N}}_{\text {Div }_{T}, \Gamma_{t}}^{k, 1}, \widetilde{\mathcal{N}}_{\mathrm{s}}^{\mathrm{R} \mathrm{Rot}_{T}, \Gamma_{t}} k$, and $\widetilde{\mathcal{N}}_{\text {divDiv }_{s}, \Gamma_{t}}^{k+1, k, 1}$, are projections and there exists $c>0$ such that for all $S \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega), T \in \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{Div}, \Omega), \hat{T} \in \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{symRot}, \Omega)$, and $\hat{S} \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k+1, k}(\operatorname{divDiv}, \Omega)$

$$
\begin{aligned}
& \left|\widetilde{\mathcal{Q}}_{\mathbb{T}^{\text {Rot}}, \Gamma_{t}}^{k, 1} S\right|_{H_{\mathrm{S}}^{k+1}(\Omega)} \leq c|\operatorname{Rot} S|_{H_{\mathbb{T}}^{k}(\Omega)}, \quad\left|\widetilde{\mathcal{Q}}_{\mathrm{S}^{\operatorname{Rot}}, \Gamma_{t}}^{k, 1} \hat{T}\right|_{H_{\mathbb{T}}^{k+1}(\Omega)} \leq c \mid \text { symRot }\left.\hat{T}\right|_{H_{\mathrm{S}}^{k}(\Omega)}, \\
& \left|\widetilde{\mathcal{Q}}_{\mathrm{Div}_{\mathbb{T}}, \Gamma_{t}}^{k, 1} T\right|_{\mathrm{H}_{\mathbb{T}}^{k+1}(\Omega)} \leq c|\operatorname{Div} T|_{\mathrm{H}^{k}(\Omega)}, \quad\left|\widetilde{\mathcal{Q}}_{\operatorname{divDiv}_{\mathbb{S}}, \Gamma_{t}}^{k+1, k, 1} \hat{S}\right|_{H_{\mathbb{S}}^{k+2}(\Omega)} \leq c|\operatorname{divDiv} \hat{S}|_{H^{k}(\Omega)} .
\end{aligned}
$$

Remark D. 3 (Bounded regular direct decompositions). By Theorem 3.29, we have, for example,

$$
\begin{aligned}
\mathrm{H}_{\mathrm{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega) & =R\left(\widetilde{\mathcal{Q}}_{\mathrm{T}^{\mathrm{Rots}}, \Gamma_{t}}^{k, 1}\right)+\operatorname{Lin} \mathcal{B}^{\mathrm{Rot}} \mathrm{R}_{\Omega, \Gamma_{t}}(\Omega)+\operatorname{Gradgrad} \mathrm{H}_{\Gamma_{t}}^{k+2}(\Omega) \\
& =\mathrm{H}_{\mathrm{S}, \Gamma_{t}}^{k+1}(\Omega)+\operatorname{Gradgrad} \mathrm{H}_{\Gamma_{t}}^{k+2}(\Omega)
\end{aligned}
$$

with bounded linear regular direct decomposition operators

$$
\begin{aligned}
& \hat{\mathcal{Q}}_{\mathbb{T}^{\text {Rom }}, \Gamma_{t}}^{k, \infty}: H_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega) \rightarrow \operatorname{Lin} \mathcal{B}^{\operatorname{Rot}_{S, \Gamma_{t}}(\Omega) \subset H_{S, \Gamma_{t}, 0}^{\infty}(\operatorname{Rot}, \Omega) \subset H_{S, \Gamma_{t}}^{k+1}(\Omega),} \\
& \hat{\mathcal{Q}}_{\mathbb{T}^{\text {Rog }}, \Gamma_{t}}^{k, 0}: \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega) \rightarrow \mathrm{H}_{\Gamma_{t}}^{k+2}(\Omega)
\end{aligned}
$$

A closer inspection of the proof allows for a more precise description of these bounded decomposition operators. For this, let $S \in \mathrm{H}_{\mathbb{S}, \Gamma_{t}}^{k}(\operatorname{Rot}, \Omega)$. According to Theorem 3.25 and Remark D.2, we decompose
with $R\left(\widetilde{\mathcal{N}}_{\mathbb{T}^{\text {Rot }}, \Gamma_{t}}^{k}\right)=\mathrm{H}_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{Rot}, \Omega)=N\left(\mathbb{T}_{\mathbb{T}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}^{k}\right)$. By Theorem 3.29 we further decompose

$$
H_{\mathbb{S}, \Gamma_{t}, 0}^{k}(\operatorname{Rot}, \Omega) \ni S_{N}=\operatorname{Gradgrad} \tilde{u}+\operatorname{BinGradgrad} H_{\Gamma_{t}}^{k+2}(\Omega) \dot{+} \operatorname{Lin} \mathcal{B}^{\mathbb{R o t}_{\mathrm{S}, \Gamma_{t}}}(\Omega)
$$

Then $\pi_{N\left(\operatorname{divDiv}_{S, \Gamma_{n}} \varepsilon\right)} S_{N}=\pi_{N\left(\operatorname{divDiv}_{S, \Gamma_{n}} \varepsilon\right.} B \in \mathcal{H}_{\mathbb{S}, \Gamma_{t}, \Gamma_{n}, \varepsilon}(\Omega)$ and thus

$$
B=I_{\pi_{N\left({\operatorname{divDivs}, \Gamma_{n}}\right)}^{-1} \pi_{N\left(\operatorname{divDiv}_{S, \Gamma_{n}} \varepsilon\right)} S_{N} \in \operatorname{Lin} \mathcal{B}^{\mathbb{T}^{R o t}}{ }_{S, \Gamma_{t}}(\Omega) .}
$$

Therefore,

$$
\begin{aligned}
& \tilde{u}=\mathcal{P}_{\mathbb{S}}^{k} \text { Gradgrad, } \Gamma_{t} \\
& \text { Gradgrad } \tilde{u}=\mathcal{P}_{\mathbb{S}}^{k} \text { Gradgrad, } \Gamma_{t} \\
&=\mathcal{P}_{\mathbb{S}^{\text {Gradgrad, } \Gamma_{t}}}^{k}\left(1-I_{N}-1\right. \\
&\left.\pi_{N\left(\operatorname{divDiv}_{S, \Gamma_{n}} \varepsilon\right.}\right) \\
&\left.\pi_{N\left(\operatorname{divDiv}_{S, \Gamma_{n}} \varepsilon\right)}\right) S_{N} .
\end{aligned}
$$

Finally, we see

$$
\begin{aligned}
& \hat{\mathcal{Q}}_{\mathbb{T}}^{k, 1} \operatorname{Rot}_{\mathbb{S}}, \Gamma_{t}=\widetilde{\mathcal{Q}}_{\mathbb{T} \operatorname{Rot}_{\mathbb{S}}, \Gamma_{t}}^{k, 1}=\mathcal{P}_{\mathbb{T} \operatorname{Rot}_{\mathbb{S}}, \Gamma_{t}, \mathbb{T}}^{k} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}^{k},=\mathcal{Q}_{\mathbb{T} \operatorname{Rot}_{\mathbb{S}}, \Gamma_{t}}^{k, 1}\left(\mathbb{T}_{\mathbb{S}} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}^{k}\right)_{\perp} \mathbb{T}_{\mathbb{T}}^{-1} \operatorname{Rot}_{\mathbb{S}, \Gamma_{t}}^{k}, \\
& \widehat{\mathcal{Q}}_{\mathbb{T} \operatorname{Rot}_{S}, \Gamma_{t}}^{k, \infty}=I_{\left.\pi_{N\left(\text { divDivs }, \Gamma_{n} \varepsilon\right.}\right)}^{-1} \pi_{N\left(\operatorname{divDiv}_{S, \Gamma_{n}} \varepsilon\right)} \widetilde{\mathcal{N}}_{\mathbb{T}}^{k} \operatorname{Rot}_{S}, \Gamma_{t}, \\
& \hat{\mathcal{Q}}_{\mathbb{T}}^{k, 0} \operatorname{Rot}_{\mathbb{S}}, \Gamma_{t}=\mathcal{P}_{\mathbb{S}}^{k}{\text { Gradgrad }, \Gamma_{t}}\left(1-I_{\pi_{N\left(\text { divDiv }, \Gamma_{n} \varepsilon\right.} \varepsilon}^{-1} \pi_{N\left(\operatorname{divDiv}_{S, \Gamma_{n}} \varepsilon\right)}\right) \widetilde{\mathcal{N}}_{\mathbb{T}}^{k} \operatorname{Rot}_{s}, \Gamma_{t}
\end{aligned}
$$

with $\widetilde{\mathcal{N}}_{\mathbb{T}^{\text {Rots }}, \Gamma_{t}}^{k}=1-\widetilde{\mathcal{Q}}_{\mathbb{T}^{\text {Rot }_{S}, \Gamma_{t}}}^{k, 1}$. Analogously, we have for the other spaces

$$
\begin{aligned}
& H_{\mathbb{T}, \Gamma_{n}}^{k}(\operatorname{Div}, \Omega)=R\left(\widetilde{\mathcal{Q}}_{\operatorname{Div}_{\mathbb{T}, \Gamma_{n}}^{k, 1}}^{k,}\right) \dot{\operatorname{Lin}} \mathcal{B}^{\operatorname{Div}_{\mathbb{T}, \Gamma_{n}}}(\Omega) \dot{+} \operatorname{Rot} H_{\mathbb{S}, \Gamma_{n}}^{k+1}(\Omega) \\
& =\mathrm{H}_{\mathbb{T}, \Gamma_{n}}^{k+1}(\Omega)+\operatorname{Rot} H_{\mathbb{S}, \Gamma_{n}}^{k+1}(\Omega), \\
& H_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{symRot}, \Omega)=R\left(\widetilde{\mathcal{Q}}_{\mathbb{S}^{\operatorname{Rot}}, \Gamma_{t}}^{k, 1}\right) \dot{+} \operatorname{Lin} \mathcal{B}^{\mathrm{S} \operatorname{Rot}_{\mathbb{T}, \Gamma_{t}}(\Omega) \dot{+} \operatorname{devGrad} H_{\Gamma_{t}}^{k+1}(\Omega)} \\
& =H_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega)+\operatorname{devGrad} H_{\Gamma_{t}}^{k+1}(\Omega), \\
& \mathrm{H}_{\mathbb{S}, \Gamma_{n}}^{k}(\operatorname{divDiv}, \Omega)=R\left(\widetilde{\mathcal{Q}}_{\operatorname{divDiv}_{\mathbb{S}}, \Gamma_{n}}^{k, 1}\right) \dot{+} \operatorname{Lin} \mathcal{B}^{\operatorname{divDiv}_{s, \Gamma_{n}}}(\Omega) \dot{+} \operatorname{symRot} H_{\mathbb{T}, \Gamma_{n}}^{k+1}(\Omega) \\
& =H_{\mathbb{S}, \Gamma_{n}}^{k+2}(\Omega)+\operatorname{symRot} H_{\mathbb{T}, \Gamma_{n}}^{k+1}(\Omega), \\
& \mathrm{H}_{\mathbb{S}, \Gamma_{n}}^{k+1, k}(\operatorname{divDiv}, \Omega)=R\left(\widetilde{\mathcal{Q}}_{\text {divDiv }_{\mathbb{S}}, \Gamma_{n}}^{k+1, k, 1}\right) \dot{\operatorname{Lin}} \mathcal{B}^{\operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}}}(\Omega) \dot{+} \operatorname{symRot} \mathrm{H}_{\mathbb{T}, \Gamma_{n}}^{k+2}(\Omega) \\
& =\mathrm{H}_{\mathbb{S}, \Gamma_{n}}^{k+2}(\Omega)+\operatorname{symRot} \mathrm{H}_{\mathbb{T}, \Gamma_{n}}^{k+2}(\Omega)
\end{aligned}
$$

with bounded linear regular direct decomposition operators

$$
\begin{aligned}
& \hat{\mathcal{Q}}_{\operatorname{Div}_{\mathbb{T}}, \Gamma_{n}}^{k, 1}: \mathrm{H}_{\mathbb{T}, \Gamma_{n}}^{k}(\operatorname{Div}, \Omega) \rightarrow R\left(\widetilde{\mathcal{Q}}_{\mathrm{Div}_{\mathbb{T}}, \Gamma_{n}}^{k, 1}\right) \subset \mathrm{H}_{\mathbb{T}, \Gamma_{n}}^{k+1}(\Omega), \\
& \hat{\mathcal{Q}}_{\operatorname{Div}_{T}, \Gamma_{n}}^{k, \infty}: H_{\mathbb{T}, \Gamma_{n}}^{k}(\operatorname{Div}, \Omega) \rightarrow \operatorname{Lin} \mathcal{B}^{\operatorname{Div}_{\mathbb{T}, \Gamma_{n}}}(\Omega) \subset H_{\mathbb{T}, \Gamma_{n}, 0}^{\infty}(\operatorname{Div}, \Omega) \subset H_{\mathbb{T}, \Gamma_{n}}^{k+1}(\Omega), \\
& \hat{\mathcal{Q}}_{\mathrm{Div}_{\mathbb{T}}, \Gamma_{n}}^{k, 0}: \mathrm{H}_{\mathbb{T}, \Gamma_{n}}^{k}(\operatorname{Div}, \Omega) \rightarrow \mathrm{H}_{\mathbb{S}, \Gamma_{n}}^{k+1}(\Omega), \\
& \hat{\mathcal{Q}}_{\mathrm{s} \mathrm{Rot}_{T}, \Gamma_{t}}^{k, 1}: \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{symRot}, \Omega) \rightarrow R\left(\widetilde{\mathcal{Q}}_{\mathrm{s}}^{k \mathrm{Rot}_{T}, \Gamma_{t}}\right) \subset \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega), \\
& \hat{\mathcal{Q}}_{\mathrm{s} \mathrm{Rot}_{T}, \Gamma_{t}}^{k, \infty}: \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{symRot}, \Omega) \rightarrow \operatorname{Lin} \mathcal{B}^{\mathrm{RRot}_{T}, \Gamma_{t}}(\Omega) \subset \mathrm{H}_{\mathbb{T}, \Gamma_{t}, 0}^{\infty}(\operatorname{symRot}, \Omega) \subset \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k+1}(\Omega), \\
& \hat{\mathcal{Q}}_{\mathrm{s} \operatorname{Rot}_{T}, \Gamma_{t}}^{k, 0}: \mathrm{H}_{\mathbb{T}, \Gamma_{t}}^{k}(\operatorname{symRot}, \Omega) \rightarrow \mathrm{H}_{\Gamma_{t}}^{k+1}(\Omega), \\
& \hat{\mathcal{Q}}_{\text {divDiv }, \Gamma_{n}}^{k, 1}: H_{\mathbb{S}, \Gamma_{n}}^{k}(\operatorname{divDiv}, \Omega) \rightarrow R\left(\widetilde{\mathcal{Q}}_{\text {divDiv }_{s}, \Gamma_{n}}^{k, 1}\right) \subset H_{\mathbb{S}, \Gamma_{n}}^{k+2}(\Omega), \\
& \hat{\mathcal{Q}}_{\text {divDiv }_{S}, \Gamma_{n}}^{k, \infty}: H_{\mathbb{S}, \Gamma_{n}}^{k}(\operatorname{divDiv}, \Omega) \rightarrow \operatorname{Lin} \mathcal{B}^{\operatorname{divDiv}_{S, \Gamma_{n}}(\Omega) \subset H_{\mathbb{S}, \Gamma_{n}, 0}^{\infty}(\operatorname{divDiv}, \Omega) \subset H_{\mathbb{S}, \Gamma_{n}}^{k+2}(\Omega), ~} \\
& \hat{\mathcal{Q}}_{\text {divDiv }_{s}, \Gamma_{n}}^{k, 0}: \mathrm{H}_{\mathbb{S}, \Gamma_{n}}^{k}(\operatorname{divDiv}, \Omega) \rightarrow \mathrm{H}_{\mathbb{T}, \Gamma_{n}}^{k+1}(\Omega), \\
& \hat{\mathcal{Q}}_{\text {divDiv }_{S}, \Gamma_{n}}^{k+1, k, 1}: \mathrm{H}_{\mathbb{S}, \Gamma_{n}}^{k+1, k}(\operatorname{divDiv}, \Omega) \rightarrow R\left(\widetilde{\mathcal{Q}}_{\text {divDiv }_{s}, \Gamma_{n}}^{k+1, k, 1}\right) \subset \mathrm{H}_{\mathbb{S}, \Gamma_{n}}^{k+2}(\Omega) \text {, } \\
& \hat{\mathcal{Q}}_{\text {divDiv }_{s}, \Gamma_{n}}^{k+1, k, \infty}: H_{\mathbb{S}, \Gamma_{n}}^{k+1, k}(\operatorname{divDiv}, \Omega) \rightarrow \operatorname{Lin} \mathcal{B}^{\operatorname{divDiv}_{S, \Gamma_{n}}(\Omega) \subset H_{\mathbb{S}, \Gamma_{n}, 0}^{\infty}(\operatorname{divDiv}, \Omega) \subset H_{\mathbb{S}, \Gamma_{n}}^{k+2}(\Omega), ~} \\
& \hat{\mathcal{Q}}_{\text {divDiv }, \Gamma_{n}}^{k+1, k, 0}: H_{\mathbb{S}, \Gamma_{n}}^{k+1, k}(\text { divDiv, } \Omega) \rightarrow H_{\mathbb{T}, \Gamma_{n}}^{k+2}(\Omega)
\end{aligned}
$$

satisfying

$$
\begin{aligned}
& \hat{\mathcal{Q}}_{\mathrm{Div}_{\mathbb{T}}, \Gamma_{n}}^{k, 1}+\hat{\mathcal{Q}}_{\mathrm{Div}_{\mathbb{T}}, \Gamma_{n}}^{k, \infty}+\operatorname{Rot} \hat{\mathcal{Q}}_{\mathrm{Div}_{T}, \Gamma_{n}}^{k, 0}=\mathrm{id}_{\mathrm{H}_{\mathrm{T}, \Gamma_{n}}^{k}\left(\mathrm{Div}_{2}, \Omega\right)}, \\
& \hat{\mathcal{Q}}_{\mathrm{s} \mathrm{Rot}_{T}, \Gamma_{t}}^{k, 1}+\hat{\mathcal{Q}}_{\mathrm{s} \mathrm{Rot}_{T}, \Gamma_{t}}^{k, \infty}+\operatorname{devGrad} \hat{\mathcal{Q}}_{\mathrm{s} \mathrm{Rot}_{T}, \Gamma_{t}}^{k, 0}=\operatorname{id}_{\mathrm{H}_{\mathrm{T}, \Gamma_{t}}^{k}(\text { symRot }, \Omega)}, \\
& \hat{\mathcal{Q}}_{\text {divDiv }_{s}, \Gamma_{n}}^{k, 1}+\hat{\mathcal{Q}}_{\text {divDiv }_{s}, \Gamma_{n}}^{k, \infty}+\operatorname{symRot} \hat{\mathcal{Q}}_{\operatorname{divDiv}_{s}, \Gamma_{n}}^{k, 0}=\operatorname{id}_{\mathrm{H}_{\mathrm{s}, \Gamma_{n}}^{k}}(\mathrm{divDDiv}, \Omega)^{k}, \\
& \hat{\mathcal{Q}}_{\mathrm{divDDiv}_{s}, \Gamma_{n}}^{k+1, k, 1}+\hat{\mathcal{Q}}_{\text {divDiv }_{s}, \Gamma_{n}}^{k+1, k, \infty}+\operatorname{symRot} \hat{\mathcal{Q}}_{\text {divDiv }_{s}, \Gamma_{n}}^{k+1, k, 0}=\operatorname{id}_{H_{\mathrm{s}, \Gamma_{n}}^{k+1, k}(\text { divDiv, }, \Omega)}
\end{aligned}
$$

and

$$
\begin{aligned}
& \hat{\mathcal{Q}}_{\operatorname{Div}_{\mathbb{T}}, \Gamma_{n}}^{k, 1}=\widetilde{\mathcal{Q}}_{\operatorname{Div}_{\mathbb{T}}, \Gamma_{n}}^{k, 1}=\mathcal{P}_{\operatorname{Div}_{\mathbb{T}}, \Gamma_{n}}^{k} \operatorname{Div}_{\mathbb{T}, \Gamma_{n}}^{k}=\mathcal{Q}_{\operatorname{Div}_{\mathbb{T}}, \Gamma_{n}}^{k, 1}\left(\operatorname{Div}_{\mathbb{T}, \Gamma_{n}}^{k}\right)_{\perp}^{-1} \operatorname{Div}_{\mathbb{T}, \Gamma_{n}}^{k}, \\
& \hat{\mathcal{Q}}_{\mathrm{Div}_{\mathrm{T}}, \Gamma_{n}}^{k, \infty}=I_{\pi_{N\left(\mathrm{~s}^{\mathrm{Rot}} \mathrm{~T}_{\Gamma_{t}}\right)}^{-1}}^{\pi_{N\left(\mathrm{~s} \mathrm{Rot}_{\mathrm{T}}, \Gamma_{t}\right)} \widetilde{\mathcal{N}}_{\mathrm{Div}_{\mathrm{T}}, \Gamma_{n}}^{k}, ~}
\end{aligned}
$$

$$
\begin{aligned}
& \widehat{\mathcal{Q}}_{\mathrm{s} \operatorname{Rot}_{T}, \Gamma_{t}}^{k, \infty}=I_{\pi_{N\left(\mathrm{Div}_{T, \Gamma_{n} \mu}\right)}^{-1} \pi_{N\left(\operatorname{Div}_{T, \Gamma_{n}} \mu\right)} \widetilde{\mathcal{N}}_{\mathrm{SRot}_{T}, \Gamma_{t}}^{k}, ~}^{k}
\end{aligned}
$$

$$
\begin{aligned}
& \hat{\mathcal{Q}}_{\text {divDiv }_{\mathbb{S}}, \Gamma_{n}}^{k, 1}=\widetilde{\mathcal{Q}}_{\text {divDiv }_{s}, \Gamma_{n}}^{k, 1}=\mathcal{P}_{\operatorname{divDiv}_{s}, \Gamma_{n}}^{k} \operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}}^{k}=\mathcal{Q}_{\text {divDiv }_{\mathbb{S}}, \Gamma_{n}}^{k, 1}\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}}^{k}\right)_{\perp}^{-1} \operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}}^{k},
\end{aligned}
$$

$$
\begin{aligned}
& \hat{\mathcal{Q}}_{\text {divDiv }_{S}, \Gamma_{n}}^{k+1, k, 1}=\widetilde{\mathcal{Q}}_{\text {divDiv }_{s}, \Gamma_{n}}^{k+1, k, 1}=\mathcal{P}_{\text {divDiv }_{s}, \Gamma_{n}}^{k+1, k} \operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}}^{k+1, k}=\mathcal{Q}_{\text {divDiv }_{s}, \Gamma_{n}}^{k+1, k, 1}\left(\operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}}^{k+1, k}\right)_{\perp}^{-1} \operatorname{divDiv}_{\mathbb{S}, \Gamma_{n}}^{k+1, k},
\end{aligned}
$$

$$
\begin{aligned}
& \hat{\mathcal{Q}}_{\text {divDiv }_{s}, \Gamma_{n}}^{k+1, k, 0}=\mathcal{P}_{{ }_{s} \operatorname{Rot}_{T}, \Gamma_{n}}^{k+1}\left(1-I_{\left.\pi_{N(\mathbb{T}} \operatorname{Rot}_{5} \Gamma_{t}\right)}^{-1} \pi_{N\left({ }_{T} \operatorname{Rot}_{S, \Gamma_{t}}\right)}\right) \widetilde{\mathcal{N}}_{\text {divDiv }_{s}, \Gamma_{n}}^{k+1, k}
\end{aligned}
$$

with

$$
\begin{aligned}
& \widetilde{\mathcal{N}}_{\text {Div }_{T}, \Gamma_{n}}^{k}=1-\widetilde{\mathcal{Q}}_{\text {Div }_{T}, \Gamma_{n}}^{k, 1}, \quad \widetilde{\mathcal{N}}_{\text {divDiv }_{s}, \Gamma_{n}}^{k}=1-\widetilde{\mathcal{Q}}_{\text {divDiv }_{s}, \Gamma_{n}}^{k, 1}, \\
& \widetilde{\mathcal{N}}_{\mathrm{S}}^{\mathrm{Rot}}{ }_{T}, \Gamma_{t}=1-\widetilde{\mathcal{Q}}_{\mathrm{s}}^{k, \text { Rot }_{T}, \Gamma_{t}}, \quad \widetilde{\mathcal{N}}_{\text {divDiv }_{s}, \Gamma_{n}}^{k+1, k}=1-\widetilde{\mathcal{Q}}_{\text {divDiv }_{s}, \Gamma_{n}}^{k+1, k, 1},
\end{aligned}
$$

and

$$
\begin{aligned}
& I_{\pi_{N\left(s^{R o t_{T}, \Gamma_{t}}\right)}}: \operatorname{Lin} \mathcal{B}^{\operatorname{Div}_{T, \Gamma_{n}}(\Omega)} \rightarrow \operatorname{Lin} \pi_{N\left(s_{s} \operatorname{Rot}_{T}, \Gamma_{t}\right)} \mu^{-1} \mathcal{B}^{\operatorname{Div}_{T, \Gamma_{n}}(\Omega)=\mathcal{H}_{\mathbb{T}, \Gamma_{t}, \Gamma_{n} \mu}(\Omega)} \\
& \left.B_{\ell}^{\text {Div }_{T, \Gamma_{n}}} \quad \mapsto \quad \pi_{N(\mathrm{~s}} \mathrm{Rot}_{T}, \Gamma_{t}\right) \mu^{-1} B_{\ell}^{\mathrm{Div}_{T, \Gamma_{n}}} .
\end{aligned}
$$

