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We show that the de Rham Hilbert complex with mixed boundary conditions
on bounded strong Lipschitz domains is closed and compact. The crucial results
are compact embeddings which follow by abstract arguments using functional
analysis together with particular regular decompositions. Higher Sobolev order
results are proved as well.

KEYWORDS

compact embeddings, de Rham complex, Hilbert complexes, mixed boundary conditions, regular
decompositions, regular potentials

MSC CLASSIFICATION

35A23; 35Q61; 58A12; 47B02

1 INTRODUCTION

In this paper, we prove regular decompositions and resulting compact embeddings for the de Rham complex (of vector
fields)

and, more generally, for the de Rham complex (of differential forms)

In forthcoming papers, we shall extend our results to other more complicated complexes as well, such as the elasticity
complex

or the primal and dual biharmonic complexes

which is possible due to the general structure and our unified approach and methods. All complexes are considered with
mixed boundary conditions on a bounded strong Lipschitz domain Ω ⊂ Rd. Some of our results hold also for higher
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PAULY AND SCHOMBURG

Sobolev orders. Note that the first three complexes are formally symmetric and that the last two complexes are formally
adjoint or dual to each other.

These Hilbert complexes share the same geometric sequence (complex) structure

where A0 and A1 are densely defined and closed (unbounded) linear operators between Hilbert spaces H𝓁 . The corre-
sponding domain Hilbert complex is denoted by

In fact, we show that the assumptions of Lemma 2.22 hold, which provides an elegant, abstract, and short way to prove
the crucial compact embeddings

D(A1) ∩ D(A∗
0) → H1 (1)

for the de Rham Hilbert complexes, cf. Theorems 4.8, Theorem 4.16, and Theorem 5.4, Theorem 5.7. In principle, our gen-
eral technique—compact embeddings by regular decompositions and Rellich's selection theorem—works for all Hilbert
complexes known in the literature; see, for example, Arnold and Hu1 for a comprehensive list of such Hilbert complexes.

Roughly speaking, a regular decomposition has the form

D(A1) = H+
1 + A0H+

0

with regular subspaces H+
0 ⊂ D(A0) and H+

1 ⊂ D(A1) such that the embeddings H+
0 → H0 and H+

1 → H1 are compact. The
compactness is typically and simply given by Rellich's selection theorem, which justifies the notion ‘regular,’ by applying
A1 any regular decomposition implies regular potentials

R(A1) = A1H+
1

by the complex property. The respective regular potential and decomposition operators

A1 ∶ R(A1) → H+
1 , 1

A1
∶ D(A1) → H+

1 , 0
A1

∶ D(A1) → H+
0

are bounded and satisfy A1A1 = idR(A1) as well as idD(A1) = 1
A1

+ A0
0
A1

.
Note that (1) implies several important results related to the particular Hilbert complex by the so-called FA-ToolBox, cf.

previous studies2–5 and other works.6–8 Upon others, one gets Friedrichs/Poincaré type estimates, closed ranges, compact
resolvents, Helmholtz-type decompositions, comprehensive solution theories, div-curl lemmas, discrete point spectra,
eigenvector expansions, a posteriori error estimates, and index theorems for related Dirac type operators. See Theorem
4.9 and Theorem 5.5 for a selection of such results.

For an historical overview on the compact embeddings (1) corresponding to the de Rham complex and Maxwell's
equations, also called Weck's or Weber-Weck-Picard's selection theorem, see, for example, the introductions in Bauer
et al. and Neff et al,9,10 the original papers,11–16 and the recent state of the art results for mixed boundary conditions and
bounded weak Lipschitz domains in other works.9,17,18 Compact embeddings (1) corresponding to the biharmonic and
the elasticity complex are given in Pauly and Zulehner8 and their other works,6,7 respectively. Note that in the recent
paper,1 similar results have been shown for the special case of no or full boundary conditions using an alternative and
more algebraic approach, the so-called Bernstein–Gelfand–Gelfand (BGG) resolution.

2 FAT: FA-TOOLBOX

We collect and present some old and new results from the so-called functional analysis toolbox (FA-ToolBox).

2466



PAULY AND SCHOMBURG

2.1 FAT I: Linear operators, adjoints, and fundamental lemmas
We shall work with bounded and unbounded linear operators. For this, let H0 and H1 be Hilbert spaces. For a bounded
linear operator A, we use the notation

A ∶ D(A) → H1 (2)

where D(A) ⊂ H0 is the domain of definition of A. Its unbounded version will be denoted by

A ∶ D(A) ⊂ H0 → H1. (3)

Kernel and range of A shall be denoted by N(A) and R(A), respectively. Note that—equipped with the standard graph
inner product—D(A) becomes a Hilbert space as long as A is closed. The difference of the latter two versions of A comes
from using the norm of D(A) or simply the norm of H0, respectively. Generally, inner product, norm, orthogonality, and
orthogonal sum in a Hilbert space H shall be denoted by ⟨ · , ·⟩H, | · |H, ⟂H, and ⊕H, respectively. By ∔, we indicate a
direct sum. The dual space of a Banach or Hilbert space H will be written as H′.

There are at least three different adjoints. The bounded linear operator (2) has the Banach space adjoint A′ ∶ H′
1 →

D(A)′, which—as usual—may be identified with its modification

A′H1 ∶ H1 → D(A)′,

where H1 ∶ H1 → H′
1 denotes the Riesz isomorphism of H1. Another option is the Hilbert space adjoint defined by

A∗ ∶= −1
D(A)A

′H1 ∶ H1 → D(A).

On the other hand, the unbounded linear operator (3) has the Hilbert space adjoint

A∗ ∶ D(A∗) ⊂ H1 → H0,

provided that A is densely defined. A∗ is always closed and characterised by

∀x ∈ D(A) ∀𝑦 ∈ D(A∗) ⟨Ax, 𝑦⟩H1 = ⟨x,A∗𝑦⟩H0 .

Note that the different adjoints are strongly related through the respective Riesz isomorphisms. If the unbounded operator
A is densely defined and closed, so is A∗. In this case, A∗∗ = A = A, and we call (A, A∗) a dual pair.

Let us recall a small part of the co-called FA-ToolBox from, for example, Pauly;3, Lemma 4.1, Lemma 4.3 see also previous
studies,2,4,5,7,8 for more details. For this, let A from (3) be densely defined and closed. Moreover, let

A⟂ ∶=  ∶= A|N(A)⟂H0 ∶ D(A⟂) ⊂ N(A)⟂H0 → N(A∗)⟂H1 , D(A⟂) ∶= D(A) ∩ N(A)⟂H0 ,

A∗
⟂ ∶= ∗ ∶= A∗|N(A∗)⟂H1 ∶ D(A∗

⟂) ⊂ N(A∗)⟂H1 → N(A)⟂H0 , D(A∗
⟂) ∶= D(A∗) ∩ N(A∗)⟂H1

denote the reduced operators, which are densely defined, closed, and injective. Note that by the projection theorem, we
have the orthogonal Helmholtz-type decompositions

H0 = N(A) ⊕H0 N(A)⟂H0 , N(A)⟂H0 = R(A∗), N(A) = R(A∗)⟂H0 ,

D(A) = N(A) ⊕H0 D(A⟂),

H1 = N(A∗) ⊕H1 N(A∗)⟂H1 , N(A∗)⟂H1 = R(A), N(A∗) = R(A)⟂H1 ,

D(A∗) = N(A∗) ⊕H1 D(A∗
⟂),

(4)

and thus, R(A⟂) = R(A) and R(A∗
⟂) = R(A∗).

Lemma 2.1 (fundamental lemma 1). The following assertions are equivalent:

(i) ∃ cA > 0 ∀x ∈ D(A⟂) |x|H0 ≤ cA|Ax|H1
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(i') ∃cA∗ > 0 ∀𝑦 ∈ D(A∗
⟂) |𝑦|H1 ≤ cA∗ |A∗x|H0

(ii) R(A) = R(A⟂) is closed.
(ii') R(A∗) = R(A∗

⟂) is closed.
(iii) A−1

⟂ ∶ R(A) → D(A⟂) is continuous.
(iii') (A∗

⟂)
−1 ∶ R(A∗) → D(A∗

⟂) is continuous.

Moreover, for the ‘best’ constants, it holds |||A−1
⟂
|||R(A),H0

= cA = cA∗ = |||(A∗
⟂)

−1|||R(A∗),H1
.

Lemma 2.2 (fundamental lemma 2). Let D(A⟂) → H0 be compact. Then each of (i)–(iii') in Lemma 2.1 holds.

Lemma 2.3 (fundamental lemma 3). The following assertions are equivalent:

(i) D(A⟂) → H0 is compact.
(i') D(A∗

⟂) → H1 is compact.
(ii) A−1

⟂ ∶ R(A) → H0 is compact.
(ii') (A∗

⟂)
−1 ∶ R(A∗) → H1 is compact.

Remark 2.4. D(A) → H0 compact implies D(A⟂) → H0 compact, and D(A∗) → H1 compact implies D(A∗
⟂) → H1

compact.

2.2 FAT II: Hilbert complexes and Mini FA-ToolBox
We continue to make use of parts of the FA-ToolBox from, e.g.,2–5 and,6–8 together with an extension suited for so called
(bounded linear) regular potential operators and regular decompositions introduced in Pauly and Zulehner.8 Lemma 2.22
provides an elegant, abstract, and short way to prove compact embedding results for an arbitrary Hilbert complex.

For this, let H0,H1,H2 be Hilbert spaces and let

be a primal and dual Hilbert complex, that is,

A0 ∶ D(A0) ⊂ H0 → H1, A1 ∶ D(A1) ⊂ H1 → H2

are densely defined and closed (unbounded) linear operators satisfying the complex property

A1A0 ⊂ 0, (6)

together with (densely defined and closed Hilbert space) adjoints

A∗
0 ∶ D(A∗

0) ⊂ H1 → H0, A∗
1 ∶ D(A∗

1) ⊂ H2 → H1.

Remark 2.5. Note that the complex property (6) is equivalent to R(A0)⊂N(A1), which is equivalent to the dual complex
property R(A∗

1) ⊂ N(A∗
0) as

R(A∗
1) ⊂ R(A∗

1) = N(A1)⟂H1 ⊂ R(A0)⟂H1 = N(A∗
0)

and vice versa.

Remark 2.6. Let A0, A1 be given by the closures of densely defined (unbounded) linear operators

Å0 ∶ D(Å0) ⊂ H0 → H1, Å1 ∶ D(Å1) ⊂ H1 → H2

satisfying the complex property Å1Å0 ⊂ 0. Then A0 = Å0 and A1 = Å1 are densely defined and closed (unbounded)
linear operators satisfying the complex property A1A0 ⊂ 0, since N(A1) is closed and thus R(Å0) ⊂ N(Å1) ⊂ N(A1)
implies R(A0)⊂N(A1).
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As in (4) and defining the cohomology group

N0,1 ∶= N(A1) ∩ N(A∗
0)

we get the following orthogonal Helmholtz-type decompositions.

Lemma 2.7 (Helmholtz decomposition lemma). The refined orthogonal Helmholtz-type decompositions

H1 = R(A0) ⊕H1 N(A∗
0), H1 = N(A1) ⊕H1 R(A∗

1),

N(A1) = R(A0) ⊕H1 N0,1, N(A∗
0) = N0,1 ⊕H1 R(A∗

1),

D(A1) = R(A0) ⊕H1

(
D(A1) ∩ N(A∗

0)
)
, D(A∗

0) =
(

N(A1) ∩ D(A∗
0)
)
⊕H1 R(A∗

1),
D(A∗

0) = D
(
(A∗

0)⟂
)
⊕H1 N(A∗

0), D(A1) = N(A1) ⊕H1 D ((A1)⟂) ,

(7)

as well as R
(
(A∗

0)⟂
)
= R(A∗

0) and R ((A1)⟂) = R(A1) hold. Moreover,

H1 = R(A0) ⊕H1 N0,1 ⊕H1 R(A∗
1),

D(A∗
0) = D

(
(A∗

0)⟂
)
⊕H1 N0,1 ⊕H1 R(A∗

1),

D(A1) = R(A0) ⊕H1 N0,1 ⊕H1 D ((A1)⟂) ,
D(A1) ∩ D(A∗

0) = D
(
(A∗

0)⟂
)
⊕H1 N0,1 ⊕H1 D ((A1)⟂) .

(8)

As

D ((A1)⟂) = D(A1) ∩ R(A∗
1) ⊂ D(A1) ∩ N(A∗

0) ⊂ D(A1) ∩ D(A∗
0),

D
(
(A∗

0)⟂
)
= R(A0) ∩ D(A∗

0) ⊂ N(A1) ∩ D(A∗
0) ⊂ D(A1) ∩ D(A∗

0)

with continuous embeddings, we get the following result.

Lemma 2.8 (compactness lemma). The following assertions are equivalent:

(i) D ((A0)⟂) → H0, D ((A1)⟂) → H1, and N0,1 → H1 are compact.
(ii) D(A1) ∩ D(A∗

0) → H1 is compact.

In this case, the cohomology group N0, 1 has finite dimension.

Summarising the latter results, we get the following theorem.

Theorem 2.9 (mini FAT). Let D(A1) ∩ D(A∗
0) → H1 be compact. Then:

(i) The ranges R(A0), R(A∗
0) and R(A1), R(A∗

1) are closed.
(ii) The inverse operators (A0)−1

⟂ , (A∗
0)

−1
⟂ and (A1)−1

⟂ , (A∗
1)

−1
⟂ are compact.

(iii) The cohomology group N0,1 = N(A1) ∩ N(A∗
0) has finite dimension.

(iv) The orthogonal Helmholtz-type decomposition H1 = R(A0) ⊕H1 N0,1 ⊕H1 R(A∗
1) holds.

(v) There exist cA0 , cA1 > 0 such that

∀x ∈ D ((A0)⟂) = D(A0) ∩ N(A0)⟂H0 = D(A0) ∩ R(A∗
0) |x|H0 ≤ cA0 |A0x|H1 ,

∀𝑦 ∈ D
(
(A∗

0)⟂
)
= D(A∗

0) ∩ N(A∗
0)

⟂H1 = D(A∗
0) ∩ R(A0) |𝑦|H1 ≤ cA0 |A∗

0𝑦|H0 ,

∀𝑦 ∈ D ((A1)⟂) = D(A1) ∩ N(A1)⟂H1 = D(A1) ∩ R(A∗
1) |𝑦|H1 ≤ cA1 |A1𝑦|H2 ,

∀z ∈ D
(
(A∗

1)⟂
)
= D(A∗

1) ∩ N(A∗
1)

⟂H2 = D(A∗
1) ∩ R(A1) |z|H2 ≤ cA1 |A∗

1z|H1 .

(v') With cA0 and cA1 from (v), it holds

∀𝑦 ∈ D(A1) ∩ D(A∗
0) ∩ N

⟂H1
0,1 |𝑦|2H1

≤ c2
A0
|A∗

0𝑦|2H0
+ c2

A1
|A1𝑦|2H2

.
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Definition 2.10. The Hilbert complex (5) is called

• closed, if R(A0) and R(A1) are closed,
• compact, if the embedding D(A1) ∩ D(A∗

0) → H1 is compact.

Remark 2.11. A compact Hilbert complex is already closed.

2.3 FAT III: Bounded regular decompositions and potentials
Bounded regular decompositions and bounded regular potentials are very powerful tools. In particular, compact embed-
dings can easily be proved, cf. Lemma 2.22, which then—in combination with the FA-ToolBox—immediately lead to a
comprehensive list of important results for the underlying Hilbert complex, cf. Theorem 2.9 and Pauly.5

Throughout this subsection, let A0 and A1 be densely defined and closed linear operators satisfying the complex property,
that is, R(A0)⊂N(A1). Moreover, we fix some regular subspaces H+

0 , H+
1 and H+

2 , such that either

H+
0 → D(A0) → H0 and H+

1 → D(A1) → H1,

or H+
1 → D(A∗

0) → H1 and H+
2 → D(A∗

1) → H2
(9)

hold with continuous embeddings. In the following, we consider regular decompositions of D(A1) and D(A∗
0) of the

following type

D(A1) = H+
1 + A0H+

0 , D(A∗
0) = H+

1 + A∗
1H+

2 . (10)

For the rest of this subsection, we concentrate on the first regular decomposition in (10). Analogous results hold true
for the second regular decomposition in (10), and we leave the corresponding reformulations to the interested reader.

Definition 2.12 (bounded regular decompositions). In (10), we call the regular decomposition D(A1) = H+
1 + A0H+

0
bounded, if there exist bounded linear operators

A1,1 ∶ D(A1) → H+
1 , A1,0 ∶ D(A1) → H+

0 ,

such that
A1,1 + A0A1,0 = idD(A1).

A1,1 and A1,0 are then called bounded linear regular decomposition operators.
More precisely, for each x∈D(A1), there exist two potentials

x1 ∶= A1,1x ∈ H+
1 , z ∶= A1,0x ∈ H+

0 ,

such that x= x1 +A0z and |x1|H+
1
+ |z|H+

0
≤ c|x|D(A1) with some c> 0 independent of x, x1, z.

Definition 2.13 (weak bounded regular decompositions). D(A1) = H+
1 + N(A1) is called a weak bounded regular

decomposition, if there exist bounded linear operators

A1,1 ∶ D(A1) → H+
1 , A1 ∶ D(A1) → N(A1)

such that A1,1 +A1 = idD(A1). A1,1 and A1 are again called bounded linear regular decomposition operators.
More precisely, for each x∈D(A1), there exist

x1 ∶= A1,1x ∈ H+
1 , x0 ∶= A1 x ∈ N(A1),

such that x= x1 + x0 and |x1|H+
1
+ |x0|H1 ≤ c|x|D(A1) with some c> 0 independent of x, x1, x0.

Remark 2.14. (bounded regular decompositions). For bounded regular decompositions, it holds:

2470



PAULY AND SCHOMBURG

(i) For A1,1 from Definition 2.12 or Definition 2.13, we have A1A1,1 = A1 by the complex property. Hence, N(A1)
is invariant under A1,1, that is, A1,1N(A1) ⊂ N(A1).

(ii) A bounded regular decomposition from Definition 2.12 implies a weak bounded regular decomposition from
Definition 2.13 by setting A1 ∶= A0A1,0 since A0H+

0 ⊂ N(A1) holds by the complex property.

Definition 2.15 (bounded regular potentials). We call R(A1) = A1H+
1 a bounded regular potential representation, if

there exists a bounded linear operator

A1 ∶ R(A1) → H+
1 with A1A1 = idR(A1).

We say that A1 is a bounded linear regular potential operator of A1. In particular, A1 is a bounded linear right inverse
of A1.

Analogously, we extend the latter definition to the operators A0, A∗
0 and A∗

1.

Remark 2.16. (bounded regular potentials). We state two simple facts about potential operators:

(i) Let a linear operator

A0 ∶ N(A1) ∩ N⟂H1
0,1 → D(A0) with A0A0 = id

N(A1)∩N
⟂H1
0,1

be given. Then R(A0) is closed as R(A0) = N(A1) ∩ N⟂H1
0,1 = R(A0A0) ⊂ R(A0).

(ii) Let a bounded linear operator

A0 ∶ N(A1) ∩ N
⟂H1
0,1 → H+

0 with A0A0 = id
N(A1)∩N

⟂H1
0,1

be given. Then (as above) R(A0) = N(A1) ∩ N
⟂H1
0,1 = A0H+

0 is closed and

A0 ∶ R(A0) → H+
0 with A0A0 = idR(A0)

is a bounded linear regular potential operator of A0.

Lemma 2.17 (bounded regular potentials by weak bounded regular decompositions). Let R(A1) be closed, and let
D(A1) = H+

1 + N(A1) be a weak bounded regular decomposition. Then the bounded regular potential representation
R(A1) = A1H+

1 holds and

A1 ∶= A1,1(A1)−1
⟂ ∶ R(A1) → H+

1 with A1A1 = idR(A1)

is a respective bounded linear regular potential operator of A1.

Proof. As R(A1) is closed, Lemma 2.1 shows that (A1)−1
⟂ ∶ R(A1) → D(A1) is bounded. Hence, so is A1 . Moreover,

A1A1 = A1A1,1(A1)−1
⟂ = A1(A1)−1

⟂ = idR(A1) by Remark 2.14.

Lemma 2.18 (weak bounded regular decompositions by bounded regular potentials). Let a bounded regular potential
representation R(A1) = A1H+

1 be given with bounded linear regular potential operator A1 ∶ R(A1) → H+
1 satisfying

A1A1 = idR(A1). Then

A1,1 ∶= A1 A1 ∶ D(A1) → H+
1 , A1 ∶= idD(A1) −A1,1 ∶ D(A1) → N(A1)

are bounded linear regular decomposition operators with

A1,1 +A1 = idD(A1)
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and implying the weak bounded regular decompositions

D(A1) = H+
1 + N(A1) = R(A1,1) ∔ N(A1) = R(A1,1) ∔ R(A1).

It holds A1A1,1 = A1, that is, N(A1) is invariant under A1,1. Note that R(A1,1) = R(A1).

Proof. A1,1 andA1 are bounded. Let x∈D(A1). Then A1x ∈ R(A1) andA1 A1x ∈ H+
1 with x̃ ∶= x−A1 A1x ∈ N(A1).

For the directness, let x = A1,1𝜑 = A1 A1𝜑 ∈ N(A1) with 𝜑 ∈ D(A1). Then 0 = A1x = A1𝜑, and hence, x = 0.

Remark 2.19. Note that 2
A1,1

= A1,1 and A1,1A1 = A1A1,1 = 0 hold for the special bounded linear regular
decomposition operator A1,1 = A1 A1 from the latter lemma. Hence,

(i) A1,1 and A1 are projections.
(ii) For I± ∶= A1,1±A1 , we observe I+ = I2

− = idD(A1). Thus, the operators I+, I2
−, as well as I− = 2A1,1 − idD(A1)

are topological isomorphisms on D(A1).
(iii) There exists c> 0 such that for x∈D(A1), it holds

c|A1,1x|H+
1
≤ |A1x|H2 ≤ |x|D(A1), |A1 x|H1 ≤ |x|H1 + |A1,1x|H1 .

(iii') For x∈N(A1), we have A1,1x = 0 and A1 x = x, that is, A1,1|N(A1) = 0 as well as A1 |N(A1) = idN(A1). In
particular, A1 is onto.

Corollary 2.20 (bounded regular decompositions by bounded regular potentials). Let the complex be exact, that is,
N(A1) = R(A0), and let R(A1) = A1H+

1 as well as R(A0) = A0H+
0 be bounded regular potential representations with

bounded linear regular potential operators A1 ∶ R(A1) → H+
1 and A0 ∶ R(A0) → H+

0 satisfying A1A1 = idR(A1) and
A0A0 = idR(A0), respectively. Then

A1,1 ∶ D(A1) → H+
1 , A1,0 ∶= A0A1 ∶ D(A1) → H+

0

with A1,1 = A1 A1 and A1 = idD(A1) − A1,1 from Lemma 2.18 are bounded linear regular decomposition operators
with

A1,1 + A0A1,0 = idD(A1)

and implying bounded regular decompositions

D(A1) = H+
1 + A0H+

0 = R(A1,1) ∔ A0H+
0 = R(A1,1) ∔ A0R(A1,0).

It holds A1A1,1 = A1; that is, N(A1) is invariant under A1,1. Note that R(A1,1) = R(A1) and R(A1,0) = R(A0).

Proof. A1,1 and A1,0 are bounded. Let x∈D(A1). Then A1x∈R(A1) and A1 A1x ∈ H+
1 with x̃ ∶= x − A1 A1x ∈

N(A1) = R(A0). Thus, z ∶= A0 x̃ ∈ H+
0 and A0z = x̃, that is,

x = A1 A1x + x̃ = A1 A1x + A0A0 x̃ = A1 A1x + A0A0(1 − A1 A1)x.

Directness is clear by Lemma 2.18 as A0H+
0 ⊂ N(A1) holds by the complex property.

Remark 2.21. There exists c> 0 such that for x∈D(A1), it holds

c|A1,1x|H+
1
≤ |A1x|H2 ≤ |x|D(A1), c|A1,0x|H+

0
≤ |A1 x|H1 ≤ |x|H1 + |A1,1x|H1 .

Note that A1,1|N(A1) = 0.
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2.4 FAT IV: Compactness results and mini FA-ToolBox
From Pauly and Zulehner,8, Theorem 2.8, Corollary 2.9 we cite the following compactness result.

Lemma 2.22 (compact embedding by regular decompositions). Let A0 and A1 be densely defined and closed linear
operators satisfying the complex property, that is, R(A0)⊂N(A1). Moreover, let

(i) either the bounded regular decomposition D(A1) = H+
1 + A0H+

0 hold with compact embeddings H+
0 → H0 and

H+
1 → H1,

(ii) or the bounded regular decomposition D(A∗
0) = H+

1 + A∗
1H+

2 hold with compact embeddings H+
1 → H1 and H+

2 →
H2.

Then the embedding D(A1) ∩ D(A∗
0) → H1 is compact.

For convenience, we repeat the proof of Pauly and Zulehner.8, Theorem 2.8

Proof. Let (xn) ⊂ D(A1) ∩ D(A∗
0) be a bounded sequence; that is, there exists c> 0 such that for all n we have |xn|H1 +|A1xn|H2 + |A∗

0xn|H0 ≤ c. By assumption, we decompose xn = p1, n +A0p0, n with p1,n ∈ H+
1 and p0,n ∈ H+

0 satisfying|p1,n|H+
1
+ |p0,n|H+

0
≤ c|xn|D(A1) ≤ c.Hence, (p𝓁,n) ⊂ H+

𝓁 is bounded in H+
𝓁 , 𝓁 = 0, 1, and thus, we can extract convergent

subsequences, again denoted by (p𝓁, n), such that (p𝓁, n) are convergent in H𝓁 , 𝓁 = 0, 1. Then with xn, m:= xn − xm and
p𝓁, n, m := p𝓁, n − p𝓁, m, we get

|xn,m|2H1
= ⟨xn,m, p1,n,m⟩H1 + ⟨A∗

0xn,m, p0,n,m⟩H0 ≤ c
(|p1,n,m|H1 + |p0,n,m|H0

)
,

which shows that (xn) is a Cauchy sequence in H1. Hence, we have shown (i), and (ii) follows analogously.

Theorem 2.23 (mini FAT by regular decompositions). Let the assumptions of Lemma 2.22 (i) hold with the bounded
linear regular decomposition operators A1,1 ∶ D(A1) → H+

1 as well as A1,0 ∶ D(A1) → H+
0 . Then,

(i) The embedding D(A1) ∩ D(A∗
0) → H1 is compact.

(ii) The assertions of Theorem 2.9 (mini FAT) hold.
(iii) The bounded regular potential representation R(A1) = A1H+

1 holds with bounded linear regular potential operator
A1 = A1,1(A1)−1

⟂ ∶ R(A1) → H+
1 satisfying A1A1 = idR(A1).

(iv) ̃A1,1 = A1 A1 ∶ D(A1) → H+
1 and ̃A1 = idD(A1) − ̃A1,1 ∶ D(A1) → N(A1) are bounded linear regular

decomposition operators with ̃A1,1 + ̃A1 = idD(A1) and the bounded regular decompositions

D(A1) = H+
1 + A0H+

0 = H+
1 + N(A1) = R(̃A1,1) ∔ N(A1) = R(̃A1,1) ∔ R(̃A1)

hold. Moreover, R(̃A1,1) = R(A1).
(iv') A1̃A1,1 = A1A1,1 = A1; that is, N(A1) is invariant under A1,1 and ̃A1,1. It holds ̃A1,1 = A1,1(A1)−1

⟂ A1. Hence,
̃A1,1|D((A1)⟂) = A1,1|D((A1)⟂), and thus, ̃A1,1 may differ from A1,1 only on N(A1).

Proof. (i) and (ii) are trivial. (iii) follows by Lemma 2.17, and Lemma 2.18 shows (iv). It holds

̃A1,1|D((A1)⟂) = A1,1(A1)−1
⟂ A1|D((A1)⟂) = A1,1(A1)−1

⟂ (A1)⟂
= A1,1idD((A1)⟂) = A1,1|D((A1)⟂),

which shows the last assertion of (iv').

Corollary 2.24 (mini FAT by regular decompositions). Let the assumptions of Lemma 2.22 (ii) hold with the bounded
linear regular decomposition operators A∗

0 ,1 ∶ D(A1) → H+
1 as well as A∗

0 ,2 ∶ D(A1) → H+
2 . Then (i) and (ii) of Theorem

2.23 hold. Moreover,

(iii) The bounded regular potential representation R(A∗
0) = A∗

0H+
1 holds with bounded linear regular potential operator

A∗
0
= A∗

0 ,1(A
∗
0)

−1
⟂ ∶ R(A∗

0) → H+
1 satisfying A∗

0A∗
0
= idR(A∗

0).
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(iv) ̃A∗
0 ,1 = A∗

0
A∗

0 ∶ D(A∗
0) → H+

1 and ̃A∗
0
= idD(A∗

0) − ̃A∗
0 ,1 ∶ D(A∗

0) → N(A∗
0) are bounded linear regular

decomposition operators with ̃A∗
0 ,1 + ̃A∗

0
= idD(A∗

0) and the bounded regular decompositions

D(A∗
0) = H+

1 + A∗
1H+

2 = H+
1 + N(A∗

0) = R(̃A∗
0 ,1) ∔ N(A∗

0) = R(̃A∗
0 ,1) ∔ R(̃A∗

0
)

hold. Moreover, R(̃A∗
0 ,1) = R(A∗

0
).

(iv') A∗
0̃A∗

0 ,1 = A∗
0A∗

0 ,1 = A∗
0; that is, N(A∗

0) is invariant under A∗
0 ,1 and ̃A∗

0 ,1. It holds ̃A∗
0 ,1 = A∗

0 ,1(A
∗
0)

−1
⟂ A∗

0 . Hence,
̃A∗

0 ,1|D((A∗
0)⟂) = A∗

0 ,1|D((A∗
0)⟂), and thus, ̃A∗

0 ,1 may differ from A∗
0 ,1 only on N(A∗

0).

2.5 FAT V: Long Hilbert complexes
As a typical situation in 3D (extending literally to any dimension), we have a long primal and dual Hilbert complex

Here, A0, A1, A2 are densely defined and closed (unbounded) linear operators between three Hilbert spaces H0,H1,H2
satisfying the complex properties

R(A0) ⊂ N(A1), R(A1) ⊂ N(A2).

A∗
0,A

∗
1,A

∗
2 are the corresponding (Hilbert space) adjoints. Moreover, A−1, A4 and H−1, H4 are particular operators and

kernels, respectively, that is,

H−1 ∶= N(A0) = R(A∗
0)

⟂H0 , H4 ∶= N(A∗
2) = R(A2)⟂H3

with corresponding bounded embeddings

A−1 ∶= 𝜄N(A0) ∶ N(A0) → H0, A∗
3 ∶= 𝜄N(A∗

2) ∶ N(A∗
2) → H3.

Remark 2.25. It holds A∗
−1 = 𝜄∗N(A0)

= 𝜋N(A0) ∶ H0 → N(A0), the ‘orthonormal projection’ onto the kernel of A0. To see
this, we note A∗

−1 ∶ H0 → N(A0) and for x ∈ H0 and 𝜑∈N(A0)

⟨A−1𝜑, x⟩H0 = ⟨𝜑, x⟩H0 = ⟨𝜋N(A0)𝜑, x⟩H0 = ⟨𝜑, 𝜋N(A0)x⟩H0 = ⟨𝜑, 𝜋N(A0)x⟩N(A0).

Actually, the correct orthonormal projection onto N(A0) is then given by the self-adjoint bounded linear operator
A−1A∗

−1 = 𝜄N(A0)𝜄
∗
N(A0)

= 𝜋N(A0) ∶ H0 → H0 with R(𝜋N(A0)) = N(A0). Analogously, A3 = 𝜄∗N(A∗
2)
= 𝜋N(A∗

2) ∶ H3 → N(A∗
2)

and A∗
3A3 = 𝜄N(A∗

2)𝜄
∗
N(A∗

2)
= 𝜋N(A∗

2) ∶ H3 → H3, respectively, with R(𝜋N(A∗
2)) = N(A∗

2).

The latter arguments show that the long primal and dual Hilbert complex (11) reads

with the complex properties

R(A−1) = N(A0), R(A0) ⊂ N(A1), R(A1) ⊂ N(A2), R(A2) = N(A3),

R(A∗
0) = N(A∗

−1), R(A∗
1) ⊂ N(A∗

0), R(A∗
2) ⊂ N(A∗

1), R(A∗
3) = N(A∗

2).

Definition 2.26. The long Hilbert complex (12) is called

• closed, if R(A0), R(A1), and R(A2) are closed,
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• compact, if the embeddings D(A1) ∩ D(A∗
0) → H1 and D(A2) ∩ D(A∗

1) → H1 as well as

D(A0) ∩ D(A∗
−1) = D(A0) → H0, D(A3) ∩ D(A∗

2) = D(A∗
2) → H3

are compact.

Remark 2.27. A compact long Hilbert complex is already closed.

Note that the cohomology groups at both ends are trivial, that is,

N−1,0 = N(A0) ∩ N(A∗
−1) = N(A0) ∩ N(A0)⟂H0 = {0},

N2,3 = N(A3) ∩ N(A∗
2) = N(A∗

2)
⟂H3 ∩ N(A∗

2) = {0}.
(13)

3 NOTATIONS AND PRELIMINARIES

3.1 Domains
Throughout this paper, let Ω ⊂ Rd, d ∈ N, be a bounded strong Lipschitz domain (locally Ω lies above a graph of some
Lipschitz function). Moreover, let the boundaryΓ ofΩ be decomposed into two strong Lipschitz subsetsΓt andΓn ∶= Γ∖Γ t
forming the interface Γt ∩ Γn for the mixed boundary conditions (tangential and normal). See other works9,17,18 for exact
definitions. We call (Ω,Γt) a bounded strong Lipschitz pair.

We also recall the notion of an extendable strong Lipschitz domain through either one of the boundary parts Γt or Γn;
see Bauer et al.18, Section 5.4 and Bauer et al.17, Section 7 for a definition. Roughly speaking, a bounded strong Lipschitz pair
(Ω,Γt) is called extendable, if

• Ω and Γt are topologically trivial, and
• Ω can be extended through Γt to some topologically trivial and bounded strong Lipschitz domain Ω̂, resulting in a

new topologically trivial and bounded strong Lipschitz domain Ω̃ = int(Ω ∪ Ω̂), cf. the figure on the right or Bauer
et al.18, Figure 3.2 for more details.

Lemma 3.1. Any bounded strong Lipschitz pair (Ω,Γt) can be decomposed into a finite union of extendable bounded
strong Lipschitz pairs (Ω𝓁 ,Γt,𝓁) together with a subordinate partition of unity.

3.2 Sobolev spaces of scalar, vector and tensor fields
In this subsection, let d = 3. The usual Lebesgue and Sobolev Hilbert spaces (of scalar, vector, or tensor valued fields)
are denoted by L2(Ω), Hk(Ω), H(rot,Ω), H(div,Ω) for k ∈ Z and by H0(rot,Ω) and H0(div,Ω) we indicate the spaces with
vanishing rot and div, respectively. Homogeneous boundary conditions for these standard differential operators grad, rot
and div are introduced in the strong sense as closures of respective test fields from

C∞
Γt
(Ω) ∶=

{
𝜙|Ω ∶ 𝜙 ∈ C∞(Rd), supp𝜙 compact, dist(supp𝜙,Γt) > 0

}
,

that is, for k ∈ N0

Hk
Γt
(Ω) ∶= C∞

Γt
(Ω)

Hk(Ω)
, HΓt (rot,Ω) ∶= C∞

Γt
(Ω)

H(rot,Ω)
, HΓt (div,Ω) ∶= C∞

Γt
(Ω)

H(div,Ω)
,
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and we have Hk
∅(Ω) = Hk(Ω), H∅(rot,Ω) = H(rot,Ω) and H∅(div,Ω) = H(div,Ω), which are well known density results

and incorporated into the notation by purpose. Spaces with vanishing rot and div are again denoted by HΓ t ,0(rot,Ω) and
HΓ t ,0(div,Ω), respectively. Note that for k = 0, we have H0

Γ t
(Ω) = L2(Ω) and for the gradient we can also write H1

Γ t
(Ω) =

HΓ t (grad,Ω). Moreover, we introduce for k ∈ N0 the nonstandard Sobolev spaces

Hk(rot,Ω) ∶=
{

v ∈ Hk(Ω) ∶ rot v ∈ Hk(Ω)
}
,

Hk
Γt
(rot,Ω) ∶=

{
v ∈ Hk

Γt
(Ω) ∩ HΓt (rot,Ω) ∶ rot v ∈ Hk

Γt
(Ω)

}
,

Hk(div,Ω) ∶=
{

v ∈ Hk(Ω) ∶ div v ∈ Hk(Ω)
}
,

Hk
Γt
(div,Ω) ∶=

{
v ∈ Hk

Γt
(Ω) ∩ HΓt (div,Ω) ∶ div v ∈ Hk

Γt
(Ω)

}
.

We see Hk
∅(rot,Ω) = Hk(rot,Ω) and for k = 0 we have H0

∅(rot,Ω) = H0(rot,Ω) = H(rot,Ω) and H0
Γ t
(rot,Ω) = HΓ t (rot,Ω).

Note that for Γt ≠∅ and k ≥ 1, it holds

Hk
Γt
(rot,Ω) =

{
v ∈ Hk

Γt
(Ω) ∶ rot v ∈ Hk

Γt
(Ω)

}
,

but for Γt ≠∅ and k = 0
(

as H0
Γ t
(Ω) = L2(Ω)

)
,

H0
Γt
(rot,Ω) =

{
v ∈ H0

Γt
(Ω) ∩ HΓt (rot,Ω) ∶ rot v ∈ H0

Γt
(Ω)

}
= HΓt (rot,Ω)

⊊
{

v ∈ H0
Γt
(Ω) ∶ rot v ∈ H0

Γt
(Ω)

}
= H0

∅(rot,Ω) = H(rot,Ω).

As before,

Hk
Γt ,0(rot,Ω) ∶= Hk

Γt
(Ω) ∩ HΓt ,0(rot,Ω) = Hk

Γt
(rot,Ω) ∩ H0(rot,Ω) =

{
v ∈ Hk

Γt
(rot,Ω) ∶ rot v = 0

}
.

The corresponding remarks and definitions extend to the Hk
Γ t
(div,Ω)-spaces as well.

At this point, let us note that boundary conditions can also be defined in the weak sense by

Hk
Γt
(Ω) ∶=

{
u ∈ Hk(Ω) ∶ ⟨𝜕𝛼u, 𝜙⟩L2(Ω) = (−1)|𝛼|⟨u, 𝜕𝛼𝜙⟩L2(Ω) ∀𝜙 ∈ C∞

Γn
(Ω) ∀ |𝛼| ≤ k

}
,

HΓt (rot,Ω) ∶=
{

v ∈ H(rot,Ω) ∶ ⟨rot v, 𝜓⟩L2(Ω) = ⟨v, rot 𝜓⟩L2(Ω) ∀𝜓 ∈ C∞
Γn
(Ω)

}
,

HΓt (div,Ω) ∶=
{

v ∈ H(div,Ω) ∶ ⟨div v, 𝜙⟩L2(Ω) = −⟨v, grad𝜙⟩L2(Ω) ∀𝜙 ∈ C∞
Γn
(Ω)

}
.

Analogously, we define the Sobolev spaces Hk
Γ t
(rot,Ω), Hk

Γ t
(div,Ω) and Hk

Γ t ,0(rot,Ω), Hk
Γ t ,0(div,Ω) using the respective

Sobolev spaces with weak boundary conditions. Note that ‘strong ⊂ weak’ holds, for example,

Hk
Γt
(Ω) ⊂ Hk

Γt
(Ω), HΓt (rot,Ω) ⊂ HΓt (rot,Ω), Hk

Γt
(div,Ω) ⊂ Hk

Γt
(div,Ω),

and that the complex properties hold in both the strong and the weak case, for example,

grad Hk+1
Γt

(Ω) ⊂ Hk
Γt ,0(rot,Ω), rot Hk

Γt
(rot,Ω) ⊂ Hk

Γt ,0(div,Ω),

which follows immediately by the definitions. The next lemma shows that indeed ‘strong = weak’ holds.

Lemma 3.2 (Bauer et al.9, Theorem 4.5). The Sobolev spaces defined by weak and strong boundary conditions coincide, for
example, Hk

Γ t
(Ω) = Hk

Γ t
(Ω), HΓ t (rot,Ω) = HΓ t (rot,Ω) and Hk

Γ t
(div,Ω) = Hk

Γ t
(div,Ω), cf. Lemma 3.3.
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Finally, we introduce the cohomology space of Dirichlet/Neumann fields (generalised harmonic fields)

Γt ,Γn,𝜀(Ω) ∶= HΓt ,0(rot,Ω) ∩ 𝜀−1HΓn,0(div,Ω).

The classical Dirichlet and Neumann fields are then given by Γ,∅,𝜀(Ω) anf ∅,Γ,𝜀(Ω), respectively. Here, 𝜀 ∶ L2(Ω) →
L2(Ω) is a symmetric and positive topological isomorphism (symmetric and positive bijective bounded linear operator),
which introduces a new inner product ⟨ · , ·⟩L2

𝜀(Ω)
∶= ⟨𝜀 · , ·⟩L2(Ω),

where L2
𝜀(Ω) ∶= L2(Ω) (as linear space) equipped with the inner product ⟨ · , ·⟩L2

𝜀(Ω)
. Such weights 𝜀 shall be called admis-

sible, and a typical example is given by a symmetric, L∞-bounded and uniformly positive definite tensor (matrix) field
𝜀 ∶ Ω → R3×3.

3.3 Sobolev spaces of differential forms
For spaces of differential forms, we follow the same rationale. Instead of the differential operators grad, rot and div, we
now have only the exterior derivative d and the co-derivative 𝛿 = ± ∗ d ∗, given by d and the Hodge star operator ∗.
The standard Lebesgue and Sobolev Hilbert spaces are denoted by Lq,2(Ω), Hq,k(Ω), Hq(d,Ω), Hq(𝛿,Ω) for k ∈ Z, and by
Hq

0(d,Ω) and Hq
0(𝛿,Ω), we indicate the spaces with vanishing d and 𝛿, respectively. Here, q ∈ Z marks the rank of the

respective differential forms. As before, homogeneous boundary conditions for d and 𝛿 are introduced in the strong sense
as closures of respective test forms from

Cq,∞
Γt

(Ω) ∶=
{
Φ|Ω ∶ Φ ∈ Cq,∞(Rd), suppΦ compact, dist(suppΦ,Γt) > 0

}
,

that is, for k ∈ N0

Hq,k
Γt
(Ω) ∶= Cq,∞

Γt
(Ω)

Hq,k(Ω)
, Hq

Γt
(d,Ω) ∶= Cq,∞

Γt
(Ω)

Hq(d,Ω)
, Hq

Γt
(𝛿,Ω) ∶= Cq,∞

Γt
(Ω)

Hq(𝛿,Ω)
,

and we have Hq,k
∅ (Ω) = Hq,k(Ω), Hq

∅(d,Ω) = Hq(d,Ω) and Hq
∅(𝛿,Ω) = Hq(𝛿,Ω), which are well known density results and

incorporated into the notation by purpose. Spaces with vanishing d and 𝛿 are again denoted by Hq
Γ t ,0

(d,Ω) and Hq
Γ t ,0

(𝛿,Ω),
respectively. Note that for k = 0, we have Hq,0

Γ t
(Ω) = Lq,2(Ω), and for q = 0, we can also write H0,1

Γ t
(Ω) = H0

Γ t
(d,Ω) ≅

Hd
Γ t
(𝛿,Ω). Moreover, we introduce for k ∈ N0 the nonstandard Sobolev spaces of q-forms

Hq,k(d,Ω) ∶=
{

E ∈ Hq,k(Ω) ∶ dE ∈ Hq+1,k(Ω)
}
,

Hq,k
Γt
(d,Ω) ∶=

{
E ∈ Hq,k

Γt
(Ω) ∩ Hq

Γt
(d,Ω) ∶ dE ∈ Hq+1,k

Γt
(Ω)

}
,

Hq,k(𝛿,Ω) ∶=
{

E ∈ Hq,k(Ω) ∶ 𝛿E ∈ Hq−1,k(Ω)
}
,

Hq,k
Γt
(𝛿,Ω) ∶=

{
E ∈ Hq,k

Γt
(Ω) ∩ Hq

Γt
(𝛿,Ω) ∶ 𝛿E ∈ Hq−1,k

Γt
(Ω)

}
.

We see Hq,k
∅ (d,Ω) = Hq,k(d,Ω), and for k = 0, we have Hq,0

∅ (d,Ω) = Hq,0(d,Ω) = Hq(d,Ω) and Hq,0
Γ t
(d,Ω) = Hq

Γ t
(d,Ω).

Note that for Γt ≠∅ and k ≥ 1, it holds

Hq,k
Γt
(d,Ω) =

{
E ∈ Hq,k

Γt
(Ω) ∶ dE ∈ Hq+1,k

Γt
(Ω)

}
,

but for Γt ≠∅ and k = 0
(

as Hq,0
Γ t
(Ω) = Lq,2(Ω)

)
,

Hq,0
Γt
(d,Ω) =

{
E ∈ Hq,0

Γt
(Ω) ∩ Hq

Γt
(d,Ω) ∶ dE ∈ Hq+1,0

Γt
(Ω)

}
= Hq

Γt
(d,Ω)

⊊
{

E ∈ Hq,0
Γt
(Ω) ∶ dE ∈ Hq+1,0

Γt
(Ω)

}
= Hq,0

∅ (d,Ω) = Hq(d,Ω).

2477



PAULY AND SCHOMBURG

As before,

Hq,k
Γt ,0

(d,Ω) ∶= Hq,k
Γt
(Ω) ∩ Hq

Γt ,0
(d,Ω) = Hq,k

Γt
(d,Ω) ∩ Hq

0(d,Ω) =
{

E ∈ Hq,k
Γt
(d,Ω) ∶ dE = 0

}
.

The corresponding remarks hold for the Hq,k
Γ t
(𝛿,Ω)-spaces as well.

Again, let us note that boundary conditions can also be defined in the weak sense by

Hq,k
Γt
(Ω) ∶=

{
E ∈ Hq,k(Ω) ∶ ⟨𝜕𝛼E,Φ⟩Lq,2(Ω) = (−1)|𝛼|⟨E, 𝜕𝛼Φ⟩Lq,2(Ω) ∀Φ ∈ Cq,∞

Γn
(Ω) ∀ |𝛼| ≤ k

}
,

Hq
Γt
(d,Ω) ∶=

{
E ∈ Hq(d,Ω) ∶ ⟨dE,Φ⟩Lq+1,2(Ω) = −⟨E, 𝛿Φ⟩Lq,2(Ω) ∀Φ ∈ Cq+1,∞

Γn
(Ω)

}
,

Hq
Γt
(𝛿,Ω) ∶=

{
E ∈ Hq(𝛿,Ω) ∶ ⟨𝛿E,Φ⟩Lq−1,2(Ω) = −⟨E, dΦ⟩Lq,2(Ω) ∀Φ ∈ Cq−1,∞

Γn
(Ω)

}
.

Analogously, we define the Sobolev spaces Hq,k
Γ t
(d,Ω), Hq,k

Γ t
(𝛿,Ω) and Hq,k

Γ t ,0
(d,Ω), Hq,k

Γ t ,0
(𝛿,Ω) using the respective Sobolev

spaces with weak boundary conditions. Note that ‘strong ⊂ weak’ holds, for example,

Hq,k
Γt
(Ω) ⊂ Hq,k

Γt
(Ω), Hq

Γt
(d,Ω) ⊂ Hq

Γt
(d,Ω), Hq,k

Γt
(𝛿,Ω) ⊂ Hq,k

Γt
(𝛿,Ω),

and that the complex properties hold in both the strong and the weak case, for example,

dHq,k
Γt
(d,Ω) ⊂ Hq+1,k

Γt ,0
(d,Ω), 𝛿Hq,k

Γt
(𝛿,Ω) ⊂ Hq−1,k

Γt ,0
(𝛿,Ω),

which follows immediately by the definitions. The next lemma shows that indeed ‘strong = weak’ holds.

Lemma 3.3 (Bauer et al.18, Theorem 4.7). The Sobolev spaces defined by weak and strong boundary conditions coincide, for
example, Hq,k

Γ t
(Ω) = Hq,k

Γ t
(Ω), Hq

Γ t
(d,Ω) = Hq

Γ t
(d,Ω) and Hq,k

Γ t
(𝛿,Ω) = Hq,k

Γ t
(𝛿,Ω).

For convenience, a self-contained proof of Lemma 3.3 (and hence also of Lemma 3.2) is given as a part of Lemma 4.6,
cf. Lemma 4.4 and Lemma 4.5.

Lemma 3.4 (Schwarz' lemma). Let |𝛼|≤k.

(i) For E ∈ Hq,k
Γ t
(d,Ω), it holds 𝜕𝛼E ∈ Hq,0

Γ t
(d,Ω) and d𝜕𝛼E = 𝜕𝛼dE.

(ii) For H ∈ Hq,k
Γ t
(𝛿,Ω), it holds 𝜕𝛼H ∈ Hq,0

Γ t
(𝛿,Ω) and 𝛿𝜕𝛼H = 𝜕𝛼𝛿H.

Proof. (i) can be seen as follows: For Φ ∈ Cq+1,∞
Γ n

(Ω), we have

⟨𝜕𝛼E, 𝛿Φ⟩Lq,2(Ω) = (−1)|𝛼|⟨E, 𝛿𝜕𝛼Φ⟩Lq,2(Ω)

= (−1)|𝛼|+1⟨dE, 𝜕𝛼Φ⟩Lq+1,2(Ω) = −⟨𝜕𝛼dE,Φ⟩Lq+1,2(Ω)

as E ∈ Hq,k
Γ t
(Ω)∩Hq,0

Γ t
(d,Ω) and dE ∈ Hq+1,k

Γ t
(Ω). Hence, 𝜕𝛼E ∈ Hq,0

Γ t
(d,Ω) = Hq,0

Γ t
(d,Ω) by Lemma 3.3 and d𝜕𝛼E = 𝜕𝛼dE.

(ii) follows analogously or by the Hodge ⋆-operator.

Finally, we introduce the cohomology space of Dirichlet/Neumann forms (generalised harmonic forms)


q
Γt ,Γn,𝜀

(Ω) ∶= Hq
Γt ,0

(d,Ω) ∩ 𝜀−1Hq
Γn,0

(𝛿,Ω). (14)

The classical Dirichlet and Neumann fields are then given by 
q
Γ,∅,𝜀(Ω) anf q

∅,Γ,𝜀(Ω), respectively. Here, 𝜀 = 𝜀q ∶
Lq,2(Ω) → Lq,2(Ω) is a symmetric and positive topological isomorphism (symmetric and positive bijective bounded linear
operator), which introduces a new inner product

⟨ · , ·⟩Lq,2
𝜀 (Ω) ∶= ⟨𝜀 · , ·⟩Lq,2(Ω),
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where Lq,2
𝜀 (Ω) ∶= Lq,2(Ω) (as linear space) equipped with the inner product ⟨ · , ·⟩Lq,2

𝜀 (Ω). Such weights 𝜀 shall be called
admissible, and a typical example is given by a symmetric, L∞-bounded and uniformly positive definite tensor (matrix)

field 𝜀 ∶ Ω → R

(
N
q

)
×
(

N
q

)
.

3.4 Some useful and important results
In Hiptmair et al,19 the existence of a crucial universal extension operator for the Sobolev spaces Hq,k(d,Ω) has been
shown, which is based on the universal extension operator from Stein's book.20

Lemma 3.5 (universal Stein extension operator,19, Theorem 3.6 cf. Bauer et al.18, Lemma 2.15). Let Ω ⊂ Rd be a bounded
strong Lipschitz domain. For all k ∈ N0 and all q, there exists a (universal) bounded linear extension operator

 = q,k ∶ Hq,k(d,Ω) → Hq,k(d,Rd).

More precisely, there exists c> 0 such that for all E ∈ Hq,k(d,Ω), it holds E ∈ Hq,k(d,Rd) and E = E in Ω as well
as |E|Hq,k(d,Rd) ≤ c|E|Hq,k(d,Ω). Furthermore,  can be chosen such that E has fixed compact support in Rd for all E ∈
Hq,k(d,Ω).

From Bauer et al,18, Theorem 5.2 we have the following Helmholtz decompositions.

Lemma 3.6 (Helmholtz decompositions). LetΩ ⊂ Rd be a bounded strong Lipschitz domain. For all q, the orthonormal
Helmholtz decompositions

Lq,2
𝜀 (Ω) = dHq−1,0

Γt
(d,Ω) ⊕Lq,2

𝜀 (Ω)𝜀
−1Hq,0

Γn,0
(𝛿,Ω)

= Hq,0
Γt ,0

(d,Ω) ⊕Lq,2
𝜀 (Ω)𝜀

−1𝛿Hq+1,0
Γn

(𝛿,Ω)

= dHq−1,0
Γt

(d,Ω) ⊕Lq,2
𝜀 (Ω)

q
Γt ,Γn,𝜀

(Ω) ⊕Lq,2
𝜀 (Ω)𝜀

−1𝛿Hq+1,0
Γn

(𝛿,Ω)

hold. In particular, the ranges

dHq−1,0
Γt

(d,Ω) = Hq,0
Γt ,0

(d,Ω) ∩
q
Γt ,Γn,𝜀

(Ω)⟂L
q,2
𝜀 (Ω) ,

𝛿Hq+1,0
Γn

(𝛿,Ω) = Hq,0
Γn,0

(𝛿,Ω) ∩
q
Γt ,Γn,𝜀

(Ω)⟂Lq,2(Ω)

are closed subspaces of Lq,2
𝜀 (Ω), and the potentials can be chosen such that they depend continuously on the data.

Note that Lemma 3.6 even holds for bounded weak Lipschitz domains Ω ⊂ Rd. From Picard,21 cf. Bauer et al,18, Lemma 2.19

we have the following Helmholtz decompositions for the special case Ω = Rd.

Lemma 3.7 (Helmholtz decompositions in the whole space). For all q

Lq,2(Rd) = Hq
0(d,R

d) ⊕Lq,2(Rd)H
q
0(𝛿,R

d),

Hq(d,Rd) = Hq
0(d,R

d) ⊕Lq,2(Rd)
(
Hq(d,Rd) ∩ Hq

0(𝛿,R
d)
)
.

Let 𝜋q,Rd ∶ Lq,2(Rd) → Hq
0(𝛿,R

d) denote the orthonormal projector onto Hq
0(𝛿,R

d). Then for all E ∈ Hq(d,Rd), it holds
𝜋q,Rd E ∈ Hq(d,Rd) ∩ Hq

0(𝛿,R
d) and d𝜋q,Rd E = dE as well as |𝜋q,Rd E|Hq(d,Rd) ≤ |E|Hq(d,Rd).

From Kuhn and Pauly,22, Lemma 4.2(i) cf. Bauer et al,18, Lemma 2.20 we have the following regularity result.

Lemma 3.8 (regularity in the whole space). For k ∈ N0 and all q, it holds

{
E ∈ Hq(d,Rd) ∩ Hq(𝛿,Rd) ∶ dE ∈ Hq+1,k(Rd) ∧ 𝛿E ∈ Hq−1,k(Rd)

}
= Hq,k+1(Rd).
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More precisely, E ∈ Hq(d,Rd) ∩ Hq(𝛿,Rd) with dE ∈ Hq+1,k(Rd) and 𝛿E ∈ Hq−1,k(Rd), if and only if E ∈ Hq,k+1(Rd) and

1
c
|E|Hq,k+1(Rd) ≤ |E|Lq,2(Rd) + |dE|Hq+1,k(Rd) + |𝛿E|Hq−1,k(Rd) ≤ c|E|Hq,k+1(Rd)

with some c> 0 independent of E.

In Bauer et al,18, Lemma 3.1 see also Bauer et al9,17 for more details, the following lemma about the existence of regular
potentials without boundary conditions has been shown.

Lemma 3.9 (regular potential for d without boundary condition). Let Ω ⊂ Rd be a bounded strong Lipschitz domain.
For all q∈ {1, … , d}, there exists a bounded linear potential operator


q,0
d,∅ ∶ Hq,0

∅,0(d,Ω) ∩
q
∅,Γ,id(Ω)

⟂Lq,2(Ω) → Hq−1,1
0 (𝛿,Rd),

such that dq,0
d,∅ = id|

Hq,0
∅,0(d,Ω)∩

q
∅,Γ,id(Ω)

⟂
Lq,2(Ω) , that is, for all E ∈ Hq,0

∅,0(d,Ω) ∩
q
∅,Γ,id(Ω)

⟂Lq,2(Ω)

dq,0
d,∅E = E in Ω.

In particular,
Hq,0

∅,0(d,Ω) ∩
q
∅,Γ,id(Ω)

⟂Lq,2(Ω) = dHq−1,0
∅ (𝛿,Ω) = dHq−1,1

∅ (Ω) = dHq−1,1
∅,0 (𝛿,Ω)

and the potentials can be chosen such that they depend continuously on the data. Especially, these are closed subspaces
of Lq,2(Ω), and 

q,0
d,∅ is a right inverse to d.

4 DE RHAM COMPLEX

In this section, we shall apply the FA-ToolBox from Section 2 to the de Rham complex.

4.1 Zero-order de Rham complex
Let the exterior derivatives be realised as densely defined (unbounded) linear operators

◦

d q
Γ t

∶ D(
◦

d q
Γ t
) ⊂ Lq,2(Ω) → Lq+1,2(Ω); E → dE, D(

◦

d q
Γ t
) ∶= Cq,∞

Γt
(Ω), q = 0, … , d − 1,

satisfying the complex properties
d̈q
Γt

d̈q−1
Γt

⊂ 0.

Then the closures dq
Γ t

∶=
◦

d q
Γ t

and Hilbert space adjoints (dq
Γ t
)∗ = (

◦

d q
Γ t
)∗ are given by

dq
Γt
∶ D(dq

Γt
) ⊂ Lq,2(Ω) → Lq+1,2(Ω); E → dE, D(dq

Γt
) = Hq,0

Γt
(d,Ω),

and
(dq

Γt
)∗ = −𝛿q+1

Γn
∶ D(𝛿q+1

Γn
) ⊂ Lq+1,2(Ω) → Lq,2(Ω); H → −𝛿H, D(𝛿q+1

Γn
) = Hq+1,0

Γn
(𝛿,Ω),

where indeed D(𝛿q+1
Γ n

) = Hq+1,0
Γ n

(𝛿,Ω) holds by Lemma 3.3, cf. Bauer et al,18, Section 5.2 (weak and strong boundary conditions
coincide).

Remark 4.1. Note that by definition, the adjoints are given by

(dq
Γt
)∗ = (

◦

d q
Γ t
)∗ = −𝜹q+1

Γn
∶ D(𝜹q+1

Γn
) ⊂ Lq+1,2(Ω) → Lq,2(Ω); H → −𝛿H,
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with D(𝜹q+1
Γ n

) = Hq+1,0
Γ n

(𝛿,Ω). Lemma 3.3 (weak and strong boundary conditions coincide) shows indeed D(𝜹q+1
Γ n

) =
Hq+1,0

Γ n
(𝛿,Ω) = Hq+1,0

Γ n
(𝛿,Ω) = D(𝛿q+1

Γ n
), that is, 𝜹q+1

Γ n
= 𝛿

q+1
Γ n

.

By definition, the densely defined and closed (unbounded) linear operators

Aq ∶= dq
Γt
, A∗

q = −𝛿q+1
Γn
, q = 0, … , d − 1,

define dual pairs
(

dq
Γ t
, (dq

Γ t
)∗
)

= (dq
Γ t
,−𝛿q+1

Γ n
). Remarks 2.5 and 2.6 show the complex properties R(dq−1

Γ t
) ⊂ N(dq

Γ t
) and

R(𝛿q+1
Γ n

) ⊂ N(𝛿q
Γ n
), that is, the complex properties

dq
Γt

dq−1
Γt

⊂ 0, 𝛿
q
Γn
𝛿

q+1
Γn

⊂ 0.

Note that with A0 = d0
Γ t

and A∗
d−1 = (dd−1

Γ t
)∗ = −𝛿d

Γ n
as well as

A−1 ∶= 𝜄N(A0), A∗
−1 = 𝜋N(A0), A∗

d ∶= 𝜄N(A∗
d−1), Ad = 𝜋N(A∗

d−1)

(actually, A−1A∗
−1 = 𝜋N(A0) and A∗

dAd = 𝜋N(A∗
d−1), cf. Remark 2.25), we have

N(A0) = N(d0
Γt
) = RΓt , N(A∗

d−1) = N(𝛿d
Γn
) =∗RΓn , RΣ ∶=

{
R if Σ = ∅,
{0} otherwise,

and that the long (here even longer) primal and dual de Rham Hilbert complex (12) reads

with the complex properties

R(dq−1
Γt

) ⊂ N(dq
Γt
), R(𝛿q+1

Γn
) ⊂ N(𝛿q

Γn
), q = 1, … , d − 1,

and

R(𝜄RΓt
) = N(d0

Γt
) = RΓt , R(dd−1

Γt
) = N(𝜋∗RΓn

) = (∗RΓn)
⟂Ld,2(Ω) ,

R(𝛿1
Γn
) = N(𝜋RΓt

) = (RΓt )
⟂L0,2(Ω) , R(𝜄∗RΓn

) = N(𝛿d
Γn
) = ∗RΓn .

We emphasise that the definition of the Dirichlet/Neumann forms (14) is consistent with the definition of the
cohomology groups Nq−1,q = N(Aq) ∩ N(A∗

q−1) as long as 1≤q≤d− 1. For q = 0 and q= d, we have the deviations

{0} = N−1,0 ⊂ N(A0) = H0
Γt ,0(d,Ω) = 0

Γt ,Γn,𝜀
(Ω) = RΓt ,

{0} = Nd−1,d ⊂ N(A∗
d−1) = 𝜀−1Hd

Γn,0(𝛿,Ω) = d
Γt ,Γn,𝜀

(Ω) = 𝜀−1 ∗RΓn ,

cf. (13), which is intended and usefull for latter formulations.
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4.2 Higher-order de Rham complex
Similar to (15), we can also investigate the higher Sobolev order primal de Rham complex

together with its formal adjoint, the higher Sobolev order dual de Rham complex

More precisely, we consider

dq,k
Γt

∶ D(dq,k
Γt
) ⊂ Hq,k

Γt
(Ω) → Hq+1,k

Γt
(Ω); E → dE, D(dq,k

Γt
) ∶= Hq,k

Γt
(d,Ω),

with formal adjoints

−𝛿q+1,k
Γn

∶ D(𝛿q+1,k
Γn

) ⊂ Hq+1,k
Γn

(Ω) → Hq,k
Γn
(Ω); H → −𝛿H, D(𝛿q+1,k

Γn
) ∶= Hq+1,k

Γn
(𝛿,Ω).

Note that dq,k
Γ t

and 𝛿q+1,k
Γ n

are densely defined and closed as, for example,

Cq,∞
Γt

(Ω) ⊂ Hq,k
Γt
(d,Ω) ⊂ Hq,k

Γt
(Ω) = Cq,∞

Γt
(Ω)

Hq,k(Ω)
,

and that indeed the complex properties R(dq−1,k
Γ t

) ⊂ N(dq,k
Γ t
) and R(𝛿q+1,k

Γ n
) ⊂ N(𝛿q,k

Γ n
) hold.

Unfortunately, the respectively adjoints

(dq,k
Γt
)∗ ∶ D

(
(dq,k

Γt
)∗
)
⊂ Hq+1,k

Γt
(Ω) → Hq,k

Γt
(Ω),

−(𝛿q+1,k
Γn

)∗ ∶ D
(
(𝛿q+1,k

Γn
)∗
)
⊂ Hq,k

Γn
(Ω) → Hq+1,k

Γn
(Ω)

are hard to compute. Therefore, only some parts of the FA-ToolBox from Section 2 apply to the higher-order de Rham
complex, and a few results have to proved in a less general setting.

Note that for E ∈ D(dq,k
Γ t
) and for H ∈ D(𝛿q+1,k

Γ ) ⊂ Hq+1,k
Γ t

(𝛿,Ω) ∩ Hq+1,k
Γ n

(𝛿,Ω), we have

⟨dE,H⟩Hq+1,k
Γt

(Ω) =
∑
|𝛼|≤k

⟨𝜕𝛼dE, 𝜕𝛼H⟩Lq+1,2(Ω) = −
∑
|𝛼|≤k

⟨𝜕𝛼E, 𝜕𝛼𝛿H⟩Lq,2(Ω) = −⟨E, 𝛿H⟩Hq,k
Γt
(Ω)

by Lemma 3.4.

Remark 4.2 (Higher-order adjoints for the de Rham complex). It holds −𝛿q+1,k
Γ ⊂ (dq,k

Γ t
)∗ and −dq−1,k

Γ ⊂ (𝛿q,k
Γ n
)∗, that is,

D(𝛿q+1,k
Γ ) ⊂ D

(
(dq,k

Γt
)∗
)

and (dq,k
Γt
)∗|D(𝛿q+1,k

Γ ) = −𝛿q+1,k
Γ ,

D(dq−1,k
Γ ) ⊂ D

(
(𝛿q,k

Γn
)∗
)

and (𝛿q,k
Γn
)∗|D(dq−1,k

Γ ) = −dq−1,k
Γ .

Note that, here, we identify −𝛿q+1,k
Γ with −𝛿q+1,k

Γ ∶ D(𝛿q+1,k
Γ ) ⊂ Hq+1,k

Γ t
(Ω) → Hq,k

Γ t
(Ω), which is not densely defined.

The same holds for −dq−1,k
Γ .
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4.3 Regular potentials without boundary conditions

The next lemma generalises Lemma 3.9 and ensures the existence of regular Hq,k
∅ (Ω)-potentials without boundary

conditions for strong Lipschitz domains.

Lemma 4.3 (regular potential for d without boundary condition). Let Ω ⊂ Rd be a bounded strong Lipschitz domain
and let k ≥ 0 and q∈ {1, … , d}. Then there exists a bounded linear regular potential operator


q,k
d,∅ ∶ Hq,k

∅,0(d,Ω) ∩
q
∅,Γ,id(Ω)

⟂Lq,2(Ω) → Hq−1,k+1
0 (𝛿,Rd),

such that dq,k
d,∅ = id|

Hq,k
∅,0(d,Ω)∩

q
∅,Γ,id(Ω)

⟂
Lq,2(Ω) , that is, for all E ∈ Hq,k

∅,0(d,Ω) ∩
q
∅,Γ,id(Ω)

⟂Lq,2(Ω)

dq,k
d,∅E = E in Ω.

In particular, the bounded regular potential representations

R(dq−1,k
∅ ) = Hq,k

∅,0(d,Ω) ∩
q
∅,Γ,id(Ω)

⟂Lq,2(Ω) = dHq−1,k
∅ (d,Ω) = dHq−1,k+1

∅ (Ω) = dHq−1,k+1
∅,0 (𝛿,Ω)

hold, and the potentials can be chosen such that they depend continuously on the data. Especially, these are closed
subspaces of Hq,k

∅ (Ω) = Hq,k(Ω), and 
q,k
d,∅ is a right inverse to d. By a simple cut-off technique, q,k

d,∅ may be modified to


q,k
d,∅ ∶ Hq,k

∅,0(d,Ω) ∩
q
∅,Γ,id(Ω)

⟂Lq,2(Ω) → Hq−1,k+1(𝛿,Rd)

such that q,k
d,∅E has a fixed compact support in Rd for all E ∈ Hq,k

∅,0(d,Ω) ∩
q
∅,Γ,id(Ω)

⟂Lq,2(Ω) .

Proof. Lemma 3.9 shows the assertions for k = 0 and 
q,0
d,∅. Moreover, the inclusions

dHq−1,k+1
∅,0 (𝛿,Ω) ⊂ dHq−1,k+1

∅ (Ω) ⊂ dHq−1,k
∅ (d,Ω) ⊂ Hq,k

∅,0(d,Ω) ∩
q
∅,Γ,id(Ω)

⟂Lq,2(Ω)

hold. Suppose E ∈ Hq,k
∅,0(d,Ω) ∩ 

q
∅,Γ,id(Ω)

⟂Lq,2(Ω) , k ≥ 1. Then E ∈ Hq,k−1
∅,0 (d,Ω) ∩ 

q
∅,Γ,id(Ω)

⟂Lq,2(Ω) . By assumption of
induction, there exists q,k−1

d,∅ E ∈ Hq−1,k
∅ (Ω) with dq,k−1

d,∅ E = E in Ω and

|q,k−1
d,∅ E|Hq−1,k(Ω) ≤ c|E|Hq,k−1(Ω).

Hence, q,k−1
d,∅ E ∈ Hq−1,k

∅ (d,Ω), and by Lemma 3.5, we have 
q,k−1
d,∅ E ∈ Hq−1,k(d,Rd) with compact support and

|q,k−1
d,∅ E|Hq−1,k(d,Rd) ≤ c|q,k−1

d,∅ E|Hq−1,k(d,Ω) ≤ c
(|q,k−1

d,∅ E|Hq−1,k(Ω) + |E|Hq,k(Ω)

)
.

Using Lemma 3.7, we obtain a uniquely determined


q,k
d,∅E ∶= 𝜋q−1,Rd

q,k−1
d,∅ E ∈ Hq−1,0(d,Rd) ∩ Hq−1,0

0 (𝛿,Rd)

with dq,k
d,∅E = dq,k−1

d,∅ E ∈ Hq,k(Rd). Lemma 3.8 shows q,k
d,∅E ∈ Hq−1,k+1(Rd) with

|q,k
d,∅E|Hq−1,k+1(Rd) ≤ c

(|q,k
d,∅E|Lq−1,2(Rd) + |dq,k−1

d,∅ E|Hq,k(Rd)

)
≤ c|q,k−1

d,∅ E|Hq−1,k(d,Rd).

Finally, q,k
d,∅E ∈ Hq−1,k+1

0 (𝛿,Rd) meets our needs as it holds |q,k
d,∅E|Hq−1,k+1(Rd) ≤ c|E|Hq,k(Ω) and dq,k

d,∅E = dq,k−1
d,∅ E =

dq,k−1
d,∅ E = E in Ω.

By Hodge ⋆-duality, we get a corresponding result for the 𝛿-operator, cf. Lemma 4.7.
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4.4 Regular potentials and decompositions with boundary conditions
Now we construct regular Hq,k(Ω)-potentials with (partial) boundary conditions. Recall the definitions of Section 3.1 for
the different assumptions on the domain Ω ⊂ Rd.

4.4.1 Extendable domains
Lemma 4.4 (regular potential for d with partial boundary condition for extendable domains). Let (Ω,Γt) be an extend-
able bounded strong Lipschitz pair and let 1≤ q ≤ d− 1 as well as k ≥ 0. Then there exists a bounded linear regular
potential operator


q,k
d,Γt

∶ Hq,k
Γt ,0

(d,Ω) → Hq−1,k+1(Rd) ∩ Hq−1,k+1
Γt

(Ω),

such that dq,k
d,Γ t

= id|Hq,k
Γ t ,0

(d,Ω), that is, for all E ∈ Hq,k
Γ t ,0

(d,Ω)

dq,k
d,Γt

E = E in Ω.

In particular, the bounded regular potential representation

Hq,k
Γt ,0

(d,Ω) = Hq,k
Γt ,0

(d,Ω) = dHq−1,k+1
Γt

(Ω) = dHq−1,k
Γt

(d,Ω) = R(dq−1,k
Γt

)

holds, and the potentials can be chosen such that they depend continuously on the data. Especially, these spaces are closed
subspaces of Hq,k

∅ (Ω) = Hq,k(Ω), and 
q,k
d,Γ t

is a right inverse to d. Without loss of generality, q,k
d,Γ t

maps to forms with a
fixed compact support in Rd.

The results extend literally to the case q= d if Γt ≠Γ, and the case q = 0 is trivial since H0,k
Γ t ,0

(d,Ω) = RΓ t . In the special
case q= d and Γ t = Γ, the results still remain valid if

Hd,k
Γ,0(d,Ω) = Hd,k

Γ (Ω), Hd,k
Γ,0(d,Ω) = Hd,k

Γ (Ω)

are replaced by the slightly smaller spaces

Hd,k
Γ (Ω) ∩ (∗ R)⟂Ld,2(Ω) , Hd,k

Γ (Ω) ∩ (∗ R)⟂Ld,2 (Ω) ,

respectively.

Proof. The case Γ t = ∅ is done in Lemma 4.3. For Γt ≠∅, suppose E ∈ Hq,k
Γ t ,0

(d,Ω) and define Ẽ ∈ Lq,2(Ω̃) as extension
of E by zero to Ω̂. By definition, we see Ẽ ∈ Hq,k

∅,0(d, Ω̃). Since Ω̃ is bounded, strong Lipschitz, and topologically trivial,
in particular 

q
∅,Γ̃,id

(Ω̃) = {0}, Lemma 4.3 yields a regular potential q,k
d,∅Ẽ ∈ Hq−1,k+1

0 (𝛿,Rd) ⊂ Hq−1,k+1(Rd) with

dq,k
d,∅Ẽ = Ẽ in Ω̃ and

c|q,k
d,∅Ẽ|Hq−1,k+1(Rd) ≤ |Ẽ|Hq,k(Ω̃) = |E|Hq,k(Ω).

Let 𝜄Ω̂ denote the restriction to Ω̂. Then 𝜄Ω̂
q,k
d,∅Ẽ ∈ Hq−1,k+1

∅ (Ω̂) and d𝜄Ω̂
q,k
d,∅Ẽ = 𝜄Ω̂Ẽ = 0 in Ω̂, that is, 𝜄Ω̂

q,k
d,∅Ẽ ∈

Hq−1,k+1
∅,0 (d, Ω̂). Using Lemma 4.3 again, this time in Ω̂, which is bounded, strong Lipschitz, and topologically trivial as

well, we obtain 
q−1,k+1
d,∅ 𝜄Ω̂

q,k
d,∅Ẽ ∈ Hq−2,k+2(Rd) with dq−1,k+1

d,∅ 𝜄Ω̂
q,k
d,∅Ẽ = 𝜄Ω̂

q,k
d,∅Ẽ in Ω̂ and

|q−1,k+1
d,∅ 𝜄Ω̂

q,k
d,∅Ẽ|Hq−2,k+2(Rd) ≤ c|q,k

d,∅Ẽ|Hq−1,k+1(Ω̂).

Then


q,k
d,Γt

∶ Hq,k
Γt ,0

(d,Ω) → Hq−1,k+1(Rd)

E → 
q,k
d,∅Ẽ − d(q−1,k+1

d,∅ 𝜄Ω̂
q,k
d,∅Ẽ)
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is linear and bounded since

|q,k
d,Γt

E|Hq−1,k+1(Rd) ≤ |q,k
d,∅Ẽ|Hq−1,k+1(Rd) + |q−1,k+1

d,∅ 𝜄Ω̂
q,k
d,∅Ẽ|Hq−2,k+2(Rd) ≤ c|E|Hq,k(Ω).

Since 
q,k
d,Γ t

E = 0 in Ω̂, we obtain by standard arguments for Sobolev spaces 
q,k
d,Γ t

E ∈ Hq−1,k+1
Γ t

(Ω), cf. Bauer

et al.18, Lemma 2.14 (weak and strong boundary conditions coincide for Hq,k(Ω)). Moreover, it holds dq,k
d,Γ t

E = dq,k
d,∅Ẽ = Ẽ

in Ω̃, in particular, dq,k
d,Γ t

E = E in Ω. Finally,

dHq−1,k+1
Γt

(Ω) ⊂ dHq−1,k
Γt

(d,Ω) ⊂ Hq,k
Γt ,0

(d,Ω) ⊂ Hq,k
Γt ,0

(d,Ω) ⊂ dHq−1,k+1
Γt

(Ω),

completing the proof of the main part. In the special case q= d and Γ t = Γ, we also have to take care of the constant
d-forms in ∗ R.

Hodge ⋆-duality yields a corresponding result for the 𝛿-operator, cf. Lemma 4.8 (i).

Lemma 4.5 (regular decompositions for d with partial boundary condition for extendable domains). Let (Ω,Γt) be an
extendable bounded strong Lipschitz pair and let k ≥ 0. Then the bounded regular decompositions

Hq,k
Γt
(d,Ω) = Hq,k

Γt
(d,Ω) = Hq,k+1

Γt
(Ω) + dHq−1,k+1

Γt
(Ω)

= 
q,k
d,Γt ,1

Hq,k
Γt
(d,Ω) ∔ dq,k

d,Γt ,0
Hq,k

Γt
(d,Ω)

= 
q,k
d,Γt ,1

Hq,k
Γt
(d,Ω) ∔ dHq−1,k+1

Γt
(Ω)

= 
q,k
d,Γt ,1

Hq,k
Γt
(d,Ω) ∔ Hq,k

Γt ,0
(d,Ω)

hold with bounded linear regular decomposition operators


q,k
d,Γt ,1

∶= 
q+1,k
d,Γt

d ∶ Hq,k
Γt
(d,Ω) → Hq,k+1

Γt
(Ω),


q,k
d,Γt ,0

∶= 
q,k
d,Γt

(1 − 
q+1,k
d,Γt

d) ∶ Hq,k
Γt
(d,Ω) → Hq−1,k+1

Γt
(Ω).

More precisely, it holds Hq,k
Γ t
(d,Ω) = Hq,k

Γ t
(d,Ω) and 

q,k
d,Γ t ,1

+ dq,k
d,Γ t ,0

= id|Hq,k
Γ t
(d,Ω), that is,

E = 
q,k
d,Γt ,1

E + dq,k
d,Γt ,0

E ∈ Hq,k+1
Γt

(Ω) + dHq−1,k+1
Γt

(Ω)

for all E ∈ Hq,k
Γ t
(d,Ω). Moreover, it holds dq,k

d,Γ t ,1
= dq,k

Γ t
, and thus, Hq,k

Γ t ,0
(d,Ω) is invariant under q,k

d,Γ t ,1
. Note that for the

ranges q,k
d,Γ t ,1

Hq,k
Γ t
(d,Ω) = R(q,k

d,Γ t ,1
) = R(q+1,k

d,Γ t
) as well as q,k

d,Γ t ,0
Hq,k

Γ t
(d,Ω) = R(q,k

d,Γ t ,0
) = R(q,k

d,Γ t
) hold.

The proof follows by Corollary 2.20 and Lemma 4.4. For convenience, we give a self-contained proof here.

Proof. Let E ∈ Hq,k
Γ t
(d,Ω). Then dE ∈ Hq+1,k

Γ t ,0
(d,Ω), and we see 

q+1,k
d,Γ t

dE ∈ Hq,k+1
Γ t

(Ω) with dq+1,k
d,Γ t

dE = dE by Lemma

4.4. Thus, E−
q+1,k
d,Γ t

dE ∈ Hq,k
Γ t ,0

(d,Ω) = dHq−1,k+1
Γ t

(Ω) and
q,k
d,Γ t

(E−
q+1,k
d,Γ t

dE) ∈ Hq−1,k+1
Γ t

(Ω)with dq,k
d,Γ t

(E−
q+1,k
d,Γ t

dE) =

E − 
q+1,k
d,Γ t

dE by Lemma 4.4. This yields

E = 
q+1,k
d,Γt

dE + dq,k
d,Γt

(1 − 
q+1,k
d,Γt

d)E ∈ Hq,k+1
Γt

(Ω) + dHq−1,k+1
Γt

(Ω) ⊂ Hq,k
Γt
(d,Ω),

which proves the regular decompositions and also the assertions about the bounded linear regular decomposition
operators. To show the directness of the sums, let H = 

q+1,k
d,Γ t

dE ∈ Hq,0
Γ t ,0

(d,Ω) with some E ∈ Hq,k
Γ t
(d,Ω). Then

0 = dH = dE as dE ∈ Hq+1,k
Γ t ,0

(d,Ω) and thus H = 0.

Again, by Hodge ⋆-duality, we get a corresponding result for the 𝛿-operator, cf. Lemma 4.8 (ii).
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4.4.2 General Lipschitz domains
Lemma 4.6 (regular decompositions for d with partial boundary condition). Let (Ω,Γt) be a bounded strong Lipschitz
pair and let k ≥ 0. Then the bounded regular decompositions

Hq,k
Γt
(d,Ω) = Hq,k

Γt
(d,Ω) = Hq,k+1

Γt
(Ω) + dHq−1,k+1

Γt
(Ω)

hold with bounded linear regular decomposition operators


q,k
d,Γt ,1

∶ Hq,k
Γt
(d,Ω) → Hq,k+1

Γt
(Ω), 

q,k
d,Γt ,0

∶ Hq,k
Γt
(d,Ω) → Hq−1,k+1

Γt
(Ω)

satisfying 
q,k
d,Γ t ,1

+ dq,k
d,Γ t ,0

= idHq,k
Γ t
(d,Ω). In particular, weak and strong boundary conditions coincide. Moreover, it holds

dq,k
d,Γ t ,1

= dq,k
Γ t

, and thus, Hq,k
Γ t ,0

(d,Ω) is invariant under q,k
d,Γ t ,1

.

Proof. According to Lemma 3.1, let us introduce a partition of unity (U𝓁 ,𝜒𝓁) as in Bauer et al.18, Section 4.2 or Bauer
et al,17, Section 4.2 such that (Ω𝓁 , Γ̂t,𝓁) is an extendable bounded strong Lipschitz pair for all l = 1, … ,L+. Using the
notations from Bauer et al,18 we have

Ω𝓁 = Ω ∩ U𝓁 , Σ𝓁 = 𝜕Ω𝓁∖Γ, Γt,𝓁 = Γt ∩ U𝓁 , Γ̂t,𝓁 = int(Γt,𝓁 ∪ Σ𝓁).

Maybe U0 = Ω has to be replaced by more neighbourhoods U−L− , … ,U0 to ensure that all pairs (Ω𝓁 , Γ̂ t,𝓁), 𝓁 =
−L−, … ,L+, are topologically trivial. Note that for all ‘inner’ indices 𝓁 = −L−, … , 0 we have Ω𝓁 = U𝓁 as well as
Γ̂ t,𝓁 = Σ𝓁 = 𝜕Ω𝓁 = 𝜕U𝓁 .

Then for E ∈ Hq,k
Γ t
(d,Ω), we have 𝜒𝓁E ∈ Hq,k

Γ̂ t,𝓁
(d,Ω𝓁) = Hq,k

Γ̂ t,𝓁
(d,Ω𝓁) for all 𝓁, and Lemma 4.5 shows the bounded

regular decompositions
𝜒𝓁E = E𝓁 + dH𝓁 ∈ Hq,k+1

Γ̂t,𝓁
(Ω𝓁) + dHq−1,k+1

Γ̂t,𝓁
(Ω𝓁)

with E𝓁 and H𝓁 depending continuously on 𝜒𝓁E. Extending E𝓁 and H𝓁 by zero to Ω yields forms Ẽ𝓁 ∈ Hq,k+1
Γ t

(Ω) and
H̃𝓁 ∈ Hq−1,k+1

Γ t
(Ω) as well as the representation

Hq,k
Γt
(d,Ω) ∋ E =

∑
𝓁

𝜒kE =
∑
𝓁

Ẽ𝓁 + d
∑
𝓁

H̃𝓁 ∈ Hq,k+1
Γt

(Ω) + dHq−1,k+1
Γt

(Ω) ⊂ Hq,k
Γt
(d,Ω).

As all operations have been linear and continuous we set


q,k
d,Γt ,1

E ∶=
∑
𝓁

Ẽ𝓁 ∈ Hq,k+1
Γt

(Ω), 
q,k
d,Γt ,0

E ∶=
∑
𝓁

H̃𝓁 ∈ Hq−1,k+1
Γt

(Ω),

and obtain the assertions.

Hodge ⋆-duality shows a corresponding result for the 𝛿-operator, cf. Lemma 4.9.

Corollary 4.7 (regular decompositions for d with partial boundary condition). Let (Ω,Γt) be a bounded strong Lipschitz
pair and let k ≥ 0. Then the regular potential representations

R(dq−1,k
Γt

) = dHq−1,k
Γt

(d,Ω) = dHq−1,k+1
Γt

(Ω) = Hq,k
Γt ,0

(d,Ω) ∩
q
Γt ,Γn,𝜀

(Ω)⟂L
q,2
𝜀 (Ω) ,

R(𝛿q+1,k
Γn

) = 𝛿Hq+1,k
Γn

(𝛿,Ω) = 𝛿Hq+1,k+1
Γn

(Ω) = Hq,k
Γn,0

(𝛿,Ω) ∩
q
Γt ,Γn,𝜀

(Ω)⟂Lq,2(Ω)

hold. In particular, these spaces are closed subspaces of Hq,k
∅ (Ω) = Hq,k(Ω).

Proof. Lemma 4.6 yields

R(dq−1,k
Γt

) = dHq−1,k
Γt

(d,Ω) = dHq−1,k+1
Γt

(Ω) ⊂ Hq,k
Γt ,0

(d,Ω) ∩
q
Γt ,Γn,𝜀

(Ω)⟂L
q,2
𝜀 (Ω) . (16)
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For k = 0, we get by (16) and Lemma 3.6

dHq−1,1
Γt

(Ω) = dHq−1,0
Γt

(d,Ω) = Hq,0
Γt ,0

(d,Ω) ∩
q
Γt ,Γn,𝜀

(Ω)⟂L
q,2
𝜀 (Ω) . (17)

Let E ∈ Hq,k
Γ t ,0

(d,Ω) ∩ 
q
Γ t ,Γ n,𝜀

(Ω)⟂L
q,2
𝜀 (Ω) . By (17), we observe E ∈ Hq,k

Γ t
(Ω) ∩ dHq−1,1

Γ t
(Ω), that is, E = dE1 ∈ Hq,k

Γ t
(Ω)

with E1 ∈ Hq−1,1
Γ t

(Ω). Thus, E1 ∈ Hq−1,1
Γ t

(d,Ω) and E ∈ dHq−1,1
Γ t

(d,Ω). By (16), there is E2 ∈ Hq−1,2
Γ t

(Ω) with E = dE2 ∈
dHq−1,k

Γ t
(Ω), that is, E2 ∈ Hq−1,2

Γ t
(d,Ω) as well as E ∈ dHq−1,2

Γ t
(d,Ω). After k induction steps, we obtain E ∈ dHq−1,k

Γ t
(d,Ω).

Hodge ⋆-duality shows the assertions for 𝛿.

Note that in Corollary 4.7, we claim nothing about bounded regular potential operators, leaving the question of bounded
potentials to the next sections.

4.5 Zero-order mini FA-ToolBox
We shall apply Theorem 2.23 from the FA-ToolBox to the zero-order de Rham complex. In Section 4.1, we have seen that

A0 ∶= dq−1
Γt

∶ Hq−1,0
Γt

(d,Ω) ⊂ Lq−1,2(Ω) → Lq,2(Ω),

A1 ∶= dq
Γt
∶ Hq,0

Γt
(d,Ω) ⊂ Lq,2(Ω) → Lq+1,2(Ω),

A∗
0 = −𝛿q

Γn
∶ Hq,0

Γn
(𝛿,Ω) ⊂ Lq,2(Ω) → Lq−1,2(Ω),

A∗
1 = −𝛿q+1

Γn
∶ Hq+1,0

Γn
(𝛿,Ω) ⊂ Lq+1,2(Ω) → Lq,2(Ω)

are densely defined and closed and form a Hilbert complex of dual pairs, that is, the long primal and dual Hilbert complex
(15). Recall also (12) and Definition 2.26 are well as Remark 2.27.

Lemma 4.6 for k = 0 yields the bounded regular decomposition

D(A1) = Hq,0
Γt
(d,Ω) = Hq,1

Γt
(Ω) + dHq−1,1

Γt
(Ω) = H+

1 + A0H+
0

with H+
1 ∶= Hq,1

Γ t
(Ω) and H+

0 ∶= Hq−1,1
Γ t

(Ω) and H1 ∶= Lq,2(Ω) and H0 ∶= Lq−1,2(Ω). Rellich's selection theorem shows that
the assumptions of Lemma 2.22 (i) and Theorem 2.23 as satisfied. Note that it holds D(d0

Γ t
) = H0,1

Γ t
(Ω) and D(𝛿d

Γ n
) = Hd,1

Γ n
(Ω).

Theorem 4.8 (compact embedding for the de Rham complex). Let (Ω,Γt) be a bounded strong Lipschitz pair. Then for
all q, the embedding

D(A1) ∩ D(A∗
0) = D(dq

Γt
) ∩ D(𝛿q

Γn
) = Hq,0

Γt
(d,Ω) ∩ Hq,0

Γn
(𝛿,Ω) → Lq,2(Ω)

is compact. Moreover, the long primal and dual de Rham Hilbert complex (15) is compact. In particular, the complex is
closed.

Proof. Apply Theorem 2.23 (i).

Theorem 4.9 (mini FA-ToolBox for the de Rham complex). Let (Ω,Γt) be a bounded strong Lipschitz pair. Then for all
q,

(i) the ranges R(dq
Γ t
) and R(𝛿q

Γ n
) are closed,

(ii) the inverse operators (dq
Γ t
)−1
⟂ and (𝛿q

Γ n
)−1
⟂ are compact,

(iii) the cohomology group 
q
Γ t ,Γ n,id

(Ω) = Hq
Γ t ,0

(d,Ω) ∩ Hq
Γ n,0

(𝛿,Ω) has finite dimension,
(iv) the orthogonal Helmholtz-type decomposition

Lq,2(Ω) = dHq−1,0
Γt

(d,Ω) ⊕Lq,2(Ω)
q
Γt ,Γn,id

(Ω) ⊕Lq,2(Ω)𝛿H
q+1,0
Γn

(𝛿,Ω)

holds,
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(v) there exists cq > 0 such that

∀E ∈ D
(
(dq

Γt
)⟂
) |E|Lq,2(Ω) ≤ cq|dE|Lq+1,2(Ω),

∀H ∈ D
(
(𝛿q+1

Γn
)⟂
) |H|Lq+1,2(Ω) ≤ cq|𝛿H|Lq,2(Ω),

where

D
(
(dq

Γt
)⟂
)
= D(dq

Γt
) ∩ N(dq

Γt
)⟂Lq,2(Ω) = D(dq

Γt
) ∩ R(𝛿q+1

Γn
),

D
(
(𝛿q+1

Γn
)⟂
)
= D(𝛿q+1

Γn
) ∩ N(𝛿q+1

Γn
)⟂Lq+1,2(Ω) = D(𝛿q+1

Γn
) ∩ R(dq

Γt
),

(v') with cq from (v) it holds for all E ∈ D(dq
Γ t
) ∩ D(𝛿q

Γ n
) ∩

q
Γ t ,Γ n,id

(Ω)⟂Lq,2(Ω)

|E|2
Lq,2(Ω)

≤ c2
q|dE|2

Lq+1,2(Ω)
+ c2

q−1|𝛿E|2
Lq−1,2(Ω)

,

(vi) 
q
Γ t ,Γ n,id

(Ω) = {0}, if (Ω,Γt) is additionally extendable.

Proof. Apply Theorem 2.23 (ii), that is, Theoren 4.8 and Theorem 2.9 show (i)–(v'). For k = 0, Lemma 4.4 and Lemma
3.6 imply dHq−1,0

Γ t
(d,Ω) = Hq,0

Γ t ,0
(d,Ω) = dHq−1,0

Γ t
(d,Ω) ⊕Lq,2(Ω)

q
Γ t ,Γ n,id

(Ω), that is, (vi).

Remark 4.10 (mini FA-ToolBox for the de Rham complex). Recall the admissible weights 𝜀 from Section 3.3. In Pauly
and Waurick,23, Lemma 5.1, Lemma 5.2 we have shown that the compactness in Theoren 4.8, and the dimensions of the
cohomology groups do not depend on the particular 𝜀. Hence, for all q

(i) the embedding Hq,0
Γ t
(d,Ω) ∩ 𝜀−1Hq,0

Γ n
(𝛿,Ω) → Lq,2(Ω) is compact,

(ii) dq
Ω,Γ t

∶= dim
q
Γ t ,Γ n,𝜀

(Ω) = dim
q
Γ t ,Γ n,id

(Ω).
(iii) Theorem 4.9 holds with appropriate modifications for including 𝜀.

Compare to the more explicit formulations from Section 5 for the vector de Rham complex. All these results carry
over literally. In particular, cf. Theorem 4.9 (v'), we have with cq (now depending also on 𝜀 and𝜇) for all E ∈ D(𝜇−1dq

Γ t
)∩

D(𝛿q
Γ n
𝜀) ∩

q
Γ t ,Γ n,𝜀

(Ω)⟂L
q,2
𝜀 (Ω)

|E|2
Lq,2
𝜀 (Ω)

≤ c2
q|𝜇−1dE|2

Lq+1,2
𝜇 (Ω)

+ c2
q−1|𝛿𝜀E|2

Lq−1,2(Ω)
.

Moreover,

(iv) Theorem 4.8 and hence Theorem 4.9 and (i)–(iii) of this remark hold more generally for bounded weak Lipschitz
pairs (Ω,Γt); see Bauer et al.17,18

Theorem 4.11 (bounded regular potentials for the de Rham complex). Let (Ω,Γt) be a bounded strong Lipschitz pair
and letq,0

d,Γ t ,1
be given from Lemma 4.6. Then for all q∈ {1, … , d}, there exists a bounded linear regular potential operator


q,0
d,Γt

∶= 
q−1,0
d,Γt ,1

(dq−1
Γt

)−1
⟂ ∶ Hq,0

Γt ,0
(d,Ω) ∩

q
Γt ,Γn,𝜀

(Ω)⟂L
q,2
𝜀 (Ω) → Hq−1,1

Γt
(Ω),

such that dq,0
d,Γ t

= id|
Hq,0

Γ t ,0
(d,Ω)∩q

Γ t ,Γ n ,𝜀
(Ω)

⟂
L

q,2
𝜀 (Ω)

. In particular, the bounded regular potential representations

R(dq−1
Γt

) = Hq,0
Γt ,0

(d,Ω) ∩
q
Γt ,Γn,𝜀

(Ω)⟂L
q,2
𝜀 (Ω) = dHq−1,0

Γt
(d,Ω) = dHq−1,1

Γt
(Ω)

hold, and the potentials can be chosen such that they depend continuously on the data.
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Proof. Apply Theorem 2.23 (iii). Note that R(dq−1
Γ t

) is closed by Theorem 4.9, and hence,

R(dq−1
Γt

) = dHq−1,0
Γt

(d,Ω) = Hq,0
Γt ,0

(d,Ω) ∩
q
Γt ,Γn,𝜀

(Ω)⟂L
q,2
𝜀 (Ω)

holds by Lemma 3.6.

Remark 4.12 (Dirichlet/Neumann forms). Note that d
Γ t ,Γ n,𝜀

(Ω) = 𝜀−1Hd
Γ n,0(𝛿,Ω) = 𝜀−1 ∗RΓ n and d

Γ t ,Γ n,𝜀
(Ω)⟂Ld,2

𝜀 (Ω) =
(∗RΓ n)

⟂Ld,2(Ω) holds in the special case q= d.

Theorem 4.13 (bounded regular decompositions for the de Rham complex). Let (Ω,Γt) be a bounded strong Lipschitz
pair and let q,0

d,Γ t
and 

q,0
d,Γ t ,1

be given from Theorem 4.11 and from Lemma 4.6, respectively. Then the bounded regular
decompositions

Hq
Γt
(d,Ω) = Hq,0

Γt
(d,Ω) = Hq,1

Γt
(Ω) + Hq,0

Γt ,0
(d,Ω) = Hq,1

Γt
(Ω) + dHq−1,1

Γt
(Ω)

= R(̃q,0
d,Γt ,1

) ∔ Hq,0
Γt ,0

(d,Ω) = R(̃q,0
d,Γt ,1

) ∔ R(̃ q,0
d,Γt

)

hold with bounded linear regular decomposition operators

̃
q,0
d,Γt ,1

∶= 
q+1,0
d,Γt

dq
Γt
∶ Hq,0

Γt
(d,Ω) → Hq,1

Γt
(Ω), ̃

q,0
d,Γt

∶ Hq,0
Γt
(d,Ω) → Hq,0

Γt ,0
(d,Ω)

satisfying ̃
q,0
d,Γ t ,1

+ ̃
q,0
d,Γ t

= idHq,0
Γ t
(d,Ω). Moreover, it holds d̃q,0

d,Γ t ,1
= dq,0

d,Γ t ,1
= dq

Γ t
, and thus, Hq,0

Γ t ,0
(d,Ω) is invari-

ant under q,0
d,Γ t ,1

and ̃
q,0
d,Γ t ,1

. Furthermore, R(̃q,0
d,Γ t ,1

) = R(q+1,0
d,Γ t

) and ̃
q,0
d,Γ t ,1

= 
q+1,0
d,Γ t

dq
Γ t

= 
q,0
d,Γ t ,1

(dq
Γ t
)−1
⟂ dq

Γ t
. Hence,

̃
q,0
d,Γ t ,1

|D((dq
Γ t
)⟂) = 

q,0
d,Γ t ,1

|D((dq
Γ t
)⟂), and thus, ̃q,0

d,Γ t ,1
may differ from 

q,0
d,Γ t ,1

only on Hq,0
Γ t ,0

(d,Ω).

Proof. Apply Theorem 2.23 (iv) and (iv').

Again, Theorem 4.11 and Theorem 4.13 have dual versions for the 𝛿-operator by Hodge ⋆-duality, cf. Theorem 5.13 for
k = 0.

4.6 Higher-order mini FA-ToolBox
Some results from the latter section hold even for higher Sobolev orders. As pointed out in Section 4.2, the adjoints are
much more complicated. Hence, Lemma 2.22 and Theorem 2.23 from the FA-ToolBox are not directly applicable, so that
some detours and modifications are needed.

In Section 4.2, we have introduced the higher-order primal and dual de Rham Hilbert complex composed of the densely
defined and closed linear operators

dq,k
Γt

∶ D(dq,k
Γt
) ⊂ Hq,k

Γt
(Ω) → Hq+1,k

Γt
(Ω), D(dq,k

Γt
) = Hq,k

Γt
(d,Ω),

𝛿
q,k
Γn

∶ D(𝛿q,k
Γn
) ⊂ Hq,k

Γn
(Ω) → Hq−1,k

Γn
(Ω), D(𝛿q,k

Γn
) = Hq,k

Γn
(𝛿,Ω).

By Corollary 4.7, see the following:

Theorem 4.14 (higher-order closed ranges for the de Rham complex). Let (Ω,Γt) be a bounded strong Lipschitz pair.
Then for all q and for all k ∈ N0, the ranges

R(dq−1,k
Γt

) = dHq−1,k
Γt

(d,Ω) = dHq−1,k+1
Γt

(Ω) = Hq,k
Γt ,0

(d,Ω) ∩
q
Γt ,Γn,id

(Ω)⟂Lq,2(Ω) ,

R(𝛿q+1,k
Γn

) = 𝛿Hq+1,k
Γn

(𝛿,Ω) = 𝛿Hq+1,k+1
Γn

(Ω) = Hq,k
Γn,0

(𝛿,Ω) ∩
q
Γt ,Γn,id

(Ω)⟂Lq,2(Ω)

are closed, that is, closed subspaces of Hq,k(Ω). In particular, the higher-order long primal and dual de Rham complex
from Section 4.2 is closed.
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The corresponding reduced operators read

(dq,k
Γt
)⟂ ∶ D

(
(dq,k

Γt
)⟂
)
⊂ Hq,k

Γt ,0
(d,Ω)

⟂
H

q,k
Γt

(Ω) → dHq,k
Γt
(d,Ω), N(dq,k

Γt
) = Hq,k

Γt ,0
(d,Ω),

−(𝛿q,k
Γn
)⟂ ∶ D

(
(𝛿q,k

Γn
)⟂
)
⊂ Hq,k

Γn,0
(𝛿,Ω)

⟂
H

q,k
Γn

(Ω) → 𝛿Hq,k
Γn
(𝛿,Ω), N(𝛿q,k

Γn
) = Hq,k

Γn,0
(𝛿,Ω),

with

D
(
(dq,k

Γt
)⟂
)
= Hq,k

Γt
(d,Ω) ∩ Hq,k

Γt ,0
(d,Ω)

⟂
H

q,k
Γt

(Ω) = Hq,k
Γt
(d,Ω) ∩ R

(
(dq,k

Γt
)∗
)
,

D
(
(𝛿q,k

Γn
)⟂
)
= Hq,k

Γn
(𝛿,Ω) ∩ Hq,k

Γn,0
(𝛿,Ω)

⟂
H

q,k
Γn

(Ω) = Hq,k
Γn
(𝛿,Ω) ∩ R

(
(𝛿q,k

Γn
)∗
)
,

and we have by Lemma 2.1 and Theorem 4.14:

Theorem 4.15 (higher-order fundamental lemma 1 for the de Rham complex). Let (Ω,Γt) be a bounded strong
Lipschitz pair. Then for all q and for all k ∈ N0, the following assertions hold and are equivalent:

(i) ∃ c > 0 ∀E ∈ D
(
(dq,k

Γ t
)⟂
) |E|Hq,k(Ω) ≤ c|dE|Hq+1,k(Ω)

(ii) R(dq,k
Γ t
) = R

(
(dq,k

Γ t
)⟂
)
= dHq,k

Γ t
(d,Ω) is closed.

(iii) (dq,k
Γ t
)−1
⟂ ∶ R(dq,k

Γ t
) → D

(
(dq,k

Γ t
)⟂
)

is bounded.

(iii') (dq,k
Γ t
)−1
⟂ ∶ R(dq,k

Γ t
) → D(dq,k

Γ t
) is bounded.

The corresponding results hold for the 𝛿q,k
Γ n

as well.

The higher-order version of Theorem 4.8 reads as follows:

Theorem 4.16 (higher-order compact embedding for the de Rham complex). Let (Ω,Γt) be a bounded strong Lipschitz
pair. Then for all q and for all k ∈ N0, the embedding

D(dq,k
Γt
) ∩ D(𝛿q,k

Γn
) = Hq,k

Γt
(d,Ω) ∩ Hq,k

Γn
(𝛿,Ω) → Hq,k

Γ (Ω)

is compact.

Proof. We follow in close lines the proof of Pauly and Zulehner8, Theorem 4.11 using induction. The case k = 0 is given
by Theorem 4.8. Let k ≥ 1 and let (En) be a bounded sequence in Hq,k

Γ t
(d,Ω) ∩ Hq,k

Γ n
(𝛿,Ω). Note that

Hq,k
Γt
(d,Ω) ∩ Hq,k

Γn
(𝛿,Ω) ⊂ Hq,k

Γt
(Ω) ∩ Hq,k

Γn
(Ω) = Hq,k

Γ (Ω).

By assumption and w.l.o.g., we have that (En) is a Cauchy sequence in Hq,k−1
Γ (Ω). Moreover, for all |𝛼| = k, we have

𝜕𝛼En ∈ Hq,0
Γ t
(d,Ω) ∩ Hq,0

Γ n
(𝛿,Ω) with d𝜕𝛼En = 𝜕𝛼dEn and 𝛿𝜕𝛼En = 𝜕𝛼𝛿En by Lemma 3.4. Hence, (𝜕𝛼En) is a bounded

sequence in Hq,0
Γ t
(d,Ω) ∩Hq,0

Γ n
(𝛿,Ω). Thus, w.l.o.g. (𝜕𝛼En) is a Cauchy sequence in Lq,2(Ω) by Theorem 4.8. Finally, (En)

is a Cauchy sequence in Hq,k
Γ (Ω), finishing the proof.

Higher-order analogues of Theorem 4.9 and Remark 4.10 hold. Some of these results are formulated in the following
theorem.

Theorem 4.17 (higher-order Friedrichs/Poincaré type estimates for the de Rham complex). Let (Ω,Γt) be a bounded
strong Lipschitz pair. Then for all q and for all k ≥ 0, there exists c̃q,k > 0 such that for all E ∈ Hq,k

Γ t
(d,Ω) ∩ Hq,k

Γ n
(𝛿,Ω) ∩


q
Γ t ,Γ n,id

(Ω)⟂Lq,2(Ω)

|E|Hq,k(Ω) ≤ c̃q,k

(|dE|Hq+1,k(Ω) + |𝛿E|Hq−1,k(Ω)

)
.
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The condition 
q
Γ t ,Γ n,id

(Ω)⟂Lq,2(Ω) can be replaced by the weaker conditions 
q,k
Γ t ,Γ n,id

(Ω)⟂Lq,2(Ω) or 
q,k
Γ t ,Γ n,id

(Ω)⟂Hq,k (Ω) . In
particular, it holds

∀ E ∈ Hq,k
Γt
(d,Ω) ∩ R(𝛿q+1,k

Γn
) |E|Hq,k(Ω) ≤ c̃q,k|dE|Hq+1,k(Ω),

∀ E ∈ Hq,k
Γn
(𝛿,Ω) ∩ R(dq−1,k

Γt
) |E|Hq,k(Ω) ≤ c̃q,k|𝛿E|Hq−1,k(Ω)

with

R(𝛿q+1,k
Γn

) = Hq,k
Γn,0

(𝛿,Ω) ∩
q
Γt ,Γn,id

(Ω)⟂Lq,2(Ω) ,

R(dq−1,k
Γt

) = Hq,k
Γt ,0

(d,Ω) ∩
q
Γt ,Γn,id

(Ω)⟂Lq,2(Ω) .

Proof. To show the first estimate, we use a standard strategy and assume the contrary. Then there is a sequence

(En) ⊂ Hq,k
Γt
(d,Ω) ∩ Hq,k

Γn
(𝛿,Ω) ∩

q
Γt ,Γn,id

(Ω)⟂Lq,2(Ω)

with |En|Hq,k(Ω) = 1 and |dEn|Hq+1,k(Ω) + |𝛿En|Hq−1,k(Ω) → 0. Hence, we may assume that En converges weakly to some E
in Hq,k(Ω) ∩

q
Γ t ,Γ n,id

(Ω) ∩
q
Γ t ,Γ n,id

(Ω)⟂Lq,2(Ω) . Thus, E = 0. By Theorem 4.16, (En) converges strongly to 0 in Hq,k(Ω), in
contradiction to |En|Hq,k(Ω) = 1.

The other two estimates follow with Theorem 4.14 by restriction.

Note that by Theorem 4.15,

(dq,k
Γt
)−1
⟂ ∶ R(dq,k

Γt
) → D(dq,k

Γt
), (𝛿q,k

Γn
)−1
⟂ ∶ R(𝛿q,k

Γn
) → D(𝛿q,k

Γn
)

are bounded. The higher-order versions of Theorem 4.11 and Theorem 4.13 read as follows:

Theorem 4.18 (higher-order bounded regular potentials and decompositions for the de Rham complex). Let (Ω,Γt)
be a bounded strong Lipschitz pair and let k ≥ 0. Moreover, let q,k

d,Γ t ,1
be given from Lemma 4.6. Then:

(i) For all q∈ {1, … , d}, there exists a bounded linear regular potential operator


q,k
d,Γt

∶= 
q−1,k
d,Γt ,1

(dq−1,k
Γt

)−1
⟂ ∶ Hq,k

Γt ,0
(d,Ω) ∩

q
Γt ,Γn,𝜀

(Ω)⟂L
q,2
𝜀 (Ω) → Hq−1,k+1

Γt
(Ω),

such that dq,k
d,Γ t

= id|
Hq,k

Γ t ,0
(d,Ω)∩q

Γ t ,Γ n ,𝜀
(Ω)

⟂
L

q,2
𝜀 (Ω)

. In particular, the bounded regular representations

R(dq−1,k
Γt

) = Hq,k
Γt ,0

(d,Ω) ∩
q
Γt ,Γn,𝜀

(Ω)⟂L
q,2
𝜀 (Ω)

= Hq,k
Γt
(Ω) ∩ dHq−1

Γt
(d,Ω) = dHq−1,k

Γt
(d,Ω) = dHq−1,k+1

Γt
(Ω)

hold, and the potentials can be chosen such that they depend continuously on the data.
(ii) The bounded regular decompositions

Hq,k
Γt
(d,Ω) = Hq,k+1

Γt
(Ω) + Hq,k

Γt ,0
(d,Ω) = Hq,k+1

Γt
(Ω) + dHq−1,k+1

Γt
(Ω)

= R(̃q,k
d,Γt ,1

) ∔ Hq,k
Γt ,0

(d,Ω) = R(̃q,k
d,Γt ,1

) ∔ R(̃ q,k
d,Γt

)

hold with bounded linear regular decomposition operators

̃
q,k
d,Γt ,1

∶= 
q+1,k
d,Γt

dq,k
Γt

∶ Hq,k
Γt
(d,Ω) → Hq,k+1

Γt
(Ω), ̃

q,k
d,Γt

∶ Hq,k
Γt
(d,Ω) → Hq,k

Γt ,0
(d,Ω)
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satisfying ̃
q,k
d,Γ t ,1

+ ̃
q,k
d,Γ t

= idHq,k
Γ t
(d,Ω). Moreover, d̃q,k

d,Γ t ,1
= dq,k

d,Γ t ,1
= dq,k

Γ t
, and thus, Hq,k

Γ t ,0
(d,Ω) is invariant

under 
q,k
d,Γ t ,1

and ̃
q,k
d,Γ t ,1

. It holds R(̃q,k
d,Γ t ,1

) = R(q+1,k
d,Γ t

) and ̃
q,k
d,Γ t ,1

= 
q+1,k
d,Γ t

dq,k
Γ t

= 
q,k
d,Γ t ,1

(dq,k
Γ t
)−1
⟂ dq,k

Γ t
. Hence,

̃
q,k
d,Γ t ,1

|D((dq,k
Γ t
)⟂)

= 
q,k
d,Γ t ,1

|D((dq,k
Γ t
)⟂)

and thus ̃q,k
d,Γ t ,1

may differ from 
q,k
d,Γ t ,1

only on Hq,k
Γ t ,0

(d,Ω).

(ii') The bounded regular kernel decomposition Hq,k
Γ t ,0

(d,Ω) = Hq,k+1
Γ t ,0

(d,Ω) + dHq−1,k+1
Γ t

(Ω) holds.

Proof. Lemma 4.6 yields the bounded regular decomposition

D(dq,k
Γt
) = Hq,k

Γt
(d,Ω) = Hq,k+1

Γt
(Ω) + dHq−1,k+1

Γt
(Ω) = H+

1 + dq−1,k
Γt

H+
0

with H+
1 ∶= Hq,k+1

Γ t
(Ω) and H+

0 ∶= Hq−1,k+1
Γ t

(Ω) and H1 ∶= Hq,k
Γ t
(Ω) and H0 ∶= Hq−1,k

Γ t
(Ω). Rellich's selection theorem

shows that the assumptions of Lemma 2.22 (i) and Theorem 2.23 are satisfied. Note that it holds D(d0,k
Γ t
) = H0,k+1

Γ t
(Ω)

and D(𝛿d,k
Γ n

) = Hd,k+1
Γ n

(Ω). Theorem 2.23 (iii)–(iv') and Theorem 4.14 show the assertions (i) and (ii). (ii') follows directly
by (ii).

Hodge ⋆-duality yields the corresponding results for the co-derivative as well, cf. Theorem 5.13.

Remark 4.19. Let us recall the bounded regular decompositions from Theorem 4.18 (ii), for example,

Hq,k
Γt
(d,Ω) = R(̃q,k

d,Γt ,1
) ∔ R(̃ q,k

d,Γt
).

By Remark 2.19, we emphasise:

(i) ̃
q,k
d,Γ t ,1

and ̃
q,k
d,Γ t

= 1 − ̃
q,k
d,Γ t ,1

are projections with ̃
q,k
d,Γ t ,1

̃
q,k
d,Γ t

= ̃
q,k
d,Γ t

̃
q,k
d,Γ t ,1

= 0.

(ii) For I± ∶= ̃
q,k
d,Γ t ,1

±̃ q,k
d,Γ t

, it holds I+ = I2
− = idHq,k

Γ t
(d,Ω). Therefore, I+, I2

−, as well as I− = 2̃q,k
d,Γ t ,1

− idHq,k
Γ t
(d,Ω) are

topological isomorphisms on Hq,k
Γ t
(d,Ω).

(iii) There exists c> 0 such that for all E ∈ Hq,k
Γ t
(d,Ω)

c|̃q,k
d,Γt ,1

E|Hq,k+1(Ω) ≤ |dE|Hq+1,k(Ω) ≤ |E|Hq,k(d,Ω),|̃ q,k
d,Γt

E|Hq,k(Ω) ≤ |E|Hq,k(Ω) + |̃q,k
d,Γt ,1

E|Hq,k(Ω).

(iii') For E ∈ Hq,k
Γ t ,0

(d,Ω), we have ̃
q,k
d,Γ t ,1

E = 0 and ̃
q,k
d,Γ t

E = E, that is, ̃q,k
d,Γ t ,1

|Hq,k
Γ t ,0

(d,Ω) = 0 and ̃
q,k
d,Γ t

|Hq,k
Γ t ,0

(d,Ω) =

idHq,k
Γ t ,0

(d,Ω). In particular, ̃ q,k
d,Γ t

is onto.

Theorem 4.18 (ii') shows by induction and by Hodge ⋆-duality:

Corollary 4.20 (higher-order kernels for the de Rham complex). Let (Ω,Γt) be a bounded strong Lipschitz pair and let
k,𝓁 ≥ 0. Then the bounded regular kernel decompositions

Hq,k
Γt ,0

(d,Ω) = Hq,𝓁
Γt ,0

(d,Ω) + dHq−1,k+1
Γt

(Ω), Hq,k
Γn,0

(𝛿,Ω) = Hq,𝓁
Γn,0

(𝛿,Ω) + 𝛿Hq+1,k+1
Γn

(Ω)

hold. In particular, for k = 0 and all 𝓁 ≥ 0

Hq,0
Γt ,0

(d,Ω) = Hq,𝓁
Γt ,0

(d,Ω) + dHq−1,1
Γt

(Ω), Hq,0
Γn,0

(𝛿,Ω) = Hq,𝓁
Γn,0

(𝛿,Ω) + 𝛿Hq+1,1
Γn

(Ω).
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4.7 Dirichlet/Neumann forms
By Lemma 3.6, we recall the orthonormal Helmholtz decompositions

Lq,2
𝜀 (Ω) = dHq−1,0

Γt
(d,Ω) ⊕Lq,2

𝜀 (Ω)𝜀
−1Hq,0

Γn,0
(𝛿,Ω)

= Hq,0
Γt ,0

(d,Ω) ⊕Lq,2
𝜀 (Ω)𝜀

−1𝛿Hq+1,0
Γn

(𝛿,Ω)

= dHq−1,0
Γt

(d,Ω) ⊕Lq,2
𝜀 (Ω)

q
Γt ,Γn,𝜀

(Ω) ⊕Lq,2
𝜀 (Ω)𝜀

−1𝛿Hq+1,0
Γn

(𝛿,Ω),

Hq,0
Γt ,0

(d,Ω) = dHq−1,0
Γt

(d,Ω) ⊕Lq,2
𝜀 (Ω)

q
Γt ,Γn,𝜀

(Ω),

𝜀−1Hq,0
Γn,0

(𝛿,Ω) = 
q
Γt ,Γn,𝜀

(Ω) ⊕Lq,2
𝜀 (Ω)𝜀

−1𝛿Hq+1,0
Γn

(𝛿,Ω).

(18)

Let us denote the Lq,2
𝜀 (Ω)-orthonormal projector onto 𝜀−1Hq,0

Γ n,0
(𝛿,Ω) and Hq,0

Γ t ,0
(d,Ω) by

𝜋𝛿 ∶ Lq,2
𝜀 (Ω) → 𝜀−1Hq,0

Γn,0
(𝛿,Ω), 𝜋d ∶ Lq,2

𝜀 (Ω) → Hq,0
Γt ,0

(d,Ω),

respectively. Then

𝜋𝛿|Hq,0
Γt ,0

(d,Ω) ∶ Hq,0
Γt ,0

(d,Ω) → 
q
Γt ,Γn,𝜀

(Ω), 𝜋d|𝜀−1Hq,0
Γn ,0

(𝛿,Ω) ∶ 𝜀
−1Hq,0

Γn,0
(𝛿,Ω) → 

q
Γt ,Γn,𝜀

(Ω)

are onto. Moreover,

𝜋𝛿|dHq−1,0
Γt

(d,Ω) = 0, 𝜋d|𝜀−1𝛿Hq+1,0
Γn

(𝛿,Ω) = 0,

𝜋𝛿|q
Γt ,Γn ,𝜀

(Ω) = id
q
Γt ,Γn ,𝜀

(Ω), 𝜋d|q
Γt ,Γn ,𝜀

(Ω) = id
q
Γt ,Γn ,𝜀

(Ω).

Therefore, by Corollary 4.20 and for all 𝓁 ≥ 0


q
Γt ,Γn,𝜀

(Ω) = 𝜋𝛿H
q,0
Γt ,0

(d,Ω) = 𝜋𝛿H
q,𝓁
Γt ,0

(d,Ω),


q
Γt ,Γn,𝜀

(Ω) = 𝜋d𝜀
−1Hq,0

Γn,0
(𝛿,Ω) = 𝜋d𝜀

−1Hq,𝓁
Γn,0

(𝛿,Ω).

Hence with
Hq,∞

Γt ,0
(d,Ω) ∶ =

⋂
𝓁≥0

Hq,𝓁
Γt ,0

(d,Ω), Hq,∞
Γn,0

(𝛿,Ω) ∶ =
⋂
𝓁≥0

Hq,𝓁
Γn,0

(𝛿,Ω)

we get by the monotonicity of the Sobolev spaces the following result:

Theorem 4.21 (smooth prebases of Dirichlet/Neumann forms for the de Rham complex). Let (Ω,Γt) be a bounded
strong Lipschitz pair and recall dq

Ω,Γ t
from Remark 4.10. Then

𝜋𝛿H
q,∞
Γt ,0

(d,Ω) = 
q
Γt ,Γn,𝜀

(Ω) = 𝜋d𝜀
−1Hq,∞

Γn,0
(𝛿,Ω).

Moreover, there exists a smooth d-prebasis and a smooth 𝛿-prebasis of q
Γ t ,Γ n,𝜀

(Ω); that is, there are linear independent
smooth forms


q
d,Γt

(Ω) ∶= {Bq
d,Γt ,𝓁

}
dq
Ω,Γt

𝓁=1 ⊂ Hq,∞
Γt ,0

(d,Ω),q
𝛿,Γn

(Ω) ∶= {Bq
𝛿,Γn,𝓁

}
dq
Ω,Γt

𝓁=1 ⊂ Hq,∞
Γn,0

(𝛿,Ω)

such that 𝜋𝛿q
d,Γ t

(Ω) and 𝜋d𝜀
−1

q
𝛿,Γ n

(Ω) are both bases of q
Γ t ,Γ n,𝜀

(Ω). In particular,

Lin𝜋𝛿q
d,Γt

(Ω) = 
q
Γt ,Γn,𝜀

(Ω) = Lin𝜋d𝜀
−1

q
𝛿,Γn

(Ω).

Note that (1−𝜋𝛿) and (1−𝜋d) are the Lq,2
𝜀 (Ω)-orthonormal projectors onto dHq−1,0

Γ t
(d,Ω) and 𝜀−1𝛿Hq+1,0

Γ n
(𝛿,Ω), respec-

tively, that is,
(1 − 𝜋𝛿) ∶ Lq,2

𝜀 (Ω) → dHq−1,0
Γt

(d,Ω), (1 − 𝜋d) ∶ Lq,2
𝜀 (Ω) → 𝜀−1𝛿Hq+1,0

Γn
(𝛿,Ω).
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Then by (18) and Corollary 4.7, cf. Theorem 4.18 (i), we have

Hq,0
Γt ,0

(d,Ω) = dHq−1,0
Γt

(d,Ω) ⊕Lq,2
𝜀 (Ω)

q
Γt ,Γn,𝜀

(Ω)

= dHq−1,0
Γt

(d,Ω) ⊕Lq,2
𝜀 (Ω)Lin𝜋𝛿q

d,Γt
(Ω)

= dHq−1,0
Γt

(d,Ω) + (𝜋𝛿 − 1)Lin 
q
d,Γt

(Ω) + Lin 
q
d,Γt

(Ω)

= dHq−1,0
Γt

(d,Ω) + Lin 
q
d,Γt

(Ω),

Hq,k
Γt ,0

(d,Ω) = dHq−1,0
Γt

(d,Ω) ∩ Hq,k
Γt ,0

(d,Ω) + Lin 
q
d,Γt

(Ω),

= dHq−1,k+1
Γt

(Ω) + Lin 
q
d,Γt

(Ω).

(19)

Theorem 4.22 (higher-order bounded regular direct decompositions for the de Rham complex). Let (Ω,Γt) be a
bounded strong Lipschitz pair and let k ≥ 0. Then the bounded regular direct decompositions

Hq,k
Γt
(d,Ω) = R(̃q,k

d,Γt ,1
) ∔ Hq,k

Γt ,0
(d,Ω), Hq,k

Γt ,0
(d,Ω) = dHq−1,k+1

Γt
(Ω) ∔ Lin 

q
d,Γt

(Ω),

Hq,k
Γn
(𝛿,Ω) = R(̃q,k

𝛿,Γn,1
) ∔ Hq,k

Γn,0
(𝛿,Ω), Hq,k

Γn,0
(𝛿,Ω) = 𝛿Hq+1,k+1

Γn
(Ω) ∔ Lin 

q
𝛿,Γn

(Ω)

hold. Note that R(̃q,k
d,Γ t ,1

) ⊂ Hq,k+1
Γ t

(Ω) and R(̃q,k
𝛿,Γ n,1

) ⊂ Hq,k+1
Γ n

(Ω). In particular, for k = 0

Hq,0
Γt
(d,Ω) = R(̃q,0

d,Γt ,1
) ∔ Hq,0

Γt ,0
(d,Ω), Hq,0

Γt ,0
(d,Ω) = dHq−1,1

Γt
(Ω) ∔ Lin 

q
d,Γt

(Ω)

= dHq−1,1
Γt

(Ω) ⊕Lq,2
𝜀 (Ω)

q
Γt ,Γn,𝜀

(Ω),

Hq,0
Γn
(𝛿,Ω) = R(̃q,0

𝛿,Γn,1
) ∔ Hq,0

Γn,0
(𝛿,Ω), 𝜀−1Hq,0

Γn,0
(𝛿,Ω) = 𝜀−1𝛿Hq+1,1

Γn
(Ω) ∔ 𝜀−1Lin 

q
𝛿,Γn

(Ω)

= 𝜀−1𝛿Hq+1,1
Γn

(Ω) ⊕Lq,2
𝜀 (Ω)

q
Γt ,Γn,𝜀

(Ω)

as well as

Lq,2
𝜀 (Ω) = Hq,0

Γt ,0
(d,Ω) ⊕Lq,2

𝜀 (Ω)𝜀
−1𝛿Hq+1,1

Γn
(Ω)

= dHq−1,1
Γt

(Ω) ⊕Lq,2
𝜀 (Ω)𝜀

−1Hq,0
Γn,0

(𝛿,Ω).

Proof. Theorem 4.18 (ii) and (19) show

Hq,k
Γt
(d,Ω) = R(̃q,k

d,Γt ,1
) ∔ Hq,k

Γt ,0
(d,Ω), Hq,k

Γt ,0
(d,Ω) = dHq−1,k+1

Γt
(Ω) + Lin 

q
d,Γt

(Ω).

To prove the directness, let
dq
Ω,Γt∑
𝓁=1

𝜆𝓁Bq
d,Γt ,𝓁

∈ dHq−1,k+1
Γt

(Ω) ∩ Lin 
q
d,Γt

(Ω).

Then 0 =
∑

𝓁𝜆𝓁𝜋𝛿Bq
d,Γ t ,𝓁

∈ Lin𝜋𝛿q
d,Γ t

(Ω) and hence 𝜆𝓁 = 0 for all 𝓁 as 𝜋𝛿q
d,Γ t

(Ω) is a basis of q
Γ t ,Γ n,𝜀

(Ω) by Theorem
4.21. Concerning the boundedness of the decompositions, let

Hq,k
Γt ,0

(d,Ω) ∋ E = dH + B, H ∈ Hq−1,k+1
Γt

(Ω), B ∈ Lin 
q
d,Γt

(Ω).

Then we have by Theorem 4.18 (i) dH ∈ R(dq−1,k
Γ t

) and Ed ∶= 
q,k
d,Γ t

dH ∈ Hq−1,k+1
Γ t

(Ω) solves dEd = dH with|Ed|Hq−1,k+1(Ω) ≤ c|dH|Hq,k(Ω). Therefore,

|Ed|Hq−1,k+1(Ω) + |B|Hq,k(Ω) ≤ c
(|dH|Hq,k(Ω) + |B|Hq,k(Ω)

)
≤ c

(|E|Hq,k(Ω) + |B|Hq,k(Ω)

)
.
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Note that the mapping

I ∶ Lin 
q
d,Γt

(Ω) → Lin 𝜋𝛿q
d,Γt

(Ω) = 
q
Γt ,Γn,𝜀

(Ω);Bq
d,Γt ,𝓁

→ 𝜋𝛿Bq
d,Γt ,𝓁

is a topological isomorphism (between finite dimensional spaces and with arbitrary norms). Thus,

|B|Hq,k(Ω) ≤ c|B|Lq,2(Ω) ≤ c|𝜋𝛿B|Lq,2(Ω) = c|𝜋𝛿E|Lq,2(Ω) ≤ c|E|Lq,2(Ω) ≤ c|E|Hq,k(Ω).

Finally, we see E = dEd + B ∈ dHq−1,k+1
Γ t

(Ω) + Lin 
q
d,Γ t

(Ω) and

|Ed|Hq−1,k+1(Ω) + |B|Hq,k(Ω) ≤ c|E|Hq,k(Ω).

Hodge ⋆-duality yields the other assertions.

Remark 4.23. (higher-order bounded regular direct decompositions for the de Rham complex) Note that by Theorem
4.22, we have, for example,

Hq,k
Γt
(d,Ω) = R(̃q,k

d,Γt ,1
) ∔ Lin 

q
d,Γt

(Ω) ∔ dHq−1,k+1
Γt

(Ω) = Hq,k+1
Γt

(Ω) + dHq−1,k+1
Γt

(Ω)

with bounded linear regular direct decomposition operators

̂
q,k
d,Γt ,1

∶ Hq,k
Γt
(d,Ω) → R(̃q,k

d,Γt ,1
), R(̃q,k

d,Γt ,1
) ⊂ Hq,k+1

Γt
(Ω),

̂
q,k
d,Γt ,∞

∶ Hq,k
Γt
(d,Ω) → Lin 

q
d,Γt

(Ω), 
q
d,Γt

(Ω) ⊂ Hq,∞
Γt ,0

(d,Ω) ⊂ Hq,k+1
Γt

(Ω),

̂
q,k
d,Γt ,0

∶ Hq,k
Γt
(d,Ω) → Hq−1,k+1

Γt
(Ω)

satisfying ̂
q,k
d,Γ t ,1

+ ̂
q,k
d,Γ t ,∞

+ d̂q,k
d,Γ t ,0

= idHq,k
Γ t
(d,Ω). A closer inspection of the latter proof allows for a more precise

description of these bounded decomposition operators.
For this, let E ∈ Hq,k

Γ t
(d,Ω). According to Theorem 4.18 and Remark 4.19, we decompose

E = ER + EN ∈ R(̃q,k
d,Γt ,1

) ∔ R(̃ q,k
d,Γt

),R(̃ q,k
d,Γt

) = Hq,k
Γt ,0

(d,Ω) = N(dq,k
Γt
),

with ER = ̃
q,k
d,Γ t ,1

E and EN = ̃
q,k
d,Γ t

E. By Theorem 4.22, we further decompose

Hq,k
Γt ,0

(d,Ω) ∋ EN = dEd + B ∈ dHq−1,k+1
Γt

(Ω) ∔ Lin 
q
d,Γt

(Ω).

Then 𝜋𝛿EN = 𝜋𝛿B ∈ 
q
Γ t ,Γ n,𝜀

(Ω), and thus, B = I−1

𝜋𝛿B = I−1


𝜋𝛿EN ∈ Lin 

q
d,Γ t

(Ω). Therefore, Ed = 
q,k
d,Γ t

dEd =


q,k
d,Γ t

(EN − B) = 
q,k
d,Γ t

(1 − I−1

𝜋𝛿)EN . Finally, we see

̂
q,k
d,Γt ,1

= ̃
q,k
d,Γt ,1

= 
q+1,k
d,Γt

dq,k
Γt

= 
q,k
d,Γt ,1

(dq,k
Γt
)−1
⟂ dq,k

Γt
,

̂
q,k
d,Γt ,∞

= I−1

𝜋𝛿̃

q,k
d,Γt

= I−1

𝜋𝛿(1 − ̃

q,k
d,Γt ,1

),

̂
q,k
d,Γt ,0

= 
q,k
d,Γt

(1 − I−1

𝜋𝛿)̃ q,k

d,Γt
= 

q,k
d,Γt

(1 − I−1

𝜋𝛿)(1 − ̃

q,k
d,Γt ,1

).

Theorem 4.24 (alternative Dirichlet/Neumann projections for the de Rham complex). Let (Ω,Γt) be a bounded strong
Lipschitz pair. Then


q
Γt ,Γn,𝜀

(Ω) ∩ 
q
d,Γt

(Ω)⟂L
q,2
𝜀 (Ω) = {0}, 𝜀−1Hq,0

Γn,0
(𝛿,Ω) ∩ 

q
d,Γt

(Ω)⟂L
q,2
𝜀 (Ω) = 𝜀−1𝛿Hq+1,0

Γn
(𝛿,Ω),


q
Γt ,Γn,𝜀

(Ω) ∩ 
q
𝛿,Γn

(Ω)⟂Lq,2(Ω) = {0}, Hq,0
Γt ,0

(d,Ω) ∩ 
q
𝛿,Γn

(Ω)⟂Lq,2(Ω) = dHq−1,0
Γt

(d,Ω).
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Proof. For H ∈ 
q
Γ t ,Γ n,𝜀

(Ω) ∩ 
q
d,Γ t

(Ω)⟂L
q,2
𝜀 (Ω) , we have

0 = ⟨H,Bq
d,Γt ,𝓁

⟩Lq,2
𝜀 (Ω) = ⟨𝜋𝛿H,Bq

d,Γt ,𝓁
⟩Lq,2

𝜀 (Ω) = ⟨H, 𝜋𝛿Bq
d,Γt ,𝓁

⟩Lq,2
𝜀 (Ω)

and hence H = 0 by Theorem 4.21. Analogously, we see for H ∈ 
q
Γ t ,Γ n,𝜀

(Ω) ∩ 
q
𝛿,Γ n

(Ω)⟂Lq,2(Ω)

0 = ⟨H,Bq
𝛿,Γn,𝓁

⟩Lq,2(Ω) = ⟨𝜋dH, 𝜀−1Bq
𝛿,Γn,𝓁

⟩Lq,2
𝜀 (Ω) = ⟨H, 𝜋d𝜀

−1Bq
𝛿,Γn,𝓁

⟩Lq,2
𝜀 (Ω)

and thus H = 0. It holds

𝜀−1𝛿Hq+1,0
Γn

(𝛿,Ω)⟂Lq,2
𝜀 (Ω)

q
d,Γt

(Ω), dHq−1,0
Γt

(d,Ω)⟂Lq,2(Ω)
q
𝛿,Γn

(Ω). (20)

According to (18), we can decompose

𝜀−1Hq,0
Γn,0

(𝛿,Ω) = 𝜀−1𝛿Hq+1,0
Γn

(𝛿,Ω) ⊕Lq,2
𝜀 (Ω)

q
Γt ,Γn,𝜀

(Ω),

Hq,0
Γt ,0

(d,Ω) = dHq−1,0
Γt

(d,Ω) ⊕Lq,2
𝜀 (Ω)

q
Γt ,Γn,𝜀

(Ω),

which shows by (20) the other two assertions.

Corollary 4.25 (alternative Dirichlet/Neumann projections for the de Rham complex). Let (Ω,Γt) be a bounded strong
Lipschitz pair and let k ≥ 0. Then

𝜀−1Hq,k
Γn,0

(𝛿,Ω) ∩ 
q
d,Γt

(Ω)⟂L
q,2
𝜀 (Ω) = 𝜀−1𝛿Hq+1,k

Γn
(𝛿,Ω) = 𝜀−1𝛿Hq+1,k+1

Γn
(Ω),

Hq,k
Γt ,0

(d,Ω) ∩ 
q
𝛿,Γn

(Ω)⟂Lq,2(Ω) = dHq−1,k
Γt

(d,Ω) = dHq−1,k+1
Γt

(Ω).

Proof. We have by Theorem 4.24 and Theorem 4.18 (i)

Hq,k
Γt ,0

(d,Ω) ∩ 
q
𝛿,Γn

(Ω)⟂Lq,2(Ω) = Hq,k
Γt
(Ω) ∩ Hq,0

Γt ,0
(d,Ω) ∩ 

q
𝛿,Γn

(Ω)⟂Lq,2(Ω)

= Hq,k
Γt
(Ω) ∩ dHq−1,0

Γt
(d,Ω)

= dHq−1,k
Γt

(d,Ω) = dHq−1,k+1
Γt

(Ω).

Analogously,

𝜀−1Hq,k
Γn,0

(𝛿,Ω) ∩ 
q
d,Γt

(Ω)⟂L
q,2
𝜀 (Ω) = 𝜀−1Hq,k

Γn
(Ω) ∩ 𝜀−1Hq,0

Γn,0
(𝛿,Ω) ∩ 

q
d,Γt

(Ω)⟂L
q,2
𝜀 (Ω)

= 𝜀−1Hq,k
Γn
(Ω) ∩ 𝜀−1𝛿Hq+1,0

Γn
(𝛿,Ω)

= 𝜀−1𝛿Hq+1,k
Γn

(𝛿,Ω) = 𝜀−1𝛿Hq+1,k+1
Γn

(Ω),

completing the proof.

Theorem 4.22 and ⋆q
Γ t ,Γ n,id

(Ω) = 
d−q
Γ n,Γ t ,id

(Ω) shows the following result:

Theorem 4.26 (cohomology groups of the de Rham complex). Let (Ω,Γt) be a bounded strong Lipschitz pair. Then (≅
means isomorphic)

N(dq,k
Γt
)∕R(dq−1,k

Γt
) ≅ Lin 

q
d,Γt

(Ω) ≅ 
q
Γt ,Γn,𝜀

(Ω) ≅ Lin 
q
𝛿,Γn

(Ω) ≅ N(𝛿q,k
Γn
)∕R(𝛿q+1,k

Γn
).

In particular, the dimensions of the cohomology groups (Dirichlet/Neumann forms) are independent of k and 𝜀, and it
holds

dq
Ω,Γt

= dim
(

N(dq,k
Γt
)∕R(dq−1,k

Γt
)
)
= dim

(
N(𝛿q,k

Γn
)∕R(𝛿q+1,k

Γn
)
)
.
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Moroever, dq
Ω,Γ t

= dd−q
Ω,Γ n

.

Remark 4.27. For the case of either no or full boundary conditions, that is, Γ t = ∅ or Γ t = Γ, related results on
regular potentials, regular decompositions, as well as cohomology groups and their dimensions, even for real Sobolev
exponents k ∈ R, have been proved in Costabel and McIntosh24 using integral equation representations and methods.
In particular, we refer to Costabel and McIntosh.24, Theorem 1.1, Theorem 4.9

5 VECTOR DE RHAM COMPLEX

We reformulate the results from Section 4 in the special case d = 3 and q∈ {0, 1, 2, 3} using vector proxies. Recall Section 3.2
and let 𝜀 and 𝜇 be admissible weights. To apply the FA-ToolBox from Section 2 for the vector de Rham complex, let grad,
rot and div be realised as densely defined (unbounded) linear operators

◦

gradΓt
∶ D(

◦

gradΓt
) ⊂ L2(Ω) → L2

𝜀(Ω); u → gradu,

𝜇−1
◦

rotΓt ∶ D(𝜇−1
◦

rotΓt ) ⊂ L2
𝜀(Ω) → L2

𝜇(Ω); E → 𝜇−1rot E,
◦

divΓt𝜇 ∶ D(
◦

divΓt𝜇) ⊂ L2
𝜇(Ω) → L2(Ω); H → div 𝜇H

with domains of definition

D(
◦

gradΓt
) ∶= C∞

Γt
(Ω), D(𝜇−1

◦

rotΓt ) ∶= C∞
Γt
(Ω), D(

◦

divΓt𝜇) ∶= 𝜇−1C∞
Γt
(Ω)

satisfying the complex properties

𝜇−1
◦

rotΓt

◦

gradΓt
⊂ 0,

◦

divΓt𝜇𝜇
−1

◦

rotΓt =
◦

divΓt

◦

rotΓt ⊂ 0.

Then the closures

gradΓt
∶=

◦

gradΓt
, 𝜇−1rotΓt ∶= 𝜇−1

◦

rotΓt , divΓt𝜇 ∶=
◦

divΓt𝜇

and Hilbert space adjoints

grad∗
Γt
=

◦

grad
∗

Γt
, (𝜇−1rotΓt )

∗ = (𝜇−1
◦

rotΓt )
∗, (divΓt𝜇)

∗ = (
◦

divΓt𝜇)
∗

are given by

A0 ∶= gradΓt
∶ D(gradΓt

) ⊂ L2(Ω) → L2
𝜀(Ω); u → grad u,

A1 ∶= 𝜇−1rotΓt ∶ D(𝜇−1rotΓt ) ⊂ L2
𝜀(Ω) → L2

𝜇(Ω); E → 𝜇−1rot E,

A2 ∶= divΓt𝜇 ∶ D(divΓt𝜇) ⊂ L2
𝜇(Ω) → L2(Ω); H → div 𝜇H,

A∗
0 = grad∗

Γt
= −divΓn𝜀 ∶ D(divΓn𝜀) ⊂ L2

𝜀(Ω) → L2(Ω); E → −div 𝜀E,

A∗
1 = (𝜇−1rotΓt )

∗ = 𝜀−1rotΓn ∶ D(𝜀−1rotΓn) ⊂ L2
𝜇(Ω) → L2

𝜀(Ω); H → 𝜀−1rot H,

A∗
2 = (divΓt𝜇)

∗ = −gradΓn
∶ D(gradΓn

) ⊂ L2(Ω) → L2
𝜇(Ω); u → −grad u

with domains of definition
D(A0) = D(gradΓt

) = H1
Γt
(Ω), D(A∗

0) = D(divΓn𝜀) = 𝜀−1HΓn(div,Ω),

D(A1) = D(𝜇−1rotΓt ) = HΓt (rot,Ω), D(A∗
1) = D(𝜀−1rotΓn) = HΓn(rot,Ω),

D(A2) = D(divΓt𝜇) = 𝜇−1HΓt (div,Ω), D(A∗
2) = D(gradΓn

) = H1
Γn
(Ω).

As in Section 4, indeed the domains of definition of the adjoints are given as stated.
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Remark 5.1. Note that by definition, the adjoints are given by

grad∗
Γt
=

◦

grad
∗

Γt
= −divΓn𝜀 ∶ D(divΓn𝜀) ⊂ L2

𝜀(Ω) → L2(Ω),

(𝜇−1rotΓt )
∗ = (𝜇−1

◦

rotΓt )
∗ = 𝜀−1rotΓn ∶ D(𝜀−1rotΓn) ⊂ L2

𝜇(Ω) → L2
𝜀(Ω),

(divΓt𝜇)
∗ = (

◦

divΓt𝜇)
∗ = −gradΓn

∶ D(gradΓn
) ⊂ L2(Ω) → L2

𝜇(Ω)

with domains of definition

D(divΓn𝜀) = 𝜀−1HΓn(div,Ω), D(𝜀−1rotΓn) = HΓn(rot,Ω), D(gradΓn
) = H1

Γn
(Ω).

Lemma 3.2 (weak and strong boundary conditions coincide) shows indeed that divΓ n𝜀 = divΓ n𝜀, 𝜀−1rotΓ n = 𝜀−1rotΓ n ,
and gradΓ n

= gradΓ n
, in particular

D(divΓn𝜀) = 𝜀−1HΓn(div,Ω) = 𝜀−1HΓn(div,Ω) = D(divΓn𝜀),
D(𝜀−1rotΓn) = HΓn(rot,Ω) = HΓn(rot,Ω) = D(𝜀−1rotΓn),

D(gradΓn
) = H1

Γn
(Ω) = H1

Γn
(Ω) = D(gradΓn

).

By definition, we have densely defined and closed (unbounded) linear operators defining three dual pairs

(
gradΓt

, (gradΓt
)∗
)
= (gradΓt

,−divΓn𝜀),(
𝜇−1rotΓt , (𝜇

−1rotΓt )
∗) = (𝜇−1rotΓt , 𝜀

−1rotΓn),(
divΓt𝜇, (divΓt𝜇)

∗) = (divΓt𝜇,−gradΓn
).

Remarks 2.5 and 2.6 show the complex properties

𝜇−1rotΓt gradΓt
⊂ 0, divΓt𝜇𝜇

−1rotΓt = divΓt rotΓt ⊂ 0,

−divΓn𝜀𝜀
−1rotΓn = −divΓn rotΓn ⊂ 0, −𝜀−1rotΓn gradΓn

⊂ 0.

The long primal and dual vector de Rham Hilbert complex (12), cf. (15), reads

with the complex properties

R(𝜄RΓt
) = N(gradΓt

) = RΓt , R(divΓn𝜀) = (RΓt )
⟂L2(Ω) ,

R(gradΓt
) ⊂ N(𝜇−1rotΓt ), R(𝜀−1rotΓn) ⊂ N(divΓn𝜀),

R(𝜇−1rotΓt ) ⊂ N(divΓt𝜇), R(gradΓn
) ⊂ N(𝜀−1rotΓn),

R(divΓt𝜇) = (RΓn)
⟂L2(Ω) , R(𝜄RΓn

) = N(gradΓn
) = RΓn .

Recalling Remark 2.25, we note that actually 𝜄RΓ t
𝜄∗
RΓ t

= 𝜋RΓ t
and 𝜄RΓ n

𝜄∗
RΓ n

= 𝜋RΓ n
as self-adjoint projections on L2(Ω).

Similar to (21) (for simplicity let 𝜀 = 𝜇 = 1), we investigate the higher-order de Rham complex
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as well. More precisely, we consider the densely defined and closed linear operators

gradk
Γt
∶ D(gradk

Γt
) ⊂ Hk

Γt
(Ω) → Hk

Γt
(Ω); u → grad u, D(gradk

Γt
) ∶= Hk

Γt
(grad,Ω) = Hk+1

Γt
(Ω),

rotk
Γt
∶ D(rotk

Γt
) ⊂ Hk

Γt
(Ω) → Hk

Γt
(Ω); E → rot E, D(rotk

Γt
) ∶= Hk

Γt
(rot,Ω),

divk
Γt
∶ D(divk

Γt
) ⊂ Hk

Γt
(Ω) → Hk

Γt
(Ω); H → div H, D(divk

Γt
) ∶= Hk

Γt
(div,Ω).

Note that the complex properties R(gradk
Γ t
) ⊂ N(rotk

Γ t
) and R(rotk

Γ t
) ⊂ N(divk

Γ t
) hold.

5.1 Regular potentials and decompositions
For d ∈ {grad, rot, div} Lemma 4.6, Corollary 4.7, Theorem 4.18 and Remark 4.19 read as follows.

Theorem 5.2 (higher-order bounded regular potentials and decompositions for the vector de Rham complex with
partial boundary condition). Let (Ω,Γt) be a bounded strong Lipschitz pair and let k ≥ 0. Then:

(i) The bounded regular decompositions

Hk
Γt
(rot,Ω) = Hk

Γt
(rot,Ω) = Hk+1

Γt
(Ω) + gradHk+1

Γt
(Ω),

Hk
Γt
(div,Ω) = Hk

Γt
(div,Ω) = Hk+1

Γt
(Ω) + rotHk+1

Γt
(Ω)

hold with bounded linear regular decomposition operators

k
rot,Γt ,1

∶ Hk
Γt
(rot,Ω) → Hk+1

Γt
(Ω), k

rot,Γt ,0
∶ Hk

Γt
(rot,Ω) → Hk+1

Γt
(Ω),

k
div,Γt ,1

∶ Hk
Γt
(div,Ω) → Hk+1

Γt
(Ω), k

div,Γt ,0
∶ Hk

Γt
(div,Ω) → Hk+1

Γt
(Ω)

satisfying k
rot,Γ t ,1

+ grad k
rot,Γ t ,0

= idHk
Γ t
(rot,Ω) and k

div,Γ t ,1
+ rot k

div,Γ t ,0
= idHk

Γ t
(div,Ω). In particular, weak

and strong boundary conditions coincide. It holds rot k
rot,Γ t ,1

= rotk
Γ t

, and thus, Hk
Γ t ,0(rot,Ω) is invariant under

k
rot,Γ t ,1

. Analogously, divk
div,Γ t ,1

= divk
Γ t

, and thus, Hk
Γ t ,0(div,Ω) is invariant under k

div,Γ t ,1
.

(ii) The regular potential representations

R(gradk
Γt
) = grad Hk+1

Γt
(Ω) = Hk

Γt ,0(rot,Ω) ∩Γt ,Γn,𝜀(Ω)
⟂L2

𝜀 (Ω) = Hk
Γt
(Ω) ∩ R(gradΓt

),

R(rotk
Γt
) = rot Hk

Γt
(rot,Ω) = rot Hk+1

Γt
(Ω) = Hk

Γt ,0(div,Ω) ∩Γn,Γt ,𝜀(Ω)
⟂L2(Ω) = Hk

Γt
(Ω) ∩ R(rotΓt ),

R(divk
Γt
) = divHk

Γt
(div,Ω) = divHk+1

Γt
(Ω) = Hk

Γt
(Ω) ∩ (RΓn)

⟂L2(Ω) = Hk
Γt
(Ω) ∩ R(divΓt )

hold. In particular, these spaces are closed subspaces of Hk
∅(Ω) = Hk(Ω).

(iii) There exist bounded linear regular potential operators

k
grad,Γt

∶= (gradk
Γt
)−1
⟂ ∶ Hk

Γt ,0(rot,Ω) ∩Γt ,Γn,𝜀(Ω)
⟂L2

𝜀 (Ω) → Hk+1
Γt

(Ω),

k
rot,Γt

∶= k
rot,Γt ,1

(rotk
Γt
)−1
⟂ ∶ Hk

Γt ,0(div,Ω) ∩Γn,Γt ,𝜀(Ω)
⟂L2 (Ω) → Hk+1

Γt
(Ω),

k
div,Γt

∶= k
div,Γt ,1

(divk
Γt
)−1
⟂ ∶ Hk

Γt
(Ω) ∩ (RΓn)

⟂L2 (Ω) → Hk+1
Γt

(Ω),

such that

grad k
grad,Γt

= id|
Hk

Γt ,0
(rot,Ω)∩Γt ,Γn ,𝜀(Ω)

⟂
L2
𝜀 (Ω)
,

rot k
rot,Γt

= id|
Hk

Γt ,0
(div,Ω)∩Γn ,Γt ,𝜀(Ω)

⟂
L2(Ω) ,

div k
div,Γt

= id|
Hk

Γt
(Ω)∩(RΓn )

⟂
L2(Ω) .
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In particular, all potentials in (ii) can be chosen such that they depend continuously on the data. k
grad,Γ t

, k
rot,Γ t

and k
div,Γ t

are right inverses of grad, rot and div, respectively.
(iv) The bounded regular decompositions

Hk
Γt
(rot,Ω) = Hk+1

Γt
(Ω) + Hk

Γt ,0(rot,Ω) = Hk+1
Γt

(Ω) + grad Hk+1
Γt

(Ω)

= R(̃k
rot,Γt ,1

) ∔ Hk
Γt ,0(rot,Ω) = R(̃k

rot,Γt ,1
) ∔ R(̃ k

rot,Γt
),

Hk
Γt
(div,Ω) = Hk+1

Γt
(Ω) + Hk

Γt ,0(div,Ω) = Hk+1
Γt

(Ω) + rot Hk+1
Γt

(Ω)

= R(̃k
div,Γt ,1

) ∔ Hk
Γt ,0(div,Ω) = R(̃k

div,Γt ,1
) ∔ R(̃ k

div,Γt
)

hold with bounded linear regular decomposition operators

̃k
rot,Γt ,1

∶= k
rot,Γt

rotk
Γt
∶ Hk

Γt
(rot,Ω) → Hk+1

Γt
(Ω), ̃ k

rot,Γt
∶ Hk

Γt
(rot,Ω) → Hk

Γt ,0(rot,Ω),

̃k
div,Γt ,1

∶= k
div,Γt

divk
Γt
∶ Hk

Γt
(div,Ω) → Hk+1

Γt
(Ω), ̃ k

div,Γt
∶ Hk

Γt
(div,Ω) → Hk

Γt ,0(div,Ω)

satisfying ̃k
rot,Γ t ,1

+ ̃ k
rot,Γ t

= idHk
Γ t
(rot,Ω) and ̃k

div,Γ t ,1
+ ̃ k

div,Γ t
= idHk

Γ t
(div,Ω). It holds rot ̃k

rot,Γ t ,1
= rot k

rot,Γ t ,1
=

rotk
Γ t

, and thus, Hk
Γ t ,0(rot,Ω) is invariant under k

rot,Γ t ,1
and ̃k

rot,Γ t ,1
. Analogously, diṽk

div,Γ t ,1
= divk

div,Γ t ,1
=

divk
Γ t

, and thus, Hk
Γ t ,0(div,Ω) is invariant under k

div,Γ t ,1
and ̃k

div,Γ t ,1
. Moreover, we have R(̃k

rot,Γ t ,1
) = R(k

rot,Γ t
)

and ̃k
rot,Γ t ,1

= k
rot,Γ t ,1

(rotk
Γ t
)−1
⟂ rotk

Γ t
. Hence, ̃k

rot,Γ t ,1
|D((rotk

Γ t
)⟂) = k

rot,Γ t ,1
|D((rotk

Γ t
)⟂), and thus, ̃k

rot,Γ t ,1
may

differ from k
rot,Γ t ,1

only on Hk
Γ t ,0(rot,Ω). Analogously, it holds R(̃k

div,Γ t ,1
) = R(k

div,Γ t
) and ̃k

div,Γ t ,1
=

k
div,Γ t ,1

(divk
Γ t
)−1
⟂ divk

Γ t
. Hence, we have that ̃k

div,Γ t ,1
|D((divk

Γ t
)⟂) = k

div,Γ t ,1
|D((divk

Γ t
)⟂), and thus, ̃k

div,Γ t ,1
may differ

from k
div,Γ t ,1

only on Hk
Γ t ,0(div,Ω).

(iv') The bounded regular kernel decompositions Hk
Γ t ,0(rot,Ω) = Hk+1

Γ t ,0
(rot,Ω) + grad Hk+1

Γ t
(Ω) and Hk

Γ t ,0(div,Ω) =
Hk+1

Γ t ,0
(div,Ω) + rot Hk+1

Γ t
(Ω) hold.

Remark 5.2. Let us recall the bounded regular decompositions from Theorem 5.2 (iv), for example,

Hk
Γt
(rot,Ω) = R(̃k

rot,Γt ,1
) ∔ R(̃ k

rot,Γt
).

(i) ̃k
rot,Γ t ,1

, ̃ k
rot,Γ t

= 1 − ̃k
rot,Γ t ,1

are projections with ̃k
rot,Γ t ,1

̃ k
rot,Γ t

= ̃ k
rot,Γ t

̃k
rot,Γ t ,1

= 0.

(ii) For I± ∶= ̃k
rot,Γ t ,1

±̃ k
rot,Γ t

, it holds I+ = I2
− = idHk

Γ t
(rot,Ω). Therefore, I+, I2

−, as well as I− = 2̃k
rot,Γ t ,1

− idHk
Γ t
(rot,Ω)

are topological isomorphisms on Hk
Γ t
(rot,Ω).

(iii) There exists c> 0 such that for all E ∈ Hk
Γ t
(rot,Ω)

c|̃k
rot,Γt ,1

E|Hk+1(Ω) ≤ |rot E|Hk(Ω) ≤ |E|Hk(rot,Ω),|̃ k
rot,Γt

E|Hk(Ω) ≤ |E|Hk(Ω) + |̃k
rot,Γt ,1

E|Hk(Ω).

(iii') For E ∈ Hk
Γ t ,0(rot,Ω), we have ̃k

rot,Γ t ,1
E = 0 and ̃ k

rot,Γ t
E = E. In particular, ̃ k

rot,Γ t
is onto.

(iv) Literally, (i)–(iii') hold for div as well.

5.2 Zero-order mini FA-ToolBox
Theorem 4.8, Theorem 4.9 and Remark 4.10 translate to the following results, cf. (12) and Definition 2.26 as well as Pauly
and Waurick.23, Lemma 5.1, Lemma 5.2
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Theorem 5.4 (compact embedding for the vector de Rham complex). Let (Ω,Γt) be a bounded strong Lipschitz pair.
Then the embeddings

D(A0) = H1
Γt
(Ω) → L2(Ω),

D(A1) ∩ D(A∗
0) = HΓt (rot,Ω) ∩ 𝜀−1HΓn(div,Ω) → L2

𝜀(Ω),

D(A2) ∩ D(A∗
1) = 𝜇−1HΓt (div,Ω) ∩ HΓn(rot,Ω) → L2

𝜇(Ω),

D(A∗
2) = H1

Γn
(Ω) → L2(Ω)

are compact; that is, the long primal and dual vector de Rham Hilbert complex is compact. In particular, the complex is
closed. Moreover, the compactness of the embeddings is independent of 𝜀 and 𝜇.

Theorem 5.5 (mini FA-ToolBox for the vector de Rham complex). Let (Ω,Γt) be a bounded strong Lipschitz pair. Then

(i) the ranges R(gradΓ t
), R(rotΓ t ), and R(divΓ t ) = (RΓ n)

⟂L2(Ω) are closed,
(ii) the inverse operators (gradΓ t

)−1
⟂ , (𝜇−1rotΓ t )

−1
⟂ and (divΓ t𝜇)

−1
⟂ are compact,

(iii) the cohomology group Γ t ,Γ n,𝜀(Ω) = HΓ t ,0(rot,Ω)∩ 𝜀−1HΓ n,0(div,Ω) has finite dimension, which is independent of
𝜀,

(iv) the orthogonal Helmholtz-type decomposition

L2
𝜀(Ω) = grad H1

Γt
(Ω) ⊕L2

𝜀(Ω)
Γt ,Γn,𝜀(Ω) ⊕L2

𝜀(Ω)
𝜀−1rot HΓn(rot,Ω)

holds,
(v) there exist cgrad,Γ t , crot,Γ t , cdiv,Γ t > 0 such that

∀u ∈ D
(
(gradΓt

)⟂
) |u|L2(Ω) ≤ cgrad,Γt |grad u|L2

𝜀(Ω)
,

∀E ∈ D
(
(divΓn𝜀)⟂

) |E|L2
𝜀(Ω)

≤ cgrad,Γt |div 𝜀E|L2(Ω),

∀E ∈ D
(
(𝜇−1rotΓt )⟂

) |E|L2
𝜀(Ω)

≤ crot,Γt |𝜇−1rot E|L2
𝜇(Ω)

,

∀H ∈ D
(
(𝜀−1rotΓn)⟂

) |H|L2
𝜇(Ω)

≤ crot,Γt |𝜀−1rot E|L2
𝜀(Ω)

,

∀H ∈ D
(
(divΓt𝜇)⟂

) |H|L2
𝜇(Ω)

≤ cdiv,Γt |div 𝜇H|L2(Ω),

∀u ∈ D
(
(gradΓn

)⟂
) |u|L2(Ω) ≤ cdiv,Γt |grad u|L2

𝜇(Ω)
,

where

D
(
(gradΓt

)⟂
)
= D(gradΓt

) ∩ N(gradΓt
)⟂L2(Ω) = D(gradΓt

) ∩ R(divΓn𝜀),

D
(
(divΓn𝜀)⟂

)
= D(divΓn𝜀) ∩ N(divΓn𝜀)

⟂L2
𝜀 (Ω) = D(divΓn𝜀) ∩ R(gradΓt

),

D
(
(𝜇−1rotΓt )⟂

)
= D(𝜇−1rotΓt ) ∩ N(𝜇−1rotΓt )

⟂L2
𝜀 (Ω) = D(𝜇−1rotΓt ) ∩ R(𝜀−1rotΓn),

which also gives D
(
(𝜀−1rotΓ n)⟂

)
, D

(
(divΓ t𝜇)⟂

)
, and D

(
(gradΓ n

)⟂
)

by interchanging 𝜀, 𝜇 and Γt, Γn,

(v') it holds for all E ∈ D(𝜇−1rotΓ t ) ∩ D(divΓ n𝜀) ∩Γ t ,Γ n,𝜀(Ω)
⟂L2

𝜀 (Ω)

|E|2
L2
𝜀(Ω)

≤ c2
rot,Γt

|𝜇−1rot E|2
L2
𝜇(Ω)

+ c2
grad,Γt

|div 𝜀E|2
L2(Ω)

,

(vi) Γ t ,Γ n,𝜀(Ω) = {0}, if Ω is additionally extendable.

Remark 5.6. Theorems 5.4 and 5.5 hold more generally for bounded weak Lipschitz pairs (Ω,Γt); see previous
studies.9,17,18
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5.3 Higher-order mini FA-ToolBox and Dirichlet/Neumann fields
Theorem 5.4 holds even for higher Sobolev orders, cf. Theorem 4.16.

Theorem 5.7 (higher-order compact embedding for the vector de Rham complex). Let (Ω,Γt) be a bounded strong
Lipschitz pair. Then for all k ∈ N0, the embeddings

Hk+1
Γt

(Ω) ∩ Hk
Γn
(Ω) → Hk

Γ(Ω),

Hk
Γt
(rot,Ω) ∩ Hk

Γn
(div,Ω) → Hk

Γ(Ω),

Hk
Γt
(div,Ω) ∩ Hk

Γn
(rot,Ω) → Hk

Γ(Ω),

Hk
Γt
(Ω) ∩ Hk+1

Γn
(Ω) → Hk

Γ(Ω)

are compact.

Remark 5.8. (higher-order Friedrichs/Poincaré type estimates for the vector de Rham complex). Analogues of Theo-
rems 4.15 and 4.17 hold. In particular, for all k ≥ 0, there exists c̃k > 0 such that for all E ∈ Hk

Γ t
(rot,Ω) ∩Hk

Γ n
(div,Ω) ∩

Γ t ,Γ n,id(Ω)
⟂L2(Ω) |E|2

Hk(Ω)
≤ c̃2

k

(|rot E|2
Hk(Ω)

+ |div E|2
Hk(Ω)

)
.

Theorem 5.2 (iv'), cf. Corollary 4.20, shows by induction for all k,𝓁 ≥ 0

Hk
Γt ,0(rot,Ω) = H𝓁

Γt ,0(rot,Ω) + grad Hk+1
Γt

(Ω),Hk
Γt ,0(div,Ω) = H𝓁

Γt ,0(div,Ω) + rot Hk+1
Γt

(Ω). (22)

By Theorem 5.5 (iv), we have the orthonormal Helmholtz decompositions

L2
𝜀(Ω) = grad H1

Γt
(Ω) ⊕L2

𝜀(Ω)
𝜀−1HΓn,0(div,Ω)

= HΓt ,0(rot,Ω) ⊕L2
𝜀(Ω)

𝜀−1rot HΓn(rot,Ω)

= grad H1
Γt
(Ω) ⊕L2

𝜀(Ω)
Γt ,Γn,𝜀(Ω) ⊕L2

𝜀(Ω)
𝜀−1rot HΓn(rot,Ω),

HΓt ,0(rot,Ω) = grad H1
Γt
(Ω) ⊕L2

𝜀(Ω)
Γt ,Γn,𝜀(Ω),

𝜀−1HΓn,0(div,Ω) = Γt ,Γn,𝜀(Ω) ⊕L2
𝜀(Ω)

𝜀−1rot HΓn(rot,Ω).

(23)

Let us denote the L2
𝜀(Ω)-orthonormal projector onto 𝜀−1HΓ n,0(div,Ω) and HΓ t ,0(rot,Ω) by

𝜋div ∶ L2
𝜀(Ω) → 𝜀−1HΓn,0(div,Ω), 𝜋rot ∶ L2

𝜀(Ω) → HΓt ,0(rot,Ω)

respectively. Then

𝜋div|HΓt ,0(rot,Ω) ∶ HΓt ,0(rot,Ω) → Γt ,Γn,𝜀(Ω),

𝜋rot|𝜀−1HΓn ,0(div,Ω) ∶ 𝜀−1HΓn,0(div,Ω) → Γt ,Γn,𝜀(Ω)

are onto. Moreover,

𝜋div|grad H1
Γt
(Ω) = 0, 𝜋rot|𝜀−1rot HΓn (rot,Ω) = 0,

𝜋div|Γt ,Γn ,𝜀(Ω) = idΓt ,Γn ,𝜀(Ω), 𝜋rot|Γt ,Γn ,𝜀(Ω) = idΓt ,Γn ,𝜀(Ω).

Therefore, by (22) and for all 𝓁 ≥ 0,

Γt ,Γn,𝜀(Ω) = 𝜋divHΓt ,0(rot,Ω) = 𝜋divH𝓁
Γt ,0(rot,Ω),

Γt ,Γn,𝜀(Ω) = 𝜋rot𝜀
−1HΓn,0(div,Ω) = 𝜋rot𝜀

−1H𝓁
Γn,0(div,Ω).
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Hence with
H∞

Γt ,0(rot,Ω) ∶ =
⋂
k≥0

Hk
Γt ,0(rot,Ω), H∞

Γt ,0(div,Ω) ∶ =
⋂
k≥0

Hk
Γt ,0(div,Ω)

we have the following result:

Theorem 5.9 (smooth prebases of Dirichlet/Neumann fields for the vector de Rham complex). Let (Ω,Γt) be a
bounded strong Lipschitz pair and let dΩ,Γ t ∶= dimΓ t ,Γ n,𝜀(Ω). Then

𝜋divH∞
Γt ,0(rot,Ω) = Γt ,Γn,𝜀(Ω) = 𝜋rot𝜀

−1H∞
Γn,0(div,Ω).

Moreover, there exists a smooth rot-prebasis and a smooth div-prebasis ofΓ t ,Γ n,𝜀(Ω); that is, there are linear independent
smooth fields

rot,Γt (Ω) ∶= {Brot,Γt ,𝓁}
dΩ,Γt
𝓁=1 ⊂ H∞

Γt ,0(rot,Ω),div,Γn(Ω) ∶= {Bdiv,Γn,𝓁}
dΩ,Γt
𝓁=1 ⊂ H∞

Γn,0(div,Ω)

such that 𝜋divrot,Γ t (Ω) and 𝜋rot𝜀
−1div,Γ n(Ω) are both bases of Γ t ,Γ n,𝜀(Ω). In particular,

Lin 𝜋divrot,Γt (Ω) = Γt ,Γn,𝜀(Ω) = Lin 𝜋rot𝜀
−1div,Γn(Ω).

Note that (1 − 𝜋div) and (1 − 𝜋rot) are the L2
𝜀(Ω)-orthonormal projectors onto grad H1

Γ t
(Ω) and 𝜀−1rot HΓ n(rot,Ω),

respectively, that is,

(1 − 𝜋div) ∶ L2
𝜀(Ω) → grad H1

Γt
(Ω), (1 − 𝜋rot) ∶ L2

𝜀(Ω) → 𝜀−1rot HΓn(rot,Ω).

Then by (23) and Theorem 5.2 (ii), we have, for example,

HΓt ,0(rot,Ω) = grad H1
Γt
(Ω) ⊕L2

𝜀(Ω)
Γt ,Γn,𝜀(Ω)

= grad H1
Γt
(Ω) ⊕L2

𝜀(Ω)
Lin 𝜋divrot,Γt (Ω)

= grad H1
Γt
(Ω) + (𝜋div − 1)Lin rot,Γt (Ω) + Lin rot,Γt (Ω)

= grad H1
Γt
(Ω) + Lin rot,Γt (Ω),

Hk
Γt ,0(rot,Ω) = grad H1

Γt
(Ω) ∩ Hk

Γt ,0(rot,Ω) + Lin rot,Γt (Ω),

= grad Hk+1
Γt

(Ω) + Lin rot,Γt (Ω).

(24)

Similar to Theorem 4.22, we get:

Theorem 5.10 (higher-order bounded regular direct decompositions for the vector de Rham complex). Let (Ω,Γt) be
a bounded strong Lipschitz pair and let k ≥ 0. Then the bounded regular direct decompositions

Hk
Γt
(rot,Ω) = R(̃k

rot,Γt ,1
) ∔ Hk

Γt ,0(rot,Ω), Hk
Γt ,0(rot,Ω) = grad Hk+1

Γt
(Ω) ∔ Lin rot,Γt (Ω),

Hk
Γn
(div,Ω) = R(̃k

div,Γn,1
) ∔ Hk

Γn,0(div,Ω), Hk
Γn,0(div,Ω) = rot Hk+1

Γn
(Ω) ∔ Lin div,Γn (Ω)

hold. Note that R(̃k
rot,Γ t ,1

) ⊂ Hk+1
Γ t

(Ω) and R(̃k
div,Γ n,1

) ⊂ Hk+1
Γ n

(Ω). In particular, for k = 0

HΓt (rot,Ω) = R(̃0
rot,Γt ,1

) ∔ HΓt ,0(rot,Ω), HΓt ,0(rot,Ω) = grad H1
Γt
(Ω) ∔ Lin rot,Γt (Ω),

= grad H1
Γt
(Ω) ⊕L2

𝜀(Ω)
Γt ,Γn,𝜀(Ω),

HΓn(div,Ω) = R(̃0
div,Γn,1

) ∔ HΓn,0(div,Ω), 𝜀−1HΓn,0(div,Ω) = 𝜀−1rot H1
Γn
(Ω) ∔ 𝜀−1Lin div,Γn(Ω)

= 𝜀−1rot H1
Γn
(Ω) ⊕L2

𝜀(Ω)
Γt ,Γn,𝜀(Ω)

as well as
L2
𝜀(Ω) = HΓt ,0(rot,Ω) ⊕L2

𝜀(Ω)
𝜀−1rot H1

Γn
(Ω) = grad H1

Γt
(Ω) ⊕L2

𝜀(Ω)
𝜀−1HΓn,0(div,Ω).
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Remark 4.23 holds here as well. Noting

𝜀−1rot HΓn(rot,Ω)⟂L2
𝜀(Ω)

rot,Γt (Ω), grad H1
Γt
(Ω)⟂L2(Ω)div,Γn(Ω) (25)

we see:

Theorem 5.11 (alternative Dirichlet/Neumann projections for the vector de Rham complex). Let (Ω,Γt) be a bounded
strong Lipschitz pair. Then

Γt ,Γn,𝜀(Ω) ∩ rot,Γt (Ω)
⟂L2

𝜀 (Ω) = {0}, 𝜀−1HΓn,0(div,Ω) ∩ rot,Γt (Ω)
⟂L2

𝜀 (Ω) = 𝜀−1rot HΓn(rot,Ω),
Γt ,Γn,𝜀(Ω) ∩ div,Γn (Ω)

⟂L2(Ω) = {0}, HΓt ,0(rot,Ω) ∩ div,Γn(Ω)
⟂L2(Ω) = grad H1

Γt
(Ω).

Moreover, for all k ≥ 0,

𝜀−1Hk
Γn,0(div,Ω) ∩ rot,Γt (Ω)

⟂L2
𝜀 (Ω) = 𝜀−1rot Hk

Γn
(rot,Ω) = 𝜀−1rot Hk+1

Γn
(Ω),

Hk
Γt ,0(rot,Ω) ∩ div,Γn(Ω)

⟂L2(Ω) = grad Hk+1
Γt

(Ω).

Theorem 5.12 (cohomology groups of the vector de Rham complex). Let (Ω,Γt) be a bounded strong Lipschitz pair.
Then

N(rotk
Γt
)∕R(gradk

Γt
) ≅ Lin rot,Γt (Ω) ≅ Γt ,Γn,𝜀(Ω) ≅ Lin div,Γn(Ω) ≅ N(divk

Γn
)∕R(rotk

Γn
).

In particular, the dimensions of the cohomology groups (Dirichlet/Neumann fields) are independent of k and 𝜀, and it
holds

dΩ,Γt = dim
(

N(rotk
Γt
)∕R(gradk

Γt
)
)
= dim

(
N(divk

Γn
)∕R(rotk

Γn
)
)
.
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APPENDIX A: RESULTS FOR THE CO-DERIVATIVE

By Hodge ⋆-duality, we get the corresponding dual results from Section 4 for the 𝛿-operator.

Lemma 4.7 (regular potential for 𝛿 without boundary condition). Let Ω ⊂ Rd be a bounded strong Lipschitz domain
and let k ≥ 0 and q∈ {0, … , d− 1}. Then there exists a bounded linear regular potential operator


q,k
𝛿,∅ ∶ Hq,k

∅,0(𝛿,Ω) ∩
q
Γ,∅,id(Ω)

⟂Lq,2(Ω) → Hq+1,k+1
0 (d,Rd),

such that 𝛿q,k
𝛿,∅ = id|

Hq,k
∅,0(𝛿,Ω)∩

q
Γ,∅,id(Ω)

⟂
Lq,2(Ω) , i.e., for all E ∈ Hq,k

∅,0(𝛿,Ω) ∩
q
Γ,∅,id(Ω)

⟂Lq,2(Ω)

𝛿
q,k
𝛿,∅E = E in Ω.

In particular, the bounded regular potential representations

R(𝛿q+1,k
∅ ) = Hq,k

∅,0(𝛿,Ω) ∩
q
Γ,∅,id(Ω)

⟂Lq,2(Ω) = 𝛿Hq+1,k
∅ (𝛿,Ω) = 𝛿Hq+1,k+1

∅ (Ω) = 𝛿Hq+1,k+1
∅,0 (d,Ω)

hold, and the potentials can be chosen such that they depend continuously on the data. Especially, these are closed
subspaces of Hq,k

∅ (Ω) = Hq,k(Ω), and 
q,k
𝛿,∅ is a right inverse to 𝛿. By a simple cut-off technique, q,k

𝛿,∅ may be modified to


q,k
𝛿,∅ ∶ Hq,k

∅,0(𝛿,Ω) ∩
q
Γ,∅,id(Ω)

⟂Lq,2(Ω) → Hq+1,k+1(d,Rd)

such that q,k
𝛿,∅E has a fixed compact support in Rd for all E ∈ Hq,k

∅,0(𝛿,Ω) ∩
q
Γ,∅,id(Ω)

⟂Lq,2(Ω) .

Lemma 4.8 (regular potentials and decompostions for 𝛿 with partial boundary condition for extendable domains).
Let (Ω,Γn) be an extendable bounded strong Lipschitz pair and let k ≥ 0.
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(i) For 1 ≤ q ≤ d− 1, there exists a bounded linear regular potential operator


q,k
𝛿,Γn

∶ Hq,k
Γn,0

(𝛿,Ω) → Hq+1,k+1(Rd) ∩ Hq+1,k+1
Γn

(Ω),

such that 𝛿q,k
d,Γ n

= id|Hq,k
Γ n ,0

(𝛿,Ω), that is, for all E ∈ Hq,k
Γ n,0

(𝛿,Ω)

𝛿
q,k
𝛿,Γn

E = E in Ω.

In particular, the bounded regular potential representations

Hq,k
Γn,0

(𝛿,Ω) = Hq,k
Γn,0

(𝛿,Ω) = 𝛿Hq+1,k+1
Γn

(Ω) = 𝛿Hq+1,k
Γn

(𝛿,Ω)

hold, and the potentials can be chosen such that they depend continuously on the data. Especially, these are closed
subspaces of Hq,k

∅ (Ω) = Hq,k(Ω), and 
q,k
𝛿,Γ n

is a right inverse to 𝛿. The results extend literally to the case q = 0 if
Γn ≠Γ, and the case q= d is trivial since Hd,k

Γ n,0
(𝛿,Ω) = RΓ n . For q = 0 and Γn = Γ, the results still remain valid

if H0,k
Γ,0(𝛿,Ω) = H0,k

Γ (Ω) and H0,k
Γ,0(𝛿,Ω) = H0,k

Γ (Ω) are replaced by the slightly smaller spaces H0,k
Γ (Ω) ∩ R

⟂L0,2(Ω) and
H0,k

Γ (Ω) ∩R
⟂L0,2(Ω) , respectively.

(ii) For all 0 ≤ q ≤ d, the regular decompositions

Hq,k
Γn
(𝛿,Ω) = Hq,k

Γn
(𝛿,Ω) = Hq,k+1

Γn
(Ω) + 𝛿Hq+1,k+1

Γn
(Ω)

= 
q,k
𝛿,Γn,1

Hq,k
Γn
(𝛿,Ω) ∔ 𝛿q,k

𝛿,Γn,0
Hq,k

Γn
(𝛿,Ω)

= 
q,k
𝛿,Γn,1

Hq,k
Γn
(𝛿,Ω) ∔ 𝛿Hq+1,k+1

Γn
(Ω)

= 
q,k
𝛿,Γn,1

Hq,k
Γn
(𝛿,Ω) ∔ Hq,k

Γn,0
(𝛿,Ω)

hold with bounded linear regular decomposition operators


q,k
𝛿,Γn,1

∶= 
q−1,k
𝛿,Γn

𝛿 ∶ Hq,k
Γn
(𝛿,Ω) → Hq,k+1

Γn
(Ω),


q,k
𝛿,Γn,0

∶= 
q,k
𝛿,Γn

(1 − 
q−1,k
𝛿,Γn

𝛿) ∶ Hq,k
Γn
(𝛿,Ω) → Hq+1,k+1

Γn
(Ω)

satisfying q,k
𝛿,Γ n,1

+𝛿q,k
𝛿,Γ n,0

= id|Hq,k
Γ n

(𝛿,Ω). Moreover, it holds 𝛿q,k
𝛿,Γ n,1

= 𝛿
q,k
Γ n

, and thus, Hq,k
Γ n,0

(𝛿,Ω) is invariant under


q,k
𝛿,Γ n,1

. q,k
𝛿,Γ n,1

Hq,k
Γ n
(𝛿,Ω) = R(q,k

𝛿,Γ n,1
) = R(q−1,k

𝛿,Γ n
) as well as q,k

𝛿,Γ n,0
Hq,k

Γ n
(𝛿,Ω) = R(q,k

𝛿,Γ n,0
) = R(q,k

𝛿,Γ n
) hold.

Lemma 4.9 (regular decompositions for 𝛿 with partial boundary condition). Let (Ω,Γn) be a bounded strong Lipschitz
pair and let k ≥ 0. Then the bounded regular decompositions

Hq,k
Γn
(𝛿,Ω) = Hq,k

Γn
(𝛿,Ω) = Hq,k+1

Γn
(Ω) + 𝛿Hq+1,k+1

Γn
(Ω)

hold with bounded linear regular decomposition operators


q,k
𝛿,Γn,1

∶ Hq,k
Γn
(𝛿,Ω) → Hq,k+1

Γn
(Ω), 

q,k
𝛿,Γn,0

∶ Hq,k
Γn
(𝛿,Ω) → Hq+1,k+1

Γn
(Ω)

satisfying q,k
𝛿,Γ n,1

+ 𝛿q,k
𝛿,Γ n,0

= idHq,k
Γ n

(𝛿,Ω). In particular, weak and strong boundary conditions coincide. Moreover, it holds

𝛿
q,k
𝛿,Γ n,1

= 𝛿
q,k
Γ n

, and thus, Hq,k
Γ n,0

(𝛿,Ω) is invariant under q,k
𝛿,Γ n,1

.

Theorem 5.13 (higher-order bounded regular potentials and decompositions for 𝛿 with partial boundary condition).
Let (Ω,Γn) be a bounded strong Lipschitz pair and let k ≥ 0. Moreover, let q,k

𝛿,Γ n,1
be given from Lemma 4.9. Then:
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(i) For all q∈ {0, … , d− 1}, there exists a bounded linear regular potential operator


q,k
𝛿,Γn

∶= 
q+1,k
𝛿,Γn,1

(𝛿q+1,k
Γn

)−1
⟂ ∶ Hq,k

Γn,0
(𝛿,Ω) ∩

q
Γt ,Γn,𝜀

(Ω)⟂Lq,2(Ω) → Hq+1,k+1
Γn

(Ω),

such that 𝛿q,k
𝛿,Γ n

= id|
Hq,k

Γ n ,0
(𝛿,Ω)∩q

Γ t ,Γ n ,𝜀
(Ω)

⟂
Lq,2(Ω) . In particular, the bounded regular representations

R(𝛿q+1,k
Γn

) = Hq,k
Γn,0

(𝛿,Ω) ∩
q
Γt ,Γn,𝜀

(Ω)⟂Lq,2(Ω)

= Hq,k
Γn
(Ω) ∩ 𝛿Hq+1

Γn
(𝛿,Ω) = 𝛿Hq+1,k

Γn
(𝛿,Ω) = 𝛿Hq+1,k+1

Γn
(Ω)

hold, and the potentials can be chosen such that they depend continuously on the data.
(ii) The bounded regular decompositions

Hq,k
Γn
(𝛿,Ω) = Hq,k+1

Γn
(Ω) + Hq,k

Γn,0
(𝛿,Ω) = Hq,k+1

Γn
(Ω) + 𝛿Hq+1,k+1

Γn
(Ω)

= R(̃q,k
𝛿,Γn,1

) ∔ Hq,k
Γn,0

(𝛿,Ω) = R(̃q,k
𝛿,Γn,1

) ∔ R(̃ q,k
𝛿,Γn

)

hold with bounded linear regular decomposition operators

̃
q,k
𝛿,Γn,1

∶= 
q−1,k
𝛿,Γn

𝛿
q,k
Γn

∶ Hq,k
Γn
(𝛿,Ω) → Hq,k+1

Γn
(Ω), ̃

q,k
𝛿,Γn

∶ Hq,k
Γn
(𝛿,Ω) → Hq,k

Γn,0
(𝛿,Ω)

satisfying ̃
q,k
𝛿,Γ n,1

+ ̃
q,k
𝛿,Γ n

= idHq,k
Γ n

(𝛿,Ω). Moreover, 𝛿̃q,k
𝛿,Γ n,1

= 𝛿
q,k
𝛿,Γ n,1

= 𝛿
q,k
Γ n

, and thus, Hq,k
Γ n,0

(𝛿,Ω) is invariant

under q,k
𝛿,Γ n,1

and ̃
q,k
𝛿,Γ n,1

. It holds R(̃q,k
𝛿,Γ n,1

) = R(q−1,k
𝛿,Γ n

) and ̃
q,k
𝛿,Γ n,1

= 
q−1,k
𝛿,Γ n

𝛿
q,k
Γ n

= 
q,k
𝛿,Γ n,1

(𝛿q,k
Γ n
)−1
⟂ 𝛿

q,k
Γ n

. Hence,
̃

q,k
𝛿,Γ n,1

|(𝛿q,k
Γ n

)⟂
= 

q,k
𝛿,Γ n,1

|(𝛿q,k
Γ n

)⟂
, and thus, ̃q,k

𝛿,Γ n,1
may differ from 

q,k
𝛿,Γ n,1

only on Hq,k
Γ n,0

(𝛿,Ω).

(ii') The bounded regular kernel decomposition Hq,k
Γ n,0

(𝛿,Ω) = Hq,k+1
Γ n,0

(𝛿,Ω) + 𝛿Hq+1,k+1
Γ n

(Ω) holds.

Note that Remarks 4.12 and 4.19 hold with obvious modifications.
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