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1 INTRODUCTION

Somewhat simplified, the topic of this paper is the study of the limit 𝜀 → 0+ in the standard Maxwell system in a nonempty

open set Ω ⊆ R3, which in convenient block operator matrix notation is given by(
𝜕0

(
𝜀 0
0 𝜇

)
+
(
𝜎 0
0 0

)
+
(

0 −curl
cůrl 0

))(
E
H

)
=
(
−J
K

)
,

with the limit case 𝜀 = 0 being the so-called eddy current case. Here, following standard physics notation 𝜕0 denotes the

time derivative, E, H, denote the electric and magnetic field, respectively, and J,K corresponding external source terms, 𝜀

denotes the dielectricity and 𝜇 the magnetic permeability, and 𝜎 denotes the conductivity. The overset circle in cůrl is supposed

to indicate that the so-called electric boundary condition is imposed on E, which makes

(
0 −curl

cůrl 0

)
skew-selfadjoint in

L2(Ω,C3 ×C3) ≡ L2(Ω,C6). For the purpose of this introduction, we may think of 𝜀, 𝜇, 𝜎 simply as nonnegative real numbers.

The approximation question 𝜀 → 0+ has been considered in the literature commonly in the second-order form, where H has

been eliminated from the equations, ie, the equations discussed are not Maxwell's equations but rather the abstract wave equation

𝜀𝜕2
0
E + 𝜎𝜕0E + curl𝜇−1cůrl E = −𝜕0J + curl𝜇−1K =∶ −J̃.

Following common wisdom indeed a time-harmonic regime is assumed, where 𝜕0 is replaced by i𝜔, where 𝜔 is a real number

referred to as frequency, leading to

(𝜀𝜔2 − i𝜔𝜎)E − curl𝜇−1cůrl E = J̃.

Because of the selfadjointness of curl𝜇−1cůrl in L2
(
Ω,C3

)
, we have that for 𝜎 ≠ 0, the number 𝜀𝜔2 − i𝜔𝜎 is actually in the

resolvent set of curl𝜇−1cůrl and so the limit 𝜀 → 0+ is well controlled by the analyticity of the resolvent

z → (z − curl𝜇−1cůrl)−1
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on C∖[0,∞ [ . The situation is less clear if 𝜀, 𝜎 are allowed to vary–say they are piecewise constant. For example, there may

be a decomposition of Ω into a relative compact, nonempty, open subset Ωc ⊆ Ω, where 𝜎 = 𝜎c > 0 and 𝜀 = 𝜀c ⩾ 0, and the

rest, where 𝜎 = 0 and 𝜀 > 0. For bounded and sufficiently regular domains Ω such that a suitable compact embedding result

holds, the limit 𝜀c → 0+ can still be established and so a justification of the eddy current problem can be given. For a survey

see Rodríguez and Valli1 and the literature quoted there.

A dramatically different situation arises if Ω is unbounded, eg, Ω = R3. Then 𝜎 = 0 becomes the dominant case with the

material behavior in Ωc just being a compact perturbation. In this situation,

𝜀𝜔2E − curl𝜇−1cůrl E = J̃

is our reference case, where now 𝜀𝜔2 ∈ R∖{0} is always in the continuous spectrum of the operator curl𝜇−1cůrl. Thus, in

contrast to what seems to be claimed in Ammari et al,2 a solution theory in L2
(
Ω,C3

)
is unavailable. The much more demanding

issues involved to study such perturbation problems and to discuss limiting problems is well developed in connection with the

solution theory for exterior boundary value problems and the study of low-frequency asymptotics in, eg, previous studies.3–10

A comparison between the low-frequency asymptotics for the full time-harmonic Maxwell's equations and their eddy current

approximation can be found in Pauly8, Satz 5.7 and Pepperl.9, Kapitel

On the other hand, keeping in mind that time-harmonic problems are nonphysical in so far as they produce infinite energy

solutions and merely serve to describe the time-asymptotic behavior in presence of a–perpetual–time-harmonic forcing, it seems

appropriate to bypass the above spectral issues altogether by discussing the original–physical–dynamic system directly. This

is the perspective of the following presentation, which is based on concepts derived in, eg, previous studies.11,12 After a brief

introduction into the needed framework, we discuss the limit to the eddy current case in full generality in Section 3. In particular,

we emphasize that size and boundary regularity of the underlying domain Ω play no role in the final result. This is due to the fact

that the classical boundary trace results are superfluous for the basic solution theory and for obtaining the convergence result.

2 THE FUNCTIONAL ANALYTICAL FRAMEWORK

Key to the approach presented here is to consider the closure of differentiation acting on C1(R,H)-functions with compact

support, ie, functions in �̊�1(R,H), as an operator in H𝜚(R,H) with 𝜚 ∈ ]0,∞[ , a weighted L2-type space with inner product

⟨𝜑 | 𝜓⟩𝜚 ∶= ∫
R

⟨𝜑(t) | 𝜓(t)⟩H exp(−2𝜚t) dt,

where ⟨· | ·⟩H denotes the inner product of the Hilbert space H. The resulting operator

𝜕0 ∶ D(𝜕0) ⊆ H𝜚(R,H) → H𝜚(R,H)

turns out11,12 to be normal with

ℜ𝔢 𝜕0 = 𝜚. (1)

This observation implies that for bounded linear operators M0 ∶ H → H and M1 ∶ H → H, where M0 is selfadjoint, and for a

skew-selfadjoint linear operator A ∶ D(A) ⊆ H → H, which is possibly unbounded, the relation

ℜ𝔢 ⟨u | (𝜕0M0 + M1 + A)u⟩𝜚 = ⟨u | (𝜚M0 +ℜ𝔢M1)u⟩𝜚 (2)

holds for all �̊�1(R,D(A)). With the assumption that

𝜚M0 +ℜ𝔢M1 ⩾ c > 0 (3)

for all sufficiently large 𝜚 ∈ ]0,∞[ , we obtain that the closure 𝜕0M0 + M1 + A and its adjoint (𝜕0M0 + M1 + A)∗ =
𝜕∗

0
M0 + M∗

1
− A both have continuous inverses bounded by 1∕c. In particular, the null spaces of 𝜕0M0 + M1 + A and (𝜕0M0 +

M1 +A)* are both trivial and the ranges are closed and equal H𝜌(R,H). Thus, we have the following well-posedness result, see,

eg, previous studies.11,12

Theorem 1. (Solution Theory)

Let Mk ∶ H → H, k = 0, 1, be continuous linear operators, M0 selfadjoint, such that (3) holds for some c ∈ ]0,∞[ and for
all 𝜚 ∈ ]𝜚0,∞[ with 𝜚0 ∈ ]0,∞[ sufficiently large. Moreover let A ∶ D(A) ⊆ H → H be skew-selfadjoint. Then
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(𝜕0M0 + M1 + A) u = f

has for any f ∈ H𝜚(R,H) a unique solution u ∈ H𝜚(R,H). Furthermore, u depends on f continuously, ie,

(𝜕0M0 + M1 + A)−1 ∶ H𝜚(R,H) → H𝜚(R,H)

is a continuous linear operator for all 𝜚 ∈ ]𝜚0,∞[ with norm bounded by 1/c.

As a refinement of (2), we also find by integration by parts that for u ∈ D(𝜕0) ∩ D(A) (and so for u ∈ D(𝜕0M0 + M1 + A))

ℜ𝔢 ⟨u | 𝜒]−∞,a](𝜕0M0 + M1 + A)u⟩𝜚 ⩾ c⟨𝜒]−∞,a]u | 𝜒]−∞,a]u⟩𝜚.
This yields that we have also causality in the sense of the following theorem.

Theorem 2. (Causality)

Under the assumptions of Theorem 1, we have

𝜒]−∞,a](𝜕0M0 + M1 + A)−1 = 𝜒]−∞,a](𝜕0M0 + M1 + A)−1𝜒]−∞,a]

for all sufficiently large 𝜚 ∈ ]0,∞[ .

Note that Theorem 2 shows: If f = 0 on ] −∞, a], so is u on ] −∞, a].
We plan to approach the eddy current approximation within this abstract framework, which simplifies matters in so far as we

can deal with the time-dependent situation under very general assumptions on the coefficients, which can indeed be operators

acting in the underlying spatial Hilbert space.

3 CONVERGENCE TO THE EDDY CURRENT MODEL

3.1 Maxwell's equations with general material laws
Maxwell's equations with a general, simple material law read

(𝜕0M + N + A)
(

E
H

)
=
(
−J
K

)
, A ∶=

(
0 −curl

cůrl 0

)
.

Here, cůrl is defined as the closure in L2
(
Ω,C3

)
of the classical vectoranalytic operation curl on C1

(
Ω,C3

)
-vector fields with

compact support in the nonempty open set Ω ⊆ R3, which is obviously symmetric in L2
(
Ω,C3

)
and therefore indeed closable.

We define

curl ∶= cůrl
∗
,

which is nothing but the classical weak L2
(
Ω,C3

)
-curl. Because of the structure of A as

A =
(

0 −cůrl
∗

cůrl 0

)
,

we read off that A is skew-selfadjoint. Since every closed, linear operator gives rise to a canonical Hilbert space by equipping

its domain with the graph inner product, we have Hilbert spaces

H(cůrl), H (curl)

from the respective domains D(cůrl), D (curl). One frequently finds already H(cůrl) defined in terms of boundary traces, which

unnecessarily limits the applicability of the results. Even worse, it suggests to the uninitiate or confused reader that boundary

regularity is required to ensure that the physical model actually works. We note that since

cůrl = curl∗ ⊆ curl,

we have for E ∈ H(cůrl), with ⟨ · | · ⟩L2 denoting the inner product of L2
(
Ω,C3

)
that

⟨E |curlΨ⟩L2 = ⟨cůrl E | Ψ⟩L2 = ⟨curl E | Ψ⟩L2

for all Ψ ∈ H (curl). We read off that conversely
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⟨E |curlΨ⟩L2 = ⟨curl E | Ψ⟩L2 for allΨ ∈ H (curl)

characterizes E ∈ H(cůrl). This shows that

E ∈ H(cůrl)

is a suitable generalization of the electric boundary condition for the topological boundary of arbitrary nonempty open sets.

According to the above abstract framework, the solvability constraint on the operator coefficients M = M0, N = M1 is

𝜚M +ℜ𝔢N ⩾ c > 0

for some real constant c and all sufficiently large 𝜚 ∈ ]0,∞[. The underlying Hilbert space is H = L2(Ω,C6). We recall that

causality of the solution operator is also implied by our general framework.

3.2 Classical electrodynamics and the eddy current problem
On this basis, we are now able to discuss the limiting behavior to the eddy current case. Let

Ms ∶=
(
𝜀s 0
0 𝜇s

)
, Ns ∶=

(
𝜎s 0
0 0

)
, s ∈ [0, 1[ .

Assuming that for some �̂� ∈ ]0,∞[, we have for all 𝜚 ∈ ]�̂�,∞[ and all s ∈ [0, 1[

𝜚Ms + Ns ⩾ c > 0,

we have uniform boundedness for the solution operators in the sense that

||(𝜕0Ms + Ns + A)−1|| ⩽ 1

c
for s ∈ [0, 1[ . On the other hand, we have the following resolvent equation type result for the solution operators:

(𝜕0Ms + Ns + A)−1 − (𝜕0M0 + N0 + A)−1 = (𝜕0Ms + Ns + A)−1((M0 − Ms)𝜕0 + N0 − Ns)(𝜕0M0 + N0 + A)−1.

If now

Ms
s→0+
−−→ M0, Ns

s→0+
−−→ N0 strongly in L2(Ω,C6),

we read off that we have

(𝜕0Ms + Ns + A)−1F
s→0+
−−→ (𝜕0M0 + N0 + A)−1F for every F ∈ D(𝜕0).

Because of the uniform boundedness of the solution operators, however, we can use the density of D(𝜕0) in H𝜚

(
R,L2(Ω,C6)

)
and the above H𝜚

(
R,L2(Ω,C6)

)
-convergence for elements in D(𝜕0). In fact, we get

(𝜕0Ms + Ns + A)−1F
s→0+
−−→ (𝜕0M0 + N0 + A)−1F for every F ∈ H𝜚

(
R,L2(Ω,C6)

)
by the principle of uniform boundedness,* ie, strong convergence of the solution operators. In cases, where 𝜀0 vanishes, ie,

𝜀0|L2(Ω)3 = 0, we have the case of the eddy current approximation. We note that the usually considered case assumes Ω = R3.

Let us conclude with some remarks:

• The above rationale clearly also works for completely general sequences (Ms)s, (Ns)s with M∗
s = Ms of continuous linear

operators converging strongly to M0 and N0 with

𝜚Ms +ℜ𝔢Ns ⩾ c > 0

*Indeed, more explicitly, for F ∈ H𝜚(R,L2(Ω,C6)) and F̃ ∈ D(𝜕0), we see

|(𝜕0Ms + Ns + A)−1F − (𝜕0M0 + N0 + A)−1F|𝜚 ⩽ |(𝜕0Ms + Ns + A)−1F̃ − (𝜕0M0 + N0 + A)−1F̃|𝜚
+ |(𝜕0Ms + Ns + A)−1(F − F̃)|𝜚 + |(𝜕0M0 + N0 + A)−1(F̃ − F)|𝜚 ⩽ |(𝜕0Ms + Ns + A)−1F̃ − (𝜕0M0 + N0 + A)−1F̃|𝜚 + 2

c
|F − F̃|𝜚,

from which the desired convergence result follows by first choosing F̃ ∈ D(𝜕0) to make the last term sufficiently small (independently of s ∈ [0, 1[ ) and then,

for this fixed choice of F̃, we choose s0 ∈ ]0, 1[ sufficiently small to make the first term sufficiently small for all s ∈ ]0, s0[ .
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for some c ∈ ]0,∞[ and all s ∈ [0, 1[ . We have focused on the classical eddy current context to make the approach more

tangible.

• Again, we emphasize that our results depend

a. neither on the size (bounded or unbounded)

b. nor on the topology (genus, Betti-numbers)

c. nor on the regularity (no regularity is assumed)

of the underlying domain resp nonempty open set Ω. Moreover, our methods extend immediately to domains resp nonempty

open sets Ω ⊂ RN , N ∈ N, or even to Riemannian manifolds Ω by replacing the curl-operators by the exterior resp

coderivative.

• Our results remain valid even if mixed boundary conditions are considered. We just have to modify the skew-selfadjoint

unbounded linear operator A by

A =
(

0 −cůrl
∗
Γ1

cůrlΓ1
0

)
=
(

0 −cůrlΓ2

cůrlΓ1
0

)
.

Here, the boundaryΓ ∶= 𝜕Ω is decomposed into, let us say 2 relative open disjoint subsetsΓ1 ≠ Γ andΓ2 ∶= Γ∖Γ1. Following

our definitions from above, we define cůrlΓ1
as the closure in L2

(
Ω,C3

)
of the curl-operator acting on the restrictions to Ω

of C1

(
R3,C3

)
-vector fields having compact support in R3 bounded away from the boundary part Γ1 as well as

cůrlΓ2
∶= cůrl

∗
Γ1
.

Once more, the structure of A shows that A is skew-selfadjoint.

• It is also clear that for uniform convergence of the coefficients, we get uniform convergence of the solution operators in the

sense that

𝜕−1
0
(𝜕0Ms + Ns + A)−1

s→0+
−−→ 𝜕−1

0
(𝜕0M0 + N0 + A)−1

in  (
H𝜚(R,L2(Ω,C6)),H𝜚(R,L2(Ω,C6))

)
.

3.3 A realistic case
For illustrational purposes, we conclude with a realistic example, where the above limit situation occurs, eg, an electromagnetic

field in the presence of a laminated iron core in air (possibly with an air gap). Whereas in air the standard Maxwell equations

are used, in the iron core the eddy current model is frequently assumed, see Figure 1. A possible, simple description would be

that 𝜇 > 0 is a constant and 𝜀 and 𝜎 are piecewise constant with

𝜀 =
⎧⎪⎨⎪⎩
𝜀air in air,

𝜀lam in the insulating parts of the laminated iron core,

𝜀cor in the metal parts of the laminated iron core,

FIGURE 1 Laminated iron core in air
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and

𝜎 =
⎧⎪⎨⎪⎩

0 in air,

0 in the insulating parts of the laminated iron core,

𝜎cor in the metal parts of the laminated iron core,

for 𝜀air, 𝜀lam, 𝜀cor, 𝜎cor positive numbers. In the above, we have established that replacing the—relative to 𝜎cor—small value of the

dielectricity 𝜀cor can indeed be replaced by zero, ie, 𝜀cor = 0. In this situation, the approximation result holds for any 𝜚 ∈ ]0,∞[.
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