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1. Introduction and preliminaries

Throughout this paper, let us fix a bounded domain� � R3 with boundary � :D @�, which is divided into two relatively open subsets
�t and its complement �n :D � n�t. The letters t and n should remind on homogeneous tangential and normal boundary conditions.

It is well known that the Poincaré (or Friedrichs) inequality, that is, for all u 2 H1
�t
.�/,

jujL2.�/ � cp,�t ,"jr ujL2
".�/

(1.1)

holds with some cp,�t ," > 0, as long as Rellich’s selection theorem is valid, that is, the embedding

H1.�/ ,! L2.�/ (1.2)

is compact. Here, L2.�/ and H1.�/ denote the usual Lebesgue and Sobolev (Hilbert) spaces, respectively. Moreover, " : � ! R3�3

denotes a symmetric and uniformly positive definite L1 matrix field. We introduce L2
".�/ as L2.�/ equipped with the weighted inner

product h � , � iL2
".�/

:D h" � , � iL2.�/.
‡ For �t ¤ ;, the Sobolev space H1

�t
.�/ is defined as the closure (taken in H1.�/) of test functions

C1�t .�/ :D
˚
'j� : ' 2 C1.R3/ , dist.supp ',�t/ > 0

�
.

Otherwise, we set H1
;.�/ :D H1.�/ \R?. Let us assume that we have chosen the best constant in (1.1), this is

1

cp,�t ,"
:D inf

0¤u2H1
�t
.�/

jr ujL2
".�/

jujL2.�/

.

Analogously, it is also well known that the (let’s call it) Maxwell inequality, that is, for all E 2 R�t.�/ \ "
�1D�n.�/

jE � �DNEjL2
".�/

� cm,�t ,"

�
jdiv "Ej2

L2.�/
C jrot Ej2

L2.�/

�1=2

or equivalently for all E 2 R�t.�/ \ "
�1D�n.�/ \HDN,".�/

?"

jEjL2
".�/

� cm,�t ,"

�
jdiv "Ej2

L2.�/
C jrot Ej2

L2.�/

�1=2

, (1.3)
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D. PAULY

holds with some cm,�t ," > 0, as long as the Maxwell selection theorem or the Maxwell compactness property is given, that is, the
embedding

R�t.�/ \ "
�1D�n.�/ ,! L2.�/ (1.4)

is compact, see Appendix A.2.1 for details. Here, we introduce the Sobolev (Hilbert) spaces

R.�/ :D
˚

E 2 L2.�/ : rot E 2 L2.�/
�

, D.�/ :D
˚

E 2 L2.�/ : div E 2 L2.�/
�

in the distributional sense. As mentioned earlier, if�t ¤ ;, we define as closures (taken in R.�/ (resp.) D.�/) of test vector fields C1�t .�/
the Sobolev spaces R�t.�/ and D�t.�/ (and of course the same for�n). If�t D ;, we set R;.�/ :D R.�/ and D;.�/ :D D.�/. Then, for
�t ¤ ; in H1

�t
.�/, R�t.�/ and D�t.�/ homogeneous scalar, tangential and normal traces at�t are generalized, respectively. Moreover,

we define the closed subspaces

R0.�/ :D
˚

E 2 L2.�/ : rot E D 0, D0.�/ :D E 2 L2.�/ : div E D 0
�

as well as R�t ,0.�/ :D R�t.�/ \ R0.�/ and D�t ,0.�/ :D D�t.�/ \ D0.�/. Finally, we have the harmonic Dirichlet–Neumann fields

HDN," :D R�t ,0.�/ \ "
�1D�n,0.�/,

which are finite dimensional because by (1.4), the unit ball is compact in HDN,". The L2
".�/-orthogonal projector onto them will be

denoted by �DN : L2
".�/! HDN," and?" means orthogonality in L2

".�/. If �t D � (resp.) �n D � , we have the classical Dirichlet (resp.)
Neumann fields and write HD," (resp.) HN,".�/. We also need the Neumann–Dirichlet fields HND," :D R�n,0.�/ \ "

�1D�t ,0.�/. In the
case " D id, we usually omit " in our notations. Again, we assume that also in (1.3), the best constant

1

cm,�t ,"
:D inf

0¤E2R�t .�/\"
�1D�n .�/\HDN,".�/?"

�
jdiv "Ej2

L2.�/
C jrot Ej2

L2.�/

�1=2

jEjL2
".�/

is taken.
The crucial property for (1.3) to hold is the Maxwell compactness property (1.4), which holds, for example, if � has a (strongly)

Lipschitz continuous boundary � with a (strongly) Lipschitz continuous interface � :D �t\�n, see [1] for details. More precisely, the
boundary � and the interface � can be described locally as graphs of Lipschitz functions. From now on, we assume this properties
of � and �t, �n as general assumption. Note that then, also, (1.2) and (1.1) hold. Another successful approach proving the Maxwell
compactness property using a different technique from [2] has been shown in [3]. For the Maxwell compactness property in the case
of full boundary conditions, we refer to [2, 4–14].

With the help of the L2
".�/-orthogonal Helmholtz decomposition,

L2
".�/ D rH1

�t
.�/˚" HDN,".�/˚" "

�1rot R�n.�/, (1.5)

where

R�t ,0.�/ D rH1
�t
.�/˚" HDN,".�/, "�1D�n,0.�/ D "

�1rot R�n.�/˚" HDN,".�/,

see Appendix A.2.2 for details, we can split the estimate (1.3) into two, namely,

8 E 2 "�1D�n.�/ \ rH1
�t
.�/ jEjL2

".�/
� cm,�n,div ,"jdiv "EjL2.�/, (1.6)

8 E 2 R�t.�/ \ "
�1rot R�n.�/ jEjL2

".�/
� cm,�t ,rot ,",idjrot EjL2.�/, (1.7)

where we again assume to use the best constants

1

cm,�n,div ,"
:D inf

0¤E2"�1D�n .�/\rH1
�t
.�/

jdiv "EjL2.�/

jEjL2
".�/

,

1

cm,�t ,rot ,",id
:D inf

0¤E2R�t .�/\"
�1rot R�n .�/

jrot EjL2.�/

jEjL2
".�/

.

By the assumptions on ", there exist ", " > 0 such that for all E 2 L2.�/,

1

"
jEjL2.�/ � jEjL2

".�/
� "jEjL2.�/.
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We note jEjL2
".�/

D
ˇ̌
"1=2E

ˇ̌
L2.�/

and
ˇ̌
"1=2E

ˇ̌
L2
".�/

D j"EjL2.�/. Thus, for all E 2 L2.�/,

1

"
jEjL2

".�/
� j"EjL2.�/ � "jEjL2

".�/
.

The inverse "�1 satisfies for all E 2 L2.�/

1

"
jEjL2.�/ � jEjL2

"�1 .�/
� "jEjL2.�/,

1

"
jEjL2

"�1 .�/
�
ˇ̌
"�1E

ˇ̌
L2.�/

� "jEjL2
"�1 .�/

,

which immediately follows by

jEjL2
"�1 .�/

D
ˇ̌̌
"�1=2E

ˇ̌̌
L2.�/

(
� "

ˇ̌
"�1=2E

ˇ̌
L2
".�/

D "jEj�
� "�1

ˇ̌
"�1=2E

ˇ̌
L2
".�/

D "�1jEj�
.

For later purposes, let us also define O" :D max f", "g.
In this contribution, we will study these different constants cp,�t ,", cm,�t ,", cm,�n,div ,", cm,�t ,rot ,",id and their relations to each other. It

turns out that

cp,�t ," D cm,�n,div ,", cm,�t ,rot ,",id D cm,�n,rot ,id,", cm,�t ," D max fcp,�t ,", cm,�t ,rot ,",idg

hold, see Lemmas 3, 10, and 6. The main result of this paper states that in the special case of full boundary conditions, that is, �t D �

or �n D � , and for bounded and convex domains, we have

cp,�

"
� cm,� ," � O"cp,

cp
"
� cm,;," � O"cp

and especially for " D id,

max fcp,� , cm,rot g D cm,� � cm,; D cp,

see Theorem 17. Here, we introduce for the special case " D id

cp,�t :D cp,�t ,id, cp :D cp,;, cm,�t :D cm,�t ,id,

and
cm,�t ,rot :D cm,�t ,rot ,id,id D cm,�n,rot ,id,id D cm,�n,rot ,

as well as

cm,rot :D cm,� ,rot ,id,id D cm,;,rot ,id,id.

The crucial point in our analysis is that for convex domains,

cm,rot � cp, cm,� ,rot ,",id, cm,;,rot ,",id � "cp

hold, see Lemma 16. Some of these results have also been obtained recently in [15, 16] utilizing different and more elementary§ meth-
ods. We note that in the convex case, we can estimate the Poincaré constant cp by the diameter of �. More precisely, by the famous
paper of Payne and Weinberger [17],¶ we have

cp �
diam.�/

�
.

In [17] also, the optimality of this estimate has been shown. Furthermore, cp,� < cp is well known even for non-convex domains, see,
for example, [19] and the cited literature, yielding

1
p
�1
D cp,� < cp D

1
p
�2
�

diam.�/

�
, (1.8)

where �1 (resp.) �2 is the first Dirichlet (resp.) second Neumann eigenvalue of the negative Laplacian.
At least some of our results extend in a natural way to bounded domains � � RN or even to Riemannian manifolds with compact

closure, see Remark 5 and Appendix A.1.
Our new estimates have important applications, for example, to numerical analysis, where especially an upper bound for the

Maxwell constants is needed, for example, for preconditioning and for functional a posteriori error estimates in the framework of
Maxwell’s equations.

§In the sense that no tools from functional analysis were used.
¶A little mistake or inconsistency in [17] has been corrected later in [18].
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2. An abstract setting

Let X and Y be Hilbert spaces and

A : D.A/ � X! Y, A� : D.A�/ � Y! X

be a closed and densely defined linear operator and its adjoint. Here, D denotes the domain of def inition and we introduce the kernel
N and the range R. Because A is closed, we have .A�/� D NA D A, and sometimes, .A, A�/ is called a dual pair. The projection theorem
yields the orthogonal ‘Helmholtz’ decompositions

X D N.A/˚ R.A�/, Y D N.A�/˚ R.A/. (2.1)

We collect some standard results from functional analysis, see, for example, [8, 20].
A�A and AA� are non-negative and self-adjoint and their spectra coincide if we exclude f0g, that is,

�.A�A/ n f0g D �.AA�/ n f0g, �p.A
�A/ n f0g D �p.AA�/ n f0g. (2.2)

Let us assume that the embedding (using the graph-norm)

D.A/ \ R.A�/ ,! X (2.3)

is compact.

Lemma 1
There exist cA, cA� > 0, such that

8 x 2 D.A/ \ R.A�/ jxjX � cAjAxjY,

8 y 2 D.A�/ \ R.A/ jyjY � cA� jA
�yjX.

Moreover, R.A/ and R.A�/ are closed and

X D N.A/˚ R.A�/, Y D N.A�/˚ R.A/.

Furthermore, D.A�/ \ R.A/ ,! Y is compact as well.

We note that the same lemma can be proved assuming the compactness of the embedding of D.A�/\ R.A/ ,! Y instead of (2.3). By
Lemma 1, the restricted operator

A :D AjD.A/ : D.A/ � R.A�/! R.A/, D.A/ :D D.A/ \ R.A�/

has a bounded inverse A�1 : R.A/ ! D.A/ with
ˇ̌
A�1

ˇ̌
�
�
1C c2

A

�1=2
, which is compact as an operator from R.A/ to R.A�/. Hence,

A�A and AA� have pure point spectra, which can only accumulate at infinity and which coincide by (2.2). Especially, the first positive
eigenvalues are equal, and therefore, we conclude the following.

Theorem 2
For the best constants in Lemma 1, it holds cA D cA� , this is

1

cA
D min

0¤x2D.A/\R.A�/

jAxjY
jxjX

D min
0¤y2D.A�/\R.A/

jA�yjX
jyjY

D
1

cA�
.

Hence, c�2
A D c�2

A� is the first positive eigenvalue of A�A as well as of AA�.

3. The Maxwell estimates

We remind on� and its properties from the introduction.

3.1. General Lipschitz domains

In this subsection, we frequently use Lemma 1 and Theorem 2.

3.1.1. Gradient and divergence. Let us consider A as

r : H1
�t
.�/ � L2.�/! L2

".�/.

Then A� is equal to

�div " : "�1D�n.�/ � L2
".�/! L2.�/.

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2017, 40 435–447
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More precisely, we have the following table:

A D.A/ X Y N.A/ R.A/
r H1

�t
.�/ L2.�/ L2

".�/ f0g rH1
�t
.�/ D R�t ,0.�/ \H?DN

A� D.A�/ Y X N.A�/ R.A�/
�div " "�1D�n.�/ L2

".�/ L2.�/ "�1D�n,0.�/ div D�n .�/

We note that div D�n.�/ D L2.�/ if�n ¤ � and div D� .�/ D L2.�/\R?. Moreover, we emphasize that indeed, D.A�/ D "�1D�n.�/

holds, see for example, [1]. Note that for this, one has to show the approximation property

D�n.�/ D
˚

H 2 D.�/ : hdiv H, uiL2.�/ D �hH,ruiL2.�/ 8 u 2 H1
�t
.�/

�
,

which is not trivial at all for mixed boundary conditions. Only in the special cases of full boundary conditions this is clear. In fact, by
def inition D.A�/ D "�1D.�/ holds for �t D � by def inition. For �t D ;, we see that the closed operator

B :D �div : D�.�/ � L2.�/! L2.�/

has the adjoint

B� D r : H1.�/ � L2.�/! L2.�/

by def inition. Because in this case A D B�, we have D.A�/ D D.B��/ D D.B/ D D�.�/. The crucial compact embedding (2.3) reads

H1
�t
.�/ \ div D�n .�/ ,! L2.�/

and is just Rellich’s selection theorem because

H1
�t
.�/ \ div D�n.�/ � H1

�t
.�/ � H1.�/ ,! L2.�/.

Theorem 2 yields

0 <
1

cp,�t ,"
D min

0¤u2H1
�t
.�/

jr ujL2
".�/

jujL2.�/

D min
0¤E2"�1D�n .�/\rH1

�t
.�/

jdiv "EjL2.�/

jEjL2
".�/

D
1

cm,�n,div ,"
.

We note that ��t ," :D c�2
p,�t ," is the first positive Dirichlet–Neumann eigenvalue of the weighted negative Laplacian �	" :D �div "r .

For " D id and �t D � (resp.) �t D ;, we see that �� ,id D: �1 (resp.) �;,id D: �2 is the first Dirichlet (resp.) second Neumann
eigenvalue of the negative Laplacian. As ��t ," D c�2

m,�n,div ," holds too, ��t ," is also the first positive Neumann–Dirichlet eigenvalue of
the weighted negative reduced grad-div-operator �rdiv ", which can also be interpreted as the weighted negative vector Laplacian
� E	" :D �rdiv "C rot rot on a subspace of irrotational vector fields.

Lemma 3
The Poincaré constant in H1

�t
.�/ and the Maxwell divergence constant in "�1D�n.�/ \ rH1

�t
.�/, that is, the best constants in

the inequalities

8 u 2 H1
�t
.�/ jujL2.�/ � cp,�t ,"jr ujL2

".�/
,

8 E 2 "�1D�n.�/ \ rH1
�t
.�/ jEjL2

".�/
� cm,�n,div ,"jdiv "EjL2.�/,

coincide and correspond to the first positive Dirichlet–Neumann eigenvalue of the weighted negative Laplacian �	", more precisely
cp,�t ," D cm,�n,div ," D 1=

p
��t ,".

Lemma 4
It holds "�1cp,�t � cp,�t ," � "cp,�t as well as cp,� � cp,�t and cp,� ," � cp,�t ,".

Proof
For u 2 H1

�t
.�/, we have

jujL2.�/ � cp,�t jr ujL2.�/ � "cp,�t jr ujL2
".�/

,

jujL2.�/ � cp,�t ,"jr ujL2
".�/

� "cp,�t ,"jr ujL2.�/,

which gives cp,�t ," � "cp,�t and cp,�t � "cp,�t ,".

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2017, 40 435–447
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Remark 5
The results of this section extend to bounded domains� � RN , N 2 N , having the proper regularity of the boundary.

3.1.2. Rotations. Now, let A be

��1rot : R�t.�/ � L2
".�/! L2

�.�/.

Then A� is

"�1rot : R�n.�/ � L2
�.�/! L2

".�/,

where � is another matrix field similar to ". More precisely,

A D.A/ X Y N.A/ R.A/
��1rot R�t.�/ L2

".�/ L2
�.�/ R�t ,0.�/ ��1rot R�t.�/

A� D.A�/ Y X N.A�/ R.A�/
"�1rot R�n.�/ L2

�.�/ L2
".�/ R�n,0.�/ "�1rot R�n .�/

We note

R.A/ D ��1
�

D�t ,0.�/ \H?ND
�

, R.A�/ D "�1
�

D�n,0.�/ \H?DN
�

and that indeed, D.A�/ D R�n.�/ holds, see again for example, [1]. As before, for this, one has to show the approximation property

R�n.�/ D
˚

H 2 R.�/ : hrot H, EiL2.�/ D hrot H, EiL2.�/ 8 E 2 R�t.�/
�

,

which is not trivial at all for mixed boundary conditions. Again, only in the special cases of full boundary conditions this is clear. Because
D.A�/ D R.�/ holds for �t D � by def inition, we have also D.B�/ D D.A��/ D D.A/ D R� .�/ for B D A�, which shows the result for
�t D ;. The crucial compact embedding (2.3) reads

R�t.�/ \ "
�1rot R�n.�/ ,! L2

".�/

and is just the Maxwell compactness property (1.4) because

R�t.�/ \ "
�1rot R�n.�/ � R�t.�/ \ "

�1D�n,0.�/ � R�t.�/ \ "
�1D�n.�/ ,! L2.�/ � L2

".�/.

By Theorem 2, we have

0 <
1

cm,�t ,rot ,",�
D min

0¤E2R�t .�/\"
�1rot R�n .�/

j��1rot EjL2
�.�/

jEjL2
".�/

D min
0¤H2R�n .�/\�

�1rot R�t .�/

j"�1rot HjL2
".�/

jHjL2
�.�/

D
1

cm,�n,rot ,�,"
,

which serves also as a def inition for the constants cm,�t ,rot ,",� and cm,�n,rot ,�,". Therefore, 
�t ,",� :D c�2
m,�t ,rot ,",� is the first positive

Dirichlet–Neumann eigenvalue of the weighted reduced double-rot-operator �",� :D "�1rot ��1rot , which can also be interpreted
as the weighted negative vector Laplacian � E	",� :D �rdiv " C "�1rot ��1rot on a subspace of "-solenoidal vector fields. Because

�t ,",� D c�2

m,�n,rot ,�," holds as well, 
�t ,",� is also the first positive Neumann–Dirichlet eigenvalue of the weighted reduced double-
rot-operator ��," D ��1rot "�1rot , which can also be interpreted as the weighted negative vector Laplacian on a subspace of �-
solenoidal vector fields, that is,�E	�," D �rdiv �C ��1rot "�1rot .

Lemma 6
The tangential-normal and normal-tangential Maxwell rotation constants, that is, the best constants in the inequalities

8 E 2 R�t.�/ \ "
�1rot R�n.�/ jEjL2

".�/
� cm,�t ,rot ,",�jrot EjL2

��1 .�/
,

8H 2 R�n.�/ \ �
�1rot R�t.�/ jHjL2

�.�/
� cm,�n,rot ,�,"jrot HjL2

"�1 .�/
,

coincide and correspond to the first positive Dirichlet–Neumann eigenvalue of the weighted reduced double-rot-operator�",�, more
precisely, cm,�t ,rot ,",� D cm,�n,rot ,�," D 1=

p

�t ,",�.

Let us define for " D � and for " D � D id

cm,�t ,rot ," :D cm,�t ,rot ,"," D cm,�n,rot ,","

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2017, 40 435–447
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and note

cm,�t ,rot ," D cm,�n,rot ,", cm,�t ,rot D cm,�n,rot. (3.1)

Corollary 7
For all E 2

�
R�t.�/ \ "

�1rot R�n.�/
�
[
�
R�n.�/ \ "

�1rot R�t.�/
�
,

jEjL2
".�/

� cm,�t ,rot ,"jrot EjL2
"�1 .�/

� "cm,�t ,rot ,"jrot EjL2.�/ (3.2)

holds with sharp constants.
Moreover, the inequalities

8 E 2 R�t.�/ \ "
�1rot R�n.�/ jEjL2

".�/
� cm,�t ,rot ,",idjrot EjL2.�/ (3.3)

8H 2 R�n .�/ \ "
�1rot R�t.�/ jHjL2

".�/
� cm,�n,rot ,",idjrot HjL2.�/ (3.4)

hold, where these sharp constants do not need to coincide if " ¤ id.

Lemma 8
It holds

(i) "�2cm,�t ,rot � cm,�t ,rot ," � "
2cm,�t ,rot ,

(ii) cm,�t ,rot ,",id, cm,�n,rot ,",id

�
� min f"cm,�t ,rot ,", "cm,�t ,rot g � "cm,�t ,rot ,
� max

˚
"�1cm,�t ,rot ,", "�1cm,�t ,rot

�
� "�1cm,�t ,rot .

Proof
It is clear that cm,�t ,rot ,",id, cm,�n,rot ,",id � "cm,�t ,rot ," holds. To prove the other estimates, let E 2 R�t.�/\ "

�1rot R�n.�/. We decompose
(see Appendix A.2.2)

E D E0 C Erot 2 R�t ,0.�/˚ rot R�n.�/.

Then Erot 2 R�t.�/ \ rot R�n.�/ and rot E D rot Erot . Thus by orthogonality

jEj2
L2
".�/

D h"E, Erot iL2.�/ � cm,�t ,rot j"EjL2.�/„ ƒ‚ …
�"jEj

L2
".�/

jrot EjL2.�/

and hence

jEjL2
".�/

� "cm,�t ,rot jrot EjL2.�/ � "
2cm,�t ,rot jrot EjL2

"�1 .�/
.

This shows cm,�t ,rot ,",id � "cm,�t ,rot and cm,�t ,rot ," � "
2cm,�t ,rot . Interchanging �t and �n proves cm,�n,rot ,",id � "cm,�n,rot ,id,id D "cm,�t ,rot . By

"�1jEjL2.�/ � jEjL2
".�/

and (3.2) (resp.) (3.3) (resp.) (3.4) we see cm,�t ,rot � "
2cm,�t ,rot ," (resp.) "�1cm,�t ,rot � cm,�t ,rot ,",id, cm,�n,rot ,",id. Using

jrot EjL2.�/ � "jrot EjL2
"�1 .�/

and (3.3), (3.4) we obtain "�1cm,�t ,rot ," � cm,�t ,rot ,",id, cm,�n,rot ,",id, which completes the proof.

3.1.3. The full maxwell estimates.

Theorem 9
For all E 2 R�t.�/ \ "

�1D�n.�/, the tangential-normal Maxwell estimate

jE � �DNEj2L2
".�/

� c2
p,�t ,"jdiv "Ej2

L2.�/
C c2

m,�t ,rot ,",idjrot Ej2
L2.�/

holds with sharp constants. Moreover, cp,�t ," � "cp,�t and cm,�t ,rot ,",id � "cm,�t ,rot .

Here the word ‘sharp’ is meant with respect to the restrictions of the estimate to the subspaces R�t ,0.�/ \ "
�1D�n.�/ and

R�t.�/ \ "
�1D�n,0.�/.

Proof
By the Helmholtz decomposition (see Appendix A.2.2), we have

R�t.�/ \ "
�1D�n.�/ \HDN,".�/

?" 3 E � �DNE D Er C Erot 2 rH1
�t
.�/˚" "

�1rot R�n.�/

with

Er 2 "
�1D�n.�/ \ rH1

�t
.�/ D R�t ,0.�/ \ "

�1D�n.�/ \HDN,".�/
?" , div "Er D div "E,

Erot 2 R�t.�/ \ "
�1rot R�n .�/ D R�t.�/ \ "

�1D�n,0.�/ \HDN,".�/
?" , rot Erot D rot E.
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Thus, by Lemma 3 and Corollary 7 as well as orthogonality, we obtain

jE � �DNEj2L2
".�/

D jEr j
2
L2
".�/
C jErot j

2
L2
".�/

� c2
p,�t ,"jdiv "Ej2

L2.�/
C c2

m,�t ,rot ,",idjrot Ej2
L2.�/

.

Lemmas 4 and 8 show the two estimates for the constants, completing the proof.

Lemma 10
It holds

cm,�t ," D max fcp,�t ,", cm,�t ,rot ,",idg

(
� max f"cp,�t , "cm,�t ,rot g � O"max fcp,�t , cm,�t ,rot g

� max
˚
"�1cp,�t , "�1cm,�t ,rot

�
� O"�1 max fcp,�t , cm,�t ,rot g

and for " D id

cm,�t D max fcp,�t , cm,�t ,rot g .

Proof
We have cm,�t ," � max fcp,�t ,", cm,�t ,rot ,",idg. Inserting E 2 "�1D�n.�/\rH1

�t
.�/ (resp.) E 2 R�t.�/\"

�1rot R�n.�/ into the tangential-
normal Maxwell estimate (1.3) shows cp,�t ,", cm,�t ,rot ,",id � cm,�t ," and the first equation follows. The other estimates are given by
Lemmas 4 and 8, completing the proof.

By the latter theorem and lemma it remains to estimate only the two constants cp,�t and cm,�t ,rot for the various �t.

3.2. Full boundary conditions

We summarize our results for the two important extreme cases �t D � (resp.) �t D ;, that is, the full tangential (resp.) the full normal
case, and emphasize that in these two cases, the tangential and normal Maxwell rotation constants coincide by (3.1) and hence beside
the Poincaré constants, we just have to estimate one constant, namely,

cm,rot ," :D cm,� ,rot ," D cm,;,rot ,", cm,rot D cm,� ,rot D cm,;,rot . (3.5)

For the convenience of the reader, let us recall our estimates from the latter sections in these two extreme cases. Lemmas 3 and 4 read

Corollary 11
The Poincaré constant cp,� ," in H1�.�/ (resp.) cp," in H1

;.�/ and the Maxwell divergence constant cm,;,div ," in "�1D.�/ \ rH1�.�/

(resp.) cm,� ,div ," in "�1D�.�/ \ rH1.�/ equal, that is, the inequalities

8 u 2 H1�.�/ jujL2.�/ � cp,� ,"jr ujL2
".�/

8 E 2 "�1D.�/ \ rH1�.�/ jEjL2
".�/

� cp,� ,"jdiv "EjL2.�/

(resp.)

8 u 2 H1.�/ \R? jujL2.�/ � cp,"jr ujL2
".�/

8 E 2 "�1D�.�/ \ rH1.�/ jEjL2
".�/

� cp,"jdiv "EjL2.�/

hold with sharp constants. Moreover, "�1cp,� � cp,� ," � "cp,� and "�1cp � cp," � "cp.

Here, cp," :D cp,;,". Corollary 7 and Lemma 8 read.

Corollary 12
The tangential Maxwell rotation constant cm,� ,rot ," in R�.�/ \ "�1rot R.�/ and the normal Maxwell rotation constant cm,;,rot ," in the
space R.�/ \ "�1rot R�.�/ is equal, that is, for all E 2

�
R�.�/ \ "�1rot R.�/

�
[
�
R.�/ \ "�1rot R�.�/

�
,

jEjL2
".�/

� cm,rot ,"jrot EjL2
"�1 .�/

� "cm,rot ,"jrot EjL2.�/

holds with sharp constants. Moreover, the inequalities

8 E 2 R�.�/ \ "
�1rot R.�/ jEjL2

".�/
� cm,� ,rot ,",idjrot EjL2.�/

8H 2 R.�/ \ "�1rot R�.�/ jHjL2
".�/

� cm,;,rot ,",idjrot HjL2.�/

hold, where these sharp constants do not need to coincide if " ¤ id. Moreover, it holds "�2cm,rot � cm,rot ," � "
2cm,rot and

"�1cm,rot � max
˚
"�1cm,rot ,", "�1cm,rot

�
� cm,� ,rot ,",id, cm,;,rot ,",id

� min f"cm,rot ,", "cm,rot g � "cm,rot .

Theorem 9 and Lemma 10 read.
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Corollary 13
For all E 2 R� .�/ \ "�1D.�/ and all H 2 R.�/ \ "�1D�.�/, the tangential and normal Maxwell estimates

jE � �DEj2
L2
".�/

� c2
p,� ,"jdiv "Ej2

L2.�/
C c2

m,� ,rot ,",idjrot Ej2
L2.�/

,

jH � �NHj2
L2
".�/

� c2
p,"jdiv "Hj2

L2.�/
C c2

m,;,rot ,",idjrot Hj2
L2.�/

,

hold with sharp constants. Furthermore, the estimates "�1cp,� � cp,� ,", cp," � "cp and "�1cm,rot � cm,� ,rot ,",id, cm,;,rot ,",id � "cm,rot as
well as

cm,� ," D max fcp,� ,", cm,� ,rot ,",idg

(
� max f"cp,� , "cm,rot g � O"max fcp,� , cm,rot g ,

� max
˚
"�1cp,� , "�1cm,rot

�
� O"�1 max fcp,� , cm,rot g ,

cm,;," D max fcp,", cm,;,rot ,",idg

(
� max f"cp, "cm,rot g � O"max fcp, cm,rot g ,

� max
˚
"�1cp, "�1cm,rot

�
� O"�1 max fcp, cm,rot g

hold. Therefore, in both cases,

O"�1 max fcp,� , cm,rot g � max
˚
"�1cp,� , "�1cm,rot

�
� cm,� ,", cm,;,"

� max f"cp, "cm,rot g � O"maxfcp, cm,rot g.

For " D id, it holds

cm,� D max fcp,� , cm,rot g , cm,; D maxfcp, cm,rot g.

As the two Poincaré constants cp,� < cp are more or less well known, by the latter corollaries, it remains only to estimate the Maxwell
constant cm,rot .

3.2.1. Convex domains. Now, let� � R3 be a bounded domain and convex domain. Then� is strongly Lipschitz, see, for example, [21,
Corollary 1.2.2.3]. Moreover, there are no Dirichlet or Neumann fields because � is simply connected and has a connected boundary.
As noted before in (1.8), in the convex case, we can estimate the Poincaré constant cp by the diameter of�, that is,

cp,� < cp �
diam.�/

�
.

We show that we can also estimate the Maxwell constant cm,rot in the two extreme cases �t D � (resp.) �t D ; by cp. In [22, Theorem
2.17], the following crucial lemma has been proved, which is the key point in our investigations for convex domains.

Lemma 14
Let E belong to R�.�/ \ D.�/ or R.�/ \ D�.�/. Then E 2 H1.�/ and

jrEj2
L2.�/

� jrot Ej2
L2.�/

C jdiv Ej2
L2.�/

. (3.6)

We note that the latter lemma has already been proved in [13] in the case R�.�/ \ D.�/.

Remark 15
For E 2 H1�.�/, it is clear that for any domain� � R3 (or even in RN)

jrEj2
L2.�/

D jrot Ej2
L2.�/

C jdiv Ej2
L2.�/

holds because�	 D rot rot �rdiv . In general, this formula is no longer valid if E has just the tangential or normal boundary condition.

With the help of Lemma 14, we can now estimate cm,rot .

Lemma 16
cm,rot � cp. More precisely, for all E in R�.�/ \ rot R.�/ or R.�/ \ rot R� .�/

jEjL2.�/ � cpjrot EjL2.�/.

Furthermore, cm,� ,rot ,",id, cm,;,rot ,",id � "cp.

Proof
By (3.5), the boundary condition does not matter. So, let

E 2 R.�/ \ rot R� .�/ D R.�/ \ D� ,0.�/

with E D rot H for some H 2 R�.�/. Then, for any constant vector a 2 R3,

hE, aitextL2.�/ D hrot H, aitextL2.�/ D 0 (3.7)
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holds. Thus, by Poincaré’s estimate and Lemma 14, we obtain E 2 H1.�/ \ .R3/? and

jEjL2.�/ � cpjrEjL2.�/ � cpjrot EjL2.�/,

which shows cm,rot D cm,;,rot � cp.

We can now formulate the main result for convex domains, which follows immediately from Corollary 13 and Lemma 16.

Theorem 17
For all E 2 R� .�/ \ "�1D.�/ and all H 2 R.�/ \ "�1D�.�/, the tangential and normal Maxwell estimates

jEj2
L2
".�/

� "2c2
p,� jdiv "Ej2

L2.�/
C "2c2

pjrot Ej2
L2.�/

,

jHj2
L2
".�/

� "2c2
pjdiv "Hj2

L2.�/
C "2c2

pjrot Hj2
L2.�/

hold. Moreover,

cp,�

"
� cm,� ," � O"cp,

cp
"
� cm,;," � O"cp.

Especially, for " D id,

maxfcp,� , cm,rot g D cm,� � cm,; D cp.

Theorem 18
For all E 2

�
R�.�/ \ "�1D.�/

�
[
�
R.�/ \ "�1D�.�/

�
,

jEjL2
".�/

� O"cp
�
jdiv "Ej2

L2.�/
C jrot Ej2

L2.�/

�1=2

.

Appendix A

A.1. More general operators

There are obvious generalizations to differential forms. Let� be a smooth Riemannian manifold of dimension N � 2 with boundary
� and compact closure. We assume that the boundary manifold � is divided into two .N � 1/-dimensional Riemannian sub-manifolds
�t and �n with boundaries. Let us denote by L2,q.�/ the usual Lebesgue (Hilbert) space of q-forms. For the exterior derivative and
co-derivative, we define the well-known Sobolev spaces

Dq.�/ :D
n

E 2 L2,q.�/ : d E 2 L2,qC1.�/
o

, 	q.�/ :D
˚

E 2 L2,q.�/ : ıE 2 L2,q�1.�/
�

.

As before, we introduce weak homogeneous boundary conditions by closures of respective test forms, yielding the Sobolev spaces

Dq
�t
.�/, 	

q
�n
.�/.

Let A be

��1d : Dq
�t
.�/ � L2,q

" .�/! L2,qC1
� .�/.

Then A� is

�"�1ı : 	qC1
�n

.�/ � L2,qC1
� .�/! L2,q

" .�/,

where " (resp.) � are bounded, symmetric, real and uniformly positive definite linear transformations on q- (resp.) .q C 1/-forms.
More precisely,

A D.A/ X Y N.A/ R.A/

��1d Dq
�t
.�/ L2,q

" .�/ L2,qC1
� .�/ Dq�t, 0.�/ ��1dDq

�t
.�/

A� D.A�/ Y X N.A�/ R.A�/

�"�1ı 	
qC1
�n

.�/ L2,qC1
� .�/ L2,q

" .�/ 	
qC1
�n,0.�/ "�1ı	

qC1
�n

.�/

Here,

Dq
�t ,0.�/ :D

n
E 2 Dq

�t
.�/ : dE D 0

o
, 	

q
�n,0.�/ :D

n
E 2 	q

�n
.�/ : ıE D 0

o
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and we note

R.A/ D ��1
�

DqC1
�t ,0 .�/ \HqC1

DN .�/?
�

, R.A�/ D "�1
�
	

q
�n,0.�/ \Hq

DN.�/
?
�

,

where Hq
DN.�/ :D Dq�t, 0.�/ \	q

�n,0.�/. Indeed, D.A�/ D 	
qC1
�n

.�/ holds. We have the same remarks as in Section 3.1.2. Again, for
this, one has to show the approximation property

	
qC1
�n

.�/ D
n

H 2 	qC1.�/ : hıH, EiL2,q.�/ D �hH, dEiL2,qC1.�/ 8 E 2 Dq
�t
.�/

o
,

which is not trivial at all for mixed boundary conditions. And again, only in the special cases of full boundary conditions this is clear.
Because D.A�/ D 	qC1.�/ holds for �t D � by def inition, we have also D.B�/ D D.A��/ D D.A/ D Dq

�
.�/ for B D A�, which shows

the result for �t D ;. The crucial compact embedding (2.3) is

Dq
�t
.�/ \ "�1ı	

qC1
�n

.�/ ,! L2,q
" .�/.

Both latter properties of �, that is, the approximation and the compactness property, hold, for example, if the boundary manifolds � ,
�t, �n are Lipschitz and the boundary manifolds �t, �n are separated by a .N�2/-dimensional Riemannian and Lipschitz sub-manifold,
the interface � :D �t \ �n, see [23, 24] for details and proofs. We note that

Dq
�t
.�/ \ "�1ı	

qC1
�n

.�/ � Dq
�t
.�/ \ "�1	

q
�n,0.�/ � Dq

�t
.�/ \ "�1	

q
�n
.�/

holds and that even the compact embedding of the latter space into L2,q.�/.

Dq
�t
.�/ \ "�1	

q
�n
.�/ ,! L2,q.�/ � L2,q

" .�/

has been shown in [24]jj. By Theorem 2, we have


 :D min
0¤E2D

q
�t
.�/\"�1ı�

qC1
�n
.�/

ˇ̌
��1dE

ˇ̌
L

2,qC1
� .�/

jEj
L

2,q
" .�/

D min
0¤H2�

qC1
�n
.�/\��1dD

q
�t
.�/

ˇ̌
"�1ıH

ˇ̌
L

2,q
" .�/

jHj
L

2,qC1
� .�/

,

and 
2 is the first positive Dirichlet–Neumann eigenvalue of the weighted-reduced ı-d-operator �"�1ı��1d. Analogously, 
2 is also
the first positive Neumann–Dirichlet eigenvalue of the weighted reduced d-ı-operator���1d"�1ı.

Lemma 19
The tangential-normal and normal-tangential generalized Maxwell constants, that is, the best constants in the inequalities

8 E 2 Dq
�t
.�/ \ "�1ı	

qC1
�n

.�/ jEj
L

2,q
" .�/

� cgm,�t ,d,",� jdEj
L

2,qC1

��1 .�/

8H 2 	qC1
�n

.�/ \ ��1dDq
�t
.�/ jHj

L
2,qC1
� .�/

� cgm,�n ,ı,�," jıHj
L

2,q

"�1 .�/

coincide and are equal to 1=
, that is, cgm,�t ,d,",� D cgm,�n ,ı,�," D 

�1.

Remark 20
It is clear that more results of this contribution can be generalized to the differential form setting.

A.2. Maxwell tools

Let the general assumptions from the introduction be satisfied.

A.2.1. The Maxwell estimates

By the Maxwell compactness property, we obtain immediately the Maxwell estimate.

Lemma 21
There exists cm,�t ," > 0, such that for all E in R�t.�/ \ "

�1D�n.�/ \HDN,".�/
?"

jEjL2
".�/

� cm,�t ,"

�
jrot Ej2

L2.�/
C jdiv "Ej2

L2.�/

�1=2

.

jjIn [24], it is proved that D
q
�t
.�/ \ �

q
�n
.�/ even embeds continuously to H

1=2,q
.�/ and hence compactly to L2,q.�/. We note that the compactness property is

independent of ", see, for example, [3].

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2017, 40 435–447

4
4

5



D. PAULY

Proof
If the estimate would not hold, there would exist a sequence of vector fields .En/ � R�t.�/ \ "

�1D�n.�/ \ HDN,".�/
?" with the

property jEnjL2
".�/

D 1 and

jrot EnjL2.�/ C jdiv "EnjL2.�/ <
1

n
.

By the Maxwell compactness property, we can assume w.l.o.g. that .En/ converges in L2
".�/ to some E 2 L2

".�/. By testing, E belongs to
R0.�/ \ "

�1D0.�/ \HDN,".�/
?" , and .En/ converges to E also in R.�/ \ "�1D.�/. As R�t.�/ (resp.) D�n.�/ is a closed subspace of

R.�/ (resp.) D.�/, E belongs even to R�t ,0.�/ \ "
�1D�n,0.�/ D HDN,".�/. Hence, E D 0, which contradicts 1 D jEnjL2.�/ ! 0.

Corollary 22
For all E in R�t.�/ \ "

�1D�n.�/,

j.1 � �DN/EjL2
".�/

� cm,�t ,"

�
jrot Ej2

L2.�/
C jdiv "Ej2

L2.�/

�1=2

.

Proof
As H :D .1� �DN/E 2 R�t.�/\ "

�1D�n .�/\HDN,".�/
?" with div "H D div "E and rot H D rot E, Lemma 21 completes the proof.

The same arguments show that the Maxwell estimate remains valid in any dimension and even for compact Riemannian manifolds
as long as the crucial Maxwell compactness property holds.

Helmholtz–Weyl decompositions

By the projection theorem we have for the operatorr ,

L2
".�/ D rH1

�t
.�/˚" "

�1D�n,0.�/,

where indeed,
�
rH1

�t
.�/

�?
D D�n,0.�/ holds by [1]. Note thatrH1

�t
.�/ is already closed by Rellich’s selection theorem. Analogously,

we obtain for the operator rot

L2
".�/ D R�t ,0.�/˚" "

�1rot R�n.�/, (A.1)

where again and indeed,
�
rot R�n.�/

�?
D R�t ,0.�/ holds by [1]. For " D id, we obtain by (A.1)

R�t.�/ D R�t ,0.�/˚
�

R�t.�/ \ rot R�n.�/
�

,

and therefore,

rot R�t.�/ D rot
�

R�t.�/ \ rot R�n .�/
�

.

As rot R�n.�/ � D�n,0.�/ \H?DN, the Maxwell estimate Lemma 21 implies that also rot R�t.�/ is already closed. Moreover,

rot R�t.�/ D rot R�t.�/, R�t.�/ :D R�t.�/ \ rot R�n .�/ D R�t.�/ \ rot R�n.�/.

Because rH1
�t
.�/ � R�t ,0.�/ and rot R�n.�/ � D�n,0.�/, we obtain

R�t ,0.�/ D rH1
�t
.�/˚"

0
B@R�t ,0.�/ \ "

�1D�n,0.�/„ ƒ‚ …
DHDN,".�/

1
CA ,

"�1D�n,0.�/ D "
�1rotR�n .�/˚"

 ‚ …„ ƒ
R�t ,0.�/ \ "

�1D�n,0.�/

!
.

Finally, we have the well-known Helmholtz decompositions.

Lemma 23
It holds

L2
".�/ D rH1

�t
.�/˚" "

�1D�n,0.�/ D R�t ,0.�/˚" "
�1rot R�n.�/

D rH1
�t
.�/˚" HDN,".�/˚" "

�1rot R�n.�/

as well as

rH1
�t
.�/ D R�t ,0.�/ \HDN,".�/

?" , "�1rot R�n.�/ D "
�1D�n,0.�/ \HDN,".�/

?"

and R�t.�/ D R�t.�/ \ D�n,0.�/ \H?DN.
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