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1. Introduction and preliminaries

Throughout this paper, let us fix a bounded domain € C R3 with boundary I' := &2, which is divided into two relatively open subsets
I and its complement ', := I' \ I.. The letters t and n should remind on homogeneous tangential and normal boundary conditions.
It is well known that the Poincaré (or Friedrichs) inequality, that is, forall u € H}t (),

lulzi) < el Vulzo) (1.1)
holds with some ¢, 1, « > 0, as long as Rellich’s selection theorem is valid, that is, the embedding
H'(Q) — LX(Q) (1.2)

is compact. Here, L2(2) and H'(2) denote the usual Lebesgue and Sobolev (Hilbert) spaces, respectively. Moreover, ¢ : @ — R3>3
denotes a symmetric and uniformly positive definite L° matrix field. We introduce L2 () as L%(Q2) equipped with the weighted inner
product (-, - )Lé(Q) = (e-, ~)Lz(9).* For I, # @, the Sobolev space H{-t (2) is defined as the closure (taken in H' (Q)) of test functions

T(Q) = {¢la : ¢ € C°(R?), dist(supp ¢, I) > 0} .
Otherwise, we set H%(Q) := H"(Q) N R~L. Let us assume that we have chosen the best constant in (1.1), this is

1 . IVulzq)

Colie  osueH (@) |Uli2(e)

Analogously, it is also well known that the (let’s call it) Maxwell inequality, that is, for all £ € Rr, () N e~ 'Dr, (R2)

1/2
|E— 7onEl2 ) < Calve (|d|v £E[% ) + Irot E|EZ(Q)>

or equivalently for all £ € R, () N e~ 'Dr, () N Hpye ()1

1/2
Elize = cnrve (Idiv el o) + o0t EL o)) (13)
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holds with some ¢, 1. > 0, as long as the Maxwell selection theorem or the Maxwell compactness property is given, that is, the
embedding

Rr () Ne 'Dr, () — LX(Q) (1.4)
is compact, see Appendix A.2.1 for details. Here, we introduce the Sobolev (Hilbert) spaces
RIQ) = {E€LX(Q):rotE € L*(Q)}, D(Q):={EeL*(Q):divE € L*(Q)}
in the distributional sense. As mentioned earlier, if I, # @, we define as closures (taken in R(€2) (resp.) D(L2)) of test vector fields Cloft’(Q)
the Sobolev spaces Rr, (£2) and Dr, (€2) (and of course the same for I'). If I. = @, we set Ry (£2) := R(2) and Dy (£2) := D(2). Then, for

It #0@in Hh (R2), Rr, (2) and Dr;, (£2) homogeneous scalar, tangential and normal traces at I'; are generalized, respectively. Moreover,
we define the closed subspaces

Ro(Q) := {E € L*(Q) :rotE =0, Do(Q):=E € L*(Q):divE =0}
as well as R, o(2) := Rr, (2) N Ro(2) and D1, o(£2) := Dr, (£2) N Do (£2). Finally, we have the harmonic Dirichlet-Neumann fields
Howe = Rr0(R) N e 'Dr,0(R),
which are finite dimensional because by (1.4), the unit ball is compact in Hpye. The L2(2)-orthogonal projector onto them will be
denoted by mpy : Li(Q) — Hpy,e and Lz means orthogonality in Lg(Q). If I. = T (resp.) I, = I', we have the classical Dirichlet (resp.)

Neumann fields and write Hp e (resp.) Hy - (2). We also need the Neumann-Dirichlet fields Hyp,e := Rr, 0(R) N e~ 'Dr, 0(RQ). In the
case ¢ = id, we usually omit ¢ in our notations. Again, we assume that also in (1.3), the best constant

1/2
H 2 2
b - (1div 2EP2, ) + Irot E|L2(Q))
CmT.e  OF4EERL (2)Ne~'Dr, ()N Home (2)1Le |Elz ()

is taken.

The crucial property for (1.3) to hold is the Maxwell compactness property (1.4), which holds, for example, if Q2 has a (strongly)
Lipschitz continuous boundary T" with a (strongly) Lipschitz continuous interface y := Ty N T}, see [1] for details. More precisely, the
boundary I and the interface y can be described locally as graphs of Lipschitz functions. From now on, we assume this properties
of T and I, I, as general assumption. Note that then, also, (1.2) and (1.1) hold. Another successful approach proving the Maxwell
compactness property using a different technique from [2] has been shown in [3]. For the Maxwell compactness property in the case
of full boundary conditions, we refer to [2,4-14].

With the help of the L2 (2)-orthogonal Helmholtz decomposition,

L2(Q) = VHL, (Q) @ Hone(R) e 1ot R, (Q), (1.5)
where
Rr.o(Q) = VHL, (Q) ¢ Hone(R), & 'Dr,o(R) = e 'rot Rr, (Q) Ge Hone(Q),
see Appendix A.2.2 for details, we can split the estimate (1.3) into two, namely,
VE €& 'Dr,(R) N VHE, (Q) El2(@) < CnTodiv,eldiveE]2(q), (1.6)
Y E € R, () Ne 'rotRr, (V) |Eli2 () < CnTumot,eid O El2(02), (1.7)
where we again assume to use the best constants

1 div eE| 2
1 - v <€l
Cnlodiv,e  0#E€e D, (NVHE (@) |Eliz()

1 ||'Ot E|L2(Q)

_— in
CaTiroteid  OFEERT (2)Ne~rotRr, () |Eli2(q)

By the assumptions on ¢, there exist &, > 0 such that for all £ € L2(Q),

1 _
E|E|LZ(Q) < lEl2(@) = ElEl2()-
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We note [E| 2 () = ¢"/%E| 2 and 6"/ %E| 5 ) = |¢Eli2(2)- Thus, for all E € L*(R2),
1 _
g|E|L§(Q) =< leEli2(@) = ElEli2(q)-
The inverse ¢~ satisfies for all E € L2(Q)
1 1 i
§|E|L2(Q) = |E|L§_1 @ = &lEliz@) g|E|L§_, @ =T El g < §|E|L§_1 Q)
which immediately follows by

—1/2

—1/2 —
R T e T
L (&) L2(Q)

z& |7V 2E ) =7 IEle |

For later purposes, let us also define & := max {g, }.
In this contribution, we will study these different constants ¢, 1, ¢, CnT e/ Cm,Tndiv,er Cm Ty ot ¢id aNd their relations to each other. It
turns out that

CoIte = CnIhdiv,er  CmIrot,gid = CmIphrot,ider  CmIt,e = MaX {Cp,Ft,al Cn, Ty rot &id §

hold, see Lemmas 3, 10, and 6. The main result of this paper states that in the special case of full boundary conditions, thatis, I, = T’
orI'y = T, and for bounded and convex domains, we have

oIl )

S Cule = &Cp, = = g = €Cp

and especially for ¢ = id,

max {Cp,Fr Cm,rot} = CnT =< Cony = Cpr

see Theorem 17. Here, we introduce for the special case ¢ = id

oI ‘= Cpidr Cp = Cp8r CuIy = CnTids

and

Cu I ot += C, I rot id,id = Cm, Iy rot id,id = Cm, Ty rot +
as well as

Cmyrot += Cu,Irot,idid = Cm,@rot,id,id-

The crucial point in our analysis is that for convex domains,

Cm,rot =< Cpr Cm,r,rot,é‘,idl Cm,{(),rot,s,id < gcp

hold, see Lemma 16. Some of these results have also been obtained recently in [15, 16] utilizing different and more elementary® meth-
ods. We note that in the convex case, we can estimate the Poincaré constant ¢, by the diameter of 2. More precisely, by the famous
paper of Payne and Weinberger [17]," we have
< dlam(Q).

i
In [17] also, the optimality of this estimate has been shown. Furthermore, ¢, r < ¢; is well known even for non-convex domains, see,
for example, [19] and the cited literature, yielding

1 e 1 - diam(2)
—— =Cor - <
\/)H & i M2 s

where A, (resp.) i, is the first Dirichlet (resp.) second Neumann eigenvalue of the negative Laplacian.

At least some of our results extend in a natural way to bounded domains Q C RN or even to Riemannian manifolds with compact
closure, see Remark 5 and Appendix A.1.

Our new estimates have important applications, for example, to numerical analysis, where especially an upper bound for the
Maxwell constants is needed, for example, for preconditioning and for functional a posteriori error estimates in the framework of
Maxwell's equations.

(1.8)

. ______________________________________________________________________________________________________|
$n the sense that no tools from functional analysis were used.

YA little mistake or inconsistency in [17] has been corrected later in [18].

. ______________________________________________________________________________________________________|
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2. An abstract setting
Let X and Y be Hilbert spaces and
A:DA)CX—Y, A*:DA*)CY—>X

be a closed and densely defined linear operator and its adjoint. Here, D denotes the domain of definition and we introduce the kernel
N and the range R. Because A is closed, we have (A*)* = A = A, and sometimes, (A, A*) is called a dual pair. The projection theorem
yields the orthogonal ‘Helmholtz’ decompositions

X = N(A) ® R(A"), Y = N(A*) & R(A). 1)

We collect some standard results from functional analysis, see, for example, [8, 20].
A*A and AA™ are non-negative and self-adjoint and their spectra coincide if we exclude {0}, that is,

o(A"A)\ {0} = o(AA") \ {0}, 0p(A"A) \ {0} = 0, (AA™) \ {O}. (2.2)

Let us assume that the embedding (using the graph-norm)

D(A) N R(A*) — X (2.3)
is compact.
Lemma 1
There exist ca, cax > 0, such that
Vx € D(A) NR(A") Ix|x < calAx|y,
Yy € D(A") NR(A) yly < cax|A"ylx.

Moreover, R(A) and R(A™) are closed and
X =N(A) @ R(A™), Y =N(A") ®R(A).

Furthermore, D(A*) N R(A) — Y is compact as well.

We note that the same lemma can be proved assuming the compactness of the embedding of D(A*) N R(A) < Y instead of (2.3). By
Lemma 1, the restricted operator

A= Alpca) : D(A) C R(A*) — R(A), D(A) := D(A) N R(A™)

has a bounded inverse A" : R(A) — D(A) with | A7 < (1+ cﬁ)vz, which is compact as an operator from R(A) to R(A*). Hence,
A*A and AA* have pure point spectra, which can only accumulate at infinity and which coincide by (2.2). Especially, the first positive
eigenvalues are equal, and therefore, we conclude the following.

Theorem 2
For the best constants in Lemma 1, it holds cpx = cax, thisis
1 . [Axly . [A*ylx 1

= min = min —.
Ca  0#xeD(A)NR(A*) |X|x 07£yeD(A*)NRA) Y]y Cpx

Hence, c; 2 = c,.2 is the first positive eigenvalue of A*A as well as of AA*.

3. The Maxwell estimates

We remind on €2 and its properties from the introduction.

3.1.  General Lipschitz domains

In this subsection, we frequently use Lemma 1 and Theorem 2.

3.1.1. Gradient and divergence. Let us consider A as
Vi HE (Q) € P(Q) — LA(Q).
Then A* is equal to

e o] 2 2

—dive:e” 'Dr, () C Lo(R2) — L(Q).
. ______________________________________________________________________________________________________|
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More precisely, we have the following table:

A D(A) X Y N(A) R(A)
v HL@ [ 2@ | (@) {0} VHL, () = R, 0(Q) N Hi
A* D(A¥) Y X N(A¥) R(A¥)

—dive || e'Dr,(Q) | L2(Q) | L2(Q) || e 'Dr,0(R) divDr, ()

We note that div Dr, (Q) = L2(Q) if T, # T and div D1 (Q) = L2(£2) "R~ Moreover, we emphasize thatindeed, D(A*) = ¢~'Dr, (R)
holds, see for example, [1]. Note that for this, one has to show the approximation property

Dr,(Q) = {H € D(Q) : (divH,u) 2y = —(H, Vu) 2y ¥ U € HL, (R)},

which is not trivial at all for mixed boundary conditions. Only in the special cases of full boundary conditions this is clear. In fact, by
definition D(A*) = ¢~ 'D(R) holds for T, = T by definition. For T = @, we see that the closed operator

B:= —div : Dr(Q) C L3(Q) — L3(Q)
has the adjoint
B* = V:H'(Q) C LX) — LX)
by definition. Because in this case A = B*, we have D(A*) = D(B**) = D(B) = Dr (). The crucial compact embedding (2.3) reads
HE, (2) NdivDr, () < L*(Q)
and is just Rellich’s selection theorem because

HE, () N divDr, () C HE, () € H'(Q) — L*(Q).

Theorem 2 yields

1 ) IVulz ) div eE| 2 () 1
0< = min —_— = min = .
CoTie  0sueHl () |Uli2(@) 0#£E€e—1Dr, (NVHYE, (@) |Eliz() Co, Ty div &
We note that A1, ¢ := cp‘%t ¢ is the first positive Dirichlet-Neumann eigenvalue of the weighted negative Laplacian —A, := —div &V.

Fore = idand I, = T (resp.) It = 0, we see that Arjg =: A; (resp.) Agig =: w2 is the first Dirichlet (resp.) second Neumann
eigenvalue of the negative Laplacian. As Ar, . = ch’fﬂmdivlS holds too, Ar, ¢ is also the first positive Neumann-Dirichlet eigenvalue of
the weighted negative reduced grad-div-operator —Vdiv g, which can also be interpreted as the weighted negative vector Laplacian
—Ag :=—Vdive + rotrot ona subspace of irrotational vector fields.

Lemma 3
The Poincaré constant in Hh (R2) and the Maxwell divergence constant in ¢~ 'Dr, () N VH1Ft (R2), that is, the best constants in
the inequalities

VueHR (Q) lulze) < omelVulz(o)
VEe 8_1 DFn (Q) n VH]Ft (Q) |E|L§(Q) < Cm’[‘md]v(s|div 8E|L2(Q)l
coincide and correspond to the first positive Dirichlet-Neumann eigenvalue of the weighted negative Laplacian —A., more precisely

Cp,le = Calndiv.e = 1/v/Al e

Lemma 4
ltholdse 'cor. < Cole < eCor, aswellasc,T < o1, and Cpre < Cp e

Proof
For u € Hr, (), we have

luliz@) = G lVulig) < &6 |Vulz),

luliz@) < el VulizQ) < 8 elVuliz ),

whichgives o e < e and oy < €G- O

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2017, 40 435-447
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Remark 5
The results of this section extend to bounded domains Q C R¥, N € N, having the proper regularity of the boundary.

3.1.2. Rotations. Now, let A be
p'rot 1R, (Q) C L2(RQ) — L2 ().

Then A* is
g7 'rot :Rr, (Q) C L2, (Q) > LA(Q),

where 1 is another matrix field similar to e. More precisely,

A D(A) X Y N(A) R(A)
p~rot [ Re(@) | L2(Q) | L(R) || Rro(®) | 4 'MotRr (Q)

A* D(A™) Y X N(A™) R(A¥)
eTrot || Rr,(R) | L(Q) | L2(Q) || Rro(@) | & 'rotRr,(Q)

We note
RA) = 17" (Droo(@) N i), RA) =& (Dr,o(@) N i)
and that indeed, D(A*) = Rr, () holds, see again for example, [1]. As before, for this, one has to show the approximation property
Rr, (Q) = {H € R(Q) : (rot H,E) 2y = (rotH,E) 2oy V E € R ()},
which is not trivial at all for mixed boundary conditions. Again, only in the special cases of full boundary conditions this is clear. Because
D(A*) = R(Q) holds for T, = T by definition, we have also D(B*) = D(A**) = D(A) = Rr(R) for B = A*, which shows the result for
Tt = 0. The crucial compact embedding (2.3) reads
Rr (R) Ne "ot Rr, (Q) — L2(RQ)
and is just the Maxwell compactness property (1.4) because
Rr, () N e 'rot Rr, () C R, (2) N e 'Dr, 0(R) C R (R) Ne™ D, () = LX) C LA(Q).

By Theorem 2, we have

—1
1 . I~ rot El 2 (o)
0< — = min _
CoTrot,e OFEERR (2)Ne~rotRr, (£2) |E|L£(Q)
. |8_1|'OtH|L§(Q) 1
= min = ’
0F#HERT, ()N~ otkr () [Hli2 () Co, T rot 14,6
which serves also as a definition for the constants ¢, rot &, @aNd Co, T, rot,u.e- Therefore, kr, e = c;zt - is the first positive

Dirichlet-Neumann eigenvalue of the weighted reduced double-rot-operator (., := ¢~ 'rot ™ 'rot, which can also be interpreted
as the weighted negative vector Laplacian —ﬁg,u := —Vdive + ¢ 'rot £ 'rot on a subspace of e-solenoidal vector fields. Because
KT e = C\I,lg‘n,rot,u,s holds as well, k1, ¢, is also the first positive Neumann-Dirichlet eigenvalue of the weighted reduced double-
rot-operator O, . = pu~'rote~'rot, which can also be interpreted as the weighted negative vector Laplacian on a subspace of u-
solenoidal vector fields, that is, — A, . = —Vdiv j + 1~ 'rot e~ 'rot.

Lemma 6
The tangential-normal and normal-tangential Maxwell rotation constants, that is, the best constants in the inequalities
VEEe€ th (Q) n 8_1 rot Rl"n (Q) |E|L£(Q) < C, I rot,&,14 |r0t E|L;71 (Q)’

¥ H e Rr, () N p 'rotRr, () IHl2, (@) = ColnmotwellOtHl2_ (0,

coincide and correspond to the first positive Dirichlet-Neumann eigenvalue of the weighted reduced double-rot-operator (I ;,, more
precisely, Cq T, rot,e,u = CoTrote = 1/ /KTy e
Let us define fore = pandfore = u =id

Cn, Ty rot,e *= CmI rot,g,6 = CmIprot,e,e
. ______________________________________________________________________________________________________|
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and note
Co I rot,e = CmIyrot,er CmIrot = G,y rot- (31)

Corollary 7
Forall E € (Rr, () N e~ "rotRr, () U (Rr, (R) N &~ 'rot R, (2)),

|E||_§(Q) < Cu T} rot e |rOt E|L§71 (Q) = ECq,T rot elrot E|L2(Q) (3.2)
holds with sharp constants.
Moreover, the inequalities
YE € Rr.(Q) N 'rot Rr, (V) |Eli2 (@) < CuLumot,eidl Ot El2(0)
VHe Rl“n (Q) n 8_1 rot th (Q) |H|L§(Q) < Cm,Fn,YOt,E,id|r0t H|L2(Q)

hold, where these sharp constants do not need to coincide if ¢ # id.
Lemma 8
It holds

(i) §_2Cm,1"t,rot < CuTiot,e = gzcm,l"t,rot:

=< min {§Cm«rt:r0t E1 ECm,l"t,rot } = Ecm,l"t,rot ’

(i) Cm T ot eids Cm Toirot ,&,id ——1 —1 —1
¢ e > max {& G Lot € Cnlirot ) = € T rot -

Proof
It is clear that ¢y I rot £,ids G, Ty rot eid < £Cm, Ty rot . holds. To prove the other estimates, let £ € R, () N e~ 'rot Rr, (). We decompose
(see Appendix A.2.2)

E =Eo+ Eot € R 0(2) @ rot Rr, (R2).

Then Eror € Rr, (2) N rot Rr, (£2) and rot E = rot Ero: . Thus by orthogonality

|E|E£(Q) = (8E: Erot)Lz(Q) < Cq, T rot |8E|L2(SZ) |I’Ot E|L2(Q)
———

=¢lEl 3 (o)
and hence
- =2
|E|L§(Q) < ECn, T, rot |r0t E|L2(Q) <eg Cn, T rot |r0t E|L2_1 (Q)*
&

. p— 72 . p— p—
This shows Co Ty rot,&id = €Cq, T rot and Co, Iy rot,e = & C Ty rot - |nterChan9|n9 I and I’ Proves Cy Iy roteid = €Cn Ty rot,id,id = €Cm, I rot - By
£ El 2@y < |Eli2 2y and (3.2) (resp.) (3.3) (resp.) (3.4) we see Co, I ot < &2Cn T rot,e (€SP €7 'l rot < G I rot ,ids G, Cyrot &,id - USING
[rot |20y < €|rotE|2 () and (3.3), (3.4) we obtain §_1Cm,l_‘t,rot & < Cn,Tyrot,&,ids Cm, Ty rot .2.id, Which completes the proof. O
2_

3.1.3. The full maxwell estimates.
Theorem 9
ForallE € Rr, () N ¢~ 'Dr, (R), the tangential-normal Maxwell estimate

2 2 . 2 2 2
|E— HDNE|L§(Q) < cp{rt,€|d|v £E|L2(Q) + €T rot eid [FOL E|L2(Q)

holds with sharp constants. Moreover, ¢, 1, ¢ < ¢, 1. and Co T ot eid < €Ca T ot -

Here the word ‘sharp’ is meant with respect to the restrictions of the estimate to the subspaces Rr, o($2) N ¢~ 'Dr, () and
th )N g™l DFn,O(Q)-

Proof
By the Helmholtz decomposition (see Appendix A.2.2), we have

Rr, (Q) N e 'Dr, (R) N Hone(R) 3 E— monE = Ev + Ert € VH], (Q) @, ¢ 'rot R, (Q)
with

Ey € £7'Dr,(R) N VHE, () = R o(2) N e~ 'Dr, () N Hone(Q2) e, diveEy = diveF,
Erot € R1.(2) Ne rotRr, () = Rr, () N e 'Dr, 0(2) N Hone(R)1e,  rotEe = rotE.

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2017, 40 435-447
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Thus, by Lemma 3 and Corollary 7 as well as orthogonality, we obtain

2 _ 2 2 2 : 2 2 2
|E— 7TDNE||_§(Q) = |EV|L§(Q) + |Erot ||_22?(Q) =< Cplrt,8|dIV 5E|L2(Q) + Cm,l"t,rot,a,id|r0t E|L2(Q)'

Lemmas 4 and 8 show the two estimates for the constants, completing the proof. O
Lemma 10
It holds

=

max {€Cp, I, ECn T ot § < € MaX {Cp, T+ G, T rot }

Cmyrtlg = max {CPrrt,SI Cm,FtVI'Ot ,&id} ——1 — A1
max {& "o, € " CnTurot } = & Max{Cp s G ot

v

and fore = id
CnIr = Max{Co I\, Cn T ot J -

Proof

We have ¢, e < Max{Cp T\ e/ Cn, Ty rot eid - INserting £ € e_‘Dpn(Q)ﬂVH}t(Q) (resp.) E € Rr, (2)Ne~Trot R, (2) into the tangential-
normal Maxwell estimate (1.3) shows ¢y 1 e/ G ot ,eid < CmI%,e and the first equation follows. The other estimates are given by
Lemmas 4 and 8, completing the proof. O

By the latter theorem and lemma it remains to estimate only the two constants ¢, 1. and ¢, 1, ror for the various I%.

3.2. Full boundary conditions

We summarize our results for the two important extreme cases I. = I (resp.) [ = @, that is, the full tangential (resp.) the full normal
case, and emphasize that in these two cases, the tangential and normal Maxwell rotation constants coincide by (3.1) and hence beside
the Poincaré constants, we just have to estimate one constant, namely,

Cnrot,e = CuIrot,e = Co@rot,er  Cmrot = CuTrot = Cm@rot - (3.5)

For the convenience of the reader, let us recall our estimates from the latter sections in these two extreme cases. Lemmas 3 and 4 read

Corollary 11
The Poincaré constant ¢, in H'T(Q) (resp.) ¢pe in H‘@(Q) and the Maxwell divergence constant ¢, gdiv« in e 'D(2) N VH'T'(RQ)
(resp.) cu I div.e iN € 'Dr () N VH'(R) equal, that is, the inequalities

VueH'T(Q) luli2i) < GorelVulz)

VEe e 'D(Q)NVH'T(Q) Ela (@) < GoreldiveE|s(q)
(resp.)

Yue HlI (Q) n RL |u|L2(Q) < Cp,g|V ulLé(Q)

VEe e 'Dr(Q)NVH(Q) El2 (@) < CoeldiveE]2(q)

hold with sharp constants. Moreover, £ ¢, < ¢ore < £Cor aNd & '¢p < Cpe < £Cp.
Here, ¢, ¢ := Cpp,¢. Corollary 7 and Lemma 8 read.

Corollary 12
The tangential Maxwell rotation constant ¢, rot,e in Rr(2) N e~ 'rot R(Q) and the normal Maxwell rotation constant ¢, g ot & in the
space R(Q2) N &~ "rot Rp(Q) is equal, that is, for all E € (R (22) N e~ "rot R(R)) U (R(Q) N e~ 'rot R (R2)),

|E|L§(Q) < Cuyrot |rot E|Li*1 () < ECurot e|rOt E|2(0)
holds with sharp constants. Moreover, the inequalities

YV E € Rr(Q) Ne 'rot R(Q) |Eli2 () < CnT ot eidl 1Ot Eli2()
VY H e R(Q)Ne "rot Rr(Q) IHl2 (@) < Cndot,eidlrot Hl2 o)

hold, where these sharp constants do not need to coincide if & # id. Moreover, it holds e 2Cprot < Curot,e < Ezcm,,ot and

—1 ——1 —1
& Curot = Max {8 Cyrot,er € Cm,rot} =< Cu,T"rot,&,ids C, @ rot ,&,id

mMin {&Cmrot &1 ECmrot } < ECmyrot -

A

Theorem 9 and Lemma 10 read.
_______________________________________________________________________________________________________________________________________________|
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Corollary 13
ForallE € Rr(Q) Ne~'D(R) and all H € R(Q) N ¢~ "D (R), the tangential and normal Maxwell estimates

IA

2 2 . 2 2 2
|E — nDE|L§(Q) G r e ldiv 5E|L2(Q) + €T rot e ial FOt E|L2(Q),

A

2 2 . 2 2 2
|H - 7TNH||_£(Q) = Cp,g|d|v 5H||_2(Q) + Cm,@,rot,s,id|r0t H|L2(§2)’

hold with sharp constants. Furthermore, the estimates E”cp,r < G IerCpe < £Cp and & Curot < CmTrot,eids Cufrot,eid < ECmrot AS
well as

IA

max {£Cp, I ECryrot § < € MaX {Cp, T, Cryrot § +

\

CnTe = MaX{CpT e, Cn,T rot &,id} - _ A
' max {& o1 € Crot § = 87" MaX{Co, 1 Cryrot } 4

IA

max {£Cp, ECrrot § < € MaX {Cp, Cryrot } 1
Cnge = MaxX{Cpe, Cudrot,eid}

v

7_'] J— A
max {& " ¢p, £ Crrot } = 87" Max {Cp, Crrot }
hold. Therefore, in both cases,

A—1 ——1 —1
&7 max{cor, Cnrot } < MaX {1 € Curot | < CnTer Culie

max {£Cp, ECmrot } < & Max{Cy, Cmyrot }-

IA

For e = id, it holds
Cn, I = MaX{Co, T Cmrot }+  Cm@ = MaAX{Cp, Cayrot -

As the two Poincaré constants ¢, - < ¢, are more or less well known, by the latter corollaries, it remains only to estimate the Maxwell
constant ot -

3.2.1. Convex domains. Now, let @ C R3 be a bounded domain and convex domain. Then  is strongly Lipschitz, see, for example, [21,
Corollary 1.2.2.3]. Moreover, there are no Dirichlet or Neumann fields because 2 is simply connected and has a connected boundary.
As noted before in (1.8), in the convex case, we can estimate the Poincaré constant c;, by the diameter of 2, that is,

diam(2)
—

o' <G <
We show that we can also estimate the Maxwell constant cyo: in the two extreme cases I. = I (resp.) It = @ by ¢;,. In [22, Theorem
2.17], the following crucial lemma has been proved, which is the key point in our investigations for convex domains.
Lemma 14
Let £ belong to R (£2) N D(2) or R(Q) N Dr(2). Then E € H'(Q) and
IVEIG ) = ITOLEIL ) + dIVEID ) (3.6)

We note that the latter lemma has already been proved in [13] in the case Ri-(£2) N D(L2).

Remark 15
For E € H'I'(RQ), it is clear that for any domain Q C R3 (or even in RV)

2

|VE|f2 = |rot E|L2(Q) + |div E|f2(Q)

(€2)
holds because —A = rot rot —Vdiv . In general, this formula is no longer valid if E has just the tangential or normal boundary condition.
With the help of Lemma 14, we can now estimate ¢ rot -

Lemma 16
Cnrot < Cp. More precisely, for all Ein R (£2) N rot R(€2) or R(2) N rot R (2)

|E|L2(Q) < Cp|r0t E|L2(Q)'

Furthermore, ¢, T rot &,ids Cn @ 10t 6id < €Cp-

Proof
By (3.5), the boundary condition does not matter. So, let

E € R(2) Nrot Rr(2) = R(2) N Dro(2)
with E = rot H for some H € Rr(R2). Then, for any constant vector a € R3,

(E, @) texti2(2) = (rotH, @) texei2(2) = 0 3.7)

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2017, 40 435-447
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holds. Thus, by Poincaré’s estimate and Lemma 14, we obtain £ € H'(22) N (R3)- and
Eli2(@) = 6ol VE|2(q) = Golrot Eli2(q),

which shows ot = Cngrot < Cp. -
We can now formulate the main result for convex domains, which follows immediately from Corollary 13 and Lemma 16.

Theorem 17
ForallE € Rr(Q) Ne™'D(R) and all H € R(Q) N e~ 'Dr(R), the tangential and normal Maxwell estimates

2 2.2
Elz ) =£°¢, )
2

2 2 : 2 =22 2
|H|L§(Q) < g°c;|div 8H|L2(Q) +&°¢g|rot H|L2(Q)

rldiv e[} o) + EE|rot £}

hold. Moreover,

oI’
B A
? =< Cn e = é\Cp:

m\‘ruﬁ

IA
(o)

E

=

™

IA
™>
(o)

kel

Especially, for e = id,
mMax{Cp,I"s Cmyrot } = Ca, T < Cmip = Cp.

Theorem 18
Forall E € (RF(Q) n s_‘D(Q)) U (R(Q) n 8_1DF(Q)),

1/2
Eluz ) = écp (1dv Bl ) + IOt Bl )

Appendix A

A.1. More general operators

There are obvious generalizations to differential forms. Let Q be a smooth Riemannian manifold of dimension N > 2 with boundary
I' and compact closure. We assume that the boundary manifold T is divided into two (N — 1)-dimensional Riemannian sub-manifolds
I. and T, with boundaries. Let us denote by L>9(2) the usual Lebesgue (Hilbert) space of g-forms. For the exterior derivative and
co-derivative, we define the well-known Sobolev spaces

DY(Q) := {E el*(Q):dEe LZ"H'](Q)}, AY(Q) = {E e 2(Q): 8E € X (Q)} .
As before, we introduce weak homogeneous boundary conditions by closures of respective test forms, yielding the Sobolev spaces
D‘llt (), A‘lln ().

Let A be
p~'d D% (Q) C LF(Q) - LT Q).
Then A* is
— 718 ATT(Q) c LT (@) > L),
where ¢ (resp.) u are bounded, symmetric, real and uniformly positive definite linear transformations on g- (resp.) (g + 1)-forms.
More precisely,

A D(A) X Y N(A) R(A)
p'd || DL@ | @ |[uT@ [ Do) | pdDg (2)

A* D(A™) Y X N(A™) R(A™)
-5 || AT @ | T @ | @ AT | 8T (@)

Here,
DY, 4(Q) = {E €D, (Q): dE = o}, AT o(Q) = {E € AL () : 8E = o}

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2017, 40 435-447



D. PAULY
I ——

and we note

R = " (D@ NG (@7F), RA™) =7 (A%, (@) N HE(@)F),

where H1(R2) := DIt 0(2) N A], (). Indeed, D(A*) = A‘E’"] (R) holds. We have the same remarks as in Section 3.1.2. Again, for
this, one has to show the approximation property

A‘H'](Q) = {H e ATTV(Q) : (8H, E)2aiy = —(H,dE) 20ty Y E € D‘}t(Q)} ,
which is not trivial at all for mixed boundary conditions. And again, only in the special cases of full boundary conditions this is clear.

Because D(A*) = A9F(Q) holds for I = I by definition, we have also D(B*) = D(A**) = D(A) = D{-(Q) for B = A*, which shows
the result for T. = @. The crucial compact embedding (2.3) is

DL (@) Ne~SALT (@) — L29(Q).

Both latter properties of €2, that is, the approximation and the compactness property, hold, for example, if the boundary manifolds T,
I, T’y are Lipschitz and the boundary manifolds I, I'y are separated by a (N — 2)-dimensional Riemannian and Lipschitz sub-manifold,
the interface y := I, N [y, see [23,24] for details and proofs. We note that

D%t «)n 8_18A‘F:1(Q) c D%t Q)N S_IA‘II"",O(Q) c D‘}*t @n 8_1AL{—~" @
holds and that even the compact embedding of the latter space into L9(S).
Df, (@) N e AL (@) = (@) C ()

has been shown in [24]!. By Theorem 2, we have

—1 —1
. - ’;,L dE||_f,’f7+1(Q) _ ) ’8 SH’LE;'Q(SZ)
0£EeD], (Ne~18AL () |E|L§"’(Q) 0#£HEATT (@) Nu—1dDY, () |H|qu+1(9)

and «? is the first positive Dirichlet-Neumann eigenvalue of the weighted-reduced §-d-operator —s~ '8~ "d. Analogously, k2 is also
the first positive Neumann-Dirichlet eigenvalue of the weighted reduced d-§-operator —u~'de™'6.

Lemma 19
The tangential-normal and normal-tangential generalized Maxwell constants, that is, the best constants in the inequalities

— +1
VEe D‘}t(Q) Ne HSA‘}" () |El 203y = CamIidene |dE|LZq_+11(Q)

VHe AR (@) N pdDf, (@) Hlgo1 gy = Conlosine [8Hl21. )

coincide and are equal to 1/«, that is, Cgn T d.e,u = ConTodase =K -

Remark 20
It is clear that more results of this contribution can be generalized to the differential form setting.

A.2. Maxwell tools

Let the general assumptions from the introduction be satisfied.

A.2.1. The Maxwell estimates
By the Maxwell compactness property, we obtain immediately the Maxwell estimate.

Lemma 21
There exists ¢, e > 0, such that for all Ein R, () N e~ 'Dr, () N How,e ()1

1
2 . 2
Eliz i = Cure (10t Bl g + [div eEls o))

lin 124y, it is proved that D‘{—‘t «Q)n A‘IL (2) even embeds continuously to H1 /Z’q(Q) and hence compactly to 129(S2). We note that the compactness property is
independent of ¢, see, for example, [3].
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Proof
If the estimate would not hold, there would exist a sequence of vector fields (E,) C Rr, (€2) N &~ 'Dr, () N ’HDM(Q)L& with the
property |Ep|i2() = 1and

. 1
[rot Epli2(qy + |div eEn|2(q) < pe

By the Maxwell compactness property, we can assume w.l.o.g. that (E,) converges in L2(Q2) to some E € L2(). By testing, £ belongs to
Ro(R2) N e7'Do(R) N Howe ()¢, and (E,) converges to E also in R(Q2) N e~ 'D(RQ). As Rr. (2) (resp.) Dr, (2) is a closed subspace of
R(R2) (resp.) D(2), E belongs even to Rr, o(22) N e~ 'Dr, 0(R) = Hone (). Hence, E = 0, which contradicts 1 = |Enli2(c2y = 0. O

Corollary 22
Forall Ein R, (2) N e~ 'Dr, (R),

1/2
|(1 = 7om)El2 () < Culue <|rot El} ) + Idiv 8E|52(Q)) .

Proof
AsH:= (1 — mpn)E € RE. () Ne™'Dr, () N Hpw,e ()¢ with div eH = div ¢E and rot H = rot E, Lemma 21 completes the proof. [

The same arguments show that the Maxwell estimate remains valid in any dimension and even for compact Riemannian manifolds
as long as the crucial Maxwell compactness property holds.

Helmholtz-Weyl decompositions

By the projection theorem we have for the operator V,

LZ(Q) = VH}, (Q) ®: ¢~ 'Dr,0(R),

1
where indeed, (VH}t (Q)) = Dr, 0(€2) holds by [1]. Note that VH}wt (R2) is already closed by Rellich’s selection theorem. Analogously,
we obtain for the operator rot

L2(Q) = Rr0() ¢ ¢~ "ot Rr, (2), (A1)
where again and indeed, (rot R, (Q))i = R, 0(€2) holds by [1]. For ¢ = id, we obtain by (A.1)
Rr (@) = Rr:.o(2) & (Rr () N0t R, (@),
and therefore,
rot R, (§2) = rot (Rpt(sz) N TotRrs, (sz)) .
AsrotRr, (2) C Dr,0(2) N Héﬁ, the Maxwell estimate Lemma 21 implies that also rot Rr, (€2) is already closed. Moreover,
rot R, (2) = rotRr, (2), Rr. () := R () NrotRr, (2) = R () Nrot Rr, (€2).

Because VH1rt (2) C R, 0(2) and rot Rr, (2) C Dr,0(2), we obtain

Rr.0(R2) = VHE (Q) @ | Rro(R) Ne™'Dr,0(Q) |,

=Hpy,e (£2)

£7'Dr,0(R) = ¢ 'rotRr, () e (th,o(sz) n s—‘Dm(Q)) )

Finally, we have the well-known Helmholtz decompositions.

Lemma 23
It holds
L2(2) = VH}, (Q) @ £ 'Dr,0(Q) = R () @ ¢~ 'rot Rr, (Q)
= VHL, (Q) ®e Hone(Q) ®¢ ¢~ 1ot Rr, (Q)
as well as

VHE, (Q) = Rr,0(Q) N Howe ()7, € 1ot Rr, (R) = &7 'Dr, 0(R) N Hone ()

and Rr, () = Rr. () N Dr, 0(2) N Har.
. ______________________________________________________________________________________________________|
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