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For a bounded domain��RN with connected Lipschitz boundary, we prove the existence of some c > 0, such that

c jjTjjL2.�,RN�N/ � jjsym TjjL2.�,RN�N/C jjCurl TjjL2.�,RN�.N�1/N=2/

holds for all square-integrable tensor fields T : � �! RN�N, having square-integrable generalized “rotation” tensor fields
Curl T : � �! RN�.N�1/N=2 and vanishing tangential trace on @�, where both operations are to be understood row-wise.
Here, in each row, the operator curl is the vector analytical reincarnation of the exterior derivative d in RN. For compatible
tensor fields T , that is, T Drv, the latter estimate reduces to a non-standard variant of Korn’s first inequality in RN, namely

c jjrvjjL2.�,RN�N/ � ksym rvkL2.�,RN�N/

for all vector fields v 2 H1.�,RN/, for whichrvn, nD 1, : : : , N, are normal at @�. Copyright © 2012 John Wiley & Sons, Ltd.
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1. Introduction and preliminaries

We extend the results from [1, 2], which have been announced in [3], to the N-dimensional case following in close lines, the arguments
presented there. Let N 2 N and � be a bounded domain in RN with connected Lipschitz boundary � :D @�. We prove a Korn-

type inequality in
ı
H.Curl;�/ for eventually non-symmetric tensor fields T mapping � to RN�N. More precisely, there exists a positive

constant c, such that

c jjTjjL2.�/ � jjsym TjjL2.�/C jjCurl TjjL2.�/

holds for all tensor fields T 2
ı
H.Curl;�/, where T belongs to

ı
H.Curl;�/, if T 2 H.Curl;�/ has vanishing tangential trace on � . Thereby,

the generalized Curl and tangential trace are defined as row-wise operations. For compatible tensor fields T D rv with vector fields
v 2 H1.�/, for whichrvn, nD 1, : : : , N, are normal at @�, the latter estimate reduces to a non-standard variant of the well known Korn’s
first inequality in RN

c jjrvjjL2.�/ � jjsym rvjjL2.�/.

Our proof relies on three essential tools, namely

1. Maxwell estimate (Poincaré-type estimate),
2. Helmholtz’ decomposition,
3. Korn’s first inequality.
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In [1], we already pointed out the importance of the Maxwell estimate and the related question of the Maxwell compactness property‡.
Here, we mention the papers [4–10]. Results for the Helmholtz decomposition can be found in [6,8,10–16]. Nowadays, differential forms
find prominent applications in numerical methods like Finite Element Exterior Calculus [17, 18] or Discrete Exterior Calculus [19].

1.1. Differential forms

We may look at� as a smooth Riemannian manifold of dimension N with compact closure and connected Lipschitz continuous bound-
ary � . The alternating differential forms of rank q 2 f0, : : : , Ng on�, briefly q-forms, with square-integrable coefficients will be denoted
by L2,q.�/. The exterior derivative d and the co-derivative ı D˙�d� (�: Hodge’s star operator) are formally skew-adjoint to each other,
that is,

8 E 2
ı
C1,q.�/ H 2

ı
C1,qC1.�/ hdE, HiL2,qC1.�/ D�hE, ıHiL2,q.�/,

where the L2,q.�/-scalar product is given by

8 E, H 2 L2,q.�/ hE, HiL2,q.�/ :D

Z
�

E ^ �H.

Here,
ı
C1,q.�/ denotes the space of compactly supported and smooth q-forms on �. Using this duality, we can define weak versions

of d and ı. The corresponding standard Sobolev spaces are denoted by

Dq.�/ :D
n

E 2 L2,q.�/ : dE 2 L2,qC1.�/
o

,

�q.�/ :D
n

H 2 L2,q.�/ : ıH 2 L2,q�1.�/
o

.

The homogeneous tangential boundary condition ��E D 0, where �� denotes the tangential trace, is generalized in the space

ı
Dq.�/ :D

ı
C1,q.�/,

where the closure is taken in Dq.�/. In classical terms, we have for smooth q-forms �� D �
� with the canonical embedding � : � ,! �.

An index 0 at the lower right position indicates vanishing derivatives, that is,

ı
Dq

0.�/D
n

E 2
ı
Dq.�/ : dE D 0

o
, �

q
0.�/D

˚
H 2�q.�/ : ıHD 0

�
.

By definition and density, we have

�
q
0.�/D .d

ı
Dq�1.�//?, �

q
0.�/

? D d
ı
Dq�1.�/,

where? denotes the orthogonal complement with respect to the L2,q.�/-scalar product and the closure is taken in L2,q.�/. Hence, we
obtain the L2,q.�/-orthogonal decomposition, usually called Hodge–Helmholtz decomposition,

L2,q.�/D d
ı
Dq�1.�/˚�

q
0.�/, (1.1)

where˚ denotes the orthogonal sum with respect to the L2,q.�/-scalar product. In [7, 10], the following crucial tool has been proved:

Lemma 1 (Maxwell compactness property)
For all q the embeddings

ı
Dq.�/\�q.�/ ,! L2,q.�/

are compact.

As the first immediate consequence, the spaces of so called "harmonic Dirichlet forms"

Hq.�/ :D
ı
Dq

0.�/\�
q
0.�/

are finite dimensional. In classical terms, a q-form E belongs to Hq.�/, if

dE D 0, ıE D 0, ��E D 0.

‡By "Maxwell estimate" and "Maxwell compactness property", we mean the estimates and compact embedding results used in the theory of Maxwell’s equations.6
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The dimension of Hq.�/ equals the .N� q/th Betti number of�. Because we assume the boundary � to be connected, the .N� 1/th
Betti number of� vanishes and therefore there are no Dirichlet forms of rank 1 besides zero, for example,

H1.�/D f0g. (1.2)

This condition on the domain� respectively its boundary � is satisfied, for example, for a ball or a torus.
By a usual indirect argument, we achieve another immediate consequence:

Lemma 2 (Poincaré estimate for differential forms)
For all q there exist positive constants cp,q, such that for all E 2

ı
Dq.�/\�q.�/\Hq.�/?

kEkL2,q.�/ � cp,q

�
kdEk2

L2,qC1.�/
CkıEk2

L2,q�1.�/

�1=2
.

Because

d
ı
Dq�1.�/�

ı
Dq

0.�/

(note that ddD 0 and ıı D 0 hold even in the weak sense) we get by (1.1)

d
ı
Dq�1.�/D d

�ı
Dq�1.�/\�

q�1
0 .�/

�
D d

�ı
Dq�1.�/\�

q�1
0 .�/\Hq�1.�/?

�
.

Now, Lemma 2 shows that d
ı
Dq�1.�/ is already closed. Hence, we obtain a refinement of (1.1)

Lemma 3 (Hodge–Helmholtz decomposition for differential forms)
The decomposition

L2,q.�/D d
ı
Dq�1.�/˚�

q
0.�/

holds.

1.2. Functions and vector fields

Let us turn to the special case qD 1. In this case, we choose, for example, the identity as single global chart for� and use the canonical
identification isomorphism for 1-forms (i.e., Riesz’ representation theorem) with vector fields dxn Š en, namely,

NX
nD1

vn.x/dxn Š v.x/D

2
64

v1.x/
...

vN.x/

3
75 , x 2�.

0-forms will be isomorphically identified with functions on�. Then, dŠ gradDr for 0-forms (functions) and ıŠ divDr � for 1-forms
(vector fields). Hence, the well known first order differential operators from vector analysis occur. Moreover, on 1-forms, we define a
new operator curl :Š d, which turns into the usual curl if ND 3 or ND 2. L2,q.�/ equals the usual Lebesgue spaces of square integrable
functions or vector fields on�with values in Rn, n :D nN,q :D

�N
q

�
, which will be denoted by L2.�/ :D L2.�,Rn/. D0.�/ and�1.�/ are

identified with the standard Sobolev spaces

H.grad;�/ :D
n

u 2 L2.�,R/ : grad u 2 L2.�,RN/
o
D H1.�/,

H.div;�/ :D
n

v 2 L2.�,RN/ : div v 2 L2.�,R/
o

,

respectively. Moreover, we may now identify D1.�/with

H.curl;�/ :D
n

v 2 L2.�,RN/ : curl v 2 L2.�,R.N�1/N=2/
o

,

which is the well-known H.curl;�/ for ND 2, 3. For example, for ND 4 we have

curl v D

2
6666664

@1v2 � @2v1

@1v3 � @3v1

@1v4 � @4v1

@2v3 � @3v2

@2v4 � @4v2

@3v4 � @4v3

3
7777775
2R6
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and for ND 5, we get curl v 2R10. In general, the entries of the .N� 1/N=2-vector curl v consist of all possible combinations of

@nvm � @mvn, 1� n < m� N.

Similarly, we obtain the closed subspaces

ı
H.grad;�/D

ı
H1.�/,

ı
H.curl;�/

as reincarnations of
ı
D0.�/ and

ı
D1.�/, respectively. We note

ı
H.grad;�/D

ı
C1.�/,

ı
H.curl;�/D

ı
C1.�/,

where the closures are taken in the respective graph norms, and that in these Sobolev spaces the classical homogeneous scalar and
tangential (compare with ND 3) boundary conditions

uj� D 0, � � vj� D 0

are generalized. Here, � denotes the outward unit normal for � . Furthermore, we have the spaces of irrotational or solenoidal vector
fields

H.curl0;�/D fv 2 H.curl;�/ : curl v D 0g ,
ı
H.curl0;�/D

n
v 2
ı
H.curl;�/ : curl v D 0

o
,

H.div0;�/D fv 2 H.div;�/ : div v D 0g .

Again, all these spaces are Hilbert spaces. Now, we have two compact embeddings

ı
H.grad;�/ ,! L2.�/,

ı
H.curl;�/\H.div;�/ ,! L2.�/,

that is, Rellich’s selection theorem and the Maxwell compactness property. Moreover, the following Poincaré and Maxwell estimates
hold:

Corollary 4 (Poincaré estimate for functions)
Let cp :D cp,0. Then, for all functions u 2

ı
H.grad;�/

jjujjL2.�/ � cp jjgrad ujjL2.�/.

Corollary 5 (Maxwell estimate for vector fields)
Let cm :D cp,1. Then, for all vector fields v 2

ı
H.curl;�/\H.div;�/

jjvjjL2.�/ � cm

�
jjcurl vjj2L2.�/

C jjdiv vjj2L2.�/

�1=2
.

We note that generally H0.�/D f0g and by (1.2) also H1.�/D f0g. The appropriate Helmholtz decomposition for our needs is

Corollary 6 (Helmholtz decomposition for vector fields)

L2.�/D grad
ı
H.grad;�/˚H.div0;�/

1.3. Tensor fields

We extend our calculus to .N�N/-tensor (matrix) fields. For vector fields v with components in H.grad;�/ and tensor fields T with rows
in H.curl;�/ resp. H.div;�/, that is,

v D

2
64

v1
...

vN

3
75 , vn 2 H.grad;�/, T D

2
64

T1
t

...
TN

t

3
75 , Tn 2 H.curl;�/ resp. H.div;�/

for nD 1, : : : , N, we define

Grad v :D

2
64

gradtv1
...

gradtvN

3
75D Jv Drv, Curl T :D

2
64

curltT1
...

curltTN

3
75 , Div T :D

2
64

div T1
...

div TN

3
75 ,

6
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where Jv denotes the Jacobian of v and t the transpose. We note that v and Div T are N-vector fields, T and Grad v are .N � N/-tensor
fields, whereas Curl T is a .N � .N � 1/N=2/-tensor field that may also be viewed as a totally anti-symmetric third order tensor field
with entries

.Curl T/ijk D @jTik � @kTij .

The corresponding Sobolev spaces will be denoted by

H.Grad;�/,
ı
H.Grad;�/, H.Div;�/, H.Div0;�/,

H.Curl;�/,
ı
H.Curl;�/, H.Curl0;�/,

ı
H.Curl0;�/.

There are three crucial tools to prove our estimate. First, we have obvious consequences from Corollaries 4, 5, and 6:

Corollary 7 (Poincaré estimate for vector fields)
For all v 2

ı
H.Grad;�/

jjvjjL2.�/ � cp jjGrad vjjL2.�/.

Corollary 8 (Maxwell estimate for tensor fields)
The estimate

jjTjjL2.�/ � cm

�
jjCurl Tjj2L2.�/

C jjDiv Tjj2L2.�/

�1=2

holds for all tensor fields T 2
ı
H.Curl;�/\H.Div;�/.

Corollary 9 (Helmholtz decomposition for tensor fields)

L2.�/D Grad
ı
H.Grad;�/˚H.Div0;�/

The last important tool is Korn’s first inequality.

Lemma 10 (Korn’s first inequality)
For all vector fields v 2

ı
H.Grad;�/

jjGrad vjjL2.�/ �
p

2 jjsym Grad vjjL2.�/.

Here, we introduce the symmetric and skew-symmetric parts

sym T :D
1

2
.T C T t/, skew T :D

1

2
.T � T t/

of a .N� N/-tensor T D sym T C skew T .

Remark 11

We note that the proof including the value of the constant is simple. By density, we may assume v 2
ı
C1.�/. Twofold partial integration

yields

h@nvm, @mvniL2.�/ D h@mvm, @nvniL2.�/

and hence

2 jjsym Grad vjj2L2.�/
D

1

2

NX
n,mD1

jj@nvmC @mvnjj
2
L2.�/

D

NX
n,mD1

�
jj@nvmjj

2
L2.�/

C h@nvm, @mvniL2.�/

�

D jjGrad vjj2L2.�/
C jjdiv vjj2L2.�/

� jjGrad vjj2L2.�/
.

More on Korn’s first inequality can be found, for example, in [20].

2. Results

For tensor fields T 2 H.Curl;�/, we define the semi-norm

jjjTjjj:D
�
jjsym Tjj2L2.�/

C jjCurl Tjj2L2.�/

�1=2
.

The main step is to prove the following.

Copyright © 2012 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2012, 35 65–71
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Lemma 12
Let Oc :Dmax

n
2,
p

5cm

o
. Then, for all T 2

ı
H.Curl;�/

jjTjjL2.�/ � Oc jjjTjjj.

Proof
Let T 2

ı
H.Curl;�/. According to Corollary 9, we orthogonally decompose

T D Grad vC S 2 Grad
ı
H .Grad;�/˚H.Div0;�/.

Then, Curl T D Curl S and we observe S 2
ı
H.Curl;�/\H.Div0;�/ because

Grad
ı
H.Grad;�/�

ı
H .Curl0;�/. (2.1)

By Corollary 8, we have

kSkL2.�/ � cm jjCurl TjjL2.�/. (2.2)

Then, by Lemma 10 and (2.2), we obtain

jjTjj2L2.�/
D jjGrad vjj2L2.�/

C jjSjj2L2.�/
� 2 jjsym Grad vjj2L2.�/

C jjSjj2L2.�/
� 4 jjsym Tjj2L2.�/

C 5 jjSjj2L2.�/
,

which completes the proof. �

The immediate consequence is our main result.

Theorem 13
On
ı
H.Curl;�/ the norms jj�jjH.Curl;�/ and jjj�jjjare equivalent. In particular, jjj� jjjis a norm on

ı
H.Curl;�/ and there exists a positive constant

c, such that

c jjTjj2H.Curl;�/ � jjjTjjj
2 D jjsym Tjj2L2.�/

C jjCurl Tjj2L2.�/

holds for all T 2
ı
H.Curl;�/.

Remark 14
For a skew-symmetric tensor field T : �! so.N/, our estimate reduces to a Poincaré inequality in disguise, because Curl T controls all
partial derivatives of T (compare with [21]) and the homogeneous tangential boundary condition for T is implied by Tj� D 0.

Setting T :D Grad v, we obtain the following.

Remark 15 (Korn’s first inequality: tangential-variant)
For all v 2

ı
H.Grad;�/

kGrad vkL2.�/ � Oc ksym Grad vkL2.�/ (2.3)

holds by Lemma 12 and (2.1). This is just Korn’s first inequality from Lemma 10 with a larger constant Oc. Because � is connected, that is,
H1.�/D f0g, we even have

Grad
ı
H.Grad;�/D

ı
H.Curl0;�/.

Thus, (2.3) holds for all v 2 H .Grad;�/ with Grad v 2
ı
H.Curl0;�/, that is, with grad vn, n D 1, : : : , N, normal at � , which then extends

Lemma 10 through the (apparently) weaker boundary condition.

The elementary arguments above apply certainly to much more general situations, for example, to not necessarily connected
boundaries � and to tangential boundary conditions that are imposed only on parts of � . These discussions are left to forthcoming
papers.
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