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For a bounded domain 2 C R" with connected Lipschitz boundary, we prove the existence of some ¢ > 0, such that
Tl rr=ny < [sym T| 2@ rv<ny + [|Curl T”Lz(Q’RNX(N—l)N/Z)

holds for all square-integrable tensor fields 7 : Q — R"*V, having square-integrable generalized “rotation” tensor fields

Curl T : @ — RNXW=DN/2 and vanishing tangential trace on <2, where both operations are to be understood row-wise.
Here, in each row, the operator curl is the vector analytical reincarnation of the exterior derivative d in R". For compatible
tensor fields T, thatis, T = Vv, the latter estimate reduces to a non-standard variant of Korn’s first inequality in R", namely

Vvl rwny < llsym Vv| 2 g rrxn)

for all vector fields v € H'(Q, RV), for which Vv,,n = 1,.. ., N, are normal at 9Q. Copyright © 2012 John Wiley & Sons, Ltd.
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1. Introduction and preliminaries

We extend the results from [1, 2], which have been announced in [3], to the N-dimensional case following in close lines, the arguments
presented there. Let N € N and © be a bounded domain in R with connected Lipschitz boundary T' := 3. We prove a Korn-

o

type inequality in H(Curl; ©2) for eventually non-symmetric tensor fields T mapping 2 to RNV, More precisely, there exists a positive
constant ¢, such that

clITlz(@) = lIsym Tli2(@) + [Curl T2 (q)

o o
holds for all tensor fields T € H(Curl; ), where T belongs to H(Curl; 2), if T € H(Curl; 2) has vanishing tangential trace on I". Thereby,
the generalized Curl and tangential trace are defined as row-wise operations. For compatible tensor fields T = Vv with vector fields
veH! (R2), for which Vv,,n =1, ..., N, are normal at 92, the latter estimate reduces to a non-standard variant of the well known Korn’s
first inequality in RV

c|Vvla(@) < lsym Vv|i2(q)-

Our proof relies on three essential tools, namely

1. Maxwell estimate (Poincaré-type estimate),
2. Helmholtz’ decomposition,
3. Korn's first inequality.
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In [1], we already pointed out the importance of the Maxwell estimate and the related question of the Maxwell compactness property?.
Here, we mention the papers [4-10]. Results for the Helmholtz decomposition can be found in [6,8, 10-16]. Nowadays, differential forms
find prominent applications in numerical methods like Finite Element Exterior Calculus [17, 18] or Discrete Exterior Calculus [19].

1.1. Differential forms

We may look at €2 as a smooth Riemannian manifold of dimension N with compact closure and connected Lipschitz continuous bound-
ary I'. The alternating differential forms of rank g € {0, . . ., N} on €2, briefly g-forms, with square-integrable coefficients will be denoted
by L29(R2). The exterior derivative d and the co-derivative § = = * dx (x: Hodge’s star operator) are formally skew-adjoint to each other,
that s,

VEeC®4(Q) HeC®at1(Q) (dE, H) 2.0+1(q) = — (. 8H) 20(),

where the L29(2)-scalar product is given by

VEHELX(Q) (B H)aag) = / E A #H,
Q

Here, (°Z°°"7(Q) denotes the space of compactly supported and smooth g-forms on 2. Using this duality, we can define weak versions
of d and §. The corresponding standard Sobolev spaces are denoted by

DI(Q) = {E e29(Q) : dE e 291 (sz)},
AI(Q) = {H €129(Q) : §He L2 (sz)}.
The homogeneous tangential boundary condition trE = 0, where 71 denotes the tangential trace, is generalized in the space
D9(Q) := Co0a(Q),

where the closure is taken in DI(2). In classical terms, we have for smooth g-forms rp = * with the canonical embedding ¢ : T < Q.
An index 0 at the lower right position indicates vanishing derivatives, that is,

BDI(Q) = {E eDI(Q) : dE = o} , AQ) ={He AYR) : SH=0}.
By definition and density, we have
AJ@) = @ @)L, al@)t = dd(@),

where L denotes the orthogonal complement with respect to the L29($2)-scalar product and the closure is taken in L%9(Q). Hence, we
obtain the L29(Q2)-orthogonal decomposition, usually called Hodge-Helmholtz decomposition,

129(Q) = dDT(Q) & Ad(Q), (1.1)

where @ denotes the orthogonal sum with respect to the L29(2)-scalar product. In [7, 10], the following crucial tool has been proved:

Lemma 1 (Maxwell compactness property)
For all g the embeddings

DI(Q) N AY(Q) — L29(Q)

are compact.

As the firstimmediate consequence, the spaces of so called "harmonic Dirichlet forms"
HI(Q) :=DI(Q) N AY(Q)

are finite dimensional. In classical terms, a g-form E belongs to H9(R2), if

dE=0, 8E=0, (FE=0
I ——

#By "Maxwell estimate” and "Maxwell compactness property", we mean the estimates and compact embedding results used in the theory of Maxwell’s equations.
__________________________________________________________________________________________________________________|
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The dimension of H9(2) equals the (N — g)th Betti number of 2. Because we assume the boundary T to be connected, the (N — 1)th
Betti number of Q2 vanishes and therefore there are no Dirichlet forms of rank 1 besides zero, for example,

H' (@) = {0}. (.2

This condition on the domain 2 respectively its boundary T is satisfied, for example, for a ball or a torus.
By a usual indirect argument, we achieve another immediate consequence:

Lemma 2 (Poincaré estimate for differential forms)
For all g there exist positive constants ¢y, such that for all E € D9(2) N A9(2) N HI(Q)L

IEl2e(@) = <o (101 Zgsr gy + I0EI s (qy) -
Because
dD71(Q) € DY(R)
(note that dd = 0 and §§ = 0 hold even in the weak sense) we get by (1.1)

dD91(Q) = d(fiq‘1 @ n Ay @) = d(lg"‘1 @ nad @ nHT @),

o
Now, Lemma 2 shows that dD9~1(Q) is already closed. Hence, we obtain a refinement of (1.1)

Lemma 3 (Hodge-Helmholtz decomposition for differential forms)
The decomposition

129(Q) = i7" (Q) & AY(Q)
holds.

1.2. Functions and vector fields

Let us turn to the special case g = 1. In this case, we choose, for example, the identity as single global chart for Q2 and use the canonical
identification isomorphism for 1-forms (i.e., Riesz’ representation theorem) with vector fields dx, = e", namely,

N Vi (X)

Z va(X)dxp = v(x) = , xeQ.

=1 N (X)
0-forms will be isomorphically identified with functions on €. Then, d= grad = V for 0-forms (functions) and § = div = V - for 1-forms
(vector fields). Hence, the well known first order differential operators from vector analysis occur. Moreover, on 1-forms, we define a
new operator curl : 22 d, which turns into the usual curl if N = 3 or N = 2. L29(Q) equals the usual Lebesgue spaces of square integrable
functions or vector fields on Q with values in R", n:= ny 4 := (’;’) which will be denoted by L2(2) := L%(2,R"). D°(Q) and A'(Q) are
identified with the standard Sobolev spaces

H(grad; Q) := {u cl2(2,R):gradu e Lz(Q,RN)} —H'(@),
H(div; Q) == {v e L2(,RY):divv e L2(9,R)},
respectively. Moreover, we may now identify D' (Q) with
H(curl; Q) := {v S LZ(Q,RN) rcurlv e LZ(Q,R(N_”N/Z)} ,

which is the well-known H(curl; Q) for N = 2, 3. For example, for N = 4 we have

01v2 — dav
d1vs — d3v
curlv = 01va — davy e R
02v3 — d3v2
32V4 — 34V2
83V4 — 34V3

. ______________________________________________________________________________________________________|
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and for N = 5, we get curl v € R'9. In general, the entries of the (N — 1)N/2-vector curl v consist of all possible combinations of
hVm —dmvn, 1<n<m=N.
Similarly, we obtain the closed subspaces
[¢] o 1 o
H(grad; 2) =H' (), H(curl; )
as reincarnations of ISO(Q) and 51 (2), respectively. We note

H(grad; Q) = €(Q), Hi(curl: Q) = (o (),

where the closures are taken in the respective graph norms, and that in these Sobolev spaces the classical homogeneous scalar and
tangential (compare with N = 3) boundary conditions

ur=0, vxvlpr=0

are generalized. Here, v denotes the outward unit normal for I". Furthermore, we have the spaces of irrotational or solenoidal vector
fields

H(curly; Q) = {v € H(curl; Q) : curl v = 0},
Igl(curlo; Q) = {v € I(-J|(curl; Q):curlv= O} ,
H(divg; Q) = {v € H(div; Q) : divv = 0} .
Again, all these spaces are Hilbert spaces. Now, we have two compact embeddings
Fi(grad: Q) < L2(Q), H(curl; Q) N H(div; ) < L2(Q),

that is, Rellich’s selection theorem and the Maxwell compactness property. Moreover, the following Poincaré and Maxwell estimates
hold:

Corollary 4 (Poincaré estimate for functions)
(o}
Let ¢p := ¢p,0. Then, for all functions u € H(grad; €2)

lull2(@) = ¢p llgrad ul2(q)-

Corollary 5 (Maxwell estimate for vector fields)
Let ¢ == ¢p,1. Then, for all vector fields v € H(curl; 2) N H(div; Q)

. 1
Mz = cm (Jeurl vz g, + Idiv vz g))

We note that generally H(2) = {0} and by (1.2) also ' () = {0}. The appropriate Helmholtz decomposition for our needs is

Corollary 6 (Helmholtz decomposition for vector fields)

L2(Q) = gradH(grad; Q) @ H(divo; Q)

1.3. Tensor fields

We extend our calculus to (N x N)-tensor (matrix) fields. For vector fields v with components in H(grad; €2) and tensor fields T with rows
in H(curl; Q) resp. H(div; ), that is,

V1 Tt
V= o |, vneH(grad;Q), T= ,  Th € H(curl; Q) resp. H(div; )
VN '
forn=1,...,N, we define
gradfv, curl'ry divTy
Grad v := =J,=Vv, CurlT:= , DivT:= ,
gradfvy curl'Ty div Ty

. ______________________________________________________________________________________________________|
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where J, denotes the Jacobian of v and ! the transpose. We note that v and Div T are N-vector fields, T and Grad v are (N x N)-tensor
fields, whereas Curl T is a (N x (N — 1)N/2)-tensor field that may also be viewed as a totally anti-symmetric third order tensor field
with entries

(Curl T)ijk = 3]T,'k — 3/(7—,'/'.
The corresponding Sobolev spaces will be denoted by
H(Grad; ), I(-)I(Grad; Q), H(Div; Q), H(Divg; 2),
H(Curl; ), Igl(CurI; Q), H(Curly; 2), H(Curlg; 2).

There are three crucial tools to prove our estimate. First, we have obvious consequences from Corollaries 4, 5, and 6:

Corollary 7 (Poincaré estimate for vector fields)
Forall v e H(Grad; 2)

IVlLz(@) < ¢p IGrad v|2(q)-

Corollary 8 (Maxwell estimate for tensor fields)
The estimate

2 oz )2
Tl < m (ICur TIZ, ) + 1DV Tl q))

holds for all tensor fields T € IE|(CurI; Q) N H(Div; Q).

Corollary 9 (Helmholtz decomposition for tensor fields)

L2(Q) = Grad H(Grad; Q) & H(Divo; Q)
The last important tool is Korn's first inequality.

Lemma 10 (Korn's first inequality)
For all vector fields v € H(Grad; 2)

|Grad vl 2(q) < V2 |sym Grad v| 2(g).
Here, we introduce the symmetric and skew-symmetric parts
1 1
symT = 5(T +TY, skewT:= E(T —Th

ofa (N x N)-tensor T = sym T + skew T.

Remark 11

o
We note that the proof including the value of the constant is simple. By density, we may assume v € C®°(2). Twofold partial integration
yields

(0nvm, amVn>|_2(sz) = (OmVm, 8nVn)|_2(Q)

and hence
1 N N
2 ||sym Grad V”EZ(Q) = 5 Z ||aan + ImVn "EZ(Q) = Z (”3an ”fz(g) + (aan, amVn>L2(§2))
nm=1 nm=1

= [Grad VI, g + [div V12 q) > [Grad Vi ).
More on Korn's first inequality can be found, for example, in [20].
2. Results
For tensor fields T € H(Curl; 2), we define the semi-norm
1/2
IT= (Isym ThZ g + ICur Tl ) )
The main step is to prove the following.

. ______________________________________________________________________________________________________|
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Lemma 12 o
Let ¢ := max {2, \/Ecm}. Then, forall T € H(Curl; Q)

ITl2(@) = clITl-

Proof
Let T € H(Curl; 2). According to Corollary 9, we orthogonally decompose

T = Grad v + S € GradH (Grad; Q) @ H(Divo: Q).
Then, Curl T = Curl S and we observe S € Ic-)I(CurI; Q) N H(Divp; 2) because

Grad H(Grad; @)  H (Curlg; Q). 2.1)
By Corollary 8, we have
[SIIL2() < €m [ICurl T2 (gq)- (2.2)
Then, by Lemma 10 and (2.2), we obtain
ITI22q = IGrad vIZ, g + ISI22(qy < 2 Isym Grad viiZ, g + ISy < 4lsym T2z gy + 5 15122 0y
which completes the proof. O

The immediate consequence is our main result.

Theorem 13

o o
OnH(Curl; ©2) the norms |-|4(curi;2) and ||-[|are equivalent. In particular, |- [lis a norm on H(Curl; €2) and there exists a positive constant
¢, such that

TR gy < ITIP = Isym Tl g + ICurl TIZ, g

holds for all T € Fi(Curl; ).

Remark 14
For a skew-symmetric tensor field T :  — so(N), our estimate reduces to a Poincaré inequality in disguise, because Curl T controls all
partial derivatives of T (compare with [21]) and the homogeneous tangential boundary condition for T is implied by T| = 0.

Setting T := Grad v, we obtain the following.
Remark 15 (Korn's first inequality: tangential-variant)
Forall v e H(Grad; 2)
Grad vl 2(q) < ¢ lsym Grad v|| 2(q) (2.3)

holds by Lemma 12 and (2.1). This is just Korn’s first inequality from Lemma 10 with a larger constant ¢. Because I is connected, that is,
H'(RQ) = {0}, we even have

GradF(Grad; Q) = Fi(Curlo; Q).
Thus, (2.3) holds for all v € H (Grad; ) with Grad v € IE|(CurI0; Q), that is, with grad v, n = 1,..., N, normal at I, which then extends

Lemma 10 through the (apparently) weaker boundary condition.

The elementary arguments above apply certainly to much more general situations, for example, to not necessarily connected
boundaries T" and to tangential boundary conditions that are imposed only on parts of I'. These discussions are left to forthcoming
papers.
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