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ON CONSTANTS IN MAXWELL INEQUALITIES
FOR BOUNDED AND CONVEX DOMAINS

D. Pauly∗ UDC 517

It is shown that for a bounded and convex domain Ω ⊂ R
3, the Maxwell constants are bounded

from below and above by the Friedrichs and Poincaré constants of Ω, respectively. Bibliography:
14 titles.

1. Introduction

Throughout this paper, we fix a bounded and convex domain Ω ⊂ R
3. Let us recall the

well-known Poincaré1 inequalities

∃ cp,0 > 0 ∀u ∈
◦
H1 |u| ≤ cp,0|∇u|, (1)

∃ cp > 0 ∀u ∈ H1 ∩ R
⊥ |u| ≤ cp|∇u|, (2)

which can be deduced from, e.g., Rellich’s selection theorem by standard indirect arguments.
We assume that these constants are best possible, i.e., that

1
cp,0

:= inf
0�=u∈

◦
H1

|∇u|
|u| ,

1
cp

:= inf
0�=u∈H1∩R⊥

|∇u|
|u| .

Then cp,0 and cp are the well-known Friedrichs and Poincaré constants, respectively, which
satisfy the relations

0 < c2p,0 =
1
λ1

<
1
μ2

= c2p,

where λ1 and μ2 are the first Dirichlet and the second Neumann eigenvalues of the Laplacian,
respectively. By 〈 · , · 〉 and | · |, we denote the standard inner product and the induced norm

in L2; the usual L2-Sobolev spaces are denoted by H1 and
◦
H1. The latter is defined to be the

closure in H1 of smooth and compactly supported test functions. All spaces and norms are
defined on Ω. Moreover, we introduce the standard Sobolev spaces R for the rotation and D
for the divergence by

R := {E ∈ L2 : rot E ∈ L2}, D := {E ∈ L2 : div E ∈ L2},
where rot = curl and div should be understood in the usual distributional or weak sense. As
before, we denote the closures of the test vector fields in the respective graph norms by

◦
R

and
◦
D. The subscript zero in this notation indicates a vanishing derivative, e.g.,

R0 := {E ∈ R : rotE = 0},
◦
D0 := {E ∈

◦
D : div E = 0}.

Since Ω is convex, it is especially simply connected and its boundary is connected. Hence, the
Neumann and Dirichlet fields of Ω vanish, i.e.,

HN := R0 ∩
◦
D0 = {0} =

◦
R0 ∩ D0 =: HD.
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By the Maxwell compactness properties (see [5–7,12–14]), i.e., by the compactness of the two
embeddings

◦
R ∩ D ↪→ L2, R ∩

◦
D ↪→ L2,

and again by a standard indirect argument, the Maxwell inequalities hold:

∃ cm,t > 0 ∀E ∈
◦
R ∩ D |E| ≤ cm,t

(| rot E|2 + |div E|2)1/2, (3)

∃ cm,n > 0 ∀H ∈ R ∩
◦
D |H| ≤ cm,n

(| rot H|2 + |div H|2)1/2. (4)

Again, we assume that the constants are best possible, i.e.,

1
c2m,t

:= inf
0�=E∈

◦
R∩D

| rot E|2 + |div E|2
|E|2 ,

1
c2m,n

:= inf
0�=H∈R∩

◦
D

| rot H|2 + |div H|2
|H|2 .

The notation cm,t and cm,n should indicate the homogeneous tangential and normal boundary
condition, respectively. To the best of the author’s knowledge, there are no general bounds
for the Maxwell constants cm,t and cm,n. On the other hand, estimates for cm,t and cm,n, at
least from above, are very important for applications such as preconditioning or a priori and
a posteriori error estimation for numerical methods (see, e.g., [8, 10]).

In the present paper, we will prove that

cp,0 ≤ cm,t ≤ cm,n = cp ≤ diam(Ω)
π

. (5)

We note that (5) has already been well known in two dimensions, where even the inequalities

cp,0 < cm,t = cm,n = cp ≤ diam(Ω)
π

hold,2 see the Appendix. However, (5) is new in three dimensions. Furthermore, the last
inequality in (5) has been proved in the famous paper of Payne and Weinberger [9], where the
optimality of this estimate was also shown.

2. Results and proofs

We start with an inequality for irrotational fields.

Lemma 1. For all E ∈ ∇
◦
H1 ∩ D and all H ∈ ∇H1 ∩

◦
D, we have

|E| ≤ cp,0|div E|, |H| ≤ cp|div H|.

Proof. Let ϕ ∈
◦
H1 with E = ∇ϕ. By (1), we get

|E|2 = 〈E,∇ϕ〉 = −〈div E,ϕ〉 ≤ |div E||ϕ| ≤ cp,0|div E||∇ϕ| = cp,0|div E||E|.

Let ϕ ∈ H1 with H = ∇ϕ and ϕ⊥R. Since H ∈
◦
D, by (2), we obtain

|H|2 = 〈H,∇ϕ〉 = −〈div H,ϕ〉 ≤ |div H||ϕ| ≤ cp|div H||∇ϕ| = cp|div H||H|. �

Remark 2. Lemma 1 extends to arbitrary Lipschitz domains Ω ⊂ R
N , N ∈ N.

2In 2D, the equality cm,t = cm,n = cp holds even for general Lipschitz domains, see the Appendix.

788



As usual in the theory of Maxwell’s equations, we need another crucial tool, the Helmholtz
decompositions of vector fields into irrotational and solenoidal vector fields. For convex do-
mains, these decompositions are very simple. We have

L2 = ∇
◦
H1 ⊕ rotR, L2 = ∇H1 ⊕ rot

◦
R, (6)

where ⊕ denotes the orthogonal sum in L2. We note that
◦
R0 = ∇

◦
H1, R0 = ∇H1, D0 = rotR,

◦
D0 = rot

◦
R.

Moreover, setting
◦
R :=

◦
R ∩ rotR, R := R ∩ rot

◦
R,

we have
◦
R = ∇

◦
H1 ⊕

◦
R, R = ∇H1 ⊕R (7)

and see that
rot

◦
R = rot

◦
R, rotR = rotR.

We note that all occurring spaces of range type are closed subspaces of L2: this immediately
follows by the estimates (1)-(4). More details about the Helmholtz decompositions can be
found, e.g., in [5].

To get similar inequalities for solenoidal vector fields as in Lemma 1, we need a crucial
lemma from [1, Theorem 2.17] (see also [2–4,11] for related partial results).

Lemma 3. Let E belong to
◦
R ∩ D or R ∩

◦
D. Then E ∈ H1 and

|∇E|2 ≤ | rot E|2 + |div E|2. (8)

We emphasize that for E ∈
◦
H1 and any domain Ω ⊂ R

3,

|∇E|2 = | rotE|2 + |div E|2 (9)

holds since −Δ = rot rot−∇div . This formula is no longer valid if E satisfies just the tangen-
tial or normal boundary condition. However, for convex domains the inequality (8) remains
true.

Lemma 4. For all vector fields E in
◦
R ∩ rotR or R ∩ rot

◦
R, we have

|E| ≤ cp| rot E|.
Proof. Let E ∈ rotR = rotR, and let Φ ∈ R with rot Φ = E. Then Φ ∈ H1 by Lemma 3 since

R = R∩
◦
D0. Moreover, Φ = rot Ψ can be represented by some Ψ ∈

◦
R. Hence, for any constant

vector a ∈ R
3 we have 〈Φ, a〉 = 0. Thus, Φ belongs to H1 ∩ (R3)⊥. Then, by Lemma 3, for

E ∈
◦
R ∩ rotR we get

|E|2 = 〈E, rot Φ〉 = 〈rot E,Φ〉 ≤ | rot E||Φ| ≤ cp| rot E||∇Φ| ≤ cp| rot E|| rot Φ︸ ︷︷ ︸
=E

|.

If E ∈ R∩ rot
◦
R, then there exists Φ ∈

◦
R with rot Φ = E. As before, by Lemma 3, we see that

E ∈ H1 ∩ (R3)⊥ and |E| ≤ cp|∇E| ≤ cp| rot E|, which completes the proof. �

Theorem 5. For all vector fields E ∈
◦
R ∩ D and H ∈ R ∩

◦
D, the inequalities

|E|2 ≤ c2p,0|div E|2 + c2p| rot E|2, |H|2 ≤ c2p|div H|2 + c2p| rot H|2
hold, i.e., cm,t, cm,n ≤ cp. Moreover, cp,0 ≤ cm,t ≤ cm,n = cp ≤ diam(Ω)/π.
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Proof. By the Helmholtz decomposition (6), we have
◦
R ∩D � E = E∇ + Erot ∈ ∇

◦
H1 ⊕ rotR

with E∇ ∈ ∇
◦
H1 ∩ D, Erot ∈

◦
R ∩ rotR, and div E∇ = div E, as well as rotErot = rot E.

By Lemma 1, Lemma 4, and the orthogonality, we obtain

|E|2 = |E∇|2 + |Erot|2 ≤ c2p,0|div E|2 + c2p| rot E|2.
Similarly, we have

R ∩
◦
D � H = H∇ + Hrot ∈ ∇H1 ⊕ rot

◦
R

with H∇ ∈ ∇H1 ∩
◦
D, Hrot ∈ R ∩ rot

◦
R, div H∇ = div H, and rot Hrot = rotH. As before,

|H|2 = |H∇|2 + |Hrot|2 ≤ c2p|div H|2 + c2p| rot H|2.
This proves the upper bounds. For the lower bounds, let λ1 be the first Dirichlet eigenvalue
of the negative Laplacian −Δ, i.e.,

1
c2p,0

= λ1 = inf
0�=ϕ∈

◦
H1

|∇ϕ|2
|ϕ|2 ,

and let u ∈
◦
H1 be an eigenfunction to λ1. Note that u satisfies the relation

∀ϕ ∈
◦
H1 〈∇u,∇ϕ〉 = λ1〈u, ϕ〉.

Then 0 �= E := ∇u ∈ ∇
◦
H1 ∩ D =

◦
R0 ∩ D and −div E = −div∇u = λ1u. By (3) and (1), we

have

|E| ≤ cm,t|div E| = cm,tλ1|u| ≤ cm,tλ1cp,0|∇u| =
cm,t
cp,0

|E|,

yielding cp,0 ≤ cm,t. Now, let μ2 be the second Neumann eigenvalue of the negative Laplacian
−Δ, i.e.,

1
c2p

= μ2 = inf
0�=ϕ∈H1∩R⊥

|∇ϕ|2
|ϕ|2 ,

and let u ∈ H1 ∩ R
⊥ be an eigenfunction to μ2. Note that u satisfies the relation

∀ϕ ∈ H1 ∩ R
⊥ 〈∇u,∇ϕ〉 = μ2〈u, ϕ〉,

which holds even for all ϕ ∈ H1. Then 0 �= H := ∇u belongs to ∇H1 ∩
◦
D = R0 ∩

◦
D and

−div H = −div∇u = μ2u. By (4) and (2), we have

|H| ≤ cm,n|div H| = cm,nμ2|u| ≤ cm,nμ2cp|∇u| =
cm,n
cp

|H|,

yielding cp ≤ cm,n, which completes the proof. �

Remark 6. It follows from the proof that the lower bounds cp,0 ≤ cm,t, as well as cp ≤ cm,n,
remain true in a more general situation, i.e., for bounded Lipschitz3 domains Ω ⊂ R

N .

3The Lipschitz assumption can also be weakened. It is sufficient to assume that Ω admits the Maxwell
compactness properties.
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Appendix A. The 2D case

In 2D, there are scalar- and vector-valued rotations: rot = div R and �rot = ∇⊥ = R∇. The
scalar-valued rotation is just the divergence div after a 90◦-rotation

R :=
[

0 1
−1 0

]
,

and the vector-valued one is actually the gradient ∇ followed by the same rotation R. Hence,
applying the Poincaré estimates to the potentials generated by the Helmholtz decompositions,
we immediately get the desired estimates. Of course, this special trick works only in 2D.

More precisely, let Ω ⊂ R
2 be a Lipschitz domain. Then Lemma 1 holds by Remark 2.

Moreover, even a stronger version of Lemma 4 is true.

Lemma 7. For all vector fields E ∈
◦
R ∩ �rotH1 and H ∈ R ∩ �rot

◦
H1, we have

|E| ≤ cp| rot E|, |H| ≤ cp,0| rot H|.
This follows immediately from Lemma 1 by the arguments below.

Proof. Let E ∈
◦
R ∩ �rotH1 =

◦
R ∩ R∇H1. Then H := RE ∈

◦
D ∩∇H1. By Lemma 1, we get

|E| = |H| ≤ cp|div H| = cp| rot E|.

If H ∈ R ∩ �rot
◦
H1 = R ∩ R∇

◦
H1, then E := RH ∈ D ∩∇

◦
H1. By Lemma 1, we obtain

|H| = |E| ≤ cp,0|div E| = cp,0| rot H|. �
We note that in 2D, the Helmholtz decompositions read as follows:

L2 = ∇
◦
H1 ⊕HD ⊕ �rotH1, L2 = ∇H1 ⊕HN ⊕ �rot

◦
H1,

where owing to the possibly nontrivial topology (we do not assume Ω to be convex), nonvan-
ishing Dirichlet or Neumann fields may exist.

Theorem 8. For all vector fields E ∈
◦
R ∩ D ∩H⊥

D and H ∈ R ∩
◦
D ∩H⊥

N , we have

|E|2 ≤ c2p,0|div E|2 + c2p| rot E|2, |H|2 ≤ c2p|div H|2 + c2p,0| rot H|2,
i.e., cm,t, cm,n ≤ cp. Moreover, even cp,0 < cm,t = cm,n = cp.

Proof. Following the proof of Theorem 5, we use the Helmholtz decomposition to show that

for E ∈
◦
R ∩ D ∩H⊥

D ,

E = E∇ + Erot ∈ ∇
◦
H1 ⊕ �rotH1

with E∇ ∈ ∇
◦
H1 ∩ D, Erot ∈

◦
R ∩ �rotH1, div E∇ = div E, and rotErot = rot E. Hence, by

Lemma 1, Lemma 7, and orthogonality, we obtain

|E|2 = |E∇|2 + |Erot|2 ≤ c2p,0|div E|2 + c2p| rot E|2,
and the estimate for H follows analogously. For the lower bounds, we look again at the second
Neumann eigenvalue μ2 = 1/c2p of −Δ and the corresponding eigenfunction u ∈ H1 ∩R

⊥ with

∇u ∈
◦
D and −Δu = μ2u. Then, as before, 0 �= H := ∇u belongs to ∇H1 ∩

◦
D = R0 ∩

◦
D ∩ H⊥

N

with −div H = −div∇u = μ2u. By the definition of cm,n and relation (2) (for nonconvex Ω),
we have

|H| ≤ cm,n|div H| = cm,nμ2|u| ≤ cm,nμ2cp|∇u| =
cm,n
cp

|H|,
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yielding cp ≤ cm,n. On the other hand, E := RH ∈ D0 ∩
◦
R ∩H⊥

D and

|E| ≤ cm,t| rot E| = cm,t|div H| = cm,tμ2|u| ≤ cm,tμ2cp|∇u| =
cm,t
cp

|E|,

showing cp ≤ cm,t. �
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