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This paper is concerned with the derivation of computable and guaranteed upper bounds
of the difference between the exact and approximate solutions of an exterior domain
boundary value problem for a linear elliptic equation. Our analysis is based upon purely
functional argumentation and does not attract specific properties of an approximation
method. Therefore, the estimates derived in the paper at hand are applicable to any
approximate solution that belongs to the corresponding energy space. Such estimates
(also called error majorants of functional type) were derived earlier for problems in
bounded domains of R

N . Bibliography: 4 titles. Illustrations: 1 figure.

1. Introduction

The main focus of our investigations is to suggest a method of deriving guaranteed and com-
putable upper bounds of the difference between the exact solution u of an elliptic exterior domain
boundary value problem and any approximation from the corresponding energy space. Note
that such estimates (also called error majorants of functional type) were derived for problems
in bounded domains of R

N in [2, 3].
We discuss the method with the paradigm of the prototypical elliptic problem

− divA∇u = f, in Ω, (1.1)

u|γ = g, on γ := ∂Ω. (1.2)
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Figure 1. The exterior domain Ω with artificial interface Γ.

We assume that Ω ⊂ R
N with N � 1 is an exterior domain, i.e., R

N \ Ω is compact, with
Lipschitz continuous boundary γ (cf. Fig. 1).

Throughout the paper, we use the weighted Lebesgue function spaces

L2
s(Ω) :=

{
ϕ | ρsϕ ∈ L2(Ω)

}
, s ∈ R,

where ρ := (1 + r2)1/2 and r(x) := |x| denotes the radius vector. L2
s(Ω) is a Hilbert space

equipped with the scalar product

〈ϕ,ψ〉s,Ω := 〈ρsϕ, ρsψ〉Ω :=
∫

Ω

ρ2sϕψ dλ,

where ϕ and ψ belong to L2
s(Ω) and λ is the Lebesgue measure. The corresponding norms

are denoted by ||ϕ||s,Ω = ||ρsϕ||Ω. If s = 0, then L2
s(Ω) coincides with the usual Lebesgue

space L2(Ω). For the sake of simplicity, we keep the same notation for spaces of vector-valued
functions. Moreover, we introduce the weighted Sobolev space

H1
−1(Ω) :=

{
ϕ ∈ L2

−1(Ω) | ∇ϕ ∈ L2(Ω)
}
,

which is a Hilbert space as well with respect to the scalar product

(ϕ,ψ) �→ 〈ϕ,ψ〉−1,Ω + 〈∇ϕ,∇ψ〉Ω .

We denote by
◦
H1

−1(Ω) the closure of
◦
C∞(Ω), the space of compactly supported smooth test

functions, in the norm of H1
−1(Ω). Whenever we consider Sobolev spaces on bounded domains,

we use the usual unweighted L2-scalar products and L2-norms.
For dimensions N � 3 the solution theory for the problem (1.1)–(1.2) is based on the

weighted Poincaré/Friedrichs estimate (cf. Corollary 4.2 (i) and Remark 4.3 of the appendix)

||ϕ||−1,Ω � 2
N − 2

||∇ϕ||Ω ∀ϕ ∈
◦
H1

−1(Ω), (1.3)
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the Lax–Milgram theorem and, if needed, an adequate extension operator for the boundary data.
Let uγ be some function in H1

−1(Ω) satisfying the boundary condition (1.2). The weak solution

u ∈
◦
H1−1(Ω) + uγ ⊂ H1−1(Ω) of (1.1)–(1.2) is then defined by the variational formulation

〈A∇u,∇w〉Ω = 〈f,w〉Ω ∀w ∈
◦
H1

−1(Ω). (1.4)

By (1.3), the left-hand side of (1.4) is a strongly coercitive sesqui-linear form over
◦
H1

−1(Ω)
provided that the real matrix-valued function A is measurable, bounded a.e., symmetric, and
uniformly strongly elliptic, i.e.,

∃ cA > 0 ∀ ξ ∈ R
N ∀x ∈ Ω cA|ξ|2 � A(x)ξ · ξ. (1.5)

If f ∈ L2
1(Ω), then, by the Cauchy–Schwarz inequality, the right-hand side of (1.4) is a linear

and continuous functional over
◦
H1−1(Ω). Thus, under these assumptions, the problem (1.4) is

uniquely solvable in
◦
H1−1(Ω) + uγ by the Lax–Milgram theorem.

If N = 1, 2, one can apply the same arguments with the difference that (1.3) has to be
modified. For N = 1 and, for example, Ω ⊂ R+, by Corollary 4.2 (iii) and Remark 4.3, we have

||ϕ||−1,Ω � 2
∣
∣
∣
∣ϕ′∣∣∣∣

Ω
∀ϕ ∈

◦
H1

−1(Ω). (1.6)

Hence we get the same solution theory with tiny restrictions on Ω, which easily can be removed
by a translation. For N = 2 the singularities are stronger and, in addition, we have to utilize
logarithmic terms. By Corollary 4.2 (ii) and Remark 4.3, for domains Ω ⊂ R

2 such that the
complement R

2 \ Ω contains the unit ball we have

||ϕ/(r ln r)||Ω � 2 ||∇ϕ||Ω ∀ϕ ∈
◦
H1

−1,ln(Ω), (1.7)

where
H1

−1,ln(Ω) :=
{
ϕ | ϕ/(r ln r),∇ϕ ∈ L2(Ω)

}

is a Hilbert space equipped with the natural scalar product

(ϕ,ψ) �→ 〈ϕ/(r ln r), ψ/(r ln r)〉Ω + 〈∇ϕ,∇ψ〉Ω
and again

◦
H1

−1,ln(Ω) denotes the closure of
◦
C∞(Ω) in the norm of H1

−1,ln(Ω). Consequently, for
all f with r ln rf ∈ L2(Ω) and uγ in H1

−1,ln(Ω) satisfying the boundary condition (1.2) we obtain

a unique solution u belonging to
◦
H1

−1,ln(Ω) + uγ .
We summarize the results in the following theorem.

Theorem 1.1. Suppose that N � 3 as well as f ∈ L2
1(Ω) and uγ ∈ H1

−1(Ω) satisfying
the boundary condition (1.2). Then the exterior boundary value problem (1.1)–(1.2) is uniquely

weakly solvable in
◦
H1

−1(Ω) + uγ. The solution operator is continuous.
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By the above discussion, it is clear that for N = 1, 2 the existence of weak solutions in
suitable spaces can also be proved.

Remark 1.2. The boundary data g and its extension uγ can be described in more detail. In
the bounded domain case, it is well known that there exists a bounded linear trace operator and
a corresponding bounded linear extension operator (right inverse) mapping H1(Ω) to H1/2(γ)
and vice verse. Hence, by restriction, we get a bounded linear trace operator

τγ : H1
−1(Ω) → H1/2(γ)

and, by extension and applying an obvious cutting technique, we obtain a bounded linear ex-
tension operator

E : H1/2(γ) → H1
−1(Ω)

for our exterior domain Ω, which even maps to functions with (arbitrarily thin) compact support.
As in the bounded domain case, E is a right inverse of τγ . Then we may specify g ∈ H1/2(γ)

and uγ := Eg ∈ H1
−1(Ω) as well as our variational formulation for u = ũ+Eg: Find ũ ∈

◦
H1

−1(Ω)
such that

B(ũ, w) := 〈A∇ũ,∇w〉Ω = 〈f,w〉Ω − 〈A∇Eg,∇w〉Ω =: F (w) ∀w ∈
◦
H1

−1(Ω).

Finally, we introduce

D(Ω) :=
{
ϕ ∈ L2(Ω) | divϕ ∈ L2

1(Ω)
}
,

which is a Hilbert space with respect to the canonical scalar product

(ϕ,ψ) �→ 〈ϕ,ψ〉Ω + 〈divϕ,divψ〉1,Ω .

2. Upper Bounds for the Deviation from the Exact Solution in Dimensions N � 3

Let v be an approximation of u ∈
◦
H1−1(Ω) + uγ ⊂ H1−1(Ω), where v is assumed just to

belong to H1−1(Ω) since the boundary condition may not be satisfied exactly. Our goal is to
obtain upper bounds for the difference between ∇u and ∇v in terms of the norm

||ϕ||A,Ω :=
∣
∣∣
∣
∣∣A1/2ϕ

∣
∣∣
∣
∣∣
Ω

= 〈Aϕ,ϕ〉1/2
Ω .

Using (1.4), we get for all w ∈
◦
H1−1(Ω)

〈A∇(u− v),∇w〉Ω = 〈f,w〉Ω − 〈A∇v,∇w〉Ω . (2.1)

Before we proceed, we note two useful results.

Theorem 2.1. Let u, v ∈ H1
−1(Ω) be as above. Moreover, let Φ be a linear continuous

functional over
◦
H1−1(Ω), and let cΦ > 0 be such that for all w ∈

◦
H1−1(Ω)

〈A∇(u− v),∇w〉Ω = Φ(w) � cΦ ||∇w||A,Ω .

Then

||∇(u− v)||A,Ω � cΦ + 2 ||∇(û− v̂)||A,Ω (2.2)
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for all û, v̂ ∈ H1
−1(Ω) for which û − v̂ coincides with u − v on the boundary γ. If, in addition,

u− v belongs to
◦
H1−1(Ω), then

||∇(u− v)||A,Ω � cΦ. (2.3)

Proof. We consider

w := u− v − (û− v̂) ∈
◦
H1

−1(Ω).

Using the Cauchy–Schwarz inequality, we obtain

||∇w||2A,Ω = 〈A∇(u− v),∇w〉Ω − 〈A∇(û− v̂),∇w〉Ω �
(
cΦ + ||∇(û− v̂)||A,Ω

)
||∇w||A,Ω

and thus
||∇w||A,Ω � cΦ + ||∇(û− v̂)||A,Ω .

By the triangle inequality, we get (2.2). Note that (2.3) is trivial since we can set w := u − v,
i.e., û := v̂ := 0. �

We may be more specific using the trace and extension operators from Remark 1.2.

Corollary 2.2. Let the assumptions of Theorem 2.1 be satisfied. Then

||∇(u− v)||A,Ω � cΦ + 2 ||∇E(g − τγv)||A,Ω � cΦ + 2cγ ||g − τγv||H1/2(γ)
,

where cγ > 0 is the constant in the inequality

||∇Eϕ||A,Ω � cγ ||ϕ||H1/2(γ)
∀ϕ ∈ H1/2(γ). (2.4)

Proof. Setting û := Eg and v̂ := Eτγv as well as using (2.4), we prove the inequalities. We
note that (2.3) follows directly from the corollary as well. �

In the subsequent sections, we introduce and discuss some different functionals Φ and cor-
responding constants cΦ.

2.1. First estimate. For any y ∈ D(Ω) and w ∈
◦
H1

−1(Ω) we have

〈div y,w〉Ω + 〈y,∇w〉Ω = 0. (2.5)

Combining (2.1) and (2.5), for all w ∈
◦
H1

−1(Ω) and y ∈ D(Ω) we obtain

〈A∇(u− v),∇w〉Ω = 〈f + div y,w〉Ω + 〈y −A∇v,∇w〉Ω =: Φ(w). (2.6)

By the Cauchy–Schwarz inequality, (1.3) with cN := 2/(N − 2), and (1.5), we estimate the
right-hand side Φ(w) of (2.6) as follows:
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|〈f + div y,w〉Ω| � ||f + div y||1,Ω ||w||−1,Ω � cN ||f + div y||1,Ω ||∇w||Ω
� cN√

cA
||f + div y||1,Ω ||∇w||A,Ω , (2.7)

|〈y −A∇v,∇w〉Ω| � ||y −A∇v||A−1,Ω ||∇w||A,Ω . (2.8)

By Corollary 2.2, we arrive at the following result.

Proposition 2.3. Let u and v be the same as in Theorem 2.1. Then

||∇(u− v)||A,Ω � cN√
cA

||f + div y||1,Ω + ||y −A∇v||A−1,Ω + 2cγ ||g − τγv||H1/2(γ)
, (2.9)

where y is an arbitrary vector field in D(Ω).

Remark 2.4. If v satisfies the prescribed boundary condition, then (2.9) implies

||∇(u− v)||A,Ω � cN√
cA

||f + div y||1,Ω + ||y −A∇v||A−1,Ω . (2.10)

The estimates (2.9) and (2.10)) show that deviations from exact solutions of exterior boundary
value problems have the same structure as for problems in bounded domains, namely they
contain weighted residuals of basic relations with weights given by constants in the corresponding
embedding inequalities.

2.2. Second estimate. Assume that Ω is decomposed into two subdomains Ωi and Ωe

with interface Γ := ∂Ωe (cf. Fig. 1) and that the fields y ∈ D(Ω) exactly satisfy the relation

div y + f = 0 in Ωe. (2.11)

In particular, such a situation may arise if the source term f has compact support and y is
represented (in the exterior domain Ωe) as a linear combination of solenoidal fields having proper
decay at infinity. In this case, the estimate of Proposition 2.3 turns trivially to the estimate

||∇(u− v)||A,Ω � co ||f + div y||Ωi
+ ||y −A∇v||A−1,Ω + 2cγ ||g − τγv||H1/2(γ)

, (2.12)

which holds for all y ∈ D(Ω) satisfying (2.11), where the weight constant is

co :=
cN (1 + ||r||∞,Ωi

)
√
cA

, (2.13)

which follows directly from

||f + div y||1,Ω = ||f + div y||1,Ωi
� |ρ|∞,Ωi ||f + div y||Ωi

� (1 + |r|∞,Ωi) ||f + div y||Ωi
.

But we also may derive another estimate. We rewrite (2.7) and use the Cauchy–Schwarz in-
equality in Ωi
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|〈f + div y,w〉Ω| =
∣
∣〈f + div y,w〉Ωi

∣
∣ � ||f + div y||Ωi

||w||Ωi
(2.14)

and estimate

||w||Ωi
� cΩi ||∇w||Ωi

� cΩi√
cA

||∇w||A,Ω , (2.15)

where cΩi denotes a Poincaré/Friedrichs constant associated with the bounded domain Ωi, i.e.,
the best constant of the inequality

||ϕ||Ωi
� cΩi ||∇ϕ||Ωi

∀ϕ ∈
{
ψ ∈ H1(Ωi) | τ∂Ωi

ψ|γ = 0 on γ
}
,

where τ∂Ωi
: H1(Ωi) → H1/2(∂Ωi) denotes the trace operator. In this case, we have again (2.12),

but now with the (optimal) weight constant

co :=
cΩi√
cA
. (2.16)

We note that the constant (2.13) may also be achieved by (2.7) and the argument (2.14) if we
replace the estimate (2.15) by

||w||Ωi
� (1 + |r|∞,Ωi) ||w||−1,Ωi

� (1 + |r|∞,Ωi) ||w||−1,Ω � cN√
cA

(1 + |r|∞,Ωi) ||∇w||A,Ω .

We summarize and get our second a posteriori error estimate.

Proposition 2.5. For all y ∈ D(Ω) with (2.11) we have

||∇(u− v)||A,Ω � co ||f + div y||Ωi
+ ||y −A∇v||A−1,Ω + 2cγ ||g − τγv||H1/2(γ)

,

where co is defined either by (2.13) or by (2.16).

Remark 2.6. In general, the number cΩi will be smaller and thus provides a better bound
than cN (1 + ||r||∞,Ωi

). On the other hand, the number cN (1 + ||r||∞,Ωi
)/
√
cA is an easily com-

putable upper bound for the best possible constant co.

2.3. Third estimate. Let yi and ye be the restrictions of some y ∈ L2(Ω) to Ωi and Ωe

respectively. Assuming yi ∈ D(Ωi) and ye ∈ D(Ωe), but not necessarily y ∈ D(Ω) we use the
equations

〈yi,∇w〉Ωi
+ 〈div yi, w〉Ωi

= 〈τn,Γyi, τΓw〉Γ , (2.17)

〈ye,∇w〉Ωe
+ 〈div ye, w〉Ωe

= −〈τn,Γye, τΓw〉Γ , (2.18)

which hold for all w ∈
◦
H1−1(Ω) and in the sense of the traces τΓ : H1−1(Ω) → H1/2(Γ) and

τn,Γ : D(Ωi) → H−1/2(Γ) respectively τn,Γ : D(Ωe) → H−1/2(Γ). At this point, we assume that
the interface Γ is Lipschitz (in order to guarantee that the traces are well defined). We denote
by 〈ϕ,ψ〉Γ the duality product of H−1/2(Γ) and H1/2(Γ). We recall that the normal traces τn,Γyi
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and τn,Γye possess weak surface divergences in H−1/2(Γ) as well. If y ∈ D(Ω), then div yi = div y
in Ωi and div ye = div y in Ωe. Hence, in this case, adding (2.17) and (2.18), we obtain

〈τn,Γyi − τn,Γye, τΓw〉Γ = 〈y,∇w〉Ωi
+ 〈div y,w〉Ω = 0

for all w ∈
◦
H1

−1(Ω) in view (2.5). Therefore,

τn,Γyi = τn,Γye

for all y ∈ D(Ω) since τΓ is surjective.
In our way to find Φ like in (2.6), we now insert (2.17), (2.18) instead of (2.5) into (2.1) and

obtain

〈A∇(u− v),∇w〉Ω = 〈f + div yi, w〉Ωi
+ 〈f + div ye, w〉Ωe

+ 〈y −A∇v,∇w〉Ω + 〈τn,Γye − τn,Γyi, τΓw〉Γ =: Φ(w). (2.19)

The third term of Φ(w) will be estimated by (2.8) and for the last term we may use the continuity
of the trace operator τΓ in combination with a Poincaré/Friedrichs estimate, i.e.,

||τΓϕ||H1/2(Γ)
� cΓ ||∇ϕ||A,Ω ∀ϕ ∈

◦
H1

−1(Ω), (2.20)

and obtain
∣∣〈τn,Γye − τn,Γyi, τγw〉Γ

∣∣ � ||τn,Γye − τn,Γyi||H−1/2(Γ)
||τΓw||H1/2(Γ)

� cΓ ||τn,Γye − τn,Γyi||H−1/2(Γ)
||∇w||A,Ω . (2.21)

To estimate the second term of Φ(w), we again use (1.3) and (1.5) and obtain

∣
∣〈f + div ye, w〉Ωe

∣
∣ � ||f + div ye||1,Ωe

||w||−1,Ωe
� ||f + div ye||1,Ωe

||w||−1,Ω

� cN√
cA

||f + div ye||1,Ωe
||∇w||A,Ω . (2.22)

Considering the first (and last) term of Φ(w), we have once more at least two options as in
Section 2.2 to obtain the estimate

∣∣〈f + div yi, w〉Ωi

∣∣ � co ||f + div yi||Ωi
||∇w||A,Ω (2.23)

with co defined either by (2.13) or by (2.16).
Finally, with (2.19) and (2.8), (2.21), (2.22), and (2.23), by Corollary 2.2, we get the third

estimate.

Proposition 2.7. For all y ∈ L2(Ω) with yi ∈ D(Ωi) and ye ∈ D(Ωe)

||∇(u− v)||A,Ω � co ||f + div yi||Ωi
+

cN√
cA

||f + div ye||1,Ωe
+ ||y −A∇v||A−1,Ω

+ cΓ ||τn,Γye − τn,Γyi||H−1/2(Γ)
+ 2cγ ||g − τγv||H1/2(γ)

(2.24)
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with co from Proposition 2.5. The right-hand side of (2.24) vanishes if and only if v coincides
with u and y with A∇u.

Remark 2.8. There are many ways to deduce (2.20). We just mention that τΓϕ can be
considered as a trace of a function defined in Ωi or Ωe or even of a function, which is just defined
in a small neighborhood of Γ. Thus, we may adjust the constant cΓ according to our needs.

Remark 2.9. This estimate suggests even a solution method. We construct approximations
using locally supported trial functions in Ωi, for example, FEM, and utilize global approxima-
tions properly behaving at infinity for Ωe. These two types of approximations are usually difficult
to meet together exactly on the artificial boundary Γ. However, Proposition 2.7 shows that this
is not required because we can use instead the penalty term with known penalty factor cΓ. In
addition, we have one more parameter, the “radius” of the interface Γ. Since Γ is artificial and
arbitrary, we can use this parameter in the algorithm in order to obtain better results.

Remark 2.10. At this point, we note that all our estimates are sharp, which easily can be
seen by setting v := u ∈ H1−1(Ω) and y := A∇u ∈ D(Ω).

Remark 2.11. In Propositions 2.3, 2.5, and 2.7, we can always replace the last summand
on the right-hand side with 2 ||∇(û− v̂)||A,Ω or 2 ||∇E(g − τγv)||A,Ω in view of Theorem 2.1 and
Corollary 2.2.

3. Upper Bounds in Dimension N = 2

Theorem 2.1 holds for N = 2 as well and the modifications on the estimates depend just on
the Poincaré/Friedrichs estimate and thus they are obvious using the proper Cauchy–Schwarz
inequality. Thus, the following assertions hold.

Proposition 3.1. Let Ω ⊂ R
2 be such that R

2 \ Ω contains the unit ball.

(i) For all y ∈ D(Ω)

||∇(u− v)||A,Ω � 2√
cA

||r ln r(f + div y)||Ω + ||y −A∇v||A−1,Ω + 2cγ ||g − τγv||H1/2(γ)
.

(ii) For all y ∈ D(Ω) with div y + f = 0 in Ωe

||∇(u− v)||A,Ω � co ||f + div y||Ωi
+ ||y −A∇v||A−1,Ω + 2cγ ||g − τγv||H1/2(γ)

,

where
co = min

{
2 ||r ln r||∞,Ωi

, cΩi

}
/
√
cA.

(iii) For all y ∈ L2(Ω) with yi ∈ D(Ωi) and ye ∈ D(Ωe)

||∇(u− v)||A,Ω � co ||f + div yi||Ωi
+

2√
cA

||r ln r(f + div ye)||1,Ωe
+ ||y −A∇v||A−1,Ω

+ cΓ ||τn,Γye − τn,Γyi||H−1/2(Γ)
+ 2cγ ||g − τγv||H1/2(γ)

.

Similarly, Remarks 2.6, 2.8–2.11 are valid.
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4. Appendix

4.1. Lower bounds for the error. We note that, by a standard variational argument,

||∇(u− v)||2A,Ω = sup
y∈L2(Ω)

(
2 〈A∇(u− v), y〉Ω − ||y||2A,Ω

)
.

Thus, for all w ∈ H1−1(Ω) we obtain the estimate

||∇(u− v)||2A,Ω � 2 〈A∇(u− v),∇w〉Ω − ||∇w||2A,Ω = 2 〈A∇u,∇w〉Ω − 〈A∇(2v + w),∇w〉Ω ,

which is sharp since one can put w = u− v. But to exclude the unknown exact solution u from

the right-hand side, we need w ∈
◦
H1−1(Ω) since then, by (1.4), we have

||∇(u− v)||2A,Ω � 2 〈f,w〉Ω − 〈A∇(2v + w),∇w〉Ω . (4.1)

But this estimate is no longer sharp because we cannot put w = u − v anymore. In fact, with
A∇u ∈ D(Ω) and divA∇u = −f for w ∈ H1

−1(Ω) we get

〈A∇u,∇w〉Ω = 〈f,w〉Ω + 〈τn,γA∇u, τγw〉γ .

Hence we obtain the estimate

||∇(u− v)||2A,Ω � 2 〈f,w〉Ω − 〈A∇(2v + w),∇w〉Ω + 2 〈τn,γA∇u, τγw〉γ

for all w ∈ H1
−1(Ω), which is sharp and coincides with (4.1) if w ∈

◦
H1

−1(Ω). But the un-
known exact solution u still appears on the right-hand side, i.e., the normal trace of A∇u on γ.
Furthermore, if 〈τn,γA∇u, τγw〉γ > 0, then (4.1) cannot be sharp.

4.2. Poincaré type estimates for exterior domains. We introduce the radial derivative
∂r := ξ · ∇, where ξ(x) := x/r(x). Furthermore, Bε and Sε denote the open ball and sphere of
radius ε centered at the origin in R

N respectively. We use the ideas of [4, Lemma 4.1] and [1,
Poincaré’s estimate III, p. 57] with some minor useful modifications.

Lemma 4.1. Let Ω ⊂ R
N , N � 1, be a domain, and let β ∈ R. For all u ∈

◦
C∞(Ω) the

following Poincaré estimates hold:

(i) If β > 1 −N/2, then

(2β +N − 2)
∣
∣∣
∣
∣∣rβ−1u

∣
∣∣
∣
∣∣
Ω

� 2
∣
∣∣
∣
∣∣rβ∂ru

∣
∣∣
∣
∣∣
Ω
.

(ii) Let B1 ⊂ R
N \ Ω. If β � (3 −N)/2 or β � 1 −N/2, then

|2β +N − 3|
∣∣
∣∣

∣∣
∣∣
rβ−1

ln r
u

∣∣
∣∣

∣∣
∣∣
Ω

� 2
∣
∣∣
∣
∣∣rβ∂ru

∣
∣∣
∣
∣∣
Ω
.

(iii) If N = 1, then

402



|2β − 1|
∣
∣
∣
∣
∣
∣(1 + r)β−1u

∣
∣
∣
∣
∣
∣
Ω

� 2
∣
∣
∣
∣
∣
∣(1 + r)β∂ru

∣
∣
∣
∣
∣
∣
Ω

+ |2min{0, 2β − 1}|1/2 |u(0)|,

where u will be extended by zero to R.

For the estimates derived in this paper it suffices to set β = 0. In this particular case, the
above lemma implies the following assertion.

Corollary 4.2. Let Ω ⊂ R
N , N � 1, be a domain. For all u ∈

◦
C∞(Ω) the following

Poincaré estimates hold:

(i) If N � 3, then

||u||−1,Ω � ||u/(1 + r)||Ω � ||u/r||Ω � 2
N − 2

||∂ru||Ω � 2
N − 2

||∇u||Ω .

(ii) If N = 2 and B1 ⊂ R
2 \ Ω, then

||u/(r ln r)||Ω � 2 ||∂ru||Ω � 2 ||∇u||Ω .

(iii) If N = 1, then

||u||−1,Ω � ||u/(1 + r)||Ω � 2 ||∂ru||Ω +
√

2|u(0)| � 2
∣∣∣∣u′

∣∣∣∣
Ω

+
√

2|u(0)|.

Hence, if Ω ⊂ R±, then

||u||−1,Ω � ||u/(1 + r)||Ω � 2 ||∂ru||Ω � 2
∣
∣
∣
∣u′

∣
∣
∣
∣
Ω
.

Remark 4.3. By continuity, all these estimates extend to appropriate weighted H1-Sobolev
spaces.

Proof. Let Ω ⊂ R
N , N � 1, be a domain, and let u ∈

◦
C∞(Ω). By partial integration, for

all α ∈ R and ε > 0 we get

2
∫

Ω\Bε

rαu∂rudλ =
∫

Ω\Bε

rα∂r|u|2 dλ = −(α+N − 1)
∫

Ω\Bε

rα−1|u|2 dλ− εα
∫

Sε

|u|2 dσ.

Thus, for all γ ∈ R and β := (α+ 1)/2

∣
∣∣
∣
∣∣rβ∂ru+ γrβ−1u

∣
∣∣
∣
∣∣
2

Ω\Bε

=
∣
∣∣
∣
∣∣rβ∂ru

∣
∣∣
∣
∣∣
2

Ω\Bε

+ |γ|2
∣
∣∣
∣
∣∣rβ−1u

∣
∣∣
∣
∣∣
2

Ω\Bε

+ 2γ
〈
rβ∂ru, r

β−1u
〉

Ω\Bε︸ ︷︷ ︸

=
∫

Ω\Bε

rαu∂rudλ

=
∣∣
∣
∣∣
∣rβ∂ru

∣∣
∣
∣∣
∣
2

Ω\Bε

+ γ(γ − 2β −N + 2)
∣∣
∣
∣∣
∣rβ−1u

∣∣
∣
∣∣
∣
2

Ω\Bε

− γε2β−1

∫

Sε

|u|2 dσ.
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Now the left-hand side of this equality converges by the monotone convergence theorem. Since
rν ∈ L1(U1) if and only if ν > −N and

∣∣
∣
∫

Sε

|u|2 dσ
∣∣
∣ � cεN−1,

the right-hand side converges for β > 1−N/2 by the Lebesgue dominated convergence theorem
in R. Hence

∣∣
∣
∣∣
∣rβ∂ru+ γrβ−1u

∣∣
∣
∣∣
∣
2

Ω
=

∣∣
∣
∣∣
∣rβ∂ru

∣∣
∣
∣∣
∣
2

Ω
+ γ(γ − 2β −N + 2)

∣∣
∣
∣∣
∣rβ−1u

∣∣
∣
∣∣
∣
2

Ω

as ε→ 0. Choosing γ := 2β +N − 2 > 0 and using the triangle inequality, we get

γ
∣∣
∣
∣∣
∣rβ−1u

∣∣
∣
∣∣
∣
Ω

� 2
∣∣
∣
∣∣
∣rβ∂ru

∣∣
∣
∣∣
∣
Ω
.

Since we are interested in the case β = 0, this estimate is only applicable in dimensions N � 3.
For N = 1 we proceed as follows: For all α ∈ R we have

2
∫

R±

(1 + r)αu∂rudλ = ±2
∫

R±

(1 ± t)αu(t)u(t)′ d t = ±2
∫

R±

(1 ± t)α
(|u(t)|2)′ d t

= −α
∫

R±

(1 ± t)α−1|u(t)|2 d t− |u(0)|2

and thus

2
∫

R

(1 + r)αu∂rudλ = −α
∫

R

(1 + r)α−1|u(t)|2 dλ− 2|u(0)|2.

Hence for all γ ∈ R and β := (α+ 1)/2

∣
∣∣
∣
∣∣(1 + r)β∂ru+ γ(1 + r)β−1u

∣
∣∣
∣
∣∣
2

Ω

=
∣∣
∣
∣∣
∣(1 + r)β∂ru

∣∣
∣
∣∣
∣
2

Ω
+ |γ|2

∣∣
∣
∣∣
∣(1 + r)β−1u

∣∣
∣
∣∣
∣
2

Ω
+ 2γ

〈
(1 + r)β∂ru, (1 + r)β−1u

〉

Ω︸ ︷︷ ︸

=
∫

Ω

(1 + r)αu∂rudλ

=
∣∣
∣
∣∣
∣(1 + r)β∂ru

∣∣
∣
∣∣
∣
2

Ω
+ γ(γ − 2β + 1)

∣∣
∣
∣∣
∣(1 + r)β−1u

∣∣
∣
∣∣
∣
2

Ω
− 2γ|u(0)|2.

As above, the triangle inequality and the choice γ := 2β − 1, but now without any restrictions
on β, lead to
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|γ|
∣
∣∣
∣
∣∣(1 + r)β−1u

∣
∣∣
∣
∣∣
Ω

�
∣
∣∣
∣
∣∣(1 + r)β∂ru

∣
∣∣
∣
∣∣
Ω

+
(∣

∣∣
∣
∣∣(1 + r)β∂ru

∣
∣∣
∣
∣∣
2

Ω
− 2γ|u(0)|2

)1/2

� 2
∣∣
∣
∣∣
∣(1 + r)β∂ru

∣∣
∣
∣∣
∣
Ω

+ |2min{0, γ}|1/2 |u(0)|.

The remaining case N = 2 requires the use of logarithms. Moreover, the origin is now a
problematic singularity, which has to be removed from our domain. Therefore, we may assume
B1 ⊂ R

N \ Ω and N � 1 having N = 2 in mind. We start once more for all α ∈ R with

2
∫

Ω

rα

ln r
u∂rudλ =

∫

Ω

rα

ln r
∂r|u|2 dλ = −(α+N − 1)

∫

Ω

rα−1

ln r
|u|2 dλ+

∫

Ω

rα−1

ln2 r
|u|2 dλ.

Now, our usual procedure gives for γ ∈ R and β := (α+ 1)/2 � 0

∣
∣∣
∣

∣
∣∣
∣r

β∂ru+ γ
rβ−1

ln r
u

∣
∣∣
∣

∣
∣∣
∣

2

Ω

=
∣
∣∣
∣
∣∣rβ∂ru

∣
∣∣
∣
∣∣
2

Ω
+ |γ|2

∣
∣∣
∣

∣
∣∣
∣
rβ−1

ln r
u

∣
∣∣
∣

∣
∣∣
∣

2

Ω

+ 2γ
〈
rβ∂ru,

rβ−1

ln r
u

〉

Ω︸ ︷︷ ︸

=
∫

Ω

rα

ln r
u∂rudλ

=
∣∣
∣
∣∣
∣rβ∂ru

∣∣
∣
∣∣
∣
2

Ω
+ γ(γ + 1)

∣∣
∣∣

∣∣
∣∣
rβ−1

ln r
u

∣∣
∣∣

∣∣
∣∣

2

Ω

− γ(N + 2β − 2)
∣∣
∣∣

∣∣
∣∣
rβ−1

√
ln r

u

∣∣
∣∣

∣∣
∣∣

2

Ω

.

Thus, for γ(N + 2β − 2) � 0 we can estimate

∣
∣∣
∣

∣
∣∣
∣r

β∂ru+ γ
rβ−1

ln r
u

∣
∣∣
∣

∣
∣∣
∣

2

Ω

�
∣
∣
∣
∣
∣
∣rβ∂ru

∣
∣
∣
∣
∣
∣
2

Ω
+ γ(γ − 2β −N + 3)

∣
∣∣
∣

∣
∣∣
∣
rβ−1

ln r
u

∣
∣∣
∣

∣
∣∣
∣

2

Ω

,

which leads to the estimate

∣
∣∣
∣

∣
∣∣
∣r

β∂ru+ γ
rβ−1

ln r
u

∣
∣∣
∣

∣
∣∣
∣

2

Ω

�
∣∣
∣
∣∣
∣rβ∂ru

∣∣
∣
∣∣
∣
2

Ω

if we set γ := 2β + N − 3 with the additional constraint γ(γ + 1) � 0, i.e., γ � 0 or γ � −1.
Finally, again by the triangle inequality,

|γ|
∣
∣∣
∣

∣
∣∣
∣
rβ−1

ln r
u

∣
∣∣
∣

∣
∣∣
∣
Ω

� 2
∣
∣
∣
∣
∣
∣rβ∂ru

∣
∣
∣
∣
∣
∣
Ω

follows for all β � (3 −N)/2 or β � (2 −N)/2. �
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