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We investigate the boundary trace operators that naturally correspond to H(curl,Ω), 
namely the tangential and twisted tangential trace, where Ω ⊆ R3. In particular we 
regard partial tangential traces, i.e., we look only on a subset Γ of the boundary 
∂Ω. We assume both Ω and Γ to be strongly Lipschitz (possibly unbounded). We 
define the space of all H(curl,Ω) fields that possess a L2 tangential trace in a weak 
sense and show that the set of all smooth fields is dense in that space, which is a 
generalization of [1]. This is especially important for Maxwell’s equation with mixed 
boundary condition as we answer the open problem by Weiss and Staffans in [10, 
Sec. 5] for strongly Lipschitz pairs.

© 2025 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

We will regard a strongly Lipschitz domain Ω ⊆ R3 and the Sobolev space that corresponds to the curl
operator

H(curl,Ω) = {f ∈ L2(Ω) | curl f ∈ L2(Ω)}

and the “natural” boundary traces that are associated with the curl operator

πτf :=
(
ν × f

∣∣
∂Ω

)
× ν and γτf := ν × f

∣∣
∂Ω for f ∈ C̊∞(R3),

where ν denotes the outer normal vector on the boundary of Ω and C̊∞(R3) denotes the C∞ functions 
with compact support on R3. These boundary traces are called tangential trace and twisted tangential trace, 
respectively. They are motivated by the integration by parts formula
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〈curl f, g〉L2(Ω) − 〈f, curl g〉L2(Ω) = 〈γτf, πτg〉L2(∂Ω).

We could even extend these boundary operators to H(curl,Ω) by introducing suitable boundary spaces, see 
e.g., [2] for full boundary traces or [7] for partial boundary traces. However, in this article we focus on 
those f ∈ H(curl,Ω) that have a meaningful L2(∂Ω) (twisted) tangential trace. Hence, for Γ ⊆ ∂Ω we are 
interested in the following spaces

H̊Γ(curl,Ω) = {f ∈ H(curl,Ω) | πτf = 0 on Γ},
ĤΓ(curl,Ω) = {f ∈ H(curl,Ω) | πτf is in L2(Γ)},

where we will later state precisely what we mean by πτf = 0 on Γ and πτf ∈ L2(Γ). In particular we 
are interested in ĤΓ(curl,Ω). Similar to Sobolev spaces there are two approaches to πτf ∈ L2(Γ): A weak 
approach by representation in an inner product and a strong approach by limits of regular functions. We 
use the weak approach as definition, see Definition 4.1. The question that immediately arises is:

“Do both approaches lead to the same space?”

In [10, eq. (5.20)] the authors observed this problem and concluded that it can cause ambiguity for 
boundary conditions, if the approaches don’t coincide. In fact they stated this issue at the end of section 5 
in [10] as an open problem. This problem can actually be viewed as a more general question that arises for 
quasi Gelfand triples, see [9, Conjecture 6.7].

We will not explicitly define the strong approach, but show that the “most” regular functions (C∞

functions) are already dense in the weakly defined space, which immediately implies that any strong approach 
with less regular functions (e.g., H1) will lead to the same space. This is exactly what was done in [1] for 
bounded Ω with Γ = ∂Ω. Hence, we present a generalization of [1] for partial L2 tangential traces and 
unbounded Ω. In particular, we aim to prove the following two main theorems.

Theorem 1.1. Let Ω be a (possibly unbounded) strongly Lipschitz domain and Γ1 ⊆ ∂Ω such that (Ω,Γ1) is 
a strongly Lipschitz pair, then C̊∞(R3) is dense in ĤΓ1(curl,Ω) with respect to ‖·‖ĤΓ1 (curl,Ω).

Theorem 1.2. Let Ω be a (possibly unbounded) strongly Lipschitz domain and Γ0 ⊆ ∂Ω such that (Ω,Γ0) is 
a strongly Lipschitz pair, then C̊∞

Γ0
(R3) is dense in Ĥ∂Ω(curl,Ω)∩ H̊Γ0(curl,Ω) with respect to ‖·‖Ĥ∂Ω(curl,Ω).

However, it turned out that it is best to prove them in reversed order.
The importance of our density results lies in the context of Maxwell’s equations with boundary conditions 

that involve a mixture of πτ and γτ in the sense of linear combination, e.g., this simplified instance of 
Maxwell’s equations

∂tE(t, ζ) = curlH(t, ζ), t ≥ 0, ζ ∈ Ω,

∂tH(t, ζ) = − curlE(t, ζ), t ≥ 0, ζ ∈ Ω,

πτE(t, ξ) + γτH(t, ξ) = 0, t ≥ 0, ξ ∈ Γ1,

πτE(t, ξ) = 0, t ≥ 0, ξ ∈ Γ0.

In order to properly formulate the boundary conditions we need to know what functions E, H have tangential 
traces that allow such a linear combination. Especially when it comes to well-posedness our density results 
are needed to avoid the ambiguity that was observed in [10].

As suspected by Weiss and Staffans in [10] the regularity of the interface of Γ0 ⊆ ∂Ω and Γ1 := ∂Ω \ Γ0
seems to play a role. At least for our answer we need that the boundary of Γ0 is also strongly Lipschitz.
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In particular our strategy is based on the following decomposition from [4, Thm. 5.2] for bounded Ω

H̊Γ0(curl,Ω) = H̊1
Γ0

(Ω) + ∇H̊1
Γ0

(Ω), (1)

which requires (Ω,Γ0) to be a strongly Lipschitz pair. For our main result we consider the intersection of 
Ĥ∂Ω(curl,Ω) and (1)

Ĥ∂Ω(curl,Ω) ∩ H̊Γ0(curl,Ω) = H̊1
Γ0

(Ω) + Ĥ∂Ω(curl,Ω) ∩∇H̊1
Γ0

(Ω).

Every element of H̊1
Γ0

(Ω) can be approximated by a sequence in C̊∞
Γ0

(R3) w.r.t. ‖·‖H1(Ω) (see [3, Lem. 3.1]), 
which is a stronger norm than the “natural” norm of Ĥ∂Ω(curl,Ω). Hence, the challenging part will be 
finding an approximation by C̊∞

Γ0
(R3) elements for all elements in

Ĥ∂Ω(curl,Ω) ∩∇H̊1
Γ0

(Ω).

It even turned out that, if we can prove the decomposition (1) also for less regular Γ0, then our main 
theorems would automatically generalize for those less regular partitions of ∂Ω, since this is the only occasion 
where the regularity of Γ0 is used.

Finally, we will conclude the results for unbounded Ω by localization.

2. Preliminary

For Ω ⊆ Rd open and Γ ⊆ ∂Ω open we use the following notation (as in [3])

C̊∞(Ω) :=
{
f ∈ C∞(Ω) 

∣∣ supp f is compact in Ω
}
,

C̊∞
Γ (Ω) :=

{
f
∣∣
Ω

∣∣∣ f ∈ C̊∞(Rd),dist(Γ, supp f) > 0
}
,

and H1(Ω) denotes the usual Sobolev space and H̊1
Γ(Ω) is the subspace of H1(Ω) with homogeneous boundary 

data on Γ, i.e., H̊1
Γ(Ω) = C̊∞

Γ (Ω)
H1(Ω)

.
Note that the trace operators πτ and γτ are called tangential traces, because ν ·πτf = 0 and ν · γτf = 0. 

Hence, it is natural to introduce the tangential L2 space on Γ ⊆ ∂Ω by

L2
τ (Γ) = {f ∈ L2(Γ) | ν · f = 0}.

This space is again a Hilbert space with the L2(Γ) inner product. Moreover, both πτ C̊∞
∂Ω\Γ(R3) and 

γτ C̊∞
∂Ω\Γ(R3) are dense in that space.

Next we recall the definition of a strongly Lipschitz domain, see e.g., [6]. Moreover, we need H1 spaces 
on strongly Lipschitz boundaries, see e.g., [8] for a careful treatment.

Definition 2.1. Let Ω be an open subset of Rd. We say Ω is a strongly Lipschitz domain, if for every p ∈ ∂Ω
there exist ε, h > 0, a hyperplane W = span{w1, . . . , wd−1}, where {w1, . . . , wd−1} is an orthonormal basis 
of W , and a Lipschitz continuous function aW : (p + W ) ∩ Bε(p) → (−h

2 ,
h
2 ) such that

∂Ω ∩ Cε,h(p) = {x + aW (x)v | x ∈ (p + W ) ∩ Bε(p)},
Ω ∩ Cε,h(p) = {x + sv | x ∈ (p + W ) ∩ Bε(p),−h < s < aW (x)},

where v is the normal vector of W and Cε,h(p) is the cylinder {x + δv | x ∈ (p + W ) ∩ Bε(p), δ ∈ (−h, h)}.
The boundary ∂Ω is then called strongly Lipschitz boundary.
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Fig. 1. Lipschitz boundary. 

The hyperplane W and the vector v induce a new coordinate system centered in p. With respect to this 
coordinate system the boundary of Ω is locally given by the graph of a Lipschitz continuous function, see 
Fig. 1.

Corresponding to a strongly Lipschitz domain we define the following bi-Lipschitz continuous mapping

k :
{

∂Ω ∩ Cε,h(p) → Bε(0) ⊆ Rd−1,

ζ �→ WT(ζ − p),

where we used W as the matrix [w1 ... wd−1 ]. We call this mapping a strongly Lipschitz chart of ∂Ω and we 
call its domain the chart domain. Its inverse is given by

k−1 :
{

Bε(0) ⊆ Rd−1 → ∂Ω ∩ Cε,h(p),
x �→ p + Wx + a(x)v,

where we define a(x) := aW (p + Wx), which is then a Lipschitz continuous function from Bε(0) ⊆ Rd−1 to 
R. Charts are used to regard the surface of Ω locally as a flat subset of Rd−1. Every restriction of a chart 
k to an open Γ ⊆ ∂Ω is again a chart.

Definition 2.2. Let Ω be a strongly Lipschitz domain in Rd. Then we say that an open Γ0 ⊆ ∂Ω is strongly 
Lipschitz, if for every p ∈ Γ0 there exists a chart k : ∂Ω ∩ Cε,h(p) → Bε(0) ⊆ Rd−1 such that k(Γ0) is a 
strongly Lipschitz domain in Rd−1.

The boundary ∂Γ0 is then called strongly Lipschitz boundary.

Note that it is sufficient to reduce the condition in the previous definition to p ∈ ∂Γ0 instead of p ∈ Γ0.

Definition 2.3. We call (Ω,Γ0) a strongly Lipschitz pair, if Ω is a strongly Lipschitz domain and Γ0 ⊆ ∂Ω is 
strongly Lipschitz.

Note that if Γ0 ⊆ ∂Ω is strongly Lipschitz, then also Γ1 := ∂Ω\Γ0 is strongly Lipschitz. Hence, if (Ω,Γ0)
is a strongly Lipschitz pair, then also (Ω,Γ1) is.

Since we only deal with strongly Lipschitz domains and boundaries, we will omit the term 
“strongly” and just say Lipschitz domain, Lipschitz boundary and Lipschitz chart.

Recall the definition of a H1 function on the boundary of a Lipschitz domain, see e.g., [8]. Since we only 
need the following for bounded domains we will state the following definition only for bounded domains.
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Definition 2.4. Let Ω ⊆ Rd be a bounded Lipschitz domain. We say f ∈ L2(∂Ω) is in H1(∂Ω), if for every 
Lipschitz chart k : Γ → U the mapping 

f ◦ k−1 is in H1(U).

3. Density results for W (Ω)

In this section we restrict ourselves to bounded Lipschitz domains Ω. However, this is mostly for conve-
nience.

Definition 3.1. Let Ω ⊆ Rd be a bounded Lipschitz domain. Then we define

W (Ω) :=
{
f ∈ H1(Ω) 

∣∣ f ∣∣
∂Ω ∈ H1(∂Ω)

}
,

‖f‖W (Ω) :=
(
‖f‖2

H1(Ω) + ‖f
∣∣
∂Ω‖

2
H1(∂Ω)

)1/2

.

The next lemma a is a crucial tool in our construction. The basic idea is: Take a smooth function f
with compact support on a flat domain (U ⊆ Rd−1) extend it on the entire hyperplane Rd−1 by 0, and 
then extend it constantly in the orthogonal direction, i.e., F

((
ζ
λ

))
= f(ζ), where ζ ∈ Rd−1 and λ ∈ R. 

Multiplying with a cutoff function χ makes sure that this extension has compact support. By rotation and 
translation this can be done for arbitrary hyperplanes. Fig. 2 illustrates the construction.

0

supp f̂

suppχ

Ω

∂Ω

p supp f

Cε,h(p)

W

“suppχ”

Fig. 2. Illustration of the construction of Lemma 3.2. 

Lemma 3.2. Let Ω ⊆ Rd be a bounded Lipschitz domain, Γ ⊆ ∂Ω, k : Γ → U be a Lipschitz chart and 
f ∈ H1(∂Ω) with compact support in Γ′ ⊆ Γ. Then there exists an F ∈ H1(Rd) ∩ W (Ω) ∩ H̊1

∂Ω\Γ′(Ω)
such that F

∣∣
∂Ω = f . Moreover, there exists a sequence (Fn)n∈N in C̊∞

∂Ω\Γ′(Rd) that converges to F w.r.t. 
‖·‖H1(Rd) + ‖·‖W (Ω), i.e., Fn converges to F in H1(Rd) and Fn

∣∣
∂Ω converges to F

∣∣
∂Ω in H1(∂Ω).

Proof. Let p, W and v be the point, hyperplane and normal vector, respectively, to the chart k. In particular 
k−1 is given by
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k−1 :
{

U ⊆ Rd−1 → Γ,
x �→ p + Wx + a(x)v,

where U is open and a is the Lipschitz function. Let χ ∈ C̊∞(R) be a cutoff function such that

χ(λ) ∈

⎧⎪⎪⎨⎪⎪⎩
{1}, |λ| < 3/2‖a‖∞,

[0, 1], |λ| ∈ (3/2, 2)‖a‖∞,

{0}, |λ| > 2‖a‖∞.

1

2‖a‖∞3/2‖a‖∞

χ

By definition f̂ = f ◦ k−1 is in H1(U) and since f has compact support in Γ′ we conclude f̂ ∈ H̊1(U) with 
support in U ′ := k(Γ′) Note that we can extend f̂ ∈ H̊1(U) on Rd by 0. We define

F (ζ) = χ(v · (ζ − p))f̂
(
WT(ζ − p)

)
for ζ ∈ Rd

The support of F is inside of a rotated and translated version of U ′ × suppχ, in particular

suppF ⊆ p + [W v ] (U ′ × suppχ) =: Ξ.

Note that by construction of χ we have suppF ∩ ∂Ω ⊆ Γ′, therefore F
∣∣
∂Ω\Γ′ = 0. Since f̂ ∈ H1(Rd−1) it 

is straightforward that F possess L2(Rd) directional derivatives in W directions. Moreover, by construction 
(and the Leibniz product rule) ∂

∂vF = χ′f̂(WT(· − p)), which implies F ∈ H1(Rd). By definition of a 
Lipschitz chart we have |v · (ζ − p)| ≤ ‖a‖∞ for ζ ∈ Γ and hence

F (ζ) = χ(v · (ζ − p))︸ ︷︷ ︸
=1

f̂(WT(ζ − p)) = f̂ ◦ k(ζ) = f(ζ) for ζ ∈ Γ

(a.e. w.r.t. the surface measure).
By assumption on f̂ there exists a sequence (f̂n)n∈N in C̊∞(U) that converges to f̂ w.r.t. ‖·‖H1(U). Note 

that f̂n is also in C̊∞(Rd−1). We define

Fn(ζ) = χ(v · (ζ − p))f̂n
(
WT(ζ − p)

)
for ζ ∈ Rd

Note that Fn is the composition of C∞ mappings and therefore in C∞(Rd). Again, the support of Fn is 
contained in the bounded set Ξ and therefore compact, which implies Fn ∈ C̊∞(Rd). Note that Fn◦k−1 = f̂n, 
which implies (Fn ◦ k−1)n∈N converges to f̂ w.r.t. ‖·‖H1(U). Since Fn

∣∣
∂Ω\Γ = 0 = F

∣∣
∂Ω\Γ we conclude 

Fn

∣∣
∂Ω → F

∣∣
∂Ω in H1(∂Ω). Finally,

‖Fn − F‖H1(R3) ≤ ‖χ′‖∞‖(f̂n − f̂)(WT(·− p))‖H1(Ξ) ≤ 2‖a‖∞‖χ′‖∞‖f̂n − f̂‖H1(U) → 0

finishes the proof. �
We will formulate a generalization of [1, 2. Preliminaries].

Theorem 3.3. Let Ω ⊆ Rd be a bounded Lipschitz domain and Γ ⊆ ∂Ω open (in ∂Ω). Then C̊∞
Γ (Rd) is dense 

in W (Ω) ∩ H̊1
Γ(Ω) w.r.t. ‖·‖W (Ω).
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Proof. Since Ω is a Lipschitz domain we find for every p ∈ ∂Ω a cylinder Cε,h(p) (ε and h depend on p) and 
a Lipschitz chart k : ∂Ω ∩ Cε,h(p) → Bε(0) ⊆ Rd−1.

Hence we can cover ∂Ω by 
⋃

p∈∂Ω Cε,h(p) and by compactness of ∂Ω there are already finitely many pi, 
i ∈ {1, . . .m} such that

∂Ω ⊆
m ⋃
i=1

Cεi,hi
(pi)︸ ︷︷ ︸

=:Ci

We use the short notation Ci := Cεi,hi
(pi). We employ a partition of unity and obtain (αi)mi=1, subordinate 

to this cover, i.e.,

αi ∈ C̊∞(Ci), αi(ζ) ∈ [0, 1], and
m ∑
i=1 

αi(ζ) = 1 for all ζ ∈ ∂Ω.

For f ∈ W (Ω) ∩ H̊1
Γ(Ω) we define fi := αif . It is straightforward to show fi ∈ W (Ω) ∩ H̊1

Γ(Ω). For every Ci

there is a Lipschitz chart ki : Γi → Ui ⊆ Rd−1, where Γi = ∂Ω∩Ci. Moreover, fi
∣∣
∂Ω has support in Γi ∩Γ∁, 

where Γ∁ = (∂Ω \ Γ).
By Lemma 3.2 there is an Fi ∈ H1(Rd)∩W (Ω)∩ H̊1

∂Ω\(Γi∩Γ∁)(Ω) such that Fi

∣∣
∂Ω = fi

∣∣
∂Ω and a sequence 

(Fi,n)n∈N in C̊∞
∂Ω\(Γi∩Γ∁)(R

d) ⊆ C̊∞
Γ (Rd) that converges to Fi in H1(Rd) and in W (Ω). Hence, we have

f −
m ∑
i=1 

Fi =
m ∑
i=1 

fi − Fi ∈ H̊1(Ω),

which can be approximated by (F0,n)n∈N in C̊∞(Ω). Hence, 
(∑m

i=0 Fi,n

)
n∈N is a sequence in C̊∞

Γ (Rd) and 
converges to f in W (Ω). �
4. The bounded case

4.1. Density result with homogeneous part

In this section we will finally define the Sobolev spaces with homogeneous and L2 partial tangential 
traces, respectively. Then we will prove one of the main results for bounded domains.

We will use a weak definition for the tangential trace and twisted tangential trace as, e.g., in [5].

Definition 4.1. Let Ω be a (possibly unbounded) Lipschitz domain and Γ ⊆ ∂Ω open (in ∂Ω).

• We say f ∈ H(curl,Ω) has a L2
τ (Γ) tangential trace, if there exists a q ∈ L2

τ (Γ) such that

〈f, curlφ〉L2(Ω) − 〈curl f, φ〉L2(Ω) = 〈q, γτφ〉L2
τ (Γ) ∀φ ∈ C̊∞

∂Ω\Γ(R3).

In this case we say πτf ∈ L2
τ (Γ) and πτf = q on Γ or more precisely πτ

∣∣
Γf = q.

• We say f ∈ H(curl,Ω) has a L2
τ (Γ) twisted tangential trace, if there exists a q ∈ L2

τ (Γ) such that

〈curl f, φ〉L2(Ω) − 〈f, curlφ〉L2(Ω) = 〈q, πτφ〉L2
τ (Γ) ∀φ ∈ C̊∞

∂Ω\Γ(R3).

In this case we say γτf ∈ L2
τ (Γ) and γτf = q on Γ or more precisely γτ

∣∣
Γf = q.
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Note that the previous definition does not say anything about πτf on ∂Ω \ Γ. Moreover, the notation 
πτ

∣∣
Γ and γτ

∣∣
Γ is an abuse of notation, which should indicate that we only look at the part Γ of the boundary 

∂Ω.

Remark 4.2. Note that ν × γτφ = −πτφ and 〈q, γτφ〉L2
τ (Γ) = 〈ν × q, ν × γτφ〉L2

τ (Γ). Hence, we can easily see 
that πτf ∈ L2(Γ) is equivalent to γτf ∈ L2(Γ) and γτf = ν × πτf .

Definition 4.3. Let Ω be a (possibly unbounded) Lipschitz domain and Γ ⊆ ∂Ω open (in ∂Ω). Then we define 
the space

ĤΓ(curl,Ω) := {f ∈ H(curl,Ω) | πτf ∈ L2
τ (Γ)}

with its norm

‖f‖ĤΓ(curl,Ω) :=
(
‖f‖2

L2(Ω) + ‖curl f‖2
L2(Ω) + ‖πτf‖2

L2(Γ)

)1/2

.

For Γ = ∂Ω we will just write Ĥ(curl,Ω) instead of Ĥ∂Ω(curl,Ω).

Definition 4.4. Let Ω be a (possibly unbounded) Lipschitz domain and Γ ⊆ ∂Ω open (in ∂Ω). Then we define 
the space

H̊Γ(curl,Ω) = {f ∈ ĤΓ(curl,Ω) | πτ

∣∣
Γf = 0}.

For Γ = ∂Ω we will just write H̊(curl,Ω) instead of H̊∂Ω(curl,Ω).

In [3, Thm. 4.5] it is shown (for bounded Ω) that C̊∞
Γ (Ω) is dense in H̊Γ(curl,Ω) w.r.t. ‖·‖H(curl,Ω), i.e.,

H̊Γ(curl,Ω) = C̊∞
Γ (Ω)

H(curl,Ω)
.

Hence, for homogeneous tangential traces there is already a version of the desired density result.
Note that the hat on top of the H indicates partial L2 boundary conditions and the circle on top indicates 

partial homogeneous boundary conditions.

Remark 4.5. We can immediately see

H̊Γ(curl,Ω) ⊆ ĤΓ(curl,Ω).

Since πτf ∈ L2(Γ) is equivalent to γτf ∈ L2(Γ) we have

ĤΓ(curl,Ω) = {f ∈ H(curl,Ω) | γτf ∈ L2(Γ)}.

Since πτf = γτf × ν, we have ‖πτf‖L2(Γ) = ‖γτf‖L2(Γ) and

‖f‖ĤΓ(curl,Ω) =
(
‖f‖2

L2(Ω) + ‖curl f‖2
L2(Ω) + ‖γτf‖2

L2(Γ)
)1/2

.

Remark 4.6. Since we use representation in an inner product, one can say that we have defined ĤΓ(curl,Ω)

weakly. Another approach could have been to regard C̊∞(R3)
ĤΓ(curl,Ω)

, which could be called a strong 
approach. From this perspective the result we are going to show basically tells us that the weak and the 
strong approach to H(curl,Ω) fields that possess a L2

τ (Γ) tangential trace coincide.
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Recall the decomposition (1) for a Lipschitz pair (Ω,Γ0), where Ω is bounded:

H̊Γ0(curl,Ω) = H̊1
Γ0

(Ω) + ∇H̊1
Γ0

(Ω).

Note that every element in H̊1
Γ0

(Ω) is already in Ĥ(curl,Ω)∩H̊Γ0(curl,Ω). Moreover, by [3, Lem. 3.1] C̊∞
Γ0

(R3)
is dense in H̊1

Γ0
(Ω) w.r.t. ‖·‖H1(Ω) and therefore also w.r.t. ‖·‖Ĥ(curl,Ω).

Hence, it is left to show that every

f ∈ ∇H̊1
Γ0

(Ω) ∩ Ĥ(curl,Ω)

can be approximated by a C̊∞
Γ0

(R3) function (w.r.t. ‖·‖Ĥ(curl,Ω)).
The following result seems obvious at first glance, but needs a bit of preparation to be shown. One must 

resist the temptation to show it for smooth function and conclude it by density, since this would lead to a 
circular argument. Luckily, it is basically [8, Thm. 4.2] and therefore already shown.

Lemma 4.7. Let Ω be a bounded Lipschitz domain, Γ0 ⊆ ∂Ω open and f ∈ H̊1
Γ0

(Ω) such that ∇f ∈ Ĥ(curl,Ω)
(in particular πτ∇f ∈ L2

τ (∂Ω)). Then πτ∇f = ∇τf
∣∣
∂Ω and f ∈ W (Ω) ∩ H̊1

Γ0
(Ω).

Proof. Since ∇f ∈ Ĥ(curl,Ω), we know that πτ∇f ∈ L2(∂Ω) which implies f
∣∣
∂Ω ∈ H1(∂Ω) and ∇τf

∣∣
∂Ω =

πτ∇f , see [8, Thm. 4.2]. Therefore, we conclude f ∈ W (Ω). �
This brings us to our first main theorem.

Theorem 4.8. Let Ω be bounded and (Ω,Γ0) a Lipschitz pair. Then C̊∞
Γ0

(R3) is dense in Ĥ(curl,Ω) ∩
H̊Γ0(curl,Ω) w.r.t. ‖·‖Ĥ(curl,Ω).

Proof. Let f ∈ Ĥ(curl,Ω) ∩ H̊Γ0(curl,Ω) be arbitrary. Then we can decompose f into f = f1 + ∇f2, 
where f1 ∈ H̊1

Γ0
(Ω) and f2 ∈ H̊1

Γ0
(Ω). Note that f ∈ Ĥ(curl,Ω) and f1 ∈ Ĥ(curl,Ω), which implies ∇f2 ∈

Ĥ(curl,Ω) ∩∇H̊1
Γ0

(Ω).
By [3, Lem. 3.1] f1 can be approximated by C̊∞

Γ0
(R3) functions w.r.t. ‖·‖H1(Ω) and therefore also w.r.t. 

‖·‖Ĥ(curl,Ω).
By Lemma 4.7 we know that f2 ∈ W (Ω) ∩ H̊1

Γ0
(Ω). Hence, we can apply Theorem 3.3 and obtain a 

sequence (f2,n)n∈N that converges to f2 w.r.t. ‖·‖W (Ω). This gives

‖∇f2 −∇f2,n‖2
Ĥ(curl,Ω) = ‖∇(f2 − f2,n)‖2

L2(Ω) + ‖curl∇(f2 − f2,n)︸ ︷︷ ︸
=0

‖2
L2(Ω) + ‖πτ∇(f2 − f2,n)‖2

L2(∂Ω)

≤ ‖f2 − f2,n‖2
H1(Ω) +

∥∥f2
∣∣
∂Ω − f2,n

∣∣
∂Ω

∥∥2
H1(∂Ω)

= ‖f2 − f2,n‖2
W (Ω) → 0,

which finishes the proof. �
4.2. Density result without homogeneous part

Since we already know that C̊∞
Γ0

(R3) is dense in Ĥ(curl,Ω) ∩ H̊Γ0(curl,Ω), we can show the density of 
C̊∞(R3) in ĤΓ1(curl,Ω) by a duality argument, which we will present in this section. This argument can be 
done in just a few lines within the notion of quasi Gelfand triples [9]. However, in order to stay relatively 
elementary we extract the essence and build a proof that avoids the introduction of this notion.
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Basically we mimic the abstract boundary space for the tangential trace by H̊(curl,Ω)⊥, which can also 
be viewed as the boundary space as it is isometrically isomorphic.

Our standing assumption in this section is that Ω is bounded, (Ω,Γ0) is a Lipschitz pair and Γ1 := ∂Ω\Γ0.
Note that the boundedness of Ω is only necessary to apply Theorem 4.8. However, we will later be able 

replace this by Theorem 5.5.

Corollary 4.9. If f ∈ ĤΓ1(curl,Ω), then

〈γτf, πτg〉L2(Γ1) = 〈curl f, g〉L2(Ω) − 〈f, curl g〉L2(Ω)

for all g ∈ Ĥ(curl,Ω) ∩ H̊Γ0(curl,Ω).

Proof. For f ∈ ĤΓ1(curl,Ω) we have by definition

〈γτf, πτg〉L2(Γ1) = 〈curl f, g〉L2(Ω) − 〈f, curl g〉L2(Ω)

for all g ∈ C̊∞
Γ0

(R3). Since this equation is continuous in g w.r.t. ‖·‖Ĥ(curl,Ω), we can extend it by continuity 

to g ∈ C̊∞
Γ0

(R3)
Ĥ(curl,Ω)

and by Theorem 4.8 to g ∈ Ĥ(curl,Ω) ∩ H̊Γ0(curl,Ω). �
Lemma 4.10. We have the following identity

H̊(curl,Ω)⊥ = {f ∈ H(curl,Ω) | curl curl f = −f},

where the orthogonal complement is taken in H(curl,Ω), i.e., w.r.t. 〈·, ·〉H(curl,Ω). Moreover, curl leaves the 

space H̊(curl,Ω)⊥ invariant.

Proof. Note that by density of C̊∞(Ω) in H̊(curl,Ω) both spaces have the same orthogonal complement. 
Hence,

f ∈ H̊(curl,Ω)⊥ ⇔ 0 = 〈f, g〉L2(Ω) + 〈curl f, curl g〉L2(Ω) ∀ g ∈ C̊∞(Ω)

⇔ curl f ∈ H(curl,Ω) and curl curl f = −f. �
Lemma 4.11. Let P be the orthogonal projection on H̊(curl,Ω)⊥ (in H(curl,Ω)). Then Ĥ(curl,Ω) ∩
H̊Γ0(curl,Ω) is invariant under P , i.e., f ∈ Ĥ(curl,Ω)∩H̊Γ0(curl,Ω) implies Pf ∈ Ĥ(curl,Ω)∩H̊Γ0(curl,Ω).

Proof. Since I − P is the orthogonal projection on H̊(curl,Ω) and H̊(curl,Ω) is a subspace of Ĥ(curl,Ω) ∩
H̊Γ0(curl,Ω), we conclude that (I− P )f ∈ Ĥ(curl,Ω)∩ H̊Γ0(curl,Ω) for every f ∈ H(curl,Ω). Now for every 
f ∈ Ĥ(curl,Ω) ∩ H̊Γ0(curl,Ω) we have

Pf = f − (I − P )f,

which is in Ĥ(curl,Ω) ∩ H̊Γ0(curl,Ω), as linear combination of Ĥ(curl,Ω) ∩ H̊Γ0(curl,Ω) elements. �
Lemma 4.12. For every q ∈ πτ

(
Ĥ(curl,Ω) ∩ H̊Γ0(curl,Ω)

)
there exists a g ∈ H̊(curl,Ω)⊥ such that

curl g ∈ Ĥ(curl,Ω) ∩ H̊Γ0(curl,Ω) ∩ H̊(curl,Ω)⊥ and πτ curl g = q.

In particular,

πτ

(
Ĥ(curl,Ω) ∩ H̊Γ0(curl,Ω)

)
= πτ

(
Ĥ(curl,Ω) ∩ H̊Γ0(curl,Ω) ∩ H̊(curl,Ω)⊥

)
.
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Proof. By assumption we have q = πτf for f ∈ Ĥ(curl,Ω) ∩ H̊Γ0(curl,Ω). Let P denote the orthogonal 
projection on H̊(curl,Ω)⊥. Then by Lemma 4.11 we can decompose f into f = Pf + (I − P )f , where 
both Pf and (I − P )f are also in Ĥ(curl,Ω) ∩ H̊Γ0(curl,Ω). Moreover, (I − P )f ∈ H̊(curl,Ω), which gives 
πτ (I − P )f = 0 and therefore

q = πτf = πτPf.

Since Pf ∈ H̊(curl,Ω)⊥, we have curl curlPf = −Pf . Thus defining g = − curlPf finishes the proof. �
Now we finally come to our second main theorem.

Theorem 4.13. C̊∞(R3) is dense in ĤΓ1(curl,Ω) w.r.t. ‖·‖ĤΓ1 (curl,Ω).

Proof. By the definition of the norm of ĤΓ1(curl,Ω) the mapping γτ : ĤΓ1(curl,Ω) ⊆ H(curl,Ω) → L2
τ (Γ1)

is closed. We define the following restriction of γτ

γ̃τ :
{

C̊∞(R3) ⊆ H(curl,Ω) → L2
τ (Γ1),

f �→ γτf.

Since γ̃τ ⊆ γτ we conclude

γ̃∗
τ ⊇ γ∗

τ .

1. Step: Calculate dom γ̃∗
τ . Let q ∈ dom γ̃∗

τ . Then there exists a g ∈ H(curl,Ω) such that

〈γ̃τf, q〉L2(Γ1) = 〈f, g〉H(curl,Ω) = 〈f, g〉L2(Ω) + 〈curl f, curl g〉L2(Ω) (2)

for all f ∈ C̊∞(R3). For f ∈ C̊∞
Γ1

(R3), we obtain

0 = 〈f, g〉L2(Ω) + 〈curl f, curl g〉L2(Ω),

which implies curl g ∈ H̊Γ0(curl,Ω) and curl curl g = −g, and by Lemma 4.10 g ∈ H̊(curl,Ω)⊥. Hence, 
we revisit (2), where we extend q by 0 outside of Γ1 in ∂Ω and use the full twisted tangential trace γτ
(on all of ∂Ω) for f ∈ C̊∞(R3)

〈γτf, q〉L2(∂Ω) = −〈f, curl curl g〉L2(Ω) + 〈curl f, curl g〉L2(Ω).

This implies curl g ∈ Ĥ(curl,Ω) and q = πτ curl g. Consequently,

dom γ̃∗
τ ⊆ πτ

(
Ĥ(curl,Ω) ∩ H̊Γ0(curl,Ω) ∩ H̊(curl,Ω)⊥

)
= πτ

(
Ĥ(curl,Ω) ∩ H̊Γ0(curl,Ω)

)
.

2. Step: Calculate dom γ∗
τ . If q ∈ πτ

(
Ĥ(curl,Ω) ∩ H̊Γ0(curl,Ω)

)
, then by Lemma 4.12 there exists a g ∈

H̊(curl,Ω)⊥ such that curl g ∈ Ĥ(curl,Ω) ∩ H̊Γ0(curl,Ω) and πτ curl g = q. Hence, by Corollary 4.9 for 
f ∈ ĤΓ1(curl,Ω) and curl g we have

〈γτf, γτ curl g︸ ︷︷ ︸
=q

〉L2(Γ1) = 〈curl f, curl g〉L2(Ω) − 〈f, curl curl g︸ ︷︷ ︸
=−g

〉L2(Ω) = 〈f, g〉H(curl,Ω),
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which implies q ∈ dom γ∗
τ . Consequently,

dom γ∗
τ ⊇ πτ

(
Ĥ(curl,Ω) ∩ H̊Γ0(curl,Ω)

)
.

3. Step: Combining the results of the previous steps yields

πτ

(
Ĥ(curl,Ω) ∩ H̊Γ0(curl,Ω)

)
⊇ dom γ̃∗

τ ⊇ dom γ∗
τ ⊇ πτ

(
Ĥ(curl,Ω) ∩ H̊Γ0(curl,Ω)

)
.

Hence, γ̃∗
τ = γ∗

τ and therefore

γ̃τ = γ̃∗∗
τ = γ∗∗

τ = γτ ,

which implies C̊∞(R3) is dense in ĤΓ1(curl,Ω) w.r.t. the graph norm of γτ which is ‖·‖ĤΓ1 (curl,Ω). �
4.3. Integration by parts

Let Ω ⊆ R3 be a Lipschitz domain and Γ0,Γ1 ⊆ ∂Ω a decomposition of ∂Ω such that (Ω,Γ0) is a Lipschitz 
pair. The integration by parts formula

〈curl f, g〉L2(Ω) − 〈f, curl g〉L2(Ω) = 〈γτf, πτg〉L2(Γ1)

is a priori valid for f ∈ C̊∞(R3) and g ∈ C̊∞
Γ0

(R3). Moreover, by definition of ĤΓ1(curl,Ω) and Ĥ∂Ω(curl,Ω)∩
H̊Γ0(curl,Ω) we can extend this to either f ∈ ĤΓ1(curl,Ω) or g ∈ Ĥ∂Ω(curl,Ω) ∩ H̊Γ0(curl,Ω), but a priori 
not to both simultaneously.

As we have seen in Corollary 4.9 one density result is already sufficient to show that a simultaneous 
extension is valid. However, with both density results we conclude that this extension is even a continuous 
extension.

5. The unbounded case

In this section we consider an unbounded Lipschitz domain Ω ⊆ R3 such that (Ω,Γ0) is a Lipschitz pair 
for Γ0 ⊆ ∂Ω and we define Γ1 := ∂Ω \ Γ0.

The main idea is to multiply a vector field f ∈ ĤΓ1(curl,Ω) with a cutoff function χ that is supported on 
a sufficiently large ball such that ‖f −χf‖ĤΓ1 (curl,Ω) ≤ ε for given ε > 0. Then we only have to approximate 
χf with smooth vector fields. This reduces the problem again to bounded domains, as the support of χf is 
bounded.

In order to execute these ideas we show some technical lemmas, that explain how the boundary conditions 
are inherited in a smooth cutoff process. Intuitively the lemmas are obvious, however we present them for 
completeness.

Lemma 5.1. Let f ∈ ĤΓ1(curl,Ω) and χ ∈ C̊∞(R3). Then χf ∈ ĤΓ1(curl,Ω) with πτ (χf) = χπτf on Γ1.

Proof. Let φ ∈ C̊∞
Γ0

(R3). Note that by the product rule for curl we have curl(χf) = χ curl f + ∇χ × f . 
Moreover, we have χφ ∈ C̊∞

Γ0
(R3) and we denote πτf as q ∈ L2

τ (Γ1) on Γ1. Hence,

〈φ, curl(χf)〉L2(Ω) = 〈φ, χ curl f〉L2(Ω) + 〈φ,∇χ× f〉L2(Ω) = 〈χφ, curl f〉L2(Ω) − 〈∇χ× φ, f〉L2(Ω)

= 〈curl(χφ), f〉L2(Ω) + 〈γτ (χφ), q〉L2
τ (Γ1) − 〈∇χ× φ, f〉L2(Ω)

= 〈χ curlφ, f〉L2(Ω) + 〈γτφ, χq〉L2
τ (Γ1),



N. Skrepek, D. Pauly / J. Math. Anal. Appl. 550 (2025) 129548 13

which implies χf ∈ ĤΓ1(curl,Ω) with πτχf = χq. �
Corollary 5.2. Let f ∈ Ĥ∂Ω(curl,Ω)∩ H̊Γ0(curl,Ω) and χ ∈ C̊∞(R3). Then χf ∈ Ĥ∂Ω(curl,Ω)∩ H̊Γ0(curl,Ω)
with πτ (χf) = χπτf on Γ1.

Proof. By Lemma 5.1 applied with Γ1 = ∂Ω we have χf ∈ Ĥ∂Ω(curl,Ω) and πτχf = χπτf . Since πτf = 0
on Γ0 we conclude that also πτχf = 0 on Γ0 and consequently χf ∈ H̊Γ0(curl,Ω). �
Lemma 5.3. Let f ∈ Ĥ(curl,Ω) ∩ H̊Γ0(curl,Ω), p ∈ ∂Ω, α ∈ C̊∞(Cε,h(p)), Ωp = Ω ∩ Cε,h(p) and Γ1,p =
Γ1 ∩ suppα. Then αf ∈ Ĥ(curl,Ωp)∩ H̊∂Ωp\Γ1,p

(curl,Ωp) with πταf = απτf on ∂Ωp, where πτf is extended 
by 0 on ∂Ωp \ ∂Ω.

The setting of the previous lemma is illustrated in Fig. 3.

Cε,h(p)

Ωp

Γ1

Γ0
suppα

p

Ω

Fig. 3. Illustration of the setting of Lemma 5.3

Proof. Note that αf ∈ Ĥ(curl,Ω) ∩ H̊Γ0(curl,Ω) by Lemma 5.1. Hence, for φ ∈ C̊∞(R3) we have

〈curlφ, αf〉L2(Ωp) − 〈φ, curlαf〉L2(Ωp) = 〈curlφ, αf〉L2(Ω) − 〈φ, curlαf〉L2(Ω) = 〈γτφ, απτf〉L2(Γ1)

= 〈γτφ, απτf〉L2(Γ1,p) = 〈γτφ, απτf〉L2(∂Ωp)

Hence, αf ∈ Ĥ(curl,Ωp). Moreover, if we choose φ ∈ C̊∞
Γ1,p

(R3) in the previous equation we conclude 

αf ∈ H̊∂Ω\Γ1,p
(curl,Ωp). �

Remark 5.4. Note that in general the intersection of Lipschitz domains is not a Lipschitz domain. Roughly 
speaking this is because of the angle between the sets. However, for p ∈ ∂Ω the intersection Ωp := Cε,h(p)∩Ω
of the cylinder Cε,h(p) and Ω is again a Lipschitz domain. Moreover, (Ωp,Γ0∩Ωp) is a Lipschitz pair. Roughly 
speaking here the assumptions on Cε,h(p) make sure that angle is not 0.

Finally, we show that density result for unbounded domains.

Theorem 5.5. Let Ω be an (unbounded) Lipschitz domain such that (Ω,Γ0) is a Lipschitz pair. Then C̊∞
Γ0

(R3)
is dense in Ĥ∂Ω(curl,Ω) ∩ H̊Γ0(curl,Ω) w.r.t. ‖·‖Ĥ∂Ω(curl,Ω).

Proof. Let f ∈ Ĥ∂Ω(curl,Ω) ∩ H̊Γ0(curl,Ω).
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1. Step: Reduce to bounded case. Then for given ε there exists an r > 0 such that

‖f − 1Br(0)f‖L2(Ω) ≤ ε,

‖curl f − 1Br(0) curl f‖L2(Ω) ≤ ε,

‖πτf − 1Br(0)πτf‖L2(∂Ω) ≤ ε.

This is a consequence of monotone convergence. We choose χ ∈ C̊∞(R3) such that

suppχ ⊆ Br+2(0), χ(ζ) ∈ [0, 1], χ = 1 on Br(0) and ‖∇χ‖∞ ≤ 1.

Such a function can be constructed by convolving 1Br(0) with a suitable mollifier. By Lemma 5.1 we 
have χf ∈ Ĥ∂Ω(curl,Ω) ∩ H̊Γ0(curl,Ω) with πτχf = χπτf . Moreover,

‖f − χf‖L2(Ω) ≤ 2ε,

‖curl f − curlχf‖L2(Ω) ≤ ‖curl f − χ curl f‖L2(Ω) + ‖∇χ× f‖L2(Ω) ≤ 4ε,

‖πτf − χπτf‖L2(Ω) ≤ 2ε.

Hence, ‖f − χf‖Ĥ∂Ω(curl,Ω) ≤ 8ε.
2. Step: Localize by partition of unity. We define Op = Cε,h(p) for p ∈ ∂Ω ∩ Br+2(0), where Cε,h(p) is a 

cylinder that fits the Lipschitz assumptions of Ω and Op = Bε(p) for p ∈ Ω∩Br+2(0), where ε > 0 is such 
that Bε(p) ⊆ Ω. Then (Op)p∈(∂Ω∪Ω)∩Br+2(0) is a covering of Ω ∩ Br+2(0). Since Ω ∩ Br+2(0) is compact 
there exists a finite subcovering (Oi)ki=1. We define Ωi = Oi ∩ Ω. Moreover, we employ a partition of 
unity subordinate to this covering and obtain functions (αi)ki=1 such that

αi ∈ C̊∞(Oi), αi(ζ) ∈ [0, 1], and
k∑

i=1 
αi(ζ) = 1 for ζ ∈ Ω ∩ Br+2(0)

We define Γ1,i := Γ1∩suppαi. Hence, if Oi is a cylinder, then αiχf ∈ Ĥ∂Ωi
(curl,Ωi)∩H̊∂Ωi\Γ1,i

(curl,Ωi)
and if Oi is a ball, then αiχf ∈ H̊∂Ωi

(curl,Ωi). In both cases we can extend these functions to Ω by 0
outside of Ωi and obtain an element of Ĥ∂Ω(curl,Ω) ∩ H̊Γ0(curl,Ω).
Moreover, we can approximate these functions by C̊∞

∂Ωi\Γ1,i
(R3) functions (that vanish on Ω \ Ωi) 

w.r.t. ‖·‖Ĥ(curl,Ωi) by Theorem 4.8. Since the extended versions are 0 outside of Ωi we conclude this 
approximation also in Ĥ∂Ω(curl,Ω). Hence, we can approximate every αiχf by a sequence in C̊∞

Γ0
(R3)

(w.r.t. ‖·‖Ĥ∂Ω(curl,Ω)).
We denote these sequences by (fi,n)n∈N and we choose n ∈ N so large that ‖αiχf−fi,n‖Ĥ∂Ω(curl,Ω) ≤ ε 

k . 
Since χf = 0 outside of Br+2(0), we have 

∑k
i=1 αiχf = χf and therefore

∥∥∥f −
k∑

i=1 
fi,n

∥∥∥
Ĥ∂Ω(curl,Ω)

≤ ‖f − χf‖Ĥ∂Ω(curl,Ω) +
k∑

i=1 
‖αiχf − fi,n‖Ĥ∂Ω(curl,Ω)

≤ 8ε + ε. �
Corollary 5.6. Let Ω be an (unbounded) Lipschitz domain. Then C̊∞(Ω) is dense in H̊(curl,Ω) w.r.t. 
‖·‖H(curl,Ω).

Proof. This is just a special case of Theorem 5.5, namely Γ0 = ∂Ω. �



N. Skrepek, D. Pauly / J. Math. Anal. Appl. 550 (2025) 129548 15

In order to generalize the other main result for unbounded domains we have two options: Either repeating 
the strategy of this section with small adaptions or repeating Section 4.2. The second option is more 
convenient as we only need to observe that boundedness was only used for Theorem 4.8, which we can now 
replace by Theorem 5.5. Hence, we obtain the following theorem.

Theorem 5.7. Let Ω be an (unbounded) Lipschitz domain such that (Ω,Γ1) is a Lipschitz pair. Then C̊∞(R3)
is dense in ĤΓ1(curl,Ω) w.r.t. ‖·‖ĤΓ1 (curl,Ω).

Proof. Repeat Section 4.2 and replace Theorem 4.8 with Theorem 5.5. �
Corollary 5.8. Let Ω be an (unbounded) Lipschitz domain. Then C̊∞(R3) is dense in H(curl,Ω) w.r.t. 
‖·‖H(curl,Ω).

Proof. This is just a special case of Theorem 5.7, namely Γ1 = ∅. �
6. Conclusion

We have defined H(curl,Ω) fields that possess an L2 tangential trace on Γ1 ⊆ ∂Ω via a weak approach 
(by representation in the L2(Γ1) inner product) and showed that the C∞ fields are dense in this space. This 
is a generalization of [1], where the case Γ1 = ∂Ω was regarded. Moreover, we lifted the result to unbounded 
domains. In fact for partial tangential traces there is the second question about the density with additional 
homogeneous boundary conditions on Γ0 = ∂Ω \ Γ1. This was exactly the open problem in [10, Sec. 5], 
which we could solve. In particular they were asking whether H1

Γ0
(Ω) is dense in Ĥ(curl,Ω) ∩ H̊Γ0(curl,Ω), 

which is in fact a weaker version of Theorem 4.8. We answered this question even for unbounded domains 
with Theorem 5.5.
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